

1 **Transcriptomics analysis reveals intracellular mutual
2 regulation of coral-zooxanthella holobionts**

3
4 Yunchi Zhu¹, Xin Liao², Tingyu Han¹, J.-Y. Chen³, Chunpeng He^{1*} and Zuhong Lu^{1*}

5
6 ¹ State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China

7 ² Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research
8 Center, Beihai, Guangxi, China

9 ³ Nanjing Institute of Paleontology and Geology, Nanjing, China

10
11 * Corresponding author(s):

12 E-mail: cphe@seu.edu.cn; zhlu@seu.edu.cn

13 **Abstract**

14 Corals should make excellent models for cross-kingdom regulation research because of their
15 natural animal-photobiont holobiont composition, yet a lack of studies and experimental data
16 restricts their use. Here we integrate new full-length transcriptomes and small RNAs of four
17 common reef-building corals with the published *Symbiodinium* C1 genome to gain deeper
18 insight into mutual gene regulation in coral-zooxanthella holobionts. We show that
19 zooxanthellae secrete miRNA to downregulate rejection from host coral cells, and that a
20 potential correlation exists between miRNA diversity and physiological activity. Convergence
21 of these holobionts' biological functions in different species is also revealed, which implies the
22 low gene impact on bottom ecological niche organisms. This work provides evidence for the
23 early origin of cross-kingdom regulation as a mechanism of self-defense autotrophs can use
24 against heterotrophs, sheds more light on coral-zooxanthella holobionts, and contributes
25 valuable data for further coral research.

26
27 **Introduction**

28 miRNA is a type of small, single-stranded non-coding RNA found in plants, animals, and some
29 viruses, and that functions in RNA silencing and post-transcriptional regulation of gene
30 expression (1). miRNA is recognized to be involved in various regulation pathways, such as
31 cross-cell regulation, cross-organ regulation, and even cross-generation regulation, however,
32 whether cross-kingdom regulation occurs has been controversial. In 2012, Zhang and
33 colleagues first proposed this concept after they identified stable plant miRNAs in several
34 human and animal organs (2). They argued that intact plant miRNAs could remain active and
35 exert biological effects in animal tissues. A great deal of subsequent research has supported
36 their views, for example, (3) revealed a correlation between fruit juice intake and fruit miRNA
37 concentration in human serum; one honeysuckle miRNA (4) and two rapeseed miRNAs (5)
38 were observed to be effectively absorbed by mice; (6) integrated ddPCR and transcriptome
39 analyses to explore silkworms' absorption of mulberry miRNAs; etc. Some "avid" supporters
40 of the idea of cross-kingdom miRNA activity advanced the medicinal value of plant miRNA
41 against IAV (4), tumors (7), and even SARS-CoV-2 (8). Nevertheless, ever since the concept was
42 put forward, the doubts continue to be voiced (9, 10). The proposers and supporters of cross-
43 kingdom regulation have been working on explaining miRNA absorption mechanisms in detail
44 in order to refute these objections (11), while not all research of interorganismal miRNA
45 exchange is focused on food-intake-derived regulation, such as (12) studied the role of dodder
46 miRNA in the parasitic process.

47 Most studies on cross-kingdom miRNA activity study humans or other complex animals as
48 experimental subjects and look into whether plant miRNAs can affect animals' physiological
49 functions. From our perspective, these models may be too complex in terms of behavior and
50 physiology to support accurate conclusions about the origins or even the existence of such
51 small molecules. Instead, we suggest a focus on more basal species exhibiting less complex
52 behavior to explore the origins and details of the dominant regulation mechanisms of miRNA,
53 which could lay the theoretical and practical foundation for studies of more complex
54 organisms. We recommend coral as a potential animal model for cross-kingdom regulation
55 research. Known co-evolutionary patterns exist for coral microbial communities and coral
56 phylogeny. Corals obtain the majority of their energy and nutrients from photosynthetic
57 unicellular dinoflagellates of the genus *Symbiodinium*, commonly known as symbiotic
58 zooxanthellae. Zooxanthellae living within corals' tissues not only supply their hosts with the
59 products of photosynthesis but also aid in coral calcification and waste removal. Coral-
60 zooxanthella holobionts are naturally formed "animal-plant mixtures," that offer the
61 advantages of simple behavior and ease of observation relative to more complex animal or

62 plant models. It is not difficult to assume that cross-kingdom regulation, regarded by its
63 proposers as evidence of long-term co-evolution between photosynthetic organisms and
64 animals, may play an important role in these holobionts.

65 However, in contrast to more common model organisms, there is a lack of public omics data
66 from reef-building corals, not commensurate with their important status in the marine
67 ecosystem and scientists' sharp focus on them. At the end of 2020, only 24 coral genomes at
68 a medium assembly level are available on NCBI, while transcriptomes and proteomes are even
69 more lacking. Many other well-known databases, such as miRBase (13) and KEGG (14), contain
70 very little or even no coral data. Various factors, including geographic location, technical
71 limitations, and experimental challenges, contribute to the limited number of coral studies
72 serving as data sources, resulting in a "data gap." This lack of data deprives bioinformaticians
73 of the opportunity to conduct dry lab work on corals, adding to a vicious circle exerting further
74 negative effects on coral research. In-depth research underpinned by high quality bio-data is
75 in urgent demand to break this cycle.

76 In order to explore intracellular mutual regulation of coral-zooxanthella holobionts, we
77 sequenced the full-length transcriptomes and small RNAs of four common and frequently
78 dominant reef-building corals, including *Acropora muricata*, *Montipora foliosa*, *Montipora*
79 *capricornis* and *Pocillopora verrucosa*. For each species, we also performed Illumina
80 sequencing to quantify gene expression. Every full-length transcript was annotated with Nr,
81 Nt, Pfam, KOG, Swiss-Prot, GO and KEGG to distinguish coral and zooxanthella genes. A public
82 *Symbiodinium C1* genome was employed to identify zooxanthella miRNAs, whose targeting
83 sites were predicted later. Finally, highly expressed coral genes, zooxanthella genes and
84 miRNA-target genes were selected for enrichment analysis. To a certain extent, zooxanthellae
85 become organelles when they are inside coral cells, limiting the expression of most of their
86 genes. Some of the miRNAs secreted by zooxanthellae tend to target immune-related genes
87 in corals, suggesting that cross-kingdom regulation be a way for the zooxanthellae to prevent
88 rejection by their hosts. Results also demonstrate that coral genes turn out to be functionally
89 similar despite structural differences among coral species. These results suggest that the
90 experimental subject selection for a coral model organism may be flexible, undoubtedly a
91 benefit for researchers. This work sheds light into the coral-zooxanthellae holobiont, an
92 ancient association in which an early example of cross-kingdom regulation is found. We also
93 curate our data in a full-service online database to support further research
94 (<http://coral.bmeonline.cn>).

95
96 **Results**

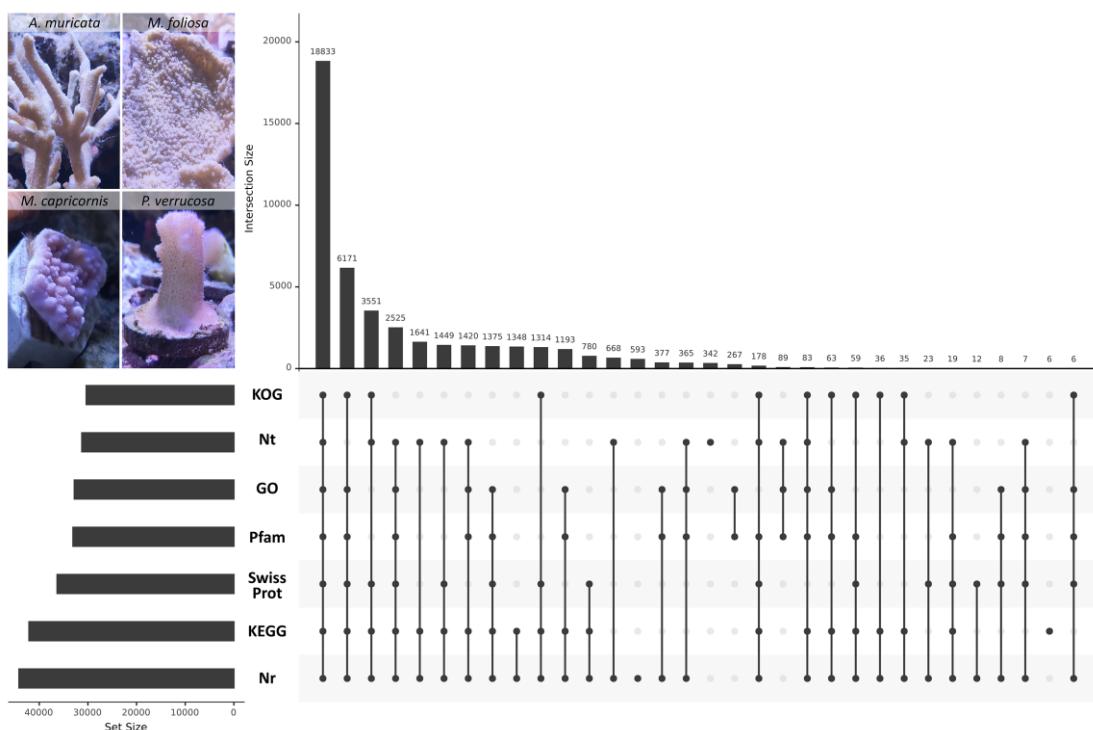
97 All raw sequencing data are available on NCBI (**Table 1**). 28 transcriptomes have been
98 sequenced in total. For each species, the biological replicate numbers of full-length SMRT
99 transcriptome sequencing, small RNA sequencing and Illumina RNA-seq sequencing are
100 designated as 1:3:3 in order to ensure accuracy.

101 **Table 1. Raw sequencing data on NCBI SRA.** There are 28 transcriptomes in total. Each sample
102 represents one biological replicate.

Species	Full-length transcript	Small RNA	Illumina RNA-seq
<i>Acropora muricata</i>	SRR9613488	SRR13442147	SRR12904786
		SRR13442146	SRR12904785
		SRR13442145	SRR12904784
<i>Montipora foliosa</i>	SRR9129316	SRR13442144	SRR12904783
		SRR13442143	SRR12904782

		SRR13442142	SRR12904781
		SRR13442141	SRR12904780
<i>Montipora capricornis</i>	SRR9129315	SRR13442150	SRR12904792
		SRR13442149	SRR12904791
		SRR13442152	SRR12904794
<i>Pocillopora verrucosa</i>	SRR9129314	SRR13442151	SRR12904793
		SRR13442148	SRR12904787

103


104 **Transcriptome sequencing and data processing**

105 The SMRT-sequencing technology was performed with the PacBio Sequel II platform to acquire
106 offline polymer read bases of full-length transcriptomes using SMRTlink v. 7.0 software. The
107 offline polymer read bases of *A. muricata*, *M. foliosa*, *M. capricornis* and *P. verrucosa* samples
108 are 12.6G, 20.16G, 16G and 14.97G respectively (File S1 for more details). The subreads, CCSs,
109 FLNCs, consensus sequences, corrected consensus reads and unigenes are shown in Table 2,
110 which also covers all information revealed in subsequent analyses.

111 **Table 2. Sequencing data statistics of four full-length coral transcriptomes.**

Sample name	<i>A. muricata</i>	<i>M. foliosa</i>	<i>M. capricornis</i>	<i>P. verrucosa</i>
Subread base (G)	12.37	19.82	15.62	14.61
Subread (number)	5,034,975	7,847,499	7,535,422	7,357,796
Average subread length (Nt)	2,456	2,526	2,073	1,986
CCS (number)	358,971	403,628	354,221	317,878
FLNC (number)	264,098	291,254	248,892	236,923
Consensus read (number)	22,925	23,067	18,354	20,696
Corrected consensus (number)	22,925	23,067	18,354	20,696
Unigene (number)	14,926	14,040	11,410	12,982

112 The full-length transcriptomes were annotated with the aid of Nr, Nt, Pfam, KOG, Swiss-Prot,
113 GO and KEGG databases, and related unigene statistics are shown in Fig 1. In function-related
114 databases, over 70% of unigenes get GO and KEGG annotations, paving the way for functional
115 enrichment analysis. In protein-related databases, more than 96% of the unigenes of
116 investigated corals are annotated in Nr, the basic protein primary sequence database. Such
117 wide coverage indicates that Nr could be utilized for gene-ID mapping among different corals.
118 As illustrated in Fig S1, Nr annotations map most genes of the four corals to the cnidarians *A.*
119 *digitifera*, *E. pallida* and *N. vectensis*, with more than 85% overlap. Acceptable as it is, this
120 result still reflects the lack of coral data for those annotations rarely correspond with the actual
121 species in question.

122

123 **Fig 1. Statistics of gene functional annotation.** Photos of investigated corals are listed in the upper left
124 corner.

125 According to Nr annotation, there are 43 *Symbiodinium* genes in *A. muricata*, 159 in *M. foliosa*,
126 45 in *M. capricornis*, and 129 in *P. verrucosa*, less than 0.07% of the total gene number. These
127 numbers should be described as significantly few, although errors in annotation databases
128 could account for this phenomenon to some extent. This result is similar to the condition of
129 several well-researched organelles, such as mitochondria and chloroplasts, that are
130 hypothesized to have become “intracellular slaves” during the “war” between archaebacteria
131 and proteobacteria one billion years ago, working all the time but hardly expressing any genes
132 of their own. It is not unreasonable to wonder whether zooxanthellae have undergone an
133 analogous situation in the holobionts.

134 The RNA-seq sequencing was performed on the Illumina HiSeq X Ten platform. The total read
135 bases are 22.1G (7.8G + 7.2G + 7.1G) from *A. muricata*, 29G (9.9G + 8.4G + 10.7G) from *M.*
136 *foliosa*, 23.2G (7G + 7.1G + 9.1G) from *M. capricornis* and 23.1G (6.9G + 7.5G + 8.7G) from *P.*
137 *verrucosa*.

138 Small RNAs were sequenced with the Illumina HiSeq X Ten platform as well. The raw read
139 bases are 4.412G (1.548G + 1.359G + 1.505G) from *A. muricata*, 3.865G (1.275G + 1.053G +
140 1.537G) from *M. foliosa*, 3.295G (1.177G + 0.893G + 1.225G) from *M. capricornis* and 6.235G
141 (2.67G + 1.494G + 2.071G) from *P. verrucosa* (File S2 for more details). The raw read, clean
142 read, unique sRNA, rRNA read, tRNA read, snRNA read, snoRNA read, known coral miRNA,
143 novel coral miRNA and novel *Symbiodinium* miRNA are shown in Table 3.

144 **Table 3. Sequencing data statistics of four coral small RNAs.** For each species, miRNA identification
145 results of three biological replicates were combined.

Sample name	<i>A. muricata</i>	<i>M. foliosa</i>	<i>M. capricornis</i>	<i>P. verrucosa</i>
Raw read (number)	30,957,494 27,178,173 30,090,650	25,501,875 21,065,650 30,736,399	23,546,531 17,864,735 24,502,555	53,396,078 29,888,758 41,410,154

	28,243,807	23,557,745	22,858,723	22,623,421
Clean read (number)	24,810,283	19,871,339	16,535,193	18,441,529
	27,669,070	29,809,596	23,400,051	16,787,161
	592,845	2,010,281	3,467,649	188,202
Unique sRNA (number)	314,918	1,567,677	1,976,367	154,649
	4,113,033	3,117,977	2,396,498	111,338
rRNA, tRNA, snRNA and snoRNA read (number)	1,740,899	307,766	233,107	28,462
	1,451,405	507,083	193,556	56,179
	324,321	313,366	609,494	14,949
known coral miRNA (number)	26	17	15	4
novel coral miRNA (number)	155	87	115	35
novel <i>Symbiodinium</i> miRNA (number)	7	9	4	6

146 436 coral miRNAs and 11 novel *Symbiodinium* miRNAs are identified, the detailed information
147 of which, such as loci, sequence and precursor structure, have been added to corresponding
148 miRNA datasets named CoralMiR (<http://coral.bmeonline.cn/miR/>) and CoralSym
149 (<http://coral.bmeonline.cn/sym/>). Comparing the two, CoralMiR is large yet flawed in that
150 there are inevitably several false positive results in it due to the de novo analysis process, while
151 CoralSym is small but precise because CoralSym miRNAs are supported by published
152 zooxanthellae genomes, enhancing their credibility.

153
154 **Gene expression analysis**

155 Illumina RNA-seqs were mapped to full-length transcripts using RSEM for gene expression
156 quantification and differential expression pattern identification. The results of gene
157 expression analysis are demonstrated in **Fig 2**. Gene numbers of differential expression
158 patterns are illustrated in **Fig 2.a**, where patterns representing differentially expressed genes
159 in single species occupy the top three spots, while no Pattern01 gene co-expressed among all
160 species is identified. Combined with the gene distribution revealed in **Fig 2.b**, the unique genes
161 account for the majority of total genes in quantity and expression for each species, suggesting
162 that gene structural differences among different corals may be significant. **Fig S2** displays the
163 distribution of gene expression and quantity in specific sub-sets, and these supplemental
164 results are consistent with the above findings for total gene expression.

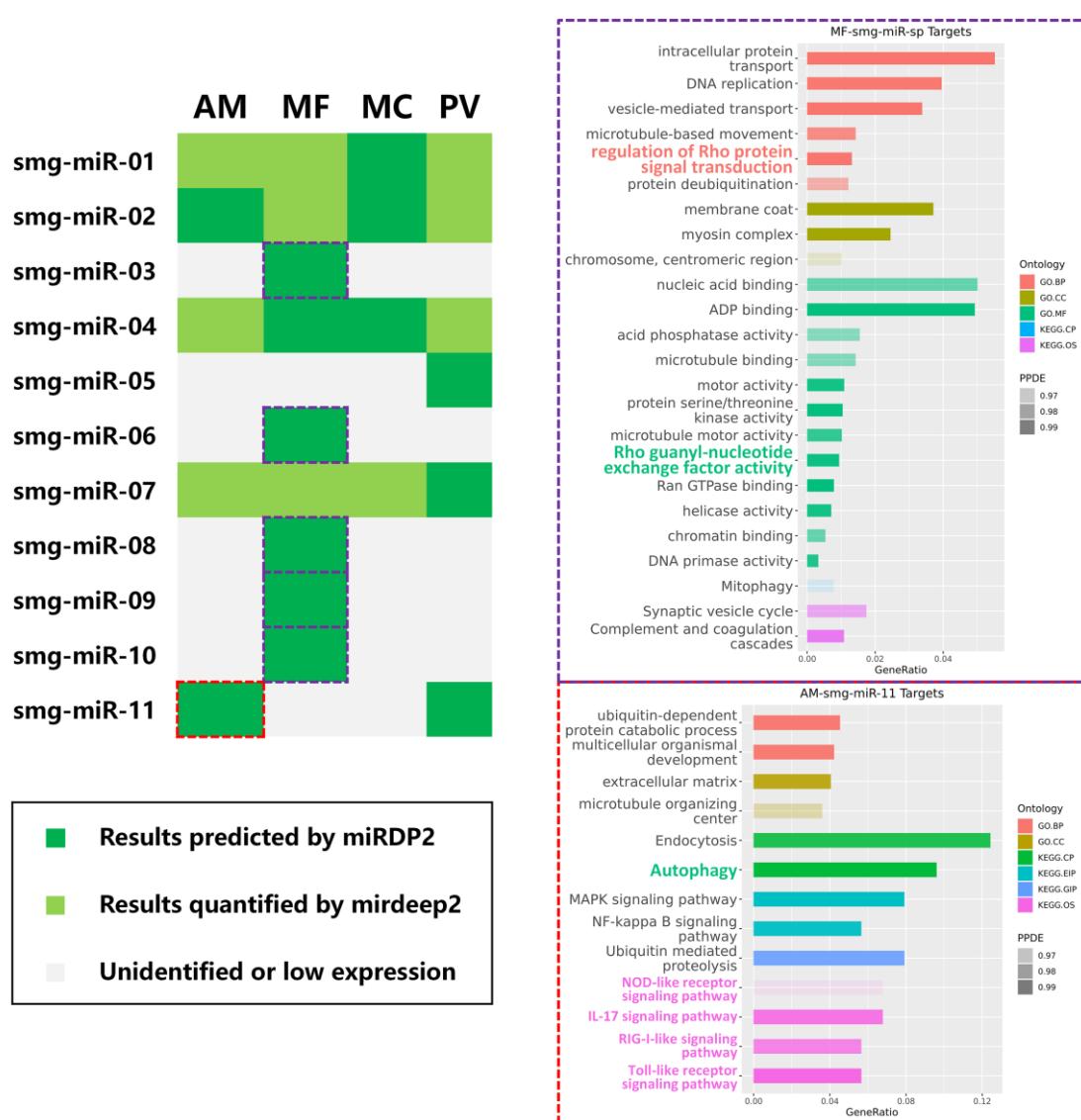
165

166 **Fig 2. Results of gene expression analysis.** AM, MF, MC, PV are short for *A. muricata*, *M. foliosa*, *M. capricornis*, and *P. verrucosa*. In the enrichment plots, each species is indicated by a different colour
167 and statistical significance is indicated by transparency. (a) Statistics of gene differential expression
168 patterns among the four coral species. The vertical axis is the pattern name and the horizontal axis is
169 the number of genes. Each pattern is illustrated with a contrasting color band listed beside the vertical
170 axis. The top three patterns in quantity are Pattern08, Pattern02 and Pattern05, which represent genes
171 expressed differentially in *A. muricata*, *P. verrucosa* and *M. foliosa*, while all Pattern01 genes identified
172 as co-expressed among species fail to meet the statistical significance criteria (PPDE>0.95). (b) Venn
173 graph of gene distribution among four species. Text is in the form of “zooxanthellae gene number |
174 holobiont gene number.” (c) KEGG enrichment of *Symbiodinium* genes. Pathways related to

176 photosynthesis are put on the plot. Nitrogen metabolism is outstanding in both quantity and statistical
177 significance, while few other pathways exhibit enrichment. (d) GO enrichment of highly expressed coral-
178 zooxanthella holobiont genes. Significantly enriched terms are “translation” in Biological Process,
179 “ribosome” in Cellular Component and “structural constituent of ribosome” in Molecular Function,
180 presenting the features of housekeeping genes.

181 However, **Fig 2.c** and **Fig 2.d** reveal gene functional similarities among the corals in spite of
182 their structural differences. Among the zooxanthella genes, as **Fig 2.c** indicates, nitrogen
183 metabolism is the common and dominant pathway. Considering the large number of pathways
184 involving photosynthesis, zooxanthella gene functions seem fairly narrow, which is
185 reminiscent of mitochondria, in that they obtain most of the proteins they need from their
186 host cells rather than producing them on their own. This finding may be conducive to the
187 hypothesis that zooxanthellae have effectively degenerated into coral organelles. Highly
188 expressed coral genes are significantly enriched in the basic cellular functions, as shown in **Fig**
189 **2.d**. The top GO terms are “translation” in Biological Processes, “ribosome” in Cellular
190 Components and “structural constituent of ribosome” in other words, the most highly
191 expressed genes in the corals studied are housekeeping genes. Based on the enrichment
192 results above, genes of coral-zooxanthella holobionts from the same habitat are believed to
193 play analogous roles that are not significantly affected by species-specific structural
194 differences, which may help to simplify the selection of a particular coral as an experimental
195 model subject.

196 **Table 4** lists the results of a hypothetical test of zooxanthella gene expression against total
197 gene expression. Most zooxanthella genes appear to be limited in expression, hinting at
198 suppression by host coral cells, while those from *M. foliosa* present abnormally high levels of
199 expression in all three biological replicates. These differences provide a potential entry point
200 for exploring cross-kingdom regulation mechanisms in coral-zooxanthella holobionts.

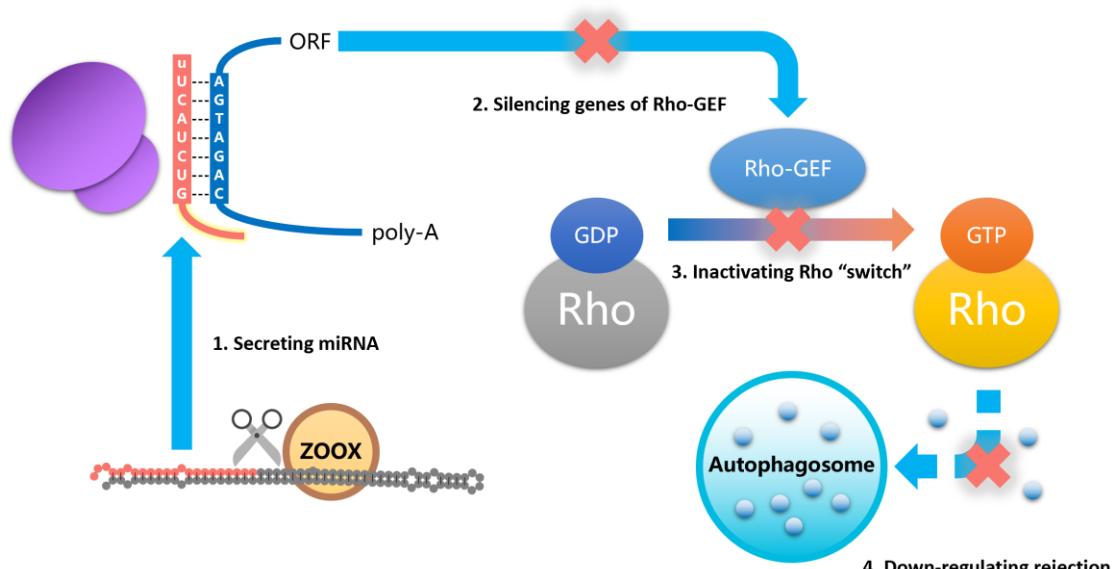

201 **Table 4. Hypothetical test of zooxanthella gene expression against total gene expression.** T-test
202 method was utilized. $H_0: \text{Exp}_{zoox} \leq \overline{\text{Exp}}$; $H_1: \text{Exp}_{zoox} > \overline{\text{Exp}}$

Species	P_{rep1}	P_{rep2}	P_{rep3}
<i>A. muricata</i>	0.2066	0.0558	0.1367
<i>M. foliosa</i>	0.0007	0.0012	0.0014
<i>M. capricornis</i>	0.991	0.9934	0.988
<i>P. verrucosa</i>	0.3783	0.5881	0.4764

203

204 miRNA-target analysis

205 Eleven *Symbiodinium* miRNAs are identified from the total small RNA, as shown in **Fig 3**,
206 numbered as smg-miR-1 to 11. Their expression profiles are supplemented in **Table S2**. Four
207 miRNAs, smg-miR-1, 2, 4, and 7, exist in all investigated corals, and their expression levels are
208 relatively high. It is as expected that, in intracellular environments, photobiont miRNA can
209 maintain a certain concentration far beyond concentrations observed in traditional cross-
210 kingdom research. This phenomenon may illustrate the advantage of coral as an observer-
211 friendly model organism to some extent.


212

213 **Fig 3. Results of miRNA-targets analysis.** AM, MF, MC, PV are short for *A. muricata*, *M. foliosa*, *M. capricornis*, and *P. verrucosa*. GO.BP, GO.CC, GO.MF are short for biological process, cellular component and molecular function in gene ontology. KEGG.CP, KEGG.EIP, KEGG.GIP, KEGG.OS are short for cellular processes, environmental information processing, genetic Information processing and organismal systems in KEGG. Enrichment plots are generated with categories marked by color and statistical significance marked by transparency. Left: identified *Symbiodinium* miRNAs in investigated corals. The vertical axis indicates the miRNA name and the horizontal axis is the species name. Results of miRDP2 are marked with dark green while expanded results of mirdeep2 quantifier are marked with light green. Upper right: enrichment results of smg-miR-3,6,8,9,10 targets in *M. foliosa*. Notable terms include a series of GO terms related to cytoskeleton as well as cell migration, cell adhesion, and cell proliferation, including “regulation of Rho protein signal transduction,” “DNA replication,” and “microtubule-based movement” in biological process, “myosin complex” and “chromosome centromeric region” in cellular component and “Rho guanyl-nucleotide exchange factor activity,” “Ran GTPase binding,” “motor activity,” and “chromatin binding” in molecular function. Lower right: enrichment results of smg-miR-11 targets in *A. muricata*. Enriched pathways are immune-related pathways including NOD-like receptor signaling pathway, IL-17 signaling pathway, RIG-I-like signaling pathway and Toll-like receptor signaling pathway.

230 As noted in **Fig 3**, *M. foliosa* has a unique miRNA group consisting of smg-miR-3, 6, 8, 9 and 10. 231 In the results of enrichment analysis of their target genes, a series of GO terms related to the 232 cytoskeleton as well as to cell migration, cell adhesion, and cell proliferation emerge, among 233 which Rho-related terms are notable. Rho GTPases belonging to the Ras superfamily of small

234 GTP-binding protein serve as “molecular switches” in various signaling pathways, mainly by
235 exerting effects on the cytoskeleton (15). They are widely distributed in immune-related cells
236 and are frequently observed to participate in immune regulation. They usually cycle between
237 an active GTP-bound state and an inactive GDP-bound state, triggering immune responses
238 when bound to GTP until they are hydrolyzed into the GDP-bound state. Three proteins are
239 recognized to regulate this cycle, among which Rho guanyl-nucleotide exchange factor (Rho-
240 GEF) contributes to the activation of Rho GTPases, playing the role of positive regulator. From
241 this it is assumed that zooxanthellae secrete these miRNAs to downregulate the activity of
242 positive regulators in immune pathways. These miRNAs may also help remodel the
243 cytoskeleton of corals to allow for the entry of zooxanthellae, in a similar way to how some
244 parasites affect their hosts (16, 17).

245 Rho-related biological processes and molecular functions are also enriched in the target genes
246 of smg-miR-1 in *M. capricornis* and smg-miR-7 in *P. verrucosa* shown in **Table S1**. For *A. muricata*,
247 there is only one unique *Symbiodinium* miRNA, smg-miR-11. As illustrated in **Fig 3**,
248 several cytoskeleton-related terms appear in GO enrichment results, while KEGG enrichment
249 results directly demonstrate pathways in immune system. Though KEGG annotation may not
250 be exactly terminologically accurate for corals, in that most KEGG data sources are from
251 humans and other dominant model organisms, the results can be considered as further
252 evidence of immune-related cross-kingdom regulation in coral-zooxanthella holobionts. In
253 addition, autophagy-related genes are identified as these miRNAs’ targets as well, which may
254 strengthen the credibility of the assumptions outlined above in view of many observations
255 that Rho GTPases upregulate autophagosome fusion and transport. **Fig 4** displays a predicted
256 pathway by which zooxanthellae block autophagosome production via miRNA-silencing the
257 upstream Rho “switch,” nevertheless the possibility that zooxanthellae miRNAs directly target
258 autophagy-related genes cannot yet be ruled out.

260 **Fig 4. Predicted downregulating rejection pathway in coral-zooxanthella holobionts.** Zooxanthellae
261 secrete miRNAs targeting and silencing coral Rho-GEF genes to prevent the activation of Rho GTPases
262 to block threatening autophagosome production in the coral.

263 In contrast to the similarities among genes in different species of corals examined in this study,
264 zooxanthella miRNAs present functional differences among species. For instance, smg-miR-11
265 exists in *P. verrucosa*, while few significant functions are enriched in its target genes. smg-miR-
266 1, 2, 4 and 7 are observed to be co-expressed among all coral samples, while their target genes

267 are not functionally centralized. It seems that immune downregulation is the rare common
268 role they play in the investigated corals.

269 No coral miRNA targeting sites are identified in the genes of zooxanthellae. It is thus inferred
270 that miRNA silencing is not the main way corals regulate zooxanthellae, yet real matching
271 criterion of *Symbiodinium* targeting sites may not be as strict as that applied in this research.

272

273 Discussion

274

275 Role of miRNAs in coral-zooxanthella holobiont

276 Our work provides evidence for an early origin of cross-kingdom regulation as a self-defense
277 mechanism of autotrophs against heterotrophs. It is proposed that miRNAs target and silence
278 immune-related coral genes to reduce rejection, helping zooxanthellae to move beyond
279 provoking an antigenic response in potential coral hosts to becoming components of the
280 holobiont. Conversely, no coral miRNAs are found to target zooxanthella genes, indicating that
281 coral does not utilize miRNA as its main way to regulate zooxanthellae.

282 In view of the differences in gene function and expression levels revealed in **Fig 2.c** and **Table**
283 **4**, it could be further assumed that miRNA multiplicity may be conducive to function diversity
284 for zooxanthellae. For example, among the investigated corals, the unique miRNA group in *M.*
285 *foliosa*'s zooxanthellae is rather highly expressed and has diverse functions, while the miRNA
286 in *M. capricornis*'s zooxanthellae, none of which is unique, are expressed at the lowest level.
287 The group targeting effect of miRNA may reduce the inhibition of zooxanthellae by host coral
288 cells so as to permit greater flexibility in the physiological activity of zooxanthellae. Records in
289 Coral Trait (18) indicate that *M. foliosa* may be able to inhabit mesophotic coral reefs (19)
290 more than 30m deep (<https://coraltraits.org/species/1014/traits/92>), where few symbiont
291 zooxanthellae would be able to photosynthesize. The mutual dependence between coral and
292 zooxanthellae in this holobiont under these conditions would be much lower, not only
293 conforming to our finding but also supporting our hypothesis.

294

295 Coral model and “ecological niche effect”

296 From the experimental point of view, when conducting studies of miRNA interactions between
297 photobiont and animals, corals as model organisms have advantages in observer-friendliness
298 and simplicity of behavior. For one thing, the single-cell structure of zooxanthellae narrows
299 the observation range down to the intracellular environment and reduces miRNAs lost by
300 transport and degradation, helping to maintain a relatively higher photobiont miRNA
301 concentration for easier identification. For another, traits and behaviors of corals have been
302 well-researched, while the internal cross-kingdom regulation occurring inside corals appears
303 to be to be unidirectional from zooxanthellae to coral according to our research, thus it will
304 not be too difficult to record the impact of zooxanthellae on corals under appropriate
305 experimental conditions.

306 The coral-zooxanthella holobionts investigated in this study appear to have simple behavior.
307 The majority of highly expressed coral genes are devoted to basic biological processes, such
308 as the construction of ribosomes, while most exogenous zooxanthellae work in specific
309 pathways under various limitations. Though our work has not identified any miRNA-based
310 coral-to-zooxanthellae regulations, corals' inhibitory effects on zooxanthellae are certainly
311 observed. It is not unreasonable to predict that similar intracellular “dystopias” exist in a
312 variety of ancient autotroph-heterotroph holobionts in which mutual regulations between
313 symbiotic organisms vary in mechanism and are imbalanced in intensity.

314 It is further suggested that the closer the organism is to the bottom ecological niche, the
315 greater the non-gene impact on it. Though coral reefs are often made up of a community
316 exhibiting significant species diversity, our research shows that corals from the same habitat
317 share many physiological commonalities. The “ecological niche effect” hypothesis is expected
318 to support the feasibility of this coral model and provide guidelines for specimen collection for
319 further research.

320

321 **Limitation and prospect**

322 This work is typical omics-based research, mining information from large-scale bio-data, thus
323 it is impossible to avoid systematic errors coming from bioinformatics tools and databases,
324 especially when taking the “coral data gap” into account. Insufficient or incorrect data about
325 coral in bio-databases affecting annotations, tags and reference sequences have emerged
326 more than once during this research. However, the largest limitation to this research project
327 actually comes from the lack of data about zooxanthellae. There exist various sub-clades of
328 *Symbiodinium* in one coral, the genome differences among which may be as huge as that
329 between humans and *Pan troglodytes*. Although the negative impact might be sharply reduced
330 by the “ecological niche effect” mentioned above, using one clade-C1 genome to represent all
331 clade-C genomes is destined to cause omissions. It has been observed that Clade D
332 zooxanthellae also occupy a certain percentage of the *P. verrucosa* holobiont (**Video S1**),
333 implying that a great deal of information is yet to be mined. Besides, the mixed *Symbiodinium*
334 samples extracted from coral are still hard to isolate and culture in vitro currently. Acquiring
335 genomes of specific *Symbiodinium* species precisely from coral-zooxanthellae holobionts can
336 be described as the most essential challenge related to cross-kingdom regulation research.

337 In summary, our work integrates new full-length transcriptomes and small RNAs of four
338 common and frequently dominant reef-building corals with a public *Symbiodinium* C1 genome
339 to explore coral-zooxanthella holobionts, shedding light on intracellular mutual regulation
340 between these ancient heterotrophs and autotrophs. It reveals the miRNA-based anti-
341 rejection mechanism used by zooxanthellae, proposes the concept of coral as a model
342 organism for cross-kingdom regulation along with ecological niche effect, and offers a
343 foundation for further cross-kingdom research.

344 We have added all our data, including gene annotation and miRNA information, to the
345 CoralBioinfo database (<http://coral.bmeonline.cn>), in a gesture to build a high-quality multi-
346 omics platform for further coral research. Multiple web services have been developed for it,
347 most of which turn out to be more user-friendly to bioinformaticians familiar with “dry lab”
348 skills. Data contribution requests for joint efforts are always welcome.

349

350 **Materials and Methods**

351 **RESOURCE AVAILABILITY**

353 **Lead contact**

354 Further information and requests for resources and reagents should be directed to and will be
355 fulfilled by the lead contact, Chunpeng He (cphe@seu.edu.cn), or by Zuhong Lu
356 (zhlu@seu.edu.cn).

357 **Materials availability**

358 This study did not generate any new reagents.

359 **Data availability**

360 Raw data from our own full-length transcriptome sequencing and small RNA sequencing are
361 available from NCBI ([PRJNA544778](https://www.ncbi.nlm.nih.gov/bioproject/PRJNA544778)).

362 Though we sincerely recommend acquiring data via our CoralBioinfo database
363 (<http://coral.bmeonline.cn>) introduced in this paper, we have already uploaded necessary
364 supplementary data to better serve researchers.

365 (https://seunic-my.sharepoint.cn/:f/g/personal/230218818_seu_edu_cn/Eo4QciTXwQRBkYqKEacEN8BRCKffoV-299v2HFILGF6lQ?e=dlQJx9)

367
368 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

369 All coral samples were collected and processed in accordance with local laws for invertebrate
370 protection and approved by the Ethics Committee of Institutional Animal Care and Use
371 Committee of Nanjing Medical University (protocol code IACUC-1910003 and date of approval
372 is 10 October 2019).

373 The species in the study were collected from the Xisha Islands in the South China Sea (latitude
374 15°40'–17°10' north, longitude 111°–113° east).

375 The coral samples were cultured in our laboratory coral tank with conditions conforming to
376 their habitat environment. All the species were raised in a RedSea® tank (redsea575, Red Sea
377 Aquatics Ltd) at 26°C and 1.025 salinity (Red Sea Aquatics Ltd). The physical conditions of the
378 coral culture system are as follows: three coral lamps (AI®, Red Sea Aquatics Ltd), a protein
379 skimmer (regal250s, Reef Octopus), a water chiller (tk1000, TECO Ltd), two wave devices
380 (VorTechTM MP40, EcoTech Marine Ltd), and a calcium reactor (Calreact 200, Reef Octopus),
381 etc.

382
383 **METHOD DETAILS**

384 **RNA extraction**

385 All RNA extraction procedures follow the manufacturers' instructions. The total RNA was
386 isolated with TRIzol LS Reagent (Thermo Fisher Scientific, 10296028) and treated with DNase
387 I (Thermo Fisher Scientific, 18068015). The high quality mRNA was isolated with a FastTrack
388 MAG Maxi mRNA Isolation Kit (Thermo Fisher Scientific, K1580-02). Samples were separated
389 from healthy *Acropora muricata*, *Montipora foliosa*, *Montipora capricornis* and *Pocillopora*

390 *verrucosa* to ensure that enough high quality RNA—more than 10 µg—could be obtained for
391 a cDNA transcriptome library.

392 **Full-length transcriptome sequencing**

393 Before establishing a cDNA transcriptome library, the quality of total RNA had to be tested.
394 Agarose gel electrophoresis was used to analyze the degree of degradation of RNA and
395 whether it was contaminated. A Nanodrop nucleic acid quantifier was used to detect the purity
396 of RNA (OD260/280 ratio), a Qubit RNA assay was used to quantify the RNA concentration
397 accurately, and an Agilent 2200 TapeStation was used to accurately detect the integrity of the
398 RNA.

399 The Clontech SMARTer® PCR cDNA Synthesis Kit (Clontech Laboratories, 634926) and the
400 BluePippin Size Selection System protocol, as described by Pacific Biosciences (PN 100-092-
401 800-03) were used to prepare the Iso-Seq library according to the Isoform Sequencing
402 protocol (Iso-Seq).

403 The RNA-seq library was prepared according to the standard library construction for the
404 Illumina HiSeq X Ten, using three biological replicates for each species of coral.

405 We used the PacBio Sequel II platform with SMRT (single molecular real time) sequencing
406 technology and SMRTlink v7.0 software (minLength 50; maxLength 15,000; minPasses 1) to
407 process sequencing samples (20). After polymer read bases were performed, the
408 subreads.bam files were obtained by removing the joint and the original offline data with
409 lengths of under 50 bp. The CCSs (circular consensus sequences) were obtained by putting the
410 subreads.bam file through the CCS algorithm, which is self-correcting for the single molecule
411 multiple sequencing sequence. Consequently, the full-length-non-chimera (FLNC) and nFL
412 (non-full-length, non-chimera) sequences were identified by detecting whether CCSs
413 contained 5'-primer, 3'-primer and poly-A. FLNC sequences of the same transcript were
414 clustered with a hierarchical $n * \log (n)$ algorithm to obtain consensus sequences. The
415 corrected consensus reads were polished from consensus sequences (Arrow polishing) using
416 LoRDEC (21) v0.7 software using the RNA-seq data sequenced with the Illumina HiSeq X Ten
417 platform. Using CD-HIT (22) software (-c 0.95 -T 6 -G 0 -aL 0.00 -aS 0.99), all redundancies were
418 removed in corrected consensus reads to acquire final full-length transcripts and unigenes for
419 subsequent bioinformatics analyses.

420 **Small RNA sequencing**

421 A total amount of 3 µg of RNA per sample was used as input material for the small RNA library.
422 Sequencing libraries were generated using the NEBNext® Multiplex Small RNA Library Prep Set
423 for Illumina® (NEB, USA) following the manufacturer's recommendations, and index codes
424 were added to attribute sequences to each sample. Briefly, the NEB 3' SR Adapter was directly
425 and specifically ligated to the 3' end of miRNA, siRNA and piRNA. After the 3' ligation reaction,
426 the SR RT Primer was hybridized to the excess of 3' SR Adapter that remained free after the 3'
427 ligation reaction, transforming the single-stranded DNA adapter into a double-stranded DNA
428 molecule. This step is important to prevent adapter-dimer formation, and dsDNAs are also not
429 substrates for ligation mediated by T4 RNA Ligase 1, so they do not ligate to the 5' SR Adapter
430 in the subsequent ligation step. Next, the 5' ends adapter was ligated to the 5' ends of miRNAs,
431 siRNA and piRNA. Then the first strand of cDNA was synthesized using M-MuLV Reverse
432 Transcriptase (RNase H-). PCR amplification was performed using LongAmp Taq 2X Master
433 Mix, SR Primer for Illumina and index (X) primer. PCR products were purified on an 8%
434 polyacrylamide gel (100V, 80 min). DNA fragments corresponding to 140~160 bp (the length
435 of small noncoding RNA plus the 3' and 5' adapters) were recovered and dissolved in 8 µL

436 elution buffer. Finally, library quality was assessed with the Agilent Bioanalyzer 2100 system
437 using DNA High Sensitivity Chips.

438 The clustering of the index-coded samples was performed on a cBot Cluster Generation
439 System using a TruSeq SR Cluster Kit v3-cBot-HS (Illumina) according to the manufacturer's
440 instructions. After cluster generation, the library preparations were sequenced on an Illumina
441 HiSeq X Ten platform and 50bp single-end reads were generated.

442 Clean data for downstream analysis were obtained by removing reads with low quality, poly-
443 N|A|T|G|C, and 5' adapter contaminants. Reads without the 3' adapter or the insert tag were
444 cleaned as well.

445 **Gene function annotation**

446 Gene function was annotated using the following databases: Nr (NCBI non-redundant protein
447 sequences) (23), Nt (NCBI non-redundant nucleotide sequences), Pfam (Protein family) (24),
448 KOG (Clusters of Orthologous Groups of proteins) (25), Swiss-Prot (A manually annotated and
449 reviewed protein sequence database) (26), GO (Gene Ontology) (27) and KEGG (Kyoto
450 Encyclopedia of Genes and Genomes) (14). We use BLAST 2.7.1+ in NCBI setting the e-value
451 '1e-5' in Nt database analysis, Diamond v0.8.36 BLASTX software, setting the e-value to '1e-5'
452 in Nr, KOG, Swiss-Prot and KEGG databases analysis, and HMMER 3.1 package for Pfam
453 database analysis.

454 **Gene expression analysis**

455 We used RSEM (28) to align Illumina reads to full-length transcripts and to quantify gene
456 expression. Transcript names were converted to Nr IDs to build the multi-coral expression
457 profile. EBSeq (29) was finally called by RSEM to identify differential expression patterns.

458 **miRNA identification**

459 After quality control and length filtering (18–35 nt) of raw small RNA sequences, known miRNA
460 alignment and novel miRNA prediction were conducted. For known miRNA alignment,
461 miRBase was used as the reference, while mirdeep2 (30) and srna-tools-cli (<http://srna-workbench.cmp.uea.ac.uk>) were employed to identify miRNAs and draw their secondary
462 structures. For novel miRNA prediction, small RNA tags were mapped to RepeatMasker (31)
463 and Rfam (32) to remove tags originating from protein-coding genes, repeat sequences, rRNA,
464 tRNA, snRNA, and snoRNA. Next, miREvo (33) and mirdeep2 were integrated to predict novel
465 miRNA among the remaining unannotated tags. All miRNA targeting sites on zooxanthella
466 genes were predicted with psRobot (34) (no mismatches allowed).

468 miRDP2 (35) was employed to identify *Symbiodinium* miRNAs in each coral separately after
469 building the bowtie index of the *Symbiodinium* C1 genome (36) downloaded from
470 Reeffgenomics (37). Initial outputs were corrected by genome annotation in which sequences
471 with loci hitting CDS were removed. Then mirdeep2 using filtered sequences as inputs was run
472 on all raw data to quantify miRNA expression as well to eliminate false negatives. All miRNA
473 targeting sites were finally predicted with miRanda (38) (-sc 145 -en -10 -scale 4 -strict).

474 **Enrichment analysis**

475 For each coral, the top 500 most highly expressed genes (that each entered the top 500 among
476 three biological replicates more than once), and the zooxanthellae genes annotated by Nr and
477 predicted target genes were all selected for GO/KEGG enrichment using clusterProfiler (39)
478 (pvalueCutoff = 0.05, pAdjustMethod = 'BH', qvalueCutoff = 0.2).

479 **Website development**

480 CoralBioinfo (<http://coral.bmeonline.cn>) was developed under the LEMP (Linux, Nginx, MySQL
481 and PHP) stack. Web functions were implemented with PHP 7.2, while Nginx works as the web
482 server. Most services have been built into Docker images, which are beneficial for cross-
483 platform deployment and extended development.

484 All data are stored in MySQL tables with indexes to improve query efficiency. In addition,
485 sequence data have been formatted into NCBI-BLAST local databases for alignment and
486 download services.

487

488 **ADDITIONAL RESOURCES**

489 Detailed database structure manuals along with user tutorials are all available at
490 <http://coral.bmeonline.cn/help.php>.

491 API documents are available at <http://coral.bmeonline.cn/api/>.

492 Supplemental information

493 **Fig S1. Annotation of four full-length coral transcriptomes with Nr database.** Horizontal axis is
494 species (txid) and vertical axis is unigene number. The top three species with the highest number of
495 annotated unigenes are *A. digitifera*, *E. pallida* and *N. vectensis*, which account for 92.8% in *A.*
496 *muricata*, 89.8% in *M. foliosa*, 90.5% in *M. capricornis* and 85.9% in *P. verrucosa*.

497 **Fig S2. Supplemental results of gene expression analysis.** (a) Differential zooxanthella gene
498 expression patterns among the four coral species studied. The horizontal axis is the pattern name
499 and the vertical axis is the gene number. The top three patterns in quantity are Pattern05, Pattern02
500 and Pattern08, which represent differentially expressed genes in *M. foliosa*, *P. verrucosa* and *A.*
501 *muricata*, while all Pattern01 genes identified as being co-expressed among species fail to meet the
502 statistical significance criteria (PPDE>0.95). (b) Venn graph of top 500 most highly expressed genes
503 among four species.

504 **File S1. Supplementary processing details of full-length transcriptomes.**

505 **File S2. Supplementary processing details of small RNAs.**

506 **Table S1. Complete results of miRNA-target gene enrichment analysis.** GenelIDs are CSG/T IDs in
507 CoralSym (<http://coral.bmeonline.cn/sym/>).

508 **Table S2. Expression profiles of *Symbiodinium* miRNAs.** AM_x, MF_x, MC_x, PV_x are short for the
509 biological replicates of *A. muricata*, *M. foliosa*, *M. capricornis*, and *P. verrucosa*. The expression level
510 is quantified in RPM.

511 **Video S1. Demo of searching CoralTrait++ via CoralAPI.** CoralTrait++ is a manually-built simplified
512 version of the Coral Trait database. It consists of 12 quantitative traits and six descriptive traits with
513 all units standardized, and more than 45,000 records. It was revealed in this demo that clade D
514 zooxanthellae also hold a certain percentage of the traits seen in the *Pocillopora verrucosa* holobiont.

515 **Data S1. Unigene sequences of *A. muricata*, *M. foliosa*, *M. capricornis*, and *P. verrucosa*.** BLAST
516 service is available at http://coral.bmeonline.cn/blast_unigene/.

517 **Data S2. Gene annotation of four corals from Nr, Nt, Pfam, KOG, Swiss-Prot, GO and KEGG
518 databases.** All gene information is searchable at <http://coral.bmeonline.cn/gene/>.

519 **Data S3. CoralSym dataset including information of 11 novel *Symbiodinium* miRNAs and their
520 targeting sites.** The format manual is available at <http://coral.bmeonline.cn/sym/help.php#database-content>. Exact searching of targeting information is accessible at </sym/search.php>.

522

523 References

- 524 1. Bartel DP. Metazoan MicroRNAs. *Cell.* 2018 Mar 22;173(1):20-51. doi: 10.1016/j.cell.2018.03.006.
- 525 2. Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X, Yin Y, Wang C, Zhang T, Zhu D, Zhang D, Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen J, Wang J, Wang M, Zhang Q, Zhang J, Zen K, Zhang CY. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. *Cell Res.* 2012 Jan;22(1):107-26. doi: 10.1038/cr.2011.158.
- 526 3. Liang H, Zhang S, Fu Z, Wang Y, Wang N, Liu Y, Zhao C, Wu J, Hu Y, Zhang J, Chen X, Zen K, Zhang CY. Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma. *J Nutr Biochem.* 2015 May;26(5):505-12. doi: 10.1016/j.jnutbio.2014.12.002.
- 527 4. Zhou Z, Li X, Liu J, Dong L, Chen Q, Liu J, Kong H, Zhang Q, Qi X, Hou D, Zhang L, Zhang G, Liu Y, Zhang Y, Li J, Wang J, Chen X, Wang H, Zhang J, Chen H, Zen K, Zhang CY. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. *Cell Res.* 2015 Jan;25(1):39-49. doi: 10.1038/cr.2014.130.
- 528 5. Chen X, Dai GH, Ren ZM, Tong YL, Yang F, Zhu YQ. Identification of Dietetically Absorbed Rapeseed (*Brassica campestris* L.) Bee Pollen MicroRNAs in Serum of Mice. *Biomed Res Int.* 2016;2016:5413849. doi: 10.1155/2016/5413849.
- 529 6. Jia L, Zhang D, Xiang Z, He N. Nonfunctional ingestion of plant miRNAs in silkworm revealed by digital droplet PCR and transcriptome analysis. *Sci Rep.* 2015 Jul 21;5:12290. doi: 10.1038/srep12290.
- 530 7. Chin AR, Fong MY, Somlo G, Wu J, Swiderski P, Wu X, Wang SE. Cross-kingdom inhibition of breast cancer growth by plant miR159. *Cell Res.* 2016 Feb;26(2):217-28. doi: 10.1038/cr.2016.13.
- 531 8. Zhou LK, Zhou Z, Jiang XM, Zheng Y, Chen X, Fu Z, Xiao G, Zhang CY, Zhang LK, Yi Y. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. *Cell Discov.* 2020 Aug 5;6:54. doi: 10.1038/s41421-020-00197-3.
- 532 9. Dickinson B, Zhang Y, Petrick JS, Heck G, Ivashuta S, Marshall WS. Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. *Nat Biotechnol.* 2013 Nov;31(11):965-7. doi: 10.1038/nbt.2737.
- 533 10. Campbell K. Do the microRNAs we eat affect gene expression? *Nature.* 2020;582(7812):S10. doi:10.1038/d41586-020-01767-x
- 534 11. Chen Q, Zhang F, Dong L, Wu H, Xu J, Li H, Wang J, Zhou Z, Liu C, Wang Y, Liu Y, Lu L, Wang C, Liu M, Chen X, Wang C, Zhang C, Li D, Zen K, Wang F, Zhang Q, Zhang CY. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. *Cell Res.* 2021 Mar;31(3):247-258. doi: 10.1038/s41422-020-0389-3.
- 535 12. Shahid S, Kim G, Johnson NR, Wafula E, Wang F, Coruh C, Bernal-Galeano V, Phifer T, dePamphilis CW, Westwood JH, Axtell MJ. MicroRNAs from the parasitic plant *Cuscuta campestris* target host messenger RNAs. *Nature.* 2018 Jan 3;553(7686):82-85. doi: 10.1038/nature25027.
- 536 13. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. *Nucleic Acids Res.* 2008 Jan;36(Database issue):D154-8. doi: 10.1093/nar/gkm952.
- 537 14. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. *Nucleic Acids Res.* 2017 Jan 4;45(D1):D353-D361. doi: 10.1093/nar/gkw1092.
- 538 15. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. *Nature.* 2002 Dec 12;420(6916):629-35. doi: 10.1038/nature01148.

574 16. Gonzalez V, Combe A, David V, Malmquist NA, Delorme V, Leroy C, Blazquez S, Ménard
575 R, Tardieu I. Host cell entry by apicomplexa parasites requires actin polymerization in
576 the host cell. *Cell Host Microbe.* 2009 Mar 19;5(3):259-72. doi:
577 10.1016/j.chom.2009.01.011.

578 17. Walker ME, Hjort EE, Smith SS, Tripathi A, Hornick JE, Hinchcliffe EH, Archer W, Hager
579 KM. *Toxoplasma gondii* actively remodels the microtubule network in host cells.
580 *Microbes Infect.* 2008 Nov-Dec;10(14-15):1440-9. doi: 10.1016/j.micinf.2008.08.014.

581 18. Madin JS, Anderson KD, Andreasen MH, Bridge TC, Cairns SD, Connolly SR, Darling ES,
582 Diaz M, Falster DS, Franklin EC, Gates RD, Harmer A, Hoogenboom MO, Huang D, Keith
583 SA, Kosnik MA, Kuo CY, Lough JM, Lovelock CE, Luiz O, Martinelli J, Mizerek T, Pandolfi
584 JM, Pochon X, Pratchett MS, Putnam HM, Roberts TE, Stat M, Wallace CC, Widman E,
585 Baird AH. The Coral Trait Database, a curated database of trait information for coral
586 species from the global oceans. *Sci Data.* 2016 Mar 29;3:160017. doi:
587 10.1038/sdata.2016.17.

588 19. Loya, Yossi, Kimberly A. Puglise, and Tom CL Bridge, eds. *Mesophotic coral ecosystems.*
589 Vol. 12. Springer, 2019. doi:10.1007/978-3-319-92735-0.

590 20. Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, Dunn C, O'Malley
591 R, Figueroa-Balderas R, Morales-Cruz A, Cramer GR, Delle Donne M, Luo C, Ecker JR,
592 Cantu D, Rank DR, Schatz MC. Phased diploid genome assembly with single-molecule
593 real-time sequencing. *Nat Methods.* 2016 Dec;13(12):1050-1054. doi:
594 10.1038/nmeth.4035.

595 21. Salmela L, Rivals E. LoRDEC: accurate and efficient long read error correction.
596 *Bioinformatics.* 2014 Dec 15;30(24):3506-14. doi: 10.1093/bioinformatics/btu538.

597 22. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation
598 sequencing data. *Bioinformatics.* 2012 Dec 1;28(23):3150-2. doi:
599 10.1093/bioinformatics/bts565.

600 23. Pruitt KD, Tatusova T, Klimke W, Maglott DR. NCBI Reference Sequences: current status,
601 policy and new initiatives. *Nucleic Acids Res.* 2009 Jan;37(Database issue):D32-6. doi:
602 10.1093/nar/gkn721.

603 24. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson
604 LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE,
605 Finn RD. The Pfam protein families database in 2019. *Nucleic Acids Res.* 2019 Jan
606 8;47(D1):D427-D432. doi: 10.1093/nar/gky995.

607 25. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM,
608 Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan
609 S, Wolf YI, Yin JJ, Natale DA. The COG database: an updated version includes eukaryotes.
610 *BMC Bioinformatics.* 2003 Sep 11;4:41. doi: 10.1186/1471-2105-4-41.

611 26. Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement
612 TrEMBL in 2000. *Nucleic Acids Res.* 2000 Jan 1;28(1):45-8. doi: 10.1093/nar/28.1.45.

613 27. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing
614 strong. *Nucleic Acids Res.* 2019 Jan 8;47(D1):D330-D338. doi: 10.1093/nar/gky1055.

615 28. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or
616 without a reference genome. *BMC Bioinformatics.* 2011 Aug 4;12:323. doi:
617 10.1186/1471-2105-12-323.

618 29. Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BM, Haag JD, Gould MN,
619 Stewart RM, Kendziora C. EBSeq: an empirical Bayes hierarchical model for inference
620 in RNA-seq experiments. *Bioinformatics.* 2013 Apr 15;29(8):1035-43. doi:
621 10.1093/bioinformatics/btt087.

622 30. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately
623 identifies known and hundreds of novel microRNA genes in seven animal clades.
624 *Nucleic Acids Res.* 2012 Jan;40(1):37-52. doi: 10.1093/nar/gkr688.

625 31. Chen N. Using Repeat Masker to identify repetitive elements in genomic sequences.
626 Current protocols in bioinformatics. 2004;5(1):4-10.

627 32. Kalvari I, Argasinska J, Quinones-Olvera N, Nawrocki EP, Rivas E, Eddy SR, Bateman A,
628 Finn RD, Petrov AI. Rfam 13.0: shifting to a genome-centric resource for non-coding
629 RNA families. *Nucleic Acids Res.* 2018 Jan 4;46(D1):D335-D342. doi:
630 10.1093/nar/gkx1038.

631 33. Wen M, Shen Y, Shi S, Tang T. miREvo: an integrative microRNA evolutionary analysis
632 platform for next-generation sequencing experiments. *BMC Bioinformatics.* 2012 Jun
633 21;13:140. doi: 10.1186/1471-2105-13-140.

634 34. Wu HJ, Ma YK, Chen T, Wang M, Wang XJ. PsRobot: a web-based plant small RNA meta-
635 analysis toolbox. *Nucleic Acids Res.* 2012 Jul;40(Web Server issue):W22-8. doi:
636 10.1093/nar/gks554.

637 35. Kuang Z, Wang Y, Li L, Yang X. miRDeep-P2: accurate and fast analysis of the microRNA
638 transcriptome in plants. *Bioinformatics.* 2019 Jul 15;35(14):2521-2522. doi:
639 10.1093/bioinformatics/bty972.

640 36. Liu H, Stephens TG, González-Pech RA, Beltran VH, Lapeyre B, Bongaerts P, Cooke I,
641 Aranda M, Bourne DG, Forêt S, Miller DJ, van Oppen MJH, Voolstra CR, Ragan MA, Chan
642 CX. Symbiodinium genomes reveal adaptive evolution of functions related to coral-
643 dinoflagellate symbiosis. *Commun Biol.* 2018 Jul 17;1:95. doi: 10.1038/s42003-018-
644 0098-3.

645 37. Liew YJ, Aranda M, Voolstra CR. Reefgenomics.Org - a repository for marine genomics
646 data. *Database (Oxford).* 2016 Dec 26;2016:baw152. doi: 10.1093/database/baw152.

647 38. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in
648 *Drosophila*. *Genome Biol.* 2003;5(1):R1. doi: 10.1186/gb-2003-5-1-r1.

649 39. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological
650 themes among gene clusters. *OMICS.* 2012 May;16(5):284-7. doi:
651 10.1089/omi.2011.0118.

652

653

654 **Acknowledgments**

655 We are grateful for Dr. Xiaojun Xia's technical support in our production environment.

656

657 **Author Contributions**

658 YZ: experiment, database, writing and editing. TH: data uploading. ZL & JC: reviewing. CH:
659 supervision. XL: project approval. All authors contributed to the article and approved the
660 submitted version.

661

662 **Declaration of Interests**

663 All authors declare that no conflict of interest exists.