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Abstract 32 

Finger dexterity is a fundamental movement skill of humans and the ability to individuate fingers 33 

imparts high motor flexibility. Disruption of dexterity due to brain injury reduces quality of life. Thus, 34 

understanding the neurological mechanisms responsible for recovery is critical to effective 35 

neurorehabilitation. Two neuronal pathways have been proposed to play crucial roles in finger 36 

individuation: the corticospinal tract, originating from primary motor cortex and premotor areas, and 37 

the subcortical reticulospinal tract, originating from the reticular formation in the brainstem. Finger 38 

individuation in patients with lesions to these pathways may recover. However, it remains an open 39 

question how the cortical-reticular network reorganizes and contributes to this recovery following a 40 

stroke. We hypothesized that interactive connections between cortical and subcortical neurons 41 

reflect dynamics appropriate for generating outgoing commands for finger  movement. To test this 42 

hypothesis, we developed an Artificial Neural Network (ANN) representing a premotor planning input 43 

layer, a cortical layer including excitatory and inhibitory neurons and, a reticular layer that control 44 

motoneurons eliciting unilateral flexion of two fingers. The ANN was trained to reproduce “normal” 45 

activity of finger individuation and strength. Analysis of the trained ANN revealed that the natural 46 

dynamical solution was a near-linear relationship between the force of the instructed and 47 

uninstructed finger, resembling individuation patterns in humans. A simulated stroke lesion was then 48 

applied to the ANN and the resulting finger dexterity was assessed at multiple stages post stroke. 49 

Analysis revealed: (1) increased unintended force produced by uninstructed fingers (i.e., enslaving) 50 

and (2) weakening of the force in the instructed finger immediately after stroke, (3) improved finger 51 

control during recovery that typically occurs early after stroke, and (4) association of this behavior 52 

with increased neural plasticity of the residual neurons, as reflected by strengthening of connectivity 53 

weights between premotor and focal cortical excitatory and inhibitory neurons, but reduction in 54 

connectivity in shared cortical neurons. Interestingly, the network solution predicted that the 55 

reticulospinal pathway also contributed to the improved behavior. Lastly, the ANN also predicts the 56 

effect of cortical lesion size on finger individuation. Our model provides a framework by which to 57 

understand a number of experimental findings. The model solution suggests that a key mechanism 58 

of finger individuation is establishment of an interactive relationship between cortical and subcortical 59 

regions, appropriate to produce desired finger movement.  60 
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Introduction 61 

Humans, like other higher mammals, exhibit incredible finger dexterity. The skillful ability to move 62 

one or more fingers independently enables a large motor repertoire in mammals with prehensile 63 

digits. We rely on the ability to individuate fingers in a variety of daily activities, such as typing, tying 64 

shoelaces, or handling of utensils and various tools. Thus, any injury or pathology that interferes with 65 

finger individuation negatively impacts quality of life. After stroke, most people suffer from distal 66 

movement impairment which frequently manifests itself as both a decrease in finger strength and 67 

prominent deficit in hand dexterity. These are reflected by increased finger enslaving, or unintended 68 

force produced by the uninstructed fingers (i.e., inadequate finger individuation)1–7. Although a 69 

stroke patient may functionally recover the ability to flex and extend all fingers simultaneously, the 70 

finger individuation ability remains deficient. A longitudinal study that tracked finger individuation in 71 

stroke patients throughout the acute, sub-acute, and chronic phases revealed that recovery of finger 72 

individuation remains far from the level of healthy individuals and asymptotes after the first 3 to 6 73 

months after the stroke event5. Nevertheless, the neural mechanism by which recovery of finger 74 

individuation occurs is still unclear.  75 

Previous studies have shown the crucial role of the corticospinal tract (CST), originating from the 76 

primary motor cortex (M1) and the premotor cortex, in fractionated finger movements8–10. 77 

Experimental lesions or injury of the motor cortex or CST produce a serious detriment to individuated 78 

finger movements, resembling that seen in humans after stroke8,11,12. Recovery of finger dexterity 79 

from cortical lesions also reveals interesting results about the involvement of subcortical regions. In 80 

particular, the reticulospinal tract (RST), which originates from the reticular formation in the 81 

brainstem, was reported to undergo functional changes by modulating its activity after CST lesions 82 

during a fine independent finger movement task13–15 . Direct lesion of the brainstem medial RST, on 83 

the other hand, affected mainly posture, strength, and gross movements, while hand function 84 

remained unaffected16.    85 

These observations suggest the existence of a neural circuit with interactive dynamics between the 86 

CST and RST  that receives inputs (i.e., force and/or individuation commands) and produces the 87 

necessary motor output (i.e., individuated finger movement). Critically, changes in the connectivity 88 

at all levels seems to play a pivotal role in shaping recovery of finger movement after a brain lesion15. 89 

How exactly the cortical-reticular circuit reorganizes and contributes to the recovery process of finger 90 

individuation after stroke remains an open question.  91 
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We investigate how the cortical-reticular circuit reorganizes by developing a physiologically based 92 

computational model that is able to predict healthy behavior of finger movement, as well as behavior 93 

during the recovery period early after stroke. To date, most related works in modeling motor 94 

recovery have been limited to simulating either only wrist flexion force, or single-finger strength and 95 

individuation compared to the rest of the fingers17,18 . In particular, Norman et al., 2017 presented a 96 

computational neural network model based on a stochastic reinforcement algorithm for a one-finger 97 

task and separately simulated the force patterns of the instructed finger (index) and the uninstructed 98 

finger (middle) in a non-lesioned normal mode, then independently in a lesioned stroke mode. 99 

Simulating the normal condition separately from the stroke condition limits the mechanistic 100 

understanding of how the network reorganizes and contributes to the recovery process of finger 101 

individuation after stroke. Here we present a complete solution that stems from a single simulation 102 

of a network at different conditions. This advance is crucial to better understand the possible 103 

neurophysiological mechanisms that might underlie stroke recovery.  104 

 In the present study, we built a novel Artificial Neural Network (ANN) model of the hand upper 105 

neuromotor system that is intended to simultaneously model two fingers, alternating between 106 

instructed and uninstructed modes with different force levels. Our ANN model captures residual 107 

capacity and dynamics at the cortical, subcortical and behavioral levels of finger recovery following a 108 

stroke. Importantly, our solution is complete in that once initialized to “normal” condition (i.e., prior 109 

to stroke), it is capable of simulating the different stages of the cortical motoneurons throughout the 110 

stroke event and the recovery process.  111 

Notably, our ANN was trained to reproduce our proxy for the descending motor commands in a 112 

normal finger individuation condition, rather than the empirical behavioral and neuronal responses 113 

after stroke. We followed the normal anatomical connectivity constraints to impose physiologically-114 

based structure on known features of cortical and subcortical connectivity19,20. This allowed the ANN 115 

to seek an optimum over a very broad range of dynamics, not limited by prior knowledge of finger 116 

recovery. The model findings also predict that post-stroke CST/RST integrity is correlated with 117 

improved finger dexterity recovery; a finding which can be validated in a clinical setting and, if 118 

successful, could inform patient treatment. 119 

 120 
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Methods 121 

1. Model Description 122 

We developed a clustered ANN model constructed from 3 layers: input, hidden and output, (see 123 

Figure 1, ANN Architecture Diagram, the architecture of the proposed ANN as implemented in our 124 

model). The input layer represents the commands for finger movements generated by motor cortical 125 

areas. The hidden layer, the computational heart of the model, represents the cortical primary motor 126 

neurons and the brainstem reticular neurons in the medulla/pons. The output layer represents the 127 

task action outcome generated by spinal motoneuron pools and muscles. 128 

1.1.  Input Layer 129 

The input layer was composed of two types of inputs, two inputs for movement commands and one 130 

for force (see variables [1] and [2], Section 0). Each command input was fitted to a different finger, 131 

and the force represented the applied force level in the selected instructed finger. Four command 132 

movement tasks can be defined for the two fingers: instructed/uninstructed (1, -1), 133 

uninstructed/instructed (-1, 1), instructed/instructed (1, 1) and uninstructed/uninstructed (-1, -1). In 134 

this study, we focused on the first two commands (i.e., 1/-1 or -1/1) as they demonstrate 135 

individuation between the two fingers. 136 

1.2.  Hidden Layer 137 

The hidden layer was based on a simplified structure of the motor control areas, representing 138 

separable motor control functions and organized into different group types, four excitatory and 139 

inhibitory neuron groups for focal movement and one reticulospinal (RS) neuron group for gross 140 

movement. Each finger’s neuron cluster was a combination of focality groups and the RS group, which 141 

contained different excitatory and inhibitory neuron groups but shared the same RS group. The 142 

hidden layer state variables (see equation [8], Section 2.1) hold the intermediate hidden layer 143 

neurons’ output values. 144 

1.3.  Output Layer 145 

The output layer had two force outputs, each associated with a particular finger (see equation [3]). 146 

The outcome output was the combination of the instructed finger with the applied force per 147 

command. 148 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.06.22.449412doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.22.449412
http://creativecommons.org/licenses/by-nd/4.0/


6 
 

 149 

 150 

1.4.  Input Layer to Hidden Layer Connectivity 151 

The fingers’ command inputs were connected to all hidden layer neurons, with the exception that 152 

each command affiliated to one finger did not connect to the inhibitory neuron group of the other 153 

finger, and the force input was connected to the excitatory focal neuron groups and the shared RS 154 

neuron group. The strength of the connectivity between the layers was described by the connection 155 

weights (see equation [6]). A focal neuron in our network was defined as a neuron that could be 156 

driven by multiple neurons but is able to drive only one downstream neuron.  157 

1.5.  Hidden Layer to Output Layer Connectivity 158 

The hidden layer neurons were connected to the output layer neurons (outputs). Each finger was 159 

associated to one output, and the connectivity was based on the fingers’ cluster. Each finger output 160 

Figure 1. ANN Architecture Diagram. The inputs represent the pre-commands generated in the pre-motor cortex division 
relative to the two fingers. The hidden layers represent the primary motor cortex division (CS) and other sub-cortical 
motor regions (RS) involved in the control of voluntary movement. The outputs represent the outcome of the flexor and 
extensor neurons for each finger. Different colors represent different functions and/or a different finger. The neurons 
are represented by small circles (empty circles = neurons “disabled” by stroke, filled circles = healthy neurons). Bigger 
dotted circles and lines represent the back propagation flow. Abbreviations: CMD – command, CS – corticospinal, RS – 
reticulospinal. 
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was driven independently by its cluster of neurons. Therefore, the focal neuron groups each drove 161 

their affiliated finger output, while the RS neurons group drove both outputs. Again, connectivity 162 

strength between the layers was represented by the connection weights (see equation [9]).  163 

1.6.  Bias Parameters 164 

Bias in Neural Networks is a mathematical operation that can be thought of as analogous to the role 165 

of a constant in a linear function, whereby the line is effectively translated by the constant value. 166 

Both the hidden layer and output layer neurons connect to bias constants. We added these constants 167 

to the sum of the inputs to the neurons and used them to shift the input values so that the outputs 168 

of the computation functions would fit within the desired range of output values. The bias is required 169 

when the summed weighted inputs of each neuron require adjustment before applying the activation 170 

function and helps the NN model to optimally fit data (see additional details in Section 0, model 171 

definition, in particular equations [11] and [12]). 172 

 173 

 174 

2. Model Definition 175 

The ANN model was characterized by three key features. 1) The number of residual motor cortex 176 

neurons in the hidden layers is inversely proportional to the magnitude of the overlap between the 177 

lesion and the motor area of the brain. When a stroke causes a large lesion in the motor cortex and/or 178 

CST, fewer cells contribute to the recovery process. 2) The force that each finger muscle generated 179 

was determined by the weighted sum activities of cortical and sub-cortical neurons in the hidden 180 

layers. Muscle force production is typically proportional to the firing rate of neurons in the motor 181 

cortex17,21. We therefore assumed that increase in the firing rate of a single neuron caused 182 

proportional increase in muscle force, up to a saturation limit, with the proportionality constant 183 

determined by the connection weights. 3) Lastly, we assumed that the motor system must find this 184 

solution by evaluating the results of task performance based on the  deviation of the net force output 185 

of the fingers from the desired force targets (i.e., error function as teaching signal). 186 

This type of reinforcement learning uses summary feedback of motor performance to update 187 

synaptic weights and can be achieved with computations implemented locally at synapses and is thus 188 

considered biologically plausible. We performed feed-forward-propagation followed by a back-189 

propagation iterations algorithm to optimize for the results convergence. We compared the task 190 

performance in each feed-forward pass. and the error function was minimized during the back-191 
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propagation pass. The iterations were repeated until reaching or approaching the global minimum of 192 

the error function. 193 

 194 

2.1. Mathematical Definition 195 

The command input variable, [1] 𝐶𝑀𝐷𝑖,𝑖=1,2, for each finger is used to capture a binary-type 196 

(instructed/uninstructed) command movement task that is required from each finger. The command 197 

information is encoded as +1/-1 rather than 1/0 to represent instructed/uninstructed movement 198 

tasks (a value of 0 does not work well with the ANN inputs, as all computation results would be zero 199 

regardless of its weights). The force input variable, [2] (𝐶𝑀𝐷3 = 𝐹𝑅𝐶), is used as a percentage of full 200 

force and is provided as a number in the range of (0,1] (a value of 0 is not allowed, as movement 201 

cannot be achieved with zero force, a value of 1 represents 100% of the force). The force input is 202 

associated with the selected instructed finger based on the command inputs. The outputs of the ANN, 203 

[3] 𝐹𝑂𝑘 = 𝑓([10])𝑘=1,2  (see equation [5]), decode the task result representing the percentage value 204 

of force applied by each finger. The instructed finger will show actual instructed force, while the 205 

uninstructed finger will co-activate and show the uninstructed (i.e., involuntary) force. The expected 206 

outputs are derived from the command [1] and the force [2] and yield: [4] 𝐸𝑂𝑘 = 𝐹𝑅𝐶 × 𝐶𝑀𝐷𝑘,𝑘=1,2. 207 

We use the sigmoid, [5] 𝑓(𝑥) =
1

(1+𝑒−𝑥)
, as the activation function. The sigmoid input values range is 208 

(−∞, +∞), representing the summed firing rates, and the output values, ranging in (0,1), represent 209 

the neuron’s firing rate percentage. 210 

The command movement and instructed force inputs are weighted by the weight links connecting 211 

the inputs to the hidden layer neurons, [6]  𝑊𝐻𝑖𝑗,𝑖=1,..,3;𝑗=1,..,𝑁 . The weighted command movement 212 

and instructed force, [7]  (𝐶𝑀𝐷𝑖 × 𝑊𝐻𝑖𝑗) 𝑖=1,..,3;𝑗=1,..,𝑁 , transforms to values in the range of [-1,1] 213 

and (0,1] respectively. These weighted inputs, [7] can be theoretically summed to values in the range 214 

of (−∞, +∞) feeding the corresponding activation function of each hidden layer neuron, [5]. This 215 

operation transforms the summed values back to values in the range (0,1) and represents the 216 

weighted activity of the neurons, hidden output [8] 𝐻𝑂𝑗 = 𝑓([7])𝑗=1,..,𝑁  . These intermediate 217 

outputs of the hidden layer neurons, [8], are saved as a vector of variables for later usage. Similarly, 218 

the intermediate outputs, [8], are weighted by the weight links connecting the hidden layer to the 219 

output layer, [9] 𝑊𝑂𝑗𝑘,𝑗=1,..,𝑁;𝑘=1,2 , and transformed to new values in the range (0,1), [10] 220 

(𝐻𝑂𝑗 × 𝑊𝑂𝑗𝑘) 𝑗=1,..,𝑁;𝑘=1,2, and the sum values in the range (−∞, +∞) feeding the corresponding 221 
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activation function of the output layer neurons; naturally the sigmoid function, [5], is used again to 222 

transform the summed values back to values in the range (0,1), and represent the output data, [3], 223 

(instructed/uninstructed finger) as a percentage of relative force of the movement (0 – no force, 1 – 224 

full force). 225 

A bias is used to feed the hidden  and output  layer neurons, weighted using [11] 𝐵𝐻𝑗,𝑗=1,..,𝑁 and [12] 226 

𝐵𝑂𝑘,𝑘=1,2 weights, respectively. The weighted biases shift the neurons’ sigmoid activation functions, 227 

[5], to the desired range of values (see Section 1.6, Bias Parameters). Because the input to hidden 228 

layer weights, [6], must be positive values (reflecting excitatory activity), without bias the outcome 229 

values of the activation function, [5], range will then be limited to [0.5,1] (sigmoid of positive values). 230 

The hidden layer activation function, [8], was tuned to the range of (0,1] using the biased inputs, [13] 231 

[𝐵𝐻𝑗 + (𝐶𝑀𝐷𝑖 × 𝑊𝐻𝑖𝑗) 𝑖=1,..,3]
𝑗=1,..,𝑁

 , and equation [8] becomes: [14] 𝐻𝑂𝑗 = 𝑓([13])𝑗=1,..,𝑁  . The 232 

lacking range (0,0.5) can be reached only when applying the sigmoid to negative input values. 233 

Without bias, the weights start to switch to negative values (contradicting the excitatory context). 234 

Similarly for the output layer, despite the existence of the inhibitory neurons that enforce negative 235 

values, the summed inputs of the activation functions corresponding to these outputs still required 236 

tuning to the range (0,1], using [15] [𝐵𝑂𝑘 + (𝐻𝑂𝑗 × 𝑊𝑂𝑗𝑘)𝑗=1,..,𝑁]
𝑘=1,2

 , and equation [3] becomes: 237 

[16] 𝐹𝑂𝑘 = 𝑓([15])𝑘=1,2.  There were very few inhibitory neurons (5% of the total focal neurons split 238 

between the two fingers). 239 

In addition, we defined mask variables to control the interactions between different layers. They 240 

enforce connectivity limitations between different groups of neurons, as they represent different 241 

motor functions (simplified motor divisions) that do not necessarily directly interact. To model the 242 

interaction between the input and hidden layer groups of neurons, inhibitory mask, [17] 243 

𝐼𝑀𝑖𝑗,𝑖=1,..,3;𝑗=1,..,𝑁 , was defined (1st masking vector (i=1) for first command, 2nd masking vector (i=2) 244 

for second command and 3rd masking vector (i=3) for the third command). Inhibitory neurons of one 245 

finger are affected by their associated finger command, but not by the other finger’s command. The 246 

3rd inhibitory mask vector ([17]; i=3) prevents the force [2] input from connecting to both inhibitory 247 

neuron groups. For the interaction between the hidden layer and finger output layer, finger mask, 248 

[18] 𝐹𝑀𝑗𝑘,𝑗=1,..,𝑁;𝑘=1,2 , was defined. Focal neurons (excitatory and inhibitory) for each finger output 249 

are selected using its corresponding masking vector ([18]; k=1,2). The inhibitory neurons were 250 

negated using a dedicated hidden layer status variable, [19] 𝑁𝑆𝑗,𝑗=1,..,𝑁. A value of “1” indicates an 251 
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excitatory neuron, while “-1” indicates an inhibitory neuron. A lesion was applied using the same 252 

status variable, [19], used for the hidden layer neurons. That is, each neuron was initialized to 1 or -253 

1 for healthy/active neurons and switched to 0 for “dead” (inactive) neurons due to stroke. 254 

The error function, [20] 𝐸𝑘 = −(𝐸𝑂𝑘 − 𝐹𝑂𝑘)𝑘=1,2, is defined as the difference between the expected 255 

output [4] and actual output [16] values for each finger separately. With back-propagation iterations 256 

using a gradient descent technique, we search for the optimal weights and minimize the error 257 

function [20]. We first calculate the derivative for the output layer outputs for the sigmoid function, 258 

[16], getting: [21] 𝜕𝑂𝑘 = (𝐹𝑂𝑘 × (1 − 𝐹𝑂𝑘))𝑘=1,2, and the output delta error is: [22] 𝛿𝑂𝑘 =259 

(𝐸𝑘 × 𝜕𝑂𝑘)𝑘=1,2. Then we calculate backwards the weights of the connections between the hidden 260 

and output layers [9] using the delta correction: [23] 𝛿𝑊𝑂𝑗𝑘 = (𝛿𝑂𝑘 × 𝐻𝑂𝑗)𝑗=1,..,𝑁;𝑘=1,2. The output 261 

delta error, [22], is also backward propagated to the derivative of the hidden layer neurons sigmoid 262 

function, [14], getting: [24] 𝜕𝐻𝑂𝑗 = (𝐻𝑂𝑗 × (1 − 𝐻𝑂𝑗))𝑗=1,..,𝑁, and the delta error correction is: [25] 263 

𝛿𝐻𝑂𝑗 = (∑ (𝛿𝑂𝑘 × 𝑊𝑂𝑗𝑘)2
𝑘=1 × 𝜕𝐻𝑂𝑗))𝑗=1,..,𝑁. And finally, the inputs to hidden weights delta 264 

correction, [26] 𝛿𝑊𝐻𝑖𝑗 = (𝛿𝐻𝑂𝑗 × 𝐶𝑀𝐷𝑖)𝑖=1,..,3;𝑗=1,..,𝑁 , is calculated and applied to update [6]. 265 

The individuation between the two fingers was defined as the ratio of the difference to the sum of 266 

the instructed (𝐹𝑂1) and uninstructed forces (𝐹𝑂2), [27] 𝐼 = (𝐹𝑂1 − 𝐹𝑂2) (𝐹𝑂1 + 𝐹𝑂2)⁄ 17. 267 

2.2. Initialization and Parameter Setting 268 

We set the global parameters to configure the main structure of the NN, e.g., number of hidden layer 269 

neurons (N=400), number of inputs (NI=3), and number of outputs (NO=2). We defined the 270 

dependent parameters to configure the inner structure of the NN, e.g., focality of the network 271 

(focal=0.4, 40%), inhibitory neurons (inhibit=0.05, 5% of the focal), and the rest of the neurons are 272 

the RS. We used the training and simulation related parameters to control the learning process, error 273 

correction resolution steps (eta=0.01), training cycles as number of days (nDays=360), and training 274 

repetition in each training cycle as daily dosage ([50, …, 50, 200, …, 200, 50, ..., 50, 0, ..., 0] vector of 275 

dosage values per day), defined differently for every stage of the training. 276 

For setting up the NN structure we used mask and status variables, [17][18][19], based on the 277 

functions’ connectivity between the layers and pre/post stroke status as described in Section 1 278 

(Model Description and  Figure 1, ANN Architecture Diagram) and defined in Section 0 (Mathematical 279 

Definition). 280 
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The initial weights of the NN were normally distributed numbers generated from the open interval 281 

(0,1) (~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 = 0.5, 𝜎2 = 1/12)) and are then masked using the mask variables, [17][18],  282 

while the non-connected weights were eliminated (set to “0”).  283 

The bias constants were also weighted (generated similarly to the NN weights) to provide additional 284 

differentiation among different neurons’ activation functions. They were added as additional 285 

parameter inputs to the neurons of the hidden and output layers. The bias was used to compensate 286 

for the nature of the input values from one layer to another and the dependencies between the 287 

excitatory and inhibitory clusters, and adjust the distribution of the summed values within the desired 288 

range of the activation function for a better fitting. The bias setting process requires several trial-and-289 

error tests before selecting good values for the NN model best fit. The hidden layer bias was set to “-290 

6” and the output layer bias was set to “-1”.  291 

2.3. Training and Simulation Methods 292 

For training the ANN, not to be confused with, and not meant to simulate human motor training, the 293 

command targets and instructed force of the two fingers (𝐶𝑀𝐷1, 𝐶𝑀𝐷2, 𝐹𝑅𝐶, respectively) are fed 294 

as inputs to the ANN. The fingers’ performance (actual response of the two fingers) were the actual 295 

result, i.e., the output of the ANN (𝐹𝑂1, 𝐹𝑂2) as calculated in a feed-forward propagation. The error 296 

function was calculated and minimized in every iteration of the training process using gradient 297 

descent in a back-propagation flow (see Section 0, Mathematical Definition). The training for the 298 

initial normal condition is achieved by applying a multi-day and recurrent dosage force-based motor 299 

tasks to the normal (i.e., healthy) “pre-stroke” ANN, starting from an initially randomized state and 300 

converging to the desired instructed finger commands behavior. The simulation data is collected 301 

throughout the training process for later post-processing and demonstration. 302 

We simulated a stroke by disabling a portion of the neurons in the hidden layer of the trained ANN, 303 

in proportion to the severity of the stroke, using the NS variable, [19]. To emphasize this, the lesion 304 

state was the actual outcome of the injured trained model without further training. The force-based 305 

motor commands were simulated at the stroke condition and the fingers’ outcome values were 306 

collected. In conjunction to the stroke, we reduce the learning capability (𝜂) in accordance with the 307 

lesion severity. As assumed, injured brain plasticity is affected, and hence motor learning ability might 308 

be reduced. 309 
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Immediately after the lesion, the recovery process of the residual ANN represented the recovery that 310 

typically occurs at the early post-stroke phase and may continue to the chronic phase. The ANN is 311 

trained following the same method applied during the initial stage, and the simulation data is 312 

collected as well, but with the stroke condition as a starting point.  313 

Since we are using all variants of movement commands for training, no additional validation is 314 

required for testing the converged NN; however, the quality of the NN convergence is highly 315 

dependent on initial values of the weights and may need several trials to reach the optimal NN for 316 

our different simulation usages. Configuring different ANN setups is done by setting new values for 317 

the ANN global parameters. In addition, the training can be tuned with number of days of recurrent 318 

loops with configured dosage iterations and learning factor. 319 

2.4. Training and Simulation Flow 320 

The following steps are required to prepare the ANN database for simulation: 321 

a. Configure the parameters for the desired ANN. 322 

b. Select force (0,1] and initialize for chosen ANN setup/database. 323 

• Select force ≠ 0 for simulation only using already saved initialization database. 324 

• Use “0” to randomly generate new weights for new initialized training (this will also 325 

apply a full force), the new ANN database is saved. 326 

c. Train the model at baseline normal state (pre-stroke), the ANN simulation data is collected. 327 

d. Apply the acute-phase stroke condition by manipulating the number of neurons in the hidden 328 

layer of the NN. 329 

• Deleting/blocking the function of some pool of neurons mimics the effect of the stroke 330 

in the brain. 331 

• Severity of lesion would be represented by size of reduction in number of neurons. 332 

• Run simulation and collect data (no training is applied at this step). 333 

e. Apply the recovery and collect simulation data.  334 

• This stage becomes the initial state of the chronic phase. 335 

• Additional training for the finger tasks movement can be applied representing 336 

additional neurorehabilitation at chronic phase. 337 

f. Compare collected simulation results with existing clinical study quality behavior.  338 

g. Repeat b-f with different force cases to collect data for enslaving vs. force. 339 
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h. Repeat b-g with different stroke cases, stroke severity correlates with the lesion size and 340 

therefore the number of neurons deleted, and thus we represent different stroke cases. 341 

 342 

3. Statistical Analysis  343 

Statistical comparison between synaptic weights of the residual neurons before and after stroke was 344 

conducted using a paired two-tailed t-test. Specifically, we compared how the different weights were 345 

conditioned when re-trained after stroke. Significance level for all tests was set at 0.05. 346 

 347 

Results 348 

Finger strength and individuation in normal, lesioned and recovered condition 349 

The ANN model is first initialized to approximately 50% of full force and zero individuation, starting 350 

with randomly generated weights, and then trained for two fingers (index and middle) to a pre-stroke 351 

condition by applying the instructed/uninstructed and force commands alternately in the same 352 

training set. At the end of this initialization process, the ANN is fully capable of the trained motor 353 

functionality of the two fingers for the two commands. The simulation data is collected throughout 354 

the training convergence and demonstrates the model behavior of this stage. The simulation shows 355 

the enhancement in the strength of the instructed/uninstructed fingers and individuation between 356 

them (maximizing the instructed force and minimizing the uninstructed force), and concurrently for 357 

the two fingers (see Figure 2A: command #1 simulation, pre-stroke-day, and Figure 2B: command #2 358 

simulation, pre-stroke-day). The instructed force reaches 95.79% (index) and 96.48% (middle) of the 359 

maximum force, while the uninstructed involuntary force reaches 9.04% (middle) and 8.41% (index) 360 

of the maximum force. The individuation was measured as 0.83 and 0.84, respectively.  361 

A stroke event is applied by deleting 40% of the neural network from the hidden layers (see Section 362 

0, Model Definition). The simulation with the two commands is executed at this point and exhibits 363 

the behavior of the impaired model via a drop in the instructed force, rise in the uninstructed force 364 

and detriment to the individuation between the two fingers (see Figure 2A: Command #1 Simulation, 365 

stroke-day, and Figure 2B: Command #2 Simulation, full force, stroke-day). The instructed force 366 

reaches 56.36% (index) and 63.37% (middle) of the maximum force, while the uninstructed force 367 

reaches 35.12% (middle) and 24.52% (index) of the maximum force. The individuation was measured 368 

as 0.23 and 0.44, respectively. 369 
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Following the stroke event, i.e., proceeding from the stroke condition state, the model is trained 370 

using the same training method to regain some enhancement of the motor behavior and to represent 371 

the recovery early after stroke. Similar to the pre-stroke stage, simulation data is captured 372 

throughout the training process up to the limit of the impaired ANN convergence. We observe a rise 373 

in the instructed force and drop in the uninstructed force, and eventually enhancement in the 374 

individuation (see Figure 2A: command #1 simulation, post-stroke recovery, and Figure 2B: 375 

command #2 simulation, post-stroke recovery). The instructed force reaches 89.65% (index) and 376 

87.06% (middle) of the maximum force, while the uninstructed force reaches 17.51% (middle) and 377 

14.55% (index) of the max force. The individuation was measured as 0.67 and 0.71, respectively. 378 

 379 

 380 

  381 

Figure 2. Fingers’ strength and individuation before and after stroke as predicted by the model. A. Command #1 
Simulation (Index instructed, Middle uninstructed, Force 100%) simulating pre-stroke phase training, max instructed 
force and min uninstructed force (left), and full individuation (right), are achieved. Stroke event showing lesion acute 
phase degradation in instructed force and increase in uninstructed/unintentional force, leading to individuation 
reduction between the two fingers. The recovery early after stroke demonstrates enhancement in instructed and 
uninstructed force behavior and thus individuation recovery. B. Command #2 Simulation (Index uninstructed, Middle 
instructed, Force 100%) results and behavior are similar in qualitative manner to A. 
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Increased co-activation of uninstructed finger as a function of instructed finger strength  382 

Next, we sought to explore the relationship between the force of the uninstructed finger for different 383 

strength amplitudes of the instructed finger. To test this relationship in our model, we repeated the 384 

simulations with different force targets and measured the uninstructed involuntary force from the 385 

middle finger and the instructed force from the index finger in the different phases (normal, early 386 

after stroke during recovery training, and post-recovery training) of these simulations for each force 387 

target. In Figure 3, we plotted the uninstructed vs. instructed forces (normalized to max force in our 388 

simulation, the clinical results were plotted as measured). The y axis represents the co-activation (i.e., 389 

involuntary forces) produced by the uninstructed finger in accordance with the applied force of the 390 

instructed finger as shown on the x axis. The slope ratio represents the individuation ability of the 391 

instructed finger. We see that early after stroke, the involuntary force of the uninstructed finger 392 

increases (i.e., reduced individuation) to more than it was in the normal/non-paretic case in both the 393 

model and stroke patient graphs.  394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

Interestingly, after recovery (e.g., induced by spontaneous recovery and/or additional rehabilitative 402 

training), we observed that the model predicted reduced involuntary uninstructed force (i.e., 403 

Figure 3. Uninstructed forces as a function of instructed finger strength. Model prediction (left) vs. clinical measurements 
(right): Recovery effect on finger individuation as predicted by the model and as observed in a stroke patient. A. Forces in the 
uninstructed finger plotted against the force generated by the instructed finger at multiple force amplitudes as predicted by 
the model. Colored lines represent normal pre-stroke phase (blue), acute phase (light red), post-recovery (induced 
spontaneously or with training early after stroke) and chronic phase (dark red). Model parameters: (Index instructed, Middle 
uninstructed, Stroke: 40%, Forces: 20%, 40%, 60%, 80%, 100%). B. Reduced enslaving in the individuation task in a stroke 
participant (data from Mawase et al., 2020). Forces of the non-instructed finger as a function of the forces in the instructed 
finger for the non-paretic hand reflecting the pre-stroke baseline level (blue), early after stroke (light red) and after training 
(dark red). 
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increased individuation) that got closer to a normal level (Figure 3 A, Model Prediction). Quantitively, 404 

this reduction was captured by the slope of a linear regression line that was fitted to each data set 405 

and showed an almost flat line (slope=0.078, with 95% CI of 0.06-0.09) in the normal condition (i.e., 406 

before stroke), substantial increase of slope (slope=0.55, with 95% CI of -0.09-1.192) immediately 407 

after stroke and significant reduction (slope=0.22, with 95% CI of -0.04-0.049) after recovery. This 408 

uninstructed force-finger strength relationship replicated what we have previously reported in 409 

human stroke patients (Figure 3 B, Stroke Patient: shows actual data from a stroke participant during 410 

an individuation task7).  411 

 412 

Effect of lesion size on finger individuation 413 

We measured the effect of lesion size on finger individuation during the acute and sub-acute recovery 414 

phases. A large lesion in our model is presumed to reflect a large infarct in the cortical and/or CST 415 

regions. Our model predicted that very small lesion size (e.g., up to 10% of the total neurons in the 416 

hidden layer) results in almost no degradation in forces or individuation. With 20% lesion size, we see 417 

a small effect of the stroke in the acute phase, but the model is still capable of regaining almost all 418 

its motor capabilities after the recovery training process. Lesion sizes in the range of 30%-70% result 419 

in a decrease in finger individuation in the acute phase followed by improvements in motor function 420 

that asymptote to levels below full recovery. These below-normal-function levels are apparently 421 

related to the severity of the stroke and the amount of training induced by the model. Finally, the 422 

model predicted that lesion sizes in the range of 80-90% cause a severe drop in motor function that 423 

cannot be effectively restored, and additional training enhancements are very limited (Figure 4 A). 424 

 425 

We tested a resulting assumption that effect of lesion size on finger individuation is driven by the 426 

relative changes between instructed and uninstructed fingers. To test this, we measured the effect 427 

of lesion size as predicted by the model on the instructed and uninstructed forces early after stroke, 428 

during the recovery process and after recovery completion. We plotted the uninstructed forces and 429 

the instructed forces vs. lesion size on the same plot for comparison (Figure 4 B). We see that the 430 

instructed force values are always inversely related to the lesion size, i.e., they have similar slope 431 

direction in the different measurement states, however, the slope is steeper early after stroke, less 432 

steep during recovery and becomes more moderate towards the end of training. The uninstructed 433 

force values, however, show a different behavior. While the plots early after stroke and during 434 
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recovery have similar slope-direction compared to the instructed force plots slopes, indicating an 435 

inverse relationship to the lesion size. We found that after training, the slope was inversed, and the 436 

uninstructed force was directly relative to the lesion size. Overall, this suggests that the recovery of 437 

finger individuation is directly related to lesion size, signifying reduction in the capability to reduce 438 

the uninstructed force.  439 

 440 

 441 

Changes in synaptic weights in residual CST and RST during stroke recovery 442 

The observation of improved finger individuation after stroke is proposed to be associated with 443 

plasticity changes in network connectivity of the residual neurons. Specifically, we investigated how 444 

the connectivity strength of the model changed during the recovery process, i.e., how the different 445 

weights were conditioned when re-trained after stroke. We evaluated a representative case, 100% 446 

Figure 4. Effect of lesion size on instructed vs uninstructed fingers. Model parameters: (Index instructed, Middle 
uninstructed, Stroke 10-100%, Force 100%). Simulations: All are trained similarly during pre-stroke phase, then stroke 
with different lesion sizes is applied. We recorded the results early after stroke at sub-acute phase, then during recovery 
in chronic phase and at the end of rehabilitation effort. A. Individuation between Index and Middle fingers in accordance 
with lesion size. The graph demonstrates that the greater the lesion size, the more severe the stroke effect on 
individuation, and the less likely recovery is after stroke. Lesion sizes <20% have minimal effect on the individuation and 
recovery. B. The dynamics of fingers’ strength following lesion with different sizes. In the instructed finger (blue lines), 
the greater the lesion size, the less instructed force that can be produced by the model, starting with the light blue 
capturing the forces early after stroke, the darker blue during recovery and darkest blue at end of rehabilitation process. 
Recovery increases from the acute post-training phase, i.e., increase in instructed force. The uninstructed force (light red 
lines) is inversely affected by the lesion size early after stroke and during recovery. After training, however, the 
uninstructed force (dark red) is directly affected by lesion size, as seen by reduced uninstructed force levels compared to 
what is predicted early after stroke. 
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force and 40% stroke, which demonstrates the recovery enhancements in both force and 447 

individuation of the two fingers (Figure  5 ). 448 

We found increased plasticity of the residual neurons, as reflected by gain increase (paired t-test, 449 

𝑝 < 0.0001) in the command to the instructed finger’s focal weights (i.e., connectivity between 450 

premotor and focal cortical excitatory neurons, Figure   5 A). Although it did not reach statistical 451 

significance (𝑝 = 0.18), the connectivity for the focal inhibitory neurons showed a similar trend of 452 

positive gain (Figure   5 B). On the other hand, we found reduction in connectivity in shared cortical 453 

neurons (𝑝 < 0.0001, Figure   5 B). The network solution predicted that the reticulospinal pathway 454 

(i.e., RST) also contributed to the improved behavior (Figure   5 D). This is demonstrated by significant 455 

increase (𝑝 = 0.0181) of synaptic weight in the force input of the RS neurons. No change (𝑝 = 0.9) 456 

was detected in weights between the command and the RS neurons (Figure   5 E). Figure   5 F 457 

summarizes the re-organization of the residual neurons of the network that contributed to the 458 

recovery of finger individuation after stroke. Improved finger individuation was achieved by 459 

strengthened connectivity of focal excitatory cortical neurons, weakened shared excitatory cortical 460 

neurons of the other finger and strengthened connectivity of RS neurons. 461 

  462 

  463 

Figure   5 . Weight Gain Histograms. Model Parameters: (Index instructed, Middle uninstructed, Stroke 40%, Force 100%). 
A. CMD to excitatory focal (direct-finger) weights gain increased. B. CMD to excitatory focal (opposite-finger) weights 
decreased. C. CMD to inhibitory focal weights gain increased. D. CMD to RS weights gain almost unchanged (slightly 
increased). E. FRC to RS weights gain increased. F. Re-organization of the impaired network during recovery of finger 
individuation after stroke. Blue arrows – increased connectivity, red arrows- reduced connectivity and black arrows- no 
significant change in connectivity. Abbreviations: CMD – command, FRC – force, RS – reticulospinal. * indicates p<0.05, 
*** indicates p<0.0001. 
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Discussion 464 

In the present study, we designed an ANN model with physiologically-based architecture that 465 

provides a naturalistic solution for recovery of finger dexterity after stroke. Our central result is that 466 

an ANN trained to produce finger individuation exhibited dynamics that strongly resemble that of 467 

healthy individuals and patients after having recovered from a stroke. The resemblance between the 468 

model  outcome and reported data in previous clinical works was manifested by the substantial 469 

reduction of finger individuation immediately after stroke2,7, the recovery pattern following training, 470 

the near-linear relationship between uninstructed forces and instructed finger strength and the 471 

relationship between lesion size and severity of impairment in finger individuation5,6,7. Notably, this 472 

agreement was not achieved by fitting the ANN to actual clinical data. Rather, the agreement 473 

between model outcome and clinical data emerged as a result of the architecture of the 474 

excitatory/inhibitory cortical CS and subcortical RS neuron pools needed to generate the normal 475 

patterns of individuation. And as mentioned earlier, once initialized to pre-stroke condition, our 476 

solution is capable of simulating dynamic functional capacity of the cortical motoneurons throughout 477 

the lesion event and the recovery process that follows. In addition, the model makes predictions that 478 

might provide mechanistic explanation about the functional reorganization of the cortical and 479 

subcortical network during recovery of control of finger movement.  480 

Our modeling study provides a framework by which to understand a number of experimental findings 481 

related to finger dexterity. First, the pattern of instructed forces, uninstructed forces and 482 

individuation in a normal condition, as seen in Figure 2, mimics the convergence relation between 483 

the instructed to uninstructed force levels as observed in humans and primates8,10. Second, the 484 

immediate ANN response to the simulated stroke event revealed increased involuntary uninstructed 485 

forces that were driven by weakening of the instructed finger and exaggerated force of the 486 

uninstructed finger. This is in agreement with documented clinical observations of acute post-stroke 487 

phase finger functionality in which post-stroke patients exhibit reduced instructed finger force 488 

capacity and increased uninstructed forces3,22. Third, the model exhibited how the impaired motor 489 

system re-adjusted and learned new neural activation of the residual cells to compensate for the loss 490 

in finger control during the recovery process. Behaviorally, we observed an increase in the instructed 491 

force and decrease in the uninstructed force, and eventually enhancement in finger individuation 492 

during the recovery period. This is in line with recent studies that showed meaningful improved, yet 493 

incomplete, finger individuation during the early months after the stroke event5,22. 494 
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Cortical-subcortical neural basis of finger individuation   495 

Our model predicts post-lesion plasticity in both cortical and subcortical areas for recovery of finger 496 

dexterity. While strengthening of the connectivity in the residual descending cortical pathway seems 497 

to contribute to a larger extent to fractionating finger movement, strengthening of the reticulospinal 498 

tract seems to compensate for the loss of finger strength15. Inspection of changes in synaptic weights 499 

during stroke recovery as predicted by the model revealed plasticity in the residual CST and RST. 500 

Specifically, we observed strengthening of the weights to the focal cortical excitatory and inhibitory 501 

neurons, that together control the desired finger movement. Strengthening these weights indicates 502 

enhancing the individuation and some extent of force. On the other hand, we reported weakening  503 

of the weights that connected the focal neurons to the other finger. This reduced contribution 504 

inversely affected the individuation, and thus weakening them is in favor of individuation. 505 

Paradoxically, the model predicts that strengthening of the non-focal brainstem connectivity also 506 

constrains the individuation recovery due to the faciliatory effect of such increased connectivity on 507 

strength of the uninstructed finger. Specifically, we found that weights connecting to RS neurons that 508 

mainly serve for applying force are strengthened. The weights of the connection between force 509 

command and RS neurons apparently do not add to the generated force or individuation in these 510 

conditions. This striking feature of model prediction mirrors neurophysiological findings in previous 511 

primate models15.  512 

Many previous studies in human and animal models provide evidence that the corticospinal tract and 513 

reticulospinal tract underlie finger dexterity and strength, respectively24. In 1968, Lawrence and 514 

Kuypers examined the effects of lesions to the CST and found that the capacity for independent 515 

movements of the hand digits was lost after a complete bilateral lesion of the pyramidal tract; while 516 

strength was severely impaired after bilateral disruption of the RST8,16. In human stroke, Xu and 517 

colleagues analyzed diffusion tensor imaging (DTI) data and measured finger individuation and 518 

strength and found that lesions in the hand areas in M1, as well as the CST, correlated more with 519 

impaired individuation than with strength in humans with stroke5. A recent follow-up TMS study 520 

demonstrated the reliance of finger individuation recovery on the integrity of CST as measured by 521 

the presence of motor evoked potentials in the hand25.  Zaaimi et al., 201215 found that connections 522 

from medial brainstem pathways (probably largely reticulospinal tract) undergo functional changes 523 

after corticospinal lesions, and that the connection strengthening was selectively specific for inputs 524 

to forearm flexors, but not extensors that were left unchanged. This asymmetric muscle-specific 525 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.06.22.449412doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.22.449412
http://creativecommons.org/licenses/by-nd/4.0/


21 
 

pattern of recovery has been widely seen in stroke patients26,27. After initial paralysis, stroke patients 526 

show increased activity of flexor muscles, including finger flexors, that sometimes developed into 527 

abnormal flexion synergies. Activity of the extensor muscles, in contrast, remains very weak and 528 

unchanged1. The (in)ability to voluntarily activate finger extensors is a reliable biomarker predicting 529 

functional outcomes27. 530 

Severity of impairment in finger dexterity correlated with lesion size in the motor cortex 531 

and motor-related subcortical areas   532 

There is mounting evidence suggesting that  lesion size within specific brain areas might be a major 533 

factor in the ability to restore motor function after stroke, and the improvement, or lack thereof, in 534 

motor activity28–30. Several studies have demonstrated that greater damage to the corticospinal 535 

projections is associated with more impairment in stroke patients31–33. Our model demonstrates the 536 

correlation between lesion size in motor areas and reduced plasticity of the injured brain, which 537 

explains the (in)ability to restore motor function in these cases. In our model, a very small lesion size 538 

around 10% does not induce impairment in the motor function. This might be explained by the fact 539 

that the NN model is converged to a “mathematically” stable global minimum and requires a 540 

substantial “hit” to be disturbed.  This aspect of our model is in accordance with clinical data of stroke, 541 

as the effects on function of mild strokes can be difficult to quantitatively assess 34–37. In the range of 542 

20% to 70% lesion size, we can observe the effect of the stroke event in our model. The modelled 543 

acute phase emphasizes the level of the disturbed motor function relative to the size of the injured 544 

brain region and shows that there is still room for a certain amount of spontaneous recovery of motor 545 

capabilities, but that it is limited inversely to the lesion severity. In our model, lesion size with more 546 

than 80% dead neurons demonstrates severe impairment of motor function that is almost incapable 547 

of being restored and minimally or not responsive to rehabilitation. The clinical analogue has been 548 

documented in the literature with poor functional outcomes for severe stroke and a more difficult 549 

challenge to design and implement rehabilitation protocols capable of inducing improvements in this 550 

population38,39. Nevertheless, neurophysiological quantification of residual CST neurons that survived 551 

after the stroke, as well as association between this quantity and motor impairments, require future 552 

research with high-resolution imagining tools.    553 

Our model predicts a decrease in uninstructed force, as a function of lesion size, immediately upon 554 

stroke event and early after stroke (i.e., acute and sub-acute phases). A possible explanation for this 555 
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is that the model’s post-stroke “motor system”, including CST and RST, has less available neurons 556 

that can affect force, and since the involuntary forces of the uninstructed finger are linearly affected 557 

by the amount of applied force in the instructed finger, when less instructed force can be generated 558 

by the model’s “motor system”, it will lead to less uninstructed force as well. When rehabilitative 559 

training is applied, the slope of the uninstructed force is inverted. This can be explained by the 560 

model’s ability to adjust the remainder of the intact neurons, thus allowing higher gain with smaller 561 

lesion sizes. In the case of small lesions (e.g., less than 60%), reduction in uninstructed force might 562 

be driven by changes in the residual inhibitory cortical neurons. Nevertheless, our model predicts 563 

that when the lesion size is large (e.g., above 60%), most of the inhibitory neurons are removed, 564 

leaving no room for enhancement, and thus limiting the reduction of the uninstructed force after 565 

training.  566 

The individuation, as we observe in Figure 4 A, is calculated based on the normalized difference 567 

between instructed and uninstructed forces. Immediately and early after stroke, the magnitude of 568 

the decrease in the instructed forces across different lesion sizes is larger than the magnitude of the 569 

increase in the uninstructed forces; therefore, individuation decreases as lesion size increases. 570 

Recovery induced by training and/or occurring spontaneously caused increase in the forces of the 571 

instructed finger and decrease in the uninstructed forces. This can be explained as enhancement in 572 

the focal segments, excitatory and inhibitory weights, with the excitatory neurons positively affecting 573 

the instructed forces and, conversely, the inhibitory neurons negatively affecting the uninstructed 574 

forces. 575 

Altogether, these results indicate that relatively simple dynamics between cortical and subcortical 576 

neurons could provide a naturalistic explanation for the recovery of finger dexterity. It is essential to 577 

understand which subsystems contribute to recovery of finger movement in order to provide a 578 

rational basis to develop circuit-level therapeutic strategies that will optimize rehabilitation. Some 579 

aspects of the reported finding are in accordance with well-reported clinical and neurophysiological 580 

outcomes, but others provided mechanistic prediction of the interactive relationships in the neural 581 

network that underlie finger dexterity. These predictions can be tested in future research working 582 

primarily with human and/or animal models that typically exhibit finger dexterity.  583 

  584 
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Limitations and future directions 585 

Our model has some limitations. First, in this work we limited our model to two fingers (index and 586 

middle). In addition, the hidden layer segments of the NN, focal CS and RS neurons, were uniformly 587 

split between the two fingers’ function divisions and have similar connectivity between the different 588 

layers, and thus have the same capacity of capabilities and dependencies, i.e., the two fingers are 589 

mutually inclusive in achieving the instructed forces and enslaving each other. In addition, the stroke 590 

was applied to all segments of the NN neurons with equal weight (same percentage). These 591 

assumptions do not necessarily represent the real organization of the motor system, nor does it 592 

reflect how a real stroke lesion may differently affect motor divisions and representation of multiple 593 

fingers. In fact, it was shown that control of individuated finger movement is widely distributed in 594 

the primary motor cortex2, and electrical stimulation often elicited involuntary movements of 595 

multiple fingers10,40. Finally, our model is an oversimplification of the proposed network that 596 

potentially underlies recovery of finger dexterity. Simplification of the proposed ANN model was 597 

pronounced in its architecture, including design, connections, and training. Thus, although our model 598 

predicated plausible outcomes that highly resembled data from human and/or primate research, it 599 

seems that more complex architecture of neural networks including additional brain areas, beyond 600 

cortical and RST, must be involved in control of finger movement.  601 

As for future directions, though the ANN model was limited to two fingers for our simulation 602 

requirements, the model is easily scalable to support all fingers and can be adjusted to support 603 

individual forces (different force levels) of the instructed fingers. In this case, the level of complexity 604 

of the model increases, and the training set must be revised accordingly, and thus simulation run 605 

time increases substantially. Such enhancements and/or adding further motor-related divisions may 606 

be optimally addressed using one of the commonly used advanced computations. More advanced 607 

neural network models or deep learning frameworks might be used and trained to simulate 608 

enhancements in both strength and individuation in hand motor function, based on existing clinical 609 

experiments and available data (e.g., size of lesion and affected part/s of the brain motor divisions).  610 

Our model makes clinically-testable predictions. For example, it predicts that post-stroke CST/RST 611 

integrity is correlated with improved finger dexterity recovery. This prediction could be verified in a 612 

clinical study wherein CST/RST tractography from diffusion-weighted MRI is used to predict patient 613 

outcome. This protocol could validate this model finding and possibly lead to future clinical work that 614 
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stratifies patients into therapeutic interventions based on CST/RST tractography and the model's 615 

predictions of expected recovery. Thus, ultimately, treatment can be planned based on the desired 616 

target goals for finger individuation and/or strength. The improvement, or lack thereof, in the motor 617 

activity as predicted by the model will help us estimate the amount of motor recovery of the training 618 

dataset.  619 
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