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ABSTRACT  21 

Transcriptomic analyses are commonly used to identify differentially expressed genes between patients 22 

and controls, or within individuals across disease courses. These methods, whilst effective, cannot 23 

encompass the combinatorial effects of genes driving disease. We applied rule-based machine learning 24 

(RBML) models and rule networks (RN) to an existing paediatric Systemic Lupus Erythematosus (SLE) 25 

blood expression dataset, with the goal of developing gene networks to separate low and high disease 26 

activity (DA1 and DA3). The resultant model had an 81% accuracy to distinguish between DA1 and 27 

DA3, with unsupervised hierarchical clustering revealing additional subgroups indicative of the immune 28 

axis involved or state of disease flare. These subgroups correlated with clinical variables, suggesting 29 

that the gene sets identified may further the understanding of gene networks that act in concert to drive 30 

disease progression. This included roles for genes i) induced by interferons (IFI35 and OTOF), ii) key 31 

to SLE cell types (KLRB1 encoding CD161), or iii) with roles in autophagy and NF-κB pathway 32 

responses (CKAP4). As demonstrated here, RBML approaches have the potential to reveal novel gene 33 

patterns from within a heterogeneous disease, facilitating patient clinical and therapeutic stratification.  34 

INTRODUCTION 35 

Paediatric systemic lupus erythematosus (pSLE) is a rare, clinically and genetically heterogeneous 36 

systemic autoimmune disease with a prevalence of between 3.3-8.8 per 100,000 children1. The disease 37 

course is unpredictable, with periods of remission and flares that lead to cumulative damage over time2. 38 

SLE is classified by the presence of at least 4 out of 11 of clinical criteria3, with disease activity (DA) 39 

severity calculated based on composite scores, including Systemic Lupus Erythematosus Disease 40 

Activity Index (SLEDAI)4. Genetic studies have identified more than thirty genes associated with SLE, 41 

including those driven by interferons5, or those controlling inflammation and tissue response to injury6. 42 

Together these have been used to highlight the link between SLE and viral responses7. However, the 43 

trigger that initiates the expression of these genes and the progression of SLE disease remains poorly 44 

understood8.  45 

Efforts to unravel the SLE gene expression pathway have been initiated. A 2016 study of paediatric 46 

disease examined the personal transcriptomic profiles of 158 patients using linear mixed models built 47 

on blood expression data from 15,386 transcripts9. The transcript panel utilised for this process 48 

considered each gene locus individually, and correlated the binary up- or down-regulation patterns with 49 

patient phenotypes. The result was the stratification of patients into distinct subclasses, with an 50 

enrichment of neutrophil expressed transcripts noted as a patient passed from the low DA1 state to the 51 

high DA3 form of disease. While the molecular pathways proposed by the study have led to a better 52 

understanding of personal disease progression9, the analysis lacked the co-predictive power of rule-53 

based machine learning (RBML) models. 54 

Machine learning (ML) approaches are well suited to address this process, as they can model and 55 

characterise data with very high dimensionality, such as that generated through personal transcriptomics. 56 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 8, 2021. ; https://doi.org/10.1101/2021.06.03.446884doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446884
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

However, the majority of methods work as black boxes. These offer little to no explanation in terms of 57 

how, and why, a specific classification decision is made. For clinical -omics, understanding how a 58 

classification decision is made, may offer insight into the underlying biological mechanisms, for 59 

example contrasting a disease state to healthy controls11. Interpretable ML methods such as RBML 60 

models, offer classification transparency11,12. We applied RBML that is based on rough set theory. It 61 

uses Boolean reasoning to identify the minimal set of features that can discern decision classes (reducts). 62 

Reducts are subsequently overlaid onto transcriptomics data samples to create IF-THEN rules. One of 63 

the main advantages of this method is co-prediction, i.e., the identification of descriptors that 64 

collaboratively correctly classify samples from the data. Co-prediction can provide insight into the 65 

candidate biological processes beyond of what can be learnt through co-expression networks.  66 

In the current study, we apply a RBML approach using rough sets to existing pSLE blood transcriptome 67 

data9. Here, the goal was to identify the genes and interactions that demarcate a low pSLE DA1 state 68 

from a high DA3 state. The disease sub-groups discovered were intersected with available clinical data, 69 

revealing gene sets key to the progression of disease and the involvement of the innate and acquired 70 

immune arms. These genes, and their protein products, have the potential to be translated to biomarkers, 71 

or could be suggested points for therapeutic intervention.   72 
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RESULTS 73 

Minimum gene set model discerns DA1 from DA3 74 

The initial rule-based model was built with R.ROSETTA13 using data from 629 unique patient clinical 75 

visits (observations) and the discretised gene expression value for each DA1 and DA3 patient visit 76 

(features: 33,006 probes for 629 observations; Figure 1). This initial model had an overall prediction 77 

accuracy of 71% using 10-fold cross validation (Supplementary Fig S1 online). The observations (visits) 78 

incorrectly classified by the model (Supplementary Fig S2 online) were pruned to achieve a better 79 

separation between DA1 and DA3 then intersected with the patient metadata in order to understand the 80 

potential reasons behind their misclassification. Observations were more likely to be pruned or removed 81 

based on patient treatment, low SLEDAI score or the number of days since diagnosis (Logistic 82 

regression p-value for all <0.05; Supplementary Fig S3 online). No significant association was observed 83 

between removed observations and clinical symptoms, and the significant associations were a reflection 84 

of observations removed from class DA3 (38%, 125/330 removed) rather than reductions from DA1 85 

(53%, 157/299 removed).  86 

 87 

Figure 1. Overview of the modelling process implemented to classify and interrogate gene expression 88 

relationships between DA1 and DA3.  89 

 90 

Following Monte Carlo Feature selection (MCFS)14 on the pruned dataset, 4,980 genes were available 91 

and subsequently used to build an enhanced rule-based model. Gene set enrichment analysis revealed 92 

terms connected to neutrophils (e.g., activation, mediation, degranulation) and the production and 93 

degradation of gene products (e.g., transcription initiation and nonsense-mediated decay; 94 

Supplementary Fig S4 online). This suggests a difference in neutrophil mediated immune response 95 
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between patients with DA1 and DA3, a known functional shift in SLE manifestation between disease 96 

states4.  97 

Feature boosting was performed to identify the optimal number of genes for the model (Figure 1). 98 

Empirical studies revealed that model accuracy was lost if more than 200 of the top 4,980 MCFS ranked 99 

genes were used for this process (Supplementary Fig S5 online). Iterative R. ROSETTA computational 100 

rounds added genes from the starting set of 200, with maximum model accuracy of 81% achieved with 101 

a minimum set of 34 genes (Figure 2; Supplementary Table S1 online). These genes were used in 22 102 

and 44 classifying rules for DA1 and DA3 respectively. The model mirrored the structure of the initial 103 

model (Supplementary Fig S1 online). Figure 2 shows DA1 and DA3 were again split, however with a 104 

reduction of complexity, in terms of rules (edges) connecting the genes (nodes) and a refinement of the 105 

central hub genes. The 10% gain in the model accuracy provided improvement in terms of a clearer and 106 

visible separation between the disease activities in the rule networks (RN); this gain in accuracy was too 107 

small to imply an overfitting of the model. The similarity between the network of the initial model and 108 

the enhanced model implied that removed objects were unnecessary for classification of DA1 and DA3 109 

since their removal did not significantly impact the main network structure or the rule model.  110 

In DA3, hub gene CKAP4 was surrounded by a thick blue border, indicating the importance of this gene 111 

to predicting this disease state. In fact, CKAP4 was a member of 14/44 co-prediction rules 112 

(Supplementary Table S1 online). The protein product of this gene, CKAP4 formerly CLIMP63, can act 113 

to regulate endoplasmic reticulum (ER) nanodomain homeostasis via shaping the luminal space or 114 

through interaction with other ER-resident proteins15. CKAP4 was highly expressed (orange), whereas 115 

connected gene SEC11C showed a medium level of discretised expression (grey), and RPS14 was lowly 116 

expressed (blue). In DA1, IFI35 and KLRB1 were both hub genes with medium expression levels. 117 

However, the latter had larger number of observations supporting its membership to rules (larger node 118 

size) but contributed to slightly fewer rules than IFI35 (thinner circle border size: IFI35, 6/22 rules; 119 

KLRB1, 4/22 rules). CD161/NKR-P1A, encoded by KLRB1, is a surface receptor of natural killer (NK) 120 

cells and subtypes of T lymphocytes, whereas IFI35 encodes the Interferon-induced 35 kDa protein, a 121 

proinflammatory damage-associated molecular pattern (DAMP) molecule in the innate immune 122 

pathway16.  123 

 124 
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 125 

Figure 2. The rule networks discern the disease states. DA1 is largely defined by medium gene 126 

expression, whereas DA3 includes more genes, and those that were highly expressed. For each decision 127 

class, internal node colour indicates discretised gene expression value (high, medium, low; orange, grey, 128 

blue), node size is proportional to the number of objects supporting rules associated to a node, node 129 

border thickness is proportional to the number of rules associated to a node (low, high; circle border 130 

thin, thick) and edges connecting nodes represent normalised connection values (<55%, ≥85%; grey, 131 

red with increasing line thickness per support interval). The latter is the strength of the co-appearance 132 

of connected nodes in rules supporting a decision class. The network was filtered to visualise rules with 133 

minimum support of 10% and rule p-value ≤ 0.05.  134 

 135 

The membership of genes to the rule networks was not discrete. For example, both IFITM1, which 136 

encodes interferon-induced transmembrane protein 1, and KLRB1 appeared in DA1 and DA3 although 137 

with different expression values (Supplementary Table S1 online). The sharing of genes across rules 138 

was more common in DA1 (4/12 plotted genes are unique to DA1) than DA3, where 18/26 were unique 139 

to that class. The model showed that the type 1 interferon response term was limited to DA1 (IFI35 and 140 

IFITM1) whereas B-cell activation was restricted to DA3 (CD38 and IGLL1) (Supplementary Fig S6 141 

online). However, while each term was enriched based on very few genes, it should be noted that these 142 

genes were present in multiple rules. 143 

Patient subgroups reflect clinical manifestations.  144 

Hierarchical clustering of the enhanced model results (i.e., the membership of observations for each 145 

rule) revealed five subgroups largely contained within DA1 (C1 and C2) or DA3 (C3, C4 and C5) 146 

(Figure 3A). The model and sub-groups were tested for significance to confirm that they cannot be 147 
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attained by using random data. The significance was tested using permutation of DA state (p-value ≤ 148 

0.05). These sub-clusters were subsequently projected onto the RNs (Figure 3B). Of note, the C1 and 149 

C2 sub-clusters were not restricted to the DA1 rule set, however C4 and C5 reflected partially 150 

intersecting networks that were all included in C3 and limited to DA3 (Figure 3B). In comparison to 151 

C3, the DA3 hub gene CKAP4 was absent from C4, whereas the two small unconnected DA3 networks 152 

were absent from C5. Due to the small number of genes available for consideration, a sub-cluster-based 153 

gene enrichment analysis was not informative for all sets. The C4 and C5 enrichments were largely 154 

based on the combination of two genes (MT1F, MT1A; 11 genes available) and suggested response to 155 

ion levels (see Supplementary Fig S7 online), whereas C3 was again led by a small number of gene 156 

combinations (e.g., cell cycling and division: CDC20, PTTG1, PTTG3P, UBE2C; B-cell pathways: 157 

CD38, GBA, TYM) but this cluster also included the MTIF, and MT1A signals.  158 

 159 
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 160 

Figure 3. Hierarchical clustering of the model rules showed the major subdivision between the DA 161 
clusters. (a) Supported rules (black) and unsupported rules (grey) distinguish five disease subgroups 162 
that were projected into the (b) RN where group (cluster) membership is indicated by pie colour.  163 

 164 
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The relationship between clinical phenotype (Supplementary Table S3) and sub-cluster was explored in 165 

two ways. First, to assess clinical association to a sub-cluster, the phenotype values supporting that sub-166 

cluster were compared to those that did not. To interrogate which rule(s) were driving that pattern, a 167 

similar assessment was performed, this time for visits supporting a rule within the sub-cluster. The 168 

examination of continuous phenotypes showed that these measures were only significantly different 169 

between the three DA3 clusters and not between the two DA1 clusters (Tukey HSD adjusted p-value 170 

<0.05; Supplementary Table S2 online). However, for DA1, the C1 and C2 clusters did contain the 171 

majority of low SLEDAI score visits (~1.7 in each, Supplementary Table S2, Supplementary Fig S8 172 

online), with C1 tending towards lower alanine aminotransferase (ALT) and serum creatinine (CR) 173 

values compared with the C2 cluster. As expected, the DA3 cluster contained the higher SLEDAI scores 174 

(C4 ~8.8, C5 ~12.1, C3 ~14.6). C4 was largely reflective of low measures for anti-dsDNA antibody, 175 

erythrocyte sedimentation (ESR) and white blood cell count (WBC). C5 presented lower ALT and 176 

aspartate aminotransferase levels (AST), while C3 was most representative of active disease, with low 177 

complement factor C3 and C4 values (Supplementary Table S2, Supplementary Fig S8 online). Only 178 

two phenotypes, lymphocyte percent (LP) and neutrophil percent (NP), were significantly different in 179 

all pairwise DA3 cluster comparisons. LP was highest in C4 and NP, highest in C5. C3 was intermediate 180 

for both (Supplementary Table S2, Supplementary Fig S8 online).  181 

In terms of categorical phenotypes, no significant association was detected between sex or race for each 182 

of the five clusters. In C1, the alopecia category was enriched when compared with all others (Fisher 183 

exact test p-value = 0.04; Supplementary Fig S8 online). In C2, the musculoskeletal term and both oral 184 

steroid and nephritis treatment groups were enriched (all Fisher exact test p-value < 0.05). Treatment 185 

could not be ruled out as the factor driving differences between this and other clusters (Supplementary 186 

Fig S9 online). 187 

Rules reveal which gene co-predictions drive phenotype correlation 188 

To interrogate which genes and rules drove the phenotypic associations, a closer examination of the 189 

rules within the clusters was performed. To associate rules to the discovered clusters a frequency 190 

distribution was built for all rules with support set matching at least 10% of the visits assigned to each 191 

of the discovered clusters. Based on the distribution 20% match was an empirical threshold for assigning 192 

rules to each (Supplementary Fig 10 online). Figure 4 illustrates the fraction of rules from each cluster 193 

that were significantly associated with a phenotype, either continuous or categorical. Overall, rules from 194 

C1 or C3 were significantly associated with all phenotypes displayed (Figure 4), an enrichment not seen 195 

with the other clusters. Interestingly, whilst no individual continuous phenotype was significantly 196 

different between the two DA1 clusters, or categorical phenotype different between the DA3 clusters, 197 

the graphs clearly showed that the same was not true for the proportion of rules significantly associated 198 

with a phenotype in either class.  199 
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 200 

Figure 4. Fraction of rules per cluster significantly associated with (a) continuous and (b) categorical 201 

phenotypes. See Supplementary Table S3 online, for a list of clinical variables and phenotypes 202 

abbreviations.  203 

 204 

For example, in the continuous class, rules from both DA1 clusters were significantly associated with 205 

lymphocyte count (LC; Figure 4A). There, three unique rules were contributed by C1 (rules 5, 44, 56), 206 

whereas the fourth rule was shared by both clusters (rule 41: KLRB1, SEC11C; Supplementary Table 207 

S4 online). Interestingly from the seven genes contained across the four rules, only the gene encoding 208 

the signal peptidase complex catalytic subunit, SEC11C, showed decreased expression, all others had 209 

medium values. This maintenance of gene expression likely explained the overall lack of significant 210 

difference between clusters for this trait.  211 

For the DA3 clusters, a significant difference was recorded for the complement factor C3 phenotype 212 

between the C3 cluster (mean 62.1 mg/dL) and the C5 cluster (mean 85.9 mg/dL) (Wilcoxon test p-213 

value = 2.4x10-3; Supplementary Table S2 online). An examination of the rules associated with 214 

phenotype C3 revealed that 17 rules were significantly linked to this phenotype in cluster C3, whilst 215 

only eight were found in the C5 cluster (Supplementary Table S4 online). All C5 rules were shared with 216 

C3, and no rules were contributed from C4 (Figure 4A). As expected from the associated RN, none of 217 

the nine rules unique to cluster C3 showed discrete gene membership, rather they served to illustrate 218 

how in comparison to C5, rules represented by network edges could introduce additional unique features 219 
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that may serve to explain the phenotypic difference. For example, shared rule 15 (CKAP4, MT1F) can 220 

form an extended connection with rules 4 (MT1F, KLRB1), 23 (CKAP4, SEC11C) and 51 (MT1F, 221 

PTTG1), widening this network to include genes KLRB1, SEC11C and PTTG1 (Supplementary Table 222 

S5 online). Each of these genes had previously been associated with SLE, but the link was not always 223 

clear. As noted before, KLRB1, expressed by NK cells and shown to be in the medium discretised 224 

expression level here, has been implicated in the regulation of the interferon gamma immune response17. 225 

SEC11C, encodes a subunit of microsomal signal peptidase complex and was the only DA3 gene 226 

maintained within medium levels for this phenotype. This gene was previously shown to be significantly 227 

down regulated in the T cells of adult SLE patients with low complement levels17. PTTG1 was 228 

previously linked to SLE via SNP association18, although it was later shown that the risk allele was 229 

tagging the nearby microRNA, miR-146a, and this was down-regulated in European disease19.  230 

DISCUSSION 231 

The use of machine learning in the current study has served to identify the key regulatory networks that 232 

underlie two disease states, DA1 and DA3, of the highly heterogeneous condition, paediatric systemic 233 

lupus erythematosus (pSLE). In doing so, the high dimensionality of data drawn from 33,006 gene 234 

expression measures across 629 paediatric patient visits has been reduced to co-predictive networks 235 

linked via genes. These genes were under-represented or down-weighted in published studies of SLE 236 

differential gene expression (DGE) profiling (Supplementary Fig S11 online). The result here was five 237 

sub-networks; two distinguishing DA1, perhaps as a result of treatment response, and three subgroups 238 

not related to treatment, within the more severe DA3 disease state. 239 

Two major factors underpinned the difference in the results observed here, versus those generated by 240 

others in the field. The first was the study of patient visits, rather than individuals over time via 241 

longitudinal gene expression. The second was methodological, as RNs are co-predictive and as such, 242 

are conceptually different from co-expression networks. The goal here was to delve into the co-243 

predictive RNs based on gene expression at different stages of disease, potentially creating a set of 244 

biomarkers, which could be used to stratify patient subgroups for clinical trials or personalised medicine 245 

based on their disease state at a particular time. This contrasts to the prognostic goals of others using the 246 

same dataset9,20. 247 

Let us set the scene. For the transcriptomic data analysed here, the nodes of an RN are genes and their 248 

discretised expression values. The edges between two nodes of an RN are formed from pairs of genes 249 

and their discretized expression values as they co-occurred in the IF-part of rules (Figure 2). 250 

Significantly, in one outcome a gene may have one discretised value, but in the other outcome it will 251 

have a different value. It follows that each outcome has its own network.  As such, co-prediction can 252 

provide insight into the candidate biological processes characteristic of the given outcome. For example, 253 

one combination of descriptors, i.e., pairs of gene and their discretised value may be associated to DA1 254 
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state, and another pair to DA3. This is in contrast to co-expression networks that identify genes that are 255 

co-expressed, not necessarily co-predictive of the outcomes. 256 

SLE is a condition that spans the axes of both autoinflammatory and autoimmune disease. In this study, 257 

three DA3 subgroups were identified. The C3 sub-group sits on the autoimmune side, and had the 258 

clinical hallmarks of hypocomplementemia (low C3 and C4 clinical measures) in combination with high 259 

anti-dsDNA values, whilst the C4 sub-group likely represented the autoinflammatory side, with normal 260 

complement levels and low anti-dsDNA values (Supplementary Table S2 online). This was reinforced 261 

by the higher SLEDAI scores observed in C3 versus C4. Cluster C5 likely represented the intermediate 262 

stage between C3 and C4, where a significant shift between neutrophil and lymphocyte involvement is 263 

observed. This could translate to an immune complex driven disease state in C5, where the type I 264 

interferon process was active (low lymphocyte percent and increased neutrophil involvement). In studies 265 

using independent patient groups, both changes in complement ratio (C3/C4)21 and the categorisation of 266 

neutrophil to lymphocyte ratio (NLR)22, have been suggested as ways to distinguish SLE patient groups. 267 

Here, network analysis and unsupervised clustering combined both C3/C4 and NLR biomarker sets and 268 

resulted in three separate groups spanning these factors. The novelty in the current study lies in linking 269 

the clusters to co-predictive RNs, and this was the second major factor differentiating this work from 270 

others. 271 

While the application of machine learning approaches to the big data sets generated by biology -omics 272 

is not new23, the approach used here removes the ‘black box’ interpretation of both the modelling and 273 

the results. This is required in the trade-off between predictability and interpretability24. Here we 274 

accepted the potentially reduced, but still high prediction accuracy of 81%, in favour of transparent 275 

classical models that perform well when the number of features available in the dataset (i.e. observations 276 

versus genes) outnumber the observations25. It is important to note that the rough sets approach to 277 

constructing rules is based on finding the minimal subsets of features that preserve discernibility of the 278 

decision classes from the original set. The rules will contain conjunctions of genes that may reflect 279 

different levels of gene regulation but that do not need to be co-expressed. In RNs, the genes and their 280 

regulation levels are associated to the outcome and discern the decision classes (here DA1 or DA3) 281 

based on the training data, while in co-expression networks the genes are co-expressed with other genes 282 

and may not discern the outcomes. The R.ROSETTA method used for constructing the model has been 283 

shown to outperform other existing rule based methods25, and has the key distinction of being the only 284 

method that can compute a significance level for the rules in the model. This is useful for calculating 285 

model prediction reliability, but it is the use of a minimum set of significant rules that served to highlight 286 

the genes contributing most strongly to the separate networks.  287 

In practice, this was illustrated by the hub genes for DA1 (e.g., IFI35, KLRB1) and DA3 (e.g., CKAP4, 288 

OTOF; Figure 2). IFI35 expression is stimulated in response to IFN-α/γ26 and it can act intracellularly 289 

as a negative switch in the innate immune pathway via retinoic acid-inducible gene I regulation27. 290 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 8, 2021. ; https://doi.org/10.1101/2021.06.03.446884doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446884
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

Extracellularly, the opposite effect has been observed, and the IFI35 molecule can act as a DAMP, and 291 

serve to activate the NF-κB pathway in macrophages via TLR4 signalling16. The end result is the release 292 

of proinflammatory cytokines, including interleukin 6 and tumour necrosis factor16. In DA1, IFI35 293 

expression is observed within the medium range, but a change in this value could be key in driving DA1 294 

patients back to a remissive or inactive SLE state. Likewise, the maintained medium expression of 295 

KLRB1 (encoding the surface receptor CD161) suggests a role for other cell sets, including natural killer 296 

(NK) cells and T lymphocytes in this lower disease state. The cell population expressing CD161 has 297 

been shown to be lower in SLE patients versus controls28. This is intriguing as this receptor can mark 298 

the NK cells that respond to innate cytokines and so promote innate inflammation29. Here again we see 299 

a contradiction between the promotion and reduction of the innate immune response. 300 

While CKAP4 was shown as a highly expressed hub gene in DA3, the protein product is most often 301 

reported to have a role in cancer, for example acting with RBP1 to induce autophagy in murine models 302 

of oral squamous cell carcinoma30. Autophagy can also play into the pathogenesis of SLE in a number 303 

of ways. Dysregulated autophagy can affect the regulation of T and B cell populations31, and increased 304 

autophagy can promote the NF-κB pathway response32. Through its interaction with ER-resident 305 

proteins, CKAP4 also has the potential to regulate or reflect the current state of cellular immune 306 

signalling15. For the individuals studied here, increased levels of CKAP4 may not be driving disease, 307 

but the finding opens a potential line of anti-CKAP4 antibody drug development for SLE patients; an 308 

avenue previously only promoted for cancer treatment33. Another DA3 hub gene, OTOF, is an interferon 309 

inducible gene, and has been recognised by others as a marker for SLE disease flares34. This is in keeping 310 

with the finding of OTOF in the C3 and C5 clusters, but not in C4. Recently it was suggested that 311 

through interaction with melatonin, OTOF may have a role in proteasome inhibition35, and so could 312 

function in the downstream signal transduction pathway of NF-κB36. While that study was focused on 313 

neuronal survival driven by melatonin ubiquitin proteasome system inhibition, a protective anti-314 

inflammatory role of melatonin in SLE pathogenesis has been reported previously37,38. Gene networks 315 

acting through the fulcrum of OTOF may help to explain this action, and suggests that further 316 

investigation of melatonin treatment in SLE flare could be warranted. 317 

The current analysis aimed to explore the different networks that underlie pSLE disease states with the 318 

goal of developing a minimum set of rules that could discern disease states DA1 from DA3. It is worth 319 

to mention that we did not aim to model the entire spectrum of pSLE disease activities so we chose the 320 

objects that could optimally and clearly separate between DA1 and DA3 states and highlight their 321 

subgroups. This was done by pruning the misclassified objects from the initial model. The enhanced 322 

model showed clearer sub-networks even though the gain in the accuracy was only 10%. While the 323 

networks generated here are based on a single gene expression set, multiple lines of evidence from 324 

previous SLE studies support their value; whether that be in classifying sub-cluster patient states or 325 

indicating possible treatments based on hub genes. It will be important to test the predictive, or 326 
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replicative, ability of the gene networks to classify additional SLE patient sets, but the permutation 327 

analysis conducted here suggests that this should be possible. We believe that machine learning 328 

approaches, such as the one demonstrated here, could aid disease understanding and facilitate the clinical 329 

and therapeutic stratification of patients. This applies not only to SLE, but to any complex heterogeneous 330 

syndrome. 331 

METHODS 332 

Figure 1, an overview of the analysis pipeline was generated with www.lucidchart.com resources.  333 

Data and pre-processing 334 

Existing whole blood transcriptome records (Illumina HT-12 V4 bead chip) and clinical metadata from 335 

158 pSLE patients and 48 healthy controls were downloaded (NCBI GEO: GSE65391)9 and the values 336 

corresponding to DA1, DA3 and control visits extracted. In this analysis, the transcriptome generated 337 

per visit to the clinic, and not per patient lifetime, was considered. As such, an individual may be 338 

represented in the analysis multiple times (between 1 and 15 times) if their disease status at the time was 339 

classified as DA1 or DA3 (Supplementary Fig S12 online). For expression data, gene loci represented 340 

by more than one probe were combined and averaged, before each gene locus was log transformed. 341 

Batch effects were identified (Variance Partition R package39) and corrected (SVA R package ). The 342 

batch effects identified here were limited to the reported batch replicates from the original metadata 343 

(batch 1 and 2) and not found for other phenotypes (Supplementary Fig S13 online). 344 

Machine learning rule-based modelling to obtain explainable classifiers for DA state 345 

For methodological context, we applied an interpretable learning method based on rough sets that offers 346 

classification transparency11,12. Given data in the form of a decision table, where rows represent 347 

observations and columns are features with the last column being the outcome or decision, rough set 348 

algorithms select minimal subsets of features that preserve discernibility between the outcomes for the 349 

observations. These subsets of features are called reducts, and are used to generate IF-THEN rules by 350 

overlaying them on the observations. An IF-THEN rule consists of the condition part, often called the 351 

left-hand side, and the THEN part is the decision given by the rule and often called the right side of the 352 

rule. The elements of the IF-part are called descriptors, and are in the form of pairs, feature and its value. 353 

To aid interpretation, the rules generated by the model were visualized as RNs, where the nodes are 354 

descriptors. For every pair of descriptors in a rule of the RBM, an edge connecting the corresponding 355 

nodes is added to the network.  356 

First, expression values were subject to data discretisation, since R. ROSETTA13 generates rules for that 357 

data form. For each gene, the control data expression mean (μ) and standard deviation (σ) were 358 

calculated, and then all DA data for that gene projected onto this threshold frame and discretised (Low 359 

≤ μ - 2σ < Medium > High ≥ μ - 2σ; Numeric values 1, 2, 3). 360 
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To generate the initial model, data was first collected into a decision table where unique visit identifiers 361 

were the objects and put in rows (n=629), while genes (n=33,006) were variables and constituted 362 

columns. The objects were labelled with disease activity, DA1 or DA3, accordingly. Next, Monte Carlo 363 

Feature selection (MCFS) algorithm14 was applied to obtain a ranked list of informative features with 364 

respect to classifying the objects. A significance cut-off for selecting features from the ranked list was 365 

obtained by a permutation test (p-value ≤ 0.05). Feature boosting was applied to select the optimal 366 

number of features to build the model and then the rule model was visualized with the VisuNet R 367 

package41. 368 

The initial rule-based model defined above was used as a base to further improve classification. Data 369 

(DA1 or DA3 visits) that did not match the left-hand side of any significant rules in the previous model 370 

were removed (p-value < 0.05). The MCFS14 process was then repeated after object removal. Prior to 371 

building the enhanced rule-based model, iterative computational rounds were performed (Feature 372 

boosting in Figure 1) in order to select the optimal number of features for building the final predictive 373 

model. The significant features from MCFS output were incrementally added to build several rule-based 374 

models. The selected features that were used to build the model with the best overall accuracy where 375 

chosen for building the final enhanced model using R.ROSETTA13 and then visualized using VisuNet41.  376 

In order to identify patient subgroups, a matrix was constructed with maintained observations (visits) as 377 

rows and rules as columns. The cells for all observations that supported a rule were all assigned 1 or 378 

otherwise 0. Hierarchical clustering based on binary distance as the distance function was applied on 379 

this matrix. 380 

Correlating clusters to clinical and phenotypic data 381 

Available metadata, including continuous and categorical clinical values (Supplementary Table S3), 382 

were accessed9. For continuous variables, a one-way ANOVA following a post-hoc Tukey HSD test 383 

was used to compute significance. A Fisher's exact test was used for the assessment of categorical 384 

variables to sub-clusters.  385 

Correlating rules associated with clusters to clinical and phenotypic data 386 

Empirical values were used to determine the minimal threshold for rule membership to clusters. Rules 387 

were considered associated with a cluster if they had a support set matching at least 10% of the cluster’s 388 

support set (i.e., observations associated with a cluster; Supplementary Fig S14 online). The association 389 

between a cluster’s supported rules and clinical phenotypes was assessed by contrasting phenotype 390 

values for supported samples of each rule versus the non-supported samples (categorical variables, non-391 

parametric Wilcoxon test; binary variables, Fisher’s exact test). Supplementary Fig S15 online illustrates 392 

this process. 393 
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Model validation 394 

The decision label (DA1 or DA3) was permuted 1,000 times and rule-based models were created for 395 

these random sets. A normal distribution was built for the model accuracies and an alpha of 0.05 and a 396 

95% confidence interval used to determine the significance of the p-value. The mean, standard deviation 397 

and the standard error for the normal distribution were computed. The accuracy of the original model 398 

was compared to the mean μ and standard error σ. If the accuracy of the original model was smaller than 399 

μ -σ or greater than μ +σ then the p-value in this case was < 0.05. 400 

Gene enrichment analysis 401 

Overrepresentation of gene sets belonging to each cluster and the gene sets belonging to rules in DA1 402 

and DA3 were determined using the R package clusterProfiler42 . The background list was set as initial 403 

set of 33,006 available loci.  404 
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