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Abstract 

Genetics impacts sleep, yet, the molecular mechanisms underlying sleep regulation remain 

elusive. We built machine learning (ML) models to predict genes based on their similarity to 

known sleep genes. Using a manually curated list of 109 labeled sleep genes, we trained a 

prediction model on thousands of published datasets, representing circadian, immune, sleep 

deprivation, and many other processes. Our predictions fit with prior knowledge of sleep 

regulation and also identify several key genes/pathways to pursue in follow-up studies. We tested 

one of our findings, the NF-κB pathway, and showed that its genetic alteration affects sleep 

duration in mice. Our study highlights the power of ML to integrate prior knowledge and 

genome-wide data to study genetic regulation of sleep and other complex behaviors. 
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Introduction 

Genetics impacts sleep. In humans, a handful of alleles are known to cause familial sleep 

disorders(1–8). However, most of these alleles are rare and have not been broadly implicated in 

sleep regulation in human populations. Genome-wide association studies (GWAS) identified 

more sleep-trait associated genes, but SNP-based heritability estimates are small. Few (if any) of 

these genes have been functionally validated(9–12). Many key features of sleep are conserved 

from invertebrates to vertebrates(13). Large-scale forward genetics screens in flies(14–16) and 

mice(17,18) have identified several genes whose alteration impacted sleep regulations. The two-

process model(19,20) proposed that both circadian clocks and sleep homeostasis drive the sleep-

wake cycle. Multiple studies have sought to identify key genes and proteins that regulate sleep 

homeostasis(21–25). Yet the molecular mechanisms underlying sleep regulation remain elusive. 

Recent advances in ‘omics technology have led to increasingly large amounts of data generated 

each year. To date, the wealth of genome-wide datasets available have not been integrated to 

study the genetic regulation of complex physiology and behavior like sleep. Machine learning 

(ML) models have predictive power to classify samples based on hidden patterns in large 

datasets(26–29). Here, we applied ML to existing information with the goal of identifying genes 

and pathways involved in sleep regulation. Using a manually curated list of 109 labeled sleep 

genes, we trained a prediction model on thousands of published datasets, representing circadian, 

immune, sleep deprivation, and many other processes. Our model predicted 238 candidate sleep 

genes. Pathway enrichment analysis revealed the NF-ᴋB pathway as a key factor in sleep 

regulation. We validated that activation of the NF-ᴋB pathway in neurons indeed led to 

fragmented sleep in mice. In sum, we present an integrative in silico approach with the potential 

to identify genetic regulators of complex physiology and behavior. 
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Results 

Defining sleep gene features 

Our goal was to build a machine learning model to predict candidate sleep genes based on 

molecular features of known sleep genes. As a first step, we manually curated a list of known 

sleep genes (Table 1, hereafter referred to as ‘sleep genes’) through literature mining from 

PubMed and Scopus databases. Sleep genes were defined as genes reported to alter sleep traits, 

including sleep timing, sleep duration, and measurements of sleep quality from EEG in at least 

one animal model (flies or mammals).  

Next, we identified molecular features associated with these sleep genes. The lack of a strong 

molecular understanding of sleep regulation makes it difficult to know which types of 

information can be useful to predict sleep genes. To address this issue, we used two sources of 

information to define sleep gene-associated molecular features. The first source includes gene 

and protein knowledge from annotated gene set collections, including canonical pathways, gene 

ontology, transcription factor target genes, and protein-protein interactions. We applied the 

Jaccard index (JI), or the Jaccard similarity coefficient(30), to quantify the similarity of a gene to 

the exemplar sleep genes in the context of a given gene set collection (Fig 1A). Using the JI 

scoring method, we generated 19 features (S1 Table) representing the similarity of a gene to 

sleep genes in various molecular contexts. 

The second source of information we used to define sleep gene-associated molecular features 

includes genome-wide profiling datasets. We used evidence factors(31,32) to identify genome-

wide datasets most likely to be informative for the ML model. We evaluated 7,195 datasets for 

sleep-gene over-representation using maximum evidence factors (maxEF). In prior work, we 
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applied evidence factors to identify a novel circadian transcriptional repressor in mice(33). We 

modified the application here to screen for datasets that show positive evidence for sleep genes 

(Fig 1B). To validate the concept, we tested two time-series datasets: (i) as a negative control, a 

transcriptomics profile of HeLa cells at different cell-cycle stages (GSE26922)(34) and (ii) a 

transcriptomics profile of mouse suprachiasmatic nucleus (SCN) across a 48h time-span 

(GSE70392) as a positive control for sleep gene regulation. These two datasets were selected as 

controls because the cell-cycle stage is not expected to be predictive of sleep, whereas circadian 

rhythms are intimately linked with sleep. The widely accepted two-process models of sleep 

regulation (19,20) and the alleles identified in families with extreme sleep traits(2,6,35) both 

support the roles of endogenous circadian rhythms in sleep regulation.  

For the two control datasets, each gene was assigned a significance score for rhythmic 

expression using the published -log2(p-value). For each dataset, we built two distributions using 

this significance score. The 109 known sleep genes were used to form a sleep gene distribution. 

All remaining genes were used to form a non-sleep gene distribution. The evidence factors were 

computed by comparing the proportion of genes in these two distributions. If the two 

distributions are similar, maxEF is close to 1, which would indicate that there is no sleep gene 

over-representation in the dataset. In contrast, if the sleep gene distribution is different from the 

non-sleep gene distribution, maxEF would be much greater than 1. Evidence factors greater than 

3 suggest positive evidence(31). Therefore, a cutoff of maxEF larger than 3 is set as an indicator 

of sleep gene over-representation in the dataset. As expected, we found no evidence of sleep 

gene over-representation in the cell-cycle time-series dataset (maxEF=1.3). Conversely, sleep 

genes were overrepresented in the mouse SCN time-series dataset (maxEF=4.9). Rhythmically 

expressed genes in this dataset were five times more likely to be sleep- versus non-sleep genes 
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(Fig 1B), suggesting that circadian expression in the mouse SCN is a sleep-gene associated 

feature and should be incorporated in our ML model.  

We screened through 7,195 genome-wide profiling datasets for positive evidence for sleep 

(maxEF>3) (S1 Fig & S1 Table). Datasets with the highest maxEF included circadian expression 

of genes in multiple tissues, and altered gene expression in several brain diseases. Sleep genes 

were also over-represented in datasets pertaining to Epstein-Barr virus infection, IL17A 

knockout in colon, clozapine treatment, sleep deprivation, and anatomically-specific datasets, 

including testis and human brains (Fig 1C & S2 Fig). In sum, we identified 72 datasets with high 

maxEF to provide computational and predictive efficiency for the ML model. 

Applying ML models to discover novel sleep genes 

From the previous section, we selected 19 features from gene set collections using JI scoring 

methods and 72 features with high maxEF from genome-wide profiling datasets. Genes 

with >50% missing values from these 91 features were filtered out. One of the tier I sleep genes, 

NPSR1, was excluded as it had missing values in more than half of the selected datasets. With 

this information, we generated an input table with 17,841 samples (genes), including 108 labels 

(sleep genes), and 91 features for training the ML models. 

ML models were built using Python packages scikit-learn(36) and Keras(37,38). We have 

curated 108 sleep genes (positive labels), but with no information or confidence on which genes 

do not regulate sleep (no negative labels). We applied a biased learning method to solve this 

problem of learning from Positive and Unlabeled data(39,40). To do this, all non-labeled genes 

in the training set are treated as negative labels during the training process. In this case, the 

negative labels contained a mixture of true and false negatives, which led to weak, or low 
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confidence, classifications for individual models. We subsampled the training sets with 7 training 

ratios (ranging from 0.2 to 0.8), each with 100 cycles, and made the final prediction results based 

on collections of all these weak-classifiers (Fig 2A).  

There are numerous supervised classifier algorithms available, each with strengths and 

weaknesses. Our goal was to identify the highest-confidence candidate sleep genes for 

subsequent validation in animal models. We evaluated eight supervised classifiers seeking a 

model to maximize precision. False positives are much worse than false negatives, as validation 

experiments can take years. The tested classifier models included probabilistic (naive Bayes), 

linear regression (logistics and linear support vector machines), decision tree-based (decision 

tree, random forest and adaptive boosting), and neural networks (neural networks and ensemble 

neural networks). As part of our evaluation, we retrained all models with random-shuffled labels 

as inputs. This evaluation helped to minimize the chance that predictions are made based on 

random noise. Classifiers with high sensitivity in these random-shuffled label models were 

rejected.  

Random forest and adaptive boosting performed best (AUC=0.97), followed by neural networks 

(AUC=0.96) (S3 Fig). Random forests had the highest precision, lowest sensitivity, and highest 

harmonic mean of sensitivity and precision (F1-score). Random forests also outperformed all 

other classifiers with regard to random-shuffled label models, with 0 for sensitivity, precision, 

and F1-score, suggesting high precision of the prediction results (Fig 2B). We therefore chose 

random forests as the classifier algorithm to predict sleep genes. 

In total, 3,827 out of 17,841 genes were predicted as sleep genes (Fig 2C, S2 Table). We ranked 

these genes based on average prediction score, and separated them into 8 confidence levels based 
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on the minimum training ratio that led to a positive prediction. We refer to the top 238 genes as 

class 1 candidate sleep genes. Of the class 1 candidate sleep genes, 63 were known sleep genes 

(Table 1) and 175 were novel predicted sleep genes. Sleep genes identified from human samples 

ranked higher in comparison to sleep genes identified from other mammals or flies, despite the 

fact that all sleep genes were weighted equally during the feature selection and model training 

steps. This suggested that our models’ predictions are able to detect human sleep genes and 

provide strong candidates for future study. 

Identifying pathways relevant to sleep regulation  

The prediction model was intended to reveal molecular mechanisms or pathways that may be 

involved in the regulation of the sleep-wake cycle. We ran enrichment analysis (Reactome) with 

DAVID(41) using the 238 class 1 candidate sleep genes to explore the pathways enriched for 

sleep regulation. Pathways enriched by similar sets of genes are clustered into groups using 

Kappa similarity. We identified 19 enriched pathways (S4 Fig), 11 of them have at least 2 genes 

overlapped with the annotated genes from 4 GWAS pertaining to chronotype (9), overall sleep 

duration (12), insomnia (11) and daytime sleepiness (42)(Fig 3). 

Several of these pathways are neuron-related, including Phase 0 depolarization; ion homeostasis; 

Ca2+ pathway; trafficking of AMPA receptors and activation of Ca-permeable Kainate receptor. 

This is not surprising as neuronal involvement in rapid transition between sleep-wake states is 

well known(22,43–45). Our ML models proposed candidate sleep genes in each of these 

pathways that are yet to be explored. CACNA2D2, SCN2A, CACNG3, ATP2B1, SLC8A1, GRIK2 

and GRIK3 are supported by both ML models and GWAS data and represent attractive candidate 

genes for experimental validation. 
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Previous GWAS for sleep traits have reported enrichment of circadian rhythm and G-protein 

relevant pathways(9,12). Similar trends are observed here; circadian clocks and G alpha 

signaling events are among the top enriched pathways from our prediction models. Interestingly, 

two genes encoding opioid receptors, OPRD1 and OPRM1, and a gene encoding the endogenous 

opioid peptides, PENK, are among the top candidate genes in G alpha(i) signaling events. 

Opioids are well known sedatives. Clinical studies have shown that a single dosage of opioid 

medication can significantly affect sleep architecture in healthy adults(46). Our prediction results 

suggest that among the three opioid receptors, the mu- and delta- receptors are more likely to 

play key roles in sleep regulation at the molecular level. This is in agreement with an in vivo 

study using opioid receptor agonists in feline models(47). 

Validation of a role for NF-κB activation in sleep regulation 

We also found enrichment of pathways without prior association with sleep. In particular, a 

group of immune related genes, including IKBKB, NFKB1, NFKB2, NFKBIA, and RELA, were 

among the top enriched pathway clusters (Fig 3). These genes are key components of the 

proinflammatory NF-κB pathway in which RELA is a transcriptional factor and IKBKB is an 

upstream regulator of NF-κB activation. NF-κB transcription factors play critical roles in 

inflammation and immunity, as well as cell proliferation, differentiation, and survival(48). The 

direct and indirect triggers of NF-κB activation have been reported to cause circadian 

disruption(49). Sleep loss alters immune function and immune challenges alter sleep(50). 

Previous studies reported that Nfkb1 (p50) knockout mice showed increased durations of slow-

wave and rapid eye movement (REM) sleep(51). However, little is known about the direct effect 

of NF-κB activation on sleep homeostasis. 
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To test the effect of NF-κB activation on sleep, we used Camk2aCreER::R26-stopFLIkk2CA mice 

(Fig 4A, B) in which the stopFL cassette prevents expression of the constitutively active Ikbkb2 

(Ikk2CA)(52) and the tamoxifen-inducible neural specific Camk2aCreER recombinase(53) induces 

deletion of the stopFL and thus expression of Ikk2CA(Fig 4C). IKK2 is a key component of the 

IKK complex which phosphorylates IkBα, leading to IkBα ubiquitination and proteasomal 

degradation(54). Upon degradation of IkBα, NF-κB is free to translocate to the nucleus, bind to 

DNA, and induce transcription of target genes. Therefore, Ikk2CA expression leads to constitutive 

NF-κB activation, and these mice represent a genetic model of NF-κB pathway activation. We 

performed the PiezoSleep assay to assess the sleep-wake phenotypes.   

Compared to control mice, the Ikk2CA mice had a reduced total and light phase sleep duration 

(Fig 4D&E, t-test, p<0.05). No significant difference was observed in the dark phase when mice 

are normally active (Fig 4F). The sleep reduction in the light phase in Ikk2CA mice spanned from 

ZT0 to ZT10 (Fig 4G), when mice are typically inactive. Sleep bout duration has been used as 

indicators of sleep consolidation vs. fragmentation (55,56). Ikk2CA mice displayed more short 

bouts and less long bouts of sleep, compared to controls (Fig 4H, t-test, p<0.05), indicative of 

sleep fragmentation. Taken together, when the NF-κB pathway is activated, mice exhibit sleep 

fragmentation especially during the inactive/resting phase.  

Discussion 

Our computational approach predicted 238 genes and 11 biological pathways involved in sleep 

regulation. Predictions fit with prior knowledge of sleep regulation, and also identify several 

novel avenues to pursue in follow-up studies. We tested one of these, the NF-κB pathway, and 

showed that its genetic alteration affects sleep duration in mice.  
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A role for immunity in sleep regulation is known. Sleep changes in response to infection. 

Inflammatory mediators such as IL-1, TNF, and prostaglandins appear to have sleep regulatory 

properties(57). Our ML model suggested that the activation of NF-κB pathways, specifically 

through the phosphorylation of the IkBα complex, is a key regulator in sleep. We validated one 

of the predicted genes (Ikbkb) using a neuron-specific, constitutively activated IKK2 (Ikk2CA) 

mouse model. We found that Ikk2CA mice have reduced sleep duration and shorter sleep bout 

duration than the controls. The decrease in bout length and reduced sleep duration during the 

inactivity phase suggests disruption in sleep consolidation and increased sleep fragmentation that 

may be relevant to human sleep. Sleep perturbations including fragmented sleep with frequent 

night-time awakenings and excessive daytime sleepiness are common in human patients with 

neurodegenerative diseases or cancer, and these daily disruptions are a major factor for sleep 

disorders(58,59).  

Machine learning has been widely applied to integrate biological data in recent years. Multiple 

gene prioritization tools have been developed(60–62), but most are built on the hypothesis that 

causal variants or driver genes and pathways exist and thus may not be ideal for understanding 

genetic regulation in complex traits. We sought to identify candidate sleep genes that share 

similar molecular features to the known sleep genes. Key to this approach is the ability to define 

a comprehensive yet predictive set of features. Most ML models for gene prioritization draw 

from annotation resources (e.g., GO terms, MSigDB, GWAS catalog)(27,61), we applied a 

modified probabilistics method to screen and select sleep-relevant features from raw or 

processed genome-wide data. This allowed us to cull 73 features from thousands of datasets. We 

think this represents a general framework for integrating large amounts of genome-scale data to 

predict genetic regulators in other complex traits. 
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There are limitations to this study. The quality of the predictions from a ML model depends on 

the quality of the training labels (ie., sleep genes), the relevance of features to labels, and the 

amount of information available per sample (ie., gene). Missing information reduces sensitivity 

of the models. For example, the expression level of NPSR1 is low or unmeasurable in most 

genome-wide studies. Therefore, it is not likely to be identified or recalled by the prediction 

model. Incorporating new information, whenever available, will improve performance. Our 

current screening methods are not sensitive for datasets with smaller numbers of genes/proteins 

(e.g., n < 1000) or with lower resolution (e.g., binary output), such as most proteomics or single 

cell studies. Alternative scoring or screening methods are needed to incorporate this information. 

Model evaluation results indicated that ensemble neural networks perform comparably to 

random forests, with higher sensitivity but lower precision. This suggested that neural networks 

may be useful to extend the candidate gene list, particularly for inferring sleep pathways.  

In sum, we built ML models to predict clusters of genes based on molecular similarity to the 

known sleep genes. This approach successfully identifies key pathways that are involved in sleep 

regulation. In addition to our validation of the NF-κB pathway, a few of the top candidate genes, 

Mef2c(63), GRM1(64), and Tac1(65) were independently validated. Our study highlights the 

power of ML-based tools to integrate prior knowledge and genome-wide data to study genetic 

regulation of sleep and other complex behaviors. 

Material and Methods 

Data curations and preprocessing 

Gene name conversion between species was done using the homologene function (v1.5.68) 

(homologeneData2 database updated on 2019 April)(66) integrated in the limma package 
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(v3.40.6)(67). Gene aliases (both human and mouse) were converted to official gene symbols 

according to gene info downloaded from NCBI on 04/01/2020 (hereafter referred to as 

‘gene_info_04012020’)(66). 

https://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz 

Annotated gene set collections. GMT files, representings gene and protein knowledge from 

annotated gene set collections, were downloaded from MSigDB(68) (n=11) and 

Harmonizome(69) (n=7). Protein-protein interaction information was downloaded from 

BioGRID(70,71) (n=1), information in GMT format were extracted as follows - interaction types 

including colocalization, direct interaction, and association and physical associations, from 

human data, are used. Protein names are matched with the official gene name using 

gene_info_04012020.  

Genome-wide profiling data were downloaded from different resources. In total, 7,195 data 

metrics are processed as described below.  

I. Tissue-specific transcripts abundances (n=595). Microarray data from human tissues are 

downloaded from BioGPS - GSE1133(72,73). Average values from each tissue are transformed 

with log2 to create data metrics (n=84). RNA-seq quantifications from human tissues are 

downloaded from GTEx(74). Average TPM from the same tissues are transformed with log2 to 

create tissue-specific transcript abundances data metrics (n=54). Additional RNA-seq data, 

transcript expression summarized at per gene(protein) level, are downloaded from Human 

Protein Atlas (HPA)(75). Log2 protein-transcripts per million (pTPM) are used to create data 

metrics (n=43). Brain region-specific transcripts quantifications (log2 transformed) from Allen 

Brain Map(76) are downloaded from Harmonizome(69). The mRNA expression data 
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representing brain structures specific transcript abundances are used to create data metrics 

(n=414).  

II. Tissue-specific protein abundances (n=30). Mass spectrometry-based proteomics data from 

human adult and fetal tissue samples are downloaded from the Human Proteome Map(77). 

Normalized quantifications from the gene-level expression matrix are transformed with log2 to 

create data matrices (n=30). 

III. Significance of circadian expressions (n=25). Time-series data from mouse tissues are 

downloaded from GSE54652(78) and rhythmic signals are detected using Meta2D-JTK in 

MetaCycle(79). Transformed significant value, -log2(p-value), is used to create data metrics 

(n=12) that represent the significance of circadian expression in mouse tissues. Circadian 

expressions from human populations tissues, ordered by CYCLOPS(80), are downloaded(81,82). 

Transformed significance value, -log2(p-value) are used to create data metrics (n=13). 

IV. Transcriptional profiles under perturbations or different physiological/pathological 

conditions (n=6,540). 15 datasets from Gene Expression Omnibus(GEO)(83) are downloaded 

and preprocessed manually. Absolute log2 fold-changes for each tested condition are used to 

create data metrics (n=46). In addition, 2,459 human and mouse processed datasets are 

downloaded from EBI expression atlas(84). Data metrics (n=6,494) are created using absolute 

log2 fold-changes for each tested condition. 

V. Miscellaneous data (n=5). Phosphorylation sites information is downloaded from qPhos(85). 

Number of tyrosine, serine/threonine, tyrosine and serine/threonine phosphorylation sites in each 

protein are used to create data metrics (n=3). Vertebrate homology information from 10 

vertebrates, including human, chimpanzee, rhesus macaque, dog, cattle, rat, mouse, chicken, 
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western clawed frog and zebrafish are downloaded from MGI(86). The number of vertebrates 

that share a homolog gene with humans is used to create a data metric (n=1) representing 

conservation of genes. Transcriptomics profiles from HeLa cells enriched for different phases of 

the cell cycle are downloaded from GSE26922(34). Rhythmic genes are detected using Meta2D-

LS in MetaCycle(79). Transformed significant value, -log2(p-value), is used to create data 

metrics (n=1) that represent the significance of cell-cycle rhythmicity in the cell line. 

Preparing input for prediction models 

SAMPLES. All human genes were used as samples for the model. All genes (61,527 unique 

genes) from gene_info_04012020 are used to create the human gene list.  

LABELS. Labels (sleep genes) were manually curated through literature mining. The initial set 

of sleep genes was collected from a review paper(87). We then search for additional sleep genes 

using the keyword of ‘sleep’ in title, and ‘gene’ AND ‘model’ in the main text from PubMed and 

Scopus databases. A sleep gene was defined as a gene that has been reported to alter sleep traits 

in at least one animal model (flies or mammals) by genetic approaches. Altered sleep traits 

include changes in sleep timing (sleep phase), sleep duration and other measurements of sleep 

quality from EEG (e.g. slow wave activity, NREM/REM ratio, number of sleep bouts and sleep 

latency). We divided the list into 3 tiers. Tier I includes “bona fide" sleep genes that harbored a 

causal mutation in any human sleep traits and were validated in animal models. Their roles are 

conserved across species. Tier II genes have evidence from any non-human mammalian model 

system. Tier III genes were discovered to change sleep traits in Drosophila but not in vertebrates 

yet. Given that only a limited number of tier I genes were characterized, tier II and III were 

included to build the model with the same weight as tier I genes. Sleep genes are updated till 

8/13/2020 for this analysis.  
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FEATURES. Sleep gene associated molecular features were built using two lines of information. 

I. Gene set collections. A total of 19 gene set collections are downloaded and prepared as 

mentioned above. One feature is created from each gene set collection. Genes are scored by their 

similarities to the list of curated sleep genes under the biological context, for example, 

similarities of the shared molecular pathways between a gene with the curated sleep genes. To do 

this, we first calculated the Jaccard Index (JI), or the Jaccard similarity coefficient, for each term 

in a given gene set collection. Assuming that the curated sleep genes are set A and the genes 

assigned to the term (e.g. circadian clock) are set B, JI is calculated by dividing the number of 

overlapped genes between A and B to the number of all unique genes in A and B. Next, for all 

genes in set B, we updated the gene score by adding in this JI value to the gene score. These two 

steps are repeated for every term in a given gene set collection. By the end of these calculations, 

we obtained a numeric vector with the sum of JI score for each gene. This created a feature 

representing the overall similarities of a gene with the labeled sleep genes, under the biological 

context of the gene set collection information. 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 (𝐽𝐼)𝑡𝑒𝑟𝑚 =  
|𝐴∩𝐵|

|𝐴∪𝐵|
  

𝑆𝑐𝑜𝑟𝑒𝑔𝑒𝑛𝑒𝑋
=  ∑ 𝐽𝐼𝑡𝑒𝑟𝑚𝑖

𝑛
𝑖=1    ,   𝑔𝑒𝑛𝑒𝑥 𝑖𝑠 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡𝑒𝑟𝑚𝑖∈{1,2,3,…𝑛}  

II. Genome-wide profiling datasets. Genome-wide profiling datasets are collected and pre-

processed as mentioned in the data curations and preprocessing section. Evidence factors were 

used to evaluate the degree of sleep genes over-representation in these processed data metrics. 

We first split the samples (genes), using the sleep genes to form a sleep gene distribution, and the 

remaining genes to form the non-sleep gene distribution. Evidence factors are calculated by 

comparing the proportion of genes in these two distributions, within a bin (between D1 and D2). 
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As the distribution of genes is sparse, there are chances to have empty bin(s) if we fix bin size by 

value. To solve this problem, we binned the samples(genes) by setting a minimum percentage of 

genes in each bin. To do this, the data metrics are first split by 100 equal breakpoints. We then 

repeatedly merge the neighboring bins until a bin has at least 10% sleep genes and at least 1% 

non-sleep genes, or at least 10% non-sleep genes and at least 1% sleep genes. For each (merged) 

bin, we calculated evidence factors by dividing the proportion of genes in sleep genes to the 

proportion of genes in non sleep genes. We used maximum evidence factors (maxEF) from a 

dataset as an index to select sleep gene relevant data. If the two distributions are similar, we will 

have maxEF near to 1, indicating no sleep gene over-representation in the data metric. In 

contrast, if the sleep gene distribution is different from the non-sleep gene distribution (e.g. 

skewed right tail in the sleep gene distribution, highly enriched for certain range of values), we 

will have higher maxEF, suggesting sleep gene over-representation in the data metric. For each 

data metric, we set a cutoff of at least 25% labels that must present with a real value to ensure 

sufficient sleep genes used to form the sleep gene distribution; and the range of the data metrics 

must have more than 3 steps to ensure sufficient resolution. Else, we skipped the maxEF 

calculation for this data metric and showed the maxEF value with ‘NA’. Data metrics that show 

positive evidence (maxEF>=3) are selected and used as features to train the prediction models. 

Most machine learning algorithms assume that all features are independent. To remove features 

that are highly correlated, we ran pairwise correlation coefficients of all data pairs. If two data 

metrics have correlation coefficient higher than 0.8, the data metric with lower evidence factors 

is excluded. 
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Building machine learning models to predict sleep genes 

INPUT. Samples and features are curated as mentioned above. We then filtered out samples 

(genes) with >50% missing values. One of the labels (sleep gene), NPSR1, was removed. In 

summary, an input table with 17,841 rows (genes) and 91 columns (gene-associated features), 

with 108 labels (sleep gene) was used to build the prediction models. 

DATA PREPROCESSING. Data preprocessing is done using Python - sklearn.impute and 

sklearn.preprocessing package. Missing values from the input are imputed with mean value and 

rescaled with standard score (z-score). Curated labels (sleep genes) are replaced by ‘1’ and the 

remaining samples(genes) are replaced by ‘0’. 

MODEL ARCHITECTURE. We have curated 108 sleep genes (positive labels), but with no 

information or confidence on genes that do not regulate sleep (no negative labels). This raised 

the problem of learning from Positive and Unlabeled data (PU learning). We applied a biased 

learning method(39,40) to solve this problem. To do this, all non-labeled genes are treated as 

negative labels during the training process, and prediction results are made based on ensembles 

of numerous of these weak-classifiers. In other words, we first subsampled our samples (genes) 

into a smaller subset, with the same proportion of positive and unlabeled samples in the training 

and prediction sets. Samples in the training set are used to train the prediction models, sleep 

genes are marked as positive labels and all other genes are marked as negative labels (all other 

genes in the subset). In this case, the negatively labelled samples are expected to contain a 

mixture of true or false negative labels, hence, resulting in weak-classifiers. We repeated this 

process for 100 times and made the final predictions based on average performance from all 

cycles.  
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We have only a small number of labels (sleep genes, n=108) in comparison to other samples 

(non-labeled genes, n=17,733). Yet, these labels are not found completely at random. In other 

words, most sleep genes are identified based on our existing knowledge of sleep regulations; 

therefore, these genes are not distributed randomly (or equally) in all sleep-relevant pathways. 

As an example, 13 out of 108 sleep genes are parts of the circadian clock pathway. To increase 

the randomness of subsampling labels, as well as maintaining the best performance (sensitivity 

and precision), we trained the ML model with different proportions of training input, ranging 

from 0.2 to 0.8. By doing this, we increase the combinations of samples used in the training and 

prediction sets, and therefore expected to have more robust predictions. 

MODEL EVALUATION. Eight supervised classifier algorithms were built to find the best 

supervised classifier that fits our prediction. The evaluated classifiers included probabilistics 

models (naive Bayes), linear regressions models (logistics and linear SVM), decision trees 

(decision tree, random forest and adaptive boosting) and neural networks (neural networks and 

ensemble neural networks). All machine learning models, except neural network and ensemble 

neural network, were built using scikit-learn (v0.22.2)(36). Default parameters were used, except 

mentioned below. Logistics regression (max_iter=1000), decision tree (max_leaf_nodes=12), 

random forest (max_leaf_nodes=12), adaptive boosting (max_leaf_nodes=4, 

algorithm=”SAMME”, n_estimator=200). Neural networks and ensemble neural networks were 

built using Tensorflow (v2.2.0)(38) and Keras (v.2.4.3)(37). Neural networks were built using 

sequential models with two hidden layers (12 and 6 nodes each, both activated by ‘relu’ 

function). Final outputs were activated by the ‘sigmoid’ function. Ensemble neural network had 

the same setting as the neural network, except we ran the model for 20 times for each 

subsampling input, and made the final predictions by major voting (>50%, or more than 10 
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times). Input to train prediction models are prepared as mentioned above. For naive Bayes 

classifiers, we transformed the input with principal component analysis to ensure the conditional 

independence between features. The ratio of labeled and unlabeled samples is skewed. To 

balance the weights of positive and negative labels to roughly 1:1, we assumed the total number 

of genes is around 20,000. The weight is calculated by using half of the total number of genes 

(10,000) divided by the number of labels. Samples (genes) are randomly split into training and 

testing sets, stratified by the same percentages of labels in the training and testing sets. This 

process is repeated for 100 cycles for each of the 7 training ratios, where training ratios include 

0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8. For each iteration, samples assigned to the training set are used 

to train the models. Samples in the testing set fit into the trained models, and the classes 

predicted by the “predict_classes” function are used to calculate the confusion matrix. Models 

are evaluated with precision, sensitivity and F1-score (harmonic mean of precision and 

sensitivity). Raw prediction scores, or the probability of a gene predicted as sleep gene by the 

ML model, calculated by the “predict_proba” function were recorded for genes assigned to the 

prediction set (not including linear SVM, as the raw prediction scores from linear SVM were 

discordant with the binary predictions). The average prediction score from all iterations was 

calculated and used to plot the sensitivity-precision plots.  

RANDOM LABELS. To avoid a model that makes predictions based on random noise, we 

removed all existing labels and randomly assigned the same number of labels to the remaining 

samples (only samples that were not originally labelled). As features are built based on sleep 

genes labels but not the random labels, the randomly assigned labels are not likely to be recalled 

using these sets of features, unless called by random noise. Therefore, we selected models that 

have low sensitivity with the random labels input. 
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PREDICTION MODEL. The prediction model is built with random forest classifiers using 

scikit-learn (v0.22.2)(36). Default parameters were used, except max_leaf_nodes is set to 12. As 

described in the previous section, the weights of the labels are calculated using 10,000 divided 

by the number of labels. Samples (genes) are randomly split into training and testing sets, 

stratified by the same percentages of labels in both the training and testing sets. This process is 

repeated for 100 cycles for each of the 7 training ratios, where training ratios include 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7 and 0.8. For each iteration, samples assigned to the training set are used to train 

the models. Labels from the prediction set are removed; all samples in the prediction set are fit 

into the trained models for prediction. Raw prediction score is recorded for genes assigned to the 

prediction set. Prediction score less than 0.1 is set to 0 to reduce noise. The average prediction 

score from all iterations was calculated. We observed a linear correlation between training ratios 

with sensitivity, and an inverse correlation with precision (Fig2B). In fact, the smaller the 

training samples are, the fewer genes are predicted as sleep genes, but a larger portion of these 

predicted genes are indeed sleep genes (higher precision). For this reason, we weighted the final 

ranking of candidate sleep genes with the minimum training ratio that leads to a positive 

prediction (min(r)). A gene predicted as sleep genes in models trained by only 20% of the 

samples (genes) will rank higher than a gene only predicted as sleep genes in models trained by 

80% of the samples. The final prediction score is calculated as:   

𝑓𝑖𝑛𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 =  10 ∗ 𝑚𝑖𝑛(𝒓) +  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒.  

Genes with consistently high prediction scores in all training ratios (average prediction 

score >0.413, aka the top 238 genes) are grouped as the class I predicted genes.  
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Exploring sleep traits GWAS data 

Summary statistics from 4 self-reported UK Biobank sleep traits GWAS (n=453,379), including 

chronotype(9), overall sleep durations(12), daytime sleepiness(42) and insomnia(11), were 

downloaded from Sleep Disorder Knowledge Portal (SDKP)(88). FUMA’s SNP2GENE 

process(89) is used to run gene annotations. SNPs are mapped to genes using the posMap, 

eqtlMap and ciMap methods, with default parameters. Mapped GWAS genes overlapped with 

the top predicted sleep genes are marked in Table S2. 

Pathway enrichment analysis 

The 238 class 1 candidate sleep genes are used for pathway enrichment analyses using DAVID 

(41) - Reactome pathway database. Pathways are then clustered using kappa similarity in 

DAVID (kappa similarity threshold>0.5). We filtered out pathways with less than 5 genes or 

Bonferroni adjusted p-value larger than 0.1.  

Mice 

The R26-stopFLIkk2CA transgenic mice (Stock No: 008242) and Camk2aCreER transgenic mice 

(Stock No: 012362) were both obtained from The Jackson Laboratory. The Camk2aCreER and 

R26-stopFLIkk2CA mice were crossed and housed under 12:12-h light: dark (LD) cycle within the 

University of Florida communicore facility and fed and watered ad libitum. Animal care and 

experimental procedures were approved by the Institutional Animal Care and Use Committee at 

University of Florida following the Guide for Care and Use of Laboratory Animals of the 

National Institute of Health (IACUC# 202110057). 
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Tamoxifen Injection 

For tamoxifen inducible Ikk2ca knock-in activation, Camk2aCreER::R26-StopFLIkk2ca transgenic 

mice were generated by crossing Camk2aCreER mice with R26-stopFLIkk2CA mice. Tamoxifen 

(TAM) (#T5648; Sigma-Aldrich, St. Louis, MO) was dissolved in corn oil (#C8267, Sigma-

Aldrich, St. Louis, MO) at a concentration of 20mg/mL. 10-12 weeks-old male mice (n=5 for 

each group) were dosed at 75 mg/kg body weight (TAM or corn oil) intraperitoneally once every 

24 h for a total of five consecutive days. The sleep assay began 4-weeks after tamoxifen 

injections when constitutively active IKK2 expression was induced in this model.  

Western blot 

Brain tissue lysate preparation and immunoblotting analysis were performed using anti-Flag (65, 

Sigma-Aldrich, St. Louis, MO) antibody. Briefly, brain tissue was snapped frozen and lysed in 

the RIPA lysis buffer containing cocktails of proteases inhibitors (Roche) and phosphatase 

inhibitors (Sigma). Western blot was performed to determine Flag-tagged Ikk2CA activation. 

Sleep assay 

The piezoelectric sleep monitoring system (PiezoSleep version 2.11, Signal Solutions, 

Lexington, KY), is a highly sensitive, non-invasive, high throughput and automated piezoelectric 

system, which detects breathing and gross body movements to characterize sleep patterns in 

unsupervised sleep/wake recordings(90,91). 

For each experiment, 5 tamoxifen or 5 corn-oil injected Camk2aCreER::R26-stopFLIkk2CA mice 

were individually housed in PiezoSleep cages with a sensor inside a temperature, humidity, and 

light controlled box. The first 3-5 days of recording was considered as the acclimation period to 

the piezo device. The 12h light/12h dark (LD) cycle (light on at 07:00 to 19:00; 250 lux) was 
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performed for the 15-days LD followed by the next 15-days of 12h dark/12h dark (DD) with ad 

libitum access to food, water and nesting material. Sleep data were analyzed for multiple sleep 

traits of individual mice using sleepstats2p18 (Signal Solutions, Lexington, KY). 
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https://www.proteinatlas.org/about/download, Allen Brain Map https://human.brain-map.org/; 

protein abundances measurements is available at http://www.humanproteomemap.org/index.php; 

circadian expression is available at http://circadb.hogeneschlab.org/; transcriptomics profile is 

available at GEO https://www.ncbi.nlm.nih.gov/geo/, EBI ArrayExpress 
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http://qphos.cancerbio.info/; statistical summary from sleep traits GWAS is available at 

https://sleep.hugeamp.org/; GWAS gene annotation is run using webtools FUMA 

https://fuma.ctglab.nl/; pathway enrichment analysis is run using https://david.ncifcrf.gov/. Code 

to prepare input features and run the machine learning predictions can be found at 

https://github.com/yyenglee/ml-sleep.  
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Fig 1 Defining sleep gene associated features. Two lines of information are used to define the 

sleep gene-associated molecular features. A. Gene and protein knowledge from annotated gene 

set collections. An example is shown here on how Jaccard index (JI) is used to score genes in a 

given gene sets collection. First, we calculate JI for all terms in the collection. Next, for each 

gene, we iterate through all terms. We added a term’s JI to the gene if this gene is an element of 

the term. The sum of JI represents the similarity index of a gene to sleep genes given this 

molecular context. B. Genome-wide datasets. Evidence factors are used to screen for datasets 

that show over-representation of sleep genes. Two time-series transcriptomics datasets are shown 

as negative and positive control for this screening method. We used -log2(p-value) as a 
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significance score for rhythmic expression. Significance scores are split to form the sleep genes 

and non-sleep genes distribution. Evidence factors are calculated by comparing the proportion of 

genes in these two distributions within a bin. C. Genome-wide datasets enriched for sleep genes. 

Top 8 datasets with maxEF larger than 3 in each group are shown in the figure. Groupings 

include circadian rhythm, disease, infection, genotype, drug/compound, physiology, and 

stress/stimulus and anatomical specific transcripts/protein expressions. Y-axis of the bar plots 

show the maximum evidence factors for each dataset. Human and mouse samples are colored in 

red and blue, respectively.  
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Fig 2 Building machine learning (ML) models to discover novel sleep genes. A.  Workflows 

and model architecture for the ML models. We first tested the performance of 8 supervised 

classifier algorithms. Next, we selected algorithms with the best performance to build the sleep 

gene prediction models. Sleep gene prediction models are trained as shown in the model 

architecture. B. Precision, sensitivity and F1-score are used for model evaluations. The two 
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columns indicate model performances using sleep gene labels and random-shuffled labels trained 

input. Each data point indicates performance from one iteration. Performances of different 

training ratios are shown in individual columns with different shapes, from left to right, ranging 

from 0.2 to 0.8. The average score for each classifier is shown as a circle at the center of each 

group. C. Prediction and ranking of sleep genes by random forest. Average prediction score of 

0.1 is used as a cutoff for positive prediction. We classified all positive predicted sleep genes into 

8 classes. Class 1 are the top 238 genes with average prediction scores larger than 0.413. 

Remaining predicted sleep genes are classified into class 2 to 8, based on the minimum training 

ratio that leads to positive predictions for the gene. For example, TIMELESS is classified into 

class 3 sleep genes as it is predicted when at least 30% genes are used as training sets. When 

smaller portions of genes are used in the training sets, less genes are predicted but with higher 

precision, and therefore with higher confidence. Points in grey show the prediction score from all 

training ratios. Average prediction scores for sleep genes validated in humans (Tier I), non-

human mammals (Tier II) and drosophila (Tier III) are colored in brown, yellow and light blue, 

respectively. Remaining genes are colored in dark blue. Tier I sleep genes are labelled in the 

figure. Abbreviations. Bayes-naive Bayes, LR-logistic regression, SVM-linear support vector 

machines, DT-decision tree, RF-random forest, AB-adaptive boosting, NN-neural network, eNN-

ensemble neural network. 
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Fig 3 Enriched (Reactome) pathway from predicted sleep genes. Top enriched pathways with 

at least 2 genes overlap with sleep traits GWAS are shown in the figure. The full list of annotated 

pathways can be found in the S4 Fig. P-value for each annotated pathway is shown in the 

pathway labels. Pathways enriched by similar sets of genes are clustered into groups using 

Kappa similarity. For each cluster, pathway with the highest number of genes overlapped to 

GWAS (and lowest p-value if tied) is shown in the figure and marked with (*). Predicted genes 

overlapped to sleep traits GWAS are colored in beige and others are colored in blue. Sleep genes 

used to train the ML model are labeled in black and the predicted sleep genes are labeled in blue. 

Within each pathway, genes are ordered by their predicted rankings, from left to right. The five 

genes written in bold italic are the sleep genes that have been reported to regulate sleep in human 

studies.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.04.10.439249doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.10.439249
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 

 

Fig 4 Sleep phenotyping in Ikk2CA mice and control using piezoelectric sleep monitoring 

system. A. Camk2aCreER::R26-stopFLIkk2CA mice are used to test the effect of NF-κB activation 

on sleep. The stopFL cassette in R26-stopFLIkk2CA mice prevents expression of the constitutively 

active Ikbkb (Ikk2CA) and the tamoxifen-inducible neural specific Camk2aCreER recombinase 

induces neuronal specific deletion of the stopFL and thus expression of Ikk2CA. B. Five doses of 
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Tamoxifen and corn-oil are injected to Ikk2CA and control mice, respectively, 4 weeks prior to 

the sleep phenotyping. Mice shifted to Piezoelectric sleep monitoring systems took 5 days for 

adaptation purposes. Sleep phenotyping is run for 15 days under LD (light on at 07:00-19:00, 

250 lux), followed by another 15 days under DD. Five animals are used for each control and 

Ikk2CA groups. C. Western blot data showed expression of flag-tagged Ikk2CA in the Ikk2CA mice 

but not control. Two out of five samples for each group are shown in this figure. D-F. The 

Ikk2CA mice had a reduced (D) total sleep duration and (E) light phase sleep duration but no 

significant difference was observed in the (F) dark phase. G. Sleep reduction in the Ikk2CA mice 

was observed during the light phase, from ZT0 to ZT10, in comparison to the control littermates. 

H. Ikk2CA mice displayed more short bouts (0.5 to 16 min) (64.8 ± 0.57% in Ikk2CA vs. 

50.3±0.47% control) and less long bouts of sleep (≥ 32 min) (9.4 ± 3.4% in Ikk2CA vs. 25.5 ± 

2.1% in control) in comparison to controls. T-test is used for all statistical comparison. P-value < 

0.05 is marked with (*). Abbreviation. ns - non statistical significance. 
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S1 Fig. Summary of the genome-wide profiling datasets tested with evidence factors. Table 

above showed the number of data metrics tested for over-representation of sleep genes using 

evidence factors. The histogram showed the distribution of maximum evidence factors of all 

tested data metrics. A cutoff of 3 (represent positive evidence) is used to select features to train 

the sleep genes prediction model. 
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S2 Fig. Evidence factors for the 72 selected genome-wide data metrics. Evidence factors are 

used to screen for genome-wide datasets enriched for sleep genes. In this figure, a data metric is 

represented by two density plots (top) and a line plot (bottom). The orange and blue distributions 

are generated using sleep genes and non sleep genes, respectively. The X-axis of the plot 

represents the range of value for this data metric, Y-axis of the line plot shows the evidence 

factors.   
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S3 Fig. Receiver operating characteristic curve for tested classifier. Receiver operating 

characteristic (ROC) curves for each tested classifier (except linear SVM, as the probabilities 

scores are reported to be different from the classification predictions) are shown in the figure. 

Areas under curve (AUC) for each classifier are listed in the legends. Abbreviations. Bayes-naive 

Bayes, LR-logistic regression, SVM-linear support vector machines, DT-decision tree, RF-

random forest, AB-adaptive boosting, NN-neural network, eNN-ensemble neural network. 
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S4 Fig. All enriched (Reactome) pathways from the top 238 predicted sleep genes. A. 

Pathways with at least two genes overlap with sleep traits GWAS mapped genes. B. Pathways 

with one or no genes overlap with sleep traits GWAS mapped genes. Pathways annotated by 

similar sets of genes are clustered with Kappa similarity threshold >0.5. Pathways in the same 

cluster are ordered by p-value, from top to bottom. Genes overlapped to sleep trait GWAS are 

colored in beige, others are colored in blue. Gene names labeled in black are sleep genes used as 

labels to train the ML model; gene names labeled in blue are the novel candidate sleep genes. 

Within each pathway, genes are ordered by their prediction rankings, from left to right. 
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Table 1. 109 sleep genes curated through literature mining.  

Tier I Tier II Tier III 

Human 

& >=1 

animal 

model 

(bona fide) 

Non-human mammals Fly 

(with human homologs) 

ADRB1 

CRY1 

CRY2 

CSNK1D 

BHLHE41 

FABP7 

GRIA3 

NPSR1 

PER2 

PER3 

PRNP 

TIMELESS 

Adcy3 

Adk 

Adora2a 

App 

Arntl 

Atp2b3 

Bdnf 

Bloc1s6 

Btbd9 

Cacna1a 

Cacna1b 

Cacna1g 

Camk2a 

Camk2b 

Chrm1 

Chrm3 

Clock 

Cntnap2 

Creb1 

Crh 

Csnk1e 

Dbh 

Dbp 

Disc1 

Egr3 

Eif4ebp1 

Faah 

Fah 

Fmr1 

Fos 

FosB 

Fus 

Gria1 

Grm2 

Grm3 

Hcrt 

Hcrtr2 

Hdc 

Homer1a 

Htr1a 

Htr1b 

Htr2a 

Htr2c 

Htr7 

Ifnar1 

Il1r1 

Il6 

Kcna2 

Kcnc1 

Kcnk9 

Kcnn3 

Lep 

Mchr1 

Mef2d 

Nalcn 

Nfkb1 

Nlgn2 

Nlgn3 

Nlrp3 

Nos1 

Npas2 

Ntsr1 

Opn4 

Panx1 

Per1 

Prkg1 

Prl 

Prok2 

Ptprd 

Rab3a 

Rims1 

Scn1a 

Scn8a 

Shank3 

Sik3 

Sirt1 

Slc29a1 

Slc6a3 

Slc6a4 

Tnf 

Tnfrsf1a 

Ube3a 

Vamp2 

CanA14F (PPP3CA) 

CanB (PPP3R1) 

Dmel\Cul3 (CUL3) 

Dmel\Elp3 (Elp3) 

fmn (SLC6A2) 

HTT (HTT) 

inc (KCTD5) 

Sh (KCNA3) 

Nedd8(NEDD8) 

NMDAR1 (GRIN1) 

PRKAB2 (PRKAB2) 

SHMT (SHMT1) 

sra (RCAN2) 

VMAT (Slc18A2) 
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Supporting Information 

S1 Data. Known sleep gene curated through literature mining. 

S1 Table. Curated datasets used to build ML models. 

S2 Table. Ranking of sleep genes by random forest, with GWAS annotated genes 

annotation. 
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