

Prefrontal cortical connectivity mediates locus coeruleus noradrenergic regulation of inhibitory control in older adults

Alessandro Tomassini¹, Frank H. Hezemans^{1,2}, Rong Ye², Cam-CAN³, Kamen A. Tsvetanov^{2,3}, Noham Wolpe^{1,2}, & James B. Rowe^{1,2}

¹ MRC Cognition and Brain Sciences Unit, University of Cambridge, UK

² Department of Clinical Neuroscience and Cambridge University Hospitals NHS Trust, University of Cambridge, UK

³ Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, UK

Correspondence concerning this article should be addressed to Alessandro Tomassini, Postal address. MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, UK

E-mail: alessandro.tomassini@mrc-cbu.cam.ac.uk

Abstract

1 Response inhibition is a core executive function enabling adaptive behaviour in dynamic
2 environments. Human and animal models indicate that inhibitory control and control networks
3 are modulated by noradrenaline, arising from the locus coeruleus. The integrity (i.e., cellular
4 density) of the locus coeruleus noradrenergic system can be estimated from magnetization
5 transfer sensitive magnetic resonance imaging, in view of neuromelanin present in noradrenergic
6 neurons of older adults. Noradrenergic psychopharmacological studies indicate noradrenergic
7 modulation of prefrontal and frontostriatal stopping-circuits in association with behavioural
8 change. Here we test the noradrenergic hypothesis of inhibitory control, in healthy adults. We
9 predicted that locus coeruleus integrity is associated with age-adjusted variance in response
10 inhibition, mediated by changes in connectivity between frontal inhibitory control regions. In a
11 preregistered analysis, we used magnetization transfer MRI images from N=63 healthy adults
12 aged above 50 years who performed a stop-signal task, with atlas-based measurement of locus
13 coeruleus contrast. We confirm that better response inhibition is correlated with locus coeruleus
14 integrity and stronger connectivity between pre-supplementary motor area and right inferior
15 frontal gyrus, but not volumes of the cortical regions. We confirmed a significant role of
16 prefrontal connectivity in mediating the effect of individual differences in the locus coeruleus on
17 behaviour, whereby this effect was moderated by age, over and above adjustment for the mean
18 effects of age. Our results support the hypothesis that in normal populations, as in clinical
19 settings, the locus coeruleus noradrenergic system regulates inhibitory control.

Keywords: Locus Coeruleus, neuromelanin, response inhibition, stop-signal task, healthy ageing, functional connectivity.

Introduction

20 Response inhibition underpins the control of everyday behavior, and is impaired in many
21 neurological and psychiatric disorders (Passamonti, Lansdall, & Rowe, 2018). There is
22 converging evidence from animal models (Bari et al., 2011; Bari & Robbins, 2013; Eagle &
23 Baunez, 2010) and human psychopharmacology (Chamberlain et al., 2006; Chamberlain et al.,
24 2009; Robinson et al., 2008), that the noradrenergic system facilitates inhibitory control for
25 action cancellation. A prefrontal cortical network is also implicated in such response inhibition,
26 including the inferior frontal gyrus (rIFG) and pre-supplementary motor area (preSMA; Aron,
27 Robbins, & Poldrack, 2014; Chambers et al., 2006; Duann, Ide, Luo, & Li, 2009; Forstmann et
28 al., 2012; Frank, Scheres, & Sherman, 2007; Rae, Hughes, Anderson, & Rowe, 2015).

29 Cerebral noradrenergic innervation arises from the locus coeruleus, in the brainstem. By
30 exploiting the accumulation of iron-rich neuromelanin, magnetization-transfer (MT) sensitive
31 magnetic resonance imaging sequences can be used to assess the integrity of the locus coeruleus
32 (Liu et al 2019; Ye et al., 2020; but see also Watanabe et al., 2019). Such studies have associated
33 locus coeruleus integrity with diverse cognitive function in health (Liu et al., 2020) and disease
34 (Dahl et al., 2020; Holland, Robbins, & Rowe, 2021; O'Callaghan et al., 2021; Ye et al., 2021).

35 Phasic and tonic activities in the locus coeruleus have been proposed to afford behavioural
36 flexibility and inhibitory control (Aston-Jones & Cohen, 2005; Bouret & Sara, 2005; Dayan &
37 Yu, 2006; Passamonti, Lansdall, & Rowe, 2018). This might be achieved by modulation of
38 connectivity within the prefrontal network (Chambers et al., 2006; Duann et al., 2009; Forstmann
39 et al., 2012; Aron et al., 2014; Rae et al., 2015; Ye et al., 2015; Rae et al., 2016). Here, we tested
40 this hypothesis by linking locus coeruleus integrity to functional connectivity between rIFG and
41 preSMA, as a predictor of behaviour.

42 Previous analysis of cortical connectivity in healthy adults showed that the influence of
43 cortical connectivity on inhibitory control differs with age, such that efficient performance in
44 older adults relies more strongly on connectivity than in their younger counterparts (Tsvetanov et
45 al., 2018).

46 Moreover, sub-regions of the locus coeruleus have different projection distributions
47 (Mason & Fibiger, 1979; Loughlin, Foote, Bloom, 1986) with differential associations to
48 cognition, behaviour and pathology. For example, *in vivo* evidence suggest greater degeneration
49 of the caudal sub-region of the locus coeruleus compared to central and rostral sub-regions in
50 Parkinson's disease (O'Callaghan et al., 2021). Healthy ageing and age-related cognitive decline
51 are more strongly associated with changes in the rostral locus coeruleus (Betts, Cardenas-Blanco,
52 Kanowski, Jessen, & Düzel, 2017; Liu et al., 2020; Dahl et al., 2020).

53 We hypothesized that variations in the locus coeruleus integrity would drive
54 noradrenergic-dependent changes in inhibitory control, over and above the main effect of age on
55 the locus coeruleus. We tested whether such relationship would vary across locus-coeruleus sub-
56 regions and across different ages. In this pre-registered cross-sectional study, we used a 3-D MT
57 weighted MRI sequence to assess the relationship between locus coeruleus integrity *in vivo* and
58 test its relationship with inhibitory control in cognitively normal healthy adults from the
59 Cambridge Centre for Ageing and Neuroscience cohort (Cam-CAN; Shafto et al., 2014) using the
60 Stop-Signal Task (SST). Our study has four main advances with respect to an earlier analysis of
61 the Cam-CAN cohort (Liu et al., 2020). First, we use an atlas-based segmentation of the locus
62 coeruleus, which provides unbiased estimation, with good accuracy and reliability compared to
63 manual and semi-automatic segmentation approaches (Ye et al., 2021). Second, we focus on
64 middle-aged and older healthy adults, because neuromelanin accumulates with age (Zecca,
65 Youdim, Riederer, Connor, & Crichton, 2004) and in younger participants the locus coeruleus

66 neurons may not yet be sufficiently pigmented to allow reliable inference on structural integrity
67 by MT weighted MRI. Third, we follow the new consensus recommendations for estimating the
68 stop-signal reaction time (SSRT, Verbruggen et al., 2019), and use hierarchical Bayesian
69 estimation of a parametric ex-Gaussian race model of the stop-signal task which enables
70 isolating attentional confounds from the estimation of SSRTs (Matzke, Dolan, Logan, Brown, &
71 Wagenmakers, 2013). Fourth, we examine whether locus coeruleus integrity is related to
72 modulation of connectivity within the prefrontal stopping-network quantified by psychophysical
73 interactions measures that reflect response inhibition-related changes in the connectivity between
74 different areas (Friston et al., 1997; Tsvetanov et al., 2018).

75

76 **Materials and Methods**

77 **Preregistration**

78 Before data analysis, we preregistered our analyses, sample size, variables of interest, hypotheses,
79 procedures for data quality checking and data analysis procedures in the Open Science
80 Framework. The preregistered information, code and data to reproduce manuscript figures are
81 available through the Open Science Framework (<<https://osf.io/zgj9n/>>).

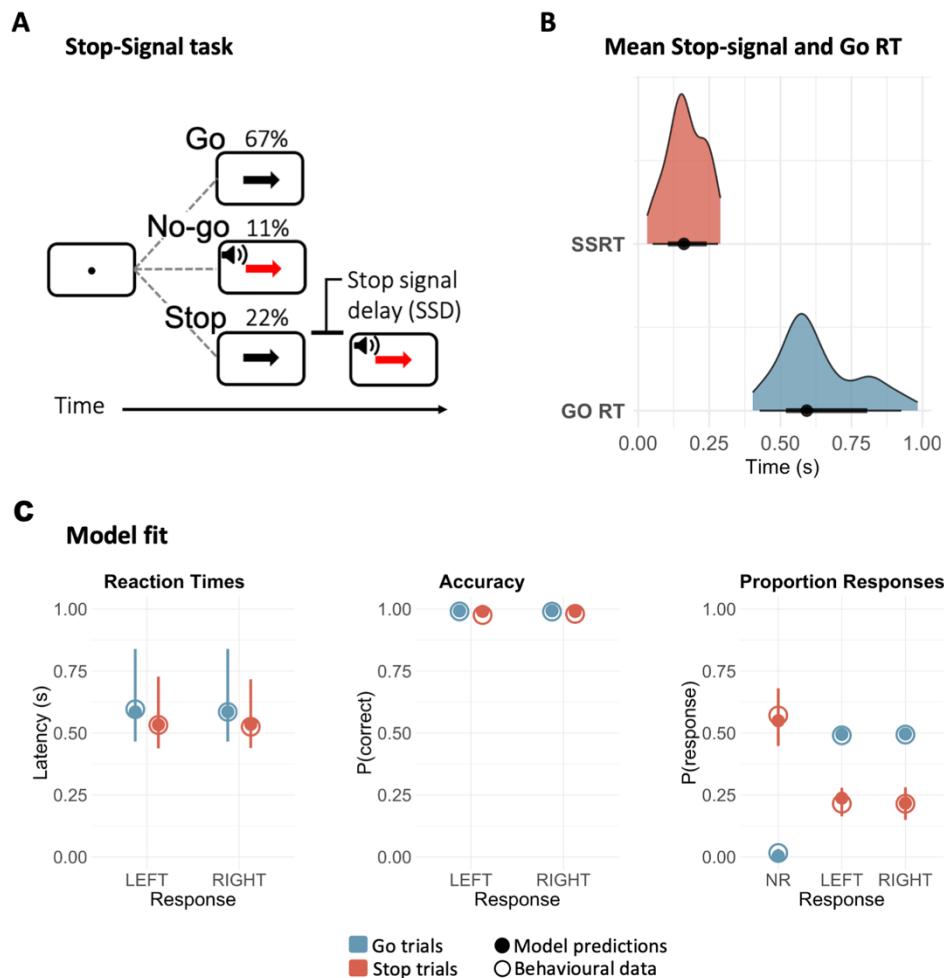
82 **Participants**

83 We used data from the “Stage 3” cohort in the Cambridge Centre for Aging and Neuroscience
84 population-based study of the healthy adult life span (See Shafto et al, 2014 for details). Within
85 this cohort, we focused on 114 participants (18-88years) who performed a stop-signal task during
86 fMRI. None of the Cam-CAN participants had a diagnosis of dementia or mild cognitive
87 impairment, and all scored above consensus thresholds for normal cognition on the ACE-R

88 (>88/100). After quality control of behavioural data and MRI scans, there were 63 datasets from
89 participants aged 50 years or older (see table 1 for details). Note that our primary statistical
90 inferences are Bayesian, where inferences are based on relative evidence for alternate models,
91 rather than testing a null hypothesis alone. However, for secondary frequentist statistics where
92 type I or type II error may arise, we computed the achieved power using G*Power 3.1. With a
93 nominal alpha level=0.05, N=63 provides 86% power to test the interaction (moderation) term of
94 a multiple linear regression with five predictors, assuming a medium-sized effect ($f^2=0.15$).

95

Table 1. Demographics


Variables	Overall
N	63
Age (median [range])	68.00 [50.00, 88.00]
Sex	33M/30F
ACE-R (median [range])	95.00 [89.00, 100.00]

96

97 Procedure

98 The stop-signal task assesses cognitive control systems involved in action cancellation using
99 stop-signal trials (n =80; approximately 50% of which were successful), randomly interleaved
100 among go trials (n = 360) and no-go trials (n = 40) during two consecutive scanning runs (Figure
101 1A). On go trials participants saw a black arrow (duration 1000ms) and indicated its direction by
102 pressing left or right buttons with the index or middle finger of their right hand. On stop-signal
103 trials, the black arrow changed color (from black to red) concurrent with a tone, after a short,
104 variable “stop-signal” delay (SSD). On no-go trials, the arrow was red from the outset

105 (i.e., SSD = 0), along with a concurrent equivalent tone. Participants were instructed to withhold
106 button pressing if the arrow was red or became red. The length of the SSD varied between stop-
107 signal trials in steps of 50ms, and was titrated to participants' performance using an on-line
108 tracking algorithm to target a 50% successful response cancellation. No-go trials were included
109 as stop trials with nominal SSD = 5ms (Matzke, Curley, Gong & Heathcote, 2019).

111 *Figure 1. Stop-Signal task (A) and SSRTs estimated by the ex-Gaussian race model of response*
 112 *inhibition (B). A) In the Stop-Signal task, participants respond to the direction of a black arrow*
 113 *by pressing the corresponding key as accurately and as quickly as possible. Occasionally, a red*
 114 *arrow and a tone (stop signal) require the participants to inhibit their response. The stop signal*
 115 *could either appear immediately after the fixation point (no-go trials), or after a short delay (stop*
 116 *signal delay) that varies across trials. B) Distributions of mean SSRT and go RT. The ex-*
 117 *Gaussian race model depicts task performance as a race between a stop process and a go*
 118 *process. Successful inhibition in stop and no-go trials occurs when the stop process finishes its*
 119 *race before the go process. The black circles indicate the medians, the thick black segments*
 120 *depict the 66% quantile intervals, and the thin black segments depict the 95% quantile interval.*
 121 *C) Posterior predictive checks: Comparing empirical data (open circles) to simulated results*
 122 *from the fitted model (filled circles). Within each panel, the group-level median values are*
 123 *plotted separately for each response (left, right and NR - no response – when applicable) and*
 124 *trial type (go, stop). Please note that for Reaction Times and Accuracy, responses in stop trials*
 125 *correspond to commission errors, whereas for Proportion Responses, no response in go trials*
 126 *are omission errors. Model predictions are represented by the median (filled circles) and 95%*
 127 *quantile intervals (error bars) of 100 simulated participants, randomly drawn from the joint*
 128 *posterior distribution.*

129 **Imaging**

130 Imaging data were acquired with a 3T Siemens TIM trio with a 32-channel head coil. For each
131 participant, a 3D structural MRI was acquired using a T1-weighted sequence with generalized
132 autocalibrating partially parallel acquisition. The adopted parameters were as follows:
133 acceleration factor, 2; repetition time (TR) = 2250 ms; echo time (TE) = 2.99 ms; inversion time
134 = 900 ms; flip angle = 9°; field of view (FOV) = 256 x 240 x 192 mm; resolution = 1 mm
135 isotropic; acquisition time = 4 min 32 s. For fMRI, echoplanar imaging (EPI) captured 32 slices
136 in sequential descending order with slice thickness of 3.7 mm and a slice gap of 20% for whole-
137 brain coverage. The adopted parameters were as follows: TR = 2000 ms; TE = 30 ms; flip angle
138 = 78°; FOV = 192 x 192 mm; resolution = 3 x 3 x 4.4 mm, with a total duration of ~ 10 min 30 s.
139 For preprocessing details, see Taylor et al. (2017).

140 Image processing followed a co-registration pipeline similar to Ye et al., 2020, with Advanced
141 Normalization Tools (ANTs v2.2.0) software and in-house Matlab scripts. MT images were N4
142 bias field corrected for spatial inhomogeneity (number of iterations at each resolution level:
143 50x50x30x20, convergence threshold: 1x10-6, isotropic sizing for b-spline fitting: 200) and to
144 skull-strip T1-w images after segmentation and reconstruction (SPM12 v7219,
145 www.fil.ion.ucl.ac.uk/spm/software/spm12). The resulting T1-w and pre-processed MT-weighted
146 images were entered into a T1-driven, crossmodality coregistration pipeline to warp the
147 individual MT and MT-off images to the isotropic 0.5 mm ICBM152 (International Consortium
148 for Brain Mapping) T1-w asymmetric template.

149 We created an unbiased study-specific T1-w structural template using individual skull-
150 stripped T1-w images from all participants (Figure 2A). Native T1-w images were first rigid and
151 affine transformed, and then processed with a hierarchical nonlinear diffeomorphic step at five

152 levels of resolution, repeated by six runs to improve convergence. The resulting T1-w group
153 template was then registered to the standard ICBM152 T1-w brain. Four steps of deformations
154 were estimated in the following order: MT-off to MT, T1-w to MT-off, T1-w to T1-w group
155 template and T1-w group template to ICBM152 T1-w template. The resulting parameters were
156 used as the roadmap for MT image standardization to the ICBM brain in one step. For co-
157 registration details, see Ye et al., (2020).

158 To facilitate accurate extraction of the locus coeruleus signal we adopted a probabilistic
159 locus coeruleus atlas (Ye et al., 2020) generated from ultra-high resolution 7T data accompanied
160 by a multi-modality co-registration pipeline. As a measure of locus coeruleus integrity, we
161 quantified contrast by calculating the contrast-to-noise ratio (CNR) with respect to a reference
162 region in the central pons (Figure 2A). A CNR map was computed voxel-by-voxel on the average
163 MT image for each subject using the signal difference between a given voxel (v) and the mean
164 intensity in the reference region ($Mean_{REF}$) divided by the standard deviation (SD_{REF}) of the
165 reference signals

$$166 \quad CNR = \frac{v - Mean_{REF}}{SD_{REF}} \quad (1)$$

167
168 CNR values were computed bilaterally on the CNR map by applying the independent
169 locus coeruleus probabilistic atlas (5% probability version to improve sensitivity). To obtain
170 summary indices of CNR for subsequent analyses, we extracted mean CNR values for the rostral,
171 middle and caudal portions of the LC, collapsing across the left and right locus coeruleus.

172 Voxel-based morphometry estimates of grey matter volume for rIFG and preSMA cortical
173 areas were extracted from functionally-defined masks previously defined in Tsvetanov et al.,

174 2018. For the fMRI stop-signal task-related functional connectivity we used psychophysiological
175 interaction measures between rIFG and preSMA as estimated in Tsvetanov et al., 2018.
176 Specifically, group independent components analysis (ICA) decomposed the fMRI signal into
177 functional components that were activated in the contrast *successful stop* > *unsuccessful stop*.
178 Then correlational psychophysiological interactions analysis was used to estimate patterns of
179 functional connectivity modulation between rIFG and preSMA. The resulting measure quantifies
180 differences in connectivity (i.e., modulation) between successful and unsuccessful action
181 cancellation trials within the rIFG-preSMA network (see Tsvetanov et al., 2018 for further
182 details).

183 **Analyses**

184 To infer the latency of the unobservable response inhibition (i.e., the stop-signal reaction time;
185 SSRT) we adopted hierarchical Bayesian estimation of a parametric race model of the stop-signal
186 task (Matzke, Dolan, Logan, Brown, & Wagenmakers, 2013). Accordingly, performance on the
187 stop-signal task is modeled as a race between three independent processes: one corresponding to
188 the stop process, and two corresponding to go processes that match or mismatch the go stimulus.
189 Successful response inhibition in stop-signal trials occurs when the stop process finishes its race
190 before both go processes. Correct responses on go trials, instead, require the matching go process
191 to finish its race before the mismatching go process. The finish time distribution of the stop
192 process is inferred by estimating the RT distribution of unsuccessful stop trials (i.e., signal
193 respond RTs; see Matzke, Dolan, Logan, Brown, and Wagenmakers, 2013 for details). The model
194 assumes that the finish times of the stop and go processes follow an ex-Gaussian distribution
195 (Heathcote et al., 2018). Thus, for each process, we described the corresponding ex-Gaussian
196 distribution by estimating the mean μ and standard deviation σ of its Gaussian component, and
197 the mean (i.e., inverse rate) τ of its exponential component.

198 Further, we estimated the probability that the stop and go processes failed to start, referred
199 to as “trigger failure” and “go failure” (Matzke, Curley, Gong, & Heathcote, 2019). These
200 attentional failures can be common in the stop-signal task and, if not accounted for, bias
201 estimation of the stop process (Band et al., 2003; Matzke et al., 2019; Skippen et al., 2019). Prior
202 to fitting the model, we excluded implausibly fast (< 0.25s) RTs, as well as outliers go RTs
203 exceeding ± 2.5 standard deviations from the participant’s mean (Matzke, Dolan, Logan, Brown,
204 & Wagenmakers, 2013; O’Callaghan et al., 2021).

205 We estimated the posterior distributions of the parameters using Markov Chain Monte
206 Carlo (MCMC) sampling. The parameters were estimated hierarchically, such that parameters for
207 a given participant are assumed to be drawn from corresponding group-level normal distributions.
208 We adopted prior distributions identical to those suggested by the model developers (Heathcote et
209 al., 2018), except for slightly higher prior mean values for $\mu_{\text{go-match}}$ (1.5s), $\mu_{\text{go-mismatch}}$ (1.5s) and
210 μ_{stop} (1s), to account for slower RT in older age (O’Callaghan et al., 2021). MCMC sampling
211 initially ran with 33 chains (i.e., three times the number of parameters), with thinning of every
212 10th sample and a 5% probability of migration. Visual inspection of the MCMC chains as well as
213 the potential scale reduction statistic \hat{R} (less than 1.1 for all parameters; mean \hat{R} across subjects
214 mean \pm sd: 1.009 ± 0.002) were used to assess model fit convergence. After confirming
215 convergence, an additional 500 iterations for each chain were run to obtain a posterior
216 distribution for each parameter. The model’s goodness of fit was confirmed by comparing the
217 observed data to simulated data generated from the model’s posterior predictive distribution
218 (Figure 1C).

219 The SSRT was the primary outcome of interest, computed as the mean of the ex-Gaussian
220 finish time distribution of the stop process, which is given by $\mu_{\text{stop}} + \tau_{\text{stop}}$. We repeated this

221 computation for each MCMC sample to approximate a posterior distribution of SSRT. The same
222 approach was adopted to draw a posterior distribution of go RT ($\mu_{\text{go-match}} + \tau_{\text{go-match}}$).

223 We used the statistical software package R (<http://www.r-project.org/>), following our
224 preregistered analysis plan (<<https://osf.io/zgj9n/>>). For primary analyses we used Bayesian
225 statistics which enables to quantify evidence in favor of the alternate hypothesis as well as
226 evidence for the null hypothesis (of an absence of effect). We quantify relative evidence through
227 Bayes Factors (BF) and for their interpretation we adhere to consensus guidelines (Jeffreys,
228 1961). For completeness, we also present classical frequentist analyses with $\alpha = 0.05$ criterion for
229 significance.

230 For all the regression analyses, we included sex as a binary covariate to account for
231 possible sex-related differences in locus coeruleus signal (Clewett et al., 2016). We additionally
232 controlled for changes in grey matter volume of the rIFG and preSMA, and check that regression
233 assumptions are met. We include age as a continuous moderator to take into account possible
234 age-related changes in the reliance of response inhibition on both locus coeruleus integrity and
235 connectivity (Tsvetanov et al., 2018). To prevent collinearity issues, the continuous variables
236 forming the interaction term of regression were mean centered. Moreover, since we are focusing
237 on changes over and above the main effect of age on the locus coeruleus, locus coeruleus CNR
238 values were regressed onto age and the residuals used as predictor.

239 For the moderated mediation analysis, the choice of the model structure was guided by a previous
240 interventional study of the effect of atomoxetine on functional connectivity between preSMA and
241 rIFG (Rae et al., 2016, see Figure 4a for a depiction of the model). The approach allows us to
242 estimate the shared variance between locus-coeruleus signal and functional connectivity. The
243 model was tested using the PROCESS macro model 15 in R using a bootstrap approach (Preacher

244 and Hayes, 2004). The moderated mediation model tests for locus coeruleus-induced variability
245 in response inhibition (direct effect, path *c*), and in functional connectivity mediating the effect
246 on response inhibition (mediated effect, path *ab*). The model also tests whether the direct and
247 indirect (i.e., mediated) effects of locus coeruleus on response inhibition change with age (age
248 moderation, paths *b2* and *c2*).

249

250 **Software and Equipment**

251 The ex-Gaussian model fitting was performed with the Dynamic Models of Choice toolbox
252 (Heathcote et al., 2019), implemented in R (version 4.0, R Core Team, 2019). Further statistical
253 analyses in R used the ‘tidyverse’ (Wickham et al., 2019) for data organization and visualization,
254 ‘processR’ with ‘lavaan’ (Rosseel, 2012) packages for path analysis, and the ‘BayesFactor’
255 (Morey et al., 2018) and ‘bayestestR’ (Makowski, Ben-Shachar, and Lüdecke, 2019) packages
256 for Bayes Factor analysis. Figures 2B, 3A, 4A were created with BioRender.com.

257

258 **Results**

259 We confirmed the task performance expectations in that (i) the group SSRT (median 161ms) and
260 GoRT (median 593ms) were within the range expected from the literature on related tasks, as
261 show in figure 1B; (ii) Commissions error latencies were shorter than accurate GoRT,
262 indicative of impulsive responses, figure 1C; and (iii) errors and latencies were approximately
263 equal between left and right hand responses, figure 1C. The Stop signal algorithm converged on
264 average 57.4% accuracy (SD 12.8%). In the following sections, we relate individual differences

265 in performance to locus coeruleus CNR, using the 5% atlas, but note that results are qualitatively
266 similar using the more conservative atlas threshold of 25%.

267 *Locus coeruleus integrity predicts individual differences in response inhibition*

268 We tested for effects of locus coeruleus integrity (as CNR) on response inhibition (the SSRT)
269 using multiple linear regression (Figure 2B). The locus coeruleus integrity was associated with
270 faster inhibitory responses but the strength of such association diminishes with age (Figure 2C;
271 interaction LC CNR x age: $BF_{H1} = 16.866$; $t_{55} = 2.993$; $p = 0.004$). This moderation remains
272 significant even after controlling for loss of grey matter in preSMA and rIFG regions, crucial
273 components of the stopping-network ($BF_{H1} = 19.068$; $t_{55} = 3.08$; $p = 0.003$). No significant main
274 effects were observed for sex ($BF_{H1} = 0.407$; $t_{55} = -0.767$; $p = 0.446$) nor for volumetric
275 differences in the preSMA ($BF_{H1} = 0.714$; $t_{55} = -0.817$; $p = 0.417$) and rIFG ($BF_{H1} = 0.623$; $t_{55} =$
276 0.366 ; $p = 0.715$) across subjects. To confirm that the parameter estimates of the multiple linear
277 regression were not driven by the excessive influence of any given participant, we calculated
278 Cook's distance which quantifies the influence of each data point on all parameters of the linear
279 model simultaneously. As a rule of thumb, a participant is deemed overly influential if their
280 Cook's distance exceeds 4 divided by the total number of participants (Van der Meer, Te
281 Grotenhuis, Pelzer, 2010). In our sample, the Cook's distance values ranged from 0 to 0.056,
282 within the applicable cut-off value of $4/62 = 0.64$. In a further effort to ensure robustness of our
283 results, we re-fit the model using robust linear regression, which is less sensitive to data outliers
284 than the conventional ordinary least squares method. The results of the robust analysis confirmed
285 the results from the conventional linear regression showing a significant locus coeruleus integrity
286 x age interaction ($t_{55} = 3.15$; $p = 0.0025$), but no significant main effects of sex ($t_{55} = -0.618$; $p =$
287 0.538) or grey volume in preSMA ($t_{55} = -0.811$; $p = 0.414$) and rIFG ($t_{55} = -0.501$; $p = 0.616$).

288 The observed moderating effect of age on the association of locus coeruleus integrity
289 with inhibitory control might be confounded by differences in the degree to which a participant
290 has “successfully aged” cognitively and maintained cognitive ability on par with early adult life
291 in contrast to “unsuccessfully aged” cognitively with decline in cognitive ability. To estimate this
292 change in cognitive ability, one can compare current fluid intelligence to crystallized intelligence.
293 This difference (ability discrepancy score) approximates the degree to which a participant has
294 sustained or changed their cognitive ability, with lower fluid than crystallized intelligence as a
295 marker of “unsuccessful aging” (McDonough et al., 2016). We tested for a possible role of
296 unsuccessful ageing by including ability discrepancy in the interaction term locus coeruleus CNR
297 x age, while controlling for sex and cortical volumetric changes. Bayesian analysis confirmed the
298 age-moderated relationship between locus coeruleus CNR and response inhibition observed in the
299 previous analyses ($BF_{H1} = 12.580$; although not significant with frequentist analysis $t_{51} = 1.567$; $p = 0.123$). However, there was no significant main effect of ability discrepancy ($BF_{H1} = 0.446$; $t_{51} = -0.482$; $p = 0.632$), nor interaction effects of ability discrepancy x age ($BF_{H1} = 0.497$; $t_{51} = 0.071$; $p = 0.944$), CNR x ability discrepancy ($BF_{H1} = 0.775$; $t_{51} = 1.053$; $p = 0.297$), or CNR x
303 ability discrepancy x age ($BF_{H1} = 1.753$; albeit marginally significant with frequentist analysis $t_{51} = 2.017$; $p = 0.049$). Therefore, age affects the modulatory effect of locus coeruleus integrity on
305 response inhibition irrespective of individuals’ lifetime decline in cognitive ability.

306 To probe the specificity of the relationship between locus coeruleus integrity and action
307 cancellation, we repeated the linear regression analysis replacing SSRTs with successful *Go*
308 reaction times as outcome. There was evidence for slowing of Go reaction times with age ($BF_{H1} = 6.824$; $t_{55} = 2.714$; $p = 0.0088$) but no evidence for a link between Go reaction times and locus
309 coeruleus integrity (main effect CNR: $BF_{H1} = 0.366$; $t_{55} = 0.602$; $p = 0.549$; interaction CNR x
310 age: $BF_{H1} = 0.617$; $t_{55} = 0.904$; $p = 0.369$).

312

313 *Figure 2. A) Study specific atlas of the locus coeruleus (light blue) and reference region in the*
314 *central pons (green). B-C) SSRT estimates as a function of age adjusted locus coeruleus contrast-*
315 *to-noise ratio (CNR) and age group. The interaction with age is estimated as a continuous*
316 *variable (see text) but binarized for visualization purposes only. D) Bayesian evidence for an*
317 *association between the integrity of rostral, and caudal sub-regions of the locus coeruleus with*
318 *response inhibition.*

319

320

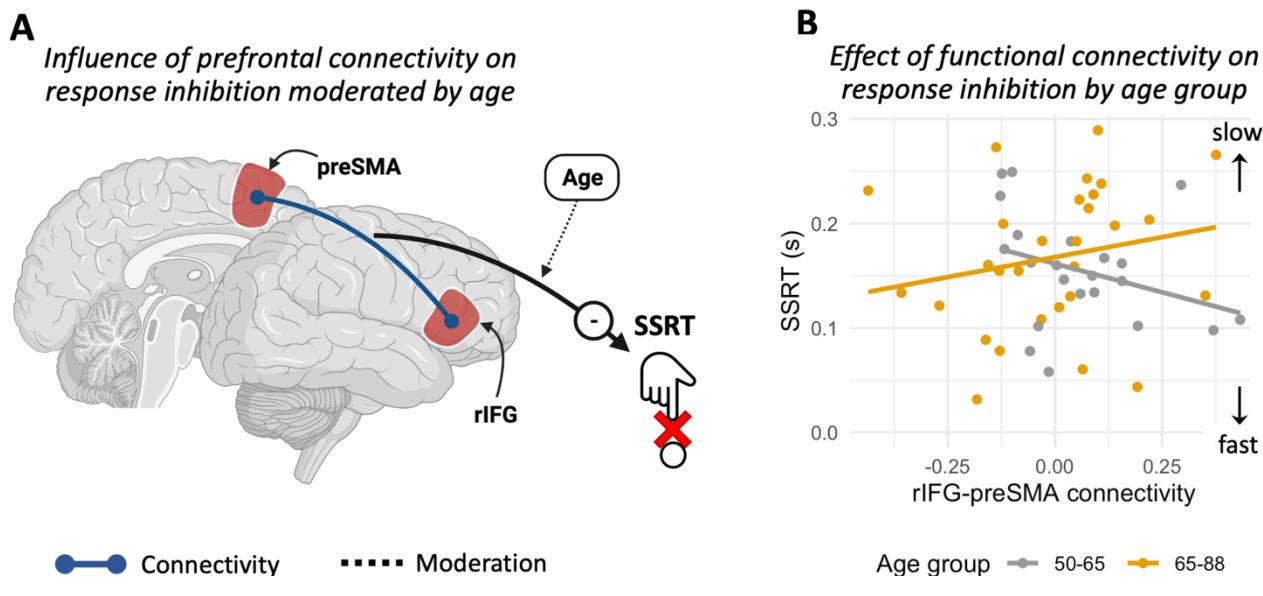
321

322

323 *Integrity of the rostral sub-region of the locus coeruleus is associated with response inhibition.*

324 Sub-regions of the locus coeruleus may have differential associations to cognition, behaviour and
325 pathology given the heterogeneity in its topographic organization. Here we estimated the
326 association between the integrity of sub-regions of the locus coeruleus with response inhibition.
327 In the pre-registered analysis plan, we proposed to fit a multiple linear regression model
328 including the interaction between rostral, middle, caudal subregions of the locus coeruleus and
329 age while controlling for sex and gray matter volume as in our previous analyses. However,
330 diagnostic tests indicated a strong multicollinearity in the interaction term driven by the middle
331 CNR (variance inflation factor > 10). We therefore deviate from the pre-registered plan for this
332 test, to exclude the middle sub-region from the model. The multicollinearity issue was solved
333 (variance inflation factor < 10) and all the linear regression assumptions (e.g., skewness, kurtosis,
334 heteroscedasticity) were met.

335 The multiple linear regression results show strong evidence for an association between
336 response inhibition and the rostral sub-region mediated by age (rostral CNR x age: $BF_{H1} =$
337 13.905; $t_{50} = 2.735$; $p = 0.0086$) (Figure 2D). There were no significant interaction effects for
338 CNR x age ($BF_{H1} = 0.855$; $t_{50} = -1.090$; $p = 0.280$), caudal CNR x rostral CNR ($BF_{H1} = 0.607$; t_{50}
339 = 0.715; $p = 0.477$) and caudal CNR x rostral CNR x age ($BF_{H1} = 0.545$; $t_{50} = -0.272$; $p = 0.786$)
340 nor for the main effects of caudal CNR ($BF_{H1} = 0.658$; $t_{50} = -1.553$; $p = 0.126$), sex ($BF_{H1} =$
341 0.634; $t_{50} = -1.281$; $p = 0.206$) and grey matter volume in preSMA ($BF_{H1} = 1.345$; $t_{50} = -1.463$; p
342 = 0.149) and rIFG($BF_{H1} = 0.824$; $t_{50} = -0.350$; $p = 0.728$).


343

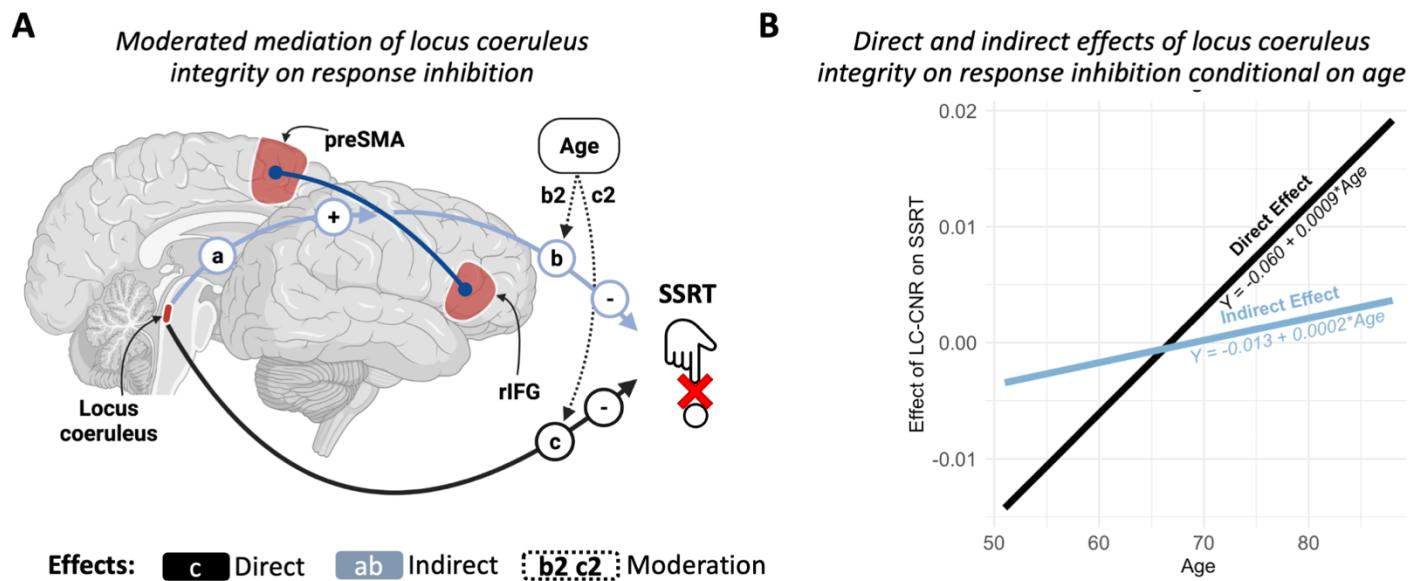
344

345 *Modulation of connectivity between preSMA and rIFG predicts individual differences in response*
346 *inhibition*

347 We tested whether the performance related connectivity (between successful and unsuccessful
348 stop trials) within the prefrontal stopping-network was related to individual differences in
349 response inhibition (SSRT), using multiple linear regression. Age moderated the relationship
350 between preSMA- rIFG connectivity and response inhibition ($BF_{H1} = 4.644$; $t_{55} = 2.311$; $p =$
351 0.024) (Figure 3B) qualitatively similar to the effect observed when locus coeruleus CNR was
352 used as predictor. There were no significant main effects for sex ($BF_{H1} = 0.449$; $t_{55} = -0.948$; $p =$
353 0.347) or volumetric grey matter differences in preSMA ($BF_{H1} = 0.566$; $t_{55} = -0.494$; $p = 0.623$)
354 and rIFG regions ($BF_{H1} = 0.533$; $t_{55} = -0.238$; $p = 0.812$). We confirmed robustness of our linear
355 regression results by examining the Cook's distance of each participant (range 0 – 0.058, below
356 the 0.64 threshold) as well as by showing that results were qualitatively identical when re-fitting
357 the data with a robust regression approach. Specifically, the robust regression results confirm a
358 significant Connectivity x age interaction ($t_{55} = 2.754$; $p = 0.008$) but no significant main effects
359 for sex ($t_{55} = -0.622$; $p = 0.536$) or grey matter volume in preSMA ($t_{55} = -0.507$; $p = 0.536$) and
360 rIFG ($t_{55} = -0.349$; $p = 0.724$).

361

362 Connectivity Moderation


363 *Figure 3. A) Age moderates the influence of connectivity between the preSMA and rIFG on*
364 *response inhibition (SSRT) . B) SSRT estimates as a function of connectivity between preSMA*
365 *and rIFG. The interaction with age is estimated as a continuous variable (see text) but binarized*
366 *for visualization purposes only.*

367

368 *Modulation of Prefrontal connectivity partially mediates influence of locus coeruleus on response*
369 *inhibition*

370 Next, we tested whether task-related functional connectivity mediated the variance between locus
371 coeruleus signal and SSRT, subject to moderation by age (Figure 4A). The direct association
372 between locus coeruleus and response inhibition was moderated by age (c_2 : standardized $\beta =$
373 0.817; $p = 0.013$). The association between connectivity and response inhibition was also
374 conditional on age (b_2 : standardized $\beta = 0.637$; $p < 0.0001$). A formal test of moderated
375 mediation based on the index term (Hayes, 2015) indicated that the effect of locus coeruleus
376 integrity on response inhibition was partly mediated by functional connectivity in the prefrontal

377 stopping-network, but this relationship changed with age (ab: coefficient of moderated mediation
 378 = 0.00019; bootstrapped 95% CI = [0.00003, 0.00053]; p = 0.004; proportion moderated =
 379 0.159). The moderated direct and indirect effects of locus coeruleus integrity on response
 380 inhibition are depicted on figure 4B.

C
Moderated mediation results

Variables	Predictors	Labels	z-scores	p values	Standardized β
preSMA-rIFG connectivity	Locus coeruleus CNR	a	2.838	0.005	0.298
SSRT	preSMA-rIFG connectivity	b	-8.202	< 0.001	-0.612
SSRT	Locus coeruleus CNR	c	-2.684	0.007	-0.830
SSRT	preSMA-rIFG connectivity x Age	b2	7.154	< 0.001	0.637
SSRT	Locus coeruleus CNR x Age	c2	2.539	0.011	0.817
	Coefficient	95% Confidence interval	z-score	p value	
Index of moderated mediation	0.00019	0.00003 – 0.00053	2.912	0.004	

381 Note. SSRT = Signal stop reaction time. Bootstrap sample size = 10,000; Path labels (e.g. c) correspond to figure 4A.

382 *Figure 4. A) Moderated mediation model, with locus coeruleus integrity as a predictor (LC-
 383 CNR), functional connectivity within the prefrontal stopping-network as a mediator
 384 (Connectivity), and stop signal reaction times as an outcome (SSRT). Age was included as a
 385 second-level moderator. B) Direct and indirect (i.e., mediated by functional connectivity) effects
 386 of locus coeruleus integrity on response inhibition, conditional on age.*

388

Discussion

389 The principal results of this pre-registered study are that (i) individual differences in stopping
390 efficiency are related to the integrity of the locus coeruleus; and (ii) this effect is partially
391 mediated by the facilitation of connectivity within the prefrontal stopping-network. These effects
392 were observed in healthy adults from a population-based cohort, but moderated by age, over and
393 above the main effect of age on locus coeruleus integrity.

394 This behavioural effect is mainly associated with integrity of the rostral sub-region of the
395 locus-coeruleus, which preferentially targets prefrontal cortex, and is affected by healthy ageing
396 (Loughlin et al., 1986; Mason et al., 1979). Crucially, these effects were observed after correction
397 for a possible main effect of age on the locus coeruleus. Nonetheless, the influence of locus
398 coeruleus variability is moderated by age. Previous reports linked variation of rostral locus
399 coeruleus intensity to cognitive performances in healthy subjects. Preserved integrity of the
400 rostral locus coeruleus in healthy older adults has been associated with better cognitive function
401 (Manaye, McIntire, Mann, and German, 1995; Hammerer et al., 2018; Dahl et al., 2019; Liu et
402 al., 2020). Our results support this previous work and extend the evidence for an influence of the
403 locus coeruleus noradrenaline system on inhibitory control.

404 The influence of noradrenaline may also be understood in terms of its effect on task-
405 related connectivity between regions (Rae et al., 2016; Holland, Robbins, & Rowe, 2021). For
406 inhibitory control, connectivity between the rIFG and preSMA are of particular relevance: lesion
407 studies, transient interference by magnetic or electrical stimulation, and neuroimaging work
408 provide converging evidence that interactions between these regions are crucial for successful
409 response inhibition (Chambers et al., 2006; Duann et al., 2009; Forstmann et al., 2012; Aron et
410 al., 2014; Rae et al., 2015). We found that the effect of locus coeruleus integrity on response

411 inhibition is partly mediated by changes in functional connectivity between the rIFG and
412 preSMA. These findings reinforce previous reports on the effect of the noradrenaline reuptake
413 inhibitor atomoxetine on response inhibition in Parkinson's disease. For example, Rae et al
414 (2016) observed that in patients, connectivity between preSMA on the rIFG was reduced, but
415 restored by atomoxetine. Using dynamic causal modelling, they showed that atomoxetine exerts
416 restored the effective connectivity between preSMA and rIFG, and increased the strength their
417 interacting projections to subthalamic nucleus. Our results similarly associate increased
418 connectivity between these two areas to enhanced response inhibition, and provide evidence that
419 modulation within the stopping-network is related to the integrity of the locus coeruleus, the
420 principal source of noradrenaline.

421 The influence of both locus coeruleus integrity and prefrontal stopping-network
422 connectivity on inhibitory control changed with age. Our results confirmed such an interaction:
423 higher age-adjusted integrity within the younger and middle age range (50-65 years) of healthy
424 adults was associated with positive modulation of the stopping-network and better inhibitory
425 control. This was not observed over 65 years.

426 Ageing is also associated with decline of other aspects of motor performance such as
427 psychomotor slowing and reduced fine motor skills (Salthouse, 2000; Seidler et al., 2010). A
428 contributor to age-related performance decline is loss of grey matter volume (Draganski, Lutti, &
429 Kherif, 2013) with evidence from functional neuroimaging studies for adaptive plasticity
430 paralleling structural decline (Tsvetanov et al., 2020). Consequently, older adults may display
431 more widespread brain activation, weaker segregation of local networks and weaker inter-
432 hemispheric connectivity (Rowe et al., 2006; Chan, Park, Savalia, Petersen, & Wig, 2014;
433 Geerligs, Renken, Saliasi, Maurits, & Lorist, 2014; Tsvetanov et al., 2016). Evidence to date

434 suggests that less segregated brain networks contribute to age-related decline in cognitive and
435 sensorimotor performance (Chan, Park, Savalia, Petersen, and Wig, 2014; Geerligs, Renken,
436 Saliasi, Maurits, and Lorist, 2014; King et al., 2017; Bethlehem et al., 2020). Indeed, similarly to
437 our results, analysis of cortical connectivity in the CamCAN dataset showed that stopping
438 efficiency in older adults relied more strongly on connectivity than in their younger counterparts
439 (Tsvetanov et al., 2018), in accord with preclinical studies of the effects of locus coeruleus
440 plasticity and connectivity (Bear & Singer, 1986; Coull, Buchel, Friston, Frith, 1999; Martins &
441 Froemke, 2015). Further longitudinal studies are warranted to investigate age-related changes in
442 the way locus coeruleus integrity and cortical connectivity impact on inhibitory control.

443 Our pre-registered analysis was designed to probe the association of locus coeruleus
444 integrity with response inhibition and differs in many respects from an earlier analysis of the
445 Cam-CAN cohort looking for associations of coeruleus integrity with diverse cognitive functions
446 (Liu et al., 2020). We focused on adults aged above 50 years, for better estimation of structural
447 integrity of the locus coeruleus using MT weighted MRI. This is because of the greater
448 neuromelanin based contrast with age (Zecca, Youdim, Riederer, Connor, & Crichton, 2004).
449 The locus coeruleus signal was extracted through a probabilistic atlas-based segmentation, which
450 provides unbiased estimation, with superior accuracy and reliability compared to the manual
451 segmentation approaches (Chen et al., 2014; Langley, Huddleston, Liu, & Hu, 2016; Ye et al.,
452 2021). These features are preferable when using 3T MRI images, where the manual segmentation
453 approach may be unreliable due to the relatively low signal-to-noise ratio. Next, the stop-signal
454 reaction time (SSRT) was estimated using a Bayesian parametric model of the stop-signal task
455 which isolates attentional confounds from response inhibition (Matzke, Dolan, Logan, Brown, &
456 Wagenmakers, 2013). These differences between studies might explain the fact that no effect of
457 locus coeruleus signal on the stop-signal task was observed in Liu et al (2020).

458 There are limitations in the current study that should be considered when interpreting the
459 results and need to be addressed in future studies. First, the focus on ages above 50 years reduced
460 sample size. Power calculations confirmed that our study was well powered for the intended
461 analyses (see pre-registration <<https://osf.io/zgj9n/>>). However, individual variability in locus
462 coeruleus signal increases with age (Liu et al., 2019; Ye et al, 2020). Second, our results are
463 based on a cross-sectional cohort. Therefore, our conclusions merely speak to the effects of age
464 and its correlates, as assessed across individuals, but provide no insight on the dynamic process
465 of individual ageing. A larger sample size including more subjects of advanced age or a
466 longitudinal cohort might be needed in future studies to confirm the impact of ageing on the
467 relationship between locus coeruleus and inhibitory control. Third, participants' cognitive
468 functions were screened with the ACE-R test which may lack the sensitivity to detect latent
469 Alzheimer's disease pathology in the older group. Notably, the regional vulnerability of locus
470 coeruleus neurons varies between disorders and the rostral region, which we show being related
471 to response inhibition, is especially vulnerable to Alzheimer's disease and latent pathology with
472 healthy ageing (German et al., 1992; Mason & Fibiger, 1979). Fourth, the 3T MRI images used in
473 the present study afford a lower signal-to-noise ratio compared to 7T scans. However, the
474 resulting reduced sensitivity would be expected to increase type II but not type I error. Finally,
475 the present work focused on the modulatory role of the locus coeruleus noradrenergic system on
476 action cancellation. We acknowledge that other neuromodulators, such as serotonin, can play a
477 crucial role in regulating forms of inhibitory control other than action cancellation (Eagle, Bari,
478 and Robbins 2008; Cools, Roberts, and Robbins, 2008; Ye et al. 2014; Hughes, Rittman,
479 Regenthal, Robbins, & Rowe 2015).

480 In conclusion, we show that the ability to inhibit responses relies on both the locus
481 coeruleus and its facilitation of connectivity within the prefrontal cortex. The locus coeruleus

482 integrity has different implications for inhibitory control at different ages. These findings
483 contribute to the broader understanding of the importance of noradrenergic systems for executive
484 functions in normal populations, with implications for impulsive clinical disorders.

485

486 **Acknowledgments**

487 This work was funded by a Medical Research Council intramural grant (SUAG/051
488 R101400) and a Wellcome Trust grant (220258) awarded to J.B.R.; K.A.T. was supported by the
489 Guarantors of Brain (G101149). The authors declare no competing financial interests and no
490 conflict of interest.

491

References

492 Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine
493 function: Adaptive gain and optimal performance. *Annual Review of Neuroscience*,
494 28(1), 403–450. <https://doi.org/10.1146/annurev.neuro.28.061604.135709>

495 Bari, A., Mar, A. C., Theobald, D. E., Elands, S. A., Oganya, K. C. N. A., Eagle, D. M., &
496 Robbins, T. W. (2011). Prefrontal and monoaminergic contributions to stop-signal task
497 performance in rats. *Journal of Neuroscience*, 31(25), 9254–9263.
498 <https://doi.org/10.1523/JNEUROSCI.1543-11.2011>

499 Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: Behavioral and neural basis of
500 response control. *Progress in Neurobiology*, 108, 44–79.
501 <https://doi.org/10.1016/j.pneurobio.2013.06.005>

502 Bethlehem, R. A. I., Paquola, C., Seidlitz, J., Ronan, L., Bernhardt, B., Consortium, C.-C., &
503 Tsvetanov, K. A. (2020). Dispersion of functional gradients across the adult lifespan.
504 *NeuroImage*, 222, 117299.
505 <https://doi.org/10.1016/j.neuroimage.2020.117299>

506 Betts, M. J., Cardenas-Blanco, A., Kanowski, M., Jessen, F., & Düzel, E. (2017). In vivo MRI
507 assessment of the human locus coeruleus along its rostrocaudal extent in young and older
508 adults. *NeuroImage*, 163(February), 150–159.
509 <https://doi.org/10.1016/j.neuroimage.2017.09.042>

510 Bouret, S., & Sara, S. J. (2005). Network reset: a simplified overarching theory of locus
511 coeruleus noradrenaline function. *Trends in Neurosciences*, 28(11), 574–582.
512 <https://doi.org/10.1016/j.tins.2005.09.002>

513 Chamberlain, S. R., Chamberlain, S. R., Müller, U., Blackwell, A. D., Clark, L., Robbins, T. W.,
514 & Sahakian, B. J. (2006). Neurochemical modulation of response inhibition and
515 probabilistic learning in humans. *Science*, 311(5762), 861–863.
516 <https://doi.org/10.1126/science.1121218>. *Neurochemical*

517 Chamberlain, Samuel R., Hampshire, A., Müller, U., Rubia, K., del Campo, N., Craig, K., ...
518 Sahakian, B. J. (2009). Atomoxetine modulates right inferior frontal activation during
519 inhibitory control: A pharmacological functional magnetic resonance imaging study.
520 *Biological Psychiatry*, 65(7), 550–555. <https://doi.org/10.1016/j.biopsych.2008.10.014>

521 Chambers, C. D., Bellgrove, M. A., Stokes, M. G., Henderson, T. R., Garavan, H., Robertson, I.
522 H., ... Mattingley, J. B. (2006). Executive "brake failure" following deactivation of
523 human frontal lobe. *Journal of Cognitive Neuroscience*, 18(3), 444–455.
524 <https://doi.org/10.1162/089892906775990606>

525 Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S. (2014). Decreased
526 segregation of brain systems across the healthy adult lifespan. *Proceedings of the National
527 Academy of Sciences*, 111(46), E4997–E5006. <https://doi.org/10.1073/pnas.1415122111>

528 Chen, X., Huddleston, D. E., Langley, J., Ahn, S., Barnum, C. J., Factor, S. A., ... Hu, X. (2014).
529 Simultaneous imaging of locus coeruleus and substantia nigra with a quantitative

530 neuromelanin MRI approach. *Magnetic Resonance Imaging*, 32(10), 1301–1306.
531 <https://doi.org/10.1016/j.mri.2014.07.003>

532 Clewett, D. V., Lee, T. H., Greening, S., Ponzio, A., Margalit, E., & Mather, M. (2016).
533 Neuromelanin marks the spot: Identifying a locus coeruleus biomarker of cognitive
534 reserve in healthy aging. *Neurobiology of Aging*, 37, 117–126.
535 <https://doi.org/10.1016/j.neurobiolaging.2015.09.019>

536 Cools, R., Roberts, A. C., & Robbins, T. W. (2008). Serotonergic regulation of emotional and
537 behavioural control processes. *Trends in Cognitive Sciences*, 12(1), 31–40.
538 <https://doi.org/10.1016/j.tics.2007.10.011>

539 Dahl, M. J., Mather, M., Werkle-Bergner, M., Kennedy, B. L., Guzman, S., Hurth, K., ...
540 Ringman, J. M. (2020). Locus coeruleus integrity is related to tau burden and memory
541 loss in autosomal-dominant alzheimer's disease. Retrieved from
542 <http://dx.doi.org/10.1101/2020.11.16.20232561>

543 Dahl, M., Mather, M., Düzel, S., Bodammer, N. C., Lindenberger, U., Kühn, S., & Werkle-
544 bergner, M. (2020). Memory performance in older adults. *Nature Human Behaviour*,
545 3(11), 1203–1214. <https://doi.org/10.1038/s41562-019-0715-2>

546 Dahl, M., Mather, M., Düzel, S., Bodammer, N. C., Lindenberger, U., Kühn, S., & Werkle-
547 Bergner, M. (2019). Rostral locus coeruleus integrity is associated with better memory
548 performance in older adults. *Nature Human Behaviour*, 3(11), 1203–1214.
549 <https://doi.org/10.1038/s41562-019-0715-2>

550 Dayan, P., & Yu, A. J. (2006). Phasic norepinephrine: A neural interrupt signal for unexpected
551 events. *Network: Computation in Neural Systems*, 17(4), 335–350.
552 <https://doi.org/10.1080/09548980601004024>

553 Draganski, B., Lutti, A., & Kherif, F. (2013). Impact of brain aging and neurodegeneration on
554 cognition. *Current Opinion in Neurology*, 26(6), 640–645.
555 <https://doi.org/10.1097/WCO.000000000000029>

556 Duann, J. R., Ide, J. S., Luo, X., & Li, C. S. R. (2009). Functional connectivity delineates distinct
557 roles of the inferior frontal cortex and presupplementary motor area in stop signal
558 inhibition. *Journal of Neuroscience*, 29(32), 10171–10179.
559 <https://doi.org/10.1523/JNEUROSCI.1300-09.2009>

560 Eagle, D. M., Bari, A., & Robbins, T. W. (2008). The neuropsychopharmacology of action
561 inhibition: Cross-species translation of the stop-signal and go/no-go tasks.
562 *Psychopharmacology*, 199(3), 439–456. <https://doi.org/10.1007/s00213-008-1127-6>

563 Eagle, D. M., & Baunez, C. (2010). Is there an inhibitory-response-control system in the rat?
564 Evidence from anatomical and pharmacological studies of behavioral inhibition.
565 *Neuroscience and Biobehavioral Reviews*, 34(1), 50–72.
566 <https://doi.org/10.1016/j.neubiorev.2009.07.003>

567 Forstmann, B. U., Keuken, M. C., Jahfari, S., Bazin, P. L., Neumann, J., Schäfer, A., ... Turner,
568 R. (2012). Cortico-subthalamic white matter tract strength predicts interindividual

569 efficacy in stopping a motor response. *NeuroImage*, 60(1), 370–375.
570 <https://doi.org/10.1016/j.neuroimage.2011.12.044>

571 Frank, M. J., Scheres, A., & Sherman, S. J. (2007). Understanding decision-making deficits in
572 neurological conditions: Insights from models of natural action selection. *Philosophical
573 Transactions of the Royal Society B: Biological Sciences*, 362(1485), 1641–1654.
574 <https://doi.org/10.1098/rstb.2007.2058>

575 Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2014). A Brain-Wide
576 Study of Age-Related Changes in Functional Connectivity. *Cerebral Cortex*, 25(7), 1987–
577 1999. <https://doi.org/10.1093/cercor/bhu012>

578 German, D. C., Manaye, K. F., White, C. L., Woodward, D. J., McIntire, D. D., Smith, W. K., ...
579 Mann, D. M. A. (1992). Disease-specific patterns of locus coeruleus cell loss. *Annals of
580 Neurology*, 32(5), 667–676. <https://doi.org/10.1002/ana.410320510>

581 Hä默er, D., Callaghan, M. F., Hopkins, A., Kosciessa, J., Betts, M., Cardenas-Blanco, A., ...
582 Düzel, E. (2018). Locus coeruleus integrity in old age is selectively related to memories
583 linked with salient negative events. *Proceedings of the National Academy of Sciences*,
584 115(9), 2228–2233. <https://doi.org/10.1073/pnas.1712268115>

585 Hayes, A. F. (2015). An Index and Test of Linear Moderated Mediation. *Multivariate Behavioral
586 Research*, 50(1), 1–22. <https://doi.org/10.1080/00273171.2014.962683>

587 Heathcote, A., Lin, Y.-S., Reynolds, A., Strickland, L., Gretton, M., & Matzke, D. (2018).
588 Dynamic models of choice. *Behavior Research Methods*, 51(2), 961–985.
589 <https://doi.org/10.3758/s13428-018-1067-y>

590 Holland, N., Robbins, T. W., & Rowe, J. B. (2021). The role of noradrenaline in cognition and
591 cognitive disorders. *Brain*. <https://doi.org/10.1093/brain/awab111>

592 Hughes, L. E., Rittman, T., Regenthal, R., Robbins, T. W., & Rowe, J. B. (2015). Improving
593 response inhibition systems in frontotemporal dementia with citalopram. *Brain*, 138(7),
594 1961–1975. <https://doi.org/10.1093/brain/awv133>

595 Jeffreys, H. (1961). *Theory of probability*. Clarendon Press.

596 King, B. R., van Ruitenbeek, P., Leunissen, I., Cuypers, K., Heise, K.-F., Santos Monteiro, T., ...
597 Swinnen, S. P. (2017). Age-related declines in motor performance are associated with
598 decreased segregation of large-scale resting state brain networks. *Cerebral Cortex*, 28(12),
599 4390–4402. <https://doi.org/10.1093/cercor/bhx297>

600 Langley, J., Huddleston, D. E., Liu, C. J., & Hu, X. (2016). Reproducibility of locus coeruleus
601 and substantia nigra imaging with neuromelanin sensitive MRI. *Magnetic Resonance
602 Materials in Physics, Biology and Medicine*, 30(2), 121–125.
603 <https://doi.org/10.1007/s10334-016-0590-z>

604 Liu, K., Acosta-Cabronero, J., Cardenas-Blanco, A., Loane, C., Berry, A. J., Betts, M. J., ...
605 Hä默er, D. (2019). In vivo visualization of age-related differences in the locus

606 coeruleus. *Neurobiology of Aging*, 74, 101–111.
607 <https://doi.org/10.1016/j.neurobiolaging.2018.10.014>

608 Liu, K., Kievit, R. A., Tsvetanov, K. A., Betts, M. J., Düzel, E., Rowe, J. B., ... Hä默er, D.
609 (2020). Noradrenergic-dependent functions are associated with age-related locus
610 coeruleus signal intensity differences. *Nature Communications*, 11(1), 1712.
611 <https://doi.org/10.1038/s41467-020-15410-w>

612 Loughlin, S. E., Foote, S. L., & Bloom, F. E. (1986). Efferent projections of nucleus locus
613 coeruleus: Topographic organization of cells of origin demonstrated by three-dimensional
614 reconstruction. *Neuroscience*, 18(2), 291–306. [https://doi.org/10.1016/0306-4522\(86\)90155-7](https://doi.org/10.1016/0306-4522(86)90155-7)

616 Makowski, D., Ben-Shachar, M., & Lüdecke, D. (2019). bayestestR: Describing effects and their
617 uncertainty, existence and significance within the bayesian framework. *Journal of Open
618 Source Software*, 4(40), 1541. <https://doi.org/10.21105/joss.01541>

619 Manaye, K. F., McIntire, D. D., Mann, D. M. A., & German, D. C. (1995). Locus coeruleus cell
620 loss in the aging human brain: A non-random process. *The Journal of Comparative
621 Neurology*, 358(1), 79–87. <https://doi.org/10.1002/cne.903580105>

622 Mason, S. T., & Fibiger, H. C. (1979). Regional topography within noradrenergic locus coeruleus
623 as revealed by retrograde transport of horseradish peroxidase. *The Journal of Comparative
624 Neurology*, 187(4), 703–724. <https://doi.org/10.1002/cne.901870405>

625 Mattay, V. S., Fera, F., Tessitore, A., Hariri, A. R., Das, S., Callicott, J. H., & Weinberger, D. R.
626 (2002). Neurophysiological correlates of age-related changes in human motor function.
627 *Neurology*, 58(4), 630–635. <https://doi.org/10.1212/wnl.58.4.630>

628 Matzke, D., Curley, S., Gong, C. Q., & Heathcote, A. (2019). Inhibiting responses to difficult
629 choices. *Journal of Experimental Psychology: General*, 148(1), 124–142.
630 <https://doi.org/10.1037/xge0000525>

631 Matzke, D., Dolan, C. V., Logan, G. D., Brown, S. D., & Wagenmakers, E.-J. (2013). Bayesian
632 parametric estimation of stop-signal reaction time distributions. *Journal of Experimental
633 Psychology: General*, 142(4), 1047–1073. <https://doi.org/10.1037/a0030543>

634 McDonough, I. M., Bischof, G. N., Kennedy, K. M., Rodrigue, K. M., Farrell, M. E., & Park, D.
635 C. (2016). Discrepancies between fluid and crystallized ability in healthy adults: A
636 behavioral marker of preclinical alzheimer's disease. *Neurobiology of Aging*, 46, 68–75.
637 <https://doi.org/10.1016/j.neurobiolaging.2016.06.011>

638 O'Callaghan, C., Hezemans, F. H., Ye, R., Rua, C., Jones, P. S., Murley, A. G., ... Rowe, J. B.
639 (2021). Locus coeruleus integrity and the effect of atomoxetine on response inhibition in
640 Parkinson's disease. *Brain*. <https://doi.org/10.1093/brain/awab142>

641 Passamonti, L., Lansdall, C. J., & Rowe, J. B. (2018). The neuroanatomical and neurochemical
642 basis of apathy and impulsivity in frontotemporal lobar degeneration. *Current Opinion in
643 Behavioral Sciences*, 22, 14–20. <https://doi.org/10.1016/j.cobeha.2017.12.015>

644 Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects
645 in simple mediation models. *Behavior Research Methods, Instruments, & Computers*,
646 36(4), 717–731. <https://doi.org/10.3758/bf03206553>

647 Rae, C. L., Hughes, L. E., Anderson, M. C., & Rowe, J. B. (2015). The prefrontal cortex achieves
648 inhibitory control by facilitating subcortical motor pathway connectivity. *Journal of*
649 *Neuroscience*, 35(2), 786–794. <https://doi.org/10.1523/JNEUROSCI.3093-13.2015>

650 Rae, C. L., Nombela, C., Rodríguez, P. V., Ye, Z., Hughes, L. E., Jones, P. S., ... Rowe, J. B.
651 (2016). Atomoxetine restores the response inhibition network in parkinson's disease.
652 *Brain*, 139(8), 2235–2248. <https://doi.org/10.1093/brain/aww138>

653 Robinson, E. S. J., Eagle, D. M., Mar, A. C., Bari, A., Banerjee, G., Jiang, X., ... Robbins, T. W.
654 (2008). Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on
655 three distinct forms of impulsivity in the rat. *Neuropsychopharmacology*, 33(5), 1028–
656 1037. <https://doi.org/10.1038/sj.npp.1301487>

657 Rosseel, Y. (2012). lavaan: AnRPackage for Structural Equation Modeling. *Journal of Statistical*
658 *Software*, 48(2). <https://doi.org/10.18637/jss.v048.i02>

659 Rowe, J. B., Sakai, K., Lund, T. E., Ramsoy, T., Christensen, M. S., Baare, W. F. C., ...
660 Passingham, R. E. (2007). Is the Prefrontal Cortex Necessary for Establishing Cognitive
661 Sets? *Journal of Neuroscience*, 27(48), 13303–13310.
662 <https://doi.org/10.1523/jneurosci.2349-07.2007>

663 Rowe, J. B., Siebner, H., Filipovic, S. R., Cordivari, C., Gerschlager, W., Rothwell, J., &
664 Frackowiak, R. (2006). Aging is associated with contrasting changes in local and distant
665 cortical connectivity in the human motor system. *NeuroImage*, 32(2), 747–760.
666 <https://doi.org/10.1016/j.neuroimage.2006.03.061>

667 Salthouse, T. A. (2000). Aging and measures of processing speed. *Biological Psychology*, 54(1-
668 3), 35–54. [https://doi.org/10.1016/s0301-0511\(00\)00052-1](https://doi.org/10.1016/s0301-0511(00)00052-1)

669 Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., ... Lipps,
670 D. B. (2010). Motor control and aging: Links to age-related brain structural, functional,
671 and biochemical effects. *Neuroscience & Biobehavioral Reviews*, 34(5), 721–733.
672 <https://doi.org/10.1016/j.neubiorev.2009.10.005>

673 Shafto, M. A., Tyler, L. K., Dixon, M., Taylor, J. R., Rowe, J. B., Cusack, R., ... Matthews, F. E.
674 (2014). The cambridge centre for ageing and neuroscience (cam-CAN) study protocol: A
675 cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. *BMC*
676 *Neurology*, 14(1), 1–25. <https://doi.org/10.1186/s12883-014-0204-1>

677 Tsvetanov, K. A., Gazzina, S., Jones, P. S., Swieten, J., Borroni, B., Sanchez-Valle, R., ...
678 Zulaica, M. (2020). Brain functional network integrity sustains cognitive function despite
679 atrophy in presymptomatic genetic frontotemporal dementia. *Alzheimer's & Dementia*,
680 17(3), 500–514. <https://doi.org/10.1002/alz.12209>

681 Tsvetanov, K. A., Henson, R. N. A., Tyler, L. K., Razi, A., Geerligs, L., Ham, T. E., & Rowe, J.
682 B. (2016). Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across

683 the Lifespan Despite Accelerated Decay of Regional Brain Activation. *Journal of*
684 *Neuroscience*, 36(11), 3115–3126. <https://doi.org/10.1523/jneurosci.2733-15.2016>

685 Tsvetanov, K. A., Ye, Z., Hughes, L., Samu, D., Treder, M. S., Wolpe, N., ... Rowe, J. B. (2018).
686 Activity and connectivity differences underlying inhibitory control across the adult life
687 span. *Journal of Neuroscience*, 38(36), 7887–7900.
688 <https://doi.org/10.1523/JNEUROSCI.2919-17.2018>

689 Van der Meer, T., Te Grotenhuis, M., & Pelzer, B. (2010). Influential Cases in Multilevel
690 Modeling: A Methodological Comment. *American Sociological Review*, 75(1), 173–178.
691 <https://doi.org/10.1177/0003122409359166>

692 Verbruggen, F., Aron, A. R., Band, G. P. H., Beste, C., Bissett, P. G., Brockett, A. T., ...
693 Boehler, C. N. (2019). A consensus guide to capturing the ability to inhibit actions and
694 impulsive behaviors in the stop-signal task. *eLife*, 8, 1–26.
695 <https://doi.org/10.7554/eLife.46323>

696 Watanabe, T., Tan, Z., Wang, X., Martinez-Hernandez, A., & Frahm, J. (2019). Magnetic
697 resonance imaging of noradrenergic neurons. *Brain Structure and Function*, 224(4), 1609–
698 1625. <https://doi.org/10.1007/s00429-019-01858-0>

699 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., ... Yutani, H.
700 (2019). Welcome to the tidyverse. *Journal of Open Source Software*, 4(43), 1686.
701 <https://doi.org/10.21105/joss.01686>

702 Ye, R., O'Callaghan, C., Rua, C., Hezemans, F. H., Holland, N., Malpetti, M., ... Rowe, J.
703 (2021). Locus coeruleus integrity from 7T MRI relates to apathy and cognition in
704 parkinson's disease and progressive supranuclear palsy. Retrieved from
705 <http://dx.doi.org/10.1101/2021.04.19.21255762>

706 Ye, R., Rua, C., O'Callaghan, C., Jones, S., Hezemans, F. H., Kaalund, S. S., ... Rowe, J. B.
707 (2020). An in vivo probabilistic atlas of the human locus coeruleus at ultra-high field.
708 *NeuroImage*, 225(July 2020), 117487. <https://doi.org/10.1016/j.neuroimage.2020.117487>

709 Ye, Z., Altena, E., Nombela, C., Housden, C. R., Maxwell, H., Rittman, T., ... Rowe, J. B.
710 (2014). Selective serotonin reuptake inhibition modulates response inhibition in
711 Parkinson's disease. *Brain*, 137(4), 1145–1155. <https://doi.org/10.1093/brain/awu032>

712 Zecca, L., Youdim, M. B. H., Riederer, P., Connor, J. R., & Crichton, R. R. (2004). Iron, brain
713 ageing and neurodegenerative disorders. *Nature Reviews Neuroscience*, 5(11), 863–873.
714 <https://doi.org/10.1038/nrn1537>