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Abstract

Genetics impacts sleep, yet, the molecular mechanisms underlying sleep regulation remain
elusive. We built machine learning (ML) models to predict genes based on their similarity to
known sleep genes. Using a manually curated list of 109 labeled sleep genes, we trained a
prediction model on thousands of published datasets, representing circadian, immune, sleep
deprivation, and many other processes. Our predictions fit with prior knowledge of sleep
regulation and also identify several key genes/pathways to pursue in follow-up studies. We tested
one of our findings, the NF-xB pathway, and showed that its genetic alteration affects sleep
duration in mice. Our study highlights the power of ML to integrate prior knowledge and

genome-wide data to study genetic regulation of sleep and other complex behaviors.
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Introduction

Genetics impacts sleep. In humans, a handful of alleles are known to cause familial sleep
disorders(1-8). However, most of these alleles are rare and have not been broadly implicated in
sleep regulation in human populations. Genome-wide association studies (GWAS) identified
more sleep-trait associated genes, but SNP-based heritability estimates are small. Few (if any) of
these genes have been functionally validated(9-12). Many key features of sleep are conserved
from invertebrates to vertebrates(13). Large-scale forward genetics screens in flies(14-16) and
mice(17,18) have identified several genes whose alteration impacted sleep regulations. The two-
process model(19,20) proposed that both circadian clocks and sleep homeostasis drive the sleep-
wake cycle. Multiple studies have sought to identify key genes and proteins that regulate sleep

homeostasis(21-25). Yet the molecular mechanisms underlying sleep regulation remain elusive.

Recent advances in ‘omics technology have led to increasingly large amounts of data generated
each year. To date, the wealth of genome-wide datasets available have not been integrated to
study the genetic regulation of complex physiology and behavior like sleep. Machine learning
(ML) models have predictive power to classify samples based on hidden patterns in large
datasets(26-29). Here, we applied ML to existing information with the goal of identifying genes
and pathways involved in sleep regulation. Using a manually curated list of 109 labeled sleep
genes, we trained a prediction model on thousands of published datasets, representing circadian,
immune, sleep deprivation, and many other processes. Our model predicted 238 candidate sleep
genes. Pathway enrichment analysis revealed the NF-kB pathway as a key factor in sleep
regulation. We validated that activation of the NF-kB pathway in neurons indeed led to
fragmented sleep in mice. In sum, we present an integrative in silico approach with the potential

to identify genetic regulators of complex physiology and behavior.
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Results

Defining sleep gene features

Our goal was to build a machine learning model to predict candidate sleep genes based on
molecular features of known sleep genes. As a first step, we manually curated a list of known
sleep genes (Table 1, hereafter referred to as ‘sleep genes’) through literature mining from
PubMed and Scopus databases. Sleep genes were defined as genes reported to alter sleep traits,
including sleep timing, sleep duration, and measurements of sleep quality from EEG in at least

one animal model (flies or mammals).

Next, we identified molecular features associated with these sleep genes. The lack of a strong
molecular understanding of sleep regulation makes it difficult to know which types of
information can be useful to predict sleep genes. To address this issue, we used two sources of
information to define sleep gene-associated molecular features. The first source includes gene
and protein knowledge from annotated gene set collections, including canonical pathways, gene
ontology, transcription factor target genes, and protein-protein interactions. We applied the
Jaccard index (J1I), or the Jaccard similarity coefficient(30), to quantify the similarity of a gene to
the exemplar sleep genes in the context of a given gene set collection (Fig 1A). Using the JI
scoring method, we generated 19 features (S1 Table) representing the similarity of a gene to

sleep genes in various molecular contexts.

The second source of information we used to define sleep gene-associated molecular features
includes genome-wide profiling datasets. We used evidence factors(31,32) to identify genome-
wide datasets most likely to be informative for the ML model. We evaluated 7,195 datasets for

sleep-gene over-representation using maximum evidence factors (maxEF). In prior work, we
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applied evidence factors to identify a novel circadian transcriptional repressor in mice(33). We
modified the application here to screen for datasets that show positive evidence for sleep genes
(Fig 1B). To validate the concept, we tested two time-series datasets: (i) as a negative control, a
transcriptomics profile of HeLa cells at different cell-cycle stages (GSE26922)(34) and (ii) a
transcriptomics profile of mouse suprachiasmatic nucleus (SCN) across a 48h time-span
(GSE70392) as a positive control for sleep gene regulation. These two datasets were selected as
controls because the cell-cycle stage is not expected to be predictive of sleep, whereas circadian
rhythms are intimately linked with sleep. The widely accepted two-process models of sleep
regulation (19,20) and the alleles identified in families with extreme sleep traits(2,6,35) both

support the roles of endogenous circadian rhythms in sleep regulation.

For the two control datasets, each gene was assigned a significance score for rhythmic
expression using the published -log2(p-value). For each dataset, we built two distributions using
this significance score. The 109 known sleep genes were used to form a sleep gene distribution.
All remaining genes were used to form a non-sleep gene distribution. The evidence factors were
computed by comparing the proportion of genes in these two distributions. If the two
distributions are similar, maxEF is close to 1, which would indicate that there is no sleep gene
over-representation in the dataset. In contrast, if the sleep gene distribution is different from the
non-sleep gene distribution, maxEF would be much greater than 1. Evidence factors greater than
3 suggest positive evidence(31). Therefore, a cutoff of maxEF larger than 3 is set as an indicator
of sleep gene over-representation in the dataset. As expected, we found no evidence of sleep
gene over-representation in the cell-cycle time-series dataset (maxEF=1.3). Conversely, sleep
genes were overrepresented in the mouse SCN time-series dataset (maxEF=4.9). Rhythmically

expressed genes in this dataset were five times more likely to be sleep- versus non-sleep genes
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(Fig 1B), suggesting that circadian expression in the mouse SCN is a sleep-gene associated

feature and should be incorporated in our ML model.

We screened through 7,195 genome-wide profiling datasets for positive evidence for sleep
(maxEF>3) (S1 Fig & S1 Table). Datasets with the highest maxEF included circadian expression
of genes in multiple tissues, and altered gene expression in several brain diseases. Sleep genes
were also over-represented in datasets pertaining to Epstein-Barr virus infection, IL17A
knockout in colon, clozapine treatment, sleep deprivation, and anatomically-specific datasets,
including testis and human brains (Fig 1C & S2 Fig). In sum, we identified 72 datasets with high

maxEF to provide computational and predictive efficiency for the ML model.

Applying ML models to discover novel sleep genes

From the previous section, we selected 19 features from gene set collections using JI scoring
methods and 72 features with high maxEF from genome-wide profiling datasets. Genes

with >50% missing values from these 91 features were filtered out. One of the tier | sleep genes,
NPSR1, was excluded as it had missing values in more than half of the selected datasets. With
this information, we generated an input table with 17,841 samples (genes), including 108 labels

(sleep genes), and 91 features for training the ML models.

ML models were built using Python packages scikit-learn(36) and Keras(37,38). We have
curated 108 sleep genes (positive labels), but with no information or confidence on which genes
do not regulate sleep (no negative labels). We applied a biased learning method to solve this
problem of learning from Positive and Unlabeled data(39,40). To do this, all non-labeled genes
in the training set are treated as negative labels during the training process. In this case, the

negative labels contained a mixture of true and false negatives, which led to weak, or low
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confidence, classifications for individual models. We subsampled the training sets with 7 training
ratios (ranging from 0.2 to 0.8), each with 100 cycles, and made the final prediction results based

on collections of all these weak-classifiers (Fig 2A).

There are numerous supervised classifier algorithms available, each with strengths and
weaknesses. Our goal was to identify the highest-confidence candidate sleep genes for
subsequent validation in animal models. We evaluated eight supervised classifiers seeking a
model to maximize precision. False positives are much worse than false negatives, as validation
experiments can take years. The tested classifier models included probabilistic (naive Bayes),
linear regression (logistics and linear support vector machines), decision tree-based (decision
tree, random forest and adaptive boosting), and neural networks (neural networks and ensemble
neural networks). As part of our evaluation, we retrained all models with random-shuffled labels
as inputs. This evaluation helped to minimize the chance that predictions are made based on
random noise. Classifiers with high sensitivity in these random-shuffled label models were

rejected.

Random forest and adaptive boosting performed best (AUC=0.97), followed by neural networks
(AUC=0.96) (S3 Fig). Random forests had the highest precision, lowest sensitivity, and highest
harmonic mean of sensitivity and precision (F1-score). Random forests also outperformed all
other classifiers with regard to random-shuffled label models, with 0 for sensitivity, precision,
and F1-score, suggesting high precision of the prediction results (Fig 2B). We therefore chose

random forests as the classifier algorithm to predict sleep genes.

In total, 3,827 out of 17,841 genes were predicted as sleep genes (Fig 2C, S2 Table). We ranked

these genes based on average prediction score, and separated them into 8 confidence levels based
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on the minimum training ratio that led to a positive prediction. We refer to the top 238 genes as
class 1 candidate sleep genes. Of the class 1 candidate sleep genes, 63 were known sleep genes
(Table 1) and 175 were novel predicted sleep genes. Sleep genes identified from human samples
ranked higher in comparison to sleep genes identified from other mammals or flies, despite the
fact that all sleep genes were weighted equally during the feature selection and model training
steps. This suggested that our models’ predictions are able to detect human sleep genes and

provide strong candidates for future study.

Identifying pathways relevant to sleep regulation

The prediction model was intended to reveal molecular mechanisms or pathways that may be
involved in the regulation of the sleep-wake cycle. We ran enrichment analysis (Reactome) with
DAVID(41) using the 238 class 1 candidate sleep genes to explore the pathways enriched for
sleep regulation. Pathways enriched by similar sets of genes are clustered into groups using
Kappa similarity. We identified 19 enriched pathways (S4 Fig), 11 of them have at least 2 genes
overlapped with the annotated genes from 4 GWAS pertaining to chronotype (9), overall sleep

duration (12), insomnia (11) and daytime sleepiness (42)(Fig 3).

Several of these pathways are neuron-related, including Phase 0 depolarization; ion homeostasis;
Ca?" pathway; trafficking of AMPA receptors and activation of Ca-permeable Kainate receptor.
This is not surprising as neuronal involvement in rapid transition between sleep-wake states is
well known(22,43-45). Our ML models proposed candidate sleep genes in each of these
pathways that are yet to be explored. CACNA2D2, SCN2A, CACNG3, ATP2B1, SLC8A1, GRIK2
and GRIK3 are supported by both ML models and GWAS data and represent attractive candidate

genes for experimental validation.
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Previous GWAS for sleep traits have reported enrichment of circadian rhythm and G-protein
relevant pathways(9,12). Similar trends are observed here; circadian clocks and G alpha
signaling events are among the top enriched pathways from our prediction models. Interestingly,
two genes encoding opioid receptors, OPRD1 and OPRM1, and a gene encoding the endogenous
opioid peptides, PENK, are among the top candidate genes in G alpha(i) signaling events.
Opioids are well known sedatives. Clinical studies have shown that a single dosage of opioid
medication can significantly affect sleep architecture in healthy adults(46). Our prediction results
suggest that among the three opioid receptors, the mu- and delta- receptors are more likely to
play key roles in sleep regulation at the molecular level. This is in agreement with an in vivo

study using opioid receptor agonists in feline models(47).

Validation of a role for NF-kB activation in sleep regulation

We also found enrichment of pathways without prior association with sleep. In particular, a
group of immune related genes, including IKBKB, NFKB1, NFKB2, NFKBIA, and RELA, were
among the top enriched pathway clusters (Fig 3). These genes are key components of the
proinflammatory NF-kB pathway in which RELA is a transcriptional factor and IKBKB is an
upstream regulator of NF-kB activation. NF-kB transcription factors play critical roles in
inflammation and immunity, as well as cell proliferation, differentiation, and survival(48). The
direct and indirect triggers of NF-kB activation have been reported to cause circadian
disruption(49). Sleep loss alters immune function and immune challenges alter sleep(50).
Previous studies reported that Nfkb1 (p50) knockout mice showed increased durations of slow-
wave and rapid eye movement (REM) sleep(51). However, little is known about the direct effect

of NF-kB activation on sleep homeostasis.
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To test the effect of NF-kB activation on sleep, we used Camk2a®ER::R26-stop - 1kk2¢A mice
(Fig 4A, B) in which the stop™ cassette prevents expression of the constitutively active 1kbkb2
(Ikk2%)(52) and the tamoxifen-inducible neural specific Camk2a®™ER recombinase(53) induces
deletion of the stop™ and thus expression of Ikk2“A(Fig 4C). IKK2 is a key component of the
IKK complex which phosphorylates IkBa, leading to IkBa ubiquitination and proteasomal
degradation(54). Upon degradation of IkBa, NF-kB is free to translocate to the nucleus, bind to
DNA, and induce transcription of target genes. Therefore, 1kk2 expression leads to constitutive
NF-«B activation, and these mice represent a genetic model of NF-xB pathway activation. We

performed the PiezoSleep assay to assess the sleep-wake phenotypes.

Compared to control mice, the Ikk2* mice had a reduced total and light phase sleep duration
(Fig 4AD&E, t-test, p<0.05). No significant difference was observed in the dark phase when mice
are normally active (Fig 4F). The sleep reduction in the light phase in 1kk2* mice spanned from
ZTO0 to ZT10 (Fig 4G), when mice are typically inactive. Sleep bout duration has been used as
indicators of sleep consolidation vs. fragmentation (55,56). 1kk2“* mice displayed more short
bouts and less long bouts of sleep, compared to controls (Fig 4H, t-test, p<0.05), indicative of
sleep fragmentation. Taken together, when the NF-kB pathway is activated, mice exhibit sleep

fragmentation especially during the inactive/resting phase.

Discussion

Our computational approach predicted 238 genes and 11 biological pathways involved in sleep
regulation. Predictions fit with prior knowledge of sleep regulation, and also identify several
novel avenues to pursue in follow-up studies. We tested one of these, the NF-xB pathway, and

showed that its genetic alteration affects sleep duration in mice.
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A role for immunity in sleep regulation is known. Sleep changes in response to infection.
Inflammatory mediators such as IL-1, TNF, and prostaglandins appear to have sleep regulatory
properties(57). Our ML model suggested that the activation of NF-kB pathways, specifically
through the phosphorylation of the IkBa complex, is a key regulator in sleep. We validated one
of the predicted genes (Ikbkb) using a neuron-specific, constitutively activated IKK2 (1kk2¢4)
mouse model. We found that Ikk2°* mice have reduced sleep duration and shorter sleep bout
duration than the controls. The decrease in bout length and reduced sleep duration during the
inactivity phase suggests disruption in sleep consolidation and increased sleep fragmentation that
may be relevant to human sleep. Sleep perturbations including fragmented sleep with frequent
night-time awakenings and excessive daytime sleepiness are common in human patients with
neurodegenerative diseases or cancer, and these daily disruptions are a major factor for sleep

disorders(58,59).

Machine learning has been widely applied to integrate biological data in recent years. Multiple
gene prioritization tools have been developed(60-62), but most are built on the hypothesis that
causal variants or driver genes and pathways exist and thus may not be ideal for understanding
genetic regulation in complex traits. We sought to identify candidate sleep genes that share
similar molecular features to the known sleep genes. Key to this approach is the ability to define
a comprehensive yet predictive set of features. Most ML models for gene prioritization draw
from annotation resources (e.g., GO terms, MSigDB, GWAS catalog)(27,61), we applied a
modified probabilistics method to screen and select sleep-relevant features from raw or
processed genome-wide data. This allowed us to cull 73 features from thousands of datasets. We
think this represents a general framework for integrating large amounts of genome-scale data to

predict genetic regulators in other complex traits.
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There are limitations to this study. The quality of the predictions from a ML model depends on
the quality of the training labels (ie., sleep genes), the relevance of features to labels, and the
amount of information available per sample (ie., gene). Missing information reduces sensitivity
of the models. For example, the expression level of NPSR1 is low or unmeasurable in most
genome-wide studies. Therefore, it is not likely to be identified or recalled by the prediction
model. Incorporating new information, whenever available, will improve performance. Our
current screening methods are not sensitive for datasets with smaller numbers of genes/proteins
(e.g., n < 1000) or with lower resolution (e.g., binary output), such as most proteomics or single
cell studies. Alternative scoring or screening methods are needed to incorporate this information.
Model evaluation results indicated that ensemble neural networks perform comparably to
random forests, with higher sensitivity but lower precision. This suggested that neural networks

may be useful to extend the candidate gene list, particularly for inferring sleep pathways.

In sum, we built ML models to predict clusters of genes based on molecular similarity to the
known sleep genes. This approach successfully identifies key pathways that are involved in sleep
regulation. In addition to our validation of the NF-kB pathway, a few of the top candidate genes,
Mef2c(63), GRM1(64), and Tac1(65) were independently validated. Our study highlights the
power of ML-based tools to integrate prior knowledge and genome-wide data to study genetic

regulation of sleep and other complex behaviors.

Material and Methods

Data curations and preprocessing
Gene name conversion between species was done using the homologene function (v1.5.68)

(homologeneData2 database updated on 2019 April)(66) integrated in the limma package
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(v3.40.6)(67). Gene aliases (both human and mouse) were converted to official gene symbols
according to gene info downloaded from NCBI on 04/01/2020 (hereafter referred to as

‘gene_info 04012020”)(66).

https://ftp.nchi.nlm.nih.gov/gene/DATA/GENE INFO/Mammalia/Homo sapiens.gene info.gz

Annotated gene set collections. GMT files, representings gene and protein knowledge from
annotated gene set collections, were downloaded from MSigDB(68) (n=11) and
Harmonizome(69) (n=7). Protein-protein interaction information was downloaded from
BioGRID(70,71) (n=1), information in GMT format were extracted as follows - interaction types
including colocalization, direct interaction, and association and physical associations, from
human data, are used. Protein names are matched with the official gene name using

gene_info_04012020.

Genome-wide profiling data were downloaded from different resources. In total, 7,195 data

metrics are processed as described below.

I. Tissue-specific transcripts abundances (n=595). Microarray data from human tissues are
downloaded from BioGPS - GSE1133(72,73). Average values from each tissue are transformed
with log2 to create data metrics (n=84). RNA-seq quantifications from human tissues are
downloaded from GTEx(74). Average TPM from the same tissues are transformed with log2 to
create tissue-specific transcript abundances data metrics (n=54). Additional RNA-seq data,
transcript expression summarized at per gene(protein) level, are downloaded from Human
Protein Atlas (HPA)(75). Log2 protein-transcripts per million (pTPM) are used to create data
metrics (n=43). Brain region-specific transcripts quantifications (log2 transformed) from Allen

Brain Map(76) are downloaded from Harmonizome(69). The mRNA expression data
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representing brain structures specific transcript abundances are used to create data metrics

(n=414).

I1. Tissue-specific protein abundances (n=30). Mass spectrometry-based proteomics data from
human adult and fetal tissue samples are downloaded from the Human Proteome Map(77).
Normalized quantifications from the gene-level expression matrix are transformed with log2 to

create data matrices (n=30).

I11. Significance of circadian expressions (n=25). Time-series data from mouse tissues are
downloaded from GSE54652(78) and rhythmic signals are detected using Meta2D-JTK in
MetaCycle(79). Transformed significant value, -log2(p-value), is used to create data metrics
(n=12) that represent the significance of circadian expression in mouse tissues. Circadian
expressions from human populations tissues, ordered by CYCLOPS(80), are downloaded(81,82).

Transformed significance value, -log2(p-value) are used to create data metrics (n=13).

IV. Transcriptional profiles under perturbations or different physiological/pathological
conditions (n=6,540). 15 datasets from Gene Expression Omnibus(GEO)(83) are downloaded
and preprocessed manually. Absolute log2 fold-changes for each tested condition are used to
create data metrics (n=46). In addition, 2,459 human and mouse processed datasets are
downloaded from EBI expression atlas(84). Data metrics (n=6,494) are created using absolute

log2 fold-changes for each tested condition.

V. Miscellaneous data (n=>5). Phosphorylation sites information is downloaded from qPhos(85).
Number of tyrosine, serine/threonine, tyrosine and serine/threonine phosphorylation sites in each
protein are used to create data metrics (n=3). Vertebrate homology information from 10

vertebrates, including human, chimpanzee, rhesus macaque, dog, cattle, rat, mouse, chicken,
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western clawed frog and zebrafish are downloaded from MGI(86). The number of vertebrates
that share a homolog gene with humans is used to create a data metric (n=1) representing
conservation of genes. Transcriptomics profiles from HeLa cells enriched for different phases of
the cell cycle are downloaded from GSE26922(34). Rhythmic genes are detected using Meta2D-
LS in MetaCycle(79). Transformed significant value, -log2(p-value), is used to create data

metrics (n=1) that represent the significance of cell-cycle rhythmicity in the cell line.

Preparing input for prediction models

SAMPLES. All human genes were used as samples for the model. All genes (61,527 unique

genes) from gene_info_04012020 are used to create the human gene list.

LABELS. Labels (sleep genes) were manually curated through literature mining. The initial set
of sleep genes was collected from a review paper(87). We then search for additional sleep genes
using the keyword of ‘sleep’ in title, and ‘gene’ AND ‘model’ in the main text from PubMed and
Scopus databases. A sleep gene was defined as a gene that has been reported to alter sleep traits
in at least one animal model (flies or mammals) by genetic approaches. Altered sleep traits
include changes in sleep timing (sleep phase), sleep duration and other measurements of sleep
quality from EEG (e.g. slow wave activity, NREM/REM ratio, number of sleep bouts and sleep
latency). We divided the list into 3 tiers. Tier I includes “bona fide" sleep genes that harbored a
causal mutation in any human sleep traits and were validated in animal models. Their roles are
conserved across species. Tier 11 genes have evidence from any non-human mammalian model
system. Tier 111 genes were discovered to change sleep traits in Drosophila but not in vertebrates
yet. Given that only a limited number of tier | genes were characterized, tier 11 and I11 were
included to build the model with the same weight as tier | genes. Sleep genes are updated till

8/13/2020 for this analysis.
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FEATURES. Sleep gene associated molecular features were built using two lines of information.

I. Gene set collections. A total of 19 gene set collections are downloaded and prepared as
mentioned above. One feature is created from each gene set collection. Genes are scored by their
similarities to the list of curated sleep genes under the biological context, for example,
similarities of the shared molecular pathways between a gene with the curated sleep genes. To do
this, we first calculated the Jaccard Index (JI), or the Jaccard similarity coefficient, for each term
in a given gene set collection. Assuming that the curated sleep genes are set A and the genes
assigned to the term (e.g. circadian clock) are set B, JI is calculated by dividing the number of
overlapped genes between A and B to the number of all unique genes in A and B. Next, for all
genes in set B, we updated the gene score by adding in this JI value to the gene score. These two
steps are repeated for every term in a given gene set collection. By the end of these calculations,
we obtained a numeric vector with the sum of JI score for each gene. This created a feature
representing the overall similarities of a gene with the labeled sleep genes, under the biological

context of the gene set collection information.

|ANB|

Jaccard Index (JI)erm = |AUB|

— n :
Scoregeney = Xiz1llterm; » geneyis anelement of termic(i 23, .

I1. Genome-wide profiling datasets. Genome-wide profiling datasets are collected and pre-
processed as mentioned in the data curations and preprocessing section. Evidence factors were
used to evaluate the degree of sleep genes over-representation in these processed data metrics.
We first split the samples (genes), using the sleep genes to form a sleep gene distribution, and the
remaining genes to form the non-sleep gene distribution. Evidence factors are calculated by

comparing the proportion of genes in these two distributions, within a bin (between D1 and D).
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As the distribution of genes is sparse, there are chances to have empty bin(s) if we fix bin size by
value. To solve this problem, we binned the samples(genes) by setting a minimum percentage of
genes in each bin. To do this, the data metrics are first split by 100 equal breakpoints. We then
repeatedly merge the neighboring bins until a bin has at least 10% sleep genes and at least 1%
non-sleep genes, or at least 10% non-sleep genes and at least 1% sleep genes. For each (merged)
bin, we calculated evidence factors by dividing the proportion of genes in sleep genes to the
proportion of genes in non sleep genes. We used maximum evidence factors (maxEF) from a
dataset as an index to select sleep gene relevant data. If the two distributions are similar, we will
have maxEF near to 1, indicating no sleep gene over-representation in the data metric. In
contrast, if the sleep gene distribution is different from the non-sleep gene distribution (e.g.
skewed right tail in the sleep gene distribution, highly enriched for certain range of values), we
will have higher maxEF, suggesting sleep gene over-representation in the data metric. For each
data metric, we set a cutoff of at least 25% labels that must present with a real value to ensure
sufficient sleep genes used to form the sleep gene distribution; and the range of the data metrics
must have more than 3 steps to ensure sufficient resolution. Else, we skipped the maxEF
calculation for this data metric and showed the maxEF value with ‘NA’. Data metrics that show
positive evidence (maxEF>=3) are selected and used as features to train the prediction models.
Most machine learning algorithms assume that all features are independent. To remove features
that are highly correlated, we ran pairwise correlation coefficients of all data pairs. If two data
metrics have correlation coefficient higher than 0.8, the data metric with lower evidence factors

is excluded.
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Building machine learning models to predict sleep genes

INPUT. Samples and features are curated as mentioned above. We then filtered out samples
(genes) with >50% missing values. One of the labels (sleep gene), NPSR1, was removed. In
summary, an input table with 17,841 rows (genes) and 91 columns (gene-associated features),

with 108 labels (sleep gene) was used to build the prediction models.

DATA PREPROCESSING. Data preprocessing is done using Python - sklearn.impute and
sklearn.preprocessing package. Missing values from the input are imputed with mean value and
rescaled with standard score (z-score). Curated labels (sleep genes) are replaced by ‘1’ and the

remaining samples(genes) are replaced by “0°.

MODEL ARCHITECTURE. We have curated 108 sleep genes (positive labels), but with no
information or confidence on genes that do not regulate sleep (no negative labels). This raised
the problem of learning from Positive and Unlabeled data (PU learning). We applied a biased
learning method(39,40) to solve this problem. To do this, all non-labeled genes are treated as
negative labels during the training process, and prediction results are made based on ensembles
of numerous of these weak-classifiers. In other words, we first subsampled our samples (genes)
into a smaller subset, with the same proportion of positive and unlabeled samples in the training
and prediction sets. Samples in the training set are used to train the prediction models, sleep
genes are marked as positive labels and all other genes are marked as negative labels (all other
genes in the subset). In this case, the negatively labelled samples are expected to contain a
mixture of true or false negative labels, hence, resulting in weak-classifiers. We repeated this
process for 100 times and made the final predictions based on average performance from all

cycles.
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We have only a small number of labels (sleep genes, n=108) in comparison to other samples
(non-labeled genes, n=17,733). Yet, these labels are not found completely at random. In other
words, most sleep genes are identified based on our existing knowledge of sleep regulations;
therefore, these genes are not distributed randomly (or equally) in all sleep-relevant pathways.
As an example, 13 out of 108 sleep genes are parts of the circadian clock pathway. To increase
the randomness of subsampling labels, as well as maintaining the best performance (sensitivity
and precision), we trained the ML model with different proportions of training input, ranging
from 0.2 to 0.8. By doing this, we increase the combinations of samples used in the training and

prediction sets, and therefore expected to have more robust predictions.

MODEL EVALUATION. Eight supervised classifier algorithms were built to find the best
supervised classifier that fits our prediction. The evaluated classifiers included probabilistics
models (naive Bayes), linear regressions models (logistics and linear SVM), decision trees
(decision tree, random forest and adaptive boosting) and neural networks (neural networks and
ensemble neural networks). All machine learning models, except neural network and ensemble
neural network, were built using scikit-learn (v0.22.2)(36). Default parameters were used, except
mentioned below. Logistics regression (max_iter=1000), decision tree (max_leaf _nodes=12),
random forest (max_leaf_nodes=12), adaptive boosting (max_leaf _nodes=4,
algorithm="SAMME”, n_estimator=200). Neural networks and ensemble neural networks were
built using Tensorflow (v2.2.0)(38) and Keras (v.2.4.3)(37). Neural networks were built using
sequential models with two hidden layers (12 and 6 nodes each, both activated by ‘relu’
function). Final outputs were activated by the ‘sigmoid’ function. Ensemble neural network had
the same setting as the neural network, except we ran the model for 20 times for each

subsampling input, and made the final predictions by major voting (>50%, or more than 10
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times). Input to train prediction models are prepared as mentioned above. For naive Bayes
classifiers, we transformed the input with principal component analysis to ensure the conditional
independence between features. The ratio of labeled and unlabeled samples is skewed. To
balance the weights of positive and negative labels to roughly 1:1, we assumed the total number
of genes is around 20,000. The weight is calculated by using half of the total number of genes
(10,000) divided by the number of labels. Samples (genes) are randomly split into training and
testing sets, stratified by the same percentages of labels in the training and testing sets. This
process is repeated for 100 cycles for each of the 7 training ratios, where training ratios include
0.2,0.3,0.4,0.5, 0.6, 0.7 and 0.8. For each iteration, samples assigned to the training set are used
to train the models. Samples in the testing set fit into the trained models, and the classes
predicted by the “predict classes” function are used to calculate the confusion matrix. Models
are evaluated with precision, sensitivity and F1-score (harmonic mean of precision and
sensitivity). Raw prediction scores, or the probability of a gene predicted as sleep gene by the
ML model, calculated by the “predict proba” function were recorded for genes assigned to the
prediction set (not including linear SVM, as the raw prediction scores from linear SVM were
discordant with the binary predictions). The average prediction score from all iterations was

calculated and used to plot the sensitivity-precision plots.

RANDOM LABELS. To avoid a model that makes predictions based on random noise, we
removed all existing labels and randomly assigned the same number of labels to the remaining
samples (only samples that were not originally labelled). As features are built based on sleep
genes labels but not the random labels, the randomly assigned labels are not likely to be recalled
using these sets of features, unless called by random noise. Therefore, we selected models that

have low sensitivity with the random labels input.
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PREDICTION MODEL. The prediction model is built with random forest classifiers using
scikit-learn (v0.22.2)(36). Default parameters were used, except max_leaf nodes is set to 12. As
described in the previous section, the weights of the labels are calculated using 10,000 divided
by the number of labels. Samples (genes) are randomly split into training and testing sets,
stratified by the same percentages of labels in both the training and testing sets. This process is
repeated for 100 cycles for each of the 7 training ratios, where training ratios include 0.2, 0.3,
0.4, 0.5, 0.6, 0.7 and 0.8. For each iteration, samples assigned to the training set are used to train
the models. Labels from the prediction set are removed; all samples in the prediction set are fit
into the trained models for prediction. Raw prediction score is recorded for genes assigned to the
prediction set. Prediction score less than 0.1 is set to 0 to reduce noise. The average prediction
score from all iterations was calculated. We observed a linear correlation between training ratios
with sensitivity, and an inverse correlation with precision (Fig2B). In fact, the smaller the
training samples are, the fewer genes are predicted as sleep genes, but a larger portion of these
predicted genes are indeed sleep genes (higher precision). For this reason, we weighted the final
ranking of candidate sleep genes with the minimum training ratio that leads to a positive
prediction (min(r)). A gene predicted as sleep genes in models trained by only 20% of the
samples (genes) will rank higher than a gene only predicted as sleep genes in models trained by

80% of the samples. The final prediction score is calculated as:

final prediction score = 10* min(r) + average prediction score.

Genes with consistently high prediction scores in all training ratios (average prediction

score >0.413, aka the top 238 genes) are grouped as the class I predicted genes.
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Exploring sleep traits GWAS data

Summary statistics from 4 self-reported UK Biobank sleep traits GWAS (n=453,379), including
chronotype(9), overall sleep durations(12), daytime sleepiness(42) and insomnia(11), were
downloaded from Sleep Disorder Knowledge Portal (SDKP)(88). FUMA’s SNP2GENE
process(89) is used to run gene annotations. SNPs are mapped to genes using the posMap,
eqtlMap and ciMap methods, with default parameters. Mapped GWAS genes overlapped with

the top predicted sleep genes are marked in Table S2.

Pathway enrichment analysis

The 238 class 1 candidate sleep genes are used for pathway enrichment analyses using DAVID
(41) - Reactome pathway database. Pathways are then clustered using kappa similarity in
DAVID (kappa similarity threshold>0.5). We filtered out pathways with less than 5 genes or

Bonferroni adjusted p-value larger than 0.1.

Mice

The R26-stopT-1kk2CA transgenic mice (Stock No: 008242) and Camk?2a“™ER transgenic mice
(Stock No: 012362) were both obtained from The Jackson Laboratory. The Camk2a®™ER and
R26-stop™1kk2°A mice were crossed and housed under 12:12-h light: dark (LD) cycle within the
University of Florida communicore facility and fed and watered ad libitum. Animal care and
experimental procedures were approved by the Institutional Animal Care and Use Committee at
University of Florida following the Guide for Care and Use of Laboratory Animals of the

National Institute of Health (IACUC# 202110057).
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Tamoxifen Injection

For tamoxifen inducible 1kk2° knock-in activation, Camk2aC"™ER::R26-Stop™1kk2¢ transgenic
mice were generated by crossing Camk2a®"ER mice with R26-stop™-1kk2 mice. Tamoxifen
(TAM) (#T5648; Sigma-Aldrich, St. Louis, MO) was dissolved in corn oil (#C8267, Sigma-
Aldrich, St. Louis, MO) at a concentration of 20mg/mL. 10-12 weeks-old male mice (n=5 for
each group) were dosed at 75 mg/kg body weight (TAM or corn oil) intraperitoneally once every
24 h for a total of five consecutive days. The sleep assay began 4-weeks after tamoxifen

injections when constitutively active IKK2 expression was induced in this model.

Western blot

Brain tissue lysate preparation and immunoblotting analysis were performed using anti-Flag (65,
Sigma-Aldrich, St. Louis, MO) antibody. Briefly, brain tissue was snapped frozen and lysed in
the RIPA lysis buffer containing cocktails of proteases inhibitors (Roche) and phosphatase

inhibitors (Sigma). Western blot was performed to determine Flag-tagged Ikk2°A activation.

Sleep assay

The piezoelectric sleep monitoring system (PiezoSleep version 2.11, Signal Solutions,
Lexington, KY), is a highly sensitive, non-invasive, high throughput and automated piezoelectric
system, which detects breathing and gross body movements to characterize sleep patterns in

unsupervised sleep/wake recordings(90,91).

For each experiment, 5 tamoxifen or 5 corn-oil injected Camk2a®"ER::R26-stop™I1kk2°* mice
were individually housed in PiezoSleep cages with a sensor inside a temperature, humidity, and
light controlled box. The first 3-5 days of recording was considered as the acclimation period to

the piezo device. The 12h light/12h dark (LD) cycle (light on at 07:00 to 19:00; 250 lux) was
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performed for the 15-days LD followed by the next 15-days of 12h dark/12h dark (DD) with ad
libitum access to food, water and nesting material. Sleep data were analyzed for multiple sleep

traits of individual mice using sleepstats2p18 (Signal Solutions, Lexington, KY).
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https://sleep.hugeamp.org/; GWAS gene annotation is run using webtools FUMA

https://fuma.ctglab.nl/; pathway enrichment analysis is run using https://david.ncifcrf.gov/. Code

to prepare input features and run the machine learning predictions can be found at

https://qithub.com/yyenglee/ml-sleep.
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Fig 1 Defining sleep gene associated features. Two lines of information are used to define the
sleep gene-associated molecular features. A. Gene and protein knowledge from annotated gene
set collections. An example is shown here on how Jaccard index (JI) is used to score genes in a
given gene sets collection. First, we calculate JI for all terms in the collection. Next, for each
gene, we iterate through all terms. We added a term’s JI to the gene if this gene is an element of
the term. The sum of JI represents the similarity index of a gene to sleep genes given this
molecular context. B. Genome-wide datasets. Evidence factors are used to screen for datasets
that show over-representation of sleep genes. Two time-series transcriptomics datasets are shown

as negative and positive control for this screening method. We used -log2(p-value) as a
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significance score for rhythmic expression. Significance scores are split to form the sleep genes
and non-sleep genes distribution. Evidence factors are calculated by comparing the proportion of
genes in these two distributions within a bin. C. Genome-wide datasets enriched for sleep genes.
Top 8 datasets with maxEF larger than 3 in each group are shown in the figure. Groupings
include circadian rhythm, disease, infection, genotype, drug/compound, physiology, and
stress/stimulus and anatomical specific transcripts/protein expressions. Y-axis of the bar plots
show the maximum evidence factors for each dataset. Human and mouse samples are colored in

red and blue, respectively.
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Fig 2 Building machine learning (ML) models to discover novel sleep genes. A. Workflows
and model architecture for the ML models. We first tested the performance of 8 supervised
classifier algorithms. Next, we selected algorithms with the best performance to build the sleep
gene prediction models. Sleep gene prediction models are trained as shown in the model

architecture. B. Precision, sensitivity and F1-score are used for model evaluations. The two
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columns indicate model performances using sleep gene labels and random-shuffled labels trained
input. Each data point indicates performance from one iteration. Performances of different
training ratios are shown in individual columns with different shapes, from left to right, ranging
from 0.2 to 0.8. The average score for each classifier is shown as a circle at the center of each
group. C. Prediction and ranking of sleep genes by random forest. Average prediction score of
0.1 is used as a cutoff for positive prediction. We classified all positive predicted sleep genes into
8 classes. Class 1 are the top 238 genes with average prediction scores larger than 0.413.
Remaining predicted sleep genes are classified into class 2 to 8, based on the minimum training
ratio that leads to positive predictions for the gene. For example, TIMELESS is classified into
class 3 sleep genes as it is predicted when at least 30% genes are used as training sets. When
smaller portions of genes are used in the training sets, less genes are predicted but with higher
precision, and therefore with higher confidence. Points in grey show the prediction score from all
training ratios. Average prediction scores for sleep genes validated in humans (Tier 1), non-
human mammals (Tier 1) and drosophila (Tier I11) are colored in brown, yellow and light blue,
respectively. Remaining genes are colored in dark blue. Tier | sleep genes are labelled in the
figure. Abbreviations. Bayes-naive Bayes, LR-logistic regression, SVM-linear support vector
machines, DT-decision tree, RF-random forest, AB-adaptive boosting, NN-neural network, eNN-

ensemble neural network.
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Fig 3 Enriched (Reactome) pathway from predicted sleep genes. Top enriched pathways with
at least 2 genes overlap with sleep traits GWAS are shown in the figure. The full list of annotated
pathways can be found in the S4 Fig. P-value for each annotated pathway is shown in the
pathway labels. Pathways enriched by similar sets of genes are clustered into groups using
Kappa similarity. For each cluster, pathway with the highest number of genes overlapped to
GWAS (and lowest p-value if tied) is shown in the figure and marked with (*). Predicted genes
overlapped to sleep traits GWAS are colored in beige and others are colored in blue. Sleep genes
used to train the ML model are labeled in black and the predicted sleep genes are labeled in blue.
Within each pathway, genes are ordered by their predicted rankings, from left to right. The five
genes written in bold italic are the sleep genes that have been reported to regulate sleep in human

studies.
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Fig 4 Sleep phenotyping in 1kk2%A mice and control using piezoelectric sleep monitoring
system. A. Camk2a®"ER::R26-stop™I1kk2“ mice are used to test the effect of NF-kB activation
on sleep. The stop™ cassette in R26-stop™-1kk2°A mice prevents expression of the constitutively
active 1kbkb (Ikk2%A) and the tamoxifen-inducible neural specific Camk2a“"ER recombinase

induces neuronal specific deletion of the stop™ and thus expression of 1kk2°A. B. Five doses of
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Tamoxifen and corn-oil are injected to Ikk2°* and control mice, respectively, 4 weeks prior to
the sleep phenotyping. Mice shifted to Piezoelectric sleep monitoring systems took 5 days for
adaptation purposes. Sleep phenotyping is run for 15 days under LD (light on at 07:00-19:00,
250 lux), followed by another 15 days under DD. Five animals are used for each control and
Ikk2A groups. C. Western blot data showed expression of flag-tagged Ikk2%” in the 1kk2°A mice
but not control. Two out of five samples for each group are shown in this figure. D-F. The
Ikk2°* mice had a reduced (D) total sleep duration and (E) light phase sleep duration but no
significant difference was observed in the (F) dark phase. G. Sleep reduction in the Ikk2A mice
was observed during the light phase, from ZT0 to ZT10, in comparison to the control littermates.
H. Ikk2* mice displayed more short bouts (0.5 to 16 min) (64.8 + 0.57% in Ikk2°* vs.
50.3+0.47% control) and less long bouts of sleep (> 32 min) (9.4 + 3.4% in Ikk2°* vs. 25,5 +
2.1% in control) in comparison to controls. T-test is used for all statistical comparison. P-value <

0.05 is marked with (*). Abbreviation. ns - non statistical significance.
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Data types N

Transcriptional profiles 6,540
under perturbations,
different physiological
or pathological states

Tissue-specific -

Distribution of maximum
evidence factors

protein abundances 30

transcripts abundances 595

significance of circadian 75

expressions ‘é
Others 5

Total datasets 7,195

S1 Fig. Summary of the genome-wide profiling datasets tested with evidence factors. Table
above showed the number of data metrics tested for over-representation of sleep genes using
evidence factors. The histogram showed the distribution of maximum evidence factors of all
tested data metrics. A cutoff of 3 (represent positive evidence) is used to select features to train

the sleep genes prediction model.
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S2 Fig. Evidence factors for the 72 selected genome-wide data metrics. Evidence factors are
used to screen for genome-wide datasets enriched for sleep genes. In this figure, a data metric is
represented by two density plots (top) and a line plot (bottom). The orange and blue distributions
are generated using sleep genes and non sleep genes, respectively. The X-axis of the plot

represents the range of value for this data metric, Y-axis of the line plot shows the evidence

factors.
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Supervised classifier algorithms
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S3 Fig. Receiver operating characteristic curve for tested classifier. Receiver operating
characteristic (ROC) curves for each tested classifier (except linear SVM, as the probabilities
scores are reported to be different from the classification predictions) are shown in the figure.
Areas under curve (AUC) for each classifier are listed in the legends. Abbreviations. Bayes-naive
Bayes, LR-logistic regression, SVM-linear support vector machines, DT-decision tree, RF-

random forest, AB-adaptive boosting, NN-neural network, eNN-ensemble neural network.
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S4 Fig. All enriched (Reactome) pathways from the top 238 predicted sleep genes. A.
Pathways with at least two genes overlap with sleep traits GWAS mapped genes. B. Pathways
with one or no genes overlap with sleep traits GWAS mapped genes. Pathways annotated by
similar sets of genes are clustered with Kappa similarity threshold >0.5. Pathways in the same
cluster are ordered by p-value, from top to bottom. Genes overlapped to sleep trait GWAS are
colored in beige, others are colored in blue. Gene names labeled in black are sleep genes used as
labels to train the ML model; gene names labeled in blue are the novel candidate sleep genes.

Within each pathway, genes are ordered by their prediction rankings, from left to right.
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Table 1. 109 sleep genes curated through literature mining.

Tier |

Human
& >=1
animal
model

(bona fide)

ADRB1
CRY1
CRY2
CSNK1D
BHLHE41
FABP7
GRIA3
NPSR1
PER2
PER3
PRNP
TIMELESS

Adcy3
Adk
Adora2a
App
Arntl
Atp2b3
Bdnf
Bloc1s6
Btbd9
Cacnala
Cacnalb
Cacnalg
Camk2a
Camk2b
Chrml
Chrm3

Tier 1l

Non-human mammals

Clock
Cntnap2
Crebl
Crh
Csnkle
Dbh
Dbp
Discl
Egr3
Eif4ebpl
Faah
Fah
Fmrl
Fos
FosB
Fus

Grial
Grm2
Grm3
Hcrt
Hcrtr2
Hdc
Homerla
Htrla
Htrlb
Htr2a
Htr2c
Htr7
Ifnarl
lirl
116
Kcna2
Kcncl

Kcnk9
Kcnn3
Lep
Mchrl
Mef2d
Nalcn
Nfkbl
Nlgn2
Nign3
Nlrp3
Nosl
Npas2
Ntsrl
Opn4
Panx1
Perl
Prkgl

Prl
Prok2
Ptprd
Rab3a
Rims1
Scnla
Scn8a
Shank3
Sik3
Sirtl
Slc29al
Slc6a3
Slc6a4
Tnf
Tnfrsfla
Ube3a
Vamp2

Tier 111

Fly
(with human homologs)

CanAl4F (PPP3CA)
CanB (PPP3R1)
Dmel\Cul3 (CUL3)
Dmel\Elp3 (Elp3)
fmn (SLC6A2)

HTT (HTT)

inc (KCTD5)

Sh (KCNA3)
Nedd8(NEDDS)
NMDAR1 (GRIN1)
PRKAB2 (PRKAB2)
SHMT (SHMT1)
sra (RCAN2)
VMAT (SIc18A2)
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Supporting Information

S1 Data. Known sleep gene curated through literature mining.
S1 Table. Curated datasets used to build ML models.
S2 Table. Ranking of sleep genes by random forest, with GWAS annotated genes

annotation.
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