

1

2 Computational neural network provides naturalistic solution for recovery of finger
3 dexterity after stroke

4 Ashraf Kadry¹, Sumner L. Norman², Jing Xu³, Deborah Solomonow-Avnon^{1,4} and Firas Mawase¹
5

6 ¹*Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Israel*

7 ²*Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA*

8 ³*Department of Kinesiology, University of Georgia, Athens, GA, USA*

9 ⁴*Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, Israel*

10

11

12

13

14

15

16 **Correspondence to:**

17 Ashraf Kadry, ashraf.kadry@yahoo.com

18 Firas Mawase, mawasef@bm.technion.ac.il

19

20

21

22 **Running title:** Cortical-subcortical ANN explains dexterity recovery

23 **Number of pages:** 27 pages

24 **Number of figures:** 5 figures

25 **Number of words:** Abstract (378), Introduction (887) and Discussion (2006)

26

27

28

29 **Conflict of Interest:** The authors declare no competing financial interests.

30

31

32 **Abstract**

33 Finger dexterity is a fundamental movement skill of humans and the ability to individuate fingers
34 imparts high motor flexibility. Disruption of dexterity due to brain injury reduces quality of life. Thus,
35 understanding the neurological mechanisms responsible for recovery is critical to effective
36 neurorehabilitation. Two neuronal pathways have been proposed to play crucial roles in finger
37 individuation: the *corticospinal* tract, originating from primary motor cortex and premotor areas, and
38 the subcortical *reticulospinal* tract, originating from the reticular formation in the brainstem. Finger
39 individuation in patients with lesions to these pathways may recover. However, it remains an open
40 question how the cortical-reticular network reorganizes and contributes to this recovery following a
41 stroke. We hypothesized that interactive connections between cortical and subcortical neurons
42 reflect dynamics appropriate for generating outgoing commands for finger movement. To test this
43 hypothesis, we developed an Artificial Neural Network (ANN) representing a premotor planning input
44 layer, a cortical layer including excitatory and inhibitory neurons and, a reticular layer that control
45 motoneurons eliciting unilateral flexion of two fingers. The ANN was trained to reproduce “normal”
46 activity of finger individuation and strength. Analysis of the trained ANN revealed that the natural
47 dynamical solution was a near-linear relationship between the force of the instructed and
48 uninstructed finger, resembling individuation patterns in humans. A simulated stroke lesion was then
49 applied to the ANN and the resulting finger dexterity was assessed at multiple stages post stroke.
50 Analysis revealed: (1) increased unintended force produced by uninstructed fingers (i.e., enslaving)
51 and (2) weakening of the force in the instructed finger immediately after stroke, (3) improved finger
52 control during recovery that typically occurs early after stroke, and (4) association of this behavior
53 with increased neural plasticity of the residual neurons, as reflected by strengthening of connectivity
54 weights between premotor and focal cortical excitatory and inhibitory neurons, but reduction in
55 connectivity in shared cortical neurons. Interestingly, the network solution predicted that the
56 reticulospinal pathway also contributed to the improved behavior. Lastly, the ANN also predicts the
57 effect of cortical lesion size on finger individuation. Our model provides a framework by which to
58 understand a number of experimental findings. The model solution suggests that a key mechanism
59 of finger individuation is establishment of an interactive relationship between cortical and subcortical
60 regions, appropriate to produce desired finger movement.

61 **Introduction**

62 Humans, like other higher mammals, exhibit incredible finger dexterity. The skillful ability to move
63 one or more fingers independently enables a large motor repertoire in mammals with prehensile
64 digits. We rely on the ability to individuate fingers in a variety of daily activities, such as typing, tying
65 shoelaces, or handling of utensils and various tools. Thus, any injury or pathology that interferes with
66 finger individuation negatively impacts quality of life. After stroke, most people suffer from distal
67 movement impairment which frequently manifests itself as both a decrease in finger strength and
68 prominent deficit in hand dexterity. These are reflected by increased finger enslaving, or unintended
69 force produced by the uninstructed fingers (i.e., inadequate finger individuation)¹⁻⁷. Although a
70 stroke patient may functionally recover the ability to flex and extend all fingers simultaneously, the
71 finger individuation ability remains deficient. A longitudinal study that tracked finger individuation in
72 stroke patients throughout the acute, sub-acute, and chronic phases revealed that recovery of finger
73 individuation remains far from the level of healthy individuals and asymptotes after the first 3 to 6
74 months after the stroke event⁵. Nevertheless, the neural mechanism by which recovery of finger
75 individuation occurs is still unclear.

76 Previous studies have shown the crucial role of the corticospinal tract (CST), originating from the
77 primary motor cortex (M1) and the premotor cortex, in fractionated finger movements⁸⁻¹⁰.
78 Experimental lesions or injury of the motor cortex or CST produce a serious detriment to individuated
79 finger movements, resembling that seen in humans after stroke^{8,11,12}. Recovery of finger dexterity
80 from cortical lesions also reveals interesting results about the involvement of subcortical regions. In
81 particular, the reticulospinal tract (RST), which originates from the reticular formation in the
82 brainstem, was reported to undergo functional changes by modulating its activity after CST lesions
83 during a fine independent finger movement task¹³⁻¹⁵. Direct lesion of the brainstem medial RST, on
84 the other hand, affected mainly posture, strength, and gross movements, while hand function
85 remained unaffected¹⁶.

86 These observations suggest the existence of a neural circuit with interactive dynamics between the
87 CST and RST that receives inputs (i.e., force and/or individuation commands) and produces the
88 necessary motor output (i.e., individuated finger movement). Critically, changes in the connectivity
89 at all levels seems to play a pivotal role in shaping recovery of finger movement after a brain lesion¹⁵.
90 How exactly the cortical-reticular circuit reorganizes and contributes to the recovery process of finger
91 individuation after stroke remains an open question.

92 We investigate how the cortical-reticular circuit reorganizes by developing a physiologically based
93 computational model that is able to predict healthy behavior of finger movement, as well as behavior
94 during the recovery period early after stroke. To date, most related works in modeling motor
95 recovery have been limited to simulating either only wrist flexion force, or single-finger strength and
96 individuation compared to the rest of the fingers^{17,18}. In particular, Norman et al., 2017 presented a
97 computational neural network model based on a stochastic reinforcement algorithm for a one-finger
98 task and separately simulated the force patterns of the instructed finger (index) and the uninstructed
99 finger (middle) in a non-lesioned normal mode, then independently in a lesioned stroke mode.
100 Simulating the normal condition separately from the stroke condition limits the mechanistic
101 understanding of how the network reorganizes and contributes to the recovery process of finger
102 individuation after stroke. Here we present a complete solution that stems from a single simulation
103 of a network at different conditions. This advance is crucial to better understand the possible
104 neurophysiological mechanisms that might underlie stroke recovery.

105 In the present study, we built a novel Artificial Neural Network (ANN) model of the hand upper
106 neuromotor system that is intended to simultaneously model two fingers, alternating between
107 instructed and uninstructed modes with different force levels. Our ANN model captures residual
108 capacity and dynamics at the cortical, subcortical and behavioral levels of finger recovery following a
109 stroke. Importantly, our solution is complete in that once initialized to “normal” condition (i.e., prior
110 to stroke), it is capable of simulating the different stages of the cortical motoneurons throughout the
111 stroke event and the recovery process.

112 Notably, our ANN was trained to reproduce our proxy for the descending motor commands in a
113 normal finger individuation condition, rather than the empirical behavioral and neuronal responses
114 after stroke. We followed the normal anatomical connectivity constraints to impose physiologically-
115 based structure on known features of cortical and subcortical connectivity^{19,20}. This allowed the ANN
116 to seek an optimum over a very broad range of dynamics, not limited by prior knowledge of finger
117 recovery. The model findings also predict that post-stroke CST/RST integrity is correlated with
118 improved finger dexterity recovery; a finding which can be validated in a clinical setting and, if
119 successful, could inform patient treatment.

120

121 **Methods**

122 **1. Model Description**

123 We developed a clustered ANN model constructed from 3 layers: input, hidden and output, (see
124 **Figure 1**, ANN Architecture Diagram, the architecture of the proposed ANN as implemented in our
125 model). The input layer represents the commands for finger movements generated by motor cortical
126 areas. The hidden layer, the computational heart of the model, represents the cortical primary motor
127 neurons and the brainstem reticular neurons in the medulla/pons. The output layer represents the
128 task action outcome generated by spinal motoneuron pools and muscles.

129 **1.1. Input Layer**

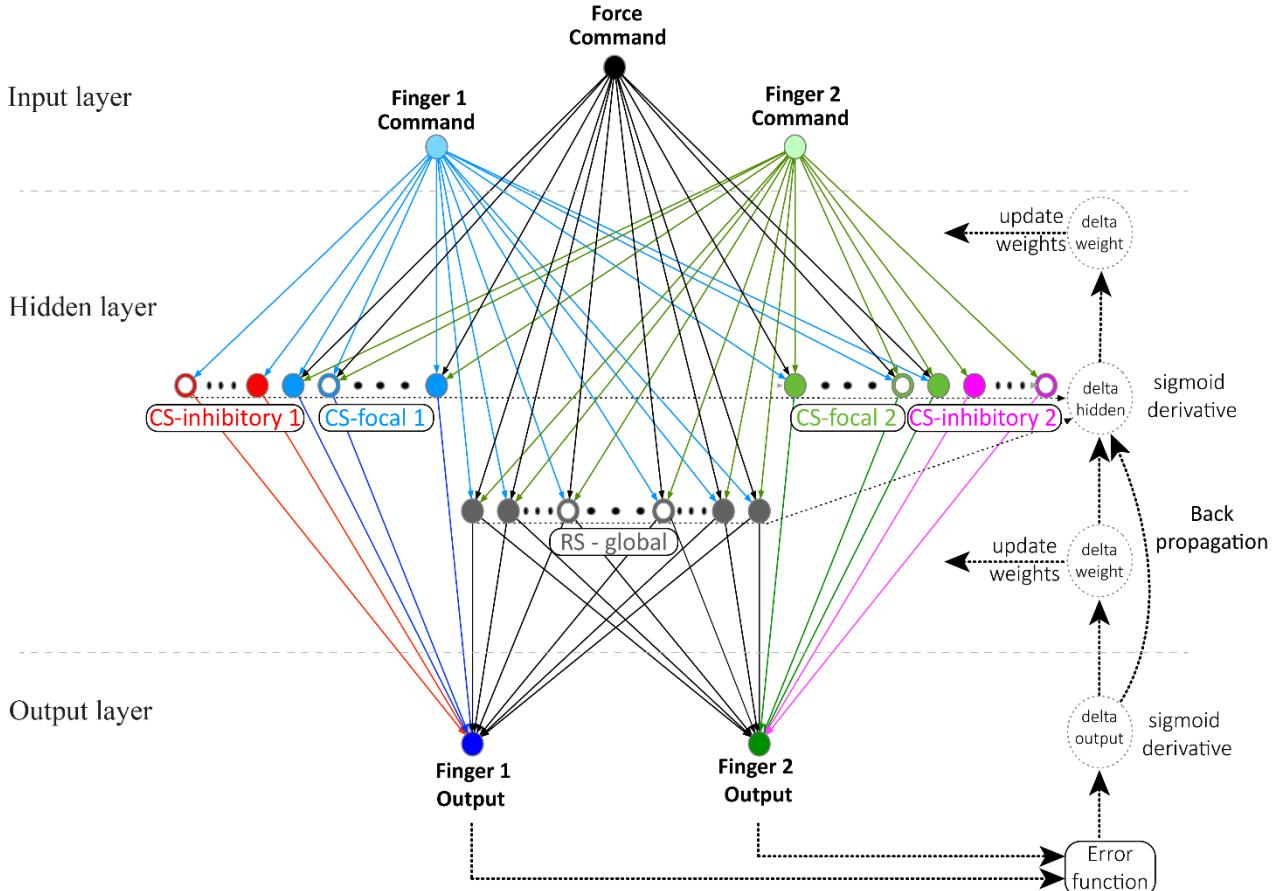
130 The input layer was composed of two types of inputs, two inputs for movement commands and one
131 for force (see variables [1] and [2], Section 0). Each command input was fitted to a different finger,
132 and the force represented the applied force level in the selected instructed finger. Four command
133 movement tasks can be defined for the two fingers: instructed/uninstructed (1, -1),
134 uninstructed/instructed (-1, 1), instructed/instructed (1, 1) and uninstructed/uninstructed (-1, -1). In
135 this study, we focused on the first two commands (i.e., 1/-1 or -1/1) as they demonstrate
136 individuation between the two fingers.

137 **1.2. Hidden Layer**

138 The hidden layer was based on a simplified structure of the motor control areas, representing
139 separable motor control functions and organized into different group types, four excitatory and
140 inhibitory neuron groups for focal movement and one reticulospinal (RS) neuron group for gross
141 movement. Each finger's neuron cluster was a combination of focality groups and the RS group, which
142 contained different excitatory and inhibitory neuron groups but shared the same RS group. The
143 hidden layer state variables (see equation [8], Section 2.1) hold the intermediate hidden layer
144 neurons' output values.

145 **1.3. Output Layer**

146 The output layer had two force outputs, each associated with a particular finger (see equation [3]).
147 The outcome output was the combination of the instructed finger with the applied force per
148 command.



149

Figure 1. ANN Architecture Diagram. The inputs represent the pre-commands generated in the pre-motor cortex division relative to the two fingers. The hidden layers represent the primary motor cortex division (CS) and other sub-cortical motor regions (RS) involved in the control of voluntary movement. The outputs represent the outcome of the flexor and extensor neurons for each finger. Different colors represent different functions and/or a different finger. The neurons are represented by small circles (empty circles = neurons “disabled” by stroke, filled circles = healthy neurons). Bigger dotted circles and lines represent the back propagation flow. Abbreviations: CMD – command, CS – corticospinal, RS – reticulospinal.

150

151 1.4. Input Layer to Hidden Layer Connectivity

152 The fingers' command inputs were connected to all hidden layer neurons, with the exception that
 153 each command affiliated to one finger did not connect to the inhibitory neuron group of the other
 154 finger, and the force input was connected to the excitatory focal neuron groups and the shared RS
 155 neuron group. The strength of the connectivity between the layers was described by the connection
 156 weights (see equation [6]). A focal neuron in our network was defined as a neuron that could be
 157 driven by multiple neurons but is able to drive only one downstream neuron.

158 1.5. Hidden Layer to Output Layer Connectivity

159 The hidden layer neurons were connected to the output layer neurons (outputs). Each finger was
 160 associated to one output, and the connectivity was based on the fingers' cluster. Each finger output

161 was driven independently by its cluster of neurons. Therefore, the focal neuron groups each drove
162 their affiliated finger output, while the RS neurons group drove both outputs. Again, connectivity
163 strength between the layers was represented by the connection weights (see equation [9]).

164 1.6. Bias Parameters

165 Bias in Neural Networks is a mathematical operation that can be thought of as analogous to the role
166 of a constant in a linear function, whereby the line is effectively translated by the constant value.
167 Both the hidden layer and output layer neurons connect to bias constants. We added these constants
168 to the sum of the inputs to the neurons and used them to shift the input values so that the outputs
169 of the computation functions would fit within the desired range of output values. The bias is required
170 when the summed weighted inputs of each neuron require adjustment before applying the activation
171 function and helps the NN model to optimally fit data (see additional details in Section 0, model
172 definition, in particular equations [11] and [12]).

173

174

175 **2. Model Definition**

176 The ANN model was characterized by three key features. 1) The number of residual motor cortex
177 neurons in the hidden layers is inversely proportional to the magnitude of the overlap between the
178 lesion and the motor area of the brain. When a stroke causes a large lesion in the motor cortex and/or
179 CST, fewer cells contribute to the recovery process. 2) The force that each finger muscle generated
180 was determined by the weighted sum activities of cortical and sub-cortical neurons in the hidden
181 layers. Muscle force production is typically proportional to the firing rate of neurons in the motor
182 cortex^{17,21}. We therefore assumed that increase in the firing rate of a single neuron caused
183 proportional increase in muscle force, up to a saturation limit, with the proportionality constant
184 determined by the connection weights. 3) Lastly, we assumed that the motor system must find this
185 solution by evaluating the results of task performance based on the deviation of the net force output
186 of the fingers from the desired force targets (i.e., error function as teaching signal).

187 This type of reinforcement learning uses summary feedback of motor performance to update
188 synaptic weights and can be achieved with computations implemented locally at synapses and is thus
189 considered biologically plausible. We performed feed-forward-propagation followed by a back-
190 propagation iterations algorithm to optimize for the results convergence. We compared the task
191 performance in each feed-forward pass. and the error function was minimized during the back-

192 propagation pass. The iterations were repeated until reaching or approaching the global minimum of
193 the error function.

194

195 2.1. Mathematical Definition

196 The command input variable, [1] $CMD_{i,i=1,2}$, for each finger is used to capture a binary-type
197 (instructed/uninstructed) command movement task that is required from each finger. The command
198 information is encoded as +1/-1 rather than 1/0 to represent instructed/uninstructed movement
199 tasks (a value of 0 does not work well with the ANN inputs, as all computation results would be zero
200 regardless of its weights). The force input variable, [2] ($CMD_3 = FRC$), is used as a percentage of full
201 force and is provided as a number in the range of (0,1] (a value of 0 is not allowed, as movement
202 cannot be achieved with zero force, a value of 1 represents 100% of the force). The force input is
203 associated with the selected instructed finger based on the command inputs. The outputs of the ANN,
204 [3] $FO_k = f([10])_{k=1,2}$ (see equation [5]), decode the task result representing the percentage value
205 of force applied by each finger. The instructed finger will show actual instructed force, while the
206 uninstructed finger will co-activate and show the uninstructed (i.e., involuntary) force. The expected
207 outputs are derived from the command [1] and the force [2] and yield: [4] $EO_k = FRC \times CMD_{k,k=1,2}$.
208 We use the sigmoid, [5] $f(x) = \frac{1}{(1+e^{-x})}$, as the activation function. The sigmoid input values range is
209 $(-\infty, +\infty)$, representing the summed firing rates, and the output values, ranging in (0,1), represent
210 the neuron's firing rate percentage.

211 The command movement and instructed force inputs are weighted by the weight links connecting
212 the inputs to the hidden layer neurons, [6] $WH_{ij,i=1,..,3;j=1,..,N}$. The weighted command movement
213 and instructed force, [7] $(CMD_i \times WH_{ij})_{i=1,..,3;j=1,..,N}$, transforms to values in the range of [-1,1]
214 and (0,1] respectively. These weighted inputs, [7] can be theoretically summed to values in the range
215 of $(-\infty, +\infty)$ feeding the corresponding activation function of each hidden layer neuron, [5]. This
216 operation transforms the summed values back to values in the range (0,1) and represents the
217 weighted activity of the neurons, hidden output [8] $HO_j = f([7])_{j=1,..,N}$. These intermediate
218 outputs of the hidden layer neurons, [8], are saved as a vector of variables for later usage. Similarly,
219 the intermediate outputs, [8], are weighted by the weight links connecting the hidden layer to the
220 output layer, [9] $WO_{jk,j=1,..,N;k=1,2}$, and transformed to new values in the range (0,1), [10]
221 $(HO_j \times WO_{jk})_{j=1,..,N;k=1,2}$, and the sum values in the range $(-\infty, +\infty)$ feeding the corresponding

222 activation function of the output layer neurons; naturally the sigmoid function, [5], is used again to
223 transform the summed values back to values in the range (0,1), and represent the output data, [3],
224 (instructed/uninstructed finger) as a percentage of relative force of the movement (0 – no force, 1 –
225 full force).

226 A bias is used to feed the hidden and output layer neurons, weighted using [11] $BH_{j,j=1,\dots,N}$ and [12]
227 $BO_{k,k=1,2}$ weights, respectively. The weighted biases shift the neurons' sigmoid activation functions,
228 [5], to the desired range of values (see Section 1.6, Bias Parameters). Because the input to hidden
229 layer weights, [6], must be positive values (reflecting excitatory activity), without bias the outcome
230 values of the activation function, [5], range will then be limited to [0.5,1] (sigmoid of positive values).
231 The hidden layer activation function, [8], was tuned to the range of (0,1] using the biased inputs, [13]
232 $[BH_j + (CMD_i \times WH_{ij})_{i=1,\dots,3}]_{j=1,\dots,N}$, and equation [8] becomes: [14] $HO_j = f([13])_{j=1,\dots,N}$. The
233 lacking range (0,0.5) can be reached only when applying the sigmoid to negative input values.
234 Without bias, the weights start to switch to negative values (contradicting the excitatory context).
235 Similarly for the output layer, despite the existence of the inhibitory neurons that enforce negative
236 values, the summed inputs of the activation functions corresponding to these outputs still required
237 tuning to the range (0,1], using [15] $[BO_k + (HO_j \times WO_{jk})_{j=1,\dots,N}]_{k=1,2}$, and equation [3] becomes:
238 [16] $FO_k = f([15])_{k=1,2}$. There were very few inhibitory neurons (5% of the total focal neurons split
239 between the two fingers).

240 In addition, we defined mask variables to control the interactions between different layers. They
241 enforce connectivity limitations between different groups of neurons, as they represent different
242 motor functions (simplified motor divisions) that do not necessarily directly interact. To model the
243 interaction between the input and hidden layer groups of neurons, inhibitory mask, [17]
244 $IM_{ij,i=1,\dots,3;j=1,\dots,N}$, was defined (1st masking vector ($i=1$) for first command, 2nd masking vector ($i=2$)
245 for second command and 3rd masking vector ($i=3$) for the third command). Inhibitory neurons of one
246 finger are affected by their associated finger command, but not by the other finger's command. The
247 3rd inhibitory mask vector ([17]; $i=3$) prevents the force [2] input from connecting to both inhibitory
248 neuron groups. For the interaction between the hidden layer and finger output layer, finger mask,
249 [18] $FM_{jk,j=1,\dots,N;k=1,2}$, was defined. Focal neurons (excitatory and inhibitory) for each finger output
250 are selected using its corresponding masking vector ([18]; $k=1,2$). The inhibitory neurons were
251 negated using a dedicated hidden layer status variable, [19] $NS_{j,j=1,\dots,N}$. A value of "1" indicates an

252 excitatory neuron, while “-1” indicates an inhibitory neuron. A lesion was applied using the same
253 status variable, [19], used for the hidden layer neurons. That is, each neuron was initialized to 1 or -
254 1 for healthy/active neurons and switched to 0 for “dead” (inactive) neurons due to stroke.

255 The error function, [20] $E_k = -(EO_k - FO_k)_{k=1,2}$, is defined as the difference between the expected
256 output [4] and actual output [16] values for each finger separately. With back-propagation iterations
257 using a gradient descent technique, we search for the optimal weights and minimize the error
258 function [20]. We first calculate the derivative for the output layer outputs for the sigmoid function,
259 [16], getting: [21] $\partial O_k = (FO_k \times (1 - FO_k))_{k=1,2}$, and the output delta error is: [22] $\delta O_k =$
260 $(E_k \times \partial O_k)_{k=1,2}$. Then we calculate backwards the weights of the connections between the hidden
261 and output layers [9] using the delta correction: [23] $\delta WO_{jk} = (\delta O_k \times HO_j)_{j=1,..,N; k=1,2}$. The output
262 delta error, [22], is also backward propagated to the derivative of the hidden layer neurons sigmoid
263 function, [14], getting: [24] $\partial HO_j = (HO_j \times (1 - HO_j))_{j=1,..,N}$, and the delta error correction is: [25]
264 $\delta HO_j = (\sum_{k=1}^2 (\delta O_k \times WO_{jk}) \times \partial HO_j)_{j=1,..,N}$. And finally, the inputs to hidden weights delta
265 correction, [26] $\delta WH_{ij} = (\delta HO_j \times CMD_i)_{i=1,..,3; j=1,..,N}$, is calculated and applied to update [6].

266 The individuation between the two fingers was defined as the ratio of the difference to the sum of
267 the instructed (FO_1) and uninstructed forces (FO_2), [27] $I = (FO_1 - FO_2)/(FO_1 + FO_2)^{17}$.

268 2.2. Initialization and Parameter Setting

269 We set the global parameters to configure the main structure of the NN, e.g., number of hidden layer
270 neurons (N=400), number of inputs (NI=3), and number of outputs (NO=2). We defined the
271 dependent parameters to configure the inner structure of the NN, e.g., focality of the network
272 (focal=0.4, 40%), inhibitory neurons (inhibit=0.05, 5% of the focal), and the rest of the neurons are
273 the RS. We used the training and simulation related parameters to control the learning process, error
274 correction resolution steps (eta=0.01), training cycles as number of days ($nDays=360$), and training
275 repetition in each training cycle as daily dosage ([50, ..., 50, 200, ..., 200, 50, ..., 50, 0, ..., 0] vector of
276 dosage values per day), defined differently for every stage of the training.

277 For setting up the NN structure we used mask and status variables, [17][18][19], based on the
278 functions’ connectivity between the layers and pre/post stroke status as described in Section 1
279 (Model Description and **Figure 1**, ANN Architecture Diagram) and defined in Section 0 (Mathematical
280 Definition).

281 The initial weights of the NN were normally distributed numbers generated from the open interval
282 (0,1) ($\sim normal(\mu = 0.5, \sigma^2 = 1/12)$) and are then masked using the mask variables, [17][18],
283 while the non-connected weights were eliminated (set to “0”).
284 The bias constants were also weighted (generated similarly to the NN weights) to provide additional
285 differentiation among different neurons’ activation functions. They were added as additional
286 parameter inputs to the neurons of the hidden and output layers. The bias was used to compensate
287 for the nature of the input values from one layer to another and the dependencies between the
288 excitatory and inhibitory clusters, and adjust the distribution of the summed values within the desired
289 range of the activation function for a better fitting. The bias setting process requires several trial-and-
290 error tests before selecting good values for the NN model best fit. The hidden layer bias was set to “-
291 6” and the output layer bias was set to “-1”.

292 2.3. Training and Simulation Methods

293 For training the ANN, not to be confused with, and not meant to simulate human motor training, the
294 command targets and instructed force of the two fingers (CMD_1, CMD_2, FRC , respectively) are fed
295 as inputs to the ANN. The fingers’ performance (actual response of the two fingers) were the actual
296 result, i.e., the output of the ANN (FO_1, FO_2) as calculated in a feed-forward propagation. The error
297 function was calculated and minimized in every iteration of the training process using gradient
298 descent in a back-propagation flow (see Section 0, Mathematical Definition). The training for the
299 initial normal condition is achieved by applying a multi-day and recurrent dosage force-based motor
300 tasks to the normal (i.e., healthy) “pre-stroke” ANN, starting from an initially randomized state and
301 converging to the desired instructed finger commands behavior. The simulation data is collected
302 throughout the training process for later post-processing and demonstration.

303 We simulated a stroke by disabling a portion of the neurons in the hidden layer of the trained ANN,
304 in proportion to the severity of the stroke, using the NS variable, [19]. To emphasize this, the lesion
305 state was the actual outcome of the injured trained model without further training. The force-based
306 motor commands were simulated at the stroke condition and the fingers’ outcome values were
307 collected. In conjunction to the stroke, we reduce the learning capability (η) in accordance with the
308 lesion severity. As assumed, injured brain plasticity is affected, and hence motor learning ability might
309 be reduced.

310 Immediately after the lesion, the recovery process of the residual ANN represented the recovery that
311 typically occurs at the early post-stroke phase and may continue to the chronic phase. The ANN is
312 trained following the same method applied during the initial stage, and the simulation data is
313 collected as well, but with the stroke condition as a starting point.

314 Since we are using all variants of movement commands for training, no additional validation is
315 required for testing the converged NN; however, the quality of the NN convergence is highly
316 dependent on initial values of the weights and may need several trials to reach the optimal NN for
317 our different simulation usages. Configuring different ANN setups is done by setting new values for
318 the ANN global parameters. In addition, the training can be tuned with number of days of recurrent
319 loops with configured dosage iterations and learning factor.

320 2.4. Training and Simulation Flow

321 The following steps are required to prepare the ANN database for simulation:

- 322 a. Configure the parameters for the desired ANN.
- 323 b. Select force (0,1] and initialize for chosen ANN setup/database.
 - 324 • Select force $\neq 0$ for simulation only using already saved initialization database.
 - 325 • Use “0” to randomly generate new weights for new initialized training (this will also
326 apply a full force), the new ANN database is saved.
- 327 c. Train the model at baseline normal state (pre-stroke), the ANN simulation data is collected.
- 328 d. Apply the acute-phase stroke condition by manipulating the number of neurons in the hidden
329 layer of the NN.
 - 330 • Deleting/blocking the function of some pool of neurons mimics the effect of the stroke
331 in the brain.
 - 332 • Severity of lesion would be represented by size of reduction in number of neurons.
 - 333 • Run simulation and collect data (no training is applied at this step).
- 334 e. Apply the recovery and collect simulation data.
 - 335 • This stage becomes the initial state of the chronic phase.
 - 336 • Additional training for the finger tasks movement can be applied representing
337 additional neurorehabilitation at chronic phase.
- 338 f. Compare collected simulation results with existing clinical study quality behavior.
- 339 g. Repeat b-f with different force cases to collect data for enslaving vs. force.

340 h. Repeat b-g with different stroke cases, stroke severity correlates with the lesion size and
341 therefore the number of neurons deleted, and thus we represent different stroke cases.

342

343 **3. Statistical Analysis**

344 Statistical comparison between synaptic weights of the residual neurons before and after stroke was
345 conducted using a paired two-tailed *t*-test. Specifically, we compared how the different weights were
346 conditioned when re-trained after stroke. Significance level for all tests was set at 0.05.

347

348 **Results**

349 **Finger strength and individuation in normal, lesioned and recovered condition**

350 The ANN model is first initialized to approximately 50% of full force and zero individuation, starting
351 with randomly generated weights, and then trained for two fingers (index and middle) to a pre-stroke
352 condition by applying the instructed/uninstructed and force commands alternately in the same
353 training set. At the end of this initialization process, the ANN is fully capable of the trained motor
354 functionality of the two fingers for the two commands. The simulation data is collected throughout
355 the training convergence and demonstrates the model behavior of this stage. The simulation shows
356 the enhancement in the strength of the instructed/uninstructed fingers and individuation between
357 them (maximizing the instructed force and minimizing the uninstructed force), and concurrently for
358 the two fingers (see **Figure 2A**: command #1 simulation, pre-stroke-day, and **Figure 2B**: command #2
359 simulation, pre-stroke-day). The instructed force reaches 95.79% (index) and 96.48% (middle) of the
360 maximum force, while the uninstructed involuntary force reaches 9.04% (middle) and 8.41% (index)
361 of the maximum force. The individuation was measured as 0.83 and 0.84, respectively.

362 A stroke event is applied by deleting 40% of the neural network from the hidden layers (see Section
363 0, Model Definition). The simulation with the two commands is executed at this point and exhibits
364 the behavior of the impaired model via a drop in the instructed force, rise in the uninstructed force
365 and detriment to the individuation between the two fingers (see **Figure 2A**: Command #1 Simulation,
366 stroke-day, and **Figure 2B**: Command #2 Simulation, full force, stroke-day). The instructed force
367 reaches 56.36% (index) and 63.37% (middle) of the maximum force, while the uninstructed force
368 reaches 35.12% (middle) and 24.52% (index) of the maximum force. The individuation was measured
369 as 0.23 and 0.44, respectively.

370 Following the stroke event, i.e., proceeding from the stroke condition state, the model is trained
371 using the same training method to regain some enhancement of the motor behavior and to represent
372 the recovery early after stroke. Similar to the pre-stroke stage, simulation data is captured
373 throughout the training process up to the limit of the impaired ANN convergence. We observe a rise
374 in the instructed force and drop in the uninstructed force, and eventually enhancement in the
375 individuation (see **Figure 2A**: command #1 simulation, post-stroke recovery, and **Figure 2B**:
376 command #2 simulation, post-stroke recovery). The instructed force reaches 89.65% (index) and
377 87.06% (middle) of the maximum force, while the uninstructed force reaches 17.51% (middle) and
378 14.55% (index) of the max force. The individuation was measured as 0.67 and 0.71, respectively.

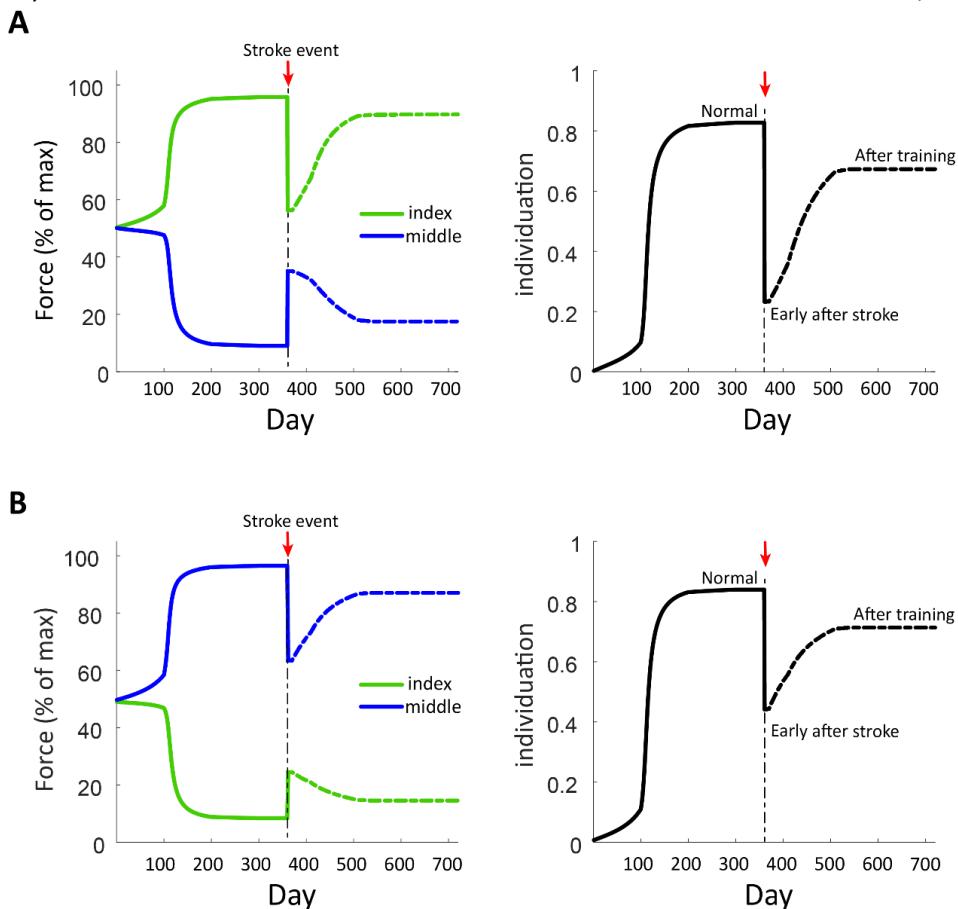
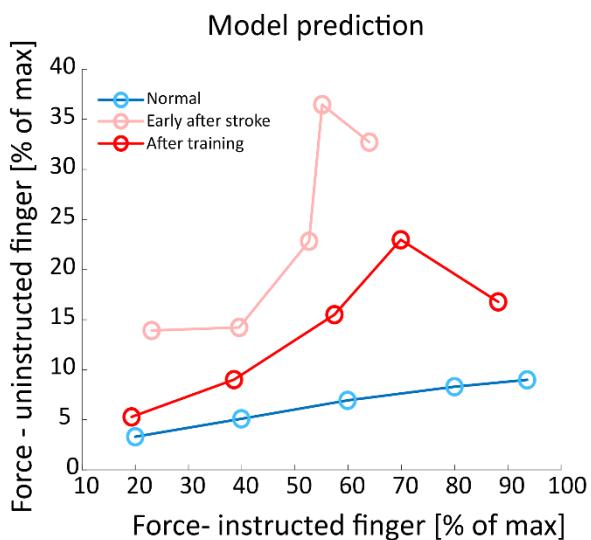


Figure 2. Fingers' strength and individuation before and after stroke as predicted by the model. A. Command #1 Simulation (Index instructed, Middle uninstructed, Force 100%) simulating pre-stroke phase training, max instructed force and min uninstructed force (left), and full individuation (right), are achieved. Stroke event showing lesion acute phase degradation in instructed force and increase in uninstructed/unintentional force, leading to individuation reduction between the two fingers. The recovery early after stroke demonstrates enhancement in instructed and uninstructed force behavior and thus individuation recovery. **B.** Command #2 Simulation (Index uninstructed, Middle instructed, Force 100%) results and behavior are similar in qualitative manner to A.

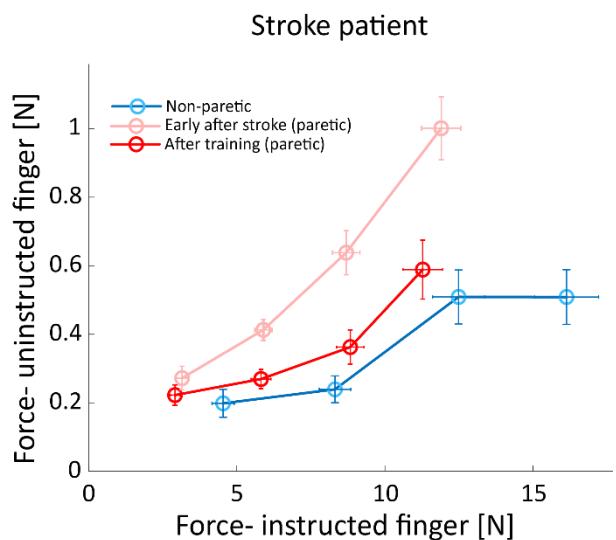
382 **Increased co-activation of uninstructed finger as a function of instructed finger strength**

383 Next, we sought to explore the relationship between the force of the uninstructed finger for different
384 strength amplitudes of the instructed finger. To test this relationship in our model, we repeated the
385 simulations with different force targets and measured the uninstructed involuntary force from the
386 middle finger and the instructed force from the index finger in the different phases (normal, early
387 after stroke during recovery training, and post-recovery training) of these simulations for each force
388 target. In **Figure 3**, we plotted the uninstructed vs. instructed forces (normalized to max force in our
389 simulation, the clinical results were plotted as measured). The y axis represents the co-activation (i.e.,
390 involuntary forces) produced by the uninstructed finger in accordance with the applied force of the
391 instructed finger as shown on the x axis. The slope ratio represents the individuation ability of the
392 instructed finger. We see that early after stroke, the involuntary force of the uninstructed finger
393 increases (i.e., reduced individuation) to more than it was in the normal/non-paretic case in both the
394 model and stroke patient graphs.

A



B



395

396 **Figure 3. Uninstructed forces as a function of instructed finger strength.** Model prediction (left) vs. clinical measurements
397 (right): Recovery effect on finger individuation as predicted by the model and as observed in a stroke patient. **A.** Forces in the
398 uninstructed finger plotted against the force generated by the instructed finger at multiple force amplitudes as predicted by
399 the model. Colored lines represent normal pre-stroke phase (blue), acute phase (light red), post-recovery (induced
400 spontaneously or with training early after stroke) and chronic phase (dark red). Model parameters: (Index instructed, Middle
401 uninstructed, Stroke: 40%, Forces: 20%, 40%, 60%, 80%, 100%). **B.** Reduced enslaving in the individuation task in a stroke
402 participant (data from Mawase et al., 2020). Forces of the non-instructed finger as a function of the forces in the instructed
403 finger for the non-paretic hand reflecting the pre-stroke baseline level (blue), early after stroke (light red) and after training
(dark red).

404 Interestingly, after recovery (e.g., induced by spontaneous recovery and/or additional rehabilitative
405 training), we observed that the model predicted reduced involuntary uninstructed force (i.e.,

404 increased individuation) that got closer to a normal level (**Figure 3 A**, Model Prediction). Quantitatively,
405 this reduction was captured by the slope of a linear regression line that was fitted to each data set
406 and showed an almost flat line (slope=0.078, with 95% CI of 0.06-0.09) in the normal condition (i.e.,
407 before stroke), substantial increase of slope (slope=0.55, with 95% CI of -0.09-1.192) immediately
408 after stroke and significant reduction (slope=0.22, with 95% CI of -0.04-0.049) after recovery. This
409 uninstructed force-finger strength relationship replicated what we have previously reported in
410 human stroke patients (**Figure 3 B**, Stroke Patient: shows actual data from a stroke participant during
411 an individuation task⁷).

412

413 **Effect of lesion size on finger individuation**

414 We measured the effect of lesion size on finger individuation during the acute and sub-acute recovery
415 phases. A large lesion in our model is presumed to reflect a large infarct in the cortical and/or CST
416 regions. Our model predicted that very small lesion size (e.g., up to 10% of the total neurons in the
417 hidden layer) results in almost no degradation in forces or individuation. With 20% lesion size, we see
418 a small effect of the stroke in the acute phase, but the model is still capable of regaining almost all
419 its motor capabilities after the recovery training process. Lesion sizes in the range of 30%-70% result
420 in a decrease in finger individuation in the acute phase followed by improvements in motor function
421 that asymptote to levels below full recovery. These below-normal-function levels are apparently
422 related to the severity of the stroke and the amount of training induced by the model. Finally, the
423 model predicted that lesion sizes in the range of 80-90% cause a severe drop in motor function that
424 cannot be effectively restored, and additional training enhancements are very limited (**Figure 4 A**).

425

426 We tested a resulting assumption that effect of lesion size on finger individuation is driven by the
427 relative changes between instructed and uninstructed fingers. To test this, we measured the effect
428 of lesion size as predicted by the model on the instructed and uninstructed forces early after stroke,
429 during the recovery process and after recovery completion. We plotted the uninstructed forces and
430 the instructed forces vs. lesion size on the same plot for comparison (**Figure 4 B**). We see that the
431 instructed force values are always inversely related to the lesion size, i.e., they have similar slope
432 direction in the different measurement states, however, the slope is steeper early after stroke, less
433 steep during recovery and becomes more moderate towards the end of training. The uninstructed
434 force values, however, show a different behavior. While the plots early after stroke and during

435 recovery have similar slope-direction compared to the instructed force plots slopes, indicating an
436 inverse relationship to the lesion size. We found that after training, the slope was inverted, and the
437 uninstructed force was directly relative to the lesion size. Overall, this suggests that the recovery of
438 finger individuation is directly related to lesion size, signifying reduction in the capability to reduce
439 the uninstructed force.

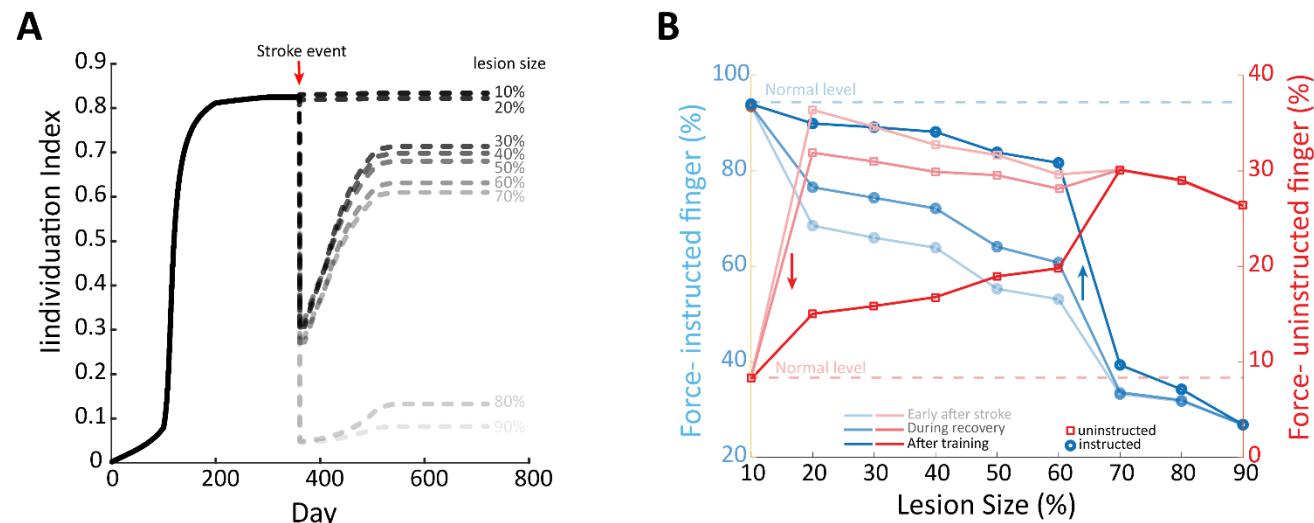


Figure 4. Effect of lesion size on instructed vs uninstructed fingers. Model parameters: (Index instructed, Middle uninstructed, Stroke 10-100%, Force 100%). Simulations: All are trained similarly during pre-stroke phase, then stroke with different lesion sizes is applied. We recorded the results early after stroke at sub-acute phase, then during recovery in chronic phase and at the end of rehabilitation effort. **A.** Individuation between Index and Middle fingers in accordance with lesion size. The graph demonstrates that the greater the lesion size, the more severe the stroke effect on individuation, and the less likely recovery is after stroke. Lesion sizes <20% have minimal effect on the individuation and recovery. **B.** The dynamics of fingers' strength following lesion with different sizes. In the instructed finger (blue lines), the greater the lesion size, the less instructed force that can be produced by the model, starting with the light blue capturing the forces early after stroke, the darker blue during recovery and darkest blue at end of rehabilitation process. Recovery increases from the acute post-training phase, i.e., increase in instructed force. The uninstructed force (light red lines) is inversely affected by the lesion size early after stroke and during recovery. After training, however, the uninstructed force (dark red) is directly affected by lesion size, as seen by reduced uninstructed force levels compared to what is predicted early after stroke.

441

442 **Changes in synaptic weights in residual CST and RST during stroke recovery**

443 The observation of improved finger individuation after stroke is proposed to be associated with
444 plasticity changes in network connectivity of the residual neurons. Specifically, we investigated how
445 the connectivity strength of the model changed during the recovery process, i.e., how the different
446 weights were conditioned when re-trained after stroke. We evaluated a representative case, 100%

447 force and 40% stroke, which demonstrates the recovery enhancements in both force and
 448 individuation of the two fingers (**Figure 5**).

449 We found increased plasticity of the residual neurons, as reflected by gain increase (paired *t*-test,
 450 $p < 0.0001$) in the command to the instructed finger's focal weights (i.e., connectivity between
 451 premotor and focal cortical excitatory neurons, **Figure 5 A**). Although it did not reach statistical
 452 significance ($p = 0.18$), the connectivity for the focal inhibitory neurons showed a similar trend of
 453 positive gain (**Figure 5 B**). On the other hand, we found reduction in connectivity in shared cortical
 454 neurons ($p < 0.0001$, **Figure 5 B**). The network solution predicted that the reticulospinal pathway
 455 (i.e., RST) also contributed to the improved behavior (**Figure 5 D**). This is demonstrated by significant
 456 increase ($p = 0.0181$) of synaptic weight in the force input of the RS neurons. No change ($p = 0.9$)
 457 was detected in weights between the command and the RS neurons (**Figure 5 E**). **Figure 5 F**
 458 summarizes the re-organization of the residual neurons of the network that contributed to the
 459 recovery of finger individuation after stroke. Improved finger individuation was achieved by
 460 strengthened connectivity of focal excitatory cortical neurons, weakened shared excitatory cortical
 461 neurons of the other finger and strengthened connectivity of RS neurons.

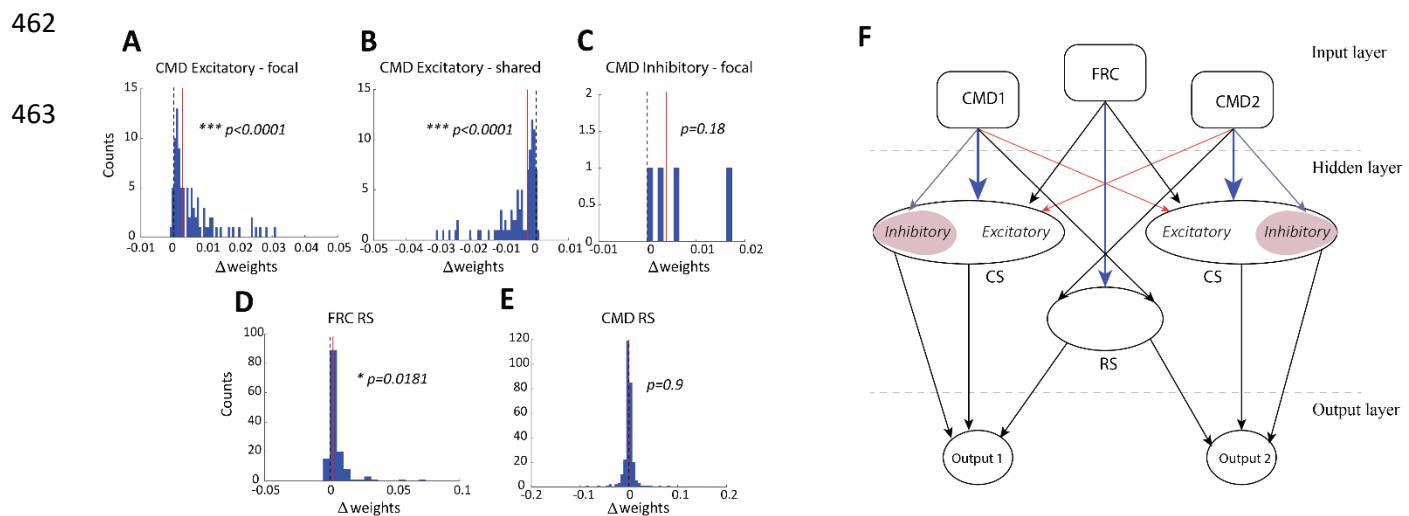


Figure 5 . Weight Gain Histograms. Model Parameters: (Index instructed, Middle uninstructed, Stroke 40%, Force 100%).
A. CMD to excitatory focal (direct-finger) weights gain increased. **B.** CMD to excitatory focal (opposite-finger) weights decreased. **C.** CMD to inhibitory focal weights gain increased. **D.** CMD to RS weights gain almost unchanged (slightly increased). **E.** FRC to RS weights gain increased. **F.** Re-organization of the impaired network during recovery of finger individuation after stroke. Blue arrows – increased connectivity, red arrows- reduced connectivity and black arrows- no significant change in connectivity. Abbreviations: CMD – command, FRC – force, RS – reticulospinal. * indicates $p < 0.05$, *** indicates $p < 0.0001$.

464 **Discussion**

465 In the present study, we designed an ANN model with physiologically-based architecture that
466 provides a naturalistic solution for recovery of finger dexterity after stroke. Our central result is that
467 an ANN trained to produce finger individuation exhibited dynamics that strongly resemble that of
468 healthy individuals and patients after having recovered from a stroke. The resemblance between the
469 model outcome and reported data in previous clinical works was manifested by the substantial
470 reduction of finger individuation immediately after stroke^{2,7}, the recovery pattern following training,
471 the near-linear relationship between uninstructed forces and instructed finger strength and the
472 relationship between lesion size and severity of impairment in finger individuation^{5,6,7}. Notably, this
473 agreement was not achieved by fitting the ANN to actual clinical data. Rather, the agreement
474 between model outcome and clinical data emerged as a result of the architecture of the
475 excitatory/inhibitory cortical CS and subcortical RS neuron pools needed to generate the normal
476 patterns of individuation. And as mentioned earlier, once initialized to pre-stroke condition, our
477 solution is capable of simulating dynamic functional capacity of the cortical motoneurons throughout
478 the lesion event and the recovery process that follows. In addition, the model makes predictions that
479 might provide mechanistic explanation about the functional reorganization of the cortical and
480 subcortical network during recovery of control of finger movement.

481 Our modeling study provides a framework by which to understand a number of experimental findings
482 related to finger dexterity. First, the pattern of instructed forces, uninstructed forces and
483 individuation in a normal condition, as seen in **Figure 2**, mimics the convergence relation between
484 the instructed to uninstructed force levels as observed in humans and primates^{8,10}. Second, the
485 immediate ANN response to the simulated stroke event revealed increased involuntary uninstructed
486 forces that were driven by weakening of the instructed finger and exaggerated force of the
487 uninstructed finger. This is in agreement with documented clinical observations of acute post-stroke
488 phase finger functionality in which post-stroke patients exhibit reduced instructed finger force
489 capacity and increased uninstructed forces^{3,22}. Third, the model exhibited how the impaired motor
490 system re-adjusted and learned new neural activation of the residual cells to compensate for the loss
491 in finger control during the recovery process. Behaviorally, we observed an increase in the instructed
492 force and decrease in the uninstructed force, and eventually enhancement in finger individuation
493 during the recovery period. This is in line with recent studies that showed meaningful improved, yet
494 incomplete, finger individuation during the early months after the stroke event^{5,22}.

495 **Cortical-subcortical neural basis of finger individuation**

496 Our model predicts post-lesion plasticity in both cortical and subcortical areas for recovery of finger
497 dexterity. While strengthening of the connectivity in the residual descending cortical pathway seems
498 to contribute to a larger extent to fractionating finger movement, strengthening of the rubrospinal
499 tract seems to compensate for the loss of finger strength¹⁵. Inspection of changes in synaptic weights
500 during stroke recovery as predicted by the model revealed plasticity in the residual CST and RST.
501 Specifically, we observed strengthening of the weights to the focal cortical excitatory and inhibitory
502 neurons, that together control the desired finger movement. Strengthening these weights indicates
503 enhancing the individuation and some extent of force. On the other hand, we reported weakening
504 of the weights that connected the focal neurons to the other finger. This reduced contribution
505 inversely affected the individuation, and thus weakening them is in favor of individuation.
506 Paradoxically, the model predicts that strengthening of the non-focal brainstem connectivity also
507 constrains the individuation recovery due to the facilitatory effect of such increased connectivity on
508 strength of the uninstructed finger. Specifically, we found that weights connecting to RS neurons that
509 mainly serve for applying force are strengthened. The weights of the connection between force
510 command and RS neurons apparently do not add to the generated force or individuation in these
511 conditions. This striking feature of model prediction mirrors neurophysiological findings in previous
512 primate models¹⁵.

513 Many previous studies in human and animal models provide evidence that the corticospinal tract and
514 rubrospinal tract underlie finger dexterity and strength, respectively²⁴. In 1968, Lawrence and
515 Kuypers examined the effects of lesions to the CST and found that the capacity for independent
516 movements of the hand digits was lost after a complete bilateral lesion of the pyramidal tract; while
517 strength was severely impaired after bilateral disruption of the RST^{8,16}. In human stroke, Xu and
518 colleagues analyzed diffusion tensor imaging (DTI) data and measured finger individuation and
519 strength and found that lesions in the hand areas in M1, as well as the CST, correlated more with
520 impaired individuation than with strength in humans with stroke⁵. A recent follow-up TMS study
521 demonstrated the reliance of finger individuation recovery on the integrity of CST as measured by
522 the presence of motor evoked potentials in the hand²⁵. Zaaimi et al., 2012¹⁵ found that connections
523 from medial brainstem pathways (probably largely rubrospinal tract) undergo functional changes
524 after corticospinal lesions, and that the connection strengthening was selectively specific for inputs
525 to forearm flexors, but not extensors that were left unchanged. This asymmetric muscle-specific

526 pattern of recovery has been widely seen in stroke patients^{26,27}. After initial paralysis, stroke patients
527 show increased activity of flexor muscles, including finger flexors, that sometimes developed into
528 abnormal flexion synergies. Activity of the extensor muscles, in contrast, remains very weak and
529 unchanged¹. The (in)ability to voluntarily activate finger extensors is a reliable biomarker predicting
530 functional outcomes²⁷.

531 **Severity of impairment in finger dexterity correlated with lesion size in the motor cortex**
532 **and motor-related subcortical areas**

533 There is mounting evidence suggesting that lesion size within specific brain areas might be a major
534 factor in the ability to restore motor function after stroke, and the improvement, or lack thereof, in
535 motor activity^{28–30}. Several studies have demonstrated that greater damage to the corticospinal
536 projections is associated with more impairment in stroke patients^{31–33}. Our model demonstrates the
537 correlation between lesion size in motor areas and reduced plasticity of the injured brain, which
538 explains the (in)ability to restore motor function in these cases. In our model, a very small lesion size
539 around 10% does not induce impairment in the motor function. This might be explained by the fact
540 that the NN model is converged to a “mathematically” stable global minimum and requires a
541 substantial “hit” to be disturbed. This aspect of our model is in accordance with clinical data of stroke,
542 as the effects on function of mild strokes can be difficult to quantitatively assess^{34–37}. In the range of
543 20% to 70% lesion size, we can observe the effect of the stroke event in our model. The modelled
544 acute phase emphasizes the level of the disturbed motor function relative to the size of the injured
545 brain region and shows that there is still room for a certain amount of spontaneous recovery of motor
546 capabilities, but that it is limited inversely to the lesion severity. In our model, lesion size with more
547 than 80% dead neurons demonstrates severe impairment of motor function that is almost incapable
548 of being restored and minimally or not responsive to rehabilitation. The clinical analogue has been
549 documented in the literature with poor functional outcomes for severe stroke and a more difficult
550 challenge to design and implement rehabilitation protocols capable of inducing improvements in this
551 population^{38,39}. Nevertheless, neurophysiological quantification of residual CST neurons that survived
552 after the stroke, as well as association between this quantity and motor impairments, require future
553 research with high-resolution imagining tools.

554 Our model predicts a decrease in uninstructed force, as a function of lesion size, immediately upon
555 stroke event and early after stroke (i.e., acute and sub-acute phases). A possible explanation for this

556 is that the model's post-stroke "motor system", including CST and RST, has less available neurons
557 that can affect force, and since the involuntary forces of the uninstructed finger are linearly affected
558 by the amount of applied force in the instructed finger, when less instructed force can be generated
559 by the model's "motor system", it will lead to less uninstructed force as well. When rehabilitative
560 training is applied, the slope of the uninstructed force is inverted. This can be explained by the
561 model's ability to adjust the remainder of the intact neurons, thus allowing higher gain with smaller
562 lesion sizes. In the case of small lesions (e.g., less than 60%), reduction in uninstructed force might
563 be driven by changes in the residual inhibitory cortical neurons. Nevertheless, our model predicts
564 that when the lesion size is large (e.g., above 60%), most of the inhibitory neurons are removed,
565 leaving no room for enhancement, and thus limiting the reduction of the uninstructed force after
566 training.

567 The individuation, as we observe in **Figure 4 A**, is calculated based on the normalized difference
568 between instructed and uninstructed forces. Immediately and early after stroke, the magnitude of
569 the decrease in the instructed forces across different lesion sizes is larger than the magnitude of the
570 increase in the uninstructed forces; therefore, individuation decreases as lesion size increases.
571 Recovery induced by training and/or occurring spontaneously caused increase in the forces of the
572 instructed finger and decrease in the uninstructed forces. This can be explained as enhancement in
573 the focal segments, excitatory and inhibitory weights, with the excitatory neurons positively affecting
574 the instructed forces and, conversely, the inhibitory neurons negatively affecting the uninstructed
575 forces.

576 Altogether, these results indicate that relatively simple dynamics between cortical and subcortical
577 neurons could provide a naturalistic explanation for the recovery of finger dexterity. It is essential to
578 understand which subsystems contribute to recovery of finger movement in order to provide a
579 rational basis to develop circuit-level therapeutic strategies that will optimize rehabilitation. Some
580 aspects of the reported finding are in accordance with well-reported clinical and neurophysiological
581 outcomes, but others provided mechanistic prediction of the interactive relationships in the neural
582 network that underlie finger dexterity. These predictions can be tested in future research working
583 primarily with human and/or animal models that typically exhibit finger dexterity.

584

585 **Limitations and future directions**

586 Our model has some limitations. First, in this work we limited our model to two fingers (index and
587 middle). In addition, the hidden layer segments of the NN, focal CS and RS neurons, were uniformly
588 split between the two fingers' function divisions and have similar connectivity between the different
589 layers, and thus have the same capacity of capabilities and dependencies, i.e., the two fingers are
590 mutually inclusive in achieving the instructed forces and enslaving each other. In addition, the stroke
591 was applied to all segments of the NN neurons with equal weight (same percentage). These
592 assumptions do not necessarily represent the real organization of the motor system, nor does it
593 reflect how a real stroke lesion may differently affect motor divisions and representation of multiple
594 fingers. In fact, it was shown that control of individuated finger movement is widely distributed in
595 the primary motor cortex², and electrical stimulation often elicited involuntary movements of
596 multiple fingers^{10,40}. Finally, our model is an oversimplification of the proposed network that
597 potentially underlies recovery of finger dexterity. Simplification of the proposed ANN model was
598 pronounced in its architecture, including design, connections, and training. Thus, although our model
599 predicated plausible outcomes that highly resembled data from human and/or primate research, it
600 seems that more complex architecture of neural networks including additional brain areas, beyond
601 cortical and RST, must be involved in control of finger movement.

602 As for future directions, though the ANN model was limited to two fingers for our simulation
603 requirements, the model is easily scalable to support all fingers and can be adjusted to support
604 individual forces (different force levels) of the instructed fingers. In this case, the level of complexity
605 of the model increases, and the training set must be revised accordingly, and thus simulation run
606 time increases substantially. Such enhancements and/or adding further motor-related divisions may
607 be optimally addressed using one of the commonly used advanced computations. More advanced
608 neural network models or deep learning frameworks might be used and trained to simulate
609 enhancements in both strength and individuation in hand motor function, based on existing clinical
610 experiments and available data (e.g., size of lesion and affected part/s of the brain motor divisions).

611 Our model makes clinically-testable predictions. For example, it predicts that post-stroke CST/RST
612 integrity is correlated with improved finger dexterity recovery. This prediction could be verified in a
613 clinical study wherein CST/RST tractography from diffusion-weighted MRI is used to predict patient
614 outcome. This protocol could validate this model finding and possibly lead to future clinical work that

615 stratifies patients into therapeutic interventions based on CST/RST tractography and the model's
616 predictions of expected recovery. Thus, ultimately, treatment can be planned based on the desired
617 target goals for finger individuation and/or strength. The improvement, or lack thereof, in the motor
618 activity as predicted by the model will help us estimate the amount of motor recovery of the training
619 dataset.

620 References

- 621 1. Twitchell TE. 1951. The restoration of motor function following hemiplegia in man. *Brain* 74(4):443–
622 480.
- 623 2. Schieber MH, Poliakov A V. 1998. Partial Inactivation of the Primary Motor Cortex Hand Area: Effects
624 on Individuated Finger Movements. *Journal of Neuroscience* 18(21):9038–9054.
- 625 3. Li S, Latash ML, Yue GH, et al. 2003. The effects of stroke and age on finger interaction in multi-finger
626 force production tasks. *Clinical Neurophysiology* 114(9):1646–1655.
- 627 4. Lang CE, Schieber MH. 2004. Reduced Muscle Selectivity during Individuated Finger Movements in
628 Humans after Damage to the Motor Cortex or Corticospinal Tract. *Journal of Neurophysiology*
629 91(4):1722–1733.
- 630 5. Xu J, Ejaz N, Hertler B, et al. 2017. Separable systems for recovery of finger strength and control after
631 stroke. *Journal of Neurophysiology* 118(2):1151–1163.
- 632 6. Wolbrecht ET, Rowe JB, Chan V, et al. 2018. Finger strength, individuation, and their interaction:
633 Relationship to hand function and corticospinal tract injury after stroke. *Clinical Neurophysiology*
634 129(4):797–808.
- 635 7. Mawase F, Cherry-Allen K, Xu J, et al. 2020. Pushing the Rehabilitation Boundaries: Hand Motor
636 Impairment Can Be Reduced in Chronic Stroke. *Neurorehabilitation and Neural Repair* 34(8):733–745.
- 637 8. Lawrence DG, Kuypers HGJM. 1968. The functional organization of the motor system in the monkey:
638 I. The effects of bilateral pyramidal lesions. *Brain* 91(1):1–14.
- 639 9. Lemon R. 1988. The output map of the primate motor cortex. *Trends in Neurosciences* 11(11):501–
640 506.
- 641 10. Schieber MH. 1990. How might the motor cortex individuate movements? *Trends in Neurosciences*
642 13(11):440–445.
- 643 11. Chapman CE, Wiesendanger M. 1982. Recovery of function following unilateral lesions of the bulbar
644 pyramid in the monkey. *Electroencephalography and Clinical Neurophysiology* 53(4):374–387.
- 645 12. Schwartzman RJ. 1978. A Behavioral analysis of complete unilateral section of the pyramidal tract at
646 the medullary level in macaca mulatta. *Annals of Neurology* 4(3):234–244.
- 647 13. Riddle CN, Edgley SA, Baker SN. 2009. Direct and indirect connections with upper limb motoneurons
648 from the primate reticulospinal tract. *Journal of Neuroscience* 29(15):4993–4999.
- 649 14. Soteropoulos DS, Williams ER, Baker SN. 2012. Cells in the monkey ponto-medullary reticular
650 formation modulate their activity with slow finger movements. *The Journal of Physiology*
651 590(16):4011–4027.
- 652 15. Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN. 2012. Changes in descending motor pathway
653 connectivity after corticospinal tract lesion in macaque monkey. *Brain* 135(7):2277–2289.
- 654 16. Lawrence DG, Kuypers HGJM. 1968. The functional organization of the motor system in the monkey:
655 II. The effects of lesions of the descending brain-stem pathways. *Brain* 91(1):15–36.
- 656 17. Norman SL, Lobo-Prat J, Reinkensmeyer DJ. 2017. How do strength and coordination recovery
657 interact after stroke? A computational model for informing robotic training. In: *IEEE International
658 Conference on Rehabilitation Robotics*. p 181–186.

- 659 18. Norman SL, Wolpaw JR, Reinkensmeyer DJ. 2020. Targeting Neuroplasticity to Improve Motor
660 Recovery after Stroke. *bioRxiv* :2020.09.09.284620.
- 661 19. Koeppen BM, Stanton BA. 2008. *Berne & Levy Physiology*, 6th ed. Elsevier.
- 662 20. Tortora GJ, Derrickson BH. 2010. *Principles of Anatomy and Physiology*, 13th ed. Wiley.
- 663 21. Ashe J. 1997. Force and the motor cortex. *Behavioural Brain Research* 86(1):1–15.
- 664 22. Jo HJ, Maenza C, Good DC, et al. 2016. Effects of unilateral stroke on multi-finger synergies and their
665 feed-forward adjustments. *Neuroscience* 319:194–205.
- 666 23. Schieber M, Lang C, Reilly K, et al. 2009. Selective Activation of Human Finger Muscles after Stroke or
667 Amputation. *Advances in experimental medicine and biology* 629:559.
- 668 24. Baker SN. 2011. The primate reticulospinal tract, hand function and functional recovery. *Journal of
669 Physiology* 589(23):5603–5612.
- 670 25. Schambra HM, Xu J, Branscheidt M, et al. 2019. Differential Poststroke Motor Recovery in an Arm
671 Versus Hand Muscle in the Absence of Motor Evoked Potentials. *Neurorehabilitation and Neural
672 Repair* 33(7):568–580.
- 673 26. Cauraugh J, Light K, Kim S, et al. 2000. Chronic motor dysfunction after stroke: Recovering wrist and
674 finger extension by electromyography-triggered neuromuscular stimulation. *Stroke* 31(6):1360–1364.
- 675 27. Fritz SL, Light KE, Patterson TS, et al. 2005. Active finger extension predicts outcomes after constraint-
676 induced movement therapy for individuals with hemiparesis after stroke. *Stroke* 36(6):1172–1177.
- 677 28. Habegger S, Wiest R, Weder BJ, et al. 2018. Relating acute lesion loads to chronic outcome in
678 ischemic stroke—an exploratory comparison of mismatch patterns and predictive modeling. *Frontiers
679 in Neurology* 9(SEP):737.
- 680 29. Yoo AJ, Barak ER, Copen WA, et al. 2010. Combining acute diffusion-weighted imaging and mean
681 transmit time lesion volumes with national institutes of health stroke scale score improves the
682 prediction of acute stroke outcome. *Stroke* 41(8):1728–1735.
- 683 30. Vogt G, Laage R, Shuaib A, Schneider A. 2012. Initial lesion volume is an independent predictor of
684 clinical stroke outcome at day 90: An analysis of the Virtual International Stroke Trials Archive (VISTA)
685 database. *Stroke* 43(5):1266–1272.
- 686 31. Schaechter JD, Perdue KL, Wang R. 2008. Structural damage to the corticospinal tract correlates with
687 bilateral sensorimotor cortex reorganization in stroke patients. *NeuroImage* 39(3):1370–1382.
- 688 32. Lindenberg R, Renga V, Zhu LL, et al. 2010. Structural integrity of corticospinal motor fibers predicts
689 motor impairment in chronic stroke. *Neurology* 74(4):280–287.
- 690 33. Schulz R, Park C-H, Boudrias M-H, et al. 2012. Assessing the Integrity of Corticospinal Pathways From
691 Primary and Secondary Cortical Motor Areas After Stroke. *Stroke* 43(8):2248–2251.
- 692 34. Cole M. 1993. Measurement in neurological rehabilitation. *Neurology* 43(2):459.
- 693 35. Carlsson GE, Möller A, Blomstrand C. 2003. Consequences of mild stroke in persons <75 years - A 1-
694 year follow-up. *Cerebrovascular Diseases* 16(4):383–388.
- 695 36. Duncan PW, Samsa GP, Weinberger M, et al. 1997. Health status of individuals with mild stroke.
696 *Stroke* 28(4):740–745.

- 697 37. Edwards DF, Hahn M, Baum C, Dromerick AW. 2006. The Impact of Mild Stroke on Meaningful Activity
698 and Life Satisfaction. *Journal of Stroke and Cerebrovascular Diseases* 15(4):151–157.
- 699 38. Nakibuuka J, Sajatovic M, Nankabirwa J, et al. 2015. Early mortality and functional outcome after
700 acute stroke in Uganda: prospective study with 30 day follow-up. *SpringerPlus* 4(1):450.
- 701 39. Pereira S, Graham JR, Shahabaz A, et al. 2012. Rehabilitation of individuals with severe stroke:
702 Synthesis of best evidence and challenges in implementation. *Topics in Stroke Rehabilitation*
703 19(2):122–131.
- 704 40. Tanji J, Okano K, Sato KC. 1988. Neuronal activity in cortical motor areas related to ipsilateral,
705 contralateral, and bilateral digit movements of the monkey. *Journal of Neurophysiology* 60(1):325–
706 343.

707