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Abstract 
When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle 
segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and 
cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean 
diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are 
most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment 
bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across 
scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across 
diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner 
and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber 
pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition 
resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-
effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, 
confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or 
less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of 
pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to 
the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same 
intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we 
show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. 
Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, 
and when attempting to understand the successes and limitations of different methodologies in the design and development of new 
tractography or bundle segmentation methods.  
 
Keywords: tractography, bundle segmentation, white matter, reproducibility, harmonization

Introduction 
 Diffusion-weighted magnetic resonance imaging (dMRI) has 
proven valuable to characterize tissue microstructure in health and 
disease [1-3]. Moreover, the use of dMRI fiber tractography to virtually 
dissect fiber pathways [4] is increasingly used to localize microstructure 
measurements to specific white matter bundles [5-7], and  
to study the connections and shapes of pathways [4, 8-16]. Despite 
promises of noninvasive measurements of white matter features, 
variability may exist in measurements due to inherent variability within 
scanners and across scanners, differences in acquisition protocol 
parameters, and differences due to processing pipelines, amongst others. 
These sources of variance challenge the quantitative nature of derived 
measures of microstructure and connectivity, and hinder the ability to 
interpret different findings or combine different datasets.     

These effects have been intensively studied for tissue 
microstructure features, specifically diffusion tensor imaging (DTI)[17] 

indices of fractional anisotropy (FA) and mean diffusivity (MD). 
Numerous studies have characterized intra-scanner and inter-scanner 
DTI variability [18-29], differences due to acquisition parameters [24, 
25, 28, 30-33] including image resolution, number of diffusion images, 
and diffusion sensitization (i.e. the b-value), and differences due to 
processing and algorithmic choices [34, 35].  These have paved the way 
towards recommendations and guidelines for reliable and reproducible 
DTI [36-39]; however, a standardized universal dMRI protocol does not 
exist, and differences are expected across sites and studies (Figure 1) [40, 
41]. Yet, there is significant interest in combining data from different 
sites to increase statistical power and benefit from multi-center 
recruitment abilities [19, 40, 42-48], and it is clear that these differences 
need to be accounted for, or removed, prior to data aggregation or joint 
statistical analysis.  

Notwithstanding the increased awareness and improved 
characterization of dMRI microstructural measures, very little work has 
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been performed to characterize and understand reproducibility of 
tractography-derived features across scanners, across protocols, and 
across different tractography bundle segmentation algorithms [49, 50]. 
Variability in tractography estimates of fiber pathways will further 
increase variability in connectivity analyses and impact microstructural 
characterization, e.g. when tractography is used to define ROIs or to 
perform along-tract profiling. While few studies do exist, they are often 
limited to a single pathway [51, 52], a single dissection protocol [53, 54], 
or a single source of potential variation [55], such as test-retest  or 
population-based reproducibility [54, 56, 57]. Additionally, they do not 
investigate where in the brain or along the pathway that this variability 
occurs, and are often limited to characterizing only microstructural 
features of these pathways (i.e., the FA or MD along or within the 
pathway) [26, 58]. Thus, we currently do not which sources of variation 
impact tractography bundle segmentation the most, which features of the 
bundle are most affected, where variability occurs, nor how these 
questions are dependent upon the workflow used to dissect fiber bundles.  
Thus, for the first time, we combine, assess, and rank all previously 
studied sources of potential variation in the same study, with a focus on 
tractography rather than just DTI measures.  

Here, we investigate and compare the reproducibility of 
tractography across six confounds, or sources of variation: intrinsic 
variability across scan repeats, differences across scanners, across 
vendors, across different acquisition spatial resolution and acquisition 
angular resolution, and across different diffusion sensitizations (b-
values). We employ and examine four fully-automated and commonly 
utilized bundle reconstruction workflows on two cross-scanner cross-
protocol benchmark datasets. We first investigate how these confounds 
affect not only the overlap and location of pathways, but also evaluate 
variability in topological measures of the bundle including length, area, 
shape, and volume features. We ask which pathways, which bundle 
segmentation workflow, and which features are most reproducible? And 
what source of variation is most significant for each method? Second, we 
visualize where in the brain, and where within a pathway, tractography 
is most variable (and most robust) and investigate if sources of variation 
effect this in different ways. Third, we quantify and visualize differences 
in tractography that result when using different bundle segmentation 
workflows. Finally, we analyze traditional DTI measures and quantify 
differences due to these sources of variation as well as the added variance 
introduced by the tractography process over and above that inherent 
across scanners and across acquisition protocols.  
 
Methods 
 
Datasets 

Here we utilize two open-sourced multi-subject, multi-scanner, 
and multi-protocol benchmark databases: the MASiVar [59] and 
MUSHAC datasets [40, 41]. We note that other multi-site databases exist 
(see Discussion), although they are often limited to investigating 
differences across subjects and scanners, whereas the two chosen datasets 
together allow investigation of repeats, scanners, vendors, and 
acquisition protocols (resolution, direction, b-values).  
 
MUSHAC dataset 

The MUSHAC database will allow investigation of cross-
scanner, cross-protocol, and cross b-value effects [40, 41]. This database 
was part of the 2018 and 2019 MICCAI Harmonization challenge. Here, 
we utilize the data acquired from 10 healthy subjects used as training data 
in the challenge, and described in [40, 41]. Each subject has 4 unique 
datasets. This work focuses on the data acquired on two scanners with 
different gradient strengths: a) 3T Siemens Prisma (80 mT/m), and b) 3T 
Siemens Connectom (300 mT/m). Two types of protocols were acquired 
from each scanner: 1) a ‘standard’ protocol with acquisition parameters 
matched to a typical clinical protocol; and 2) a more advanced or ‘state-
of-the-art’ protocol where the superior hardware and software 
specifications were utilized to increase the number of acquisitions and 
spatial resolution per unit time. The ‘standard’ protocol from both 
scanners is matched as closely as possible, with an isotropic resolution of 
2.4 mm, TE=89 ms and TR=7.2 s, and 30 diffusion-weighted directions 
acquired at two b-values: b = 1200, 3000 s/mm2 (scan time ~7.5 
minutes). On the other hand, the Prisma ‘state-of-the-art’ data has a 
higher isotropic resolution of 1.5 mm, TE=80 ms, TR=7.1s and 60 
directions at the same b-values (~14.5 minutes). While the Connectom 
‘state-of-the-art’ data has the highest resolution of 1.2 mm with TE=68 
ms, TR=5.4 s and 60 directions (~11 minutes). All data was corrected for 
distortions, motion, eddy currents [60], and gradient nonlinearity 
distortions [61]. For each subject, the Prisma standard-acquisition dataset 
was used as a reference space and all additional datasets were affinely 
registered to this space using the corresponding FA maps with FSL Flirt 
with appropriate b-vector rotation.  
 
 

Figure 1. Microstructure varies across scanners and across 
acquisitions. An FA map is shown, derived from the same subject, on two 
scanners (Siemens Prisma, left; Siemens Connectom, right) and two 
acquisitions (standard acquisition, top; state-of-the-art acquisition, bottom). 
See Methods for scanner and acquisition details.  
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MASiVar dataset 
The MASiVar database will allow investigation of scan-rescan 

and cross-scanner effects. Here we used a subset of Cohort II of this 
database described in [59], which consisted of 5 healthy subjects with 6 
unique “datasets”. Each subject was scanned on four scanners: a) 3T 
Philips Achieva (80 mT/m) and b) a different 3T Philips Achieva 
(60mT/m) at the same site, c) a 3T General Electric Discovery MR750 
Scanner at a different site, and d) a 3T Siemens Skyra scanner at a 
different site. These acquisitions were matched as closely as possible and 
are similar to that of the standard-protocol described above: with an 
isotropic resolution of 2.5 mm, TE=55 ms and TR=6.2s (7.0s for scanner-
b), and 32 diffusion-weighted directions acquired at b = 1000 s/mm2 
(scan time ~3.5 minutes). Additionally, the subjects were scanned twice 
on the first scanner, and also had an acquisition that consisted of a 96-
direction b=1000 dataset, both of which were also utilized in the current 
study. We note that one subject did not have a repeat scan on the first 
scanner (a) and one subject did not have a scan on the GE Scanner (b). 

All data were corrected for distortions, motion, and eddy 
currents [60, 62]. For each subject, the first session on scanner-a was used 
as a reference space and all additional datasets were affinely registered to 
this space using the corresponding FA maps with FSL Flirt [63] with 
appropriate b-vector rotation.  
 
Sources of variation 
We investigate several possible sources of variation in the bundle 
segmentation process.  
 
RESCAN: the effects of repeating a scan on the same scanner (i.e. scan-
rescan) in a different session, but with a matched acquisition. This 
effect is quantified using the repeated acquisitions from the MASiVar 
database. 
 
SCAN1: inter-scanner (cross-scanner) effects, with a matched 
acquisition and of the same vendor. SCAN1 is quantified using the 
matched acquisitions from the MASiVar database acquired on 
different Philips scanners (both Philips Achieva). 
 
SCAN2: inter-scanner (cross-scanner) effects, with a matched 
acquisition and of the same vendor. SCAN2 is quantified using the 
matched standard acquisitions from the MUSHAC acquired on 
different Siemens scanners (Siemens Connectom and Siemens Prisma). 
 
VEN1: inter-vendor (cross-vendor) effects, with a matched acquisition. 
VEN1 is quantified using the matched acquisitions from the MASiVar 
database, but acquired on scanners from different vendors (Philips 
Achieva and General Electric Discovery). 
 
VEN2: inter-vendor (cross-vendor) effects, with a matched acquisition. 
VEN2 is quantified using the matched acquisitions from the MASiVar 
database, but acquired on scanners from different vendors (Philips 
Achieva and Siemens Skyra). 
 
RES1: effects of spatial resolution, with matched scanner, diffusion 
directions, and b-value. RES1 is quantified by using the MUSHAC 
acquisitions from the Prisma standard-acquisition and from the Prisma 
state-of-the-art acquisition but with only 30 uniformly distributed 
directions utilized (to match the standard-acquisition). This represents 
differences between a 2.4mm isotropic and 1.5mm isotropic 
acquisition.    
 

RES2: effects of spatial resolution, with matched scanner, diffusion 
directions, and b-value. RES2 is quantified by using the MUSHAC 
acquisitions from the Connectom standard-acquisition and from the 
Connectom state-of-the-art acquisition but with only 30 uniformly 
distributed directions utilized (to match the standard-acquisition). This 
represents differences between a 2.4mm isotropic and 1.2mm isotropic 
acquisition.    
 
DIR1: effects of number of diffusion-weighted directions, with matched 
scanner, resolution, and b-value. DIR1 is quantified using the MASIvar 
acquisitions from the first scanner at 32 directions and the acquisition 
on the same scanner at 96 directions.  
 
DIR2: effects of number of diffusion-weighted directions, with matched 
scanner, resolution, and b-value. DIR2 is quantified using the MUSHAC 
acquisitions from the state-of-the art Prisma acquisition with only 30 
uniformly distributed directions utilized and the full state-of-the art 
acquisition which consists of 60 directions.  
 
BVAL: effects of changing the b-value, on the MUSHAC Prisma scanner 
with the ‘standard’ protocol, from b=1200 to b=3000, within the same 
acquisition.  
 

We note that we also investigated a second effect of b-value 
(within the state-of-the art Prisma protocol, with no statistically 
significant differences, and for figure simplicity only show the above-
mentioned b-value analysis). Previous version of this manuscript (and 
preprint) included an ACQ1 and ACQ2 (from state-of-the-art to standard-
acquisition) that were isolated into both effects of directions (DIR1 and 
DIR2) and resolution (RES1 and RES2).  

A final source of variation investigated is that caused by the 
use of different bundle reconstruction workflows. Because all workflows 
segment different numbers of, and sets of, fiber pathways (see below), 
for this analysis, we investigated only those fiber pathways which are 
common to all algorithms. In this case, we identified 7 (bilateral) 
pathways which are segmented by all automated methods.  
 
Tractography bundle dissection 

We utilized four common, well-validated, and fully-automated 
fiber bundle reconstruction workflows, all implemented using standard 
and/or recommended settings. It is important to highlight that each 
workflow included differences in local fiber-direction estimation, fiber 
tractography, and bundle segmentation algorithms, and our attempt was 
to implement the entire workflow as would be done in a typical scientific 
study (see Discussion on limitations of confounds due to differences in 
bundle segmentation process). While there are dozens of bundle 
segmentation algorithms, we have chosen these to be representative of 
common approaches, utilizing regions of interest, atlases, machine 
learning, templates, etc. (see Discussion and Limitations).   
 
TractSeg 

TractSeg is based on convolutional neural networks and 
performs bundle-specific tractography based on a field of estimated fiber 
orientations [64-66]. We implemented the dockerized version at 
(https://github.com/MIC-DKFZ/TractSeg), which generates fiber 
orientations using constrained spherical deconvolution with the MRtrix3 
software [67]. We note that different reconstruction methods could have 
been chosen to generate fiber orientations. This method dissects 72 
bundles. 
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Automatic Fiber Tractography (ATK) 
ATK was performed in DSI Studio software using batch 

automated fiber tracking [68]. Data were reconstructed using generalized 
q-sampling imaging [69] with a diffusion sampling length ratio of 1.25. 
20 white matter pathways were automatically reconstructed using 
seeding regions defined in the HCP842 tractography atlas [70], randomly 
generated tracking parameters of anisotropy threshold, angular threshold, 
step size, and subsequent segmentation and pruning. The Dockerized 
source code is available at http://dsi-studio.labsolver.org. 
 
Recobundles (RECO) 

Recobundles [71] segments streamlines based on their shape-
similarity to a dictionary of expertly delineated model bundles [70]. 
Recobundles was run using DIPY [72] software (https://dipy.org) after 
performing whole-brain tractography using spherical deconvolution and 

DIPY LocalTracking algorithm. The bundle-dictionary contains 80 
bundles, but only 44 were selected to be included in this study after 
consulting with the algorithm developers based on internal quality 
assurance (for example, removing cranial nerves which are often not 
used in brain imaging). Of note, Recobundles is a method to 
automatically extract and recognize bundles of streamlines using prior 
bundle models, and the implementation we chose uses the DIPY bundle 
dictionary [70] for extraction, although others can be used, as well as 
alternative shape-similarity filtering criteria.  
 
Xtract 

Xtract (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/XTRACT) is a 
recent automated method for probabilistic tractography based on 
carefully selected inclusion, exclusion, and seed regions, defined in a 
standard space [73]. Xtract used the ball-and-stick model of diffusion 

Figure 2. Tractography varies across 
scanners, acquisitions, b-values, and 
bundle segmentation methods. On the 
same subject, the arcuate fasciculus is 
shown for each of the 4 bundle segmentation 
methods, for two scanners and two 
acquisitions. Note that the pathway is 
visualized as streamlines for TractSeg, ATK, 
and Reco but a probability density map for 
Xtract. Arrows highlight visible examples of 
differences in streamlines across scanners 
(solid arrows), across acquisition (dotted 
arrows), and across b-values (dashed 
arrows). 
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from FSL’s bedpostx algorithm [63], in combination with a probabilistic 
tractography algorithm probtrackx, to reconstruct 42 white matter 
pathways. In contrast to the preceding methods, which result in 
streamlines, this method results in visitation count maps for each 
pathway.  
 

A list of all segmentations generated from each method and 
corresponding acronyms is given in the appendix. The 7 pathways 
identified to be common to all tractography bundle segmentation 
techniques includes: arcuate fasciculus (AF), corticospinal tract (CST), 
inferior fronto-occipital fasciculus (IFO), inferior longitudinal fasciculus 
(ILF), middle longitudinal fasciculus (MdLF), optic radiations (OR), and 
uncinate fasciculus (UF), all of which are bilateral including left (_L) and 
right (_R) hemisphere pathways.  
 A thorough quality control was performed for all subjects, and 
for all pathways. This included first visualization and verification of 
adequate alignment of all FA maps (to ensure appropriate quantification 
of overlap measures). Second, all pathways, for all subjects, were 
visualized in mosaic form using tools from the SCILPY toolbox 
(https://github.com/scilus/scilpy), and pathways were visually assessed 
and removed from analysis if deemed in the incorrect location or shape. 

Finally, individual bundles were removed from analysis if the number of 
segmented streamlines was less than 3 standard deviations away from the 
mean number (for each pathway), or if the total number of streamlines 
was below 200 (indicating failure of tractography), and subjects were 
removed from analysis (for a given algorithm) if >20% of pathways 
failed QC. 
 
Feature extraction 

A number of features were extracted from each bundle 
segmented. First, for simple comparisons of the volume occupied by each 
pathway, all bundles (from all methods) were binarized and resampled at 
1mm isotropic resolution. For methods generating streamlines (Tractseg, 
ATK, and RECO) this is equivalent to binarizing based on a streamline 
density of 1. Because Xtract output is in the form of a normalized 
probability distribution, where a threshold of 2.5E-4 was chosen based 
on [73]. The binarized segmentation was used for measures of Dice 
overlap (described below). 

Second, several descriptors of the shape and geometry of the 
bundles were extracted. Shape analysis was performed using DSI Studio, 
and made available as matlab code 
(https://github.com/dmitrishastin/tractography_shapes/), based on [68], 

Figure 3. Reproducibility is dependent on all investigated effects, and varies by pathway and by dissection method. Effects of scan-rescan 
(RESCAN; blue), scanners (SCAN1, SCAN2; red), vendor (VEN1, VEN2; dark purple), resolution (RES1, RES2; pink), diffusion directions (DIR1, 
DIR2; green) and b-value (BVAL; light purple) on dice overlap coefficient for individual bundles. Results are shown for 14 fiber bundles that are 
common to each tractography workflow. Please see Appendix for bundle abbreviations.  
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to derive length, area, volume, and shape metrics of a bundle. Briefly, 
length features include mean length, span, diameter, and average radius 
of end regions. Area features include total surface area and the total area 
of end regions. Volume features include total volume, trunk volume, and 
branch volume. Shape features include pathway curl, elongation, and 
irregularity.  
 Finally, microstructure measures of FA and MD (calculated 
using iteratively reweighted linear least squares estimator) within 
pathways were extracted. In all cases, a simple measure of the average 
value within the binary volume was performed, although we note that 
these measures can also be weighted by certainty or streamline density. 
To isolate the added variation due to tractography from that of the 
existing sources of variation, these measures were extracted in two ways. 
First, using the binary regions defined in the reference scan-space only 
(i.e., the Prisma standard-acquisition and first session on scanner-a for 
MUSHAC and MASiVar datasets respectively) were used as the same 
region-of-interest across all effects, in order to isolate each source of 
variation while keeping ROIs constant. Second, the binary region defined 
by tractography for each specific dataset was used to extract the average 
FA (or MD), which includes both variation due to the effect under 
investigation and the variation due to tractography differences.   
 
 

Reproducibility Evaluation 
Reproducibility was evaluated using several metrics, and 

across each source of variation. First, the Dice overlap was calculated for 
each pair of bundles as an overall measure of similarity of volumes. The 
Dice overlap is calculated as two times the intersection divided by the 
sum of the volumes of each dataset. Results were displayed across all 
fiber pathways for a given source of variation, and differences between 
effects were calculated using the nonparametric paired (i.e. same subject, 
different effect) Wilcoxon signed rank tests.  

Differences in scalar shape features are calculated as the mean 
absolute percentage error (MAPE), sometimes referred to as the mean 
absolute percentage deviation. For two different scans, this measure is 
calculated as the difference divided by the mean, and can be converted to 
a percentage error by multiplication by 100. This measure was calculated 
over all subjects, and results were displayed across all fiber pathways for 
a given source of variation. Differences between effects were again 
calculated using the nonparametric paired (i.e. same subject, different 
effect) Wilcoxon signed rank tests.  

For visual comparisons only, all subjects were nonlinearly 
registered to MNI space, using the 1mm isotropic FA template and the 
corresponding FA maps with FSL FLIRT + FNIRT. Streamlines were 
directly warped to this space for visualization of agreement/disagreement 

Figure 4. Reproducibility is dependent upon all investigated effects, and each bundle segmentation methods is affected differently. Effects 
of scan-rescan (RESCAN; blue), scanners (SCAN1, SCAN2; red), vendor (VEN1, VEN2; dark purple), resolution (RES1, RES2; pink), diffusion 
directions (DIR1, DIR2; green) and b-value (BVAL; light purple) on dice overlap coefficient for all fiber bundles dissected using each technique. For 
each, a Wilcoxon signed rank test is performed to investigate differences in effects. Statistically significant results (p<.05/45/4 comparisons) are 
shown as a solid line, and those not reaching statistical significance are shown as dashed line. Tractseg (top-left), ATK (top-right), Reco (bottom-
left), and Xtract (bottom-right).  
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across the cohort. Note that quantification of shape features was 
performed in native space prior to warping.  

For all statistical analysis, thresholds were corrected for 
multiple comparisons. For example, when investigating differences in 
effects of DICE/MAPE, etc., we tested differences between 10 effects, 
resulting in 55 tests performed for each analysis.   
 
Results 
 
Qualitative Variation 

Figure 1 shows FA maps of the same subject, but acquired on 
different scanners and with different protocols. In agreement with the 

literature [40, 41], differences in magnitude, contrast, and signal-to-noise 
ratios are readily apparent, and dMRI measures qualitatively vary due to 
scanner and acquisition effects. 
 Figure 2 shows tractography bundle segmentation results for 
an example pathway (the arcuate fasciculus; AF) on a single subject, for 
two scanners, two protocols, two b-values, and all four reconstruction 
methods. For a given bundle segmentation method, minor differences are 
observed in individual gyri and at regions of low streamline density. 
However, bundles are visually very similar across scanners and 
protocols, with similar shapes, locations, curvatures, and connections. 
Most notably, and as expected [55], the biggest differences are observed 

Figure 5. Locations of agreement and disagreement 
across effects. Maps are computed by overlaying (for 
each source of variation), maps of where there is overlap 
(i.e. agreement) and non-overlap (disagreement), 
averaged across all subjects. For each effect, the percent 
agreement indicates areas where a pathway is 
consistently located and is shown using a “hot” colormap, 
while the percent disagreement indicates areas without 
consistent overlap and is shown using a “cold” colormap. 
Results are shown for a highly reproducible pathway 
(AF_L dissected using TractSeg) and for a less 
reproducible pathway (SLF2 dissected using XTRACT). 
Note that even though disagreement is abundant, it does 
not consistently occur (i.e., % disagreement remains low; 
black and dark blue) suggesting no systematic bias due 
to effects, and disagreements are largely attributed to the 
stochastic nature of the tractography and dissection 
process.  
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when comparing the same pathway across different bundle segmentation 
methods. 
 
Quantitative variation due to rescan, scanner, vendor, resolution, 
directions, and b-value effects 

The effects of RESCAN, SCAN1, SCAN2, VEN1, VEN2, 
DIR1, DIR2, and BVAL on Dice overlap coefficient is shown in Figure 
3 for fourteen selected pathways common to all bundle segmentation 
methods. Notably, reproducibility is most dependent on the bundle 
dissection method, with TractSeg consistently resulting in high 
reproducibility for all sources of variation. Within a method, most 
pathways show similar patterns of reproducibility. For example, for 
TractSeg and Xtract all pathways indicate high RESCAN, DIR(1 and 2) 
and BVAL reproducibility, but are most sensitive to RES, with RES2 
showing more variation than RES1. Additionally, Dice overlap shows 
some variation across pathways, for example CST and UF generally have 
higher overlap than OR, IFO, and AF, although trends are different for 
different workflows.  

The results of the Dice overlap coefficient-analysis for each 
method is shown in Figure 4, but condensed across all pathways within 

a given bundle segmentation method. Similar trends are observed as in 
Figure 3, with TractSeg consistently indicating the highest Dice overlap, 
and all methods indicating moderate-to-good overall overlap for most 
pathways. In general, the largest differences are observed when changing 
resolution, with changes due to RES2 resulting in larger differences than 
RES1. Following this, differences across vendors (VEN1 more different 
than VEN2 comparisons) are greater than across scanners (for both 
SCAN1 and SCAN2), which are greater than the inherently stochastic 
nature of RESCAN variability. Finally, differences caused by DIR (1 and 
2) and BVAL are on the level of, or even less than, those caused by 
RESCAN, with the notable exception of ATK, which utilizes a 
reconstruction method and tractography propagation inherently 
dependent on diffusion sensitization.  

 
Localization of Variation 
 Figure 5 visualizes locations of tractography bundle 
segmentation agreement (or consistency), and where it disagrees 
(variability) as hot and cold colormaps, respectively. Agreement and 
disagreement are averaged across all subjects and shown for all sources 
of variation. For display, we have chosen an example pathway that is 

Figure 6. Reproducibility of pathway shape features 
depends on pathway and bundle dissection method. 
Reproducibility is shown as a MAPE for each tractography 
segmentation method. For each method, the features are 
ordered (from top to bottom) from lowest to highest average 
MAPE, and pathways are similarly ordered (from left to right) 
from lowest to highest average MAPE. Note that the 
colormap is nonlinear to better highlight MAPE between 0-
0.10. Many shape features are highly reproducible, and with 
differences across pathways and bundle dissection 
methods. Please see Appendix for bundle abbreviations. 

Figure 7. Variability of shape features is influenced by scanner, vendor, acquisition, and b-value. Variability is shown as MAPE for each 
TractSeg, ATK, and Reco methods, for scan-rescan (RESCAN), scanners (SCAN1, SCAN2), vendor (VEN1, VEN2), resolution (RES1, RES2), 
diffusion directions (DIR1, DIR2) and b-value (BVAL). Values shown are averaged across all pathways within a bundle dissection method. Shape 
features are ordered (from top to bottom) from lowest to highest average MAPE. Many shape features are highly reproducible, and MAPE is 
influenced by all effects investigated.  
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highly reproducible (the AF from TractSeg) and one which displayed 
lower reproducibility (the SLFII from Xtract). For the highly 
reproducible pathway, all sources of variation show very similar results. 
The agreement is very high throughout the entire pathway (hot colors), 
and percent-disagreement remains fairly low (black and dark blue 
colors). This means that when two bundles disagree, the disagreement is 
largely randomly distributed, rather than a consistent localized bias 
introduced by a certain source of variation – an effect which would show 
up as a consistent disagreement (i.e. a high percent-disagreement). 
Disagreement tends to occur at the periphery, or boundaries, of the 
pathway, in particular at the gray-white matter junction, and within 
individual gyri.  
 For the less reproducible pathway, the agreement is moderate 
to high in the dense core, or center, of the pathway in the deep white 
matter. Again, disagreements are at the edges, and prominent at the white 
matter and gray matter boundary. However, even though disagreement is 
more noticeable, the percent-disagreement remains low, indicating 
random disagreement as opposed to a consistent bias in the spatial 
location of this pathway. In this case, sources of variation from SCAN2 

and RES2 and VEN1 are more noticeable as a larger source of variation, 
in agreement with quantitative results.    
 
Variation of shape features 

Figure 6 shows the RESCAN reproducibility of shape features 
as measured by MAPE, for all features and all pathways, visualized in 
decreasing reproducibility. In agreement with Dice, TractSeg has higher 
overall reproducibility, with most features and most pathways below 10% 
MAPE. Similarly, ATK and Reco are able to reproducibly characterize 
most features of most pathways with high consistency. In general, 
reproducibility of features follows similar order across all methods, with 
features of Curl, Length, Span, and Diameter highly reproducible, and 
those of surface area, volume, and end area less so. Additionally, 
reproducibility is highly dependent on pathway, with clear variation 
depending upon the bundle being analyzed.   
 Figure 7 summarizes the MAPE of different features across 
different sources of variation. Again, Curl, Length, and Span are highly 
reproducible across all effects, with MAPE always below 10%, and 
surface area and volume result in higher MAPE. Trends are the same as 
those observed for Dice overlap, with generally larger differences due to 

Figure 8. Sources of variation may introduce bias in shape features. The mean percent variation (MPV), i.e., the signed MAPE, is shown for each 
bundle segmentation method, for all features, with the distribution across fiber pathways. A distribution not centered on 0 suggests systematic differences 
introduced by the given effect. For interpretation, RESCAN (repeat 2 – repeat 1), SCAN1 (Philips Achieva scanner 2 – Philips Achieva scanner 1), 
SCAN2 (Siemens Connectome standard acquisition – Siemens Prisma standard acquisition, VEN1 (GE Discovery - Philips Achieva), VEN2 (Siemens 
Skyra - Philips Achieva), RES1 (Prisma state-of-the-art 30 directions - Prisma standard acquisition), RES2 (Connectom state-of-the-art 30 directions - 
Connectom standard acquisition), DIR1 (Philips Achieva 96 directions – Philips Achieva 32 directions), DIR2 (Prisma state-of-the-art 60 directions - 
Prisma state-of-the-art 30 directions), BVAL (Prisma standard-acquisition b=3000 - Prisma standard-acquisition b=1000) 
 

Figure 9. Different workflows result in low-to-moderate Dice overlap of the same pathways. Dice overlap coefficients for individual bundles, 
when measuring agreement between different bundle dissection methods. Please see Appendix for bundle abbreviations. 
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resolution and vendor acquisition effects (RES 1 and 2, VEN 1 and 2), 
followed by scanner effects (SCAN1 showing the largest variation).  
 To look for systematic differences introduced in the 
quantification of features, we calculate the mean percent variation (i.e., 
the signed value of MAPE), across all sources of variation, for all features 
(across all bundles). Figure 8 shows that most effects do not significantly 
bias bundle shape measures. For example, nearly all features derived 
from TractSeg are within a 10% variation and largely centered on 0. 
However, RES2 and VEN2 do introduce a small, but consistent, bias, in 
measures of surface area, end area, and volume (in this case, the higher 
resolution results in smaller values). Similarly, for ATK, a bias is 
observed in the opposite direction for the same features for effects of 
acquisition resolution. Additionally, b-value introduces a significant bias 
for ATK, with the higher b-value scan resulting in larger quantitative 
values for these features. Reco, in agreement with previous figures, has a 
much wider range of variation, and larger effects due to acquisition for 
features of Diameter, Surface Area, End Areas and Volume. Thus, 
different sources of variation may bias quantitative extraction of shape 
features, and bias them differently for different bundle segmentation 
methods.  
 
Variation across bundle segmentation methods 

 Next, we compared the agreement of the same bundle, but 
across different bundle segmentation methods. Figure 9 shows the Dice 
overlap for 14 common bundles, comparing each method to every other. 
There is a low-to-moderate agreement, with Dice overlap values between 
0.1-0.5 for all pathways. In general, ATK was most similar to TractSeg 
and Reco for most bundles (with some exceptions), while Xtract was 
most dissimilar to all others. The AF, ILF, and MDLF, were the most 
dissimilar across methods. 
 Figure 10 visualizes where agreement and disagreement 
occurs across bundle segmentation methods, with example-pathways AF 
and OR. Here, while most of the core agrees across methods, there is also 
a consistent disagreement across methods, particularly in the thickness of 
the bundle and in the regions of the temporal lobe for the AF and 
connections in the occipital lobe for the OR. Thus, instead of random 
differences due to noise, differences across methods are reproducible 
disagreement, likely caused by fundamental differences in the 
segmentation technique and structure to be segmented. 
 
Variation in diffusion MRI microstructure measures  
 We next investigate reproducibility of microstructure measures 
due to the aforementioned sources of variation, and tractography 
variation. Figure 11 shows the MAPE of FA for all four bundle 

Figure 10. Locations of agreement and 
disagreement across bundle dissection 
methods. For each comparison, percent 
agreement indicates areas where methods 
agree in space and is shown using a “hot” 
colormap, while percent disagreement 
indicates areas where disagreement occurs 
and is shown using a “cold” colormap. 
Results are shown for two example 
pathways (AF_R and OR_L). Here, there 
are areas of high % disagreement between 
methods, indicating a consistent and 
reproducible difference between bundle 
dissection methods (highlighted by yellow 
arrows).  
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segmentation methods. In all cases, the standard-color boxplots are 
variations due to the queried source of variation alone, whereas the 
darker-shaded boxplots are due to the source of variation and the added 
variation of tractography variation. Most notably, the MAPE due to 
RESCAN, SCAN, VEN, DIR, and BVAL alone are highly similar for all 
segmentation methods, with only minor differences due to the slightly 
different representations of the pathways (Figure 9). These results are in 
line with the literature, with variation <3% for SCAN rescan [24, 25, 58], 
with 5-15% due to scanner and vendor effects [40, 41], and as much as 
10% due to differences in acquisition and diffusion sensitization [33, 40, 
74]. Notably, the added variation due to tractography does indeed 
increase differences in FA (as indicated by a solid horizontal line) in 
many cases, although the % increase in variation is on average <5%.  
 Figure 12 shows the MAPE of MD for different sources of 
variation. Most noticeable, MD is highly different when calculated using 
two different b-values, as expected [3, 25, 32, 75, 76], followed by 
differences due to vendors. Differences across RESCAN, SCAN, RES, 
and DIR are typically <5%. Again, the use of tractography adds to this 
variance, although on 3% or less on average.  
 
Discussion 
 The primary focus of this work was to study variability of 
diffusion fiber tractography bundle segmentation, performing the same 
analysis on different datasets on different scanners or with different 

acquisition protocols. For the databases investigated here, we have shown 
that the process of tractography bundle segmentation shows significant 
variation across different acquisition resolution and across different 
vendors, with less, albeit significant, variation across scanners and across 
diffusion sensitization. Variation is indeed expected when scanning the 
same subject twice, with all other experimental parameters constant, due 
to imaging noise and the stochastic nature of the tractography process, 
however, these additional sources of variation add potential confounds to 
tractography analysis that may bias measurements, limit aggregation of 
datasets, and hinder direct interpretation and meta-analysis of different 
results across studies. While the primary focus was on variation due to 
vendor and scanner effects, acquisition effects, and b-value effects, we 
also show the most bundle segmentation workflows are highly 
reproducible when running the same analysis on data acquired in 
different sessions, but with the same scanner and protocol. 
 It is well-known that microstructural features at different sites 
and with different protocols are not immediately comparable, and in fact 
significantly biased due to various effects. However, the process of 
tractography is largely dependent upon fiber orientation estimates, rather 
than features of the signal magnitude directly (i.e., MD/FA), and it is not 
immediately intuitive that differences in scanners, acquisitions, and b-
values may lead to significantly different results. The results of this work 
suggest that, indeed, the results of tractography and across sites adds 

Figure 11. Variation of FA. Effects of scan-rescan (RESCAN; blue), scanners (SCAN1, SCAN2; red), vendor (VEN1, VEN2; dark purple), resolution 
(RES1, RES2; pink), diffusion directions (DIR1, DIR2; green) and b-value (BVAL; light purple) on MAPE of the FA for all fiber bundles dissected 
using each technique. The left boxplots are indictive of the variability inherent due to each effect, whereas the darker-hued (right) boxplots indicate 
the added variability due to differences in tractograms. For each, a Wilcoxon signed rank test is performed to investigate whether tractography adds 
to (or removes) significant variance to this metric, and statistical significance is indicated by a solid black line.  
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variability that must be considered in the interpretation of both 
microstructural and shape features of these pathways.  
 
Do we need to harmonize tractography? 
 “Harmonization” can be considered any effort at reducing 
variability in quantitative metrics between different databases, scanners, 
and studies. We have known that the voxel-wise signal varies across sites, 
scanners, and acquisitions (as evidenced by the multitude of efforts in the 
literature to study effects on DTI-indices [1-15]) and now confirm that 
the tractography process itself does as well, and have quantified the 
extent that tractography contributes to variability. The question becomes 
“do we need to harmonize tractography?”. The short answer is “yes”, the 
long answer is: harmonizing likely entails both harmonizing the signal 
(e.g., FA, MD, RISH measures), harmonizing orientation, reducing 
effects of resolution, and combining the strengths of different bundle 
segmentation approaches.  

The field of diffusion MRI harmonization has grown in recent 
years, with significant efforts to make diffusion microstructural measures 
comparable across sites and scanners [19, 40, 42-44, 47, 48]. Yet, these 
endeavors have traditionally not considered variability of tractography, 
which is ultimately influenced at both the local scale of individual voxels 
and voxel-wise reconstruction as well as a global scale of connecting 
discrete orientation estimates across the brain.  

It is unclear what “harmonizing” tractography may entail. 
Clearly, consistent orientation estimates are key, but also streamline 
generation algorithms robust to voxel-sizes, and also segmentation 
algorithms that are consistently able to identify streamlines belonging to 
a pathway-of-interest. With the vast array of options to reconstruct 
orientation, generate streamlines, and segment bundles, it may be 
impossible to harmonize data in a way that is appropriate for all methods. 
Some effort has been performed to harmonize fiber orientation estimation 
specifically across time or across scanners [45, 77-79]. It may be possible 
that harmonizing the microstructural measures themselves may remove 
some possible confounds (i.e., if FA is used as a stopping criteria). 
Similarly, it is possible that the application and process of tractography 
in a standard space (as performed for XTRACT), or at a standard 
resolution may remove confounds associated with image resolution. 
Alternatively, various multi-site methods used for scalar microstructure 
features, instead of harmonizing bundles of streamlines directly, may be 
utilized to harmonize features extracted from bundles. Finally, even 
while there is significant variation, large agreement occurs in the core of 
reconstructed white matter pathways, and weighting all derived measures 
and features by tract density, or isolating the trunk of the bundle [7], may 
remove sources of variation.  
 Reassuringly, the automated methods considered are fairly 
robust to these studied sources of variation. Visually, the pathways look 
remarkably similar across scanners, acquisition, and protocols (Figure 

Figure 12. Variation of MD. Effects of scan-rescan (RESCAN; blue), scanners (SCAN1, SCAN2; red), vendor (VEN1, VEN2; dark purple), resolution 
(RES1, RES2; pink), diffusion directions (DIR1, DIR2; green) and b-value (BVAL; light purple) on MAPE of the MD for all fiber bundles dissected 
using each technique. The left boxplots are indictive of the variability inherent due to each effect, whereas the darker-hued (right) boxplots indicate 
the added variability due to differences in tractograms. For each, a Wilcoxon signed rank test is performed to investigate whether tractography adds 
to (or removes) significant variance to this metric, and statistical significance is indicated by a solid black line.  
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2), for all methods. Quantitatively, methods such as TractSeg, which 
utilize orientation estimates alone, in combination with machine learning 
techniques in order to map out tract orientation maps, endpoints, and 
binary segmentations are highly reproducible. Similarly, the other 
methods, while quantitatively having moderately larger variation, show 
similar shapes, locations, and connectivity across all effects. A final 
possible harmonization approach may be to combine the strengths of the 
various algorithms, rethinking the process of bundle segmentation to 
possibly utilize some combination of machine learning (TractSeg), and a 
volume-based extraction prior to streamline generation, followed by 
atlas-based (ATK, Xtract), or shape-based filtering (Reco) in order to 
delineate bundles consistently across potential confounds.  
   
Which confounds impact tractography the most? 
 It is important to emphasize that we are purposefully not 
attempting to “rank” algorithms, or suggest that ones are better than 
others. Even the methods with apparent lower reproducibility of features 
and shapes are still moderately robust, and different implementations of 
these algorithms may have yielded different quantitative values. For 
example, different thresholding could have been applied to both density-
based (Xtract) or streamline-based (all others) methods to increase 
specificity (or vice-versa, specificity), or different whole-brain 
tractography could have been applied prior to bundle dissection using 
Recobundles. However, regardless of implementation and choices of 
hyperparameters, we expect methods to show similar dependencies to the 
investigated sources of variation. 
 To our knowledge, this is the first time that multiple sources of 
variation of tractography have been investigated together. 
Reproducibility across raters, across algorithms, and across scanners 
have previously been investigated. Our results allow comparison of the 
relative impact of changes across sites or scanners, and suggest that, in 
general spatial resolution leads to the most dramatic differences in 
resulting tractograms. Less tissue-based partial volume effects within the 
white matter may facilitate delineation of white matter bundles [80]. 
Additionally, when quantifying volume overlap and shape features, 
voxel-wise partial volume effects may cause a higher (or lower) estimate 
due to the representation of the bundle as a binary volume at the given 
spatial resolution. Finally, orientation-based partial volume effects are 
observed with different spatial resolution [30, 81], leading to differences 
in accuracy of fiber orientation distributions, as well as fundamental 
differences in common diffusion measures such as FA (which are often 
used in the tracking process).  

The second biggest contributor to variability was vendor 
differences. Differences across scanners are known to introduce 
variability due to factors of maximum gradient strength (and hence echo 
times and repetition times), field strengths, gradient nonlinearities, 
receive coil sensitivities, software version, and system calibration [19]. 
Here, we show that differences in vendors are typically greater than that 
due to different scanners (yet same vendor) alone. Over and above 
scanner differences, vendors themselves may variations in algorithm 
choices, algorithms for acquisition, reconstruction, background noise 
reduction, multi-coil fusion [82, 83], and pulse sequence implementation. 
Here, we have shown that in addition to inconsistencies in DTI measures 
across vendors consistently shown in previous studies [84-86] there is 
also a large inconsistency in tractography volumes and locations due to 
differences in vendors.  

Reassuringly, variation of b-value and number of diffusion 
directions led to relatively consistent tractography. While it is well-
known that angular resolution affects the ability to reconstruct fiber 
orientations [30, 87-91], most reconstruction methods are robust with as 
few as 30 directions (or less). Similarly, while reconstruction algorithms 
are dependent on diffusion sensitization [87, 92], the b-value did not 

significantly affect tractography results (although does affect quantitative 
metrics association with DTI).  
 It is also interesting that the relative magnitude of sources of 
variation depend on the bundle dissection method. While variability 
generally decreases from RESCAN, DIR, BVAL, SCAN, then VEN and 
RES, several notable exceptions occur. ATK is highly sensitive to the b-
value. This is likely due to the fact that this automated tractography is 
reconstructed using Generalized Q-ball Imaging [69], and tracking 
thresholds are determined by the normalized quantitative anisotropy, 
which is known to be highly dependent on b-value [93]. In contrast, 
XTRACT is a probabilistic method based largely on fiber orientation 
(and its dispersion) alone (from the ball-and-stick model [94]), and 
different b-values give highly similar results of orientation (although 
dispersion will vary). XTRACT is also most sensitive to drastic change 
in resolution, likely caused by the probabilistic nature of the tractography 
process and subsequent thresholding for segmentation.  
 
Shape variation and location of variation 
 This is to the best of our knowledge also the first time that 
reproducibility of different shape features of tractography has been 
investigated. While the variation across and within subjects has 
previously been studied [68], it is important to understand cross-protocol 
and cross-scanner effects if these features are to be potential biomarkers 
in health and disease. These shape measures show similar patterns of 
variability, largest across resolution, vendors, and scanners scanners, and 
smallest variation across repeats, directions, and b-values. More than 
variation, different resolutions and b-values can significantly bias 
measures, for example consistently overestimating volume and surface 
areas at lower resolutions where more partial volume effects are 
expected. Depending on tractography method, many features are 
remarkably robust, with MAPE below 5%, in line with that of 
microstructure features.  
 We also investigated locations of differences and similarities 
by visualizing where there was consistent agreement and disagreement. 
Importantly, even with differences in acquisition and scanners, methods 
are able to consistently reproduce the major shape and location of the 
intended pathway, with differences most frequently occurring at the 
periphery, or edges, of the pathway, and along the white matter and gray 
matter interface. While features of shape and geometry may be biased 
due to sources of variation, these differences do not consistently occur at 
any one location or place along the pathway.  
 
Different workflows 
 Over and above the typically studied sources of variation, we 
found that differences due to the choice of bundle segmentation 
workflows are most pronounced. For any given pathway, overlap from 
one workflow to another was low-to-moderate. This is in part due to the 
inherent sensitivity/specificity of different algorithms – for example 
Recobundles will look for clusters exhibiting a certain shape, while 
Tractseg is based on deep-learned segmentation, and Xtract will be 
highly dependent on the chosen threshold – but more importantly due to 
fundamental differences in how the pathway is dissected or defined [55, 
95]. For example, the definition of a pathway by one method may be 
entirely different from another method, including choices in the presence 
or absence of connections to entire lobes or lobules, or differences in 
estimated spatial extent of pathways. While differences across methods 
were larger, they were importantly consistently different, meaning that 
comparing findings using different methods may result in differing 
conclusions on connectivity or microstructure.  Differences between 
bundle segmentation workflows are also confounded by differences in 
the entire process of tractography, including differences in modeling, 
generation of streamlines (i.e., tractography), and bundle segmentation or 
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filtering. Thus, it is intuitive that major differences exist when 
implementing different standard workflows to study the brain.  
 
Microstructure variation 
 Finally, we looked at how much the variation in tractography 
contribute to the already existing cross-protocol and cross-scanner 
variation in dMRI measures. For FA, difference across scanners are 
known to be as much as 5-15% [40, 41], and differences are expected due 
to different b-values, while scan-rescan reproducibility is high (<5%). 
The variation in tractography segmentations does indeed statistically 
significantly increase this variation for most effects, although the increase 
is typically very small and <5%. Similar results are observed for MD, 
although most changes are most pronounced for MD across different 
scanners. Thus, while tractography has the benefit of added specificity 
over simply propagating atlas-derived regions to subject-space, it does 
potentially increase variability in these measurements. Although methods 
such as tract-based spatial statistics [96] have been developed to mitigate 
these effects, we lose the added benefit of characterizing an index of 
interest along or within the full trajectory of the pathway.  
 
Future studies and Limitations 
 Future studies should investigate additional sources of 
variation. Manual dissection of fiber bundles gives the dissector the 
ability to interactively manipulate pathways to their liking [52], and it 
remains to be seen how this is influenced by scanner and site given the 
flexibility of this approach. Further, it is unknown whether these 
variabilities will matter in a clinical setting [97-100], although with the 
importance of determining pathway boundaries, we hypothesize that the 
partial volume effects due to acquisition resolution will possibly 
influence decision making. It is worth investigating the potentially large 
array of automated bundle segmentation methods that exist, as some are 
likely more/less appropriate when comparing or combining datasets with 
different confounds. Additionally, as alternative segmentation methods, 
or even whole-brain connectome analysis pipelines, are proposed, the use 
of open-source multi-site multi-subject datasets [101-103] should be 
encouraged to investigate the successes and limitations of new 
approaches. Many algorithms for reconstruction and tractography are 
now able to utilize multiple diffusion shells, and the change in variability 
and precision of tractography using these techniques compared to 
isolated diffusion weightings should be compared, but is outside the 
scope of this work. As along-fiber quantification [6, 7] has proven 
valuable in the research setting, it would be worthwhile to perform 
investigations which parallel the current study in order to ask how and 
where along the bundle differences occur due to different effects. This 
has been previously investigated, but is largely limited to scan-rescan 
analysis [7, 101, 104], while the tract-averaged indices are still 
commonly utilized in neuroimaging studies.  
 A major limitation of the current study is the limited sample 
sizes of both datasets due to challenges associated with scanning the same 
subjects on different scanners and with different protocols. However, 
there are few multi-site multi-subject databases, and fewer still with 
varied protocols on the same subjects, whereas here we are able to 
remove effects across subjects by analyzing only the same subject with 
different protocols. It is expected that more datasets will become 
available as big-data and multi-site collaborations become more 
important to the neuroimaging community, and traveling subjects 
become common place in order to harmonize across sites. Exemplar 
open-sourced datasets include that of [105] with N=3 subjects at 20 sites 
with Prisma scanners and a multi-shell dataset (allowing analysis of 
RESCAN, SCAN, BVAL, DIR), the traveling human phantom dataset 
[85] with N=5 subjects at 8 center (SCAN, VEN, DIR), or consortiums 
such as Pharmacog [106], ADNI [103], HCP [61], or OASIS [107], all 

with large sample size and repeat scans, but typically limited to RESCAN 
analysis only or without matched subjects across 
scanners/vendors/protocols. Because of this, for simplicity, we have 
chosen two datasets in this study which allow incorporation of all 
intended sources of variation without compromising readability. While 
we have looked at a wider range of variability factors than previous 
studies, we emphasize that these results are based only on two specific 
databases, and nalysis should be reproduced on other (and new) databases 
in future work to show generalizability.  

Finally, while the primary focus of our study was on variation 
due to scanner-effects, acquisition-effects, and b-value-effects, our 
analysis was limited to studying these effects on only four bundle 
segmentation workflows. We did not implement all existing automated 
bundle reconstruction pipelines or workflows [7, 53, 56-58, 64, 108-115], 
however, our selection captures a variety of techniques used to 
reconstruction bundles, including differences in the use of atlases or 
regions-of-interest, those based on shape and/or orientation features, 
machine learning techniques, and differences in the generation of 
streamlines – a wide variety of vastly different approaches that we 
consider a strength of this study. To create a tractable parameter space, 
we have chosen only these four representatives of the wide variety of 
possible approaches.  

Finally, we did not directly perform harmonization techniques 
in this study. There are dozens of methods available to do this (see [116, 
117]), and understanding and characterizing harmonization results across 
several algorithms would take away from the main focus of this study – 
which is characterization and ranking of variability across confounds. 
Further, harmonization would only affect a subset of results (i.e., those 
looking at FA/MD) as most harmonization approaches leave orientation 
untouched.  
 
Conclusion 
 When investigating connectivity and microstructure of the 
white matter pathways of the brain using tractography, it is important to 
understand potential confounds and sources of variation in the process. 
Here, we find that tractography bundle segmentation results are 
influenced by the use of different vendors and scanners, and different 
acquisition choices of resolution, diffusion directions, and diffusion 
sensitizations, thus results may not be directly comparable when 
combining data or results across studies. Additionally, different bundle 
segmentation protocols have different successes/limitations when 
dealing with sources of variation, and the use of different protocols for 
bundle segmentation may result in different representations of the same 
intended pathway. These confounds need to be considered when 
designing or developing new tractography or bundle dissection 
algorithms, and when interpreting or combining data across sites. 
 
Code 
Multi-site, multi-scanner, multi-protocol, and multi-subject databases are 
available for MASIvar (https://openneuro.org/datasets/ds003416) and for 
MUSHAC (by request). Tractography pipelines are implemented as 
described by each software package using default parameters for 
TractSeg (Release 2.3; https://github.com/MIC-DKFZ/TractSeg), ATK 
(Lct 17 2020 build;  http://dsi-studio.labsolver.org), RECO (Dipy 1.2.0 ; 
https://dipy.org), and XTRACT (FSL 6.0.3; 
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/XTRACT). Shape analysis is 
available in DSI Studio, as Matlab Code 
(https://github.com/dmitrishastin/tractography_shapes/). 
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Appendix 
The bundles resulting from each segmentation pipeline are given as a list 
below, with acronyms used in the text. 
 
Recobundles:  
Anterior Commisure (AC); Arcuate Fasciculus left (AF_L); Arcuate 
Fasciculus left (AF_R); Cerebellum left (CB_L); Cerebellum right (CB_R); 
Cingulum left (C_L); Cingulum right (C_R); Corpus Callosum (CC); 
Corticospinal Tract left (CST_L); Corticospinal Tract Right (CST_R); 
Corticostriatal Pathway left (CS_L); Corticostriatal Pathway right (CS_R); 
Central Tegmental Tract left (CT_L); Central Tegmental Tract right (CT_R); 
Extreme Capsule left (EMC_L); Extreme Capsule right (EMC_R); Fornix 
left (F_L); Fornix right (F_R); Frontal Aslant Tract left (FAT_L); Frontal 
Aslant Tract right (FAT_R); Fronto-pontine tract left (FPT_L); Fronto-
pontine tract right (FPT_R); Inferior Cerebellar Peduncle left (ICP_L); 
Inferior Cerebellar Peduncle right (ICP_R); Inferior Fronto-occipital 
Fasciculus left (IFOF_L); Inferior Fronto-occipital Fasciculus right 
(IFOF_R); Inferior Longitudinal Fasciculus left (ILF_L); Inferior Longitudinal 
Fasciculus right (ILF_R); Middle Cerebellar Peduncle (MCP); Middle 
Longitudinal Fasciculus left (MdLF_L); Middle Longitudinal Fasciculus right 
(MdLF_R); Medial Lemniscus left (ML_L); Medial Lemniscus right (ML_R); 
Occipito Pontine Tract left (OPT_L); Occipito Pontine Tract right (OPT_R); 
Optic Radiation left (OR_L); Optic Radiation right (OR_R); Parieto Pontine 
Tract left (PPT_L); Parieto Pontine Tract right (PPT_R); Superior 
Cerebellar Peduncle (SCP); Superior longitudinal fasciculus left (SLF_L); 
Superior longitudinal fasciculus right (SLF_R); Uncinate Fasciculus left 
(UF_L); Uncinate Fasciculus right (UF_R);  
 
TractSeg:  
Arcuate fascicle left (AF_L); Arcuate fascicle right (AF_R); Anterior 
Thalamic Radiation left (ATR_L); Thalamic Radiation right; (ATR_R); 
Commissure Anterior (CA); Rostrum (CC_1; Genu (CC_2); Rostral body 
(Premotor) (CC_3); Anterior midbody (Primary Motor) (CC_4); Posterior 
midbody (Primary Somatosensory) (CC_5); Isthmus (CC_6); Splenium 
(CC_7); Corpus Callosum – all (CC); Cingulum left (CG_L); Cingulum right 
(CG_R); Corticospinal tract left (CST_L); Corticospinal tract right (CST_R); 
Fronto-pontine tract left (FPT_L); Fronto-pontine tract right (FPT_R); 
Fornix left (FX_L); Fornix right (FX_R); Inferior cerebellar peduncle left 
(ICP_L); Inferior cerebellar peduncle right (ICP_R); Inferior occipito-frontal 
fascicle left (IFO_L); Inferior occipito-frontal fascicle right (IFO_R); Inferior 
longitudinal fascicle left (ILF_L); Inferior longitudinal fascicle right (ILF_R); 
Middle cerebellar peduncle (MCP); Middle longitudinal fascicle left 
(MLF_L); Middle longitudinal fascicle right (MLF_R); Optic radiation left 
(OR_L); Optic radiation right (OR_R); Parieto-occipital pontine left 
(POPT_L); Parieto-occipital pontine right (POPT_R); Superior cerebellar 
peduncle left (SCP_L); Superior cerebellar peduncle right (SCP_R); 
Superior longitudinal fascicle III left SLF_III_L); Superior longitudinal 
fascicle III right (SLF_III_R); Superior longitudinal fascicle II left (SLF_II_L); 
Superior longitudinal fascicle II right (SLF_II_R); Superior longitudinal 
fascicle I left (SLF_I_L); Superior longitudinal fascicle I right (SLF_I_R); 
Striato-fronto-orbital left (ST_FO_L); Striato-fronto-orbital right 
(ST_FO_R); Striato-occipital left (ST_OCC_L); Striato-occipital right 
(ST_OCC_R); Striato-parietal left (ST_PAR_L); Striato-parietal right 
(ST_PAR_R); Striato-postcentral left (ST_POSTC_L); Striato-postcentral 
right (ST_POSTC_R); Striato-precentral left (ST_PREC_L); Striato-
precentral right (ST_PREC_R); Striato-prefrontal left (ST_PREF_L); 
Striato-prefrontal right (ST_PREF_R); Striato-premotor left (ST_PREM_L); 
Striato-premotor right (ST_PREM_R); Thalamo-occipital left (T_OCC_L); 
Thalamo-occipital right (T_OCC_R); Thalamo-parietal left (T_PAR_L); 
Thalamo-parietal right (T_PAR_R); Thalamo-postcentral left 
(T_POSTC_L); Thalamo-postcentral right (T_POSTC_R); Thalamo-
precentral left (T_PREC_L); Thalamo-precentral right (T_PREC_R); 
Thalamo-prefrontal left (T_PREF_L); Thalamo-prefrontal right 
(T_PREF_R); Thalamo-premotor left (T_PREM_L); Thalamo-premotor 
right (T_PREM_R); Uncinate fascicle left (UF_L); Uncinate fascicle right 
(UF_R). 
 
Xtract:  
Anterior Commissure (AC); Arcuate Fascile left (AF_L); Arcuate Fascile 
right (AF_R); Acoustic Radiation left (AR_L); Acoustic Radiation right 
(AR_R); Anterior Thalamic Radiation left (ATR_L); Anterior Thalamic 
Radiation right (ATR_R); Cingulum Bundle Dorsal left (CBD_L); Cingulum 

Bundle Dorsal right (CBD_R); Cingulum Bundle Parahippocampal left 
(CBP_L); Cingulum Bundle Parahippocampal right (CBP_R); Cingulum 
Bundle Temporal left (CBT_L); Cingulum Bundle Temporal right (CBT_R); 
Corticospinal Tract left (CST_L); Corticospinal Tract right (CST_R); Frontal 
Aslant left (FA_L); Frontal Aslant right (FA_R); Forceps Major (FMA); 
Forceps Minor (FMI); Fornix left (FX_L); Fornix right (FX_R); Inferior 
Fronto-occipital Fasciculus left (IFO_L); Inferior Fronto-occipital Fasciculus 
right (IFO_R); Inferior Longitudinal Fasciculus left (ILF_L); Inferior 
Longitudinal Fasciculus right (ILF_R); Middle Cerebellar Peduncle (MCP); 
Medio-Dorsal Longitudinal Fasciculus left (MDLF_L); Medio-Dorsal 
Longitudinal Fasciculus right (MDLF_R); Optic Radiation left (OR_L); Optic 
Radiation right (OR_R); Superior Longitudinal Fasciculus 1 left (SLF1_L); 
Superior Longitudinal Fasciculus 1 right (SLF1_R); Superior Longitudinal 
Fasciculus 2 left (SLF2_L); Superior Longitudinal Fasciculus 2 right 
(SLF2_R); Superior Longitudinal Fasciculus 3 left (SLF3_L); Superior 
Longitudinal Fasciculus 3 right (SLF3_R); Superior Thalamic Radiation left 
(STR_L); Superior Thalamic Radiation right (STR_R); Uncinate Fasciculus 
left (UF_L); Uncinate Fasciculus right (UF_R); Vertical Occipital Fasciculus 
left (VOF_L); Vertical Occipital Fasciculus right (VOF_R). 
 
ATK: 
Arcuate_Fasciculus_L (AF_L); Arcuate Fasciculus R (AF_R); Cortico 
Spinal Tract L (CST_L); Cortico Spinal Tract R (CST_R); Cortico Striatal 
Pathway L (CS_L); Cortico Striatal Pathway R (CS_R); Corticobulbar Tract 
L (CBT_L); Corticobulbar Tract R (CBT_R); Corticopontine Tract L 
(CPT_L); Corticopontine Tract R (CPT_R); Corticothalamic Pathway L 
(CTP_L); Corticothalamic Pathway R (CTP_R); Inferior Cerebellar 
Peduncle L (ICP_L); Inferior Cerebellar Peduncle R (ICP_R); Inferior 
Fronto Occipital Fasciculus L (IFOF_L); Inferior Fronto Occipital Fasciculus 
R (IFOF_R); Inferior Longitudinal Fasciculus L (ILF_L); Inferior 
Longitudinal Fasciculus R (ILF_R); Optic Radiation L (OR_L); Optic 
Radiation R (OR_R); Middle Longitudinal Fasciculus L (MdLF_L); Middle 
Longitudinal Fasciculus R (MdLF_R); Uncinate Fasciculus L (UF_L); 
Uncinate Fasciculus R (UF_R). 
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