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Abstract

When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle
segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and
cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean
diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are
most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment
bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across
scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across
diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner
and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber
pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition
resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-
effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However,
confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or
less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of
pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to
the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same
intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we
show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects.
Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites,
and when attempting to understand the successes and limitations of different methodologies in the design and development of new
tractography or bundle segmentation methods.

Keywords: tractography, bundle segmentation, white matter, reproducibility, harmonization

Introduction

Diffusion-weighted magnetic resonance imaging (dMRI) has
proven valuable to characterize tissue microstructure in health and
disease [1-3]. Moreover, the use of dMRI fiber tractography to virtually
dissect fiber pathways [4] is increasingly used to localize microstructure
measurements to specific white matter bundles [5-7], and
to study the connections and shapes of pathways [4, 8-16]. Despite
promises of noninvasive measurements of white matter features,
variability may exist in measurements due to inherent variability within
scanners and across scanners, differences in acquisition protocol
parameters, and differences due to processing pipelines, amongst others.
These sources of variance challenge the quantitative nature of derived
measures of microstructure and connectivity, and hinder the ability to
interpret different findings or combine different datasets.

These effects have been intensively studied for tissue
microstructure features, specifically diffusion tensor imaging (DTI)[17]

indices of fractional anisotropy (FA) and mean diffusivity (MD).
Numerous studies have characterized intra-scanner and inter-scanner
DTI variability [18-29], differences due to acquisition parameters [24,
25, 28, 30-33] including image resolution, number of diffusion images,
and diffusion sensitization (i.e. the b-value), and differences due to
processing and algorithmic choices [34, 35]. These have paved the way
towards recommendations and guidelines for reliable and reproducible
DTI [36-39]; however, a standardized universal dMRI protocol does not
exist, and differences are expected across sites and studies (Figure 1) [40,
41]. Yet, there is significant interest in combining data from different
sites to increase statistical power and benefit from multi-center
recruitment abilities [19, 40, 42-48], and it is clear that these differences
need to be accounted for, or removed, prior to data aggregation or joint
statistical analysis.

Notwithstanding the increased awareness and improved
characterization of dMRI microstructural measures, very little work has


https://doi.org/10.1101/2021.03.17.435872
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.17.435872; this version posted July 14, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Schilling al., 22 July 2021 — preprint

Different Scanner, Same Acquisition

Same Scanner, Different Acquisition

<
«

Figure 1. Microstructure varies across scanners and across
acquisitions. An FA map is shown, derived from the same subject, on two
scanners (Siemens Prisma, left; Siemens Connectom, right) and two
acquisitions (standard acquisition, top; state-of-the-art acquisition, bottom).
See Methods for scanner and acquisition details.

been performed to characterize and understand reproducibility of
tractography-derived features across scanners, across protocols, and
across different tractography bundle segmentation algorithms [49, 50].
Variability in tractography estimates of fiber pathways will further
increase variability in connectivity analyses and impact microstructural
characterization, e.g. when tractography is used to define ROIs or to
perform along-tract profiling. While few studies do exist, they are often
limited to a single pathway [51, 52], a single dissection protocol [53, 54],
or a single source of potential variation [55], such as test-retest or
population-based reproducibility [54, 56, 57]. Additionally, they do not
investigate where in the brain or along the pathway that this variability
occurs, and are often limited to characterizing only microstructural
features of these pathways (i.e., the FA or MD along or within the
pathway) [26, 58]. Thus, we currently do not which sources of variation
impact tractography bundle segmentation the most, which features of the
bundle are most affected, where variability occurs, nor how these
questions are dependent upon the workflow used to dissect fiber bundles.
Thus, for the first time, we combine, assess, and rank all previously
studied sources of potential variation in the same study, with a focus on
tractography rather than just DTI measures.

Here, we investigate and compare the reproducibility of
tractography across six confounds, or sources of variation: intrinsic
variability across scan repeats, differences across scanners, across
vendors, across different acquisition spatial resolution and acquisition
angular resolution, and across different diffusion sensitizations (b-
values). We employ and examine four fully-automated and commonly
utilized bundle reconstruction workflows on two cross-scanner cross-
protocol benchmark datasets. We first investigate how these confounds
affect not only the overlap and location of pathways, but also evaluate
variability in topological measures of the bundle including length, area,
shape, and volume features. We ask which pathways, which bundle
segmentation workflow, and which features are most reproducible? And
what source of variation is most significant for each method? Second, we
visualize where in the brain, and where within a pathway, tractography
is most variable (and most robust) and investigate if sources of variation
effect this in different ways. Third, we quantify and visualize differences
in tractography that result when using different bundle segmentation
workflows. Finally, we analyze traditional DTI measures and quantify
differences due to these sources of variation as well as the added variance
introduced by the tractography process over and above that inherent
across scanners and across acquisition protocols.

Methods

Datasets

Here we utilize two open-sourced multi-subject, multi-scanner,
and multi-protocol benchmark databases: the MASiVar [59] and
MUSHAC datasets [40, 41]. We note that other multi-site databases exist
(see Discussion), although they are often limited to investigating
differences across subjects and scanners, whereas the two chosen datasets
together allow investigation of repeats, scanners, vendors, and
acquisition protocols (resolution, direction, b-values).

MUSHAC dataset

The MUSHAC database will allow investigation of cross-
scanner, cross-protocol, and cross b-value effects [40, 41]. This database
was part of the 2018 and 2019 MICCAI Harmonization challenge. Here,
we utilize the data acquired from 10 healthy subjects used as training data
in the challenge, and described in [40, 41]. Each subject has 4 unique
datasets. This work focuses on the data acquired on two scanners with
different gradient strengths: a) 3T Siemens Prisma (80 mT/m), and b) 3T
Siemens Connectom (300 mT/m). Two types of protocols were acquired
from each scanner: 1) a ‘standard’ protocol with acquisition parameters
matched to a typical clinical protocol; and 2) a more advanced or ‘state-
of-the-art’ protocol where the superior hardware and software
specifications were utilized to increase the number of acquisitions and
spatial resolution per unit time. The ‘standard’ protocol from both
scanners is matched as closely as possible, with an isotropic resolution of
2.4 mm, TE=89 ms and TR=7.2 s, and 30 diffusion-weighted directions
acquired at two b-values: b = 1200, 3000 s/mm2 (scan time ~7.5
minutes). On the other hand, the Prisma ‘state-of-the-art’ data has a
higher isotropic resolution of 1.5 mm, TE=80 ms, TR=7.1s and 60
directions at the same b-values (~14.5 minutes). While the Connectom
‘state-of-the-art’ data has the highest resolution of 1.2 mm with TE=68
ms, TR=5.4 s and 60 directions (~11 minutes). All data was corrected for
distortions, motion, eddy currents [60], and gradient nonlinearity
distortions [61]. For each subject, the Prisma standard-acquisition dataset
was used as a reference space and all additional datasets were affinely
registered to this space using the corresponding FA maps with FSL Flirt
with appropriate b-vector rotation.
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MASiVar dataset

The MASiVar database will allow investigation of scan-rescan
and cross-scanner effects. Here we used a subset of Cohort II of this
database described in [59], which consisted of 5 healthy subjects with 6
unique “datasets”. Each subject was scanned on four scanners: a) 3T
Philips Achieva (80 mT/m) and b) a different 3T Philips Achieva
(60mT/m) at the same site, ¢) a 3T General Electric Discovery MR750
Scanner at a different site, and d) a 3T Siemens Skyra scanner at a
different site. These acquisitions were matched as closely as possible and
are similar to that of the standard-protocol described above: with an
isotropic resolution of 2.5 mm, TE=55 ms and TR=6.2s (7.0s for scanner-
b), and 32 diffusion-weighted directions acquired at b = 1000 s/mm?2
(scan time ~3.5 minutes). Additionally, the subjects were scanned twice
on the first scanner, and also had an acquisition that consisted of a 96-
direction b=1000 dataset, both of which were also utilized in the current
study. We note that one subject did not have a repeat scan on the first
scanner (a) and one subject did not have a scan on the GE Scanner (b).

All data were corrected for distortions, motion, and eddy
currents [60, 62]. For each subject, the first session on scanner-a was used
as a reference space and all additional datasets were affinely registered to
this space using the corresponding FA maps with FSL Flirt [63] with
appropriate b-vector rotation.

Sources of variation
We investigate several possible sources of variation in the bundle
segmentation process.

RESCAN: the effects of repeating a scan on the same scanner (i.e. scan-
rescan) in a different session, but with a matched acquisition. This
effect is quantified using the repeated acquisitions from the MASiVar
database.

SCAN1: inter-scanner (cross-scanner) effects, with a matched
acquisition and of the same vendor. SCAN1 is quantified using the
matched acquisitions from the MASiVar database acquired on
different Philips scanners (both Philips Achieva).

SCAN2: inter-scanner (cross-scanner) effects, with a matched
acquisition and of the same vendor. SCAN2 is quantified using the
matched standard acquisitions from the MUSHAC acquired on
different Siemens scanners (Siemens Connectom and Siemens Prisma).

VEN1: inter-vendor (cross-vendor) effects, with a matched acquisition.
VEN1 is quantified using the matched acquisitions from the MASiVar
database, but acquired on scanners from different vendors (Philips
Achieva and General Electric Discovery).

VEN2: inter-vendor (cross-vendor) effects, with a matched acquisition.
VEN2 is quantified using the matched acquisitions from the MASiVar
database, but acquired on scanners from different vendors (Philips
Achieva and Siemens Skyra).

RES1: effects of spatial resolution, with matched scanner, diffusion
directions, and b-value. RES1 is quantified by using the MUSHAC
acquisitions from the Prisma standard-acquisition and from the Prisma
state-of-the-art acquisition but with only 30 uniformly distributed
directions utilized (to match the standard-acquisition). This represents
differences between a 2.4mm isotropic and 1.5mm isotropic
acquisition.
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RES2: effects of spatial resolution, with matched scanner, diffusion
directions, and b-value. RES2 is quantified by using the MUSHAC
acquisitions from the Connectom standard-acquisition and from the
Connectom state-of-the-art acquisition but with only 30 uniformly
distributed directions utilized (to match the standard-acquisition). This
represents differences between a 2.4mm isotropic and 1.2mm isotropic
acquisition.

DIR1: effects of number of diffusion-weighted directions, with matched
scanner, resolution, and b-value. DIR1 is quantified using the MASIvar
acquisitions from the first scanner at 32 directions and the acquisition
on the same scanner at 96 directions.

DIR2: effects of number of diffusion-weighted directions, with matched
scanner, resolution, and b-value. DIR2 is quantified using the MUSHAC
acquisitions from the state-of-the art Prisma acquisition with only 30
uniformly distributed directions utilized and the full state-of-the art
acquisition which consists of 60 directions.

BVAL: effects of changing the b-value, on the MUSHAC Prisma scanner
with the ‘standard’ protocol, from b=1200 to b=3000, within the same
acquisition.

We note that we also investigated a second effect of b-value
(within the state-of-the art Prisma protocol, with no statistically
significant differences, and for figure simplicity only show the above-
mentioned b-value analysis). Previous version of this manuscript (and
preprint) included an ACQ1 and ACQ2 (from state-of-the-art to standard-
acquisition) that were isolated into both effects of directions (DIR1 and
DIR?2) and resolution (RES1 and RES2).

A final source of variation investigated is that caused by the
use of different bundle reconstruction workflows. Because all workflows
segment different numbers of, and sets of, fiber pathways (see below),
for this analysis, we investigated only those fiber pathways which are
common to all algorithms. In this case, we identified 7 (bilateral)
pathways which are segmented by all automated methods.

Tractography bundle dissection

We utilized four common, well-validated, and fully-automated
fiber bundle reconstruction workflows, all implemented using standard
and/or recommended settings. It is important to highlight that each
workflow included differences in local fiber-direction estimation, fiber
tractography, and bundle segmentation algorithms, and our attempt was
to implement the entire workflow as would be done in a typical scientific
study (see Discussion on limitations of confounds due to differences in
bundle segmentation process). While there are dozens of bundle
segmentation algorithms, we have chosen these to be representative of
common approaches, utilizing regions of interest, atlases, machine
learning, templates, etc. (see Discussion and Limitations).

TractSeg

TractSeg is based on convolutional neural networks and
performs bundle-specific tractography based on a field of estimated fiber
orientations [64-66]. We implemented the dockerized version at
(https://github.com/MIC-DKFZ/TractSeg), which generates fiber
orientations using constrained spherical deconvolution with the MRtrix3
software [67]. We note that different reconstruction methods could have
been chosen to generate fiber orientations. This method dissects 72
bundles.
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Automatic Fiber Tractography (ATK)

ATK was performed in DSI Studio software using batch
automated fiber tracking [68]. Data were reconstructed using generalized
g-sampling imaging [69] with a diffusion sampling length ratio of 1.25.
20 white matter pathways were automatically reconstructed using
seeding regions defined in the HCP842 tractography atlas [70], randomly
generated tracking parameters of anisotropy threshold, angular threshold,
step size, and subsequent segmentation and pruning. The Dockerized
source code is available at http://dsi-studio.labsolver.org.

Recobundles (RECO)

Recobundles [71] segments streamlines based on their shape-
similarity to a dictionary of expertly delineated model bundles [70].
Recobundles was run using DIPY [72] software (https://dipy.org) after
performing whole-brain tractography using spherical deconvolution and
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DIPY LocalTracking algorithm. The bundle-dictionary contains 80
bundles, but only 44 were selected to be included in this study after
consulting with the algorithm developers based on internal quality
assurance (for example, removing cranial nerves which are often not
used in brain imaging). Of note, Recobundles is a method to
automatically extract and recognize bundles of streamlines using prior
bundle models, and the implementation we chose uses the DIPY bundle
dictionary [70] for extraction, although others can be used, as well as
alternative shape-similarity filtering criteria.

Xtract

Xtract (https:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/ XTRACT) is a
recent automated method for probabilistic tractography based on
carefully selected inclusion, exclusion, and seed regions, defined in a
standard space [73]. Xtract used the ball-and-stick model of diffusion

Siemens Connectom

b=3000

Figure 2. Tractography varies across
scanners, acquisitions, b-values, and
bundle segmentation methods. On the
same subject, the arcuate fasciculus is
shown for each of the 4 bundle segmentation
methods, for two scanners and two
acquisitions. Note that the pathway is
visualized as streamlines for TractSeg, ATK,
and Reco but a probability density map for
Xtract. Arrows highlight visible examples of
differences in streamlines across scanners
(solid arrows), across acquisition (dotted
arrows), and across b-values (dashed
arrows).
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from FSL’s bedpostx algorithm [63], in combination with a probabilistic
tractography algorithm probtrackx, to reconstruct 42 white matter
pathways. In contrast to the preceding methods, which result in
streamlines, this method results in visitation count maps for each
pathway.

A list of all segmentations generated from each method and
corresponding acronyms is given in the appendix. The 7 pathways
identified to be common to all tractography bundle segmentation
techniques includes: arcuate fasciculus (AF), corticospinal tract (CST),
inferior fronto-occipital fasciculus (IFO), inferior longitudinal fasciculus
(ILF), middle longitudinal fasciculus (MdLF), optic radiations (OR), and
uncinate fasciculus (UF), all of which are bilateral including left (_L) and
right (_R) hemisphere pathways.

A thorough quality control was performed for all subjects, and
for all pathways. This included first visualization and verification of
adequate alignment of all FA maps (to ensure appropriate quantification
of overlap measures). Second, all pathways, for all subjects, were
visualized in mosaic form using tools from the SCILPY toolbox
(https://github.com/scilus/scilpy), and pathways were visually assessed
and removed from analysis if deemed in the incorrect location or shape.

Schilling et al., 22 July 2021 — preprint

Finally, individual bundles were removed from analysis if the number of
segmented streamlines was less than 3 standard deviations away from the
mean number (for each pathway), or if the total number of streamlines
was below 200 (indicating failure of tractography), and subjects were
removed from analysis (for a given algorithm) if >20% of pathways
failed QC.

Feature extraction

A number of features were extracted from each bundle
segmented. First, for simple comparisons of the volume occupied by each
pathway, all bundles (from all methods) were binarized and resampled at
Imm isotropic resolution. For methods generating streamlines (Tractseg,
ATK, and RECO) this is equivalent to binarizing based on a streamline
density of 1. Because Xtract output is in the form of a normalized
probability distribution, where a threshold of 2.5E-4 was chosen based
on [73]. The binarized segmentation was used for measures of Dice
overlap (described below).

Second, several descriptors of the shape and geometry of the
bundles were extracted. Shape analysis was performed using DSI Studio,
and made available as matlab code
(https://github.com/dmitrishastin/tractography_shapes/), based on [68],
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Figure 3. Reproducibility is dependent on all investigated effects, and varies by pathway and by dissection method. Effects of scan-rescan
(RESCAN; blue), scanners (SCAN1, SCAN2; red), vendor (VEN1, VEN2; dark purple), resolution (RES1, RES2; pink), diffusion directions (DIR1,
DIR2; green) and b-value (BVAL; light purple) on dice overlap coefficient for individual bundles. Results are shown for 14 fiber bundles that are
common to each tractography workflow. Please see Appendix for bundle abbreviations.
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to derive length, area, volume, and shape metrics of a bundle. Briefly,
length features include mean length, span, diameter, and average radius
of end regions. Area features include total surface area and the total area
of end regions. Volume features include total volume, trunk volume, and
branch volume. Shape features include pathway curl, elongation, and
irregularity.

Finally, microstructure measures of FA and MD (calculated
using iteratively reweighted linear least squares estimator) within
pathways were extracted. In all cases, a simple measure of the average
value within the binary volume was performed, although we note that
these measures can also be weighted by certainty or streamline density.
To isolate the added variation due to tractography from that of the
existing sources of variation, these measures were extracted in two ways.
First, using the binary regions defined in the reference scan-space only
(i.e., the Prisma standard-acquisition and first session on scanner-a for
MUSHAC and MASiVar datasets respectively) were used as the same
region-of-interest across all effects, in order to isolate each source of
variation while keeping ROIs constant. Second, the binary region defined
by tractography for each specific dataset was used to extract the average
FA (or MD), which includes both variation due to the effect under
investigation and the variation due to tractography differences.

Reproducibility Evaluation

Reproducibility was evaluated using several metrics, and
across each source of variation. First, the Dice overlap was calculated for
each pair of bundles as an overall measure of similarity of volumes. The
Dice overlap is calculated as two times the intersection divided by the
sum of the volumes of each dataset. Results were displayed across all
fiber pathways for a given source of variation, and differences between
effects were calculated using the nonparametric paired (i.e. same subject,
different effect) Wilcoxon signed rank tests.

Differences in scalar shape features are calculated as the mean
absolute percentage error (MAPE), sometimes referred to as the mean
absolute percentage deviation. For two different scans, this measure is
calculated as the difference divided by the mean, and can be converted to
a percentage error by multiplication by 100. This measure was calculated
over all subjects, and results were displayed across all fiber pathways for
a given source of variation. Differences between effects were again
calculated using the nonparametric paired (i.e. same subject, different
effect) Wilcoxon signed rank tests.

For visual comparisons only, all subjects were nonlinearly
registered to MNI space, using the 1mm isotropic FA template and the
corresponding FA maps with FSL FLIRT + FNIRT. Streamlines were
directly warped to this space for visualization of agreement/disagreement
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Figure 4. Reproducibility is dependent upon all investigated effects, and each bundle segmentation methods is affected differently. Effects
of scan-rescan (RESCAN; blue), scanners (SCAN1, SCANZ2; red), vendor (VEN1, VEN2; dark purple), resolution (RES1, RES2; pink), diffusion
directions (DIR1, DIR2; green) and b-value (BVAL; light purple) on dice overlap coefficient for all fiber bundles dissected using each technique. For
each, a Wilcoxon signed rank test is performed to investigate differences in effects. Statistically significant results (p<.05/45/4 comparisons) are
shown as a solid line, and those not reaching statistical significance are shown as dashed line. Tractseg (top-left), ATK (top-right), Reco (bottom-

6 left), and Xtract (bottom-right).
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across the cohort. Note that quantification of shape features was
performed in native space prior to warping.

For all statistical analysis, thresholds were corrected for
multiple comparisons. For example, when investigating differences in
effects of DICE/MAPE, etc., we tested differences between 10 effects,
resulting in 55 tests performed for each analysis.

Results
Qualitative Variation

Figure 1 shows FA maps of the same subject, but acquired on
different scanners and with different protocols. In agreement with the
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literature [40, 41], differences in magnitude, contrast, and signal-to-noise
ratios are readily apparent, and dMRI measures qualitatively vary due to
scanner and acquisition effects.

Figure 2 shows tractography bundle segmentation results for
an example pathway (the arcuate fasciculus; AF) on a single subject, for
two scanners, two protocols, two b-values, and all four reconstruction
methods. For a given bundle segmentation method, minor differences are
observed in individual gyri and at regions of low streamline density.
However, bundles are visually very similar across scanners and
protocols, with similar shapes, locations, curvatures, and connections.
Most notably, and as expected [55], the biggest differences are observed

XTRACT SLF2
Dice: [0.20-0.60]

Figure 5. Locations of agreement and disagreement
across effects. Maps are computed by overlaying (for
each source of variation), maps of where there is overlap
(i.e. agreement) and non-overlap (disagreement),
averaged across all subjects. For each effect, the percent
agreement indicates areas where a pathway is
consistently located and is shown using a “hot” colormap,
while the percent disagreement indicates areas without
consistent overlap and is shown using a “cold” colormap.
Results are shown for a highly reproducible pathway
(AF_L dissected using TractSeg) and for a less
reproducible pathway (SLF2 dissected using XTRACT).
Note that even though disagreement is abundant, it does
not consistently occur (i.e., % disagreement remains low;
black and dark blue) suggesting no systematic bias due
to effects, and disagreements are largely attributed to the
stochastic nature of the tractography and dissection
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Quantitative variation due to rescan, scanner, vendor, resolution,
directions, and b-value effects

The effects of RESCAN, SCAN1, SCAN2, VEN1, VEN2,
DIR1, DIR2, and BVAL on Dice overlap coefficient is shown in Figure
3 for fourteen selected pathways common to all bundle segmentation
methods. Notably, reproducibility is most dependent on the bundle
dissection method, with TractSeg consistently resulting in high
reproducibility for all sources of variation. Within a method, most
pathways show similar patterns of reproducibility. For example, for
TractSeg and Xtract all pathways indicate high RESCAN, DIR(1 and 2)
and BVAL reproducibility, but are most sensitive to RES, with RES2
showing more variation than RES1. Additionally, Dice overlap shows
some variation across pathways, for example CST and UF generally have
higher overlap than OR, IFO, and AF, although trends are different for
different workflows.

The results of the Dice overlap coefficient-analysis for each
method is shown in Figure 4, but condensed across all pathways within
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Figure 7. Variability of shape features is influenced by scanner, vendor, acquisition, and b-value. Variability is shown as MAPE for each
TractSeg, ATK, and Reco methods, for scan-rescan (RESCAN), scanners (SCAN1, SCAN2), vendor (VEN1, VEN2), resolution (RES1, RES2),
diffusion directions (DIR1, DIR2) and b-value (BVAL). Values shown are averaged across all pathways within a bundle dissection method. Shape
features are ordered (from top to bottom) from lowest to highest average MAPE. Many shape features are highly reproducible, and MAPE is
influenced by all effects investigated.
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Figure 6. Reproducibility of pathway shape features
depends on pathway and bundle dissection method.
Reproducibility is shown as a MAPE for each tractography
segmentation method. For each method, the features are
ordered (from top to bottom) from lowest to highest average
MAPE, and pathways are similarly ordered (from left to right)
from lowest to highest average MAPE. Note that the
colormap is nonlinear to better highlight MAPE between 0-
0.10. Many shape features are highly reproducible, and with
differences across pathways and bundle dissection
methods. Please see Appendix for bundle abbreviations.
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a given bundle segmentation method. Similar trends are observed as in
Figure 3, with TractSeg consistently indicating the highest Dice overlap,
and all methods indicating moderate-to-good overall overlap for most
pathways. In general, the largest differences are observed when changing
resolution, with changes due to RES2 resulting in larger differences than
RESI. Following this, differences across vendors (VEN1 more different
than VEN2 comparisons) are greater than across scanners (for both
SCANI1 and SCAN2), which are greater than the inherently stochastic
nature of RESCAN variability. Finally, differences caused by DIR (1 and
2) and BVAL are on the level of, or even less than, those caused by
RESCAN, with the notable exception of ATK, which utilizes a
reconstruction method and tractography propagation inherently
dependent on diffusion sensitization.

Localization of Variation

Figure 5 visualizes locations of tractography bundle
segmentation agreement (or consistency), and where it disagrees
(variability) as hot and cold colormaps, respectively. Agreement and
disagreement are averaged across all subjects and shown for all sources
of variation. For display, we have chosen an example pathway that is
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bundle segmentation method, for all features, with the distribution across fiber pathways. A distribution not centered on 0 suggests systematic differences

introduced by the given effect. For interpretation, RESCAN (repeat 2 —

repeat 1), SCAN1 (Philips Achieva scanner 2 — Philips Achieva scanner 1),

SCAN2 (Siemens Connectome standard acquisition — Siemens Prisma standard acquisition, VEN1 (GE Discovery - Philips Achieva), VEN2 (Siemens
Skyra - Philips Achieva), RES1 (Prisma state-of-the-art 30 directions - Prisma standard acquisition), RES2 (Connectom state-of-the-art 30 directions -
Connectom standard acquisition), DIR1 (Philips Achieva 96 directions — Philips Achieva 32 directions), DIR2 (Prisma state-of-the-art 60 directions -

Prisma state-of-the-art 30 directions), BVAL (Prisma standard-acquisition

highly reproducible (the AF from TractSeg) and one which displayed
lower reproducibility (the SLFII from Xtract). For the highly
reproducible pathway, all sources of variation show very similar results.
The agreement is very high throughout the entire pathway (hot colors),
and percent-disagreement remains fairly low (black and dark blue
colors). This means that when two bundles disagree, the disagreement is
largely randomly distributed, rather than a comsistent localized bias
introduced by a certain source of variation — an effect which would show
up as a consistent disagreement (i.e. a high percent-disagreement).
Disagreement tends to occur at the periphery, or boundaries, of the
pathway, in particular at the gray-white matter junction, and within
individual gyri.

For the less reproducible pathway, the agreement is moderate
to high in the dense core, or center, of the pathway in the deep white
matter. Again, disagreements are at the edges, and prominent at the white
matter and gray matter boundary. However, even though disagreement is
more noticeable, the percent-disagreement remains low, indicating
random disagreement as opposed to a consistent bias in the spatial
location of this pathway. In this case, sources of variation from SCAN2
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and RES2 and VEN1 are more noticeable as a larger source of variation,
in agreement with quantitative results.

Variation of shape features

Figure 6 shows the RESCAN reproducibility of shape features
as measured by MAPE, for all features and all pathways, visualized in
decreasing reproducibility. In agreement with Dice, TractSeg has higher
overall reproducibility, with most features and most pathways below 10%
MAPE. Similarly, ATK and Reco are able to reproducibly characterize
most features of most pathways with high consistency. In general,
reproducibility of features follows similar order across all methods, with
features of Curl, Length, Span, and Diameter highly reproducible, and
those of surface area, volume, and end area less so. Additionally,
reproducibility is highly dependent on pathway, with clear variation
depending upon the bundle being analyzed.

Figure 7 summarizes the MAPE of different features across
different sources of variation. Again, Curl, Length, and Span are highly
reproducible across all effects, with MAPE always below 10%, and
surface area and volume result in higher MAPE. Trends are the same as
those observed for Dice overlap, with generally larger differences due to
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resolution and vendor acquisition effects (RES 1 and 2, VEN 1 and 2),
followed by scanner effects (SCAN1 showing the largest variation).

To look for systematic differences introduced in the
quantification of features, we calculate the mean percent variation (i.e.,
the signed value of MAPE), across all sources of variation, for all features
(across all bundles). Figure 8 shows that most effects do not significantly
bias bundle shape measures. For example, nearly all features derived
from TractSeg are within a 10% variation and largely centered on 0.
However, RES2 and VEN2 do introduce a small, but consistent, bias, in
measures of surface area, end area, and volume (in this case, the higher
resolution results in smaller values). Similarly, for ATK, a bias is
observed in the opposite direction for the same features for effects of
acquisition resolution. Additionally, b-value introduces a significant bias
for ATK, with the higher b-value scan resulting in larger quantitative
values for these features. Reco, in agreement with previous figures, has a
much wider range of variation, and larger effects due to acquisition for
features of Diameter, Surface Area, End Areas and Volume. Thus,
different sources of variation may bias quantitative extraction of shape
features, and bias them differently for different bundle segmentation
methods.

Variation across bundle segmentation methods

10

DISAGREEMENT

ATK:Xtract

Reco:Xtract

Figure 10. Locations of agreement and
disagreement across bundle dissection
methods. For each comparison, percent
agreement indicates areas where methods
agree in space and is shown using a “hot”
colormap, while percent disagreement
indicates areas where disagreement occurs
and is shown using a “cold” colormap.
Results are shown for two example
{ pathways (AF_R and OR_L). Here, there
are areas of high % disagreement between
methods, indicating a consistent and
reproducible difference between bundle
dissection methods (highlighted by yellow
arrows).

100%

Next, we compared the agreement of the same bundle, but
across different bundle segmentation methods. Figure 9 shows the Dice
overlap for 14 common bundles, comparing each method to every other.
There is a low-to-moderate agreement, with Dice overlap values between
0.1-0.5 for all pathways. In general, ATK was most similar to TractSeg
and Reco for most bundles (with some exceptions), while Xtract was
most dissimilar to all others. The AF, ILF, and MDLF, were the most
dissimilar across methods.

Figure 10 visualizes where agreement and disagreement
occurs across bundle segmentation methods, with example-pathways AF
and OR. Here, while most of the core agrees across methods, there is also
a consistent disagreement across methods, particularly in the thickness of
the bundle and in the regions of the temporal lobe for the AF and
connections in the occipital lobe for the OR. Thus, instead of random
differences due to noise, differences across methods are reproducible
disagreement, likely caused by fundamental differences in the
segmentation technique and structure to be segmented.

Variation in diffusion MRI microstructure measures

We next investigate reproducibility of microstructure measures
due to the aforementioned sources of variation, and tractography
variation. Figure 11 shows the MAPE of FA for all four bundle
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Figure 11. Variation of FA. Effects of scan-rescan (RESCAN; blue), scanners (SCAN1, SCANZ2; red), vendor (VEN1, VEN2; dark purple), resolution
(RES1, RES2; pink), diffusion directions (DIR1, DIR2; green) and b-value (BVAL; light purple) on MAPE of the FA for all fiber bundles dissected
using each technique. The left boxplots are indictive of the variability inherent due to each effect, whereas the darker-hued (right) boxplots indicate
the added variability due to differences in tractograms. For each, a Wilcoxon signed rank test is performed to investigate whether tractography adds
to (or removes) significant variance to this metric, and statistical significance is indicated by a solid black line.

segmentation methods. In all cases, the standard-color boxplots are
variations due to the queried source of variation alone, whereas the
darker-shaded boxplots are due to the source of variation and the added
variation of tractography variation. Most notably, the MAPE due to
RESCAN, SCAN, VEN, DIR, and BVAL alone are highly similar for all
segmentation methods, with only minor differences due to the slightly
different representations of the pathways (Figure 9). These results are in
line with the literature, with variation <3% for SCAN rescan [24, 25, 58],
with 5-15% due to scanner and vendor effects [40, 41], and as much as
10% due to differences in acquisition and diffusion sensitization [33, 40,
74]. Notably, the added variation due to tractography does indeed
increase differences in FA (as indicated by a solid horizontal line) in
many cases, although the % increase in variation is on average <5%.

Figure 12 shows the MAPE of MD for different sources of
variation. Most noticeable, MD is highly different when calculated using
two different b-values, as expected [3, 25, 32, 75, 76], followed by
differences due to vendors. Differences across RESCAN, SCAN, RES,
and DIR are typically <5%. Again, the use of tractography adds to this
variance, although on 3% or less on average.

Discussion

The primary focus of this work was to study variability of
diffusion fiber tractography bundle segmentation, performing the same
analysis on different datasets on different scanners or with different

acquisition protocols. For the databases investigated here, we have shown
that the process of tractography bundle segmentation shows significant
variation across different acquisition resolution and across different
vendors, with less, albeit significant, variation across scanners and across
diffusion sensitization. Variation is indeed expected when scanning the
same subject twice, with all other experimental parameters constant, due
to imaging noise and the stochastic nature of the tractography process,
however, these additional sources of variation add potential confounds to
tractography analysis that may bias measurements, limit aggregation of
datasets, and hinder direct interpretation and meta-analysis of different
results across studies. While the primary focus was on variation due to
vendor and scanner effects, acquisition effects, and b-value effects, we
also show the most bundle segmentation workflows are highly
reproducible when running the same analysis on data acquired in
different sessions, but with the same scanner and protocol.

It is well-known that microstructural features at different sites
and with different protocols are not immediately comparable, and in fact
significantly biased due to various effects. However, the process of
tractography is largely dependent upon fiber orientation estimates, rather
than features of the signal magnitude directly (i.e., MD/FA), and it is not
immediately intuitive that differences in scanners, acquisitions, and b-
values may lead to significantly different results. The results of this work
suggest that, indeed, the results of tractography and across sites adds
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Figure 12. Variation of MD. Effects of scan-rescan (RESCAN; blue), scanners (SCAN1, SCAN2; red), vendor (VEN1, VENZ2; dark purple), resolution
(RES1, RESZ2; pink), diffusion directions (DIR1, DIR2; green) and b-value (BVAL; light purple) on MAPE of the MD for all fiber bundles dissected
using each technique. The left boxplots are indictive of the variability inherent due to each effect, whereas the darker-hued (right) boxplots indicate
the added variability due to differences in tractograms. For each, a Wilcoxon signed rank test is performed to investigate whether tractography adds
to (or removes) significant variance to this metric, and statistical significance is indicated by a solid black line.

variability that must be considered in the interpretation of both
microstructural and shape features of these pathways.

Do we need to harmonize tractography?

“Harmonization” can be considered any effort at reducing
variability in quantitative metrics between different databases, scanners,
and studies. We have known that the voxel-wise signal varies across sites,
scanners, and acquisitions (as evidenced by the multitude of efforts in the
literature to study effects on DTI-indices [1-15]) and now confirm that
the tractography process itself does as well, and have quantified the
extent that tractography contributes to variability. The question becomes
“do we need to harmonize tractography?”. The short answer is “yes”, the
long answer is: harmonizing likely entails both harmonizing the signal
(e.g., FA, MD, RISH measures), harmonizing orientation, reducing
effects of resolution, and combining the strengths of different bundle
segmentation approaches.

The field of diffusion MRI harmonization has grown in recent
years, with significant efforts to make diffusion microstructural measures
comparable across sites and scanners [19, 40, 42-44, 47, 48]. Yet, these
endeavors have traditionally not considered variability of tractography,
which is ultimately influenced at both the local scale of individual voxels
and voxel-wise reconstruction as well as a global scale of connecting
discrete orientation estimates across the brain.

12

It is unclear what “harmonizing” tractography may entail.
Clearly, consistent orientation estimates are key, but also streamline
generation algorithms robust to voxel-sizes, and also segmentation
algorithms that are consistently able to identify streamlines belonging to
a pathway-of-interest. With the vast array of options to reconstruct
orientation, generate streamlines, and segment bundles, it may be
impossible to harmonize data in a way that is appropriate for all methods.
Some effort has been performed to harmonize fiber orientation estimation
specifically across time or across scanners [45, 77-79]. It may be possible
that harmonizing the microstructural measures themselves may remove
some possible confounds (i.e., if FA is used as a stopping criteria).
Similarly, it is possible that the application and process of tractography
in a standard space (as performed for XTRACT), or at a standard
resolution may remove confounds associated with image resolution.
Alternatively, various multi-site methods used for scalar microstructure
features, instead of harmonizing bundles of streamlines directly, may be
utilized to harmonize features extracted from bundles. Finally, even
while there is significant variation, large agreement occurs in the core of
reconstructed white matter pathways, and weighting all derived measures
and features by tract density, or isolating the trunk of the bundle [7], may
remove sources of variation.

Reassuringly, the automated methods considered are fairly
robust to these studied sources of variation. Visually, the pathways look
remarkably similar across scanners, acquisition, and protocols (Figure
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2), for all methods. Quantitatively, methods such as TractSeg, which
utilize orientation estimates alone, in combination with machine learning
techniques in order to map out tract orientation maps, endpoints, and
binary segmentations are highly reproducible. Similarly, the other
methods, while quantitatively having moderately larger variation, show
similar shapes, locations, and connectivity across all effects. A final
possible harmonization approach may be to combine the strengths of the
various algorithms, rethinking the process of bundle segmentation to
possibly utilize some combination of machine learning (TractSeg), and a
volume-based extraction prior to streamline generation, followed by
atlas-based (ATK, Xtract), or shape-based filtering (Reco) in order to
delineate bundles consistently across potential confounds.

Which confounds impact tractography the most?

It is important to emphasize that we are purposefully not
attempting to “rank” algorithms, or suggest that ones are better than
others. Even the methods with apparent lower reproducibility of features
and shapes are still moderately robust, and different implementations of
these algorithms may have yielded different quantitative values. For
example, different thresholding could have been applied to both density-
based (Xtract) or streamline-based (all others) methods to increase
specificity (or vice-versa, specificity), or different whole-brain
tractography could have been applied prior to bundle dissection using
Recobundles. However, regardless of implementation and choices of
hyperparameters, we expect methods to show similar dependencies to the
investigated sources of variation.

To our knowledge, this is the first time that multiple sources of
variation of tractography have been investigated together.
Reproducibility across raters, across algorithms, and across scanners
have previously been investigated. Our results allow comparison of the
relative impact of changes across sites or scanners, and suggest that, in
general spatial resolution leads to the most dramatic differences in
resulting tractograms. Less tissue-based partial volume effects within the
white matter may facilitate delineation of white matter bundles [80].
Additionally, when quantifying volume overlap and shape features,
voxel-wise partial volume effects may cause a higher (or lower) estimate
due to the representation of the bundle as a binary volume at the given
spatial resolution. Finally, orientation-based partial volume effects are
observed with different spatial resolution [30, 81], leading to differences
in accuracy of fiber orientation distributions, as well as fundamental
differences in common diffusion measures such as FA (which are often
used in the tracking process).

The second biggest contributor to variability was vendor
differences. Differences across scanners are known to introduce
variability due to factors of maximum gradient strength (and hence echo
times and repetition times), field strengths, gradient nonlinearities,
receive coil sensitivities, software version, and system calibration [19].
Here, we show that differences in vendors are typically greater than that
due to different scanners (yet same vendor) alone. Over and above
scanner differences, vendors themselves may variations in algorithm
choices, algorithms for acquisition, reconstruction, background noise
reduction, multi-coil fusion [82, 83], and pulse sequence implementation.
Here, we have shown that in addition to inconsistencies in DTI measures
across vendors consistently shown in previous studies [84-86] there is
also a large inconsistency in tractography volumes and locations due to
differences in vendors.

Reassuringly, variation of b-value and number of diffusion
directions led to relatively consistent tractography. While it is well-
known that angular resolution affects the ability to reconstruct fiber
orientations [30, 87-91], most reconstruction methods are robust with as
few as 30 directions (or less). Similarly, while reconstruction algorithms
are dependent on diffusion sensitization [87, 92], the b-value did not
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significantly affect tractography results (although does affect quantitative
metrics association with DTTI).

It is also interesting that the relative magnitude of sources of
variation depend on the bundle dissection method. While variability
generally decreases from RESCAN, DIR, BVAL, SCAN, then VEN and
RES, several notable exceptions occur. ATK is highly sensitive to the b-
value. This is likely due to the fact that this automated tractography is
reconstructed using Generalized Q-ball Imaging [69], and tracking
thresholds are determined by the normalized quantitative anisotropy,
which is known to be highly dependent on b-value [93]. In contrast,
XTRACT is a probabilistic method based largely on fiber orientation
(and its dispersion) alone (from the ball-and-stick model [94]), and
different b-values give highly similar results of orientation (although
dispersion will vary). XTRACT is also most sensitive to drastic change
in resolution, likely caused by the probabilistic nature of the tractography
process and subsequent thresholding for segmentation.

Shape variation and location of variation

This is to the best of our knowledge also the first time that
reproducibility of different shape features of tractography has been
investigated. While the variation across and within subjects has
previously been studied [68], it is important to understand cross-protocol
and cross-scanner effects if these features are to be potential biomarkers
in health and disease. These shape measures show similar patterns of
variability, largest across resolution, vendors, and scanners scanners, and
smallest variation across repeats, directions, and b-values. More than
variation, different resolutions and b-values can significantly bias
measures, for example consistently overestimating volume and surface
areas at lower resolutions where more partial volume effects are
expected. Depending on tractography method, many features are
remarkably robust, with MAPE below 5%, in line with that of
microstructure features.

We also investigated locations of differences and similarities
by visualizing where there was consistent agreement and disagreement.
Importantly, even with differences in acquisition and scanners, methods
are able to consistently reproduce the major shape and location of the
intended pathway, with differences most frequently occurring at the
periphery, or edges, of the pathway, and along the white matter and gray
matter interface. While features of shape and geometry may be biased
due to sources of variation, these differences do not consistently occur at
any one location or place along the pathway.

Different workflows

Over and above the typically studied sources of variation, we
found that differences due to the choice of bundle segmentation
workflows are most pronounced. For any given pathway, overlap from
one workflow to another was low-to-moderate. This is in part due to the
inherent sensitivity/specificity of different algorithms — for example
Recobundles will look for clusters exhibiting a certain shape, while
Tractseg is based on deep-learned segmentation, and Xtract will be
highly dependent on the chosen threshold — but more importantly due to
fundamental differences in how the pathway is dissected or defined [55,
95]. For example, the definition of a pathway by one method may be
entirely different from another method, including choices in the presence
or absence of connections to entire lobes or lobules, or differences in
estimated spatial extent of pathways. While differences across methods
were larger, they were importantly consistently different, meaning that
comparing findings using different methods may result in differing
conclusions on connectivity or microstructure. Differences between
bundle segmentation workflows are also confounded by differences in
the entire process of tractography, including differences in modeling,
generation of streamlines (i.e., tractography), and bundle segmentation or
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filtering. Thus, it is intuitive that major differences exist when
implementing different standard workflows to study the brain.

Microstructure variation

Finally, we looked at how much the variation in tractography
contribute to the already existing cross-protocol and cross-scanner
variation in dMRI measures. For FA, difference across scanners are
known to be as much as 5-15% [40, 41], and differences are expected due
to different b-values, while scan-rescan reproducibility is high (<5%).
The variation in tractography segmentations does indeed statistically
significantly increase this variation for most effects, although the increase
is typically very small and <5%. Similar results are observed for MD,
although most changes are most pronounced for MD across different
scanners. Thus, while tractography has the benefit of added specificity
over simply propagating atlas-derived regions to subject-space, it does
potentially increase variability in these measurements. Although methods
such as tract-based spatial statistics [96] have been developed to mitigate
these effects, we lose the added benefit of characterizing an index of
interest along or within the full trajectory of the pathway.

Future studies and Limitations

Future studies should investigate additional sources of
variation. Manual dissection of fiber bundles gives the dissector the
ability to interactively manipulate pathways to their liking [52], and it
remains to be seen how this is influenced by scanner and site given the
flexibility of this approach. Further, it is unknown whether these
variabilities will matter in a clinical setting [97-100], although with the
importance of determining pathway boundaries, we hypothesize that the
partial volume effects due to acquisition resolution will possibly
influence decision making. It is worth investigating the potentially large
array of automated bundle segmentation methods that exist, as some are
likely more/less appropriate when comparing or combining datasets with
different confounds. Additionally, as alternative segmentation methods,
or even whole-brain connectome analysis pipelines, are proposed, the use
of open-source multi-site multi-subject datasets [101-103] should be
encouraged to investigate the successes and limitations of new
approaches. Many algorithms for reconstruction and tractography are
now able to utilize multiple diffusion shells, and the change in variability
and precision of tractography using these techniques compared to
isolated diffusion weightings should be compared, but is outside the
scope of this work. As along-fiber quantification [6, 7] has proven
valuable in the research setting, it would be worthwhile to perform
investigations which parallel the current study in order to ask how and
where along the bundle differences occur due to different effects. This
has been previously investigated, but is largely limited to scan-rescan
analysis [7, 101, 104], while the tract-averaged indices are still
commonly utilized in neuroimaging studies.

A major limitation of the current study is the limited sample
sizes of both datasets due to challenges associated with scanning the same
subjects on different scanners and with different protocols. However,
there are few multi-site multi-subject databases, and fewer still with
varied protocols on the same subjects, whereas here we are able to
remove effects across subjects by analyzing only the same subject with
different protocols. It is expected that more datasets will become
available as big-data and multi-site collaborations become more
important to the neuroimaging community, and traveling subjects
become common place in order to harmonize across sites. Exemplar
open-sourced datasets include that of [105] with N=3 subjects at 20 sites
with Prisma scanners and a multi-shell dataset (allowing analysis of
RESCAN, SCAN, BVAL, DIR), the traveling human phantom dataset
[85] with N=5 subjects at 8 center (SCAN, VEN, DIR), or consortiums
such as Pharmacog [106], ADNI [103], HCP [61], or OASIS [107], all
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with large sample size and repeat scans, but typically limited to RESCAN
analysis only or  without  matched subjects across
scanners/vendors/protocols. Because of this, for simplicity, we have
chosen two datasets in this study which allow incorporation of all
intended sources of variation without compromising readability. While
we have looked at a wider range of variability factors than previous
studies, we emphasize that these results are based only on two specific
databases, and nalysis should be reproduced on other (and new) databases
in future work to show generalizability.

Finally, while the primary focus of our study was on variation
due to scanner-effects, acquisition-effects, and b-value-effects, our
analysis was limited to studying these effects on only four bundle
segmentation workflows. We did not implement all existing automated
bundle reconstruction pipelines or workflows [7, 53, 56-58, 64, 108-115],
however, our selection captures a variety of techniques used to
reconstruction bundles, including differences in the use of atlases or
regions-of-interest, those based on shape and/or orientation features,
machine learning techniques, and differences in the generation of
streamlines — a wide variety of vastly different approaches that we
consider a strength of this study. To create a tractable parameter space,
we have chosen only these four representatives of the wide variety of
possible approaches.

Finally, we did not directly perform harmonization techniques
in this study. There are dozens of methods available to do this (see [116,
117]), and understanding and characterizing harmonization results across
several algorithms would take away from the main focus of this study —
which is characterization and ranking of variability across confounds.
Further, harmonization would only affect a subset of results (i.e., those
looking at FA/MD) as most harmonization approaches leave orientation
untouched.

Conclusion

When investigating connectivity and microstructure of the
white matter pathways of the brain using tractography, it is important to
understand potential confounds and sources of variation in the process.
Here, we find that tractography bundle segmentation results are
influenced by the use of different vendors and scanners, and different
acquisition choices of resolution, diffusion directions, and diffusion
sensitizations, thus results may not be directly comparable when
combining data or results across studies. Additionally, different bundle
segmentation protocols have different successes/limitations when
dealing with sources of variation, and the use of different protocols for
bundle segmentation may result in different representations of the same
intended pathway. These confounds need to be considered when
designing or developing new tractography or bundle dissection
algorithms, and when interpreting or combining data across sites.

Code

Multi-site, multi-scanner, multi-protocol, and multi-subject databases are
available for MASIvar (https://openneuro.org/datasets/ds003416) and for
MUSHAC (by request). Tractography pipelines are implemented as
described by each software package using default parameters for
TractSeg (Release 2.3; https://github.com/MIC-DKFZ/TractSeg), ATK
(Let 17 2020 build; http://dsi-studio.labsolver.org), RECO (Dipy 1.2.0 ;

https://dipy.org), and XTRACT (FSL 6.0.3;
https:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/ XTRACT). Shape analysis is
available in DSI Studio, as Matlab Code

(https://github.com/dmitrishastin/tractography_shapes/).
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Appendix
The bundles resulting from each segmentation pipeline are given as a list
below, with acronyms used in the text.

Recobundles:

Anterior Commisure (AC); Arcuate Fasciculus left (AF_L); Arcuate
Fasciculus left (AF_R); Cerebellum left (CB_L); Cerebellum right (CB_R);
Cingulum left (C_L); Cingulum right (C_R); Corpus Callosum (CC);
Corticospinal Tract left (CST_L); Corticospinal Tract Right (CST_R);
Corticostriatal Pathway left (CS_L); Corticostriatal Pathway right (CS_R);
Central Tegmental Tract left (CT_L); Central Tegmental Tractright (CT_R);
Extreme Capsule left (EMC_L); Extreme Capsule right (EMC_R); Fornix
left (F_L); Fornix right (F_R); Frontal Aslant Tract left (FAT_L); Frontal
Aslant Tract right (FAT_R); Fronto-pontine tract left (FPT_L); Fronto-
pontine tract right (FPT_R); Inferior Cerebellar Peduncle left (ICP_L);
Inferior Cerebellar Peduncle right (ICP_R); Inferior Fronto-occipital
Fasciculus left (IFOF_L); Inferior Fronto-occipital Fasciculus right
(IFOF_R); Inferior Longitudinal Fasciculus left (ILF_L); Inferior Longitudinal
Fasciculus right (ILF_R); Middle Cerebellar Peduncle (MCP); Middle
Longitudinal Fasciculus left (MdLF_L); Middle Longitudinal Fasciculus right
(MdLF_R); Medial Lemniscus left (ML L); Medial Lemniscus right (ML_R);
Occipito Pontine Tract left (OPT_L); Occipito Pontine Tract right (OPT_R);
Optic Radiation left (OR_L); Optic Radiation right (OR_R); Parieto Pontine
Tract left (PPT_L); Parieto Pontine Tract right (PPT_R); Superior
Cerebellar Peduncle (SCP); Superior longitudinal fasciculus left (SLF_L);
Superior longitudinal fasciculus right (SLF_R); Uncinate Fasciculus left
(UF_L); Uncinate Fasciculus right (UF_R);

TractSeg:

Arcuate fascicle left (AF_L); Arcuate fascicle right (AF_R); Anterior
Thalamic Radiation left (ATR_L); Thalamic Radiation right; (ATR_R);
Commissure Anterior (CA); Rostrum (CC_1; Genu (CC_2); Rostral body
(Premotor) (CC_3); Anterior midbody (Prlmary Motor) (CC_4); Posterior
midbody (Primary Somatosensory) (CC_5); Isthmus (CC_6); Splenium
(CC_T7); Corpus Callosum — all (CC); Cingulum left (CG_L); Cingulum right
(CG_R); Corticospinal tract left (CST_L); Corticospinal tract right (CST_R);
Fronto-pontine tract left (FPT_L); Fronto-pontine tract right (FPT_R);
Fornix left (FX_L); Fornix right (FX_R); Inferior cerebellar peduncle left
(ICP_L); Inferior cerebellar peduncle right (ICP_R); Inferior occipito-frontal
fascicle left (IFO_L); Inferior occipito-frontal fascicle right (IFO_R); Inferior
longitudinal fascicle left (ILF_L); Inferior longitudinal fascicle right (ILF_R);
Middle cerebellar peduncle (MCP); Middle longitudinal fascicle left
(MLF_L); Middle longitudinal fascicle right (MLF_R); Optic radiation left
(OR_L); Optic radiation right (OR_R); Parieto-occipital pontine left
(POPT_L); Parieto-occipital pontine right (POPT_R); Superior cerebellar
peduncle left (SCP_L); Superior cerebellar peduncle right (SCP_R);
Superior longitudinal fascicle Il left SLF_IlII_L); Superior longitudinal
fascicle Il right (SLF_IlI_R); Superior longitudinal fascicle Il left (SLF_II_L);
Superior longitudinal fascicle Il right (SLF_II_R); Superior longitudinal
fascicle | left (SLF_I_L); Superior longitudinal fascicle | right (SLF_I_R);
Striato-fronto-orbital  left (ST_FO_L);  Striato-fronto-orbital  right
(ST_FO_R); Striato-occipital left (ST_OCC_L); Striato-occipital right
(ST_OCC_R); Striato-parietal left (ST_PAR_L); Striato-parietal right
(ST_PARR); Striato-postcentral left (ST_POSTC_L); Striato-postcentral
right (ST_POSTC_R); Striato-precentral left (ST_PREC_L); Striato-
precentral right (ST_PREC_R); Striato-prefrontal left (ST_PREF_L);
Striato-prefrontal right (ST_PREF_R); Striato-premotor left (ST _PREM_L);
Striato-premotor right (ST_PREM_R); Thalamo-occipital left (T_OCC_L);
Thalamo-occipital right (T_OCC_R); Thalamo-parietal left (T_PAR_L);
Thalamo-parietal right (T_PAR_R); Thalamo-postcentral left
(T_POSTC_L); Thalamo-postcentral right (T_POSTC_R); Thalamo-
precentral left (T_PREC_L); Thalamo-precentral righf” (T_PREC_R);
Thalamo-prefrontal  left (T_PREF_L); Thalamo-prefrontal  right
(T_PREF_R); Thalamo-premotor left (T_PREM_L); Thalamo-premotor
right (T_PREM_R); Uncinate fascicle left (UF_L); Uncinate fascicle right
(UF_R).

Xtract:

Anterior Commissure (AC); Arcuate Fascile left (AF_L); Arcuate Fascile
right (AF_R); Acoustic Radiation left (AR_L); Acoustic Radiation right
(AR_R); Anterior Thalamic Radiation left (ATR_L); Anterior Thalamic
Radiation right (ATR_R); Cingulum Bundle Dorsal left (CBD_L); Cingulum
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Bundle Dorsal right (CBD_R); Cingulum Bundle Parahippocampal left
(CBP_L); Cingulum Bundle Parahippocampal right (CBP_R); Cingulum
Bundle Temporal left (CBT_L); Cingulum Bundle Temporal right (CBT_R);
Corticospinal Tract left (CST_L); Corticospinal Tract right (CST_R); Frontal
Aslant left (FA_L); Frontal Aslant right (FA_R); Forceps Major (FMA);
Forceps Minor (FMI); Fornix left (FX_L); Fornix right (FX_R); Inferior
Fronto-occipital Fasciculus left (IFO_L); Inferior Fronto-occipital Fasciculus
right (IFO_R); Inferior Longitudinal Fasciculus left (ILF_L); Inferior
Longitudinal Fasciculus right (ILF_R); Middle Cerebellar Peduncle (MCP);
Medio-Dorsal Longitudinal Fasciculus left (MDLF_L); Medio-Dorsal
Longitudinal Fasciculus right (MDLF_R); Optic Radiation left (OR_L); Optic
Radiation right (OR_R); Superior Longitudinal Fasciculus 1 left (SLF1_L);
Superior Longitudinal Fasciculus 1 right (SLF1_R); Superior Longitudinal
Fasciculus 2 left (SLF2_L); Superior Longitudinal Fasciculus 2 right
(SLF2_R); Superior Longitudinal Fasciculus 3 left (SLF3_L); Superior
Longitudinal Fasciculus 3 right (SLF3_R); Superior Thalamic Radiation left
(STR_L); Superior Thalamic Radiation right (STR_R); Uncinate Fasciculus
left (UF_L); Uncinate Fasciculus right (UF_R); Vertical Occipital Fasciculus
left (VOF_L); Vertical Occipital Fasciculus right (VOF_R).

ATK:

Arcuate_Fasciculus_L (AF_L); Arcuate Fasciculus R (AF_R); Cortico
Spinal Tract L (CST_L); Cortico Spinal Tract R (CST_R); Cortico Striatal
Pathway L (CS_L); Cortico Striatal Pathway R (CS_R); Corticobulbar Tract
L (CBT_L); Corticobulbar Tract R (CBT_R); Corticopontine Tract L
(CPT_L); Corticopontine Tract R (CPT_R); Corticothalamic Pathway L
(CTP_L); Corticothalamic Pathway R (CTP_R); Inferior Cerebellar
Peduncle L (ICP_L); Inferior Cerebellar Peduncle R (ICP_R); Inferior
Fronto Occipital Fasciculus L (IFOF_L); Inferior Fronto Occipital Fasciculus
R (IFOF_R); Inferior Longitudinal Fasciculus L (ILF_L); Inferior
Longitudinal Fasciculus R (ILF_R); Optic Radiation L (OR_L); Optic
Radiation R (OR_R); Middle Longitudinal Fasciculus L (MdLF_L); Middle
Longitudinal Fasciculus R (MdLF_R); Uncinate Fasciculus L (UF_L);
Uncinate Fasciculus R (UF_R).
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