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ABSTRACT

Transcriptomic analyses are commonly used to identify differentially expressed genes between patients
and controls, or within individuals across disease courses. These methods, whilst effective, cannot
encompass the combinatorial effects of genes driving disease. We applied rule-based machine learning
(RBML) models and rule networks (RN) to an existing paediatric Systemic Lupus Erythematosus (SLE)
blood expression dataset, with the goal of developing gene networks to separate low and high disease
activity (DA1 and DA3). The resultant model had an 81% accuracy to distinguish between DA1 and
DA3, with unsupervised hierarchical clustering revealing additional subgroups indicative of the immune
axis involved or state of disease flare. These subgroups correlated with clinical variables, suggesting
that the gene sets identified may further the understanding of gene networks that act in concert to drive
disease progression. This included roles for genes i) induced by interferons (/F735 and OTOF), ii) key
to SLE cell types (KLRBI encoding CD161), or iii) with roles in autophagy and NF-kB pathway
responses (CKAP4). As demonstrated here, RBML approaches have the potential to reveal novel gene

patterns from within a heterogeneous disease, facilitating patient clinical and therapeutic stratification.

INTRODUCTION

Paediatric systemic lupus erythematosus (pSLE) is a rare, clinically and genetically heterogeneous
systemic autoimmune disease with a prevalence of between 3.3-8.8 per 100,000 children'. The disease
course is unpredictable, with periods of remission and flares that lead to cumulative damage over time?.
SLE is classified by the presence of at least 4 out of 11 of clinical criteria®, with disease activity (DA)
severity calculated based on composite scores, including Systemic Lupus Erythematosus Disease
Activity Index (SLEDAI)*. Genetic studies have identified more than thirty genes associated with SLE,
including those driven by interferons’, or those controlling inflammation and tissue response to injury®.
Together these have been used to highlight the link between SLE and viral responses’. However, the
trigger that initiates the expression of these genes and the progression of SLE disease remains poorly

understood®.

Efforts to unravel the SLE gene expression pathway have been initiated. A 2016 study of paediatric
disease examined the personal transcriptomic profiles of 158 patients using linear mixed models built
on blood expression data from 15,386 transcripts’. The transcript panel utilised for this process
considered each gene locus individually, and correlated the binary up- or down-regulation patterns with
patient phenotypes. The result was the stratification of patients into distinct subclasses, with an
enrichment of neutrophil expressed transcripts noted as a patient passed from the low DA1 state to the
high DA3 form of disease. While the molecular pathways proposed by the study have led to a better
understanding of personal disease progression’, the analysis lacked the co-predictive power of rule-

based machine learning (RBML) models.

Machine learning (ML) approaches are well suited to address this process, as they can model and

characterise data with very high dimensionality, such as that generated through personal transcriptomics.
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However, the majority of methods work as black boxes. These offer little to no explanation in terms of
how, and why, a specific classification decision is made. For clinical -omics, understanding how a
classification decision is made, may offer insight into the underlying biological mechanisms, for
example contrasting a disease state to healthy controls''. Interpretable ML methods such as RBML
models, offer classification transparency'"'2. We applied RBML that is based on rough set theory. It
uses Boolean reasoning to identify the minimal set of features that can discern decision classes (reducts).
Reducts are subsequently overlaid onto transcriptomics data samples to create IF-THEN rules. One of
the main advantages of this method is co-prediction, i.e., the identification of descriptors that
collaboratively correctly classify samples from the data. Co-prediction can provide insight into the

candidate biological processes beyond of what can be learnt through co-expression networks.

In the current study, we apply a RBML approach using rough sets to existing pSLE blood transcriptome
data’. Here, the goal was to identify the genes and interactions that demarcate a low pSLE DA1 state
from a high DA3 state. The disease sub-groups discovered were intersected with available clinical data,
revealing gene sets key to the progression of disease and the involvement of the innate and acquired
immune arms. These genes, and their protein products, have the potential to be translated to biomarkers,

or could be suggested points for therapeutic intervention.
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73 RESULTS

74  Minimum gene set model discerns DA1 from DA3

75  The initial rule-based model was built with R ROSETTA" using data from 629 unique patient clinical
76  visits (observations) and the discretised gene expression value for each DA1 and DA3 patient visit
77  (features: 33,006 probes for 629 observations; Figure 1). This initial model had an overall prediction
78  accuracy of 71% using 10-fold cross validation (Supplementary Fig S1 online). The observations (visits)
79  incorrectly classified by the model (Supplementary Fig S2 online) were pruned to achieve a better
80  separation between DA1 and DA3 then intersected with the patient metadata in order to understand the
81  potential reasons behind their misclassification. Observations were more likely to be pruned or removed
82  based on patient treatment, low SLEDAI score or the number of days since diagnosis (Logistic
83  regression p-value for all <0.05; Supplementary Fig S3 online). No significant association was observed
84  between removed observations and clinical symptoms, and the significant associations were a reflection
85 of observations removed from class DA3 (38%, 125/330 removed) rather than reductions from DA1
86 (53%, 157/299 removed).
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88  Figure 1. Overview of the modelling process implemented to classify and interrogate gene expression

89  relationships between DA1 and DA3.
90

91  Following Monte Carlo Feature selection (MCFS)'* on the pruned dataset, 4,980 genes were available
92  and subsequently used to build an enhanced rule-based model. Gene set enrichment analysis revealed
93  terms connected to neutrophils (e.g., activation, mediation, degranulation) and the production and
94  degradation of gene products (e.g., transcription initiation and nonsense-mediated decay;

95  Supplementary Fig S4 online). This suggests a difference in neutrophil mediated immune response
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96  between patients with DA1 and DA3, a known functional shift in SLE manifestation between disease

97 states®.

98  Feature boosting was performed to identify the optimal number of genes for the model (Figure 1).

99  Empirical studies revealed that model accuracy was lost if more than 200 of the top 4,980 MCFS ranked
100  genes were used for this process (Supplementary Fig S5 online). Iterative R. ROSETTA computational
101  rounds added genes from the starting set of 200, with maximum model accuracy of 81% achieved with
102 a minimum set of 34 genes (Figure 2; Supplementary Table S1 online). These genes were used in 22
103 and 44 classifying rules for DA1 and DA3 respectively. The model mirrored the structure of the initial
104  model (Supplementary Fig S1 online). Figure 2 shows DA1 and DA3 were again split, however with a
105  reduction of complexity, in terms of rules (edges) connecting the genes (nodes) and a refinement of the
106  central hub genes. The 10% gain in the model accuracy provided improvement in terms of a clearer and
107  visible separation between the disease activities in the rule networks (RN); this gain in accuracy was too
108  small to imply an overfitting of the model. The similarity between the network of the initial model and
109  the enhanced model implied that removed objects were unnecessary for classification of DA1 and DA3

110 since their removal did not significantly impact the main network structure or the rule model.

111 In DA3, hub gene CKAP4 was surrounded by a thick blue border, indicating the importance of this gene
112 to predicting this disease state. In fact, CKAP4 was a member of 14/44 co-prediction rules
113 (Supplementary Table S1 online). The protein product of this gene, CKAP4 formerly CLIMP63, can act
114 to regulate endoplasmic reticulum (ER) nanodomain homeostasis via shaping the luminal space or
115  through interaction with other ER-resident proteins'>. CKAP4 was highly expressed (orange), whereas
116  connected gene SECI1C showed a medium level of discretised expression (grey), and RPS14 was lowly
117 expressed (blue). In DA, [FI35 and KLRBI were both hub genes with medium expression levels.
118  However, the latter had larger number of observations supporting its membership to rules (larger node
119  size) but contributed to slightly fewer rules than /F/35 (thinner circle border size: IFI35, 6/22 rules;
120  KLRBI, 4/22 rules). CD161/NKR-P1A, encoded by KLRBI, is a surface receptor of natural killer (NK)
121 cells and subtypes of T lymphocytes, whereas /FI35 encodes the Interferon-induced 35 kDa protein, a
122 proinflammatory damage-associated molecular pattern (DAMP) molecule in the innate immune

123 pathway'’.

124
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126  Figure 2. The rule networks discern the disease states. DA1 is largely defined by medium gene
127  expression, whereas DA3 includes more genes, and those that were highly expressed. For each decision
128  class, internal node colour indicates discretised gene expression value (high, medium, low; orange, grey,
129  blue), node size is proportional to the number of objects supporting rules associated to a node, node
130 border thickness is proportional to the number of rules associated to a node (low, high; circle border
131  thin, thick) and edges connecting nodes represent normalised connection values (<55%, >85%,; grey,
132 red with increasing line thickness per support interval). The latter is the strength of the co-appearance
133 of connected nodes in rules supporting a decision class. The network was filtered to visualise rules with

134 minimum support of 10% and rule p-value < 0.05.
135

136 The membership of genes to the rule networks was not discrete. For example, both IFITMI, which
137  encodes interferon-induced transmembrane protein 1, and KLRBI appeared in DA1 and DA3 although
138  with different expression values (Supplementary Table S1 online). The sharing of genes across rules
139  was more common in DA1 (4/12 plotted genes are unique to DA1) than DA3, where 18/26 were unique
140  to that class. The model showed that the type 1 interferon response term was limited to DA1 (/FI35 and
141  IFITM1) whereas B-cell activation was restricted to DA3 (CD38 and IGLLI) (Supplementary Fig S6
142 online). However, while each term was enriched based on very few genes, it should be noted that these

143 genes were present in multiple rules.

144  Patient subgroups reflect clinical manifestations.
145  Hierarchical clustering of the enhanced model results (i.e., the membership of observations for each
146  rule) revealed five subgroups largely contained within DA1 (C1 and C2) or DA3 (C3, C4 and C5)

147  (Figure 3A). The model and sub-groups were tested for significance to confirm that they cannot be
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attained by using random data. The significance was tested using permutation of DA state (p-value <
0.05). These sub-clusters were subsequently projected onto the RNs (Figure 3B). Of note, the C1 and
C2 sub-clusters were not restricted to the DA1 rule set, however C4 and C5 reflected partially
intersecting networks that were all included in C3 and limited to DA3 (Figure 3B). In comparison to
C3, the DA3 hub gene CKAP4 was absent from C4, whereas the two small unconnected DA3 networks
were absent from C5. Due to the small number of genes available for consideration, a sub-cluster-based
gene enrichment analysis was not informative for all sets. The C4 and C5 enrichments were largely
based on the combination of two genes (MTIF, MTIA; 11 genes available) and suggested response to
ion levels (see Supplementary Fig S7 online), whereas C3 was again led by a small number of gene
combinations (e.g., cell cycling and division: CDC20, PTTG1, PTTG3P, UBE2C; B-cell pathways:
CD38, GBA, TYM) but this cluster also included the MTIF, and MT1A4 signals.
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161  Figure 3. Hierarchical clustering of the model rules showed the major subdivision between the DA
162 clusters. (a) Supported rules (black) and unsupported rules (grey) distinguish five disease subgroups
163 that were projected into the (b) RN where group (cluster) membership is indicated by pie colour.

164
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165  The relationship between clinical phenotype (Supplementary Table S3) and sub-cluster was explored in
166  two ways. First, to assess clinical association to a sub-cluster, the phenotype values supporting that sub-
167  cluster were compared to those that did not. To interrogate which rule(s) were driving that pattern, a
168  similar assessment was performed, this time for visits supporting a rule within the sub-cluster. The
169  examination of continuous phenotypes showed that these measures were only significantly different
170  between the three DA3 clusters and not between the two DAI1 clusters (Tukey HSD adjusted p-value
171  <0.05; Supplementary Table S2 online). However, for DA1, the C1 and C2 clusters did contain the
172 majority of low SLEDALI score visits (~1.7 in each, Supplementary Table S2, Supplementary Fig S8
173 online), with C1 tending towards lower alanine aminotransferase (ALT) and serum creatinine (CR)
174 values compared with the C2 cluster. As expected, the DA3 cluster contained the higher SLEDAI scores
175  (C4 ~8.8, C5 ~12.1, C3 ~14.6). C4 was largely reflective of low measures for anti-dsDNA antibody,
176  erythrocyte sedimentation (ESR) and white blood cell count (WBC). C5 presented lower ALT and
177  aspartate aminotransferase levels (AST), while C3 was most representative of active disease, with low
178  complement factor C3 and C4 values (Supplementary Table S2, Supplementary Fig S8 online). Only
179  two phenotypes, lymphocyte percent (LP) and neutrophil percent (NP), were significantly different in
180  all pairwise DA3 cluster comparisons. LP was highest in C4 and NP, highest in C5. C3 was intermediate
181  for both (Supplementary Table S2, Supplementary Fig S8 online).

182  Interms of categorical phenotypes, no significant association was detected between sex or race for each
183  of the five clusters. In C1, the alopecia category was enriched when compared with all others (Fisher
184  exact test p-value = 0.04; Supplementary Fig S8 online). In C2, the musculoskeletal term and both oral
185  steroid and nephritis treatment groups were enriched (all Fisher exact test p-value < 0.05). Treatment
186  could not be ruled out as the factor driving differences between this and other clusters (Supplementary

187  Fig S9 online).

188  Rules reveal which gene co-predictions drive phenotype correlation

189  To interrogate which genes and rules drove the phenotypic associations, a closer examination of the
190  rules within the clusters was performed. To associate rules to the discovered clusters a frequency
191  distribution was built for all rules with support set matching at least 10% of the visits assigned to each
192 of'the discovered clusters. Based on the distribution 20% match was an empirical threshold for assigning
193 rules to each (Supplementary Fig 10 online). Figure 4 illustrates the fraction of rules from each cluster
194 that were significantly associated with a phenotype, either continuous or categorical. Overall, rules from
195  CI or C3 were significantly associated with all phenotypes displayed (Figure 4), an enrichment not seen
196  with the other clusters. Interestingly, whilst no individual continuous phenotype was significantly
197  different between the two DA clusters, or categorical phenotype different between the DA3 clusters,
198  the graphs clearly showed that the same was not true for the proportion of rules significantly associated

199  with a phenotype in either class.
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201  Figure 4. Fraction of rules per cluster significantly associated with (a) continuous and (b) categorical
202  phenotypes. See Supplementary Table S3 online, for a list of clinical variables and phenotypes

203 abbreviations.
204

205  For example, in the continuous class, rules from both DA1 clusters were significantly associated with
206  lymphocyte count (LC; Figure 4A). There, three unique rules were contributed by C1 (rules 5, 44, 56),
207  whereas the fourth rule was shared by both clusters (rule 41: KLRBI, SEC11C; Supplementary Table
208  S4 online). Interestingly from the seven genes contained across the four rules, only the gene encoding
209  the signal peptidase complex catalytic subunit, SECIIC, showed decreased expression, all others had
210  medium values. This maintenance of gene expression likely explained the overall lack of significant

211 difference between clusters for this trait.

212 For the DA3 clusters, a significant difference was recorded for the complement factor C3 phenotype
213 Dbetween the C3 cluster (mean 62.1 mg/dL) and the C5 cluster (mean 85.9 mg/dL) (Wilcoxon test p-
214 value = 2.4x107; Supplementary Table S2 online). An examination of the rules associated with
215  phenotype C3 revealed that 17 rules were significantly linked to this phenotype in cluster C3, whilst
216  only eight were found in the C5 cluster (Supplementary Table S4 online). All C5 rules were shared with
217  C3, and no rules were contributed from C4 (Figure 4A). As expected from the associated RN, none of
218  the nine rules unique to cluster C3 showed discrete gene membership, rather they served to illustrate

219  how in comparison to C5, rules represented by network edges could introduce additional unique features

10
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220  that may serve to explain the phenotypic difference. For example, shared rule 15 (CKAP4, MTIF) can
221 form an extended connection with rules 4 (MTIF, KLRBI), 23 (CKAP4, SECI11C) and 51 (MTIF,
222 PTTGI), widening this network to include genes KLRBI1, SECI11C and PTTGI (Supplementary Table
223 S5 online). Each of these genes had previously been associated with SLE, but the link was not always
224 clear. As noted before, KLRBI, expressed by NK cells and shown to be in the medium discretised
225  expression level here, has been implicated in the regulation of the interferon gamma immune response'”.
226  SECIIC, encodes a subunit of microsomal signal peptidase complex and was the only DA3 gene
227  maintained within medium levels for this phenotype. This gene was previously shown to be significantly
228  down regulated in the T cells of adult SLE patients with low complement levels'’. PTTGI was
229  previously linked to SLE via SNP association'®, although it was later shown that the risk allele was

230  tagging the nearby microRNA, miR-146a, and this was down-regulated in European disease'’.

231  DISCUSSION

232 The use of machine learning in the current study has served to identify the key regulatory networks that
233 underlie two disease states, DA1 and DA3, of the highly heterogeneous condition, paediatric systemic
234 lupus erythematosus (pSLE). In doing so, the high dimensionality of data drawn from 33,006 gene
235  expression measures across 629 paediatric patient visits has been reduced to co-predictive networks
236  linked via genes. These genes were under-represented or down-weighted in published studies of SLE
237  differential gene expression (DGE) profiling (Supplementary Fig S11 online). The result here was five
238  sub-networks; two distinguishing DA, perhaps as a result of treatment response, and three subgroups

239  not related to treatment, within the more severe DA3 disease state.

240  Two major factors underpinned the difference in the results observed here, versus those generated by
241  others in the field. The first was the study of patient visits, rather than individuals over time via
242  longitudinal gene expression. The second was methodological, as RNs are co-predictive and as such,
243 are conceptually different from co-expression networks. The goal here was to delve into the co-
244  predictive RNs based on gene expression at different stages of disease, potentially creating a set of
245  biomarkers, which could be used to stratify patient subgroups for clinical trials or personalised medicine
246  Dbased on their disease state at a particular time. This contrasts to the prognostic goals of others using the

247 same dataset™?’.

248  Let us set the scene. For the transcriptomic data analysed here, the nodes of an RN are genes and their
249  discretised expression values. The edges between two nodes of an RN are formed from pairs of genes
250  and their discretized expression values as they co-occurred in the IF-part of rules (Figure 2).
251 Significantly, in one outcome a gene may have one discretised value, but in the other outcome it will
252 have a different value. It follows that each outcome has its own network. As such, co-prediction can
253 provide insight into the candidate biological processes characteristic of the given outcome. For example,

254  one combination of descriptors, i.e., pairs of gene and their discretised value may be associated to DA1

11
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255  state, and another pair to DA3. This is in contrast to co-expression networks that identify genes that are

256  co-expressed, not necessarily co-predictive of the outcomes.

257  SLE is a condition that spans the axes of both autoinflammatory and autoimmune disease. In this study,
258  three DA3 subgroups were identified. The C3 sub-group sits on the autoimmune side, and had the
259  clinical hallmarks of hypocomplementemia (low C3 and C4 clinical measures) in combination with high
260  anti-dsDNA values, whilst the C4 sub-group likely represented the autoinflammatory side, with normal
261  complement levels and low anti-dsDNA values (Supplementary Table S2 online). This was reinforced
262 by the higher SLEDAI scores observed in C3 versus C4. Cluster C5 likely represented the intermediate
263  stage between C3 and C4, where a significant shift between neutrophil and lymphocyte involvement is
264  observed. This could translate to an immune complex driven disease state in C5, where the type I
265  interferon process was active (low lymphocyte percent and increased neutrophil involvement). In studies
266  using independent patient groups, both changes in complement ratio (C3/C4)*' and the categorisation of
267  neutrophil to lymphocyte ratio (NLR)?, have been suggested as ways to distinguish SLE patient groups.
268  Here, network analysis and unsupervised clustering combined both C3/C4 and NLR biomarker sets and
269  resulted in three separate groups spanning these factors. The novelty in the current study lies in linking
270  the clusters to co-predictive RNs, and this was the second major factor differentiating this work from

271 others.

272 While the application of machine learning approaches to the big data sets generated by biology -omics
273 is not new”, the approach used here removes the ‘black box’ interpretation of both the modelling and
274 the results. This is required in the trade-off between predictability and interpretability?*. Here we
275  accepted the potentially reduced, but still high prediction accuracy of 81%, in favour of transparent
276  classical models that perform well when the number of features available in the dataset (i.e. observations
277  versus genes) outnumber the observations”. It is important to note that the rough sets approach to
278  constructing rules is based on finding the minimal subsets of features that preserve discernibility of the
279  decision classes from the original set. The rules will contain conjunctions of genes that may reflect
280  different levels of gene regulation but that do not need to be co-expressed. In RNs, the genes and their
281  regulation levels are associated to the outcome and discern the decision classes (here DA1 or DA3)
282  Dbased on the training data, while in co-expression networks the genes are co-expressed with other genes
283  and may not discern the outcomes. The R.ROSETTA method used for constructing the model has been
284 shown to outperform other existing rule based methods®, and has the key distinction of being the only
285  method that can compute a significance level for the rules in the model. This is useful for calculating
286  model prediction reliability, but it is the use of a minimum set of significant rules that served to highlight

287  the genes contributing most strongly to the separate networks.

288 In practice, this was illustrated by the hub genes for DA1 (e.g., [FI35, KLRBI) and DA3 (e.g., CKAP4,
289  OTOF; Figure 2). IFI35 expression is stimulated in response to IFN-a/y*® and it can act intracellularly

290  as a negative switch in the innate immune pathway via retinoic acid-inducible gene I regulation®’.
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291  Extracellularly, the opposite effect has been observed, and the IFI35 molecule can act as a DAMP, and
292 serve to activate the NF-xB pathway in macrophages via TLR4 signalling'®. The end result is the release
293 of proinflammatory cytokines, including interleukin 6 and tumour necrosis factor'®. In DA1, IFI35
294 expression is observed within the medium range, but a change in this value could be key in driving DA1
295  patients back to a remissive or inactive SLE state. Likewise, the maintained medium expression of
296  KLRBI (encoding the surface receptor CD161) suggests a role for other cell sets, including natural killer
297  (NK) cells and T lymphocytes in this lower disease state. The cell population expressing CD161 has
298  been shown to be lower in SLE patients versus controls®. This is intriguing as this receptor can mark
299  the NK cells that respond to innate cytokines and so promote innate inflammation®. Here again we see

300  a contradiction between the promotion and reduction of the innate immune response.

301  While CKAP4 was shown as a highly expressed hub gene in DA3, the protein product is most often
302  reported to have a role in cancer, for example acting with RBP1 to induce autophagy in murine models
303  of oral squamous cell carcinoma™. Autophagy can also play into the pathogenesis of SLE in a number
304  of ways. Dysregulated autophagy can affect the regulation of T and B cell populations®', and increased
305  autophagy can promote the NF-kB pathway response’’. Through its interaction with ER-resident
306  proteins, CKAP4 also has the potential to regulate or reflect the current state of cellular immune
307  signalling'’. For the individuals studied here, increased levels of CKAP4 may not be driving disease,
308  but the finding opens a potential line of anti-CKAP4 antibody drug development for SLE patients; an
309  avenue previously only promoted for cancer treatment®. Another DA3 hub gene, OTOF, is an interferon
310  inducible gene, and has been recognised by others as a marker for SLE disease flares®*. This is in keeping
311  with the finding of OTOF in the C3 and C5 clusters, but not in C4. Recently it was suggested that
312 through interaction with melatonin, OTOF may have a role in proteasome inhibition®’, and so could
313 function in the downstream signal transduction pathway of NF-kB*®. While that study was focused on
314  neuronal survival driven by melatonin ubiquitin proteasome system inhibition, a protective anti-
315  inflammatory role of melatonin in SLE pathogenesis has been reported previously’’*. Gene networks
316  acting through the fulcrum of OTOF may help to explain this action, and suggests that further

317  investigation of melatonin treatment in SLE flare could be warranted.

318  The current analysis aimed to explore the different networks that underlie pSLE disease states with the
319  goal of developing a minimum set of rules that could discern disease states DA1 from DA3. It is worth
320  to mention that we did not aim to model the entire spectrum of pSLE disease activities so we chose the
321  objects that could optimally and clearly separate between DAl and DA3 states and highlight their
322 subgroups. This was done by pruning the misclassified objects from the initial model. The enhanced
323 model showed clearer sub-networks even though the gain in the accuracy was only 10%. While the
324  networks generated here are based on a single gene expression set, multiple lines of evidence from
325  previous SLE studies support their value; whether that be in classifying sub-cluster patient states or

326  indicating possible treatments based on hub genes. It will be important to test the predictive, or
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327  replicative, ability of the gene networks to classify additional SLE patient sets, but the permutation
328  analysis conducted here suggests that this should be possible. We believe that machine learning
329  approaches, such as the one demonstrated here, could aid disease understanding and facilitate the clinical
330  and therapeutic stratification of patients. This applies not only to SLE, but to any complex heterogeneous

331  syndrome.

332  METHODS

333 Figure 1, an overview of the analysis pipeline was generated with www.lucidchart.com resources.

334  Data and pre-processing

335  Existing whole blood transcriptome records (Illumina HT-12 V4 bead chip) and clinical metadata from
336 158 pSLE patients and 48 healthy controls were downloaded (NCBI GEO: GSE65391)° and the values
337  corresponding to DAL, DA3 and control visits extracted. In this analysis, the transcriptome generated
338  per visit to the clinic, and not per patient lifetime, was considered. As such, an individual may be
339  represented in the analysis multiple times (between 1 and 15 times) if their disease status at the time was
340  classified as DA1 or DA3 (Supplementary Fig S12 online). For expression data, gene loci represented
341 by more than one probe were combined and averaged, before each gene locus was log transformed.
342 Batch effects were identified (Variance Partition R package®”) and corrected (SVA R package ). The
343  Dbatch effects identified here were limited to the reported batch replicates from the original metadata

344  (batch 1 and 2) and not found for other phenotypes (Supplementary Fig S13 online).

345  Machine learning rule-based modelling to obtain explainable classifiers for DA state

346  For methodological context, we applied an interpretable learning method based on rough sets that offers
347  classification transparency''?. Given data in the form of a decision table, where rows represent
348  observations and columns are features with the last column being the outcome or decision, rough set
349  algorithms select minimal subsets of features that preserve discernibility between the outcomes for the
350  observations. These subsets of features are called reducts, and are used to generate IF-THEN rules by
351 overlaying them on the observations. An IF-THEN rule consists of the condition part, often called the
352 left-hand side, and the THEN part is the decision given by the rule and often called the right side of the
353  rule. The elements of the IF-part are called descriptors, and are in the form of pairs, feature and its value.
354  To aid interpretation, the rules generated by the model were visualized as RNs, where the nodes are
355  descriptors. For every pair of descriptors in a rule of the RBM, an edge connecting the corresponding

356 nodes is added to the network.

357  First, expression values were subject to data discretisation, since R. ROSETTA'® generates rules for that
358  data form. For each gene, the control data expression mean (p) and standard deviation (o) were
359  calculated, and then all DA data for that gene projected onto this threshold frame and discretised (Low
360 <p-20<Medium > High > p - 26; Numeric values 1, 2, 3).
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361  To generate the initial model, data was first collected into a decision table where unique visit identifiers
362  were the objects and put in rows (n=629), while genes (n=33,006) were variables and constituted
363  columns. The objects were labelled with disease activity, DA1 or DA3, accordingly. Next, Monte Carlo
364  Feature selection (MCFS) algorithm'* was applied to obtain a ranked list of informative features with
365  respect to classifying the objects. A significance cut-off for selecting features from the ranked list was
366  obtained by a permutation test (p-value < 0.05). Feature boosting was applied to select the optimal
367  number of features to build the model and then the rule model was visualized with the VisuNet R

368  package'.

369  The initial rule-based model defined above was used as a base to further improve classification. Data
370  (DALI or DA3 visits) that did not match the left-hand side of any significant rules in the previous model
371  were removed (p-value < 0.05). The MCFS' process was then repeated after object removal. Prior to
372 building the enhanced rule-based model, iterative computational rounds were performed (Feature
373 Dboosting in Figure 1) in order to select the optimal number of features for building the final predictive
374  model. The significant features from MCFS output were incrementally added to build several rule-based
375  models. The selected features that were used to build the model with the best overall accuracy where

376  chosen for building the final enhanced model using R ROSETTA" and then visualized using VisuNet*'.

377  Inorder to identify patient subgroups, a matrix was constructed with maintained observations (visits) as
378  rows and rules as columns. The cells for all observations that supported a rule were all assigned 1 or
379  otherwise 0. Hierarchical clustering based on binary distance as the distance function was applied on

380 this matrix.

381  Correlating clusters to clinical and phenotypic data

382  Available metadata, including continuous and categorical clinical values (Supplementary Table S3),
383 were accessed’. For continuous variables, a one-way ANOVA following a post-hoc Tukey HSD test
384  was used to compute significance. A Fisher's exact test was used for the assessment of categorical

385 variables to sub-clusters.

386  Correlating rules associated with clusters to clinical and phenotypic data

387  Empirical values were used to determine the minimal threshold for rule membership to clusters. Rules
388  were considered associated with a cluster if they had a support set matching at least 10% of the cluster’s
389  support set (i.e., observations associated with a cluster; Supplementary Fig S14 online). The association
390  between a cluster’s supported rules and clinical phenotypes was assessed by contrasting phenotype
391  values for supported samples of each rule versus the non-supported samples (categorical variables, non-
392 parametric Wilcoxon test; binary variables, Fisher’s exact test). Supplementary Fig S15 online illustrates

393 this process.
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394  Model validation

395  The decision label (DA1 or DA3) was permuted 1,000 times and rule-based models were created for
396  these random sets. A normal distribution was built for the model accuracies and an alpha of 0.05 and a
397  95% confidence interval used to determine the significance of the p-value. The mean, standard deviation
398  and the standard error for the normal distribution were computed. The accuracy of the original model
399  was compared to the mean p and standard error o. If the accuracy of the original model was smaller than

400  p -o or greater than p +o then the p-value in this case was < 0.05.

401  Gene enrichment analysis
402  Overrepresentation of gene sets belonging to each cluster and the gene sets belonging to rules in DA1
403 and DA3 were determined using the R package clusterProfiler*?. The background list was set as initial

404 set of 33,006 available loci.
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