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ABSTRACT

Cerebrovascular reactivity (CVR), defined here as the Blood Oxygenation Level Dependent (BOLD) response to
a CO; pressure change, is a useful metric of cerebrovascular function. Both the amplitude and the timing
(hemodynamic lag) of the CVR response can bring insight into the nature of a cerebrovascular pathology and
aid in understanding noise confounds when using functional Magnetic Resonance Imaging (fMRI) to study neural
activity. This research assessed a practical modification to a typical resting-state fMRI protocol, to improve the
characterization of cerebrovascular function. In 9 healthy subjects, we modelled CVR and lag in three resting-
state data segments, and in data segments which added a 2—3 minute breathing task to the start of a resting-
state segment. Two different breathing tasks were used to induce fluctuations in arterial CO; pressure: a breath-
hold task to induce hypercapnia (COzincrease) and a cued deep breathing task to induce hypocapnia
(COzdecrease). Our analysis produced voxel-wise estimates of the amplitude (CVR) and timing (lag) of the
BOLD-fMRI response to CO; by systematically shifting the CO- regressor in time to optimize the model fit. This
optimization inherently increases grey matter CVR values and fit statistics. The inclusion of a simple breathing
task, compared to a resting-state scan only, increases the number of voxels in the brain that have a significant
relationship between CO;and BOLD-fMRI signals, and improves our confidence in the plausibility of voxel-wise
CVR and hemodynamic lag estimates. We demonstrate the clinical utility and feasibility of this protocol in an
incidental finding of Moyamoya disease, and explore the possibilities and challenges of using this protocol in
younger populations. This hybrid protocol has direct applications for CVR mapping in both research and clinical
settings and wider applications for fMRI denoising and interpretation.
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1. INTRODUCTION

Brain blood flow is regulated by changes in vessel
diameter, directed by changes in perfusion pressure
and by metabolic demands of neural activity [1].
Cerebrovascular Reactivity (CVR), the blood flow
response to a vasoactive stimulus, is a metric that
reflects this regulatory ability and is a key means of
assessing cerebrovascular health. CO. is a potent
vasodilator and the partial pressure of arterial CO-
(PaCO;) naturally fluctuates with changes in
respiratory depth and rate. Within a certain range
around resting PaCO2, an increase in PaCO; will
cause vasodilation and a decrease will cause
vasoconstriction [1]-[3]; this change in vessel
diameter will result in a global change in blood flow
that can be captured by any functional Magnetic
Resonance Imaging (fMRI) contrast that is
dependent on blood flow changes. Driven by the
same physiological mechanism, the influence of
PaCO: on fMRI signals can either provide useful
information about vascular function, or confound our
measurement of neural function, depending on how
one models and interprets these effects. An ideal
fMRI  experiment should therefore include
characterization of CVR, both to provide
complementary vascular information and to better
model and interpret any neural activity of interest
(e.g., task activation, intrinsic fluctuations, and
functional connectivity). The main focus of this paper
is to assess how a practical modification of a typical
“resting-state” protocol improves CVR mapping,
focusing on regional variations in semi-quantitative
CVR amplitude and local hemodynamic timings.
Considering  broader applications, improved
modeling of PaCO; fluctuations in any fMRI data
naturally enables better differentiation between non-
neuronal confounds and neuronally-driven effects
and can aid in correcting fMRI analyses for
variations in transit delays and vascular properties of
the local hemodynamic response [4]-[10].

1.1. Practical CVR mapping: modelling both
amplitude and timing

Here we used the Blood Oxygenation Level
Dependent (BOLD) fMRI response to represent
blood flow changes, and the partial pressure of end
tidal CO. (PerCO,) to represent PaCO, changes
[11], [12]. Aside from an invasive contrast-agent
such as acetazolamide, CO; gas inhalation methods
are often seen as the gold standard for CVR
mapping with fMRI [13]. Gas inhalations allow more
precise and repeatable PaCO. targeting, however
these experiments are more timely, costly and
complicated to set-up, and are therefore not

practical for all research and clinical applications.
Much previous fMRI research has demonstrated that
CVR mapping with breathing tasks (breath holding,
BH, or cued deep breathing, CDB) is a promising
practical approach that can provide useful
information about cerebrovascular health [14], [15];
this has been demonstrated in a diverse set of
clinical cohorts, e.g. [16]-[30]. Resting PerCO2
fluctuations also have a significant positive
relationship with BOLD fMRI signals [31]. Therefore,
an even simpler approach to CVR mapping is to
measure natural fluctuations in PerCO- during fMRI
acquisitions with no specific task, i.e., during rest
[15], [32], [33]. This may be favored in clinical studies
where subject compliance with breathing tasks is
hard to achieve. The utility of this resting-state CVR
approach has also been demonstrated in clinical
cohorts [32], [34]-[37].

Both breathing tasks and resting-state approaches
produce comparable BOLD signal changes [9], [38],
[39], and are also comparable to those obtained with
gas-inhalation techniques [9], [32], [33], [40], [41].
There are few studies comparing breathing tasks
and resting-fluctuations for CVR mapping
normalized to a common scale, i.e., PerCO.. One
study, using PerCO2 regressors in their CVR
analysis, report that resting-state data shows poorer
model fits, poorer repeatability, and more variable
between-subject CVR estimates compared to BH
data, in 14 subjects [42]. CVR maps showed good
spatial agreement between BH CVR and resting-
state CVR when the latter is evaluated based on the
resting PerCO, trace and the resting state fluctuation
amplitude (RSFA), but in general their results
suggest it is not straight-forward to replace BH
designs with resting-state in the assessment of
CVR. In terms of agreement in CVR timing, [43]
reported a strong agreement between PgrCO;
latency values derived from a BH dataset and
resting-state dataset, in one subject. Also assessing
timing, [44] investigated the optimal temporal shift
between a grey matter (GM) BOLD time-series and
a PerCO; regressor, in 12 subjects, within a 16
second range. In the modelled resting-state data,
some subjects showed negative correlation values,
and no clear shift maximum within the temporal
bounds considered. For the modelled BH data, all
subjects showed a significant positive correlation
between BOLD and PgrCO; that peaks at a
physiologically plausible temporal shift. Further, BH
derived optimal shift values were repeatable within
two halves of the scan, whereas this was not the
case for optimal shift values derived with resting-
state data. Though CVR mapping with resting-state
data is possible, there exists intrinsic low-frequency
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oscillations, driven by neural activity or other
physiological processes [45]-[49] that can be of
similar or greater magnitude to the low-frequency
fluctuations induced by PerCO, sometimes resulting
in an fMRI time-course poorly coupled to PerCO..
Furthermore, breathing tasks induce larger
fluctuations in PerCO2 and therefore larger fMRI
signal changes which can be easier to detect above
noise. However, breathing tasks, as opposed to rest,
can introduce motion confounds that are correlated
with task timings [50]-[52].

Correcting for the temporal offset between a PerCO;
regressor and the local fMRI response is an
important and necessary step in estimating accurate
regional CVR values. Though the previous literature
has mixed approaches and results, robustly
characterizing this temporal shift in resting-state
data sometimes appears unreliable and less
repeatable. Within the BOLD fMRI literature, it
appears relatively common to correct for the
temporal offset with a cross-correlation between the
physiological regressor and an average fMRI
regressor. It is less common to model this temporal
offset on a voxel-wise basis, though there are
multiple examples in the literature showing the
implementation and advantages of this in resting-
state or breathing task data [6], [29], [43], [50], [53]—
[62]. This temporal offset is driven by both
methodological and physiological factors: there is a
delay between the CO, exhalation inside the
scanner and the recording of exhaled CO; in the
control room, vascular transit delays as gases travel
with the blood to arrive at each brain region and
variability in the vasodilatory response of local
arterioles and the spatio-temporal complexities of
the BOLD response. Therefore, it is important to
model CVR lag (also referred to as CVR timing,
optimal shift, temporal offset, latency or delay) on a
regional or voxel-wise basis. In healthy subjects, we
recently demonstrated our approach to voxel-wise
optimization of hemodynamic lag, to improve
regional BOLD-CVR estimates [63], [64], and we
apply this pipeline to our CVR mapping analysis in
this paper. As well as improving model fit and more
accurately characterizing CVR amplitude, making
maps of hemodynamic lag can provide distinct
regional information that is clinically relevant [61],
[65], [66] and potentially aid in correcting fMRI
analyses [4]-[10].

There is always a trade-off between complexity of
experimental set-up and how much control one can
have over the manipulation of blood gases. We
strive for simple and feasible methods that can be
applied in clinical settings, without losing too much

accuracy, and minimizing the disruption to the
overall scan session. Therefore, in this study we
propose a practical addition to a typical resting-state
fMRI scan: approximately 2.5 minutes of a breathing
task appended to the start of a resting state period.
We suggest that this novel hybrid design (breathing
task + resting state) will be useful for both mapping
of CVR amplitude and timings, ideally still allowing
for separate analysis of resting state data. We
compare CVR maps with and without lag
optimization, and CVR maps that have been created
with resting-state data alone, resting-state data
preceded by a short hypercapnic breathing task, and
resting-state data preceded by a short hypocapnic
breathing task. We chose two different breathing
tasks to achieve these PaCO; changes: the
commonly utilized breath-hold (BH) task to induce
hypercapnia (reviewed by [14]), and a cued deep
breathing task (CDB) to induce hypocapnia via
hyperventilation [50], [58], [67], both tasks reviewed
by [15].

2. METHODS
2.1. Data Collection

This study was reviewed by Northwestern
University’s Institutional Review Board and all
subjects gave written informed consent. Nine
healthy subjects were recruited (6 female, mean age
= 26.22+4.06 years). A tenth subject was recruited
of which a potential incidental finding was observed,
based on hemodynamic lag maps. The appropriate
ethical guidelines were followed in reporting of this
incidental finding, and it was later confirmed this
subject had a diagnosis of Moyamoya disease.
Therefore, this subject is not described alongside
the other nine subjects in this manuscript, but as a
case study in a separate section of the results.

The overall study design is shown in Figure 1. Before
scanning, subjects practiced the BH and CDB tasks
outside the scanner with the researcher (R.C.S).
Three fMRI scans were collected, the order of
acquisition pseudo-randomized across subjects
(Figure 1). BH and CDB timings were guided by
previous work using these tasks [42], [50] including
information about the BOLD time to peak and return
to baseline timings in response to a single deep
breath [57]. From three fMRI scans, five data
segments were created: BH + REST, CDB + REST,
REST, RESTgnand RESTcpg, of which the first two
contain breathing tasks and the others do not. Each
data segment had the same number of time points,
to match degrees of freedom across models. During
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Figure 1. (A) Five scans collected during the whole
session (40 minutes). The ASL scan is not analyzed in
this manuscript. (B) From 3 fMRI scans, 5 data
segments were extracted, each with the same number
of time points: 3 segments were REST only and the
other 2 segments involved a breathing task (BH/CDB)
followed by REST. Visual instructions for each task
were displayed on a monitor during scanning. (C) BH
task: IN and OUT instructions alternated for 3 s each,
with a countdown from 24 s. Subjects ended on an
exhale before holding, and were instructed to do
another exhale after holding. ‘Recover’ is a period of
free breathing. CDB task: IN and OUT instructions
alternated for 2 s and subjects were told to take fast,
deep breaths. REST: fixation cross shown.BH =
breath holding, CDB = cued deep breathing, CB =
cued breathing.

scanning, inspired and expired CO; and O
pressures (in mmHg) were sampled through a nasal
cannula worn by the participant, and pulse was
monitored with a finger transducer. Although pulse
data were collected, they were not included in the
modeling of fMRI data due to insufficient quality of
the recordings across many subjects and scans.
During the fMRI scans, volume triggers were
recorded. All signals were recorded at 1000Hz with
LabChart software (v8.1.13, ADInstruments),
connected to a ML206 Gas Analyzer and PL3508
PowerLab 8/35 (ADInstruments).

Imaging data were collected with a Siemens 3T
Prisma MRI system with a 64-channel head coil. The
functional T2*-weighted acquisitions were gradient-
echo planar sequences provided by the Center for
Magnetic Resonance Research (CMRR, Minnesota)
with the following parameters: TR/TE = 1200/34.4
ms, FA = 62°, Multi-Band (MB) acceleration factor =
4, 60 axial slices with an ascending interleaved
order, 2 mm isotropic voxels, FOV = 208 x 208 mm?,
Phase Encoding = AP, phase partial Fourier = 7/8,
Bandwidth = 2290 Hz/Px. Single-band reference
(SBRef) images were also acquired to facilitate
functional realignment and masking. A whole brain
T1l-weighted EPI-navigated multi-echo MPRAGE
scan was acquired, adapted from [68], with these
parameters: 1 mm isotropic resolution, 176 sagittal
slices, TR/TEL/TE2/TE3 = 2170/1.69/3.55/5.41 ms,
TI = 1160 ms, FA = 7°, FOV = 256x256, Bandwidth
= 650 Hz, acquisition time of 5 minutes 12 seconds,
including 24 reacquisition TRs. The three echo
images were combined using root-mean-square.
ASL data was also collected before the last fMRI
scan, but it was not analyzed in the current study.

Five example datasets from a pediatric study of
hemiparetic cerebral palsy and typical development
(ages 7-21 years, all female) are included to assess
the feasibility of our proposed method in cohorts
where task compliance may be more challenging. All
gave written informed consent or assent. Only one
functional T2*-weighted acquisition was collected.
The functional acquisition matched the parameters
explained previously, except for these key
differences: MB factor = 8, TR/TE=555/22 ms, FA =
47°, 64 slices, 6/8 phase partial Fourier, and FOV =
208x192. During this acquisition participants
completed a CDB+REST protocol that matched the
timings described previously, except auditory cues
were used instead of visual cues (Figure 10).
Expired CO;was collected as previously described.
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2.2. Data Analysis

The data from this study unfortunately cannot be
made openly available due to restrictions of the
ethical approval that they were collected under.
However, analysis derivatives that are not included
in this manuscript may be provided, on request,
within ethical guidelines. All breathing task stimulus
code and the main analysis code have been made
available via this GitHub repository:
github.com/BrightLab-ANVIL/Stickland 2021

2.2.1. MRI pre-processing

A custom shell script grouped AFNI [69] and FSL
[70]-[73] commands, for minimal preprocessing of
the MRI data. DICOMS were converted to NIFTI
format with dem2niiX [72]. The T1l-weighted file was
processed with FSL's fs| _anat, involving brain
extraction [74], bias field correction and tissue
segmentation (GM/white matter/cerebral spinal fluid)
with FAST [75]. Tissue masks were subsequently
created by thresholding the partial volume estimate
images at 0.75. The Single Band Reference image
(SBRef) from the middle (second) fMRI scan was
brain extracted, and eroded. The SBRef image was
registered to the preprocessed T1-weighted image
using FLIRT [76], [77]. The transformation matrix
was inverted in order to co-register the tissue masks
from T1 image space to SBRef image space. For
each fMRI acquisition, the first 10 volumes were
discarded to allow the signal to achieve a steady
state of magnetization. AFNI’s 3dvolreg was run with
the same middle SBRef scan as the reference
volume. Six motion parameters (three translations,
three rotations) were saved and demeaned for each
acquisition. Next, the three fMRI files were masked
to brain voxels using the SBRef mask created
previously.

2.2.2. CO; trace pre-processing

Custom MATLAB (MathWorks, R2018b) code
processed the physiological recording to create
PerCO, regressors. A text file from the whole scan
protocol was exported from the LabChart software,
and this text file was split into an output for each
fMRI acquisition. Each output was (purposefully)
slightly longer than the length of the fMRI acquisition:
an additional 20.4 seconds of data (equivalent to 17
extra TRs) both before and after each acquisition
was included in the exported data. This made it
possible to create shifted PerCO2 regressors in a
later step. The output for each functional acquisition
was processed with a peak detection algorithm to
detect the end-tidal peaks (maximum CO; value at

the end of each exhale). The output of the peak
detection algorithm was manually checked for every
dataset to ensure the end of each expiration breath
was always chosen, and to remove incorrectly
identified end-tidal values (e.g., in the case of partial
breathing through the mouth, and not fully through
the nose, not giving a true end-tidal peak). A linear
interpolation between these peaks produced the
PerCO:; trace (for the breath-hold periods in which
there is no end-tidal recording, a linear interpolation
is based on the last exhale before the hold and the
first exhale after), which was then convolved with the
SPM canonical hemodynamic response function
(HRF). The resultant PerCOzhrf was exported for
functional imaging analyses.

2.2.3. PerCO; regressors at different temporal
shifts

101 shifted PerCOzhrf regressors of the same length
were created, with different temporal offsets.
Starting with PgrCOzhrf regressor timings that
overlapped with the fMRI acquisition, the regressor
was shifted back and shifted forward in time, in 0.3
second increments. We recently presented this
approach for hemodynamic lag optimization [63],
however, in that earlier implementation we included
an additional step prior to performing this ‘fine shift’
(shifting in 0.3 s to create 101 regressors): a Cross-
correlation between the PerCOzhrf trace and the up-
sampled GM time-course as an initial gross re-
alignment (‘bulk shift’) to account for measurement
delay and a general vascular transit delay. In our
previous work, which involved breath-hold data only,
the fine shifted regressors were shifted relative to the
bulk shifted regressor, up to a shift maximum of +9
s, based on what had been seen in previous
literature. In this current work, we chose not to bulk
shift via the cross-correlation method before running
the lagged generalized linear model (GLM) analysis,
as some bulk shifts for the REST data segments
were found to be very far from physiological
reasonable values (e.g., 19 and 20 seconds at the
most extreme, see Figure 4), and deviating greatly
from the optimum shift found in BH+REST or
CDB+REST data segments. We hypothesize that
this could be due to the intrinsic low-frequency
oscillations associated with neural activity that can
be of similar or greater magnitude to the low-
frequency fluctuations induced by PerCO,, resulting
in a GM fMRI time-course poorly coupled to PerCO:..
Motion and other physiological noise could also
contribute. Therefore, bulk shifting in these datasets
seemed inappropriate, as errors would be produced
in the early stages of our analysis pipeline, likely
biasing the resultant comparisons of lag optimized
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CVR maps across data segments. Instead, we
chose to apply our voxel-wise lag optimization
method with a larger shift maximum, searching for
the optimum shift (i.e., the hemodynamic lag) within
%15 s from the original PerCO:hrf regressor. This 15
second range was based on a 9 second range plus
the largest bulk shift seen across subjects for the
BH+REST and CDB+REST data segments, which
was -5.45 seconds. A range of £9 s was justified
previously [63], and is consistent with much
research in healthy subjects reporting lag values or
breathing task regressors within this range around
an average value [6], [43], [50], [57]-[59], [61], [78].

2.2.4. CVR and lag estimation

Figure 2 shows the mean BOLD time-series across
GM voxels for each fMRI acquisition and each
subject, and also the PegrCO:hrf (unshifted) time-
series for reference. CVR modelling was carried out
separately for each of the five data segments
illustrated in Figure 1 and 2.

A custom shell script grouped AFNI and MATLAB
(Version 2018b, MathWorks) commands to create
maps of CVR and hemodynamic lag. The fMRI
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5 data segments are compared. Data segments
3-5 only contain REST data (grey bars), each with
390 volumes. Data segments 1 and 2 contain BH/
CDB data (blue/green bars) followed by REST
data, with the REST portions cut to bring the total
number of volumes to 390.

A GM-BOLD (%) A GM-BOLD (%)

A GM-BOLD (%)

variance explained by the demeaned PegrCOzhrf
regressor was modeled alongside the six demeaned
motion parameters (as nuisance regressors) and
Legendre polynomials up to the 4th degree (to model
the mean and drifts of the fMRI signal). Including
these polynomials in the model is approximately
equivalent to a high-pass filter with a cutoff of
0.0076Hz (AFNI 3dDeconvolve help; [79]). Least
squares regression accounting for  serial
autocorrelation of residuals was applied with AFNI's
3dREMLfit command. The beta coefficient for the
PerCOzhrf was scaled by the fitted mean of that
voxel to create CVR maps in %BOLD/mmHg. This
same model was run for all shifted versions of the
PerCO:hrf regressor. This lagged GLM approach is
explained in our previous work [63]: the
hemodynamic lag at each voxel was identified as the
shift that gave the maximum full model coefficient of
determination (R?). Final hemodynamic lag values
ranging from negative to positive indicate earlier to
later hemodynamic responses, respectively. As a
result, two CVR maps were created: with no lag
optimization (No-Opt) and CVR maps with lag
optimization (Lag-Opt). Lag-Opt CVR maps used the
beta coefficient for the PerCOzhrf regressor from the

Time point

1.BH+REST
2.CDB+REST
3.RESTgy
4.RESTcps
5.REST

Figure 2. The left column displays unshifted PerCOzhrf traces (mmHg change from baseline) and the right column displays
GM-BOLD traces (% change from mean) for each of three fMRI acquisitions. Thick lines represent group means, and thin
lines represent each subject. The key at the bottom describes the five data segments that are compared in this manuscript.
The first 10 volumes at the start of each data segment are not used (discarded to allow steady-state to be reached)

resulting in 390 volumes for each data segment.
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model with the optimum shift. If a voxel with an
optimal shift (lag) was found at or adjacent to a
boundary (-15, -14.6, +14.6, +15) this was not
deemed a true optimization and is also less likely to
be physiologically plausible. These voxels are not
included when plotting or summarizing lag and Lag-
Opt CVR maps. Voxel-wise CVR values were
deemed significant for absolute T-statistics greater
than 1.96, corresponding to p<0.05. For Lag-Opt
CVR, this threshold was further adjusted with the
Sidak correction [44], [80] due to the lagged
approach running 101 different GLMs.

2.2.5. Data summaries and statistical tests

The median GM CVR and the percentage of
significant voxels in GM was calculated for each
modelled data segment. These values were
computed for No-Opt, Lag-Opt, No-Opt with
statistical thresholding (p<0.05), Lag-Opt with
matched statistical thresholding (p<0.05) and Lag-
Opt with stricter statistical thresholding (p<0.05,
Sidak corrected). The kernel density estimation of
the distribution of lag values in GM (MATLAB’s
ksdensity function) was also computed for each
subject and each data segment, and the median GM
lag values were outputted.

In order to provide lag values with some regional
specificity across GM regions, FSL atlases in MNI
space (MNI-maxprob-thr25-2mm and
HarvardOxford-sub-maxprob-thr25-2mm) were
used to make three GM masks: cortical GM,
subcortical GM and cerebellar GM. From the
HarvardOxford atlas, left and right cerebral cortex
parcels were combined into one mask, and left and
right subcortical regions (thalamus, caudate,
putamen, palladium, hippocampus, amygdala,
accumbens) combined into another. The cerebellum
parcel was extracted from the MNI atlas to make a
third mask. These three atlas masks (cortical,
subcortical and cerebellar) were linearly transformed
(FSL, FLIRT) to subject space, and thresholded to
only include voxels within the subject’'s GM tissue
mask. Median lag values were extracted from each
mask for BH+REST and CDB+REST data
segments.

R version 3.4.1 (R Core Team, 2019) was used for
data exploration and statistical testing. To compare
parameter values across data segments and
optimization schemes (No-Opt vs Lag-Opt),
repeated measures ANOVAs were run with the R
package permuco [82] with the ‘aovperm’ function.
Null distributions were created via 100,000
permutations of the original data, which therefore do

not depend on gaussian and sphericity assumptions.
When investigating simple main effects (‘emmeans’
package) and performing multiple comparisons, p-
values were adjusted with the Benjamini &
Hochberg approach [83] for control of false
discovery rate (FDR), and then compared against an
alpha of 0.05 to determine significance. Outliers
were identified with boxplots. Correlation plots and
statistical outputs were created with the R packages
ggplot2 [84] and ggpubr [85] with the ‘ggscatter’
function. Outliers for the correlation analysis were
identified when Cook’s distance was over 4/n, with n
being the number of subjects, which indicates an
influential single data point. The Shapiro-Wilk test
was used to ensure normality of variables.

It can be seen from the parameter maps (Figure 5,
Figure 6, Supplementary Figure 1) that after
statistical thresholding, a substantial proportion of
voxels within white matter do not show a significant
relationship between PerCOzhrf and BOLD signals.
Therefore, we decided to focus our comparison of
CVR and lag parameter averages, across the
different data segments, within GM voxels only.

3. RESULTS

Figure 2 shows the average BOLD-fMRI signal
across GM, and the corresponding PerCOzhrf
changes, for each of the three scans. Note the three
cycles of increased PerCO; values in blue, due to
breath holds, and the two cycles of decreased
PerCO- values in green, due to cued deep breaths.
The fMRI time-series changes as expected due to
the CO; manipulations. The BH task produced a
maximum pressure increase of 7.4+3.1 mmHg
(meanzstdev across subjects) and CDB produced a
maximum decrease of 8.1+3.2 mmHg, relative to the
mean value at rest. For the three rest segments the
temporal standard deviation of PerCO; was 0.9+0.4,
1.240.7 and 0.8£0.4 mmHg (meantstdev across
subjects) for REST, RESTss and RESTcps
respectively.

3.1. Hemodynamic lag values

Figure 3 shows the distribution of hemodynamic lag
values in GM tissue estimated from the lagged-GLM
analysis, displaying both positive and negative lags.
Though a positive lag value might be expected (CO.
pressure change in the blood leads the fMRI signal
change) there are multiple factors contributing to this
value, and in different directions. The recording
delay between CO, exhalation inside the scanner
and CO:; recording outside the scanner contributes
to a more negative shift, whereas vascular transit
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Figure 3. Distributions of lag values, across GM voxels, expressed as probability density estimates (pde). Distributions
for all subjects (S1-S9) are shown, and for all data segments. The percentage (per) of GM voxels with optimal shift
values at the boundary condition is compared across data segments in the bottom right-hand corner. The group mean is
shown as a thick horizontal line and each subject is represented as a black dot.
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Figure 4. Correlation between the median lag over GM voxels from the voxelwise lagged-GLM analysis and a cross-
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and correlations are shown for each data segment. The grey shaded regions around the fit line indicate the 95%
confidence interval of the correlation coefficient. Data points were classed as outliers (indicated by red dots) when a
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delays and vasodilatory dynamics that eventually
lead to the BOLD-fMRI signal will contribute to a
more positive shift. Therefore, the observed lag
between a CO: recording and a BOLD fMRI
recording will naturally vary with the experimental
set-up, the participant, and their physiological state.
Due to this, the lag parameter maps displayed and
summarized later in this manuscript are normalized
to be relative to the GM median value. Such
normalization allows more valid comparisons when
summarizing across subjects and comparing with
other literature, showing the spatial variability of
hemodynamic lag.

As demonstrated in Figure 3, the BH+REST and
CDB+REST data segments, plotted in solid blue and
green lines respectively, have a more gaussian-like
distribution of lag values (excluding the boundaries),
the properties of which generally match for most
subjects. REST data segments (dashed lines) have
less physiologically plausible distributions which
agree less with other segments and vary more
across subjects. Figure 3 also shows the percentage
of GM voxels with lag values at the boundary
condition. From the repeated measures ANOVA
analysis, there was a significant effect of data
segment on percentage of voxels at the boundary
condition (F(4,32) = 9.86, p <0.0001). Simple main
effects analysis showed that group means for
BH+REST (12.24%) and CDB+REST (11.79%) did
not differ (p=0.795, FDR-corrected). However,
BH+REST and CDB+REST each had a significantly
lower percentage compared to REST (17.56%),
RESTsH (17.35%) and RESTcps (18.34%), with all p-
values < 0.022, FDR corrected. All REST segment
pairs were not significantly different to each other
(p>0.605, FDR corrected). This analysis was run
multiple times after the separate removal of three
data points from the RESTcpg group which were
classed as extreme outliers based on boxplots,
however the results did not change. The three REST
data segments resulted in a greater percentage of
voxels being identified at the boundaries of our fitting
procedure; lag values at the boundary are less
physiologically plausible, and indicate less certain
lag optimization i.e., we cannot determine this is a
true local maximum.

We compared the GM median lag value, obtained
with this voxel-wise lagged-GLM analysis, with a lag
obtained when performing a cross-correlation
between the PerCOzhrf time-series and the mean
BOLD fMRI time-series across all GM (as is
commonly done in the literature, when no voxel-wise
correction is applied, described as ‘bulk shift’ in the
methods). This evaluation is shown in Figure 4 for

each data segment, where each point in each plot
corresponds to one subject. Across these two
different methods of characterizing a representative
GM lag value, the BH+REST and CDB+REST data
segments show the strongest significant positive
correlations. The RESTgy and RESTcps segments
also show strong significant positive correlations,
though the range of values for the cross-correlation
method is much greater than for the lagged-GLM
method, and there is one extreme outlier. The REST
segment did not show a significant correlation
between methods. These results indicate that there
is clear consistency between different methods of
summarizing a GM lag value when including either
breathing task; this consistency is present in some,
but not all, REST segments. Considering the shape
of the lag distributions in Figure 3 it is important to
acknowledge that the use of the median as a
summary metric may not be completely valid for all
subjects and data segments.

Supplementary Table 1 shows that BOLD response
timing to a PerCOhrf change is generally earliest in
subcortical GM regions, approximately 0.4 seconds
later in cortical GM regions, and 1.4-2.0 seconds
later in GM cerebellar regions. Though specific
regional comparisons were not a focus of this paper,
lag (CVR delay) is less commonly characterized in
the literature, compared to CVR amplitude.
Therefore, these results are included in order to
assess the agreement of our lag values with
previous literature.

3.2. CVR and lag maps

Figures 5 and 6 show maps of CVR and lag,
respectively, for one subject and all thresholding
options. CVR values increase after lag optimization,
as expected. There is more spatial agreement in
CVR and lag maps when the BH and CDB segments
are included in the modelled data, showing a similar
contrast between tissues types. Maps that only
include REST data barely exhibit a physiologically
reasonable contrast between tissues types, and
after the final statistical thresholding (p<0.05, Sidak
corrected) very few voxels remain. This is also seen
in Supplementary Figure 1, which displays maps for
all subjects. All subjects follow the trend described,
except S7 and S8 which have CDB+REST maps
that appear more similar to REST maps (in number
and distribution of significant voxels); these are the
same two subjects in Figure 3 that had CDB+REST
GM lag distributions that did not look similar to the
BH+REST distributions. Subject 8 was also an
outlier in Figure 4, albeit for RESTgnand RESTcps.
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Figure 5. Maps of Cerebrovascular Reactivity (CVR) for one example subject (S4), displayed for each of the five data
segments. For each data segment, CVR maps are shown with no lag optimization (No-Opt) thresholded with the
PerCO:zhrf regressor at p<0.05 (top row for each data segment), with lag optimization (Lag-Opt) thresholded with p<0.05
but no Sidak correction (middle row) and thresholded with p<0.05 with Sidak correction (bottom row). CVR (Lag-Opt)
maps do not include voxels with optimum lags found at the boundary.
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Figure 6. Maps of hemodynamic lag for one example subject (S4), displayed for each of the five data segments. For each
data segment, lag maps are shown without statistical threshold (top row for each data segment), thresholded with the
PerCO2zhrf regressor at p<0.05 and no Sidak correction (middle row), and thresholded with p<0.05 with Sidak correction
(bottom row). All lag maps do not include voxels with optimum lags found at the boundary.

3.3. Comparing GM CVR values and significant
fits across data segments

Figure 7 depicts the distribution of CVR values in
GM, for No-Opt CVR and Lag-Opt CVR across
different levels of statistical thresholding, for one
subject. The same plots can be found for all subjects
in Supplementary Figures 2-6. In general, the No-
Opt CVR values (row 1) follow a Gaussian- or
Laplacian-like distribution when no statistical
thresholding is applied. The REST data segments
generally have the greatest number of negative CVR
values. The Lag-Opt CVR distributions
(unthresholded, row 2) change shape to resemble a

more bimodal distribution, due to CVR estimates
diverging further from zero in either direction (which
is expected due to our method for optimizing lag).
This effect is enhanced in the thresholded
distributions for both No-Opt and Lag-Opt (rows 3-
5); CVR values closer to zero are removed after
applying statistical criteria, resulting in distinct
bimodal distributions. Interestingly, we see the
proportion of negative CVR values to positive CVR
values is much less in the BH+REST and
CDB+REST data segments. For the REST
segments, after lag optimization and statistically
thresholding there are some cases where there is an
equivalent amount of positive and negative CVR
values. We expect predominantly positive CVR
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values in GM, and true negative CVR responses
represent very different physiological mechanisms
[86], [87]. Considering the shape of these
distributions, and the considerable proportion of
negative CVR values in the REST segments, we
summarized positive and negative CVR separately
when computing summary CVR metrics across GM,
shown in Figure 8 and Supplementary Figure 7. For
ease of reference, group averages and standard
deviations from these figures are also provided in
Supplementary Table 2.

Figure 8 (top panel) compares median positive GM
CVR values across data segments. There was a
significant interaction between data segment and
optimization scheme (F(4,32 = 14.2, p<0.00001) so
simple effects were investigated. Positive GM CVR
values increased after lag optimization for all data
segments: BH+REST (p=0.02), CDB+REST
(p=0.01), REST (p=0.002), RESTgn (p=0.002) and
RESTcpe (p=0.002). There were no significant
differences in median positive GM CVR values
between any pair of data segments for No-Opt

values (all p-values >0.14) but there were significant
differences for Lag-Opt values, which drove the
significant interaction. For Lag-Opt, positive GM
CVR values were not different between: BH+REST
and CDB+REST; CDB+REST and REST; CDB and
RESTen; REST and RESTegH (all p-values >0.14),
However, REST had significantly higher values than
BH+REST (p=0.02); RESTgn had significantly higher
values than BH+REST (p=0.006); RESTcps had
significantly  higher values than BH+REST
(p=0.001), CDB+REST (p=0.001), REST (p=0.002),
and RESTegH (p=0.008). One extreme outlier was
removed from the CDB+REST segment (Figure 8,
subject with highest values) for this statistical
testing. All p-values are FDR corrected. Similar
patterns are seen for negative CVR values
(Supplementary Figure 7).

The previous CVR comparisons are taken using all
GM voxels, and not only from voxels that are
statistically thresholded; Figure 8 (bottom panel)
shows that the percentage of significant voxels in
GM is noticeably lower in the REST data segments,

Distributions of CVR values in GM, for one example subject (S4)
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Figure 7. Distributions of CVR values in GM for one example subject (S4). The y-axes show the frequency count. The
same scaling is used for rows 1 and 2 because no thresholding is applied and therefore all GM voxels are included. When
statistical thresholding is applied (rows 3, 4 and 5), different numbers of GM voxels remain for each data segment.
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Figure 8. Comparing GM summary metrics across
data segments. The legend corresponds to the column
structure in each panel; both single subject data and
group means are shown. Top: Median positive CVR
across all GM voxels for non-optimized (No-Opt) and
lag optimized (Opt) analyses. Bottom: Percentage of
significant positive fits in GM for each data segment
and level of thresholding: the * indicates thresholding
at p<0.05 and the *(S) indicates thresholding at p<0.05
with Sidak correction.

suggesting that there is less confidence in these
summary CVR estimates. With or without lag
optimization, there are more GM voxels showing
significant positive fits for PerCOzhrf in the data
segments with breathing tasks, for all subjects
except S7 and S8. The inverted V-shaped pattern
shows the number of significant voxels changes with
statistical thresholding in a similar way across the 5
data segments: more voxels are significant after lag
optimization if the same thresholding (p<0.05) is
applied, however after Sidak correction this returns
to a similar or smaller number of statistically
significant voxels as found without Iag
optimization. This shows the statistical consequence
of the lagged-GLM computation (considered further
in the discussion).

3.4. Clinical Utility

An incidental finding was suspected in one of our
participants due to an abnormality first noticed in the

lag maps. Specifically, a large section of the cortex
displayed a blood flow response to PerCO; much
later than other areas of the cortex. The area of
cortex impacted appeared to be the vascular
territory mostly supplied by the middle cerebral
artery. The appropriate ethical procedures were
followed and it was confirmed that this subject had
Moyamoya disease. Moyamoya is a rare vascular
disorder which typically involves blockage or
narrowing of the carotid artery, reducing blood flow
to the brain. Figure 9 shows CVR and lag maps in
this subject. The lag maps show that many GM
voxels in the right hemisphere are responding
approximately 10 seconds later compared to the
homologous regions of the left hemisphere. Note,
the analysis run for this subject was the same as
previously presented, however the lag values that
are included in these maps are not relative to GM
median, due to the clear bilateral vascular
pathology, and this case being interpreted
separately from the other subjects. When lag is not
considered, the CVR maps (No-Opt) show dominant
negative CVR in this vascular territory, similar to
what has been reported in previous CVR mapping
studies with Moyamoya [88]-[90]. However, when
correcting the CVR maps for lag (Lag-Opt) there is a
striking change - the CVR within GM mostly
normalizes, without a clear pathology. These lag
optimized maps suggest that the local CVR
response is preserved in GM, albeit with delayed
blood transits. Looking at the lag optimized CVR
map alone, one could incorrectly conclude that this
subject does not have a clear vascular pathology.
Both maps, lag and CVR (Lag-Opt), are needed for
the most accurate interpretation, and to determine
whether there are CVR reductions, delayed blood
transits, or both. Figure 9 also shows CVR and lag
results in REST data. Here, the pathology is much
less evident, and these results follow the same
pattern seen in the other 9 subjects presented.

In a concurrent pediatric pilot study, five individuals
with typical development and hemiparetic cerebral
palsy completed a modified version of the
CDB+REST protocol. Figure 10 shows PgrCO:
traces and average BOLD-fMRI signal across GM.
Three primary scenarios of task compliance were
observed. In Scenario 1, participants achieved
hypocapnia as expected, evidenced by two
consecutive decreases in PerCO, and BOLD-fMRI
signals. In Scenario 2, PgrCO; values were
unreliable for several breathing cycles (indicated by
missing values in Figure 10), yet there is possible
evidence of two mild hypocapnia cycles in the
BOLD-fMRI signal. In Scenario 3, PerCO, values
were more reliable but participants did not appear to
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complete the task, evidenced by a lack of
hypocapnia-induced PerCO, and BOLD signal
decreases. These trends appear to be age-related,
with scenario 1 primarily occurring in older
participants (ages 15-21 years) and scenarios 2 and
3 in the youngest participants (7-12 vyears).

4. DISCUSSION

Adding a simple, 2—3-minute breathing task to the
beginning of a resting-state scan vastly improves our
ability to model CO, effects (both amplitude and
timing) in BOLD-fMRI data. This modified scan
protocol produces maps of physiological parameters
that may contribute to our understanding of healthy
and pathological cerebrovascular function, whilst
maintaining an extended “resting state” period as
required for studying intrinsic brain fluctuations and

connectivity. This hybrid protocol has clear and
direct applications for CVR mapping in both
research and clinical settings, as well as wider
applications for fMRI denoising and interpretation.
Our analysis produces maps of both the amplitude
(CVR) and timing (hemodynamic lag) of the BOLD
fMRI response to CO; by systematically shifting the
PerCO- regressor to optimize the model fit. In any
fMRI dataset, this optimization inherently increases
GM CVR values and fit statistics. We have shown
that the inclusion of breathing task data further
increases the number of voxels in the brain that have
a significant relationship between PerCO, and
BOLD-fMRI signals, and improves our confidence in
the plausibility of voxel-wise hemodynamic lag
estimates.

Case Study: 29 year old male with Moyamoya disease
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data, demonstrating clear clinical sensitivity of this protocol. In order to visually compare maps across the same voxels,
all maps (CVR No-Opt, CVR Lag-Opt and Lag) are thresholded at p<0.05, Sidak corrected, based on the T statistics of
the lag optimized analysis. The REST only results are shown for comparison at p < 0.05 uncorrected as well as the p<0.05
Sidak corrected which displays very few significant voxels. Slices from the T1-weighted image transformed to fMRI space
are shown for reference. CVR (Lag-Opt) maps, and all lag maps, do not include voxels with optimum lags found at the

boundary. Lag maps are not relative to GM median.
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Figure 10. Task compliance for an adapted cued deep breathing (CDB) protocol used in a cohort of controls and
individuals with hemiparetic cerebral palsy (CP). Panel (A) shows the protocol, which had the same task timings as the
other CDB datasets in the manuscript, but with auditory cues, instead of visual. 20 s of rest were included at the start of
the task, and 10 volumes (5.55 s) of data were removed to account for steady-state. Panel (B) shows unshifted
PerCO:2 traces (mmHg change from baseline) and GM-BOLD traces (% change from mean) for 5 subjects. The missing
values in the PerCOz traces in Scenario 2 indicate that the signal was unreliable at those times. Note the different axes
limits for the GM-BOLD plot in Scenario 2. These subjects represent the primary age-related variations in task compliance
observed during the CDB protocol.
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A recent study [34] followed a very similar rationale
to ours: to develop a practical non-gas inhalation
method that is largely based in a resting-state scan
but introduces breathing modulations to enhance
fluctuations in PerCO,. They compared CVR maps
from resting-state scans, scans with intermittent
breathing modulations throughout the scan period
(for a duration of 12 seconds after 30-60 s of free
breathing), a breath-holding scan, and a CO, gas
inhalation scan. They showed that intermittent
breathing modulations (6 seconds per breath) had a
comfort level similar to resting-state, and the
resultant CVR maps had a sensitivity and accuracy
similar to maps derived from gas inhalation
methods. Hemodynamic lag was not a part of their
assessment or comparisons. Their results are
consistent with our conclusions that adding short
periods of guided breathing is favorable over a
resting-state scan for CVR mapping, and they have
validated their design by comparing to a more gold
standard CO2-inhalation approach. However, their
breathing task and resting-state portion cannot be
separated into two sections, precluding these data
from being used for typical resting-state or functional
connectivity analyses.

One reason that including breathing tasks benefits
CVR mapping is simply that the induced variation in
PerCO; amplitude is large compared to the smaller
fluctuations during undirected free breathing (see
Figure 2). Importantly, the amplitude of these natural
fluctuations during resting-state will vary across
subjects, and potentially across study populations
[91]. If the BOLD fluctuations related to PerCO:
changes are small in amplitude, it can be hard to
distinguish them from other physiological,
artefactual or neuronally-driven fluctuations that
occur at (or aliased into) the same low-frequencies
[45]-[49]. If these other fluctuations are of similar or
greater magnitude to the low-frequency fluctuations
induced by PerCOso, this may result in an fMRI time-
course poorly coupled to PerCOs. A study using gas
inhalation as a hypercapnic stimulus concluded that
a change of at least 2 mmHg above a subject’s
baseline PegrCO; is necessary to evaluate
hemodynamic impairment [92]. In our acquisitions,
both BH and CDB tasks clearly produced changes
above 2 mmHg, whereas this was not the case for
all subjects during the REST segments (see Figure
2). Even if a subject performs the BH or CDB task
only partially (i.e., shorter hold for the BH, shallower
breaths for the CDB), they are likely to still surpass
this 2 mmHg change. Furthermore, there is evidence
that despite variability in BH performance, robust
and repeatable CVR maps can still be obtained
when modelling with PerCO, regressor [64], [93],

which represents what the subject actually achieved
and not simply the intended stimulus.

To accurately model CVR we must account for
hemodynamic lags since measurement delays in
gas sampling, arterial transit times to the brain’s
vascular territories, and local vasodilatory dynamics
all impact the temporal relationship between our
model of the vasodilatory stimulus (PerCO-) and the
BOLD fMRI timeseries. Characterizing
hemodynamic lag at the voxel level is both
challenging and necessary for correct physiologic
interpretation of the data. A previous study mapping
CVR with resting-state data discussed how they
were unable to obtain voxel-wise delays due to the
resultant CVR maps being noisy, and they
acknowledge that the regional CVR deficits they
report in Moyamoya patients may reflect both
reduced CVR and longer blood transits [32]. We
report similar challenges in our data (Figure 3,
Figure 6, Supp. Figure 1), showing more variable
and less physiologically plausible lag distributions
across GM in the data modelled with only resting-
state segments. Furthermore, when simply
performing a cross-correlation between the
PerCOzhrf regressor and GM BOLD-fMRI time-
series, we observe several extreme lag values in
resting-state data (Figure 4). The incorporation of
the short breathing tasks results in more sensible lag
distributions  and cross-correlation results.
Comparing our lag values to previous literature is
challenging due to the multitude of experimental set-
ups, analysis approaches, and ways of summarizing
these types of data. Nevertheless, it is valid to
compare normalized lag values (lag values relative
to a tissue average) and compare variability in lag,
where possible. Here, we focus on BH+REST and
CDB+REST lag distributions, considering REST
distributions are challenging to summarize (Figure
3). The range and variability of the lag values we
report in GM show the majority of lag values (~68%
based on one standard deviation, Supp. Table 1) are
within 6 seconds of the GM median (Figure 6,
Supplementary Figure 1); therefore, to capture the
majority of GM lags a range of 12 seconds from the
GM median may be appropriate. This broadly
agrees with previous work using respiration derived
or PerCO; regressors [43], [50], [57], [58], [61], [63],
[64]. Many of these previous reports also see similar
regional trends in relative lag values (Supplementary
Figure 1): earliest responses in subcortical GM and
later responses in cerebellar GM and posterior brain
regions.

Despite much previous literature reporting a
summary CVR value, our results clearly show that
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analysis choices in summarizing voxel-wise CVR
values are not trivial. The distributions of GM CVR
values with and without lag optimization, and with
different levels of statistical thresholding (Figure 7,
Sup. Figures 2-7), illustrate that it is not strictly valid
to extract a central tendency value from a distribution
of positive and negative CVR values together, after
lag optimization or any statistical thresholding. We
therefore chose to summarize positive and negative
CVR values separately, not least because true
negative CVR responses represent very different
physiological mechanisms [86], [87]. We expect
positive CVR values in GM, and it is noteworthy that
the three resting-state segments show a greater
number of negative CVR values compared to the
segments that include BH or CDB tasks, possibly
suggesting a greater relative contribution of noise
sources and a less successful CVR and lag
estimation. The final summative CVR value across a
tissue type will also depend on whether one has
applied lag optimization and/or applied statistical
thresholding. Therefore, we chose to display CVR
values resulting from multiple analysis options in
Figure 8 and Supplementary Figure 7. With no
statistical thresholding, the positve GM CVR
amplitudes for No-Opt and Lag-Opt (Figure 8 and
Supplementary Table 2) agree with the range seen
in previous literature modelling CVR with breathing
tasks or resting-state, when expressed in units of
%BOLD/mmHg [34], [42], [54], [58], [63], [93], [94].
Unexpectedly, the REST segments showed higher
GM CVR values than the task segments after lag
optimization and following the strictest thresholding,
particularly for RESTcps (Figure 8, Supplementary
Figure 7). However, a higher CVR value will not
always suggest a more accurate or more
representative tissue estimate. Low frequency
fluctuations other than PerCO-, motion artifacts and
large vessel signals may influence the lagged fitting
procedure, as discussed. There were generally
more negative CVR values in REST segments, so
positive GM CVR estimates are also summarized
over a smaller number of voxels that do not fully
describe GM tissue. It is also important to note that
the Sidak correction is likely too strict of a correction
for multiple comparisons as it assumes
independence, which is not the case when running
the GLM multiples times with slightly shifted PerCO-
regressors.

4.1.BHvs. CDB

This study was not designed for an effective
comparison between BH or CDB, yet some trends
can be noted upon. Adding either a short BH or CDB
task to a resting segment brings clear advantages

for CVR mapping, with similar CVR and lag results,
however the BH addition did lead to plausible lag
distributions and significant CVR effects more
consistently across subjects. Direct comparison of
these two tasks is potentially biased due to the BH
task being slightly longer, including 3 cycles of
hypercapnia versus 2 cycles of hypocapnia for the
CDB task. However, it is difficult to match both the
length of the breathing task, and the number of
cycles: the ways in which we achieve hypocapnia
(increasing the rate and depth of breathing) and
hypercapnia (apnea) are very different, and the
timing dynamics of the resulting blood gas changes
are different [95]-[97]. A small amount of previous
evidence shows that CDB and BH derived CVR
responses generally have comparable amplitudes
and timings [50], however possibly not in all brain
regions [94] and they can be modulated differently
by baseline vasodilation [94]. Furthermore, these
tasks induce different motion confounds [50] and
potentially different subject compliance demands. In
general, our results suggest they may be used
interchangeably in healthy controls. However, a
more thorough comparison of the pros and cons of
these breathing tasks, in healthy and clinical
cohorts, is a worthwhile focus for future research.
Importantly, vasoconstrictive and vasodilatory
responses can be differentially affected in pathology
[98], so different tasks may be appropriate for
different clinical populations and study goals.

It is important to discuss the general limitations of
using breathing tasks to model CVR, compared to
resting-state. They do require more compliance from
subjects, introduce neural activity due to the need for
visual or auditory stimuli, and often exhibit motion
effects correlated with task timings [50]-[52], [64].
We performed volume realignment and included the
resultant motion parameters within the GLM, but
there is evidence this is not sufficient to remove
motion effects [52], [64], [99]. Further research
should look into optimizing breathing task designs to
minimize task induced motion artifacts whilst still
maintaining PerCO; changes of sufficient amplitude.
Collecting multi-echo BOLD fMRI data, and applying
spatial ICA-denoising analyses, is one widely
adopted strategy that can be applied to remove
motion artifacts and has been applied to the
modelling of CVR effects in BH paradigms [56], [64].
A final consideration is the choice of HRF in
breathing task data; here we used a canonical HRF
to convolve with all the PerCO5 time-series, before
creating the multiple shifted PgrCO2 regressors.
There is evidence that the BOLD signal may have a
different shape and timing response depending on
whether the PerCO: is resting fluctuations, or within
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a hypocapnic or hypercapnic range [57], and that
physiological responses functions can vary across
subjects, brain regions and sessions [100], [101].
Therefore, one response function might not be fully
optimum in capturing all the PerCO; induced BOLD
changes within our hybrid design, yet there weren’t
sufficient repeats of the BH or CDB cycles to
characterize an impulse response function from
these data.

4.2. Clinical applications

We chose to analyze and present our results in
single subject space, partially to demonstrate the
potential utility of this method for individual subjects,
such as clinical cases, or individual fMRI denoising.
We report an incidental finding of Moyamoya
disease, which was based on our inspection of the
hemodynamic lag maps constructed from our
lagged-GLM approach. This pathology was only
visually obvious when modeling lag and CVR with
breathing task data. Regional deficits in CVR are
used to guide surgical and treatment decisions in
cases of Moyamoya [102], with normalization of
CVR often seen after surgery. Delayed blood
transits are also widely reported in cases of
Moyamoya [61], [89], [103] which is expected due to
the narrowing of blood vessels. Consistent with our
results, negative CVR responses are often observed
in cases of Moyamoya [88]-[90] and commonly
interpreted as the vascular steal phenomenon. In the
case of vascular steal, negative CVR is the result of
a redistribution of blood flow from regions without
remaining cerebrovascular reserve to regions with
preserved vasodilatory capacity. Previous work with
cases of Moyamoya have shown a clear relationship
between blood arrival times and CVR amplitudes,
with the longest arrival times having the lowest and
most negative CVR (e.g., [89], [103]. From our data,
it is possible to conclude there is no evidence of
vascular steal, considering the normalization of CVR
after lag-optimization, however other work suggests
that negative CVR is likely a combination of a steal
phenomenon and delayed local (positive) reactivity
[89]. We would need to apply our technique more
systematically across a larger sample to better
characterize these subtleties of Moyamoya
pathology, yet what our case study clearly
demonstrates is the importance of considering both
amplitude and timing when modelling CVR function
in pathology. CVR deficits in Moyamoya are most
commonly investigated with gas inhalation or
contrast; although there is a much smaller collection
of literature using breath-hold or resting-state, the
interest in these non-invasive and practical
approaches is growing [35], [61], [90], [104], [105].

Example data from a separate pediatric pilot study
were included to evaluate the feasibility of our hybrid
protocol in clinical cohorts with task compliance
challenges (e.g., children). Breathing tasks are an
attractive alternative to more invasive vasoactive
stimuli; BH tasks have been used successfully in
typically developing children [106] and in those with
Moyamoya [90]. We report the first instance of a
CDB task in a pediatric cohort and observed variable
success in the quality of PerCO2 recordings and
achieved hypocapnia. These results indicate that
further optimization of the breathing task portion of
the hybrid design may be necessary in less-
compliant cohorts. Low quality PerCO; traces may
be caused by periods of mouth breathing and could
be addressed by using a mask rather than a nasal
cannula. It may be necessary to adapt breathing task
instructions for clarity and utilize practice sessions,
tailored to the population, to ensure participants
understand and comply with the task before entering
the scanner. There are clear next steps to address
the feasibility limitations observed in our hybrid
design and, once these are met, this method has
promise as a practical yet robust tool to study typical
and atypical neurovascular development.

4.3. Applications for fMRI denoising

Based on the mechanism of neurovascular coupling,
the BOLD contrast is widely used as a surrogate
measure for neural activity [L07]. However, there are
many non-neural factors that can affect the BOLD
signal, with multiple strategies and algorithms to
mitigate and remove these sources of noise, [31],
[45], [47], [108]-[112]. We considered how resting-
state fMRI scans are commonly deployed in
neuroimaging research, and designed our protocol
accordingly. Although the main focus of this work is
practical CVR mapping, CO; fluctuations have been
shown to be a physiological confound in resting-
state fMRI studies of neural activity, and it is
challenging to meaningfully separate out neural
connectivity and vascular connectivity with fMRI
data [51], [111], [113]-[116]. Removing CO: effects
from fMRI via nuisance regression is not yet routine
practice, in part because it is challenging to robustly
characterize these relationships in resting-state
fMRI. By appending a short breathing task to the
start of a resting-state scan, the resting-state portion
could still be analyzed separately, gaining more
outputs from one dataset, with improved denoising
from robust modelling of CO effects.

However, there is a possibility that the breathing task
may somehow modulate the resting-state portion of
the scan similar to after effects seen after other
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sensory and cognitive tasks [117], [118]. We
performed exploratory analyses to compare the
three REST segments and assess any systematic
differences caused by preceding breathing tasks.
We created maps of amplitude of low-frequency
fluctuation (ALFF), fractional ALFF (fALFF), and
local functional connectivity density (LFCD) for each
subject and each REST segment using AFNI
3dRSFC and 3dLFCD functions, respectively.
Spatial correlations were performed between pairs
of single-subject maps. For ALFF, group means *
stdev were: 0.92+0.04 (REST, RESTsw), 0.931£0.04
(REST, RESTcpe) and 0.93+0.03 (RESTew,
RESTcpe). For fALFF: 0.87+0.08 (rest, RESTgn),
0.91+0.03 (REST, RESTcog), 0.90+0.05 (RESTsH,
RESTcps). For LFCD: 0.62+0.21 (REST, RESTgH),
0.58+0.25 (REST, RESTcpg), 0.66+0.19 (RESTsH,
RESTcpe). We also performed a voxel-wise ANOVA
analysis (3dANOVA, AFNI) to test if there was a
significant difference between the three rest
segments for each type of map. Setting a threshold
of p<0.05 (FDR corrected), we observed no
significant voxels for ALFF, fALFF or LFCD (main
effect and pairwise comparisons). These results
show no clear systematic differences between the
three REST segments for ALFF, fALFF or LFCD.
However, these analyses cannot provide direct
evidence for the null hypothesis, and future work
with study designs tailored towards this question,
and with bigger samples, should investigate this
further.

4.4. Recommendations and practical
considerations

In this paper, some analysis choices were driven by
the comparison between breathing task data
segments and resting-state only data segments. If a
researcher was to wuse this BH+REST or
CDB+REST design as shown in Figure 1, we
recommend:

o Collect continuous CO; recordings before and
after your scan window, up to the maximum shift
you want to consider in your modeling, to avoid
interpolation or trimming of data after shifting.

o If deciding between a BH or CDB task, we'd
recommend BH due to more extensive literature
using this task for CVR mapping [14], [15].

o Model CVR using the entire dataset. We cut the
TASK+REST segment to 8 minutes in order to
make a fair comparison with the 8—minute REST
segments. Therefore, our CVR and lag maps are
from modelling with ~2.5 minutes of task data

and 5.5 minutes of resting; map quality and fit
statistics would likely improve with more data.

o |If there is a large offset between the PgrCO;
trace and the GM fMRI signal, perhaps due to a
measurement delay (e.g., long sample line from
scanner to control room), first perform a bulk-
shift (cross-correlation between a mean GM
fMRI time-series and PerCO; time-series) before
voxel-wise optimization [63], supported by
Figure 4.

o Use the smallest range of shifted PgrCO;
regressors as is appropriate for the physiology of
your cohort. There are computational and
statistical consequences to extending the shift
range more than is necessary.

o When obtaining a summary CVR or lag metric for
a tissue class, check the distributions to see if
this is valid and appropriate.

4.5. Conclusions

This hybrid design may not the best approach for all
CVR mapping experiments; if that is your only
research focus, longer breathing tasks or gas
inhalation methods are recommended. However,
our proposed protocol involves a small addition to a
typical resting-state scan, aiming to be practical and
clinically feasible in situations where more invasive
or complicated methods are not desirable. We have
demonstrated that adding a short breathing task to
the start of a resting-state fMRI scan improves the
ability to model both the timing and amplitude of the
CVR response, both crucially important for the
accurate characterization of cerebrovascular
function.
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