

1 **Single-cell transcriptomics reveals expression profiles of *Trypanosoma brucei***  
2 **sexual stages**

3

4 Virginia M. Howick<sup>1,2,3\*</sup>, Lori Peacock <sup>4,5</sup>, Chris Kay <sup>4</sup>, Clare Collett <sup>4\$</sup>, Wendy Gibson <sup>4#</sup>, Mara  
5 K.N. Lawniczak <sup>3#</sup>

6

7 <sup>1</sup> Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow,  
8 Glasgow G12 8QQ, UK

9 <sup>2</sup> Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8QQ, UK

10 <sup>3</sup> Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK

11 <sup>4</sup> School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK

12 <sup>5</sup> Bristol Veterinary School, University of Bristol, Langford BS40 5DU, UK

13 <sup>\$</sup> Present address: UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK

14

15 <sup>#</sup> These authors contributed equally to this work

16 <sup>\*</sup> Correspondence: VMH, Virginia.Howick@glasgow.ac.uk

17

18 Running head: Single-cell transcriptomics of trypanosomes

## 19 **Abstract**

20 Early diverging lineages such as trypanosomes can provide clues to the evolution of sexual  
21 reproduction in eukaryotes. In *Trypanosoma brucei*, the pathogen that causes Human African  
22 Trypanosomiasis, sexual reproduction occurs in the salivary glands of the insect host, but  
23 analysis of the molecular signatures that define these sexual forms is complicated because  
24 they mingle with more numerous, mitotically-dividing developmental stages. We used single-  
25 cell RNA-sequencing (scRNAseq) to profile 388 individual trypanosomes from midgut,  
26 proventriculus, and salivary glands of infected tsetse flies allowing us to identify tissue-specific  
27 cell types. Further investigation of salivary gland parasite transcriptomes revealed fine-scale  
28 changes in gene expression over a developmental progression from putative sexual forms  
29 through metacyclics expressing variant surface glycoprotein genes. The cluster of cells  
30 potentially containing sexual forms was characterized by high level transcription of the gamete  
31 fusion protein HAP2, together with an array of surface proteins and several genes of unknown  
32 function. We linked these expression patterns to distinct morphological forms using  
33 immunofluorescence assays and reporter gene expression to demonstrate that the  
34 kinetoplastid-conserved gene Tb927.10.12080 is exclusively expressed at high levels by  
35 meiotic intermediates and gametes. We speculate that this protein, currently of unknown  
36 function, plays a role in gamete formation and/or fusion.

37

38 **Keywords:** African trypanosomes; single cell RNA sequencing; transcriptomics; tsetse fly;  
39 *Glossina*

40

## 41 Introduction

42 The African tsetse-transmitted trypanosomes are single-celled parasites that cause human  
43 and animal diseases, which are a heavy burden for many countries in sub-Saharan Africa.  
44 These trypanosomes survive in both the tsetse and mammalian host by taking on distinct  
45 morphological forms that suit the diverse metabolic and immune environments they encounter  
46 [1]. When blood infected with *Trypanosoma brucei* is imbibed by the tsetse fly (genus  
47 *Glossina*), trypanosome blood stream forms (BSF) rapidly change their transcriptional profile,  
48 including switching off Variant Surface Glycoprotein (VSG) transcription and upregulating  
49 expression of other surface proteins such as procyclins [2,3]. They also switch their metabolism  
50 from dependence on glucose processed via glycolysis in the glycosome to exploitation of  
51 amino acids such as proline via the mitochondrial TCA cycle [4]. Trypanosomes then multiply  
52 as procyclins in the fly midgut before migrating anteriorly, first colonising the proventriculus or  
53 cardia, the valve between the foregut and anterior midgut, and then the paired salivary glands  
54 (Figure 1A) [5,6]. Here trypanosomes attach and proliferate as epimastigotes characterised  
55 by BARP surface proteins [7], before final differentiation into infective metacyclines that are  
56 inoculated into a new host via the saliva.

57

58 Additionally, the salivary glands are the location of the non-obligatory sexual cycle of *T. brucei*,  
59 which involves meiosis and the production of haploid gametes [8,9]. As trypanosomes are  
60 early diverging eukaryotes, their sexual processes are of particular interest because they  
61 provide insights into the evolution of sexual reproduction and meiosis. Although the  
62 morphologies of the meiotic division stages and gametes have been described [8–10], little is  
63 known about the transcriptional dynamics that characterise the sexual stages because these  
64 cells are a minority of the heterogenous cell population in the salivary glands. Sexual stages  
65 are found during the early phase of establishment of salivary gland infection, with numbers  
66 peaking about three weeks after fly infection [8,9]. The sexual cycle appears to be a sideshow  
67 in the normal mitotic developmental program, as it occurs in clonal trypanosome lines and  
68 does not need to be triggered by external factors such as the presence of another strain.

69

70 Single-cell RNAseq opens the door to study heterogenous populations of single-celled  
71 parasites by delineating expression patterns of individual cells allowing us to understand  
72 continuous developmental processes, cell-type specific patterns of co-expression and bet-  
73 hedging strategies [11–17]. Recent studies have profiled *T. brucei* populations using single-  
74 cell droplet-based approaches from BSF culture to profile the development of stumpy forms  
75 [18] as well as *in vivo* salivary gland parasites in order to identify a potential vaccine candidate  
76 among mature metacyclines [19] and the dynamics of VSG expression in the developing  
77 metacyclic parasites [20]. These studies complement the previous bulk transcriptomic studies  
78 in *T. brucei* that identified the major changes in transcriptional patterns over time and  
79 metacyclic development using either whole infected salivary glands or *in vitro*-derived  
80 metacyclines from the RBP 6-inducible system [21–28]. Although these studies have been  
81 essential to our understanding of the dynamics of gene expression in *T. brucei*, we still lack  
82 an understanding of the molecular processing that characterize meiosis and sexual  
83 development in kinetoplastids.

84

85 Here we have exploited scRNAseq to investigate transcriptomes of the sexual stages of *T.*  
86 *brucei* that occur transiently in the heterogeneous trypanosome population in the fly salivary  
87 glands. We used a modified Smart-seq2 protocol [12,13,29] to profile *T. brucei* cells from

88 different tsetse tissues (midgut, proventriculus, salivary glands) at different time points during  
89 development. We tied the observed transcriptomic profiles to specific developmental stages,  
90 validated by immunofluorescence, and identified cell-type specific markers, which revealed  
91 the dynamics of surface protein expression as well as a new candidate gene that may be  
92 involved in sexual development.

## 93 Results and Discussion

### 94 Generation of high-quality transcriptomes from *in vitro* procyclic forms

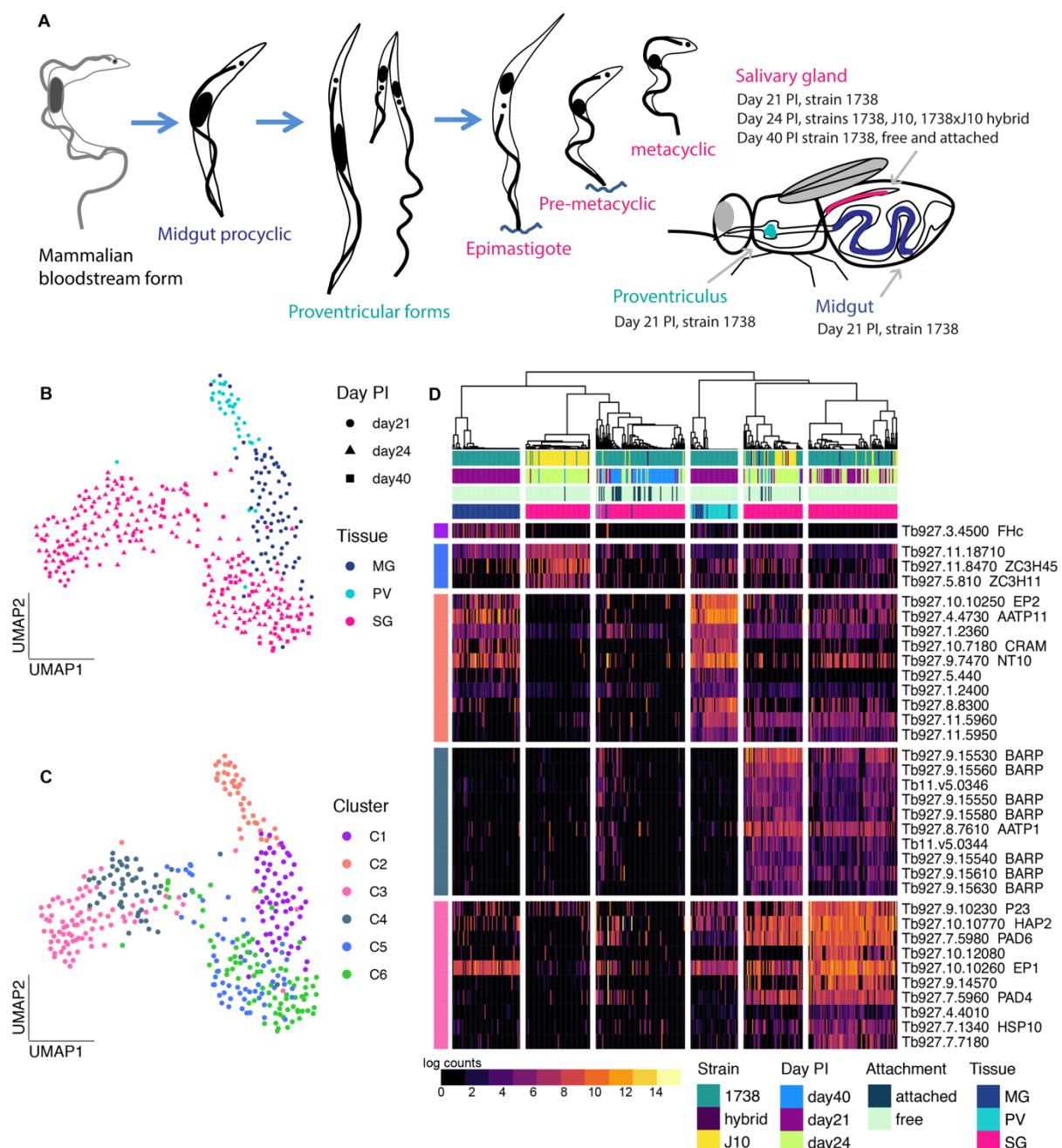
95 To confirm that the modified Smart-seq2 protocol produces high-quality data for *T. brucei*, we  
96 initially profiled 46 single-cell transcriptomes from *in vitro* procyclic forms. We found a mean  
97 of  $2.6 \times 10^6$  mapped reads per cell and a mean detection of 1756 genes per cell (**Figure S1A, B**), which is a greater number of genes per cell than recently published data from Hutchinson  
98 et al 2021 [20] that used a droplet-based method on the same parasite stage (1258 genes per  
99 cell). This further supports the use of Smart-seq2 to get in depth transcriptomes (high-  
100 coverage and full-length) in a low-throughput, targeted fashion compared to droplet-based  
101 methods that have fewer genes detected but are higher throughput [12,30]. Additionally, we  
102 observed high expression of genes that encode known procyclic surface antigens including  
103 GPEET and EP1-3 [2,31] (**Figure S1C**). These data support the utility of our protocol to profile  
104 single-cell expression profiles in kinetoplastids.

### 106 Transcriptomes of fly developmental stages

107 Having confirmed that the modified Smart-seq2 protocol would produce high-quality data from  
108 *T. brucei* *in vitro* procyclic forms, we profiled parasite transcriptomes isolated from diverse  
109 tsetse tissues at different timepoints, and from two *T. brucei* strains as outlined in **Figure 1A**.  
110 After quality control (**Figure S2**), we obtained a total of 388 single-cell parasite transcriptomes:  
111 78 from the midgut, 34 from the proventriculus and 276 from the salivary glands (**Figure 1A**).  
112 Parasites from the midgut and proventriculus were isolated from flies infected with *T. brucei*  
113 strain 1738 dissected day 21 post infection (pi); 53 parasites from the SG were also derived  
114 from these flies. A further 62 1738 parasites from the salivary glands were collected on day  
115 40 pi; these cells were derived from free (spill-out from tissue) or attached (enzymatically  
116 disassociated) cell populations to capture populations dominated by metacyclics or attached  
117 epimastigotes and premetacyclics, respectively (**Figure 1A**). A further experiment dissected  
118 on day 24 pi aimed to analyse salivary gland parasites from an experimental cross between  
119 strains 1738 and J10; 86 cells were from single infections of 1738 (38) or J10 (48), and 75  
120 were from the experimental cross. We additionally used two cell preservation methods in the  
121 collection of these data to allow for more flexibility in processing time. Although small  
122 differences were observed in the number of genes detected between preservation methods,  
123 this was confounded by timepoint, preventing us from fully understanding the impact of the  
124 preservation techniques alone (**Figure S3**).

125

126 To understand transcriptional variation at the single-cell level across tissues, strains, and time,  
127 we performed dimensionality reduction with all 388 cells using UMAP (**Figure 1B**). We  
128 observed that cells grouped by their tissue of origin, with clusters representing midgut and  
129 proventriculus trypanosomes and two groups of salivary gland parasites that we hypothesized  
130 could represent different cell-types or stages (**Figure 1B**). This idea was supported by the


131 distribution of time points across the two salivary gland groups with 21- and 24-day pi cells  
132 distributed throughout the two groups, while the 40-day pi cells (squares) occupied the centre  
133 and right-hand area; the left-hand area therefore represents early salivary gland  
134 developmental stages, such as sexual stages, which are frequent at 21 – 24 days pi, but are  
135 relatively scarce at 40 days pi compared to epimastigotes and metacyclics (Peacock et al,  
136 2014).

137  
138 We next used consensus clustering to partition the cells into six clusters based on the top  
139 average silhouette score in SC3 [32] (**Figure 1C**). The midgut and proventriculus parasites  
140 each formed a single cluster (clusters C1 and C2 respectively), whereas the salivary gland  
141 cells divided into four clusters (C3-C6). We identified 238 marker genes across the six clusters  
142 allowing us to assign potential cell types (AUROC > 0.75,  $p < 0.01$ , **Table S1**, **Figure 1D**). C1  
143 and C5 had very few significant marker genes and C6 had none (hence not included in **Figure**  
144 **1D**). This is likely due to different overall levels of transcriptional activity across the cell types  
145 as we observed fewer genes per cell for these clusters (**Table S1**). For further  
146 characterization, we additionally identified the top 200 genes expressed in each cluster (**Table**  
147 **S2**). Based on both the cluster markers and top genes of each cluster, we were able to assign  
148 putative cell-types. C1 and C2 showed expression patterns consistent with midgut procyclics  
149 and proventricular forms, respectively, based on known marker genes and bulk transcriptomic  
150 data [21,33] (**Table S2**). C1 was characterized by a single marker gene, *FHc* (Tb927.3.4500),  
151 a fumarate hydratase, which catalyses conversion of fumarate to malate in the TCA cycle  
152 (**Figure 1**) [4,34]. *FHc* was also the most significant marker gene for the midgut forms when  
153 integrated with *T. brucei* single-cell data from [20], supporting the cell-type assignment across  
154 datasets (**Figure S4**, **Table S3**). C1 also expressed several genes encoding surface proteins  
155 at high levels (*EP1*: Tb927.10.10260, *EP3-2*: Tb927.6.520, and *EP2*: Tb927.10.10250), as  
156 well as three Proteins Associated with Differentiation (*PAD1*: Tb927.7.5930, *PAD2*:  
157 Tb927.7.5940, *PAD7*: Tb927.7.5990) (**Table S2**), which are implicated as sensors of  
158 environmental stimuli and trigger differentiation [35]. C2 had several marker genes associated  
159 with transport (e.g. amino acid transporter *AATP11* and purine nucleotide transporter *NT10*,  
160 **Figure 1**), both also highly expressed in C1 cells (**Table S2**). Procyclin *EP2* was identified as  
161 a marker gene for this cluster, though both *EP1* and *EP3* (Tb927.6.480) were also highly  
162 expressed (**Table S2**).  
163

164 Cluster C3 comprised day 21/24 pi early salivary gland developmental stages (**Figure 1B, C**)  
165 including potential sexual forms. Notably, we observed high expression of the gamete fusion  
166 protein *HAP2* (Tb927.10.10770), which is known to be expressed in meiotic intermediates and  
167 gametes (**Table S1**) [10]. An analogous cluster was also identified by [20], which showed high  
168 expression of *HAP2* and *HOP1* (Tb927.10.5490), a meiosis-specific protein. Integration  
169 across these two datasets showed the cells from both studies clustered together at a granular  
170 level (**Figure S4**, **Table S3**). Other notable marker genes for this cluster were two leucine-rich  
171 repeat (LRR) protein genes (Tb927.9.14570, Tb927.7.7180), with a third also highly expressed  
172 (**Table S2**); as LRRs are protein recognition motifs, this could be significant in gamete  
173 interactions. Procyclin genes *EP1*, *EP3* and *GPEET* (Tb927.6.510) (**Table S2**) were highly  
174 expressed, together with *BARP* genes, which is the characteristic surface protein of  
175 epimastigotes [7].  
176

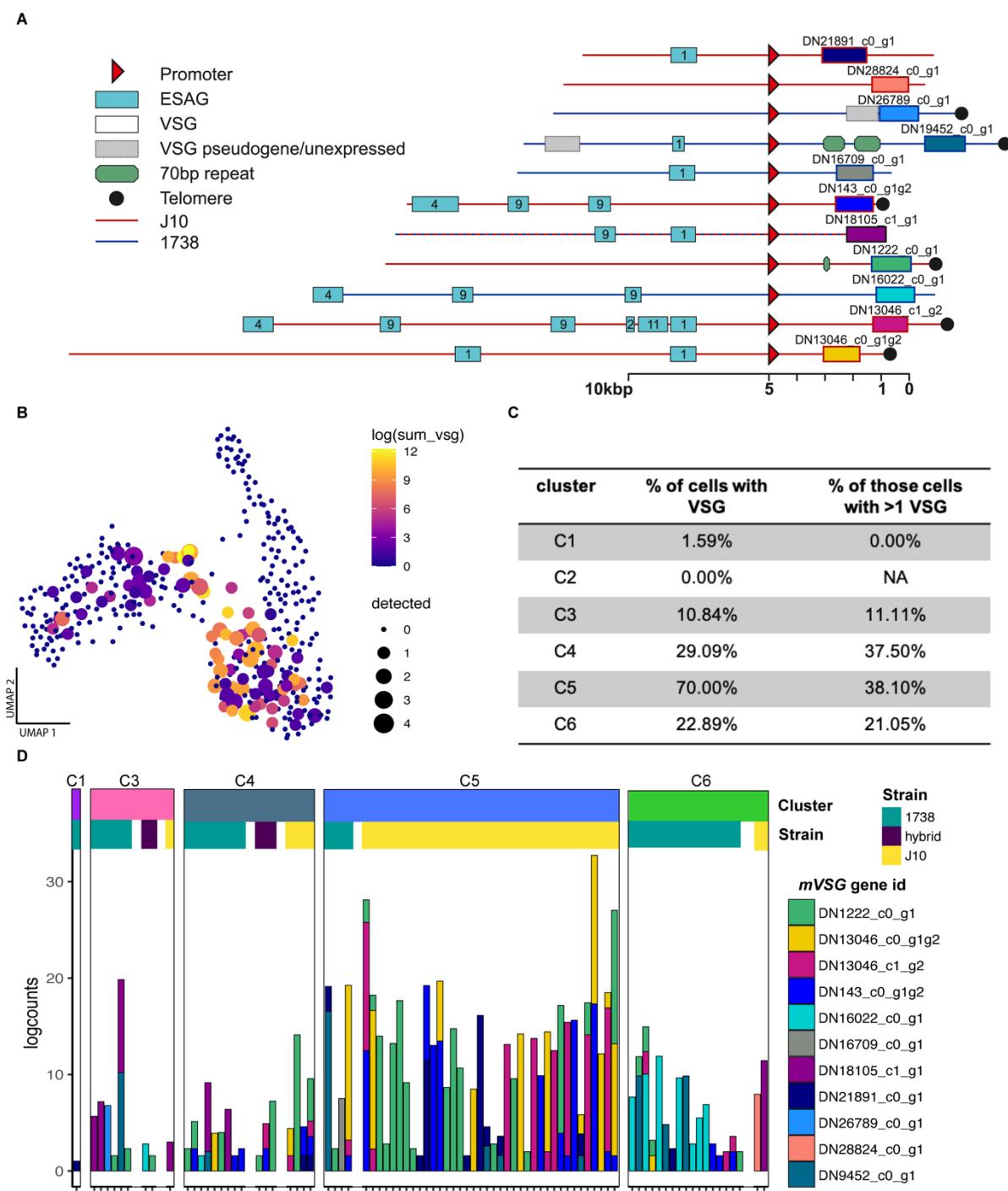
177 Several *BARP* genes were the prominent marker transcripts in cluster C4 (**Figure 1D**),  
178 identifying this cluster as salivary gland epimastigotes, consistent with previous studies

179 [19,20]. The majority of the later time point (day 40 pi) cells were found in clusters C5 and C6  
180 (**Figure 1B, C**), showing that these clusters represent the later salivary gland developmental  
181 stages including mature metacyclics and/or their immediate precursors, pre- and nascent  
182 metacyclics. However, the identities of these clusters remain unclear. C5 had only three  
183 significant marker genes, two of which encode zinc finger proteins and one hypothetical  
184 protein, and C6 none (**Figure 1D, Table S2**). The zinc finger protein genes, ZC3H11  
185 (Tb927.5.810) and ZC3H45 (Tb927.11.8470) were also identified as biomarkers of pre-  
186 metacyclics (Meta 1) in Vigneron et al 2020 [19], and ZC3H11 was also identified as a highly  
187 expressed gene in purified, culture-derived mature metacyclics [27]. Several other highly  
188 expressed genes of mature metacyclics ([27]) were also identified in our data for either C5 or  
189 C6 (e.g. *ZFP2*, *HSP 110*; **Table S2**). It is noteworthy that cluster C5 is predominantly J10,  
190 while cluster C6 is predominantly 1738 (**Figure 1D**), and hence these clusters may also  
191 represent strain-specific rather than stage-specific expression differences. Additionally,  
192 mature and nascent metacyclics both have VSG on the surface [36], and it is reasonable to  
193 suppose that pre-metacyclics already transcribe VSGs. In support of this, both previous  
194 scRNASeq studies found high levels of expression of VSGs in cells identified as pre-  
195 metacyclics (Meta 1, Vigneron et al, 2020; Pre-metacyclic, Hutchinson et al, 2021). Here,  
196 VSGs were not identified as abundant transcripts in either C5 or C6, likely because of poor  
197 match between 1738/J10 VSG transcripts and the Tb927 reference genome, as VSG  
198 repertoires are strain-specific. We next endeavoured to identify the metacyclic VSG repertoire  
199 of 1738 and J10, in order to confirm the cell-types of C5 and C6.



**Figure 1. scRNA-seq analysis of trypanosome developmental stages in tsetse.**

(A) A schematic of the trypanosome life cycle and collections of the single parasite transcriptomes from midgut (MG; blue), proventriculus (PV; turquoise) and salivary glands (SG; pink) from different time points and strains. Trypanosomes show two conformations: tryponastigote with kinetoplast (small black dot) posterior to nucleus (e.g. bloodstream form, procyclic, metacyclic) and with kinetoplast anterior to nucleus (e.g. epimastigote). (B) A UMAP of the 388 cells that passed QC across collections, coloured by tissue of origin. (C) The UMAP coloured by cluster assignment. (D) A heatmap of the top significant marker genes from each of the five clusters that had marker genes (AUROC > 0.75 & adjusted p-value < 0.01).


200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210

## 211 Expression of mVSG transcripts

212 Mature metacyclics can be unequivocally identified by their lack of expression of the cell  
213 surface proteins GPEET, EP and BARP, replaced by expression of a single mVSG gene in  
214 each cell [27], but pre-metacyclics also transcribe mVSGs at high level in [20]. To explore

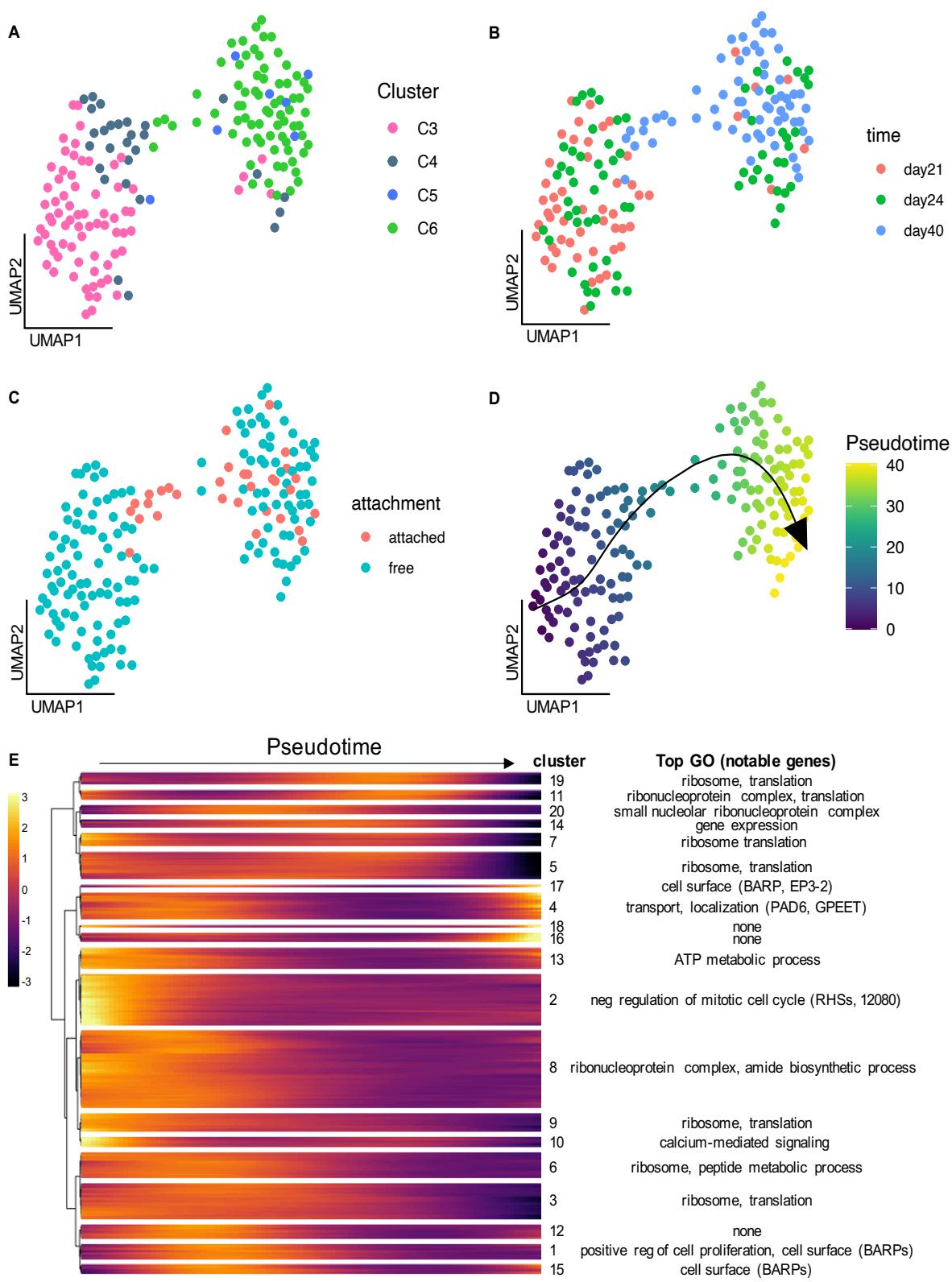
215 *mVSG* expression in salivary gland-derived cells here, we first needed to identify the *mVSG*  
216 repertoires of strains 1738 and J10, which differ from those of previously published strains.  
217 We built a *de novo* transcriptome assembly based on all reads from the 388 tsetse-derived  
218 cells and identified putative *mVSGs* by comparison of the resulting ORFs to the total VSG  
219 repertoire of each strain, previously identified using an HMM on full-genome Illumina sequence  
220 data [37]. These assembled *mVSG* transcripts were then mapped to 1738 or J10 contigs to  
221 place them in a genomic context. Using this method, we identified 11 *mVSGs* that were  
222 expressed in our dataset all of which contained an upstream *mVSG* promoter based on the  
223 consensus sequence [38,39]. Additionally, downstream telomeric repeats were present in six  
224 of these contigs (**Figure 2A**). Although several *ESAGs* were found on the contigs, these were  
225 up- not downstream of the promotor and therefore not part of the *mVSG* expression site. The  
226 presence of these characteristic features of *mVSG* gave us further confidence that the  
227 identified transcripts were originating from *bona fide* *mVSG*. Interestingly, J10 and 1738  
228 shared one *mVSG* (DN18105), suggesting some level of conservation across strains. This is  
229 the first identification of the *mVSG* repertoire in these strains.  
230

231 Individual parasite transcriptomes were then mapped to the assembly to generate counts for  
232 each putative *mVSG*. *MVSG* transcripts were expressed by most cells in cluster C5, followed  
233 in order by C4, C6 and C3, with negligible expression in C1 and C2 (**Figure 2B, C**). Overall  
234 levels of expression were highest in cluster C5 (**Figure 2B, C, D**), with 38% (16/42 cells)  
235 expressing more than one *mVSG* (**Figure 2B, C, D**). Multiple *mVSGs* were also expressed by  
236 38% (6/16) and 21% (4/19) cells in clusters C4 and C6 respectively, and a single cell in C3  
237 (**Figure 2C, 2D**). [20] confirmed expression of two *mVSGs* in pre-metacyclics using single  
238 molecule mRNA-FISH and put forward a model where multiple *mVSGs* are transcribed at low  
239 levels initially, with a single *mVSG* dominating expression in the mature metacyclic forms.  
240 Based on this model, C4, C5 and C6 all contain a high proportion of pre-metacyclics, as well  
241 as some mature metacyclics. The *mVSGs* expressed varied over development and between  
242 strains, with DN1222 being the dominant transcript in C5, which were primarily J10 cells, and  
243 DN16022 being the dominant transcript in C6, which were primarily 1738 cells (**Figure 2D**).  
244 Observed expressed *mVSGs* are largely consistent with the VSGs present in their strain (when  
245 there is sufficient read depth), but low read count and partial coverage result in ambiguous  
246 assignment due to sequence conservation between VSGs.



247

248


## Figure 2. mVSG expression in fly-derived trypanosomes

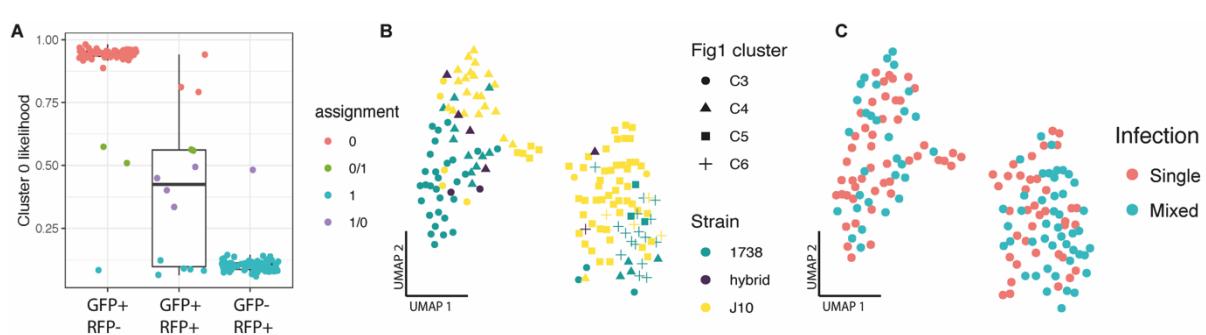
249 (A) The genomic context of 11 mVSGs identified in strains 1738 and J10. The sequences can be found  
 250 in supplementary file 1. (B) The transcript abundance of mVSG across 388 fly-derived trypanosome  
 251 cells on the UMAP coloured by the logged sum of the mVSG counts in each cell and sized by the  
 252 number of different mVSG detected in that cell. (C) The breakdown of mVSG expression per cluster.  
 253 C5 had the highest proportion of cells expressing mVSG and the greatest proportion of those cells  
 254 expressing multiple mVSG. (D) A barchart of all cells expressing mVSG (>1 read) organised by cluster  
 255 and strain. Strain-specific expression of mVSG was seen at high levels in C5, which is primarily  
 256 composed of J10.

257 **Pseudotime analysis of salivary gland development**

258 To understand fine-scale changes in expression patterns during development of salivary gland  
259 parasites, we focused on the 161 salivary gland cells of strain 1738 collected over three time  
260 points (day 21, 24, 40 pi). The UMAP projection of these cells showed a general  
261 correspondence with the clusters identified in **Figure 1C**, with the left-hand group of cells  
262 representing clusters C3 and C4 (day 21/24 pi, early and late epimastigotes) and the right-  
263 hand group predominantly representing cluster C6 which included most of the day 40 pi  
264 transcriptomes (**Figure 3A, B**). The small branch connecting these two groups contained  
265 many cells collected from the dissociated salivary gland tissue, which likely represent  
266 attached epimastigotes and premetacyclics. Although we cannot rule out that these parasites  
267 were trapped unattached cells, their enrichment at this bottleneck in the UMAP indicates their  
268 importance in the developmental transition to metacyclics (**Figure 3C**).  
269

270 We next used Slingshot to order these cells in pseudotime, revealing a trajectory running from  
271 left to right from gametes and early epimastigotes to metacyclics (**Figure 3D**). We discovered  
272 692 genes that were differentially expressed over this trajectory (**Figure 3E, Table S4**) and  
273 used hierarchical clustering to identify modules of co-expressed genes. Modules expressed  
274 early in development were enriched for genes involved in negative regulation of mitotic cell  
275 cycle and ATP metabolism (modules 2 and 13, **Figure 3E, Table S4**), while middle-  
276 late modules were enriched for genes involved in translation and the ribosome, perhaps  
277 necessitated by the changes in surface proteins and metabolism associated with  
278 differentiation from epimastigotes to metacyclics (**Figure 3E, Table S4**).




279

280 **Figure 3. Pseudotime trajectory analysis of developing salivary gland parasites**

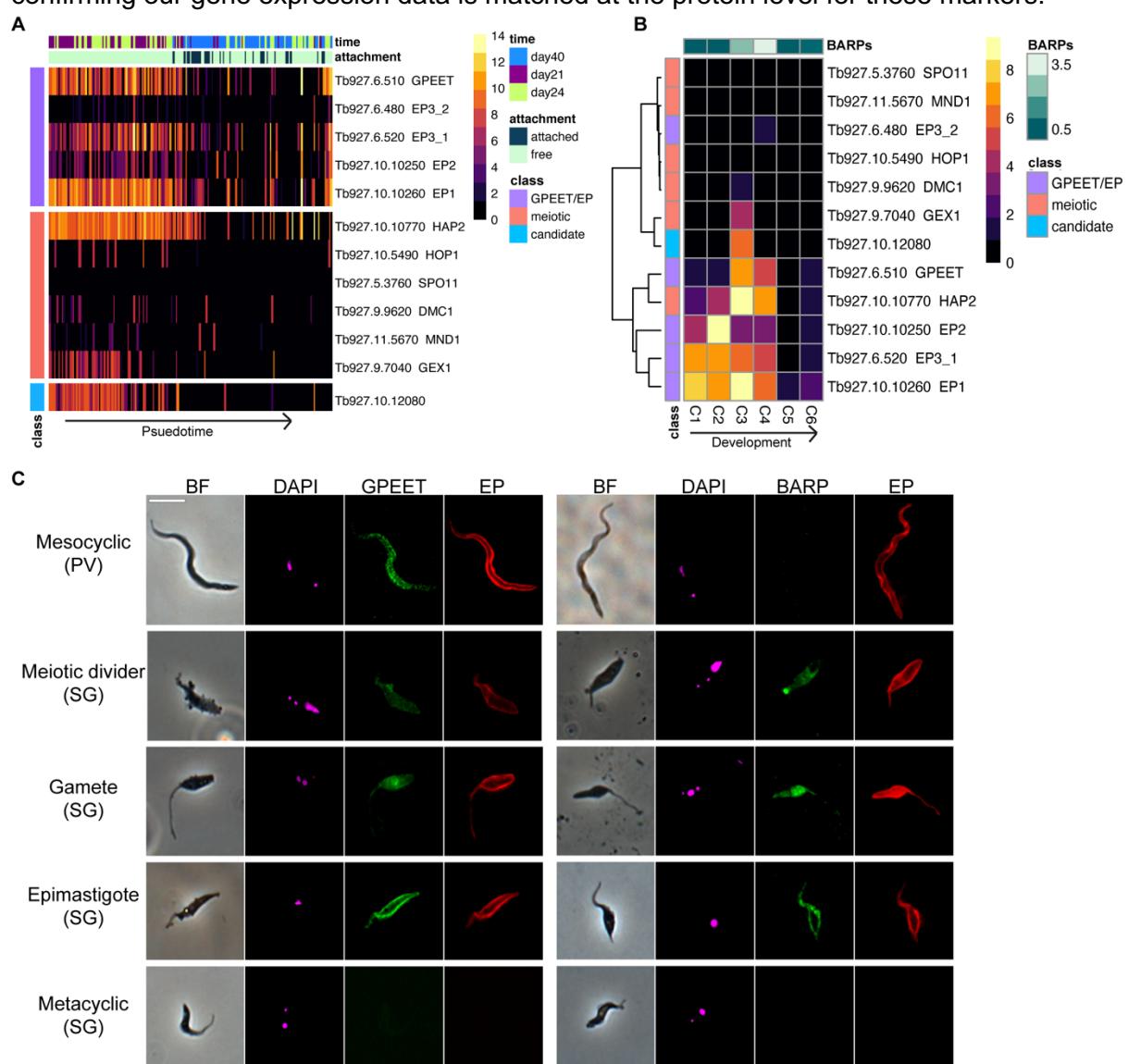
281 1738 strain parasites collected from the salivary gland at day 21, 24 and 40 pi were used to map fine-  
282 scale changes in gene expression over development. **(A-D)** A UMAP of the 161 1738 salivary glands  
283 parasites coloured by global cluster assignment from Figure 1 **(A)**, day PI **(B)**, attachment treatment **(C)**  
284 and pseudotime assignment **(D)**. **(E)** A heatmap of 20 clusters of genes differentially expressed over  
285 the pseudotime trajectory from **(D)**.

286 **Identification of hybrid progeny and strain-specific expression**

287 To investigate potential cell-types and cell-type specific responses that could be involved in  
288 sexual reproduction at day 24 post-infection, we collected J10 and 1738 parasites from both  
289 single-strain infected and co-infected tsetse. In the co-infected treatment, we sorted cells from both  
290 strains based on fluorescence (1738 GFP+, J10 RFP+), and sorted a small number of  
291 RFP+/GFP+ potential hybrid parasites (16 sorted, 14 passed QC). To confirm strain  
292 assignment, we used Souporcell to cluster different genotypes based on SNPs in the RNA-  
293 seq reads [40]. The two genotype clusters identified were each composed of one of the strains  
294 based on fluorescent identification with FACS (1738 GFP+ = cluster 0; J10 RFP+ = 1), and  
295 the potential hybrid progeny were identified as inter-genotypic doublets (clusters 0/1 and 1/0),  
296 with alleles present from both strains (**Figure 4A**). This confirmed that six of the RFP+/GFP+  
297 cells were genuine hybrids, while a further three hybrid cells were identified from the RFP-  
298 /GFP+ or RFP+/GFP- groups; as the GFP and RFP genes are present on only one homologue,  
299 four hybrid genotypes with respect to fluorescent protein genes are expected [41]. Looking at  
300 a UMAP of all day 24 pi cells, we observed some separation of strain in both the early and late  
301 epimastigote clusters (C3 and C4) and clusters C5 and C6 (**Figure 4B**). However, we did not  
302 see clear clustering based on the infection treatment (co- vs single-infection), suggesting that  
303 there is no strong transcriptomic response to presence of another parasite strain (**Figure 4C**).  
304 In order to understand if the observed strain-specific clustering was a result of different cell-  
305 type composition or differential expression between strains within a cell-type, we integrated  
306 the data across strains using Seurat v3 [42]. Using this method, we were able to co-cluster  
307 the early epimastigote cells and identify 11 genes differentially expressed between the two  
308 strains (**Figure S5, Table S5**). However, the later stage cells seen in J10 had no  
309 representation of 1738, suggesting this cell-type is unique to this strain at day 24 pi, which  
310 could be observed if the strains have different developmental rates (**Figure S5**).  
311



312

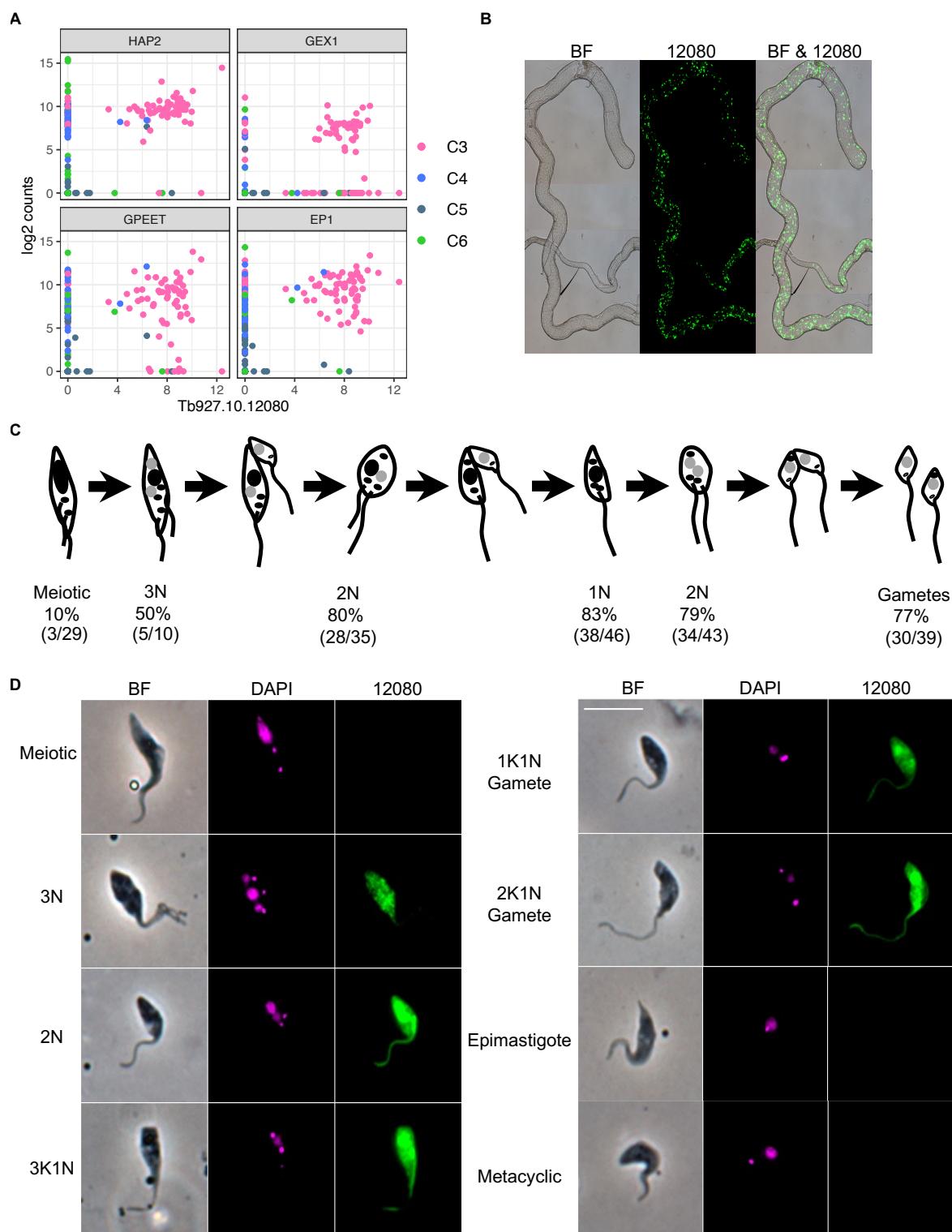

313 **Figure 4. Classification of hybrid progeny**

314 Souporcell was used to assign genotypes based on SNPs found between the two strains. The two  
315 genotype assignments (0,1) were each primarily composed of one of the strains based on fluorescent  
316 identification with FACS (1738 GFP+/RFP- = cluster 0; J10 GFP-/RFP+ = 1), and the potential hybrid  
317 progeny were classified as inter-genotypic doublets (clusters 0/1 and 1/0). The likelihood ratio of cluster  
318 0 assignment is shown for each of the three sorted populations (**A**). The UMAP of day 24 mixed- and  
319 single-infection experiments coloured by strain assignment and shaped by Figure 1 cell cluster  
320 assignment (**B**) and infection treatment (**C**).

321 **Transcript levels of procyclin and candidate novel sexual stage genes correlate with  
322 protein expression *in vivo*.**

323 A primary aim of this study was to identify the sexual stages of *T. brucei* and our results support  
324 the hypothesis that cluster C3 (**Figure 1**) represents meiotic intermediates and gametes,

325 which are abundant around day 21 pi [8–10]. Looking at expression of genes encoding  
 326 proteins known to be essential for sexual reproduction, we found high levels of expression of  
 327 *HAP2* and also *GEX1* in cluster C3, with some signal from the meiosis-specific genes *DMC1*  
 328 and *HOP1* (**Figure 5A**). Surprisingly, these cells also expressed the procyclin gene *GPEET*,  
 329 which is considered to be a marker of early procyclics in the tsetse midgut, replaced by EP  
 330 procyclins in late procyclics [31,43]. *GPEET*, *EP1*, *HAP2* and *GEX1* all have the highest  
 331 expression in cluster C3 (**Figure 5B**). We used immunofluorescence to tie these observations  
 332 to specific morphological forms and to validate the presence of *GPEET* on the surface of  
 333 salivary gland parasites (**Figure 5C, Table S6**). We found that *GPEET*, together with EP and  
 334 BARP were present in >90% of the meiotic dividers and gametes (identified by morphological  
 335 features), and as expected absent in metacyclics (**Figure 5C**). Epimastigotes showed a  
 336 similar pattern to the sexual forms but lower total proportions. Additionally, we looked at  
 337 proventricular parasites and found expression of EP and *GPEET* but no BARPs, further  
 338 confirming our gene expression data is matched at the protein level for these markers.




340 **Figure 5. Expression of surface antigens and genes involved in sexual reproduction**  
 341 **throughout development in the tsetse fly.**

342 We observed co-expression of procyclic surface antigen genes and *HAP2* in early parasite development  
 343 in the salivary glands (**A**) and this general pattern of expression was also seen in proventricular forms

344 (C2) as well as putative epimastigotes (C4) that also had high expression of *BARPs* (B).  
345 Immunofluorescence assays confirmed that these surface proteins corresponded to their transcriptional  
346 profiles and were present on the epimastigote and sexual stages (C).

347  
348 Cluster C3 was additionally characterised by strong and unique expression of Tb927.10.12080  
349 (**Figure 1D, Figure 5A,B, Figure 6A**), and we hypothesized that this gene may play a role in  
350 sexual development. It encodes a hypothetical protein devoid of recognisable functional  
351 domains that is well-conserved in other trypanosomes including *T. congolense*, *T. vivax*, *T.*  
352 *cruzi* and *T. grayi*, and the C-terminal domain in more distantly related members of the  
353 trypanosomatid family such as *Leishmania* spp. The gene falls upstream of two RNA binding  
354 proteins (Tb927.10.12090 (*RBP7a*); Tb927.10.12100 (*RBP7b*)) and the recently identified  
355 long non-coding RNA, *grumpy*, which all play a role in stumpy form differentiation [44,45].  
356 Along with Tb927.10.12080, this genomic region could potentially act as a hotspot for  
357 differentiation and developmental processes across the parasite life cycle. Localisation data  
358 for Tb927.10.12080 from Tryptag.org is equivocal, showing punctate cytoplasmic  
359 fluorescence for the N-terminal tagged protein and a mitochondrial location in a proportion of  
360 cells for the C-terminal tagged protein. To investigate expression of this protein during  
361 development in the tsetse fly, we used the 3' UTR to regulate expression of GFP driven by the  
362 procyclin promotor (**Figure S6**). At 20-22 days post infection, there was very little detectable  
363 expression in midgut procyclics or proventricular forms, but strong expression in salivary gland  
364 trypanosomes (**Figure 6B**). Overall, of the parasites from the salivary gland scored, 39%  
365 (182/464) showed expression (**Table S7**). These included meiotic intermediates and both  
366 1K1N and 2K1N gametes but not metacyclics or unattached epimastigotes (**Figure 6C,D**).  
367 Cell types involved in the early stages of meiosis, such as meiotic dividers and 3N cells with  
368 one diploid and two haploid nuclei, had lower percentages of cells expressing (10% and 50%  
369 respectively) than did those involved in the later stages of meiosis and in gametes (77-80%;  
370 **Figure 6C & Table S7**). At 37-38 days post infection, the percentage of fluorescent  
371 trypanosomes dropped (103/682; 15%) and these cells were misshapen with no recognisable  
372 gametes or sexual intermediates. Further work is needed to understand the functional role of  
373 Tb927.10.12080 in meiosis and sexual development; however, its unique pattern of transcript  
374 and protein expression indicate it could play a vital role in processes that allow for genetic  
375 exchange in *T. brucei* and perhaps more broadly in kinetoplastids.



376

377 **Figure 6. Expression of Tb927.10.12080 coincides with sexual forms.**

378 (A) Co-expression of Tb927.10.12080 with genes encoding HAP2 and GEX1, proteins associated with  
379 gamete and nuclear fusion in eukaryotes, and the surface antigen genes GPEET and EP1; co-

380 expression is seen in a subset of cells from C3 (**Figure 1D**). **(B)** Salivary gland dissected 21 days pi  
381 that is infected with *T. brucei* 1738 expressing GFP::Tb927.10.12080-3'UTR transcribed from the  
382 procyclin promotor. **(C)** Diagram showing major cell types observed during meiosis in *T. brucei* (adapted  
383 from Peacock et al 2021); nuclei are shown in black (4C or 2C DNA contents) or grey (1C, haploid) and  
384 kinetoplasts are shown as smaller black dots. Values beneath are the numbers and percentages of  
385 cells recorded for each cell type; both 1K1N and 2K1N gametes are included in the gamete total. Full  
386 data are presented in **Table S7**. **(D)** Trypanosomes from tsetse fly salivary gland spill-out 16-21 days  
387 pi with *T. brucei* 1738 expressing GFP::Tb927.10.12080-3'UTR transcribed from the procyclin  
388 promotor. Left to right: phase contrast, DAPI, GFP::Tb927.10.12080-3'UTR. The scale bar represents  
389 10  $\mu$ m.  
390

## 391 Conclusion

392 Here we applied single-cell RNA sequencing to explore the heterogeneous trypanosome  
393 populations in the tsetse fly. These data provide a resource for the parasitology community,  
394 which we have made available via an interactive website (<http://cellatlas.mvls.gla.ac.uk/>).  
395 Additionally, this data set allowed us to elucidate the transcriptional profiles of key life cycle  
396 stages in the salivary glands including the sexual stages. From this mixture of cell types, we  
397 were able to identify a cluster of cells that shared a particular transcriptomic profile  
398 characterized by high expression of the gene encoding the gamete fusion protein HAP2,  
399 together with several unstudied genes. One of these was a kinetoplastid-conserved gene  
400 Tb927.10.12080, which was exclusively expressed at high levels by meiotic intermediates and  
401 gametes. We speculate that this protein, currently of unknown function, plays a role in gamete  
402 formation and/or fusion.  
403

## 404 Materials and Methods

### 405 Data collection

#### 406 Trypanosome culture and tsetse infection

407 The following tsetse-transmissible strains of *Trypanosoma brucei brucei* were used: *T. b.*  
408 *brucei* J10 (MCRO/ZM/73/J10) and 1738 (MOVS/KE/70/EATRO 1738); each was genetically  
409 modified to express a fluorescent protein gene (J10 RFP, 1738 GFP). Mating between these  
410 strains has been demonstrated previously [41] and 1738 reliably produces large numbers of  
411 gametes around day 21 post-infection [9]. Procyclic form (PF) trypanosomes were grown in  
412 Cunningham's medium (CM) [46] supplemented with 15 % v/v heat-inactivated foetal calf  
413 serum, 5  $\mu$ g/ml hemin and 10  $\mu$ g/ml gentamycin at 27°C. Tsetse flies (*Glossina pallidipes*)  
414 were infected with PF trypanosomes, maintained and dissected as described previously [8].  
415

#### 416 Parasite isolation from tsetse tissues for scRNA-seq

417 Free swimming parasites were obtained from *G. pallidipes* by separately pooling tissues into  
418 CM (5 midguts in 500  $\mu$ l CM; 5 proventriculi in 50  $\mu$ l CM; 20 sets of salivary glands in 50  $\mu$ l  
419 CM). Tissues were incubated at RT for 10 minutes prior to filtration through a 100  $\mu$ m filter.  
420 Cells were washed once with 1 ml CM prior to preservation or sorting. At day 40 pi, the  
421 parasites attached to the salivary glands were isolated by disassociation of the tissue after the

422 10-minute incubation period. Forceps were used to transfer the tissue to an enzymatic solution  
423 consisting of 200  $\mu$ l Collagenase IV (1 mg/ml) and 25  $\mu$ l of Elastase (4 mg/ml). The sample  
424 was then incubated at 30°C for 40 min with shaking at 300 rpm. During the incubation, the  
425 tissue was disrupted by pipetting up and down 40 times every 15 minutes at first with a p1000  
426 pipette set to 150  $\mu$ l and then with a p200 set to 100  $\mu$ l once the tissue started to break up.

427 Cell preservation

428 A subset of cells was preserved prior to cell sorting to allow for greater flexibility in the time  
429 between collections and FACS. The day 40 pi salivary glands parasites (attached and free)  
430 cells were fixed by adding 200  $\mu$ l of dithio-bis(succinimidyl propionate) (DSP; Lomant's  
431 reagent) dropwise to the cell pellet as described in [47]. DSP fixed samples were incubated at  
432 room temperature for 30 minutes prior to adding 4  $\mu$ l 1 M Tris-HCl pH 7.5. Samples were then  
433 stored at 4°C for up to 24 hours. Prior to sorting, DTT was added to a final concentration of 50  
434 mM. The day 24 pi salivary gland parasites (cross vs single infection) were preserved by  
435 resuspending the cell pellet in 200  $\mu$ l Hypothermosol-FRS (BioLifeSolutions) [48]. Samples  
436 were then stored at 4°C for 5 hours prior to sorting.

437 Cell sorting, library preparation and sequencing

438 All parasite cells were sorted within 24 hours of collection on an Influx cell sorter (BD  
439 Biosciences) with a 200  $\mu$ m nozzle or a Sony SH800 with 100  $\mu$ m chip. Parasites were sorted  
440 based on RFP and/or GFP fluorescence into nuclease-free 96 well plates containing lysis  
441 buffer as described previously [12]. Sorted plates were spun at 1000 g for 10 seconds and  
442 immediately placed on dry ice. Reverse transcription, PCR, and library preparation were  
443 performed as described in [12]. Cells were multiplexed to 384 and sequenced on a single lane  
444 of Illumina HiSeq2500 v4 with 75 bp paired-end reads.

445 Immunofluorescence

446 Salivary glands, proventriculi and midguts from infected flies (20-22 days pi) were pooled  
447 separately into CM and incubated at room temperature (RT) for 10 minutes (to allow  
448 trypanosomes to swim out of tissue) and then filtered through a 100  $\mu$ m filter with PBS.  
449 Trypanosomes were pelleted by centrifugation and resuspended in 100  $\mu$ l PBS. Cells were  
450 fixed overnight at 4°C by adding 100  $\mu$ l 6% paraformaldehyde, 0.1% glutaraldehyde in PBS,  
451 and then washed twice with PBS before resuspension in 50  $\mu$ l PBS. Cell suspensions were  
452 pipetted onto 2 x 10 mm coverslips, allowed to settle for 20 mins in a humid chamber, and  
453 then liquid was removed and replaced by 2% BSA in PBS. After 30 mins liquid was removed  
454 and cells incubated with 2% BSA in PBS containing diluted antibody for 30 mins at RT. Rabbit  
455 anti-GPEET (1:1000) and rabbit anti-BARP (1:1000) were a kind gift from Isobel Roditi,  
456 University of Bern, Switzerland; mouse anti-EP mAB (1:100) was from Cedarlane. Cells were  
457 washed three times with PBS and incubated with 2% BSA in PBS containing anti-rabbit FITC  
458 (1:1000) and anti-mouse TRITC (1:1000) for 30 mins at RT. Cells were washed three times  
459 with PBS, briefly air dried, stained with DAPI in VECTASHIELD mounting medium (Vector  
460 Laboratories) and viewed using a DMRB microscope (Leica) equipped with a Retiga Exi  
461 camera (QImaging) and Velocity software (PerkinElmer). The whole area of the coverslip was  
462 scanned systematically from top to bottom, capturing FITC, TRITC, DAPI and phase contrast  
463 images of each trypanosome. Digital images were analysed using ImageJ  
464 (<http://rsb.info.nih.gov/ij>).

465 Tb927.10.12080 gene expression

466 The 3' UTR of Tb927.10.12080 was amplified from genomic DNA of 1738 using the primers  
467 5'- GATCCTCGAGTAGTGGCGAGTGTACAAACAGTGTC and 5'-  
468 GATCGGGCCCCTGTGCGGATCCAAACAA, and inserted immediately downstream of a  
469 GFP gene driven by the procyclin promotor from plasmid backbone pHD449, which is  
470 designed for insertion into the tubulin locus (**Figure S6**) [49,50]. The plasmid construct was  
471 used for stable transfection of procyclic 1738 and following hygromycin selection, clones were  
472 tsetse fly transmitted as described by Peacock et al 2011, 2014. Flies were dissected 10 to 40  
473 days pi and organs viewed by fluorescence microscopy and imaged live or fixed in 2%  
474 paraformaldehyde and stained with DAPI in VECTASHIELD mounting medium (Vector  
475 Laboratories).

476 scRNAseq data analysis

477 Mapping and generation of expression matrices

478 Nextera adaptor sequences were trimmed from fastq files using trim\_galore (-q 20 -a  
479 CTGTCTCTTATACACATCT --paired --stringency 3 --length 50 -e 0.1) (v 0.4.3) [51]. Trimmed  
480 reads were mapped using HISAT2 (hisat2 --max-intronlen 5000 -p 12) (v 2.1.0) [52] to the *T.*  
481 *b. brucei* 927 genome. The GFF was converted to GTF using the UCSC genome browser tool  
482 [53]. Reads were then summed against genes using HTseq (htseq-count -f bam -r pos -s no -  
483 t CDS) (v 0.7.1) [54].

484 Assembly of VSG transcripts

485 Because there is a lack of conservation of VSGs across *T. brucei* strains, we built a *de novo*  
486 transcriptome assembly to identify the mVSG transcripts expressed in 1738 and J10. First, we  
487 merged the BAM files across the 388 cells and converted to FASTQ using bedtools (v. 2.29.2)  
488 [55]. Using Trinity (v. 2.1.1) [56] to assemble the transcripts from this merged file, we detected  
489 53521 'genes' with a mean contig length of 800 bp. We then mapped each cell to this assembly  
490 using RSEM (v. 1.3.3) to generate a counts matrix and used Transdecoder (v. 5.5.0) to detect  
491 open reading frames [57]. BLASTp (v. 2.9.0) was used to match to putative VSGs that had  
492 been curated independently from whole genome data as described below. Transcripts  
493 with >90% identity were used for further analysis.

494 Genomes for the parent strains J10 and 1738 were assembled from 76 bp paired read Illumina  
495 data using SPADES under default parameters. Predicted mVSGs were identified to genomic  
496 loci, using BLAST against the assembled contigs with a percent identity across the entire  
497 transcript >95%, alignments of a raw score of greater than 1000 were further investigated.  
498 Additional open reading frames were identified by BLAST alignment of the curated 927  
499 annotated CDS set. Nhmmer was used to identify putative mVSG promoters from the  
500 alignments [38,39].

501 Quality control and normalization

502 Quality control and visualisation was performed in Scater (v. 1.12.2) [58]. Cell quality was  
503 assessed based on the distribution of genes detected per single-cell transcriptome. Cells with  
504 fewer than 40 genes or more than 3000 genes detected were removed, as well as cells that  
505 had fewer than 1000 total reads. These QC thresholds allowed us to keep more cells in the

506 analysis that are likely to be less transcriptionally active such as mature metacyclics. Out of  
507 515 parasites isolated from tsetse tissue that were sequenced, 388 passed quality control and  
508 were used for downstream analyses. Raw count data was normalized using a deconvolution  
509 size factor in Scran (v. 1.16.0) [59] to account for differences in overall level of expression  
510 between cell-types.

511 Cell clustering, projection, and marker genes

512 In order to unbiasedly group transcriptomes based on similar expression profiles, 388 cells  
513 collected from the tsetse were clustered using K-means clustering in SC3 (v. 1.12.0) [32].  
514 Dimensionality reduction was performed in Scater (v. 1.12.2) [58] using Principal Component  
515 Analysis (PCA) with the 500 most variable genes based on log2 normalised expression values.  
516 Marker genes were identified for each cluster using SC3 (AUROC >0.75 & adjusted *p*-value <  
517 0.01).

518 Identification of hybrid parasites and data integration

519 To select different parasite genotypes (J10, 1738, or J10x1738 cross) in the mixed infection  
520 treatment, we first FACS sorted based on GFP+ (1738), RFP+ (J10), or GFP+/RFP+ (hybrid)  
521 expression. We then used souporcell (-k 2 -p 2) (v2.0) [40] to confirm genotype assignment  
522 based on SNP profiles from the scRNA-seq.

523  
524 To identify genes that were differentially expressed between the two strains, we used Seurat  
525 (v3.1.5) to integrated the data by identifying anchors with the FindIntegrationAnchors() and  
526 IntegrateData() functions. The data was then clustered using FindNeighbors() with the top 30  
527 principal components and FindClusters() with a resolution of 0.5. Differential expression was  
528 performed using the FindMarkers() function (adjusted *p*-value < 0.001). The same integration  
529 methods were used to compare the data to [20] except that the top 20 principal components  
530 were used, the cluster resolution was 0.8 and the FindConservedMarkers() function identified  
531 markers found in both studies (max *p*-value < 0.001).

532 Pseudotime and differential expression

533 To assess developmental progression in 1738 salivary glands parasites from day 21-, 24-,  
534 and 40-days pi, Slingshot (v. 1.8.0) was used to infer a pseudotime developmental trajectory  
535 [60]. Genes differentially expressed over this trajectory were identified using the  
536 associationTest() function in TradeSeq (v. 1.4.0) [61].

537

538 **Data availability**

539 Raw sequence data are available on the European Nucleotide Archive under accession  
540 ERP132258. The expression matrix and associated code will be available on Github at  
541 [https://github.com/vhowick/tryps\\_single\\_cell](https://github.com/vhowick/tryps_single_cell). The data are explorable via the Glasgow Cell  
542 Atlas website at <http://cellatlas.mvls.gla.ac.uk/>.

543

544 **Acknowledgements**

545 We thank the UK Biotechnology and Biological Sciences Research Council (BB/R016437/1  
546 and BB/R010188/1) and Wellcome Trust (<http://www.wellcome.ac.uk/>) for funding. The  
547 Wellcome Sanger Institute is funded by the Wellcome Trust (Grant 206194/Z/17/Z), which  
548 supports M.K.N.L. V.M.H. is supported by a Sir Henry Dale Fellowship jointly funded by the  
549 Wellcome Trust and the Royal Society (Grant 220185/Z/20/Z). We gratefully acknowledge the

550 generous supply of tsetse pupae from the International Atomic Energy Agency, Vienna. We  
551 thank the Sanger Institute flow cytometry core facility for technical support and guidance. We  
552 thank Thomas Otto and Jesse Ropp for development and deployment of the interactive  
553 website.

554

## 555 **Author Contributions**

556 VMH, LP, CK, and CC designed and performed all experiments. VMH, LP, CK, and WG  
557 analysed the data. WG and MKNL sourced funding, provided scientific direction, and  
558 supported experimental design. VMH, LP, CK and WG wrote the manuscript with contributions  
559 from all authors.

560

## 561 **References**

562

- 563 1. Matthews KR. The developmental cell biology of *Trypanosoma brucei*. *J Cell Sci.* 2005;118: 283–290. doi:10.1242/jcs.01649
- 564 2. Vassella E, Acosta-Serrano A, Studer E, Lee SH, Englund PT, Roditi I. Multiple procyclin  
565 isoforms are expressed differentially during the development of insect forms of  
566 *Trypanosoma brucei*. *J Mol Biol.* 2001;312: 597–607. doi:10.1006/jmbi.2001.5004
- 567 3. Bütkofer P, Vassella E, Mehlert A, Ferguson MAJ, Roditi I. Characterisation and cellular  
568 localisation of a GPEET procyclin precursor in *Trypanosoma brucei* insect forms. *Mol  
569 Biochem Parasitol.* 2002;119: 87–95. doi:10.1016/s0166-6851(01)00398-x
- 570 4. Bringaud F, Rivière L, Coustou V. Energy metabolism of trypanosomatids: adaptation to  
571 available carbon sources. *Mol Biochem Parasitol.* 2006;149: 1–9.  
572 doi:10.1016/j.molbiopara.2006.03.017
- 573 5. Van Den Abbeele J, Claes Y, van Bockstaele D, Le Ray D, Coosemans M. *Trypanosoma  
574 brucei* spp. development in the tsetse fly: characterization of the post-mesocyclic stages  
575 in the foregut and proboscis. *Parasitology.* 1999;118 ( Pt 5): 469–478.  
576 doi:10.1017/s0031182099004217
- 577 6. Sharma R, Peacock L, Gluenz E, Gull K, Gibson W, Carrington M. Asymmetric cell  
578 division as a route to reduction in cell length and change in cell morphology in  
579 trypanosomes. *Protist.* 2008;159: 137–151. doi:10.1016/j.protis.2007.07.004
- 580 7. Urwyler S, Studer E, Renggli CK, Roditi I. A family of stage-specific alanine-rich proteins  
581 on the surface of epimastigote forms of *Trypanosoma brucei*. *Mol Microbiol.* 2007;63:  
582 218–228. doi:10.1111/j.1365-2958.2006.05492.x
- 583 8. Peacock L, Ferris V, Sharma R, Sunter J, Bailey M, Carrington M, et al. Identification of  
584 the meiotic life cycle stage of *Trypanosoma brucei* in the tsetse fly. *Proc Natl Acad Sci U  
585 S A.* 2011;108: 3671–3676. doi:10.1073/pnas.1019423108
- 586 9. Peacock L, Bailey M, Carrington M, Gibson W. Meiosis and haploid gametes in the  
587 pathogen *Trypanosoma brucei*. *Curr Biol.* 2014;24: 181–186.  
588 doi:10.1016/j.cub.2013.11.044
- 589 10. Peacock L, Kay C, Farren C, Bailey M, Carrington M, Gibson W. Sequential production  
590 of gametes during meiosis in trypanosomes. *Commun Biol.* 2021;4: 555.  
591 doi:10.1038/s42003-021-02058-5

593 11. Poran A, Nötzel C, Aly O, Mencia-Trinchant N, Harris CT, Guzman ML, et al. Single-cell  
594 RNA sequencing reveals a signature of sexual commitment in malaria parasites. *Nature*.  
595 2017;551: 95–99. doi:10.1038/nature24280

596 12. Reid AJ, Talman AM, Bennett HM, Gomes AR, Sanders MJ, Illingworth CJR, et al. Single-  
597 cell RNA-seq reveals hidden transcriptional variation in malaria parasites. *Elife*. 2018;7:  
598 e33105. doi:10.7554/eLife.33105

599 13. Howick VM, Russell AJC, Andrews T, Heaton H, Reid AJ, Natarajan K, et al. The Malaria  
600 Cell Atlas: Single parasite transcriptomes across the complete *Plasmodium* life cycle.  
601 *Science*. 2019;365. doi:10.1126/science.aaw2619

602 14. Real E, Howick VM, Dahalan FA, Witmer K, Cudini J, Andradi-Brown C, et al. A single-  
603 cell atlas of *Plasmodium falciparum* transmission through the mosquito. *Nat Commun*.  
604 2021;12: 3196. doi:10.1038/s41467-021-23434-z

605 15. Witmer K, Dahalan FA, Metcalf T, Talman AM, Howick VM, Lawniczak MKN. Using  
606 scRNA-seq to Identify Transcriptional Variation in the Malaria Parasite Ookinete Stage.  
607 *Front Cell Infect Microbiol*. 2021;11: 68. doi:10.3389/fcimb.2021.604129

608 16. Sà JM, Cannon MV, Caleon RL, Wellemes TE, Serre D. Single-cell transcription analysis  
609 of *Plasmodium vivax* blood-stage parasites identifies stage- and species-specific profiles  
610 of expression. *PLoS Biol*. 2020;18: e3000711. doi:10.1371/journal.pbio.3000711

611 17. Nötzel C, Kafsack BFC. There and back again: malaria parasite single-cell  
612 transcriptomics comes full circle. *Trends Parasitol*. 2021. doi:10.1016/j.pt.2021.07.011

613 18. Briggs EM, Rojas F, McCulloch R, Matthews KR, Otto TD. Single-cell transcriptomic  
614 analysis of bloodstream *Trypanosoma brucei* reconstructs cell cycle progression and  
615 developmental quorum sensing. *Nat Commun*. 2021;12: 5268. doi:10.1038/s41467-021-  
616 25607-2

617 19. Vigneron A, O'Neill MB, Weiss BL, Savage AF, Campbell OC, Kamhawi S, et al. Single-  
618 cell RNA sequencing of *Trypanosoma brucei* from tsetse salivary glands unveils  
619 metacyclogenesis and identifies potential transmission blocking antigens. *Proc Natl Acad  
620 Sci U S A*. 2020. doi:10.1073/pnas.1914423117

621 20. Hutchinson S, Foulon S, Crouzols A, Menafra R, Rotureau B, Griffiths AD, et al. The  
622 establishment of variant surface glycoprotein monoallelic expression revealed by single-  
623 cell RNA-seq of *Trypanosoma brucei* in the tsetse fly salivary glands. *PLoS Pathog* 17(9):  
624 e1009904. (2021) <https://doi.org/10.1371/journal.ppat.1009904>

625 21. Savage AF, Cerqueira GC, Regmi S, Wu Y, El Sayed NM, Aksoy S. Transcript expression  
626 analysis of putative *Trypanosoma brucei* GPI-anchored surface proteins during  
627 development in the tsetse and mammalian hosts. *PLoS Negl Trop Dis*. 2012;6: e1708.  
628 doi:10.1371/journal.pntd.0001708

629 22. Telleria EL, Benoit JB, Zhao X, Savage AF, Regmi S, Alves e Silva TL, et al. Insights into  
630 the trypanosome-host interactions revealed through transcriptomic analysis of parasitized  
631 tsetse fly salivary glands. *PLoS Negl Trop Dis*. 2014;8: e2649.  
632 doi:10.1371/journal.pntd.0002649

633 23. Kolev NG, Ramey-Butler K, Cross GAM, Ullu E, Tschudi C. Developmental progression  
634 to infectivity in *Trypanosoma brucei* triggered by an RNA-binding protein. *Science*.  
635 2012;338: 1352–1353. doi:10.1126/science.1229641

636 24. Savage AF, Kolev NG, Franklin JB, Vigneron A, Aksoy S, Tschudi C. Transcriptome  
637 Profiling of *Trypanosoma brucei* Development in the Tsetse Fly Vector *Glossina*  
638 *morsitans*. *PLoS One*. 2016;11: e0168877. doi:10.1371/journal.pone.0168877

639 25. Naguleswaran A, Doiron N, Roditi I. RNA-Seq analysis validates the use of culture-  
640 derived *Trypanosoma brucei* and provides new markers for mammalian and insect life-  
641 cycle stages. *BMC Genomics*. 2018;19: 227. doi:10.1186/s12864-018-4600-6

642 26. Ramey-Butler K, Ullu E, Kolev NG, Tschudi C. Synchronous expression of individual  
643 metacyclic variant surface glycoprotein genes in *Trypanosoma brucei*. *Mol Biochem  
644 Parasitol*. 2015;200: 1–4. doi:10.1016/j.molbiopara.2015.04.001

645 27. Christiano R, Kolev NG, Shi H, Ullu E, Walther TC, Tschudi C. The proteome and  
646 transcriptome of the infectious metacyclic form of *Trypanosoma brucei* define quiescent  
647 cells primed for mammalian invasion. *Mol Microbiol*. 2017;106: 74–92.  
648 doi:10.1111/mmi.13754

649 28. Doleželová E, Kunzová M, Dejung M, Levin M, Panicucci B, Regnault C, et al. Cell-based  
650 and multi-omics profiling reveals dynamic metabolic repurposing of mitochondria to drive  
651 developmental progression of *Trypanosoma brucei*. *PLoS Biol*. 2020;18: e3000741.  
652 doi:10.1371/journal.pbio.3000741

653 29. Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. Full-length  
654 RNA-seq from single cells using Smart-seq2. *Nat Protoc*. 2014;9: 171–181.  
655 doi:10.1038/nprot.2014.006

656 30. Briggs EM, Warren FSL, Matthews KR, McCulloch R, Otto TD. Application of single-cell  
657 transcriptomics to kinetoplastid research. *Parasitology*. 2021;148: 1223–1236.  
658 doi:10.1017/S003118202100041X

659 31. Bütkofer P, Ruepp S, Boschung M, Roditi I. “GPEET” procyclin is the major surface  
660 protein of procyclic culture forms of *Trypanosoma brucei brucei* strain 427. *Biochem J*.  
661 1997;326 ( Pt 2): 415–423. doi:10.1042/bj3260415

662 32. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, et al. SC3: consensus  
663 clustering of single-cell RNA-seq data. *Nat Methods*. 2017;14: 483–486.  
664 doi:10.1038/nmeth.4236

665 33. Naguleswaran A, Fernandes P, Bevkal S, Rehmann R, Nicholson P, Roditi I. Developmental  
666 changes and metabolic reprogramming during establishment of infection  
667 and progression of *Trypanosoma brucei brucei* through its insect host. *PLoS Negl Trop  
668 Dis*. 2021;15: e0009504. doi:10.1371/journal.pntd.0009504

669 34. Coustou V, Biran M, Besteiro S, Rivière L, Baltz T, Franconi J-M, et al. Fumarate is an  
670 essential intermediary metabolite produced by the procyclic *Trypanosoma brucei*. *J Biol  
671 Chem*. 2006;281: 26832–26846. doi:10.1074/jbc.M601377200

672 35. Dean S, Marchetti R, Kirk K, Matthews KR. A surface transporter family conveys the  
673 trypanosome differentiation signal. *Nature*. 2009;459: 213–217. doi:10.1038/nature07997

674 36. Vickerman K. Developmental cycles and biology of pathogenic trypanosomes. *Br Med  
675 Bull*. 1985;41: 105–114. doi:10.1093/oxfordjournals.bmb.a072036

676 37. Sistrom M, Evans B, Bjornson R, Gibson W, Balmer O, Mäser P, et al. Comparative  
677 genomics reveals multiple genetic backgrounds of human pathogenicity in the

678 Trypanosoma brucei complex. Genome Biol Evol. 2014;6: 2811–2819.  
679 doi:10.1093/gbe/evu222

680 38. Ginger ML, Blundell PA, Lewis AM, Browitt A, Günzl A, Barry JD. Ex vivo and in vitro  
681 identification of a consensus promoter for VSG genes expressed by metacyclic-stage  
682 trypanosomes in the tsetse fly. *Eukaryot Cell.* 2002;1: 1000–1009.  
683 doi:10.1128/EC.1.6.1000-1009.2002

684 39. Cross GAM, Kim H-S, Wickstead B. Capturing the variant surface glycoprotein repertoire  
685 (the VSGome) of *Trypanosoma brucei* Lister 427. *Mol Biochem Parasitol.* 2014;195: 59–  
686 73. doi:10.1016/j.molbiopara.2014.06.004

687 40. Heaton H, Talman AM, Knights A, Imaz M, Gaffney DJ, Durbin R, et al. Souporcell: robust  
688 clustering of single-cell RNA-seq data by genotype without reference genotypes. *Nat  
689 Methods.* 2020. doi:10.1038/s41592-020-0820-1

690 41. Gibson W, Peacock L, Ferris V, Williams K, Bailey M. The use of yellow fluorescent  
691 hybrids to indicate mating in *Trypanosoma brucei*. *Parasit Vectors.* 2008;1: 4.  
692 doi:10.1186/1756-3305-1-4

693 42. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic  
694 data across different conditions, technologies, and species. *Nat Biotechnol.* 2018;36:  
695 411–420. doi:10.1038/nbt.4096

696 43. Vassella E, Den Abbeele JV, Bütkofer P, Renggli CK, Furger A, Brun R, et al. A major  
697 surface glycoprotein of *trypanosoma brucei* is expressed transiently during development  
698 and can be regulated post-transcriptionally by glycerol or hypoxia. *Genes Dev.* 2000;14:  
699 615–626. Available: <https://www.ncbi.nlm.nih.gov/pubmed/10716949>

700 44. Guegan F, Neves D, Sequeira M, Notredame C, Figueiredo LM. A long non-coding RNA  
701 controls parasite differentiation in African trypanosomes. *Biorxiv.* 2020.  
702 doi:10.1101/2020.05.03.074625

703 45. Mony BM, MacGregor P, Ivens A, Rojas F, Cowton A, Young J, et al. Genome-wide  
704 dissection of the quorum sensing signalling pathway in *Trypanosoma brucei*. *Nature.*  
705 2014;505: 681–685. doi:10.1038/nature12864

706 46. Cunningham I. New culture medium for maintenance of tsetse tissues and growth of  
707 trypanosomatids. *J Protozool.* 1977;24: 325–329. doi:10.1111/j.1550-  
708 7408.1977.tb00987.x

709 47. Attar M, Sharma E, Li S, Bryer C, Cubitt L, Broxholme J, et al. A practical solution for  
710 preserving single cells for RNA sequencing. *Sci Rep.* 2018;8: 2151. doi:10.1038/s41598-  
711 018-20372-7

712 48. Wang W, Penland L, Gokce O, Croote D, Quake SR. High fidelity hypothermic  
713 preservation of primary tissues in organ transplant preservative for single cell  
714 transcriptome analysis. *BMC Genomics.* 2018;19: 140. doi:10.1186/s12864-018-4512-5

715 49. Biebinger S, Wirtz LE, Lorenz P, Clayton C. Vectors for inducible expression of toxic gene  
716 products in bloodstream and procyclic *Trypanosoma brucei*. *Mol Biochem Parasitol.*  
717 1997;85: 99–112. Available: <https://www.ncbi.nlm.nih.gov/pubmed/9108552>

718 50. Bingle LE, Eastlake JL, Bailey M, Gibson WC. A novel GFP approach for the analysis of  
719 genetic exchange in trypanosomes allowing the in situ detection of mating events.  
720 *Microbiology.* 2001;147: 3231–3240. doi:10.1099/00221287-147-12-3231

721 51. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.  
722 EMBnet.journal. 2011;17: 10–12. Available:  
723 <https://journal.embnet.org/index.php/embnetjournal/article/view/200/479>

724 52. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory  
725 requirements. *Nat Methods*. 2015;12: 357–360. doi:10.1038/nmeth.3317

726 53. Kuhn RM, Haussler D, Kent WJ. The UCSC genome browser and associated tools. *Brief  
727 Bioinform*. 2013;14: 144–161. doi:10.1093/bib/bbs038

728 54. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput  
729 sequencing data. *Bioinformatics*. 2015;31: 166–169. doi:10.1093/bioinformatics/btu638

730 55. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features.  
731 *Bioinformatics*. 2010;26: 841–842. doi:10.1093/bioinformatics/btq033

732 56. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length  
733 transcriptome assembly from RNA-Seq data without a reference genome. *Nat Biotechnol*.  
734 2011;29: 644–652. doi:10.1038/nbt.1883

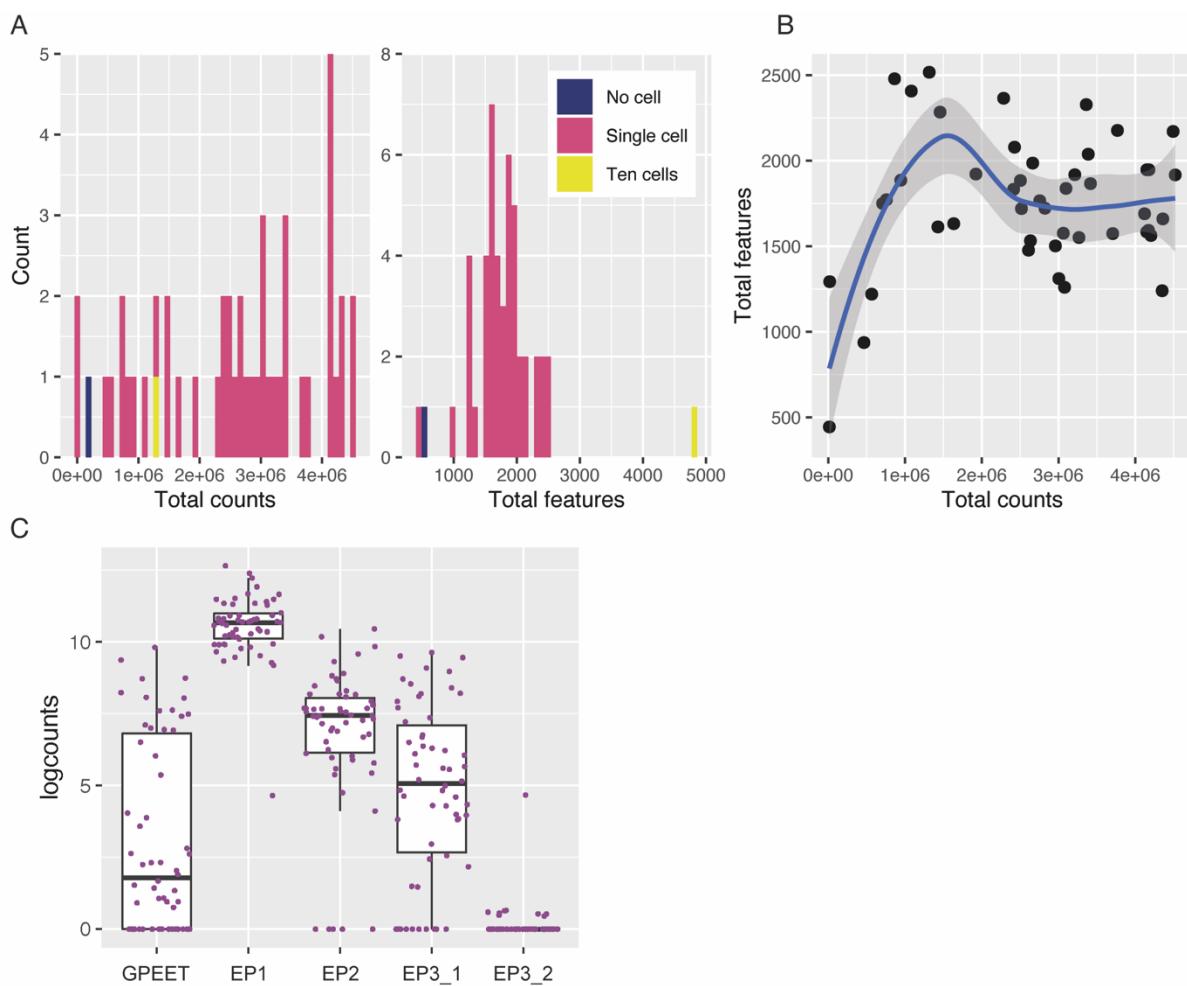
735 57. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo  
736 transcript sequence reconstruction from RNA-seq using the Trinity platform for reference  
737 generation and analysis. *Nat Protoc*. 2013;8: 1494–1512. doi:10.1038/nprot.2013.084

738 58. McCarthy DJ, Campbell KR, Lun ATL, Wills QF. Scater: pre-processing, quality control,  
739 normalization and visualization of single-cell RNA-seq data in R. *Bioinformatics*. 2017;33:  
740 1179–1186. doi:10.1093/bioinformatics/btw777

741 59. Lun AT, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA  
742 sequencing data with many zero counts. *Genome Biol*. 2016;17: 75. doi:10.1186/s13059-  
743 016-0947-7

744 60. Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. Slingshot: cell lineage and  
745 pseudotime inference for single-cell transcriptomics. *BMC Genomics*. 2018;19: 477.  
746 doi:10.1186/s12864-018-4772-0

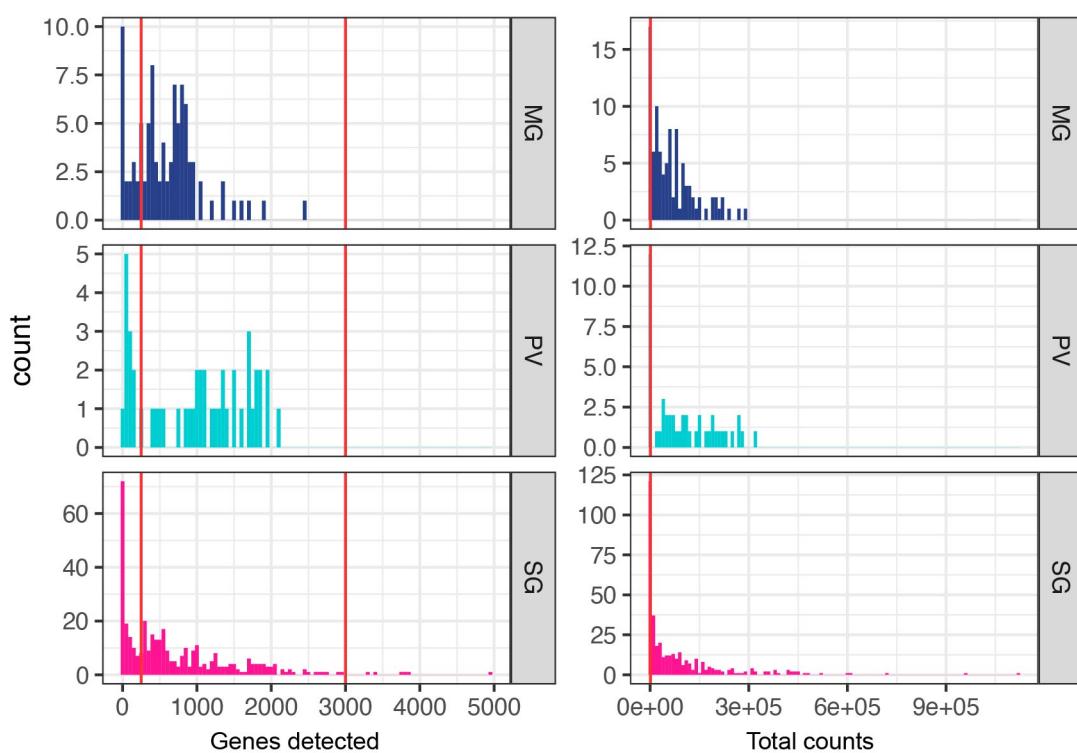
747 61. Van den Berge K, Roux de Bézieux H, Street K, Saelens W, Cannoodt R, Saeys Y, et al.  
748 Trajectory-based differential expression analysis for single-cell sequencing data. *Nat  
749 Commun*. 2020;11: 1201. doi:10.1038/s41467-020-14766-3


750

751

752

753 **Supplementary Information**


754



756 **Figure S1. Quality assessment and expression of marker genes in procyclic culture**  
757 **singe-cell transcriptomes**

758 Forty-eight transcriptomes were generated using Smart-seq2 from parasites in a procyclic  
759 culture including a no cell and ten cell control. **(A)** The distribution of the total counts and total  
760 features (genes) detected in these 48 transcriptomes. **(B)** The total features plotted against  
761 total counts for the 46 single-cell transcriptomes shows a plateau as features and counts  
762 increase, suggesting that sequencing was saturated for these cells. We detected a mean of  
763  $2.6 \times 10^6$  reads and 1756 features per single-cell transcriptome. **(C)** Expression of procyclic  
764 surface antigen genes *GPEET* (Tb927.6.510), *EP1* (Tb927.10.10260), *EP2*  
765 (Tb927.10.10250), *EP3\_1* (Tb927.6.520), *EP3\_2* (Tb927.6.480).

766



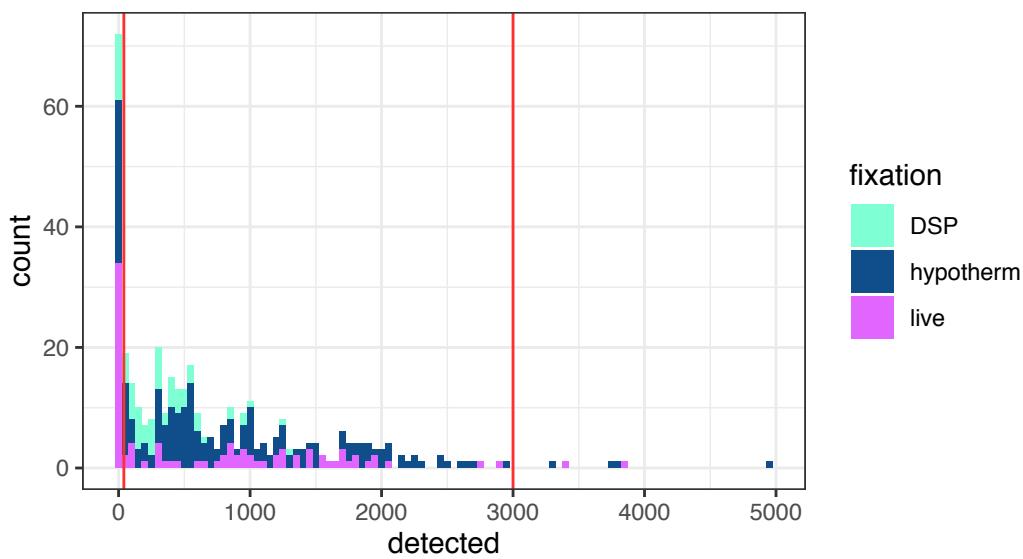
767

768

### Figure S2. Quality control of insect stage parasites

769

770


The distribution of genes detected (left) and counts (right) in each cell across the three insect tissues: midgut (MG), proventriculus (PV), and salivary glands (SG). Cells with fewer than 40 or more than 3000 genes per cell were removed. Additionally, cells with fewer than 1000 reads were removed. Cut-offs are represented by the red vertical lines in each histogram. After QC we detected a mean of 889 genes per cell and  $1.1 \times 10^5$  counts per cell.

771

772

773

774

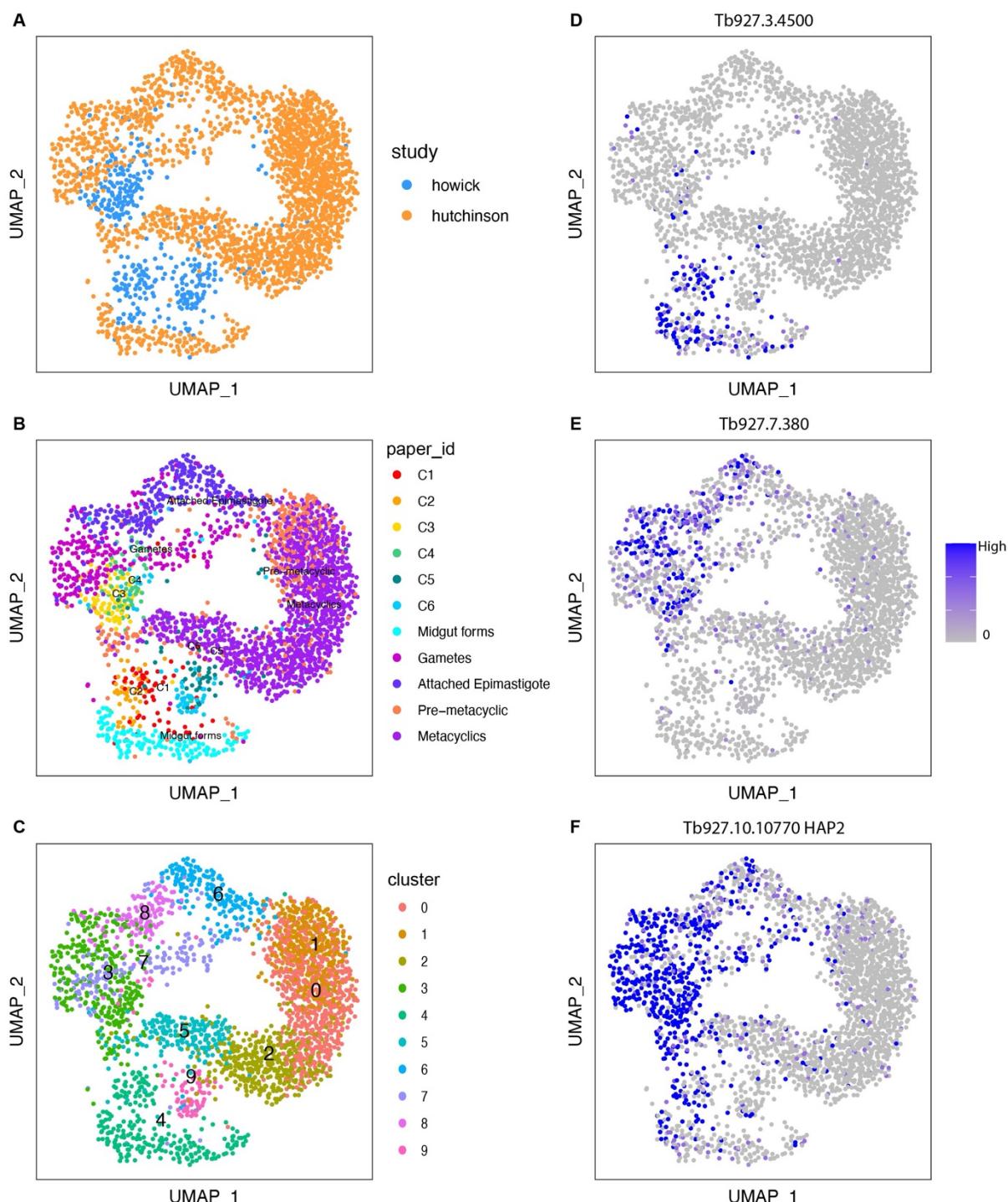


775

776

### Figure S3. Assessment of preservation methods of salivary gland parasites

777


778

779

780

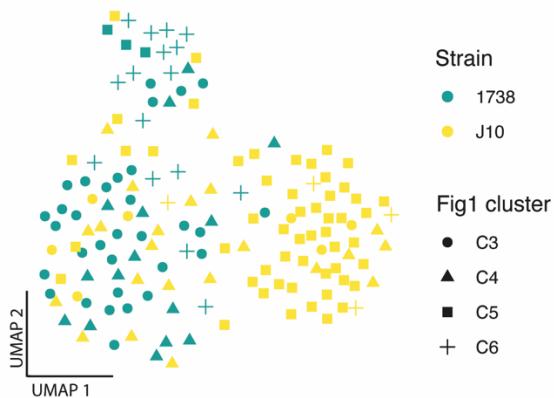
The distribution of features detected in salivary gland cells across the two preservation treatments (DSP and hypothermosol) compared to live parasites. Although there were slight differences in detection between the different treatments, caution must be taken in interpreting

781 these differences as the fixation methods are confounded with the different timepoints  
782 collected (DSP: day 40; hypothermosol: day 24; live: day 21).

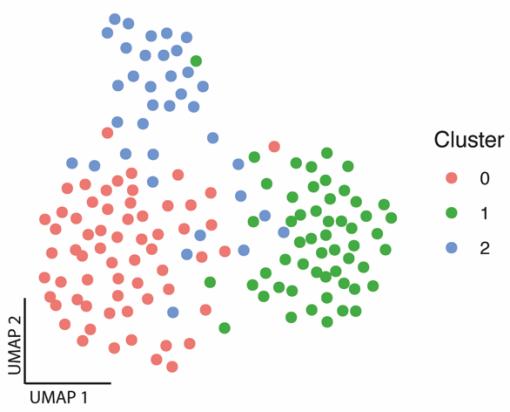


783

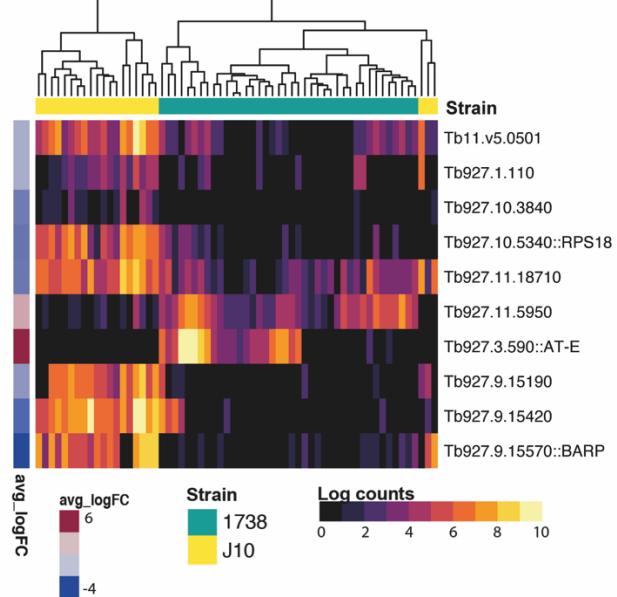
784


#### Figure S4. Integration with Hutchinson et al

785 All 388 tsetse gland transcriptomes were integrated with Hutchinson et al data collected from  
 786 salivary glands using Seurat's data integration function. Plots show the UMAP of integrated  
 787 data coloured by study (**A**), cluster identity from the different studies (paper\_id) (**B**), integrated  
 788 cluster assignment (**C**), or gene of interest (**D-F**). *FHc* (Tb927.3.4500) was the top marker  
 789 gene (based on adjusted p-value) for the midgut and proventricular form cluster 4 (**D**).  
 790 *Tb927.7.380* (hypothetical protein, conserved) was the top marker gene for cluster 3 which  
 791 contained gamete and epimastigote forms. *HAP2* (Tb927.10.10770) (**F**) was not a marker  
 792 gene for the gamete cluster likely because of its ubiquitous expression across non-metacyclic  
 793 forms. Although we were able to identify conserved marker genes across the two studies,


794 separation remained in the UMAP for all cell-types (**A-B**) and only the non-metacyclic forms  
795 co-clustered across the two studies and only at a granular level. The metacyclic forms likely did  
796 not cluster together because of different VSG repertoires, and the separation across other  
797 cell-types may be due to time point, strain-specific expression patterns, or collection methods.  
798 Conserved marker genes for clusters 3 and 4 can be found in **Table S3**.  
799

800  
801

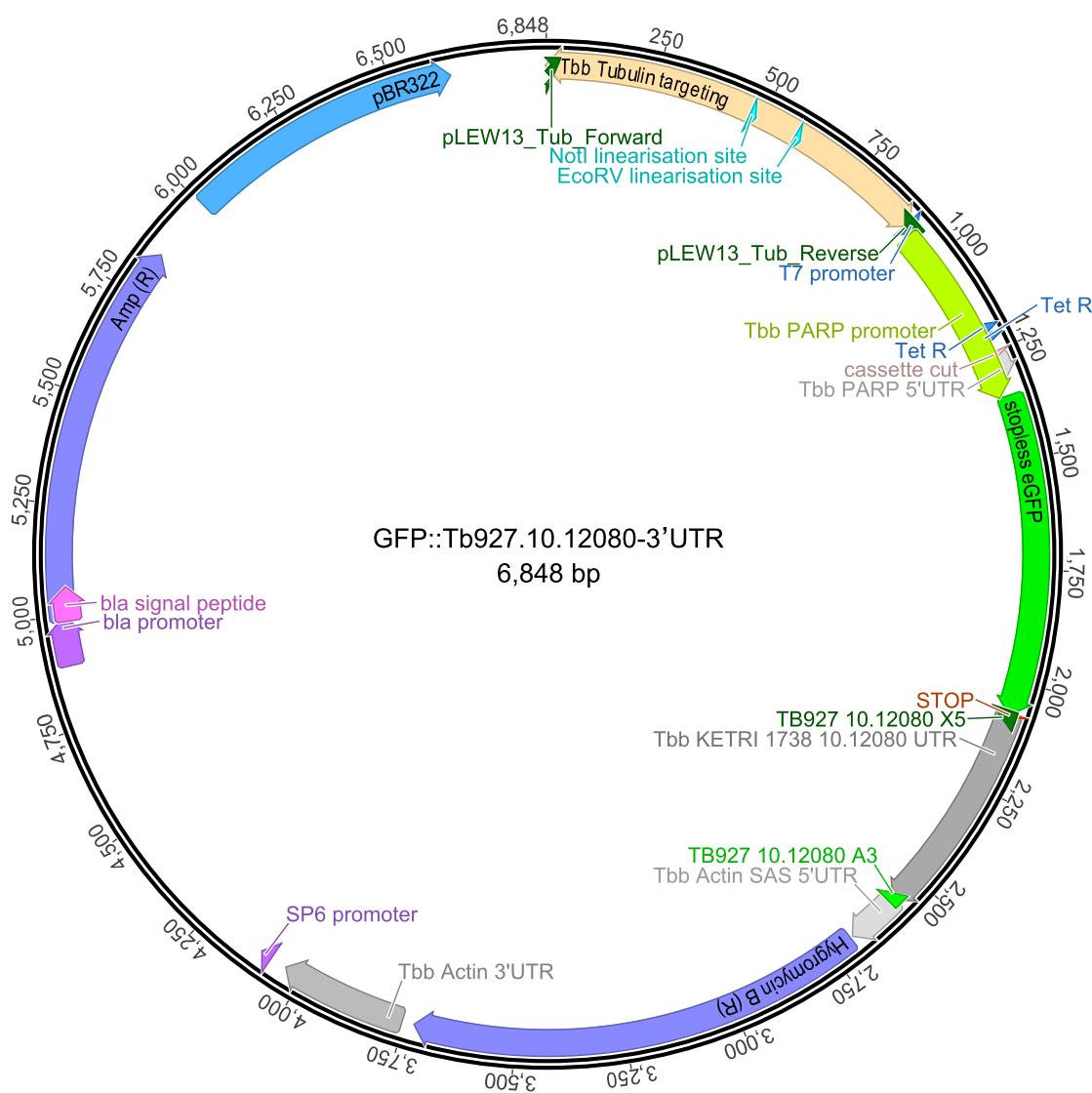

A



B



C




802

803

**Figure S5. Strain-specific gene expression (A).** A UMAP of the day 24 1738 and J10 SG parasites integrated by strain. Points are coloured by strain and shaped by Figure 1 cluster. **(B).** The integrated UMAP coloured by new cluster from the integration analysis. Cluster 0 has a representation of both strains, whereas cluster 1 and 2 are composed primarily of 1738 or J10, respectively. **(C)** Differential expression was performed between strains within cluster 0. The ten genes were differentially expressed between the two strains are displayed on a heatmap.

810



811

812

## Figure S6. Plasmid map for GFP::Tb927.10.12080-3'UTR construct

813 Life cycle selective expression of Tb927.10.12080 was investigated through a reporter  
814 construct where the expression of GFP was controlled by ~500 bp of UTR downstream of the  
815 gene. For this study a stable transformant line was generated in 1738 using the 3' UTR from  
816 its endogenous gene and integrated into the tubulin locus.

817

818

## Supplemental data tables

819

- (A) Table S1 Marker genes from Figure 1
- (B) Table S2 Top 200 genes expressed in each cluster
- (C) Table S3 Integration with Hutchinson marker genes
- (D) Table S4 DE over pseudotime
- (E) Table S5 DE between strains
- (F) Table S6 IFA data
- (G) Table S7 12080 data

827  
828  
829

**Table S6.** Surface protein expression of trypanosomes from salivary glands from tsetse dissected 19-21 days post infected feed, using immunofluorescence.

| Cell type      | GPEET- GFP |         |       |     | EP-RFP |         |     | Total | Notes                                               |
|----------------|------------|---------|-------|-----|--------|---------|-----|-------|-----------------------------------------------------|
|                | No         | V.faint | Faint | Yes | No     | Faint   | Yes |       |                                                     |
| cells          |            |         |       |     |        |         |     |       |                                                     |
| 1K1N gamete    |            | 2       | 5     | 8   | 0      | 0       | 15  | 15    | all GPEET&EP <b>Total gametes:</b>                  |
| 2K1N gamete    | 2          | 3       | 3     | 11  |        |         | 19  | 19    | 82% GPEET&EP <b>90% GPEET&amp;EP, 10% only EP</b>   |
| 2K1N meiotic   |            | 1       |       | 1   |        |         | 2   | 2     | all GPEET&EP                                        |
| 3K1N           |            |         |       | 3   |        |         | 3   | 3     |                                                     |
| 4K1N           |            |         |       | 1   |        |         | 1   | 1     | <b>Total intermediates:</b>                         |
| 1K2N           |            | 2       |       | 2   |        |         | 4   | 4     | <b>1/22 (5%) only EP;</b>                           |
| 2K2N           |            | 1       |       | 3   |        |         | 4   | 4     | <b>21/22 (95%) GPEET&amp;EP</b>                     |
| 3K2N           | 1          | 1       |       | 5   |        |         | 7   | 7     |                                                     |
| 4K2N           |            |         |       | 1   |        |         | 1   | 1     |                                                     |
| 1K3N           |            |         |       | 1   |        |         | 1   | 1     |                                                     |
| 3K3N           |            |         |       | 1   |        |         | 1   | 1     |                                                     |
| 1K1N epi       | 2          |         | 2     | 2   | 1      |         | 5   | 6     | 1/6(17%)none;1/6(17%)EP;4/6(66%)GPEET&EP            |
| 1K1N short epi |            |         |       | 1   |        |         | 1   | 0     | 1 GPEET&EP                                          |
| 1K1N trypo     | 3          | 1       | 1     | 1   |        |         | 6   | 6     | 3/6 (50%) only EP; 3/6 (50%) GPEET&EP               |
| 2K2N div trypo | 1          |         |       |     | 1      |         | 0   | 1     | no GPEET or EP                                      |
| 1K1N meta      | 6          |         |       |     | 6      |         | 0   | 6     | no GPEET or EP                                      |
| Total          | 15         | 11      | 12    | 40  | 8      | 1       | 69  | 78    |                                                     |
|                |            |         |       |     |        |         |     |       |                                                     |
| Cell type      | BARP- GFP  |         |       |     | EP-RFP |         |     | Total | Notes                                               |
|                | No         | V.faint | Faint | Yes | No     | V.faint | Yes |       |                                                     |
| 1K1N gamete    | 4          |         |       | 1   | 10     |         |     | 15    | 15 73% BARP&EP <b>Total gametes:</b>                |
| 2K1N gamete    | 4          | 3       | 2     | 9   |        |         |     | 18    | 18 78% BARP&EP. <b>76% BARP&amp;EP, 24% only EP</b> |
| 2K1N meiotic   | 1          |         |       | 2   | 2      |         |     | 5     | 5 80% BARP&EP                                       |
| 3K1N           | 1          | 2       |       |     |        |         |     | 3     | 3                                                   |
| 1K2N           | 2          |         |       | 1   | 3      |         |     | 6     | 6 <b>Total intermediates:</b>                       |
| 2K2N           | 1          | 2       | 4     | 5   |        |         |     | 12    | 12 <b>7/36 (19%) only EP;</b>                       |
| 3K2N           | 2          |         |       | 1   |        |         |     | 3     | 3 <b>29/36 (81%) BARP&amp;EP</b>                    |
| 4K2N           |            | 1       |       |     |        |         |     | 1     | 1                                                   |
| 5K2N           |            |         |       | 1   | 1      |         |     | 2     | 2                                                   |
| 2K3N           |            |         |       | 2   |        |         |     | 2     | 2                                                   |
| 3K3N           |            | 1       | 2     | 2   |        |         |     | 5     | 5                                                   |
| 4K3N           | 1          |         |       | 1   |        |         |     | 2     | 2                                                   |
| 1K1N epi       |            | 1       | 2     | 6   |        |         |     | 9     | 9 BARP&EP                                           |
| 2K1N div epi   |            |         |       | 3   |        |         |     | 3     | 3 BARP&EP                                           |
| 2K2N div epi   | 2          | 1       |       | 3   |        |         |     | 6     | 6 2/6 (33%) only EP; 4/6 (67%) BARP&EP              |
| 1K1N trypo     | 2          | 2       | 1     | 2   |        |         |     | 7     | 7 2/7 (29%) only EP; 5/7 (71%) BARP&EP              |
| 1K1N pre-meta  |            |         | 1     | 1   | 1      | 1       | 0   | 2     | 1/2 (50%) only BARP; 1/2 (50%) BARP&EP              |
| 1K1N meta      | 8          |         |       |     | 8      |         | 0   | 8     | no BARP or EP                                       |
| Total          | 28         | 13      | 17    | 51  | 9      | 1       | 99  | 109   |                                                     |
|                |            |         |       |     |        |         |     |       |                                                     |

830  
831  
832

833 **Table S7.** Cell types recovered from tsetse salivary gland exudate 16-21 days post infection  
834 with *T. brucei* 1738 expressing GFP::Tb927.10.12080-3'UTR scored for GFP fluorescence.  
835

| Cell Type                                            | Fluorescent      | Non-Fluorescent  | Total Cells |
|------------------------------------------------------|------------------|------------------|-------------|
| Epimastigote/Dividing epimastigote                   | 0 (0%)           | 86 (100%)        | 86          |
| Trypomastigote/Dividing trypomastigote               | 0 (0%)           | 24 (100%)        | 24          |
| Asymmetric Divider                                   | 0 (0%)           | 19 (100%)        | 19          |
| Pre-metacyclic/Dividing pre-metacyclic               | 0 (0%)           | 29 (100%)        | 29          |
| Metacyclic                                           | 0                | 3 (100%)         | 3           |
| Trypomastigote-Epimastigote divider                  | 0                | 4 (100%)         | 4           |
| Meiotic Divider                                      | 3 (10%)          | 26 (90%)         | 29          |
| Meiotic intermediate 3N                              | 5 (50%)          | 5 (50%)          | 10          |
| Meiotic intermediate 2N                              | 28 (80%)         | 7 (20%)          | 35          |
| Meiotic intermediate 3K1N or 4K1N                    | 38 (83%)         | 8 (17%)          | 46          |
| Meiotic intermediate - final division to two gametes | 34 (79%)         | 9 (21%)          | 43          |
| 1K1N Gamete                                          | 11 (65%)         | 6 (35%)          | 17          |
| 2K1N Gamete                                          | 19 (86%)         | 3 (14%)          | 22          |
| Unidentifiable                                       | 44 (45%)         | 53 (55%)         | 97          |
| <b>TOTAL</b>                                         | <b>182 (39%)</b> | <b>282 (61%)</b> | <b>464</b>  |

836  
837