

1 **Network analysis of ten thousand genomes shed light on**
2 ***Pseudomonas* diversity and classification**

3 Hemanoel Passarelli-Araujo^{1,2,*}, Glória Regina Franco¹, Thiago M. Venancio^{2,*}

4 ¹Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade
5 Federal de Minas Gerais, Belo Horizonte, MG, Brazil.

6 ²Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e
7 Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos
8 Goytacazes, RJ, Brazil.

9
10 *Corresponding authors

11 Av. Alberto Lamego 2000, P5 sala 217; Parque Califórnia
12 Campos dos Goytacazes, RJ, Brazil
13 CEP: 28013-602

14
15 **Running title:** Diversity estimation of *Pseudomonas*.

16
17 **Email:** HPA: hemanuel.passarelli@gmail.com; TMV: thiago.venancio@gmail.com

18
19 **Author Contributions:** Conceptualization: Hemanoel Passarelli-Araujo and Thiago M. Venancio;
20 Formal analysis: Hemanoel Passarelli-Araujo; Data Visualization: Hemanoel Passarelli-Araujo;
21 Resources: Thiago M. Venancio and Glória R. Franco; Writing: Hemanoel Passarelli-Araujo,
22 Thiago M. Venancio, and Glória R. Franco; Supervision: Thiago M. Venancio and Glória R.
23 Franco.
24

25 **ABSTRACT**

26 The growth of sequenced bacterial genomes has revolutionized the assessment of
27 microbial diversity. *Pseudomonas* is a widely diverse genus, containing more than 254
28 species. Although type strains have been employed to estimate *Pseudomonas* diversity,
29 they represent a small fraction of the genomic diversity at a genus level. We used 10,035
30 available *Pseudomonas* genomes, including 210 type strains, to build a genomic
31 distance network to estimate the number of species through community identification.
32 We identified taxonomic inconsistencies with several type strains and found that 25.65%
33 of the *Pseudomonas* genomes deposited on Genbank are misclassified. The
34 phylogenetic tree using single-copy genes from representative genomes in each species
35 cluster in the distance network revealed at least 14 *Pseudomonas* groups, including *P.*
36 *alcaligenes* group proposed here. We show that *Pseudomonas* is likely an admixture of
37 different genera and should be further divided. This study provides an overview of
38 *Pseudomonas* diversity from a network and phylogenomic perspective that may help
39 reduce the propagation of mislabeled *Pseudomonas* genomes.

40 **Keywords:** *Phylogenomics, Pseudomonads, Taxonomy, Community detection.*

41 **INTRODUCTION**

42 Biological networks have been an essential analytical tool to better understand microbial
43 diversity and ecology^{1, 2}. A network is a set of connected objects, in which objects can
44 be represented as nodes and connections as edges. Networks provide a simple and
45 powerful abstraction to evaluate the importance of individual or clustered nodes in
46 maintaining a given system. Coupled with whole-genome sequencing, it can refine our
47 knowledge about genetic relationships of diverse bacteria such as *Pseudomonas*.

48 *Pseudomonas* is a genus within the *Gammaproteobacteria* class, whose
49 members colonize aquatic and terrestrial habitats. These bacteria are involved in plant
50 and human diseases, as well as in biotechnological applications such as plant growth-
51 promotion and bioremediation³. The genus *Pseudomonas* was described at the end of
52 the nineteenth century based on morphology, and its remarkable nutritional versatility
53 was recognized thereafter⁴. The metabolic diversity of pseudomonads, combined with
54 biochemical tests to describe species, culminated in a chaotic taxonomic situation⁴.

55 In 1984, the genus was revised and subdivided into five groups based on DNA-
56 DNA and rRNA-DNA hybridization⁵, with group I retaining the name *Pseudomonas*. Over
57 the past 30 years, other molecular markers such as housekeeping genes have been
58 used to mitigate the issues of *Pseudomonas* taxonomy^{6, 7, 8}. Based on the 16S rRNA
59 gene sequences, the genus is divided into three main lineages represented by
60 *Pseudomonas pertucinogena*, *Pseudomonas aeruginosa*, and *Pseudomonas*
61 *fluorescens*⁹. These lineages comprise groups of different species – both lineages and
62 groups receive the name of the representative species. Currently, there are 254
63 *Pseudomonas* species with validated names according to the List of Prokaryotic Names
64 with Standing in the Nomenclature (LPSN)¹⁰. However, although the genus division into
65 lineages and groups has facilitated the classification of new species, the remnants of the
66 *Pseudomonas* misclassification still linger in public databases^{11, 12}.

67 The explosion in the availability of complete genomes for both cultured and
68 uncultured microorganisms has improved the classification of several bacteria, including
69 *Pseudomonas*^{8, 13}. One of the gold standards for species circumscription is the digital
70 whole-genome comparison by Average Nucleotide Identity (ANI)¹⁴. Since using only
71 genomes from type strains might bias and provide an unrealistic picture of microbial
72 diversity, we aimed to estimate the *Pseudomonas* diversity using all available genomes
73 through a network approach. Here, we provide new perspectives on *Pseudomonas*
74 diversity by exploring the topology of the genomic distance network and the phylogenetic
75 tree from representative genomes. This work also provides novel insights into the
76 misclassification and phylogenetic borders of *Pseudomonas*.

77 **RESULTS**

78 **Dataset collection**

79 We obtained 11,025 genomes from GenBank in June 2020. After evaluating the quality
80 of each genome (see methods for more details) and removing fragmented genomes,
81 10,035 genomes passed in the 80% quality threshold (Figure S1). The size of the
82 retrieved genomes ranged from 3.0 to 9.4 Mb. We used 238 type strains with available
83 genomes and names validly published according to the *List of Prokaryotic Names with*
84 *Standing in Nomenclature* in March 2021. The genome size and GC content of type
85 strains ranged from 3,022,325 bp and 48.26% (*P. caeni*) to 7,375,852 bp and 62.79%
86 (*P. saponiphila*) (Table S1). According to the NCBI classification, the top four abundant
87 species in our dataset are *P. aeruginosa* (n = 5,088), *P. viridiflava* (n = 1,509),
88 *Pseudomonas* sp. (n = 1,083), and *P. syringae* (n = 435) (Table S2).

89

90 **Genome-based analysis reveals the presence of synonymous *Pseudomonas*
91 species**

92 The misclassification of some *Pseudomonas* type strains has been reported by several
93 studies^{8, 15, 16, 17}. Type strains play an essential role in taxonomy by anchoring species
94 names as unambiguous points of reference¹⁸. In this context, the term “synonym” refers
95 to the situation where the same taxon receives different scientific names. We used 238
96 type strain genomes to evaluate the presence of synonymous species in *Pseudomonas*.
97 The ANI was computed for all type strains to construct an identity network further used
98 to check the linkage between genomes based on a 95% ANI threshold (Figure 1). Since
99 95% has been accepted as species delimitation threshold¹⁴, connections between type
100 strains indicate synonymous names or subspecies.

101 We identified 30 connected genomes in the ANI network (Figure 1). Four of these
102 connected genomes are expected because they represent *P. chlororaphis* and its
103 subspecies. Of the 26 remaining connected species, 15 have been previously reported,
104 such as that in the group containing *P. amygdali*, *P. ficuserectae*, and *P. savastanoi*^{15, 16}.
105 Here, we observed 11 connections, including the one between *P. panacis* and *P.*
106 *marginalis* with 97.34% identity, suggesting that *P. panacis* is a later synonym of *P.*
107 *marginalis*.

108

109 **The *Pseudomonas* genomic distance network is highly structured**

110 In networks, the community structure plays an important role in understanding network
111 topology. We used all 10,035 *Pseudomonas* genomes to construct a distance network
112 to estimate the number of *Pseudomonas* species from the number of communities

113 detected in this network. Since alignment-based methods to estimate genome similarity
114 (e.g. ANI) is computationally expensive due to the algorithm quadratic time complexity¹⁹,
115 it becomes impractical for thousand genomes. Therefore, we estimated the Mash
116 distance that strongly correlates with ANI and can be rapidly computed for large
117 datasets²⁰.

118 Mash distances are computed by reducing large sequences to small and
119 representative sketches²⁰. We estimated the pairwise Mash distance for all genomes
120 using sketch sizes of 1000 and 5000, which converged to similar distance values (Figure
121 S2a). However, we observed that the greater the distance between two *Pseudomonas*
122 genomes, the more divergent the distance estimation (Figure S2b), although the density
123 distribution is similar (Figure S2c). The final distance between two genomes was given
124 as the average distance value from both sketch sizes. We used the reciprocal Mash
125 distance (1 - Mash) to estimate the ANI for all 10,035 genomes.

126 We generated a weighted *Pseudomonas* distance network considering nodes as
127 genomes and edges as the identity between two genomes. Although the 95% ANI value
128 has been widely accepted to delineate species, we evaluated how different thresholds
129 affect network topology by assessing density, transitivity, and the number of connected
130 components (Figure 2). The network density, i.e., the ratio of the number of edges and
131 the number of possible edges, decreased throughout the interval but stabilized between
132 90% and 97% ANI, keeping the network topology almost unchanged (Figure 2a). To
133 estimate how structured the network was with different ANI thresholds, we also
134 computed the average network transitivity (also called average clustering coefficient)
135 (Figure 2b). The average transitivity is the normalized sum over all local transitivities (the
136 probability of a given node having adjacent nodes interconnected). The high transitivity
137 values revealed that the *Pseudomonas* network is highly structured (i.e., formed by
138 tightly connected clusters) (Figure 2b). This structured profile was observed before for
139 the *P. putida* group network¹⁷, indicating that communities in *Pseudomonas* distance
140 networks rarely overlap.

141 To decrease the influence of overrepresented species (e.g., *P. aeruginosa*) on
142 the topological network statistics, we also computed the variation in the number of
143 components (Figure 2c). A connected component in a network is a subset of nodes
144 connected via a path. At 70% identity, we had a single giant connected component.
145 Expectedly, the number of connected components increased with the identity threshold
146 because of the emergence of smaller components or even orphan nodes. Interestingly,
147 connected components with more than ten nodes arose only above 81% identity
148 threshold and stabilized close to 95%, highlighting that the 95% ANI threshold is accurate
149 for species demarcation.

150 We used the *Pseudomonas* network discarding connections lower than 95%
151 identity to estimate the number of species from the number of communities in the
152 network. We detected 573 communities by using the label propagation algorithm²¹. This
153 number is similar to the number of connected components at 95% identity threshold (n
154 = 570), further supporting that the *Pseudomonas* distance network is highly structured,
155 containing non-overlapping communities. By considering each community as a different
156 *Pseudomonas* species, we evaluated the distribution of type strains in these
157 communities.

158 Seventeen communities had more than one type strain in the same cluster,
159 indicating the existence of later heterotypic synonyms, as shown in Figure 1. For each
160 community, we assigned only one representative genome (see methods for more detail).
161 For example, in the community containing *P. amygdali*, *P. ficuserectae*, and *P.*
162 *savastanoi*, we maintained *P. amygdali* as the representative strain and the others were
163 considered later heterotypic synonyms, as previously proposed¹¹. We observed that only
164 210 communities (36.64%) had representative genomes from validly described species,
165 reinforcing the underestimation of the number of *Pseudomonas* species if only the type
166 strains are considered.

167 Regarding the community's sizes, *P. aeruginosa* corresponds to the largest
168 community, comprising 5116 genomes (Figure 3, Table S3). Most communities had few
169 genomes. Although large communities tend to have type strains, 61 type strains
170 (29.04%) are single nodes (Figure 3, Table S3), further demonstrating that estimating
171 the diversity of *Pseudomonas* only by type strains severely underestimates diversity. For
172 example, the community containing *Pseudomonas* spp7 has 122 genomes and is
173 potentially a new genomospecies.

174

175 **Comparison with NCBI classification highlights *Pseudomonas* misclassification**

176 After delimiting the species by the community detection approach, we compared them
177 with the classification available in NCBI Taxonomy²². Briefly, we computed how many
178 genomes were deposited with a given species name and how many genomes were
179 identified for that species by our network approach. Of the 10,035 genomes used in this
180 work, 25.65% were misclassified in NCBI Taxonomy (Table S5). This proportion includes
181 species considered as later synonyms that should be reclassified (e.g. *P. savastanoi*),
182 non-classified genomes (*Pseudomonas* sp.), and those genomes that are unconnected
183 to the expected species cluster. The most poorly classified species were *P.*
184 *brassicacearum* (95.65%), *P. fluorescens* (95.23%), *P. stutzeri* (94.58%), and *P. putida*
185 (88.70%). This high rate of misclassification is linked to the type strain determined for
186 each species. For example, the critical classification problem of *P. putida* has been

187 recently reported by us¹⁷. The *P. putida* NBRC 14164^T type strain forms an isolated
188 community in the network with only 15 genomes. On the other hand, the community of
189 *P. alloputida* Kh7^T harbors 69 genomes, constituting the largest community in the *P.*
190 *putida* group. Thus, most of the genomes deposited as *P. putida* are actually from *P.*
191 *alloputida*. Regarding the misclassification of *P. stutzeri*, 122 genomes fall into the
192 community represented by *Pseudomonas spp7*, a potentially new genomospecies
193 mentioned above.

194 We also assessed the impact of our approach defining the species-level
195 taxonomy of the 1,083 non-classified *Pseudomonas* genomes available in Genbank
196 (*Pseudomonas* sp.). Interestingly, 511 *Pseudomonas* sp. genomes (47.18%) were
197 distributed among 97 communities containing type strains (Table S6). The species that
198 received the most genomes were *P. glycinae* (n = 35), *P. lactis* (n = 34), and *P. mandelii*
199 (n = 31).

200

201 **The *Pseudomonas* phylogeny reveals at least fourteen groups**

202 To reduce the influence of overrepresented species, we used the 573 representative
203 genomes from each community to retrieve orthologous genes and reconstruct the
204 *Pseudomonas* phylogeny. The *Cellvibrio japonicus* Ueda 107^T was used as an outgroup.
205 We identified 31,094 orthogroups, of which 168 were present in all species, including 30
206 single-copy genes. We used the single-copy genes to reconstruct the *Pseudomonas*
207 phylogeny and identify the main *Pseudomonas* groups (Figure 4).

208 The main *Pseudomonas* groups have been previously characterized using
209 housekeeping genes such as 16S rDNA, *gyrB*, *rpoB*, and *rpoD* from type strains^{8, 15}. To
210 delineate each group, we retrieved those representative genomes (species) within
211 previously-described groups (Table S7). We then tracked the Most Recent Common
212 Ancestor (MRCA) for those species in the *Pseudomonas* phylogenetic tree to include
213 uncharacterized representative genomes as well. For example, the *P. lutea* group
214 comprises three known species: *P. abietaniphila*, *P. graminis*, and *P. lutea*⁸. By tracking
215 the corresponding MRCA node, we ensured the monophyly and included *P. bohemica*
216 and 12 uncharacterized species in this group (Table S3). This approach allowed a more
217 accurate characterization of both recently described type strains and other
218 uncharacterized species (Figure 4, Table S3). We identified the 13 main *Pseudomonas*
219 groups and one new group with 10 genomes and three type strains: *P. alcaligenes*, *P.*
220 *fluvialis*, and *P. pohangensis* (Figure 4, Table S8). Since *P. alcaligenes* is the firstly-
221 described type strain in this group²³, we named this group as *P. alcaligenes* group.

222

223 **Lineage and genus boundaries**

224 The genus *Pseudomonas* has three recognized lineages: *P. pertucinogena*, *P.*
225 *aeruginosa*, and *P. fluorescens*. The *P. pertucinogena* lineage is composed of a single
226 phylogenetic group. The *P. aeruginosa* lineage comprises 6 phylogenetic groups (*P.*
227 *oryzihabitans*, *P. stutzeri*, *P. oleovorans*, *P. resinovorans*, *P. aeruginosa*, and *P.*
228 *lizingensis*). The *P. fluorescens* lineage also comprises 6 phylogenetic groups (*P.*
229 *fluorescens*, *P. lutea*, *P. syringae*, *P. putida*, *P. anguilliseptica*, and *P. straminea*); the *P.*
230 *fluorescens* group is further divided into 8 or 9 phylogenetic subgroups¹⁵. In this work,
231 70.38% of the communities (species) belong to the *P. fluorescens* lineage, 16.72% to *P.*
232 *aeruginosa*, and 4.52% to *P. pertucinogena*; 8.36% were unclassified communities. We
233 observed that, unlike the *P. pertucinogena* and *P. fluorescens* lineages, the *P.*
234 *aeruginosa* lineage is polyphyletic (Figure 5a).

235 We used the Genome Taxonomy Database (GTDB) approach¹³ to evaluate
236 whether *Pseudomonas* should be divided into different genera. The GTDB proposes a
237 framework to classify genomes in higher taxonomic ranks (e.g. genus). By using the
238 GTDB classification, *Pseudomonas* should be divided into 17 genera named generically
239 with “*Pseudomonas*” followed by a letter (e.g. “*Pseudomonas_A*”), with the *P. aeruginosa*
240 group retaining the name *Pseudomonas*. We found a high correspondence between
241 *Pseudomonas* groups and the proposed genera, with few inconsistencies (Figure 5a,
242 Table S8). According to the GTDB classification, the *P. fluorescens* lineage, together
243 with the *P. oleovorans* group and the here described *P. alcaligenes* group, would form a
244 single genus called *Pseudomonas_E* (Figure 5a), which corresponds to 77.52% of the
245 species (communities) estimated in our study.

246 We also used the Percentage of Conserved Proteins (POCP) index to evaluate
247 the relationships between lineages (Figure 5b) and complement the GTDB approach.
248 Briefly, the POCP index measures the proportion of shared proteins between two
249 genomes²⁴. The original proposal is that genomes belong to the same genus if they share
250 at least half of their proteins²⁴. By using 50% as a threshold, we observed that only the
251 outgroup *C. japonicus* and other four genomes do not belong to the main POCP network
252 component with all lineages. However, we observed two main clusters by using a 60%
253 threshold to link communities (Figure 5b).

254 Apart from *P. anguilliseptica* and *P. straminea* groups, the *P. fluorescens* lineage
255 forms an isolated component in the network (Figure 5b). The *P. pertucinogena* and *P.*
256 *aeruginosa* lineages are in the same component, but linked by a few connections,
257 including a bridge via a *P. caeni* genome. The outgroup *C. japonicus* is an orphan in the
258 network, as well as *P. kirkiae*. The species *P. boreopolis*, *P. cissicula*, and *P. geniculata*
259 were also isolated. These three species have already been recognized as belonging to

260 the genus *Xanthomonas*²⁵. Nevertheless, they remain classified as *Pseudomonas* in
261 Genbank and are still labeled as validly published with a correct name in LPSN.
262

263 DISCUSSION

264 The *Pseudomonas* genus underwent several taxonomic reclassifications over the years.
265 Here, we used 10,035 *Pseudomonas* genomes to estimate the genus diversity through
266 network analysis and community detection. We observed that several type strains are
267 later synonyms and should be officially revised, as also noted elsewhere^{8, 15}.

268 Regarding the *Pseudomonas* network, we observed that the number of detected
269 communities is very close to the number of network components at a 95% identity
270 threshold. Combined with the stabilization of density and high transitivity around this
271 threshold, we conclude that the *Pseudomonas* network is highly structured. This
272 structured network profile has also been noted previously reported for the *P. putida*
273 group¹⁷.

274 Considering each community as a different genomospecies, we identified 573
275 communities, way more than the 233 *Pseudomonas* species with validly published
276 names. Moreover, we found 61 orphan type strains in the network, indicating that the
277 diversity estimated using only type strains is highly underestimated. In addition, this work
278 shows that 25.65% of the *Pseudomonas* genomes are misclassified. This is a matter of
279 concern, as misclassified genomes in public repositories can introduce noise to
280 pangenome studies, reduce strain typing accuracy, and propagate labeling errors to
281 several studies, including those reporting the characterization of new species.

282 Here, we also showed potential new genomospecies. For example, the
283 community assigned as *Pseudomonas* spp7 contains 122 genomes, and it is a sister
284 group of *P. stutzeri*. The high misclassification rate of *P. stutzeri* (Table S5) can be
285 explained by the presence of this new closely related species. Such inconsistencies
286 could be mitigated through a standardized taxonomic framework, as previously
287 proposed¹⁸. However, there is still resistance to define species based solely on genome
288 sequences, even with the massive number of available genomes¹⁸. Therefore, isolating
289 and characterizing members from *Pseudomonas* spp7 community will allow the
290 consolidation of this new species.

291 Although previous works provided insights about what would be considered
292 *Pseudomonas*^{8, 15, 26}, how to delimit the *Pseudomonas* genus remains an open question.
293 We tried to address this problem by using GTDB classification and POCP index network,
294 two approaches proposed to delimit genera. The GTDB results indicate that the *P.*

295 *fluorescens* lineage and the *P. oleovorans* and *P. alcaligenes* groups would constitute a
296 genus with the generic name *Pseudomonas_E* (Figure 4). However, the POCP index
297 network at 60% shows that *P. straminea* and *P. anguilliseptica* groups are closer to *P.*
298 *aeruginosa* than to *P. fluorescens* lineage (Figure 4b). Aiming for a parsimonious
299 separation, we propose that the *P. fluorescens* lineage, excluding the *P. straminea* and
300 *P. anguilliseptica* groups, should be considered a new genus. Furthermore, by the GTDB
301 results, the *Pseudomonas* groups from *P. aeruginosa* lineage should also be revised to
302 assess whether they are new genera, as the *P. aeruginosa* lineage itself is polyphyletic.
303 Prioritizing the GTDB approach here should provide the best approach because it
304 normalizes taxonomic ranks and ensures group monophyly¹³.

305

306 CONCLUSION

307 In this study, we estimated the *Pseudomonas* diversity using a network approach. We
308 show that type strains represent less than half of the estimated number of species, and
309 that many of them are orphans in the network. We discovered new genomospecies and
310 groups, such as *Pseudomonas spp7* and *P. alcaligenes*, respectively. Although genus
311 delineation is somewhat complex, we propose the *Pseudomonas* genus division by
312 combining GTDB classification and POCP index. To fully understand the *Pseudomonas*
313 diversity, it will be important to focus on each group and characterize species from
314 communities without type strains. This study provides a state-of-the-art classification to
315 delimit bacterial species, which we expect to serve as a guide for future studies with
316 *Pseudomonas spp*, reducing the problems caused by misclassified genomes.

317

318 METHODS

319 Dataset collection and annotation

320 We recovered 11,025 genomes of *Pseudomonas* from Genbank in June 2020. Genome
321 quality was evaluated with BUSCO v4.0.6²⁷ using the *Pseudomonadales* dataset. We
322 defined completeness as 100% minus the percentage of missing genes, and
323 contamination as the fraction of duplicated genes. Quality was defined as completeness
324 – 5 x contamination¹³. Genomes with more than 400 contigs were removed, and contigs
325 shorter than 500bp were removed from the remaining genomes. We used mash v2.2.2²⁰
326 to calculate the pairwise distances between those genomes with quality higher than 80%
327 using sketches of 1000 and 5000. Regarding the type strains, we used all species with
328 available genomes and validated taxonomic names according to the LPSN¹⁰ on March

329 2021. The pairwise distances between type strains were performed using pyani
330 v0.2.10²⁸. We reannotated the genomes with prokka v1.14²⁹ to allow a systematic large-
331 scale genome comparison.

332

333 **Network analysis**

334 By using the pairwise Mash distances, we generated the corresponding graph and
335 obtained the topological graph properties such as density, transitivity, and number of
336 components with the igraph package³⁰. We used the label propagation algorithm to
337 detect communities²¹. The representative genome for each community was defined
338 based on three conditions: i) if the community has only one type strain, the type strain
339 was considered the representative genome; ii) if the community has more than one type
340 strains, the first described type strain was chosen; iii) else, we randomly chose a genome
341 in a community (seed = 1996) and assigned the community name with the notation
342 *Pseudomonas sppX*, where *X* is the community number.

343

344 **Phylogeny and POCP index**

345 We used OrthoFinder v2.5.2³¹ to obtain the orthogroups from community type genomes.
346 All single-copy genes were aligned with MAFFT v7.467³² and concatenated to
347 reconstruct the *Pseudomonas* phylogeny with IQ-TREE v2.1.2³³. The best-fit model
348 detected through ModelFinder³⁴ was LG+F+I+G4. One thousand bootstrap replicates
349 were generated to assess the significance of internal nodes. Phylogenetic trees were
350 visualized and annotated using ggtree³⁵. We tracked MRCA nodes for *Pseudomonas*
351 groups definitions using treeio³⁵.

352 The Percentage of Conserved Proteins (POCP) between two genomes were
353 calculated using the formula $\frac{C_1 + C_2}{T_1 + T_2}$, where C is the number of conserved proteins and T
354 is the total number of proteins²⁴. The number of conserved proteins was obtained from
355 the orthologs matrix A_{ij} generated by OrthoFinder, where each entry (i, j) is the total
356 number of genes in species i that have orthologues in species j . The graphs were
357 generated and visualized using igraph³⁰ and ggnetwork v0.5.8³⁶, respectively. The GTDB
358 classification was obtained in April 2021 (<http://gtdb.ecogenomic.org/>).

359

360 **DECLARATION OF COMPETING INTEREST**

361 The authors declare no conflict of interest.

362

363 **ACKNOWLEDGEMENTS**

364 This work was supported by Fundação Carlos Chagas Filho de Amparo à Pesquisa do
365 Estado do Rio de Janeiro (FAPERJ; grants E-26/203.309/2016 and E-26/203.014/2018),
366 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES;
367 Finance Code 001), and Conselho Nacional de Desenvolvimento Científico e
368 Tecnológico. The funding agencies had no role in the design of the study and collection,
369 analysis, and interpretation of data and in writing.

370

371 **REFERENCES**

- 372 1. Coutinho, F.H. *et al.* Niche distribution and influence of environmental
373 parameters in marine microbial communities: a systematic review. *PeerJ* **3**,
374 e1008 (2015).
- 375 2. Layeghifard, M. *et al.* Microbiome networks and change-point analysis reveal key
376 community changes associated with cystic fibrosis pulmonary exacerbations. *NPJ
377 Biofilms Microbiomes* **5**, 4 (2019).
- 378 3. Silby, M.W., Winstanley, C., Godfrey, S.A., Levy, S.B. & Jackson, R.W.
379 Pseudomonas genomes: diverse and adaptable. *FEMS Microbiol Rev* **35**, 652-680
380 (2011).
- 381 4. Palleroni, N.J. The Pseudomonas story. *Environ Microbiol* **12**, 1377-1383 (2010).
- 382 5. Palleroni, N.J. Genus I. Pseudomonas Migula 1894. *Bergey's Manual of
383 Systematic Bacteriology* **1**, 59 (1984).
- 384 6. Ait Tayeb, L., Ageron, E., Grimont, F. & Grimont, P.A. Molecular phylogeny of the
385 genus Pseudomonas based on rpoB sequences and application for the
386 identification of isolates. *Res Microbiol* **156**, 763-773 (2005).
- 387 7. Mulet, M. *et al.* Concordance between whole-cell matrix-assisted laser-
388 desorption/ionization time-of-flight mass spectrometry and multilocus sequence
389 analysis approaches in species discrimination within the genus Pseudomonas.
390 *Syst Appl Microbiol* **35**, 455-464 (2012).
- 391 8. Gomila, M., Pena, A., Mulet, M., Lalucat, J. & Garcia-Valdes, E. Phylogenomics
392 and systematics in Pseudomonas. *Front Microbiol* **6**, 214 (2015).
- 393 9. Peix, A., Ramirez-Bahena, M.H. & Velazquez, E. The current status on the
394 taxonomy of Pseudomonas revisited: An update. *Infect Genet Evol* **57**, 106-116
395 (2018).

396

405 10. Parte, A.C., Sarda Carbasse, J., Meier-Kolthoff, J.P., Reimer, L.C. & Goker, M. List
406 of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ.
407 *Int J Syst Evol Microbiol* **70**, 5607-5612 (2020).

408

409 11. Gomila, M., Busquets, A., Mulet, M., Garcia-Valdes, E. & Lalucat, J. Clarification
410 of Taxonomic Status within the *Pseudomonas syringae* Species Group Based on
411 a Phylogenomic Analysis. *Front Microbiol* **8**, 2422 (2017).

412

413 12. Tran, P.N., Savka, M.A. & Gan, H.M. In-silico Taxonomic Classification of 373
414 Genomes Reveals Species Misidentification and New Genospecies within the
415 Genus *Pseudomonas*. *Front Microbiol* **8**, 1296 (2017).

416

417 13. Parks, D.H. *et al.* A standardized bacterial taxonomy based on genome phylogeny
418 substantially revises the tree of life. *Nat Biotechnol* **36**, 996-1004 (2018).

419

420 14. Bobay, L.M. The Prokaryotic Species Concept and Challenges. In: Tettelin, H. &
421 Medini, D. (eds). *The Pangenome: Diversity, Dynamics and Evolution of*
422 *Genomes*: Cham (CH), 2020, pp 21-49.

423

424 15. Hesse, C. *et al.* Genome-based evolutionary history of *Pseudomonas* spp. *Environ*
425 *Microbiol* **20**, 2142-2159 (2018).

426

427 16. Lalucat, J., Mulet, M., Gomila, M. & Garcia-Valdes, E. Genomics in Bacterial
428 Taxonomy: Impact on the Genus *Pseudomonas*. *Genes (Basel)* **11** (2020).

429

430 17. Passarelli-Araujo, H., Jacobs, S.H., Franco, G.R. & Venancio, T.M. Phylogenetic
431 analysis and population structure of *Pseudomonas allopuritida*. *Genomics* **113**,
432 3762-3773 (2021).

433

434 18. Hugenholtz, P., Chuvochina, M., Oren, A., Parks, D.H. & Soo, R.M. Prokaryotic
435 taxonomy and nomenclature in the age of big sequence data. *ISME J* (2021).

436

437 19. Backurs, A. & Indyk, P. Edit distance cannot be computed in strongly
438 subquadratic time (Unless SETH is False). *SIAM J Comput* **47**, 10 (2015).

439

440 20. Ondov, B.D. *et al.* Mash: fast genome and metagenome distance estimation
441 using MinHash. *Genome Biol* **17**, 132 (2016).

442

443 21. Raghavan, U.N., Albert, R. & Kumara, S. Near linear time algorithm to detect
444 community structures in large-scale networks. *Phys Rev E Stat Nonlin Soft Matter*
445 *Phys* **76**, 036106 (2007).

446

447 22. Schoch, C.L. *et al.* NCBI Taxonomy: a comprehensive update on curation,
448 resources and tools. *Database (Oxford)* **2020** (2020).

449

450 23. Monias, B.L. Classification of *Bacterium alcaligenes* *pyocyanneum* and
451 *fluorescens*. *The Journal of Infectious Diseases* **43**, 330-334 (1928).

452

453 24. Qin, Q.L. *et al.* A proposed genus boundary for the prokaryotes based on
454 genomic insights. *J Bacteriol* **196**, 2210-2215 (2014).

455

456 25. Anzai, Y., Kim, H., Park, J.Y., Wakabayashi, H. & Oyaizu, H. Phylogenetic affiliation
457 of the pseudomonads based on 16S rRNA sequence. *Int J Syst Evol Microbiol* **50**
458 Pt 4, 1563-1589 (2000).

459

460 26. Ozen, A.I. & Ussery, D.W. Defining the Pseudomonas genus: where do we draw
461 the line with Azotobacter? *Microb Ecol* **63**, 239-248 (2012).

462

463 27. Seppey, M., Manni, M. & Zdobnov, E.M. BUSCO: Assessing Genome Assembly
464 and Annotation Completeness. *Methods Mol Biol* **1962**, 227-245 (2019).

465

466 28. Pritchard, L., Glover, H.R., Humphris, S., Elphinstone, J.G. & Toth, I.K. Genomics
467 and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant
468 pathogens. *Anal. Methods* **8**, 10-24 (2016).

469

470 29. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**,
471 2068-2069 (2014).

472

473 30. Csardi, G. & Nepusz, T. The igraph software package for complex network
474 research. *InterJournal Complex Systems*, 1695 (2006).

475

476 31. Emms, D.M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for
477 comparative genomics. *Genome Biol* **20**, 238 (2019).

478

479 32. Katoh, K. & Standley, D.M. MAFFT multiple sequence alignment software version
480 7: improvements in performance and usability. *Mol Biol Evol* **30**, 772-780 (2013).

481

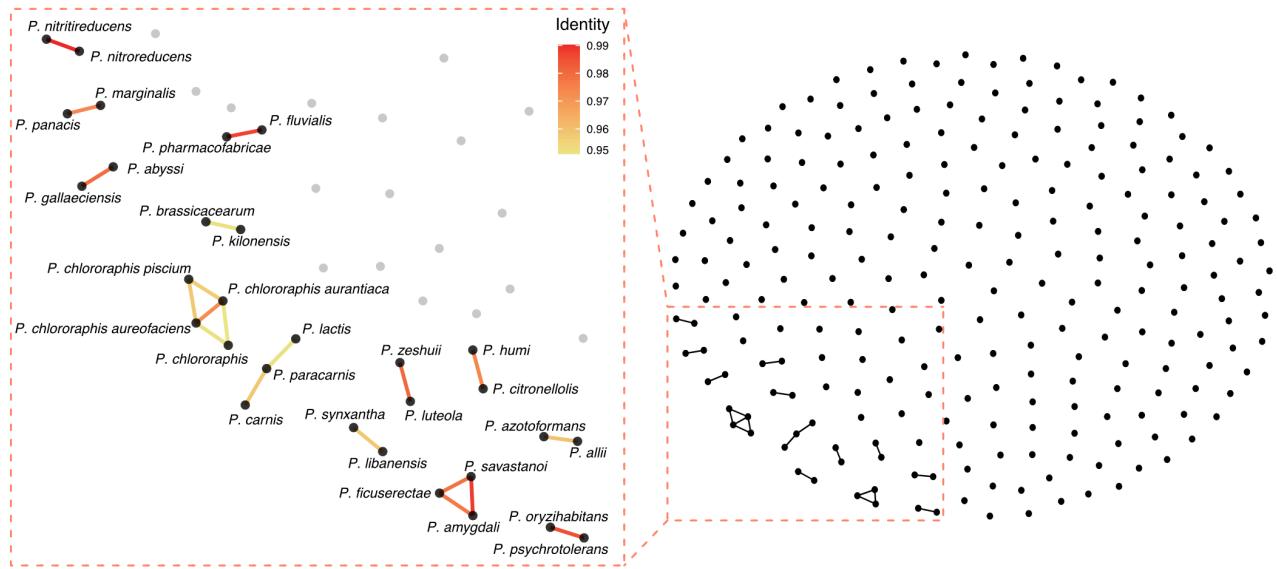
482 33. Minh, B.Q. *et al.* IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
483 Inference in the Genomic Era. *Mol Biol Evol* **37**, 1530-1534 (2020).

484

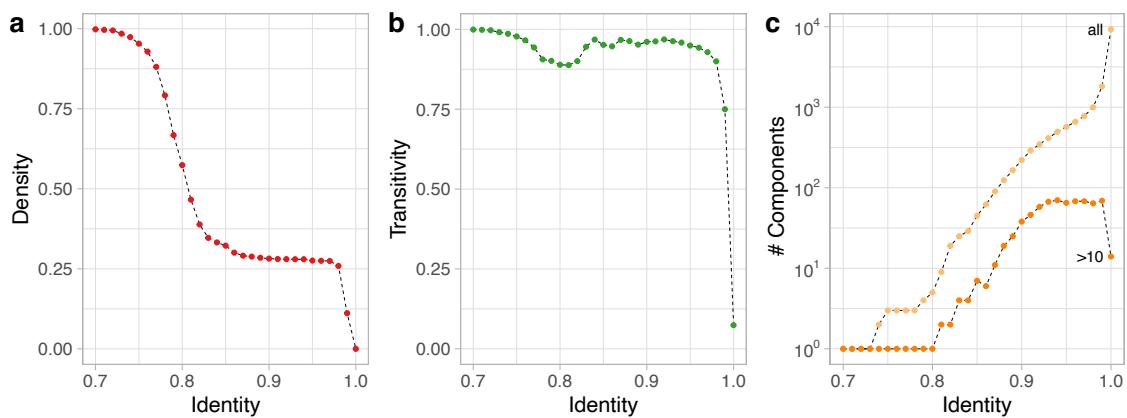
485 34. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S.
486 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat
487 Methods* **14**, 587-589 (2017).

488

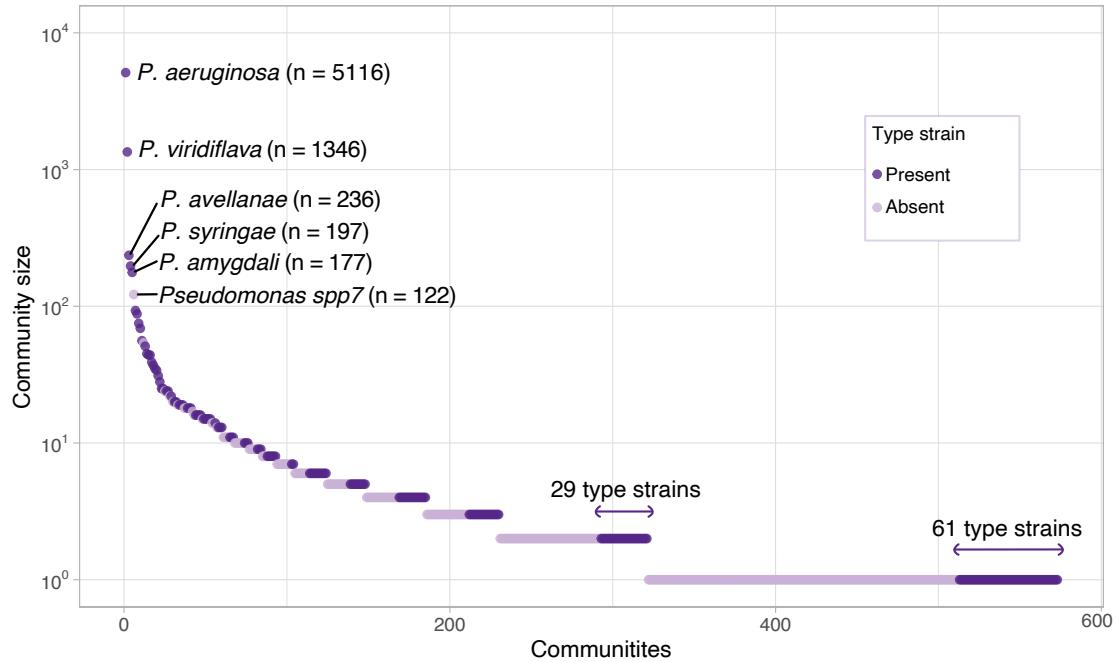
489 35. Yu, G. Using ggtree to Visualize Data on Tree-Like Structures. *Curr Protoc
490 Bioinformatics* **69**, e96 (2020).

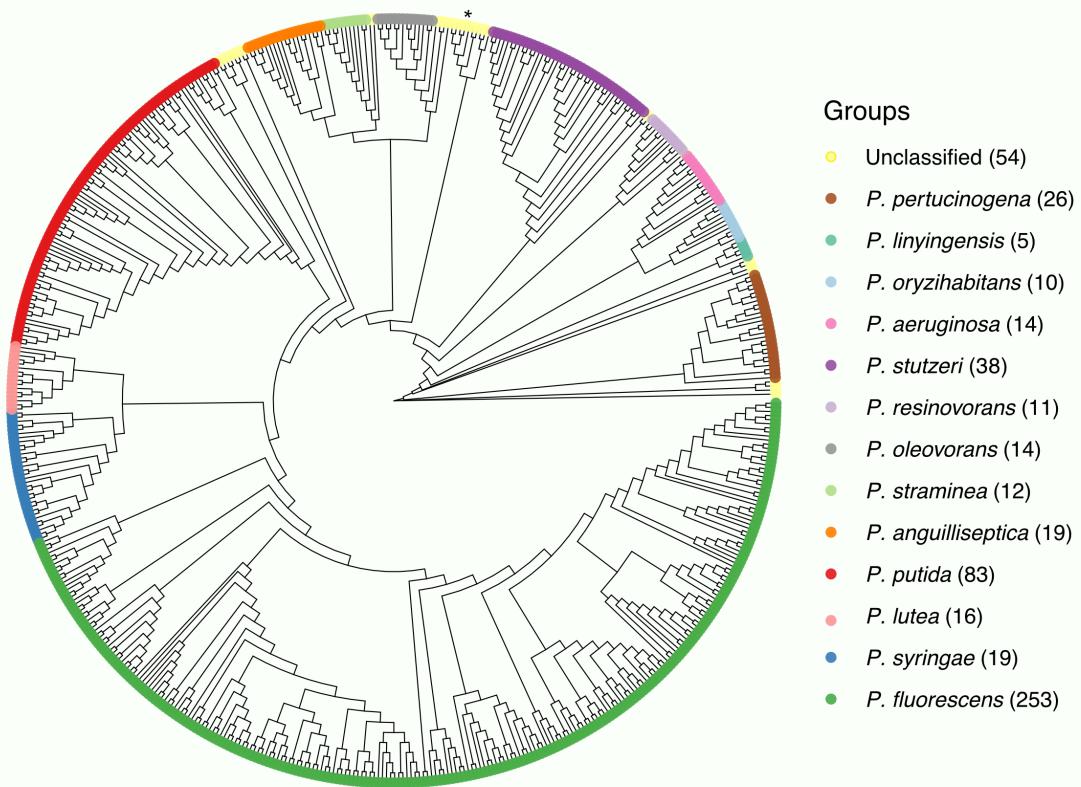

491

492 36. Briatte, F. ggnetwork: Geometries to Plot Networks with 'ggplot2'. R package
493 version 0.5.8.; 2020.


494

495


FIGURES


Figure 1. Type strain validation based on Average Nucleotide Identity. Each node in the network represent a type strain genome and nodes are connected if they share at least 95% identity. The left panel is a magnified representation of the connected nodes, with edges colored according to percent identity between the nodes.

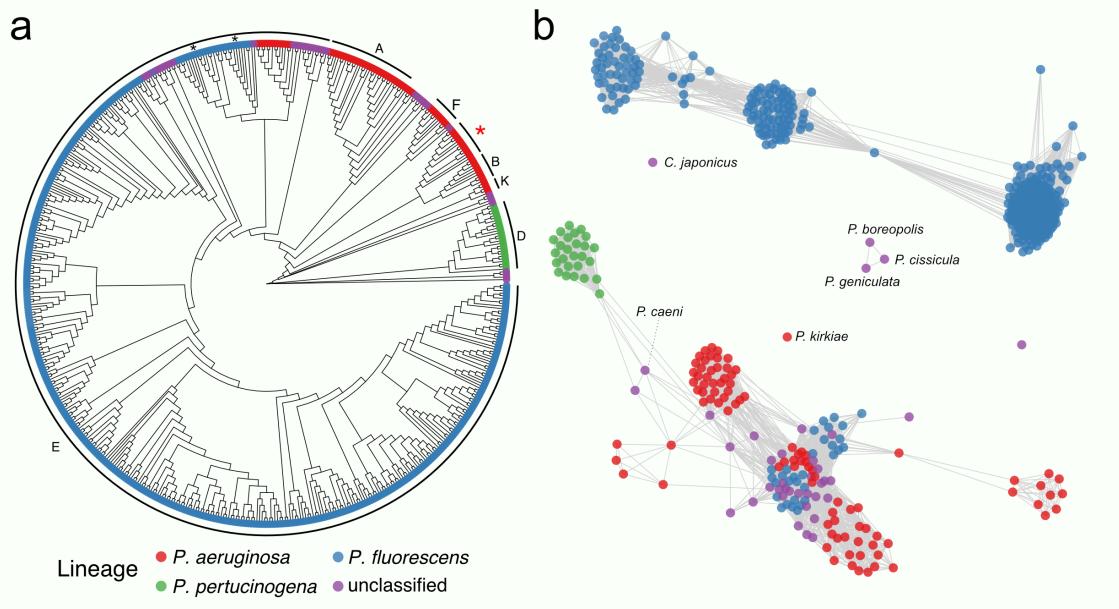

Figure 2. *Pseudomonas* distance network topology evolution. a) Proportion of present connections (network density) and b) average transitivity change over different identity (1 – Mash) cut-off values. c) Number of network components detected with different identity thresholds. Light orange dots represent the total number of components, whereas the dark dots represent only components with more than ten nodes.

Figure 3. *Pseudomonas* community sizes. Dark and light purple dots represent communities with and without type strains, respectively. The names and number of genomes are displayed in those communities with more than 100 genomes. y-axis is in log scale.

Figure 4. Phylogenetic tree mapping *Pseudomonas* groups. Maximum-likelihood phylogenetic tree using core single-copy genes in representative genomes from 573 communities detected in the *Pseudomonas* network. Colors indicate *Pseudomonas* groups. The number of genomes in each group is in parenthesis. The asterisk highlights the *P. alcaligenes* group described here. The outgroup is *Cellvibrio japonicus* Ueda 107^T.

Figure 5. *Pseudomonas* phylogenetic tree with proposed genus boundaries and Percentage of Conserved Proteins (POCP) network. a) Phylogenetic tree annotated with *Pseudomonas* lineages. The outer letters indicate the annotation adopted by the Genome Taxonomy Database (GTDB). The genus proposed to keep the name *Pseudomonas* is marked with a red asterisk. Other genera proposed by GTDB adopt the nomenclature “*Pseudomonas*” followed by a letter (e.g. *Pseudomonas_E*); for clarity, only the letters and those proposed genera with more than five communities are displayed. b) Network based on POCP index using a 60% threshold. Colors represent lineages. Blue nodes embedded in the component with genomes of *Pseudomonas aeruginosa* lineage belong to the groups *P. anguilliseptica* and *P. straminea*; these two groups are marked in the phylogenetic tree with black asterisks.

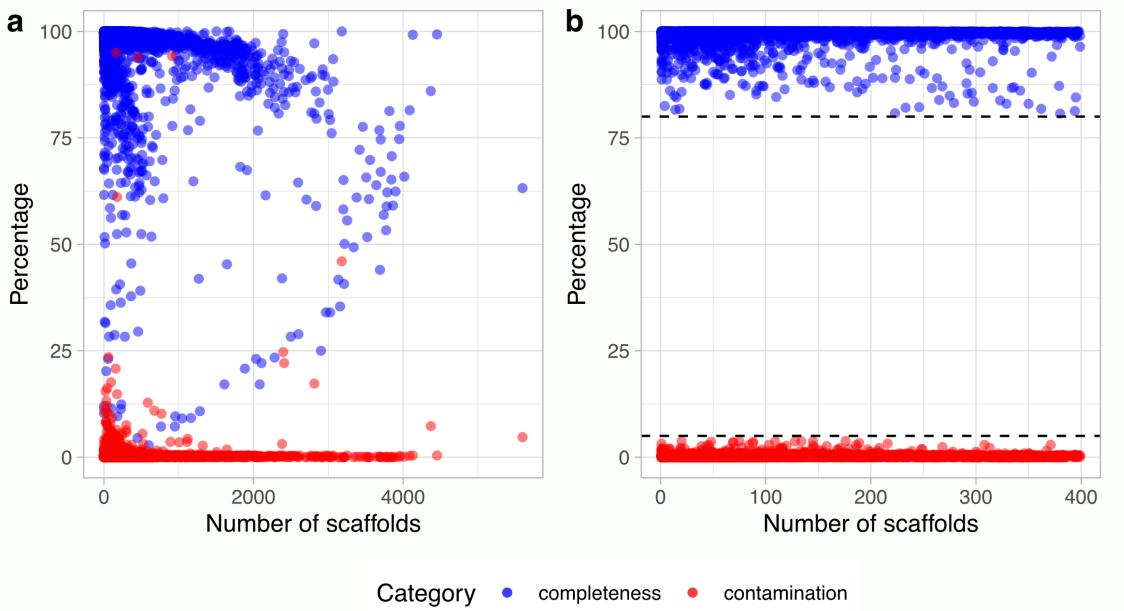
SUPPLEMENTARY FIGURES

Network analysis of ten thousand genomes shed light on *Pseudomonas* diversity and classification

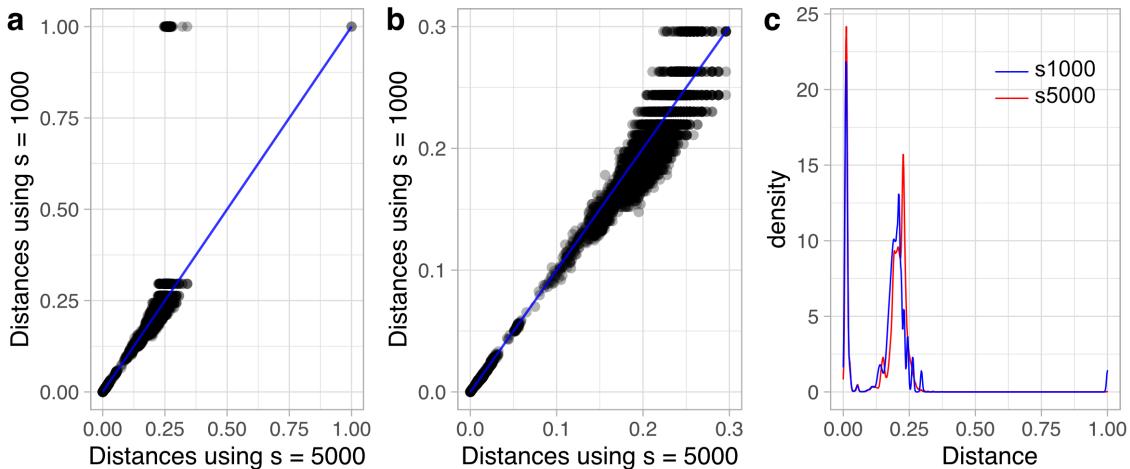
Hemanoel Passarelli-Araujo^{1,2,*}, Glória Regina Franco¹, Thiago M. Venancio^{2,*}

¹Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil

²Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.


*Corresponding authors

Av. Alberto Lamego 2000, P5 sala 217; Parque Califórnia


Campos dos Goytacazes, RJ, Brazil

CEP: 28013-602

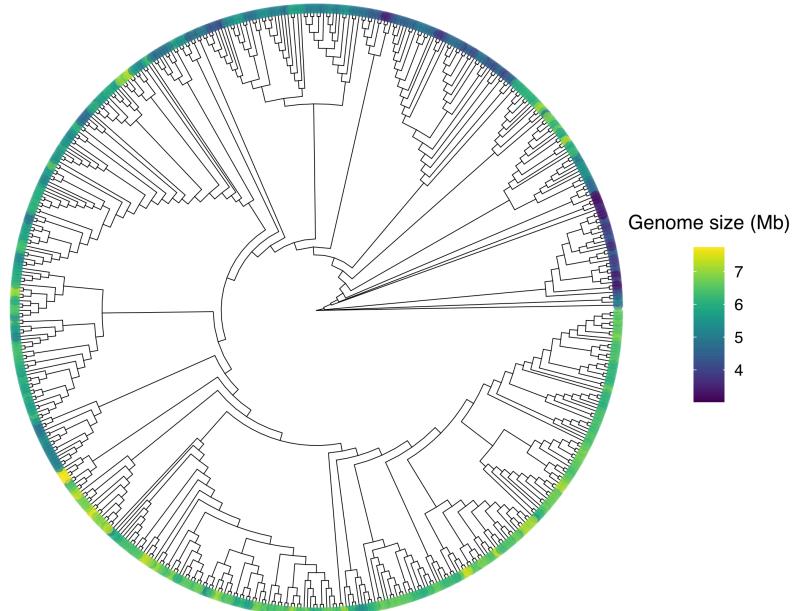

HPA: hemmanuel.passarelli@gmail.com; TMV: thiago.venancio@gmail.com

Figure S1. BUSCO estimation for completeness and contamination for all *Pseudomonas* genomes. a) Distribution for all 11,025 *Pseudomonas* genomes. b) Genomes used in this study after discarding genomes based on 80% quality threshold and fragmentation higher than 400 scaffolds (see methods).

Figure S2. Mash distance statistics. a) Comparison of estimated Mash distance using sketches sizes of 1000 and 5000. b) Mash distances restricted to the interval [0.0, 0.3] in both axes. c) Mash distance distribution for each sketch size.

Figure S3. Genome size distribution for *Pseudomonas* communities. Maximum-likelihood phylogenetic tree using core single-copy genes in representative genomes from 573 communities detected in the *Pseudomonas* distance network. Colors indicate the genome size distribution.