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Abstract 
Objectives: 

Understanding speech in noise (SiN) is a complex task that recruits multiple cortical 

subsystems. Individuals vary in their ability to understand SiN. This cannot be explained by 

simple peripheral hearing profiles, but recent work by our group (Kim et al., 2021, Neuroimage) 

highlighted central neural factors underlying the variance in SiN ability in normal hearing (NH) 

subjects. The current study examined neural predictors of speech-in-noise ability in a large 

cohort of cochlear-implant (CI) users, with the long-term goal of developing a simple 

electrophysiological correlate that could be implemented in clinics.  

 

Design:  

We recorded electroencephalography (EEG) in 114 post-lingually deafened CI users while they 

completed the California Consonant Test (CCT): a word-in-noise task. In many subjects, data 

were also collected on two other commonly used clinical measures of speech perception: a 

word-in-quiet task (Consonant-Nucleus-Consonant [CNC]) word and a sentence-in-noise task 

(AzBio sentences). Neural activity was assessed at a single vertex electrode (Cz), to maximize 

generalizability to clinical situations. The N1-P2 complex of event-related potentials (ERPs) at 

this location were included in multiple linear regression analyses, along with several other 

demographic and hearing factors as predictors of speech in noise performance.  

 

Results: 

In general, there was a good agreement between the scores on the three speech perception 

tasks. ERP amplitudes did not predict AzBio performance which was predicted by the duration 

of device use, low-frequency hearing thresholds, and age. However, ERP amplitudes were 

strong predictors for performance for both word recognition tasks: the CCT (which was 

conducted simultaneously with EEG recording), and the CNC (conducted offline). These 

correlations held even after accounting for known predictors of performance including residual 

low-frequency hearing thresholds. In CI-users, better performance was predicted by an 

increased cortical response to the target word, in contrast to previous reports in normal-hearing 

subjects in whom speech perception ability was accounted for by the ability to suppress noise.  

 

Conclusions: 

These data indicate a neurophysiological correlate of speech-in-noise performance that can be 

relatively easily captured within the clinic, thereby revealing a richer profile of an individual’s 
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hearing performance than shown by psychoacoustic measures alone. These results also 

highlight important differences between sentence and word recognition measures of 

performance and suggest that individual differences in these measures may be underwritten by 

different mechanisms. Finally, the contrast with prior reports of NH listeners in the same task 

suggests CI-users performance may be explained by a different weighting of neural processes 

than NH listeners. 
 
 

Introduction 
Difficulty understanding speech in background noise (speech-in-noise; SiN) is one of the most 

common complaints by hearing impaired individuals (for a review, see McCormack & Fortnum, 

2013). Indeed, there is considerable variability even across listeners with audiometrically-normal 

hearing (Fullgrabe et al., 2014; Liberman et al., 2016; Guest et al., 2018). Although peripheral 

factors may play a role in performance, data from animals and humans suggest that processing 

within the central auditory hierarchy and beyond contributes significantly to the process of 

separating signals from noise (e.g. Fullgrabe et al., 2014; Gay et al., 2014; Saiz-Alia et al., 

2019). 

 

Previous research suggested that the amplitude of an auditory cortical evoked potential, the N1-

P2 complex, reflects the perception of speech at multiple levels (Getz & Toscano, 2020 for a 

review; Sarrett et al., 2020; Kim et al., 2021).  Further, the strength of this component is 

increased following speech sound discrimination training (Tremblay et al., 2001), demonstrating 

a clear association between this component and language processing.  

 

Many speech-in-noise tasks elicit two N1-P2 complexes: one to the onset of the noise and one 

to the onset of the signal. A recent study of speech-in-noise in normal-hearing users capitalized 

on this to disentangle potential contributors to individual differences in performance. This work 

demonstrated that SiN performance was well predicted by suppression of the N1-P2 triggered 

by the onset of the background noise, but not by the N1-P2 to the speech target, nor by activity 

in higher level frontal areas (Kim et al., 2021). This suggests that, at least in NH listeners, a) 

early responses to speech may be the most important predictors of performance; and b) the 

most important contributor to SiN performance is the ability to suppress background noise, 

rather than boost the target speech. 
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It is unclear whether this same weighting of processes is evident in hearing-impaired listeners, 

particularly those using cochlear implants (CIs). Purdy and Kelly (2016) followed 10 CI users for 

9 months post-implantation. They showed that N1-P2 responses to non-speech auditory stimuli 

generally increased, concurrent with significant improvements with speech-in-noise perception 

ability as listeners adapt to the degraded input of the CI. However, there was considerable 

variability in evoked responses across subjects, and consequently only P2 amplitudes reached 

significance. More importantly, tones, rather than speech, were used to elicit the N1-P2, thus it 

is not clear whether the N1-P2 in this case reflect any processes that are specific to speech. 

 

A number of small-scale cross-sectional studies have also examined various cortical auditory 

evoked potentials (N1, P2, P300) and their relationship to performance following cochlear 

implantation. These demonstrate a relationship between the amplitudes of cortical evoked 

potentials and the speech perception performance in  CI users (Micco et al., 1995; Groenen et 

al., 1996; Makhdoum et al., 1998; Groenen et al., 2001). However, these studies examined 

cortical responses without background noise, which may utilize only a subset of the cortical 

mechanisms needed in noise (in support of this point, see Wong et al., 2008; Du et al., 2014). A 

study by Finke et al (2016) showed a relationship between cortical evoked response to speech 

in noise and performance in 13 CI listeners. Notably, these studies mentioned above also did 

not account for other potential predictors of performance that account for variability in 

understanding speech-in-noise. This can only be done with a large sample. 

 

In order to understand the link between cortical factors and speech-in-noise performance in CI 

users, it is crucial to set this in the context of the large number of factors that predict how well CI 

users ultimately adapt following implantation. Many studies show that speech perception 

improves over time following cochlear implantation (e.g. Tyler et al., 1997; Chang et al., 2010; 

Blamey et al., 2013; Dillon et al., 2013) but there is large variability across subjects in these 

gains. A recent systematic review of pre- or peri-lingually deafened CI users summarized 

several predictors that have been implicated in underlying speech perception performance 

following late cochlear implantation (Debruyne et al., 2020). These include preoperative speech 

recognition scores and childhood communication mode. They also noted that there are a 

number of studies that do show such relationships, but this may be potentially due to low study 

quality or power.  
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Many of the largest studies have used large samples of experienced CI users (who have 

reached asymptotic levels of performance). Gantz et al. (1993) examined a variety of predictors 

of speech perception in a multiple regression of 48 post-lingually deafened adults. They showed 

significant influences of duration of profound deafness, speech reading ability, cognitive ability, 

use of nonverbal communication strategies, engagement in treatment, and degree of residual 

hearing on speech perception. Similarly, Rubinstein et al. (1999) found that duration of deafness 

and preoperative sentence discrimination could account for 80% of the variance in performance 

on a word recognition task, whilst Kitterick and Lucas (2016) also found that shorter duration of 

deafness and residual hearing in the better ear could account for some of the intra-subject 

variability in speech perception under difficult listening conditions in CI users.  

 

This work suggests a wide variety of factors that impact performance, though large-scale 

studies of this kind have not yet examined measures of cortical function such as the N1-P2. The 

N1-P2 is not likely to be fully independent of these broader factors. For example, duration of 

deafness affects auditory nerve health; similarly, pre-operative speech perception scores likely 

reflect both auditory nerve health and residual acoustic hearing that may be available post-

implantation. In such cases, these factors likely reflect the quality of the input reaching the 

cortex, as a critical first determinant of speech-in-noise ability. In that case, the N1-P2 may 

serve as a biomarker for the summed quality of the peripheral input. This is particularly true for 

the N1-P2 to the target (not the noise) in a speech-in-noise task, where greater auditory fidelity 

is required. In contrast, cognitive ability, duration of device use, and engagement in treatment 

may all affect higher-level cortical adaptation to device use, as a second determinant of speech-

in-noise ability. Here, the N1-P2 may serve as a biomarker of global cortical changes derived 

from multiple causes. In both cases, this predicts that the N1-P2 should predict speech-in-noise 

performance, but once one accounts for these broader individual factors the N1-P2 should 

account for little variance. 

  

However, a third possibility is that independently of the hearing loss, individuals vary in the 

quality of the cortical network for speech-in-noise perception (e.g. Wong et al., 2008; Kim et al., 

2021), or word recognition (McMurray et al., 2014). In this case, one might predict an effect of 

the N1-P2 independent of these other factors. In this way, the N1-P2 could be a useful index of 

the quality of a listeners’ inherent word recognition and noise suppression abilities. 
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The current study combined the multifactor approach of the large individual difference studies of 

outcomes with ERPs to test for a unique link between the N1-P2 (the most promising cortical 

correlate of performance) and speech-in-noise performance by accounting for the demographic 

and audiological factors that are known to influence performance. We examined a large cohort 

of CI users with many histories and device types, with the potential of working towards 

developing a simple test that could be potentially used in clinics as an objective index of the 

summed neural response (including both peripheral and central factors) to speech-in-noise.  

 

To this end, we measured neural responses recorded with electroencephalography (EEG) while 

subjects performed a speech-in-noise task based around the California Consonant Test (CCT; 

Owens & Schubert, 1977), a closed-set single word task. Performance on this task was used as 

a dependent variable, along with two other speech perception tasks used in clinical evaluation, 

conducted in separate sessions (without EEG) and using different testing formats: an open set 

speech-in-quiet task (consonant-nucleus-consonant [CNC]; Lehiste & Peterson, 1959), and a 

sentence-in-noise task (AzBio; Spahr et al., 2012).  

 

Performance on these three dependent variables was related to the N1-P2 complex in the EEG 

as well as other relevant audiological and demographic factors. Unlike prior studies, we focused 

on a large population of hybrid and bimodal CI users who combine acoustic hearing with 

residual low frequency acoustic hearing, either in the ear contralateral to the CI (a bimodal 

configuration) or the ipsilateral ear (hybrid). This allowed us to include low frequency acoustic 

hearing thresholds. Given that this is nearly always beneficial to word recognition (Gifford et al., 

2013), this was expected to be a strong marker of a strong auditory periphery. We used a 

relatively simple ERP component – the N1-P2 which can be measured from a single electrode 

(Cz), rather than more complex ICA or source analysis techniques. This was done for two 

reasons. First, the N1-P2 - even at this single electrode - has been robustly related to language 

and speech perception in noise (Tremblay et al., 2001; Sarrett et al., 2020; Kim et al., 2021). 

Second, our hope was that a simpler measure may prove more useful diagnostically in clinical 

settings. The long-term goal here is that by understanding both cortical and demographic factors 

underlying variance in speech perception performance across hearing impaired listeners for 

different tasks, this could help to inform and refine remediation strategies. 

 

 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.22.440998doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440998
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 7 

Materials and Methods 
Participants 
One hundred and fourteen CI users, between 18 and 85 years of age (mean = 62.6 years, SD = 

13.5 years; median = 65.8 years; 59 (51.8%) female), were recruited from the University of Iowa 

Cochlear Implant Research Center. All the participants were post-lingually deafened and 

neurologically normal. Average length of device use was 39.5 months (SD = 56.8 months). 

Average duration of deafness was 22.0 years (SD = 15.0 years). Five subjects were bilateral CI 

users. Among the remaining one hundred and nine subjects, seventy-two subjects (66.1%) had 

CI in the right ear. Eighty-seven subjects (76.3%) were Hybrid CI users (i.e., electric acoustic 

stimulation within the same ear). Average threshold of low-frequency (i.e., 250 and 500 Hz) 

residual acoustic hearing was 59.4 dB HL (SD = 20.5 dB HL). American English was the 

primary language for all the participants. Most participants were tested during the same day as 

a clinical visit in which they received an annual audiological examination and device tuning. Full 

details of all participants (e.g. demographics, device types) can be found in Supplementary 

Table 1. Critically, most of these CI users were bimodal or hybrid CI users who would have 

some residual acoustic hearing. Duration of device use was obtained from clinical records. All 

study procedures were reviewed and approved by the local Institutional Review Board. 

 
Task design and procedures 
All CI users performed the CCT simultaneously as EEG was recorded. In a subset of users, we 

also obtained performance on two commonly-used clinical tests for speech perception: CNC 

word recognition (in quiet) (n = 89) and AzBio sentence recognition (in noise) (n = 72). These 

were conducted by a trained audiologist in a separate session, usually on the same day. CNC 

and AzBio scores were collected within the clinic during routine audiological examinations. 

Subjects were excluded from these sub-analyses if we did not have complete data, hence the 

smaller numbers of subjects for these other two tasks. 

 

CCT 

The CCT was implemented in custom-written Matlab scripts (R2016b, Mathworks) using the 

Psychtoolbox 3 toolbox (Brainard, 1997; Pelli, 1997). The CCT (and the simultaneous EEG 

recording) was conducted in an acoustically-treated, electrically-shielded booth with a single 

loudspeaker (model LOFT40, JBL) positioned at a 0° azimuth angle at a distance of 1.2 m. 

Visual stimuli were presented via a computer monitor located 0.5m in front of the subject at eye 

level. Sound levels were the same across subjects.  
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The overall structure of the trials for the CCT/EEG paradigm is shown in Figure 1. For each trial, 

participants saw a fixation cross on the computer screen. They were instructed to fix their gaze 

on the cross for the duration of the trial, to minimize eye-movement artifacts on the EEG. They 

were then presented with an auditory cue phrase (“check the word”, ~800 ms duration, spoken 

by the same talker as target words), to prime them for the onset of the background babble. 

Following a 700 ms period of silence, eight-talker babble (herein referred to as the “noise”) 

began and continued for 2 seconds. Target words were presented 1 second after noise onset. 

Target words were always presented at 70 dB SPL and consisted of 100 monosyllabic 

consonant-vowel-consonant words selected from the CCT, spoken by an American male talker 

with a Midwest accent. The noise was varied randomly between two levels: +7 dB (low signal-

to-noise ratio; SNR) and +13 dB (high SNR), relative to the target word. For each SNR, 50 trials 

were presented. The division of 100 words into two sets of 50 words was fixed across listeners, 

although the presenting order was randomized. The phonetic balance in each SNR condition is 

described in Supplementary Table 2 (used from Kim et al., 2021). Finally, 100 ms following the 

offset of the target acoustic stimulus, participants were presented with a four-alternative forced 

choice task, seeing four possible words printed in the center of the screen, stacked vertically 

and labeled with a corresponding number. They then used a numeric keypad to select the target 

word they thought they had heard. No feedback was given regarding correctness and trials did 

not end until 1 second after a response was given. 

 

EEG acquisition and pre-processing steps 
EEG data were recorded using a BioSemi ActiveTwo system at a 2048 Hz sampling rate, with 

either 64 or 128 electrodes arranged in a 10-20 placement system. Physiological data and 

stimulus-timing triggers were recorded in ActiView (BioSemi). Data from each channel were 

filtered offline between 1 to 50 Hz with a 2048-point FIR filter. We then epoched data around the 

stimulus from 0.5 s before the noise onset to the appearance of the response options. Next, 

sound-evoked artifacts introduced by CIs and eye-blink artifacts were removed using 

independent component analysis (implemented in the Matlab EEGLab toolbox; Delorme & 

Makeig, 2004). CI artifact-related components were determined by the combination of visual 

inspection and an automated process that observed temporal and spatial patterns. Eye blink 

artifacts were determined by visual inspection. Baseline correction was applied by subtracting 

the mean voltage between -200 and 0 ms prior to noise onset, and epoched data were down-

sampled to 256 Hz.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.22.440998doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440998
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 9 

 

 

 

Although we recorded from up to 128 electrodes, these data were used solely for the purposes 

of visualizing the topography of cortical responses (see Figure 2). Our long-term goal was to 

consider the utility of this method for clinical purposes, where it may only be feasible to collect a 

limited number of electrodes. Thus, only the Cz electrode was included in the subsequent 

statistical analyses. All ERPs were z-scored prior to further analyses to reference by common 

averaging. N1-P2 amplitudes were extracted by determining the maximal negative and positive 

waveforms within a 400 ms window following the onset of a stimulus. We then subtracted the 

N1 from the P2 to obtain a composite measure.  This was done separately for the N1-P2 

triggered by the noise onset, and the N1-P2 triggered by the target speech. 

 

Statistical analyses 
The ultimate goal of this project was to relate speech perception performance to ERP 

components during speech in noise processing, while controlling for known demographic and 

audiological factors. For this we employed three multiple regression analyses. Each predicted 

accuracy on one of the three speech perception measures (CCT [N=114], CNC [N=89], and 

AzBio [N=72]).  Our plan was to first examine the data with bivariate analyses, to examine the 

spread of the data and assess other factors, such as collinearity. We then conducted large-

scale multivariable analyses, predicting each performance outcome from ERP measures and 

individual factors 

Figure 1. Trial and stimulus structure for CCT paradigm. Each trial began with a fixation 
cross, followed immediately by the cue phrase (“check the word”). Background noise onset 
began 700 ms following cue offset and target words began 1 second after this. Subjects were 
then required to respond to a 4-choice alternative task using a 4-button keypad. The noise 
level was manipulated relative to the target word, to create either high (+13 dB) or low (+7 dB) 
SNR conditions. A total of 50 trials was presented for each condition. 
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We considered two ERP measures as potential predictors of performance: the N1-P2 

amplitudes to the target word (N1-P2target), and the N1-P2 amplitudes to the noise (N1-P2noise). 

The relationship of the EEG measures to performance was assessed accounting for several 

other factors. These included duration of device use (log-scaled in months; DeviceDuration), 

average of residual low frequency hearing thresholds (250 and 500 Hz; PTAlow) and current age 

(Age).  

 

We then related each predictor to speech perception performance on 1) CCT task (which was 

conducted simultaneously with the EEG), CNC task or AzBio, in three separate multiple 

regression models. The final model is given in (1), in the syntax of the lm() function in R. For the 

CCT task, the dependent variable (Speech Perception) was the mean accuracy in the low SNR 

condition. This condition was selected as it is the most difficult and therefore best reflects a 

subject’s difficulty in understanding speech-in-noise. For the CNC and AzBio tasks, mean 

performance on each task was used as a dependent variable in separate models.  

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  ~ 1 + N1-P2target + N1-P2noise + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + PTAlow + 𝐴𝐴𝐴𝐴𝐴𝐴    

     (1) 
 

The regressions were limited to the specific N1-P2 ERP components for the reasons described 

above. A key factor when in a multiple linear regression is the normality of the residuals. 

Normality testing was also performed on the residuals for each dependent variable using 

Shapiro-Wilk tests. All variables tested were confirmed to meet this prerequisite.  

 

We also conducted exploratory analyses on the full time-course of the EEG signal, by collapsing 

listeners into two categories (good and poor performers) - defined using a median split - and 

comparing them at each timepoint using a cluster-based permutation test (Maris & Oostenveld, 

2007). Significant clusters were included if they lasted for a minimum of 50 ms (i.e., 13 samples 

at 256 Hz sampling rate). A similar approach was conducted by collapsing trials in the CCT into 

the high and low SNR conditions. All statistical analyses were carried out using custom-written 

Matlab scripts. 
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Results 
Performance on the three different tasks 
Mean performance accuracy across subjects (± s.d.) is shown in Supplementary Figure 1. 

Performance was similar for both of the speech-in-noise tasks (single-word CCT = 52.95% ± 

15.69; sentence-based AzBio = 50.93% ± 26.56), whilst the best performance was on the word-

in-quiet task (CNC = 68.85% ± 17.99). 

 
CCT ERP analyses 

Effect of SNR on ERP 

We first examined the effect of SNR on the ERP amplitudes to verify data quality and examine 

topographical maps of the response. Figure 2 shows the ERP at electrode Cz to the noise and 

the target on the simultaneous CCT task for both the low and high SNR conditions, averaged 

across subjects (n = 114). A clear N1 and P2 can be seen approximately 200 ms after noise 

onset, and again about 200 ms after the target word onset. Topographic maps at components 
 

  

Figure 2. A: Grand-average ERPs (± standard error; n = 114) at electrode location Cz for each 
condition are displayed. Green bars indicate significant clusters (cluster-based permutation 
test). B. Topographies are plotted for the N1 and P2 responses to both the noise (first two 
columns) and the target (final two columns), for both conditions (top and bottom rows). 
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peaks (the N1 and P2 to the noise and target) demonstrated that, as expected, peak amplitudes 

were located at or near location Cz. 

 

We observed an enhanced ERP response to the noise in the low SNR condition compared to 

the high SNR condition. This appeared to span both the hypothesized N1-P2 components, but 

also the earlier points (the P1 or P50). However, this was not seen in the N1-P2 to the target. 

This is an unsurprising result, as the noise stimulus was increased by 6 dB in this condition, 

whereas the target stimulus level was kept fixed. 

 

Median split of good vs poor performers 

Work from our own group recently demonstrated that ERP responses to the noise in a CCT task 

with NH listeners could distinguish good from poor performers (Kim et al., 2021). Thus, we next 

sought to address the same question in CI users. To this end, we plotted grand averaged ERPs 

to the low SNR condition at location Cz following a median split of CCT performance (Figure 3). 

The clearest and significant differences – assessed with a cluster-based permutation analysis - 

were present at the timing of the N1 and P2 to the target. Topographic maps again confirmed 

that these effects were pronounced around location Cz. 

 

CCT predictive analyses 

Evaluation of independent variables in bivariate analyses 

We started by evaluating the correlations among all the independent variables, in order to check 

for co-linearity prior to multiple linear regression analysis (see Supplementary Figure 2). None of 

the variables reached the threshold for being considered colinear (|r| ≥ 0.7; Dormann et al., 

2013). Nonetheless, there was a small but significant correlation between duration of 

implantation (DeviceDuration) and residual low frequency hearing threshold (PTAlow; r = 0.21, p 

= 0.025), suggesting that low frequency acoustic hearing worsens over the duration of device 

use. Although the majority of devices included here were a hybrid design, which can greatly 

preserve low frequency hearing, some degree of loss over time has been shown previously 

(Gantz et al., 2009). There was also a small but significant negative correlation between N1-

P2target and Age (r = -0.22, p = 0.020) with a reduction of the ERP amplitudes in older listeners 

(Figure 4B, left panel). These correlations suggest that while no variables are collinear, they are 

not unrelated, underscoring the need for a multiple regression.  
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Next, we conducted exploratory bivariate analyses examining correlations between each 

independent variable (both the ERP and non-ERP variables) and CCT accuracy in the low SNR 

condition. These are shown in Figure 4A (and see Supplementary Figure 2). The only significant 

correlation was a positive one between N1-P2target and CCT accuracy (r = 0.33, p < 0.001), with 

larger amplitudes predicting better performance in the low SNR condition. Other predictor 

variables did not exhibit significant correlations. 

 

Since age had an effect on the amplitude of the N1-P2target, we sought to isolate an effect of the 

N1-P2 that was independent of age. We thus, residualized the N1-P2target against age and 

examined the correlation between the residualized N1-P2 amplitudes to the target and accuracy 

on the CCT. These results are shown in Figure 4B. N1-P2 target amplitudes were still 

significantly correlated with CCT accuracy after regressing out the effect of age (r = 0.31, p < 

0.001). This was also true when age was residualized out of CCT accuracy (r = 0.31, p < 0.001). 

 

Figure 3. A: Median-split ERP comparisons of good performers (n = 57, blue line) vs. poor 
performers (n = 57, red line), in response to the low SNR condition on the CCT task. Shading 
indicates standard error. Green bars indicate significant clusters. B: Amplitude topographies 

for good performers and poor performers, for the N1 and P2 responses to the noise and target, 
are shown below the line plot. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.22.440998doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440998
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 14 

 

 

Multiple linear regression - CCTlow as dependent variable 

Following bivariate analyses, we conducted a multiple linear regression analysis to determine 

which of the independent variables predicted CCT accuracy when accounting for all others (see 

Table 1 in its entirety). When adjusted for the number of independent variables, the model 

accounted for 13.5% of the variance in CCT accuracy, F(5, 108) = 3.38, p = 0.007, Adjusted R2 

= 0.095. The only significant predictor was amplitude of the N1-P2 to the target, F(1, 112) = 

12.1, p < 0.001. Given the presence of age, PTAlow and length of device use in the model, this 

confirms an effect of the EEG even after accounting for this. It is also notable that, unlike in NH 

listeners (Kim et al., 2021), N1-P2 to the noise was not a significant predictor of performance, 

F(1, 112) = 0.015, p = 0.90. 

 

Next, to determine the generalizability of these effects, we further examined the predictors 

against performance data collected on the other two speech perception tasks. 

 
 

Figure 4. Results from bivariate analyses. A. Each predictor plotted against CCT accuracy, with 
r and p values displayed from bivariate analyses (n = 114). B. Regression of N1-P2 amplitudes 
against age (left panel), as well as bivariate analyses following residualization of either N1-P2 

against age (middle panel) or CCT accuracy against age (right panel). 
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Table 1: Results from multiple linear regression on CCT accuracy (N=114, R2=0.14): 

CCTlow β SE T(112) p Partial ρ 
N1-P2target 5.11 1.47 3.5 0.00071 0.32 
N1-P2noise 0.18 1.45 0.12 0.90 0.012 

DeviceDuration -0.78 2.44 -0.32 0.75 -0.031 
PTAlow 0.12 0.071 1.7 0.10 0.16 

Age -0.052 0.11 -0.48 0.63 -0.046 
 

CNC 

Evaluation of independent variables in bivariate analyses 

As these data included only a subset of the CI users (those for which we also had either CNC or 

AzBio behavioral data), we again examined the predictor variables in bivariate analyses for the 

CNC task. As with the CCT, none of the independent variables reached the threshold for 

collinearity for either analysis. In this subset of users, there was still a significant correlation 

between DeviceDuration and PTAlow (r = 0.30, uncorrected p = 0.005). There was also still a 

significant negative correlation between N1P2target and Age (r = -0.34, uncorrected p = 0.001). 

Results from bivariate analyses examining correlations between each independent variable and 

CNC accuracy are shown in Figure 5A. Similar to the CCT, there was a significant positive 

correlation between N1P2target and CNC accuracy (r = 0.32, uncorrected p = 0.002). There was 

also a significant correlation between DeviceDuration and CNC accuracy (r = 0.25, uncorrected 

p = 0.018), and Age and CNC accuracy (r= -0.23, uncorrected p = 0.028). None of the other 

variables correlated significantly with accuracy. 

 

Again, as with the CCT dataset, the significant correlation between N1-P2target and CNC 

accuracy persisted even following residualization against age (r = 0.25, p = 0.016; Figure 5B). 

 

Multiple linear regression – CNC accuracy as dependent variable 

The results of a multiple linear regression analysis – with CNC accuracy as the dependent 

variable – are displayed in Table 2. Following adjustment for the number of independent 

variables, this model accounted for 19.3% of the variance in CNC accuracy, F(5, 83) = 4.0, p = 

0.003, Adjusted R2 = 0.15. As with the CCT accuracy, the amplitude of the N1-P2 to the target 

measured during the CCT test was a significant predictor of CNC accuracy, F(1, 87) = 5.9, p = 

0.018. Additionally, duration of implantation was a predictor of CNC accuracy, F(1, 87) = 6.8, p 

= 0.011. 
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AzBio task predictive analyses 

Evaluation of independent variables in bivariate analyses 

Finally, we turned to the AzBio sentence recognition task (n = 72).  Predictor variables were 

again first examined with bivariate analyses prior to implementing multiple linear regression. 
The only significant correlation between independent variables for this subset of users was 

between N1-P2target and Age (r = -0.30, p = 0.012). 

 
Table 2: Results from multiple linear regression on CNC accuracy (N=89, R2=0.19): 

CNC β SE T(87) p Partial ρ 
N1-P2target 4.6 1.9 2.4 0.018 0.26 
N1-P2noise 1.16 1.8 0.63 0.53 0.070 

DeviceDuration 9.0 3.4 2.6 0.011 0.28 
PTAlow -0.14 0.095 -1.4 0.15 -0.16 

Age -0.16 0.14 -1.1 0.28 -0.12 
 

 

Figure 5. Predicting CNC accuracy. A: Predicting accuracy on the CNC task with bivariate 
analyses (n = 89). B. Regression of N1-P2 amplitudes against age (left panel), as well as 

bivariate analyses following residualization of either N1-P2 against age (middle panel) or CNC 
accuracy against age (right panel). 
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Figure 6A shows the same analyses applied to AzBio accuracy. Unlike the other two tasks, 

N1P2 amplitudes did not significantly correlate with AzBio accuracy (r = 0.13, p = 0.27). 

Furthermore, residualization against age did not reveal any significant correlation (Figure 6B). In 

the bivariate analyses, age was negatively correlated with AzBio accuracy (r = -0.31, p = 0.008). 
 

Multiple linear regression – AzBio accuracy as dependent variable  

Table 3 shows the results of a multiple linear regression with AzBio accuracy as the dependent 

variable. Overall, the model accounted for 22.1% of the variance in AzBio accuracy, F(5, 66) = 

3.75, p = 0.005. Interestingly, unlike in the other tasks, the N1-P2 to the target was not 

significantly correlated with AzBio performance (F(1, 70) = 0.012, p = 0.91). However, a number 

of the other individual factors did reach significance. These included the duration of device use 

(DeviceDuration; F(1, 70) = 4.4, p = 0.039), the amount of residual acoustic hearing (PTAlow; 

F(1, 70) = 4.7, p = 0.034) and age (Age; F(1, 70) = 4.8, p = 0.032). 

 

 
 

Figure 6A: Predicting accuracy on the AzBio task with bivariate analyses (n = 72). B. 
Regression of N1-P2 amplitudes against age (left panel), as well as bivariate analyses following 
residualization of either N1-P2 against age (middle panel) or AzBio accuracy against age (right 

panel). 
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Table 3: Results from multiple linear regression on AzBio accuracy (N=72, R2=0.22): 

AzBio β SE T (70) p Partial 
ρ 

N1-P2target -0.34 3.1 -0.11 0.91 -0.013 
N1-P2noise 3.8 3.1 1.3 0.21 0.15 

DeviceDuration 12 5.6 2.1 0.039 0.25 
PTAlow -0.38 0.17 -2.2 0.034 -0.26 

Age -0.53 0.24 -2.2 0.032 -0.26 
 

Discussion 
The current study demonstrated that the amplitude of the N1-P2 response to target words was 

uniquely related to performance on single word identification tasks in CI users, even after 

accounting for other potentially confounding demographic factors. This was shown in our 

primary measure (the CCT). But it also generalized to a quite different speech perception task 

(open set), using different stimuli (a different talker and different words), in quiet, and conducted 

in a separate session.  This provides robust evidence for a link between the N1-P2 and single 

word recognition. Crucially, the single-word results during the EEG task confirm one of the 

hypotheses described in the introduction - that is, independent of other likely predictors of 

speech perception (e.g. residual low frequency hearing preservation), individuals vary in the 

quality of their cortical network for speech-in-noise perception. 

 

Interestingly, whilst the duration of device use, residual low frequency hearing, and age were 

related to performance on a sentence-in-noise task (AzBio), the N1-P2 response was not. We 

should note that there were fewer data points contributing to the AzBio analyses, although we 

had n = 72, so this should still be sufficient to detect an effect (Harris, 2001). However, looking 

across both tasks, we see a substantially different profile of predictors, with single word tasks 

being largely related to auditory-cortical factors, and sentence tasks reflecting a range of other 

factors. These results highlight important differences between the single-word and sentence-

based tasks, which we will discuss below. 

 

Demographic predictors of speech perception performance 

It is intriguing that most of the usual demographic factors did not predict single word 

performance in either the CCT or the CNC, both individually and in the multiple regression. 

These measures of SiN performance were only related to the N1-P2 (although duration of 

device use was also a predictor for the CNC). Based on previous studies presented here, this is 

at first a surprising result. In contrast, the clearest predictors of AzBio behavioral performance 
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were the duration of device use, the degree of residual low frequency hearing threshold, and 

age. This highlights the importance of preserving low frequency hearing when possible and is 

consistent with prior observations that preservation of low frequency hearing significantly 

improves speech perception and music appreciation (Turner et al., 2004; Gantz et al., 2005; 

Dunn et al., 2010).  

 

It is nonetheless surprising that performance on the single word paradigms was not predicted by 

residual low frequency thresholds in the current study. This should be investigated further, given 

the evidence from previous studies mentioned above indicating a benefit of residual low 

frequency hearing. However, we note that the large majority of previous studies use within-

subject manipulations to study the benefit of acoustic hearing (e.g. comparing performance with 

the CI only to performance with the CI and hearing aid) – there are fewer studies that evaluate 

the benefit of acoustic plus electric (A + E) hearing between subjects as was the case here (e.g. 

Green et al., 2007; Gifford et al., 2013; Kitterick & Lucas, 2016). It is also important to note that 

for most of these patients (as is often the case with A+E hearing), the majority of acoustic 

hearing comes from low frequencies. These frequencies may contribute little to single word 

recognition (since most phonetic cues necessary for contrasting words are above 500 Hz).  In 

contrast, in sentences these frequency bands could help with word segmentation and with 

grouping or streaming the target sentence from the background noise. Furthermore, the benefits 

of acoustic hearing must be considered more broadly than just speech-in-noise (e.g. talker 

identification, musical appreciation); therefore, these results do not mitigate the importance of 

preserving low frequency hearing thresholds during cochlear implantation, as this undoubtedly 

still has important quality-of-life benefits. Moreover, the ecological validity afforded by the 

sentence-in-noise paradigms (Taylor, 2003) further supports the idea that preservation of low 

frequency hearing thresholds likely provides benefits in common real-world listening scenarios.  

 

N1-P2 amplitudes in NH and CI users 

In our recent study of normal hearing listeners (Kim et al., 2021), speech-in-noise performance 

was best predicted by suppression of the N1-P2 response to the noise, rather than 

enhancement of the N1-P2 to the target.  This contrasts with the finding here that increased N1-

P2 amplitudes to the target indicated better single word speech perception across CI users.  

 

There are two main possible explanations for this. One is that CI users are using different 

cortical mechanisms for speech perception in noise than NH listeners. In this scenario, it is 
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possible that the ability to use attention to suppress noise (e.g. the N1-P2noise) is not as relevant 

in CI users. However, this result may have another explanation. Namely, the quality of word 

recognition in NH listeners may be less variable than in CI users (perhaps due to better 

preserved input), and therefore variability in NH is more evident in their response to the noise 

rather than the target word, wherein there is an effective ceiling effect.  

 

Regardless, these data do not argue against the broader process of attentional modulation that 

was observed by our prior work (Kim et al., 2021). Attentional modulation is likely a bidirectional 

process, involving both enhancement of a target signal and suppression of a to-be-ignored 

signal (Noonan et al., 2016). The net result in both the current study and the previous one is still 

an overall enhancement of internal SNR (i.e., the difference between the cortical response to 

the signal and the response to the noise) which may underlie better performance. In this light, 

our data with CI users here thus raises the possibility that different classes of listeners may 

weight these different aspects of the attentional process differently. 

 

It is worthwhile to consider as to why N1-P2 enhancement is associated with better speech 

perception outcomes. As with ERPs in other modalities, previous studies have demonstrated 

that the amplitude of the N1-P2 increases as the physical amplitude of the auditory stimulus 

increases (e.g. Picton et al., 1970; Ross et al., 1999). Therefore, one interpretation may be that 

an enhanced N1-P2 complex may simply reflect better sensitivity to auditory events in general in 

better listeners. This explanation is unlikely to be correct for several reasons. First, we do not 

see this effect to the noise onset. Thus, variation in the N1-P2 is not due to low level auditory 

sensitivity. Second, our acoustic hearing thresholds (PTAlow) provide an estimate of such 

sensitivity, and we found that neither N1-P2 (to target or to noise) was correlated with this. 

Finally, even when we controlled for PTAlow the relationship between N1P2target and performance 

was still significant. As a result, a simple peripheral explanation for these results is not well 

supported here.  

 

It has also been observed previously that the amplitude of the N1-P2 complex increases with a 

greater saliency of sensory events (Stevenson et al., 2012; Kamal et al., 2021). In this context, 

we may theorize that an increased cortical response to the target word reflects better separation 

of speech from the background noise (i.e., increased saliency). Further investigation is required 

to explore this in greater detail, by understanding the relationship to other factors that reflect the 
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saliency of auditory events, such as measures of spectral and temporal resolution, which were 

not obtained here. 

 

In normal hearing listeners, Obleser and Kotz (2011) showed that N1 responses to the onsets of 

a sentence-based task correlated with the comprehension of degraded stimuli. Whilst this 

supports what we have shown here in terms of ERP amplitudes correlating with speech 

comprehension, as mentioned previously we did not find such a correlation for the sentence-

based AzBio task. We did not examine N1-P2 responses whilst recording behavioral responses 

to the AzBio task. This leaves open the possibility that one explanation is again that contextual 

predictive mechanisms involved in a sentence-based task are not relevant for a single word task 

(such as the CCT) and are therefore not reflected in the ERPs to a task without those 

mechanisms being recruited. 

 

Neural generators of the N1-P2 response 

The N1-P2target appears to be a useful biomarker of a range of subcortical and cortical processes 

that are relevant for single word perception in noise and quiet. To understand why, it is 

important to consider the neural generators of this response and the potential mechanisms 

underlying this effect. 

 

Previous studies examining the generators of the auditory N1 component of the N1-P2 complex 

have implicated the auditory cortices in both hemispheres (e.g. Celesia, 1976; Giard et al., 

1994, Gander et al., 2010), with some further contribution from frontal and parietal sources. 

Similarly, the P2 component is thought to arise from both primary and secondary cortices in 

bilateral Heschl’s gyrus (for a review, see Lightfoot, 2016), although the contributions from more 

anterior regions may be greater than for the N1 (Ross & Tremblay, 2009), suggestive of a 

higher-order, secondary area generator that reflects the processing of more complex stimulus 

features (Howard et al., 2000; Shahin et al., 2005). Meanwhile, MEG work by Lutkenhoner & 

Steinstrater (1998) suggested that the N1 arises from planum temporale but also may have 

multiple generators, whilst the P2 was primarily generated from Heschl’s gyrus. Although not 

explored in detail here, the topographies in our current study supported the idea of the N1-P2 

arising from auditory cortex. 

 

In the current data, age was significantly negatively correlated with N1-P2 amplitudes, even 

when the data were sub-grouped for the purposes of examining performance on the other two 
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tasks. This indicates that N1-P2 amplitudes decreased with age. The data on the effect of age 

on these components are mixed.  One recent study showed that N1 and P2 individually actually 

increased with age in response to amplitude-modulated stimuli (Irsik et al., 2020). However, 

other work examining speech stimuli has demonstrated smaller N1 amplitudes and larger P2 

amplitudes in older adults (Rufener et al., 2014). Others have also argued that increased 

cortical response amplitudes in the aging brain reflect an overcompensation to degraded 

brainstem encoding (Bidelman et al., 2014), not a true change in auditory cortical processing.  

Resolving this particular debate may require stronger linking functions explaining why the N1-P2 

is larger or smaller. 

 

Regardless of this, even when age was accounted for, N1-P2 amplitudes still predicted 

performance on both single word speech perception tasks, highlighting that the prediction from 

this response reflected neural mechanisms that were not simply a consequence of aging. One 

candidate for such a mechanism could be degraded temporal processing, resulting in a 

reduction of neural synchrony and therefore reduced cortical amplitudes (Eggermont, 2015). 

Under this premise, an inverse perspective would be that better speech perception occurs in 

some listeners through preservation or restoration of temporal processing via compensatory 

mechanisms at the level of auditory cortex, even in the presence of mechanisms that otherwise 

degrade temporal processing (such as aging and hearing loss). 

 

Limitations 

There are several key limitations to the current study. First, as mentioned, we did not obtain any 

psychophysical estimates of encoding fidelity in our subjects (e.g. spectral ripple or temporal 

modulation detection). The precision of peripheral encoding is known to contribute significantly 

to variance in speech perception performance across subjects (Shannon, 1992; Fu, 2002; Jin & 

Nelson, 2006; Litvak et al., 2007; Won et al., 2007; Luo et al., 2008; Anderson et al., 2011; 

Anderson et al., 2012). It is as yet unclear whether the N1-P2target may reflect encoding fidelity 

(in which case one might predict that certain measures of the periphery would mediate the 

relationship between N1-P2 and speech perception). 

 

Second, we did not account for other factors such as duration of deafness (although a likely 

close proxy is age of implant, which correlated significantly with age; r = 0.95, p < 0.001). Age of 

onset of hearing loss was not consistently reliably obtained in our sample, in part because many 

of our patients experienced gradual hearing loss. However, this makes it impossible to reliably 
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compute duration of deafness. In a very large sample of CI patients, Blamey et al. (2013) 

showed that patients who had experienced profound hearing loss for a longer duration were 

less likely to show improvements in speech perception in quiet with CI experience. By contrast, 

results from Jolink et al. (2016) indicated that age at implantation did not significantly affect 

speech recognition. In this regard it may be useful to see how the N1-P2 is related to duration of 

deafness, potentially as an index of auditory nerve function.  

 

Finally, it should be noted that although we largely focused on acoustic bases of speech-in-

noise performance here, work using functional near-infrared spectroscopy has demonstrated 

that cross-modal activation of auditory brain regions by visual speech is predictive of speech 

perception performance and cochlear implant outcomes (Lawler et al., 2015; Anderson et al., 

2017; Anderson et al., 2019). Therefore, further research is required to elucidate other factors 

that mediate speech perception variability across subjects. 

 

Finally, we did not separate N1 and P2 responses here, but rather examined the amplitude of 

the complex. We applied a non-causal filter to the data, which can result in temporal smearing 

of a large response (see de Cheveigné & Nelken, 2019) but is useful for helping to remove CI 

artifacts. Therefore, we did not wish to infer anything from a particular component of the 

response that could be affected by the amplitude of the other response, and so did not compute 

these separately. Indeed, we are not elucidating the underlying neural network involved in 

speech perception here, nor the underlying network involved in speech-in-noise perception (for 

a review, see Hickok & Poeppel, 2007). Nonetheless, it is plausible that the predictability of the 

amplitude of the complex is dominated by one particular component. Given that performance on 

the sentence-in-noise task was not predicted by the amplitude of this response – a task which 

presumably more heavily recruits higher-order areas to account for factors such as the context 

within surrounding words (Miller et al., 1951) – it is possible that the N1 component is more 

dominant in underlying the effects in the single word tasks, reflecting how well the target word 

can be represented by auditory cortex. 

 

Summary 

Despite some limitations, the current study has identified some of the objective factors 

underlying differences in SiN performance and captured variance explained by certain relevant 

predictors. Moreover, these data potentially further highlight that different speech perception 

tests capture different physiological mechanisms (for example, N1-P2 complex amplitudes did 
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not predict a sentence-based task). Indeed, other studies have highlighted that single word 

tasks likely require recruitment of different mechanisms to sentence-in-noise tasks (for a 

discussion, see Geller et al., 2020). Such a point should be considered when implementing and 

interpreting tests, both in a research environment and within the clinic. 

 

In summary, we have demonstrated here that the amplitude of the N1-P2 complex at a vertex 

electrode location was the clearest predictor of speech perception in single word identification 

tasks. Interestingly, in normal hearing users we recently demonstrated that behavioral 

performance could be predicted by a reduction in amplitude of the N1-P2 response to the noise, 

indicating that a noise suppression mechanism was in place to improve speech reception (Kim 

et al., 2021), whereas these current data indicate that cochlear implant listeners’ performance 

was rather mediated by an increased cortical response to the target stimulus. With further 

development, this could be easily implemented in the clinic with patients to provide a richer 

profile of hearing ability above standard audiometry, and could potentially be used as a 

prognostic indicator, as well as an outcome measure following hearing remediation. Further 

work would be beneficial to elucidate the precise neural mechanisms underlying this result. 

Additionally, residual low frequency hearing thresholds were predictive of variability in 

perceiving sentences in noise and therefore preservation of residual acoustic hearing during 

cochlear implantation (and beyond) likely benefits patients in common listening environments. 
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Supplementary Data 

 
Figure S1. Mean (± S.D.) performance on the three tasks used in the study, across subjects. 
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Figure S2. Correlation matrix of predictor variables (n = 114). N1P2noise: N1-P2 ERP amplitude 

at the noise onset. N1P2target: N1-P2 ERP amplitude at the target word onset. 
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Table S1. Detailed, anonymized information for all 114 subjects included in the study 

 
 

 

 

Table S2. Phonetic balance (Number of items in each phonetic category) of California 

Consonant Test in each SNR condition 

Target Consonant SNR: +13 dB SNR: +7 dB 

Affricate & Fricative 17 (34%) 16 (32%) 

Plosive 16 (32%) 17 (34%) 

Sonorant 17 (32%) 17 (34%) 

 
 

Table S1 is contained in Excel file 
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