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Abstract
Human early visual cortex response amplitudes monotonically increase with numerosity
(object number), regardless of object size and spacing. However, numerosity is typically
considered a high-level visual or cognitive feature, while early visual responses follow image
contrast in the spatial frequency domain. We found that, at fixed contrast, aggregate Fourier
power (at all orientations and spatial frequencies) followed numerosity closely but
nonlinearly with little effect of object size, spacing or shape. This would allow
straightforward numerosity estimation from spatial frequency domain image representations.
Using 7T fMRI, we showed monotonic responses originate in primary visual cortex (V1) at
the stimulus’s retinotopic location. Responses here and in neural network models followed
aggregate Fourier power more closely than numerosity. Truly numerosity tuned responses
emerged after lateral occipital cortex and were independent of retinotopic location. We
propose numerosity’s straightforward perception and neural responses may have built on

behaviorally beneficial spatial frequency analyses in simpler animals.
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Introduction

Humans and many other animals use visual numerosity, the number of items in a set, to guide
behavior. Many species have neurons tuned to numerosity, decreasing in response amplitude
with distance from a specific preferred numerosity (1-3). Functional magnetic resonance
imaging (fMRI) has identified numerosity-tuned neuronal populations in specific areas of
human association cortex using both population receptive field modeling approaches (4, 5)
and fMRI adaptation (or repetition suppression)(6). Other fMRI studies using multivoxel
pattern analyses (7, 8) and representational similarity analyses (9) also support the existence
of numerosity-tuned neural populations in the human brain. Response properties of these
neurons mirror properties of numerosity perception (3, 6, 10). Numerosity perception is
correlated with numerosity tuned responses between trials (3, 10), and repetition suppression
(6) and multivoxel pattern discriminability between individuals (11, 12).

There remains considerable debate over how such numerosity-tuned responses are
derived from visual inputs. One view proposes that numerosity tuning and perception reflect
non-numerical image features that are often correlated with numerosity, like density (13), or
contrast energy at high spatial frequencies (14). However, growing convergent evidence from
psychophysical, neuroimaging and computational research indicates numerosity itself is
represented and perceived (15-19). These views could be reconciled by a non-numerical
image feature from which numerosity could be estimated regardless of other image
parameters like item size and spacing.

Computational modeling shows numerosity-tuned responses in various neural
networks that are not trained for numerosity discrimination. The first of these models (20)
pre-dates the discovery of numerosity tuned neurons. It implements specific stages that: (1)
detect where contrast lies in the image; (2) normalize the local contrast so that each item

contributes equally; (3) sum normalized contrast to give a monotonically increasing and
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decreasing response to numerosity; (4) weight these monotonic responses differently to give
numerosity-tuned responses with different numerosity preferences. A simple unsupervised
network can develop monotonically increasing and tuned responses with no need for
monotonically decreasing responses to numerosity (as inhibitory synapses are sufficient) (21).
Neither model shows how the monotonic stage disregards size and spacing. It has since been
shown that monotonic (22) and tuned (23) responses to numerosity emerge in a probabilistic
hierarchical generative network trained only to efficiently encode the image and maximize
the likelihood of reconstructing the image, and even in a randomly-weighted network. In this
model, the first stage decomposes the image using spatial receptive fields with surround
suppression, as in the early visual system. The resulting monotonic responses to numerosity
are spatially selective (22), but responses are almost invariant to item size and spacing
without the need for explicit object individuation or size normalization (19). Another class of
neural network model, deep convolutional neural networks, also show monotonic and
numerosity-tuned units, even in randomly-weighted networks (24). Here monotonic units
emerge early in the network and feed into numerosity-tuned units, where different weights on
these inputs give numerosity-tuned responses with different numerosity preferences.

EEG and fMRI results show that early visual cortex responses to numerosity stimuli
appear to monotonically increase with numerosity, regardless of item size or spacing (25, 26).
This monotonic response emerges very quickly after stimulus presentation, suggesting it
reflects feedforward processing, and is not computed from other parameters like stimulus
area and density. This early visual cortex response to numerosity is surprising, as numerosity
is generally considered a relatively high-level visual feature. Early visual neurons respond to
image contrast in the frequency domain: at specific positions, orientations and spatial

frequencies (27). So, it is unclear how early visual neural responses could closely follow
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numerosity regardless of size and spacing, although such responses spontaneously emerge
somehow in the image representations of computational models.

Association cortex recording sites with numerosity-tuned responses largely overlap
with higher visual field maps (5), but their spatial population receptive fields (pRF) do not
necessarily overlap with the numerosity stimulus area (5, 28), and numerosity preferences are
unrelated to pRF position or size (28). Numerosity tuning in functionally homologous
macaque brain areas locations (29) also does not require the responding single neurons to
have spatial receptive fields including the stimulus region, or even have discernible receptive
fields at all (30). Indeed, spatial receptive field properties of numerosity-tuned neurons do not
influence numerosity preferences, tuning width or firing rate. For early visual monotonic
responses, some properties of EEG event related potentials suggest these emerge in V2 or V3
(31), but their precise visual field map and retinotopic location remains unclear.

Here we use computational modeling of human 7T fMRI data to ask precisely where
in the early visual cortex monotonic responses emerge, whether they can be explained by the
spatial frequency domain image representation in the early visual cortex, and how they relate
to location-independent numerosity tuned responses in the human association cortices.

Results
Numerosity response profiles differ between early visual cortex and association cortices

We presented fixed contrast displays of gradually changing numerosity to our
participants while collecting 7T fMRI data (see Methods). We included different stimulus
configurations that held total item area, individual item size, or total item perimeter constant
across numerosities, or placed items in a dense group (Fig. 1). These configurations varied

item size and spacing considerably but produced similar responses.
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Fig. 1: Example displays from each stimulus configuration and numerosity.

Different cortical locations showed different relationships between numerosity and
response amplitude. These were well captured by response models with monotonically
increasing, monotonically decreasing, or tuned responses to log(numerosity) at different
locations (Supplementary Fig. 2c—d). We compared the response variance explained by these
models in cross-validated data (Fig. 2a and Supplementary Fig. 4). Separate visual field
mapping data demonstrate that monotonically increasing responses were consistently found
only in early visual cortex’s central visual field representation. Numerosity tuned response
were found outside early visual cortex, in previously described areas of temporal-occipital,
parietal-occipital, superior parietal, and frontal cortices containing topographic numerosity
maps (5). These largely overlapped with higher extrastriate visual field maps. Monotonically

decreasing responses were found next to areas showing tuned responses.
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Fig. 2: Relationships between responses to numerosity and visual field position. a Visual
position preferences (eccentricity and polar angle, left and middle) and best fitting
numerosity model (right, colors) at each cortical location, for two illustrative participants.
Dashed black lines and labels show visual field map borders and names respectively. b
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Progression of each numerosity model’s fit with preferred visual field eccentricity (colors) in
representative visual field maps (grouped across participants). Cyan shows fits of
monotonically increasing responses to aggregate Fourier power, which are often hidden by
the very similar blue line (monotonically increasing responses to numerosity) that is drawn
on top. Filled circles show mean variance explained per eccentricity bin, error bars show the
standard error of the mean. Solid lines show the best fit to changes with eccentricity, dashed
lines are bootstrap 95% confidence intervals determined by bootstrapping. ¢ Model fit
variance explained by numerosity (tuned, reds) and aggregate Fourier power (monotonically
increasing, blues) response models for each visual field map hemisphere at eccentricities
below 1° (left) and between 2° and 5.5° (right). Points represent the population marginal
mean, error bars are 95% confidence intervals; non-overlapping error bars show significant
differences at p < 0.05.

Early visual monotonic responses

Early visual (V1-V3, LO1) responses were consistently predicted more closely by
monotonically increasing rather than tuned responses to numerosity (Fig. 2b). Critically,
model fits depended on the recording sites’ visual field position preferences: those near
fixation (the stimulus location) showed better fits, gradually decreasing to zero into the
periphery. These progressions were well captured by cumulative Gaussian sigmoid functions
(Supplementary Fig. 5c). Inflection points of these sigmoid curves fell at eccentricities
between one and two degrees of visual angle (Fig. 2b and Supplementary Fig. 2a).

A location-specific monotonic response to numerosity that has emerged by V1 is
perhaps surprising: numerosity is generally considered a complex visual or cognitive feature,
and responses of V1 neurons depend on contrast at specific orientations and spatial
frequencies within their receptive field. Images are often transformed into this spatial
frequency domain using a 2-dimensional Fourier decomposition, which similarly separates
changes across an image into the contrast at each orientation and spatial frequency (32). We
therefore reasoned that aggregate Fourier power (across all orientations and spatial
frequencies) in the spatial frequency domain might closely predict the measured aggregate

response of V1 populations. We summed the absolute Fourier decomposition of the displays

within the first spatial frequency harmonic, across all orientations (Fig. 3a—b). This revealed
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that aggregate Fourier power followed numerosity closely, but nonlinearly, and similarly in
all stimulus configurations (Fig. 3c). The aggregate power of the second harmonic showed a
similar pattern at half the amplitude. Indeed, aggregate Fourier power changed very little over
a wide range of item sizes, spacings and shapes that were not tested in our experiments.
Fourier power followed numerosity closely except in extreme cases, and except for and a
slight increase in Fourier power with item spacing (Fig. 3d—g and Supplementary Figs. 7-10).

Global changes in item contrast do not affect perceived numerosity until items
become less visible (33). However, Fourier power increased linearly with the contrast
between items and the background (Fig. 3h). This effect could therefore be compensated for
simply by divisive normalization: dividing the Fourier power by the mean contrast of the
items. Using a mixture of black and white items gave very slightly (approximately 1.6%)
higher Fourier power than using black items only, which is unsurprising because the
difference in luminance between any item and the rest of the display increased slightly here.

Numerosity perception is less accurate in displays where different items have variable
contrasts than in fixed-contrast displays (34). As we increased the range of item contrasts in a
display, the range of Fourier powers in different displays also increased considerably (Fig.
3i): the 95% confidence intervals were approximately 300% greater when the range of
contrasts was 0.85 than when it was 0.1, regardless of whether Fourier power is normalized
by the mean contrast of the items. The mean Fourier power also increased, but only by
approximately 10%.

Connecting dot pairs with bars reduced the numerosity of items perceived in the
display. This perceived numerosity was originally compared to numerosity perceived when
bars were placed among the dots but fully unconnected (14, 35)(Fig. 3j, black inset). The
Fourier power of a connected pair (red) was lower than fully unconnected dots and bars

(black), superficially predicting the connectedness illusion. However, rotating the dots and
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bars to break the connection (magenta) had the same lower Fourier power while it is
perceived as more numerous. Furthermore, the Fourier power of the connected pair was
greater than the dots alone (gray), while connected pairs are perceived as less numerous than
dots alone. Connecting illusory contour inducers (blue) also reduce perceived numerosity and
had lower Fourier power than dots alone, but these inducers again had the same effect when
rotated to break the connection (cyan). Therefore, while bars and illusory contour affected
Fourier power, these effects were not consistent with perceptual effects: the connectedness

illusion likely results from higher-order segmentation processes (36).


https://doi.org/10.1101/2021.03.28.437364
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.28.437364; this version posted September 29, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Three Four i Seven Twenty

area

Orientat'\O“/
103

10+

10°

10

Constant Constant Constant ®

107

10°

High
density perimeter item size

10°

Fourier power spectral density

b 0 One Two Three Four Five Six Seven Twenty
-t B
S 16l £ fIf f|f it f it f
"-'Q) 1.2 1|2 12 1('2 12 1('2 1’2 1’2 1
e =
S o 0.8
8 Qo4
> 0
e = 20
SN T 16
%"7, ‘1;’ 12 fiff filf fi|f filf fiff filf fif fi|f
cE 308
3L S04
£
e 220
S& 316
88 ° 15 I3 A f.lf filf, flf, f.lf, f,
WE © -
C-: 3 0.8
88- g o4 N
o 0
5 2.0
22 16l f|f flf fi[f flf flf flf f
-g,'a QO_ 1.2 1('2 1|'2 112 12 1|2 1|2 1('2 1
TS 0.8
Io .
he] 0.4
AV
02 6101418 2 6101418 2 6101418 2 6101418 2 6101418 2 6101418 2 6101418 2 6101418
Spatial frequency (cycles/®)
c --Constant area d
5 40 540/ -o-Constant item size 540 8 11%
235 * 3.5 -Constantperimeter ! 3 3.5 [ 340
230 230 -e-High density 230 2 g
Q . [ . Q . Q
=25 N\ =25 oNe =25 one T 7
3 (© - 3 P —> 3 o 3
020 y 020 ?’\‘s\‘“ 8 ?g y 3 g
215 . @15 nic @ 1. . )
< onic = fharmo 5 nic = 4
S0 Second harm! 8.0 Second 540 Second harmo! 5 1
5 0.5 0.5 g 0.5 g 1
<o <o <o <0
123456720 1234586720 12345672 0 40 80 120 160
Numerosity / Numerosity Numerosity Numerosity
e f
830 540 ' 525 525
g 3.5 8 53.5 ® g %
E‘ 3.0 33_0 220 220
§ 25 a““o“\o § 25 o g 15 g 15
520 y . 220 y 3 £
@15 . 015 nic o 1.0 o !
= onic = armo 2 2
10 “second ™ 5o . Second! g 5
So5 / £o05 /I’/ 205 905
<tg .O Z 5 .0 8 0 <,1g 0
12345672 123456720 < 12 5 1020 50100200 50 100 200 400
Numerosity Numerosity Item size (diameter, pixels) Item spacing

.(max pattern diameter, pixels)

?—2_5 !.‘3.5 Contrast Not !_ 35 151.35
ﬂg’ g Black Dnlynormalized normalized g §1 30
oPolygons 3.0 [— [ — ] X .
820 OSta?'/sg g Black&white 830 8_1 .
5., L S ————— L
T 1. 2 = S e = ¥1.207Q°~WA'~V
3 gao # 320 51 .
2107 e 9 g 00000 o 1.5 o 1.5 o
5 © 00 o -‘;10 ‘510 %110 |©®'® © @
) o o1, o
3, 205 205 3" [ XXX
<% 45678 010wm < < <1.007—30 40 60 80 100

0 (]
Polygon corners (Circle) 0 02 04 06 08 1 0 02 04 06 08 1 Item spacing
or star points Contrast Contrast range (edge-to-edge, pixels)


https://doi.org/10.1101/2021.03.28.437364
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.28.437364; this version posted September 29, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Fig. 3: Aggregate Fourier power followed numerosity closely with little effect of item
size, spacing, shape or connectedness. a 2-dimensional Fourier transforms for each image
in Fig. 1. b Fourier power spectral density at each spatial frequency, collapsed over
orientation. The limit of the first harmonic (fi) was used to determine the aggregate Fourier
power of each image. ¢ Aggregate Fourier power b follows numerosity closely and similarly
across stimulus configurations. We divided aggregate Fourier power by the product of
number display pixels and the square root of two here, making the power of one circle
approximately one for any display resolution. Points show the mean power of all stimuli of
the same numerosity in the same stimulus configuration, error bars show the standard
deviation. Upper middle panel shows all configurations overlaid; other panels show
individual configurations. d Aggregate Fourier power as a function of numerosity for a fixed
item size (black line). Red lines show y = x**¢ and y = x*°, which approximate the observed
relationship. e Aggregate Fourier power of one circle of different diameters was
approximately constant for diameters above 3 pixels: smaller circles were inaccurately
rendered. f Aggregate Fourier power for a group of 7 circles (each 16 pixels diameter)
increased slightly with spacing for stimulus area diameters above 70 pixels. Smaller areas had
little space between items: at 50 pixels all items touch (Supplementary Fig. 9). Gray lines
show the standard deviation across displays. g Aggregate Fourier power was approximately
constant for regular polygons above 3 corners. Triangles and 3-pointed stars had greater
Fourier power than circles, while other stars had less Fourier power. h Aggregate Fourier
power for a group of 7 circles (each 16 pixels diameter) increased linearly as the absolute
Weber contrast of items increased (red). Therefore, normalizing Fourier power by dividing by
item contrast gave an approximately constant value for all contrasts (black). Fourier power
was slightly higher for a random mixture of black and white items (magenta and gray) than
only black items (red and black). Fine lines show the 95% confidence intervals across
displays. (I) When item contrasts were randomly chosen from a range centered on 0.5
contrast, the mean Fourier power across displays increased only slightly as this range
increased. The 95% confidence intervals increased considerably. j Effects of connections by a
bar and an illusory contour on Fourier power, together with control dot pairs with the same
change to the dot but no connection and no reduction in perceived numerosity. Compared to
dots alone, bars increased Fourier power while illusory contour inducers reduced Fourier
power, regardless of connectedness.

Several other non-numerical stimulus features have been proposed to account for
numerosity perception because they are correlated with numerosity in some cases, though
none shows this generalization across displays. We quantified several such features for each
numerosity and stimulus configurations (17, 18) and tested predictions of response models
that monotonically follow these features against the recorded early visual (V1-V3) responses.
We tested predictions of position selective pRFs responding either to dot bodies (i.e.
luminance) or edges (i.e. contrast) (5). All of these models predicted response amplitudes

significantly less well than log(numerosity) (all Z > 3.21, p < .0013 in paired Wilcoxon
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signed rank tests, false discovery rate (FDR) corrected (37) for all comparisons against the
log(numerosity) response model, n=20 hemisphere measurements) (Fig. 4a).

However, early visual responses were significantly better predicted by monotonically
increasing responses to log(Fourier power) than log(numerosity) (and all other models), both
across all stimulus configurations (Median difference = 0.0054, Z = 3.92, p = 0.000095, FDR
corrected with the other comparisons against the log(numerosity) model) and within each
configuration, though this difference is not significant in the high density configuration (Z =
1.83, p = 0.0674, FDR corrected for the comparisons in different stimulus configurations)
(Fig. 4c). Conversely, numerosity tuned models predict the tuned response of six previously
identified numerosity maps (5) significantly better than models tuned to aggregate Fourier
power across all stimulus configurations (Median difference = 0.0104, Z = -3.32, p =
0.00089) (Fig. 4b), as previously shown for other non-numerical features (17, 18).
Numerosity-tuned models also fit better within each stimulus configuration, though this
difference is not significant in the high density configuration (Z = -1.46, p = 0.1454, FDR

corrected for the comparisons in different stimulus configurations) (Fig. 4d).
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Fig. 4: Responses to aggregate Fourier power predict early visual monotonic responses
better than numerosity, but numerosity predicts tuned responses better. a Variance
explained by monotonic response models for numerosity and non-numerical visual features,
and visual position selective pRF models in V1-V3. b Variance explained by tuned response
models for numerosity and aggregate Fourier power in the association cortex numerosity
maps. ¢ Variance explained by monotonic response models for numerosity (saturated bars)
and Fourier power (unsaturated bars) in V1-V3 in each stimulus configuration. d Variance
explained by tuned response models for numerosity and Fourier power in the association
cortex numerosity maps in each stimulus configuration. Bar height is the mean variance
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explained across all maps. Error bars show 95% confidence intervals, reflecting the range of
fits between individual maps. Markers show the median variance explained for each measure:
different shapes are different participants; filled and unfilled symbols are odd and even runs;
black is left hemisphere and gray is right hemisphere. P-values show significance of
differences in paired Wilcoxon signed rank tests.
Comparison to neural network models

Although it is beyond the scope of this study to implement neural network models and
test how they respond to our stimuli, the studies of Stoianov and Zorzi (22) (their
Supplementary Figure 4A) and Kim and colleagues (24) (their Figure 5B) show that the
monotonic responses in their networks increase nonlinearly with numerosity. We therefore
ask whether this nonlinearity follows the nonlinear relationship between numerosity and
Fourier power. We took the data from 8 lines shown in each of these studies and normalized
these to fall within the same range (Fig. 5). This revealed that both studies show very similar
relationships between numerosity and response amplitude, which was not apparent in the
original figures because they use log (Figure 5A) and linear (Figure 5B) numerosity axes

respectively. We then rescaled the log(numerosity) function and the relationship between
numerosity and aggregate Fourier power to best fit all these data points. Finally, we fit the
quadratic function that best follows these data points (response o -0.0147 x numerosity* +
numerosity). This set of lines was better correlated with aggregate Fourier power than
log(numerosity) (p = 0.000001, t = 7.62, n = 16 lines, in a paired t-test of correlation
coefficients). There was no significant difference in the correlation of these lines with
aggregate Fourier power and the best fitting quadratic function (p = 0.53, t = 0.63, n = 16).
Therefore, like the responses of the early visual cortex, the monotonic responses in a
hierarchical generative network trained to efficiently encode images (22) and in an untrained
deep convolutional neural network (24) both follow aggregate Fourier power more closely
than numerosity. We did not extend this comparison to numerosity-tuned responses, which

exhibit a range of preferred numerosities rather than having a single shape. Furthermore, the
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population tuning functions of our fMRI voxels are broader and not straightforwardly

comparable to the single-unit tuning functions of neural network models.
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Fig. 5: Comparison between the monotonic responses in neural network models of
numerosity processing and the relationship of numerosity to aggregate Fourier power. a
Shown on a log numerosity scale, following Stoianov and Zorzi (22). b Shown on a linear
scale following Kim and colleagues (24). Responses shown in neural network studies (black
and gray lines) are fit very closely by the relationship between numerosity and aggregate
Fourier power (red), more closely than by log(numerosity) and similarly to the best quadratic
fit to these responses.
Differences in model fits within and between visual field maps

We separated each visual field map into two eccentricity ranges: near to the
stimulus/fixation (below 1° eccentricity) and far from the stimulus/fixation (2-5.5°
eccentricity). A linear mixed-effects model (fixed effects: visual field map, eccentricity range;
random effects: participant) revealed that monotonically increasing Fourier power response
models fit better near fixation (p = 4.4 x 107, F(1, 148) = 27.94), and differed between visual
field maps (p < 107, F(16, 148) = 10.44). Post-hoc multiple comparisons revealed better

model fits in the early visual field maps (V1, V2, V3, LO1) than elsewhere (Fig. 2c).
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Numerosity tuned response model fits also differed between visual field maps (p < 10°
1 F(16, 133) = 10.79) in a similar linear mixed-effects model, but here post-hoc multiple
comparisons showed poorer model fits in the early visual field maps than elsewhere. Also,
unlike monotonically increasing Fourier power responses of early visual field maps,
numerosity tuned response model fits did not differ significantly between near and far
eccentricities (p = 0.195, F(1, 133) = 1.70). Therefore, progressions of tuned model fits with
eccentricity were captured better by quadratic than sigmoid functions (Supplementary Fig.

5¢).

Monotonically decreasing responses outside early visual cortex

Some monotonically decreasing responses were seen outside early visual cortex.
Average model fits across whole visual field maps did not differ significantly between
monotonically decreasing and tuned numerosity models (one-way ANOVA, p = 0.281, F(1,
283) = 1.17). However, tuned models fit better (p = 0.0003, F(1, 49) = 14.86) within the
previously described numerosity maps. Monotonically decreasing models generally fit better
just outside the numerosity maps (Fig. 2a). Such responses are predicted by computational
models of numerosity-tuned response derivation (21, 24), but typically at early stages
preceding numerosity tuned responses, not alongside them (though see (23)). Alternatively,
numerosity-tuned neural populations with preferred numerosities below one (38) would also
decrease their responses as numerosity increases. These populations would be expected in the
continuous topographic representation of numerosity, near populations with low numerosity
preferences. We calculated the cortical distance between each recording site best fit by a
numerosity tuned response and the nearest recording site best fit by a monotonically

decreasing response. This distance was significantly positively correlated with the recording

site’s preferred numerosity (Spearman rank order correlation, p = 0.585, p < 0.001; see
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Supplementary Fig. 11), suggesting monotonically decreasing sites are tuned, but with

preferred numerosities below one.

Discussion
We found monotonic increases in neural population response amplitude with increasing
numerosity in the retinotopic locations of our stimuli, beginning in V1. While these
monotonic responses follow numerosity closely, they are better predicted by aggregate
Fourier power, which follows numerosity closely over a wide range of stimulus parameters
for a fixed contrast. Monotonic responses shown in neural network studies of numerosity
were also better predicted by aggregate Fourier power than by numerosity. Conversely, tuned
responses overlapping with visual field maps in association cortices were not limited to the
stimulus’s retinotopic location, and were better predicted by tuning for numerosity than
aggregate Fourier power. We also found monotonically decreasing responses to numerosity
near recording sites tuned to low numerosities, likely reflecting tuning for numerosities below

one.

Numerosity is generally seen as a high-level visual feature or cognitive property,
while Fourier power is a low-level representation of image contrast. Contrast energy at
specific orientations and spatial frequencies drives V1 neurons’ responses (27). Therefore, the
cortical response to any visual image begins with an approximate Fourier decomposition (27,
32). This transforms the visual image from the spatial domain (the image’s projection onto
the retina) to the spatial frequency domain (a neural representation of the spatial frequency,
orientation and phase of contrast). In the spatial domain, it does not seem possible to estimate
numerosity regardless of item size and spacing: the area that must be integrated and the

luminance, contrast or edge extent within that area change with item size and spacing.
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However, numerosity is not directly estimated from the visual image, it is estimated from the
early visual image representation, which is in the spatial frequency domain. Many functions
in the spatial domain correspond to other functions in the frequency domain, and numerosity
(spatial domain) corresponds to a nonlinear function of aggregate Fourier power (frequency
domain) at a fixed contrast. This makes it potentially straightforward to estimate numerosity
from the early visual, frequency domain image representation. Functional neuroimaging
measures aggregate responses of large neural populations with a broad range of orientation
and spatial frequency preferences (39). Aggregate Fourier power similarly sums contrast
energy across orientations and spatial frequencies, and we propose this is why early visual
neuroimaging responses follow numerosity with little effect of size or spacing: these early
visual responses reflect aggregate Fourier power.

It is possible to generate phase-scrambled images that contain the same Fourier power
distributions but with the locations of image contrast (an orthogonal phase component in the
frequency domain) randomized. Such images yield strong responses in primary visual cortex,
but even V2 responds poorly to such images as they lack the phase (position) structure found
in natural images (40). Hard edges contain contrast at many frequencies with linked phases.
Analysis of this phase structure may be important for object individuation. Therefore, we
expect phase (position) structure to be required for numerosity-tuned responses to be derived
from early visual, frequency domain image representations. As such, derivation of numerosity
from frequency domain image representations simplifies object normalization processes that
are required to disregard size and spacing, but is still compatible with object individuation
processes and may also simplify these.

We sum Fourier power only within the first harmonic. This is a clear local minimum
in the Fourier spectrum, but its spatial frequency varies with item size. The visual system

seems unlikely to flexibly identify this limit and aggregate responses within it as we do in our
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analyses. We use this limit because the aggregate Fourier power in every harmonic (and so
the total Fourier power to infinite spatial frequency) is proportional to the power in the first
harmonic. For example, we show that the second harmonic’s power also follows numerosity
closely, at half the amplitude. However, using a discrete Fourier decomposition on a pixelated
image we cannot evaluate the power in further harmonic because they exceed the Nyquist
frequency (a mathematical limit on which frequencies can be evaluated at a given sampling
density). We therefore use a metric we can quantify that is equivalent to total Fourier power.
The human visual system transforms images into the spatial frequency domain, but it does
not use a discrete Fourier decomposition and its input is not pixelated: these are limitations
imposed by computer models. Nevertheless, the visual system is still likely to have some
spatial frequency limit. The finding that the aggregate response of early visual cortex is not
affected by item size (25, 26) suggests it does not follow the Fourier power over a fixed
spatial frequency range, but is proportional to aggregate Fourier power in the first harmonic
and so to total Fourier power. It is unclear why this is so. It may be that the visual system
samples the image very densely (certainly far more densely than 768 x 768 pixels as we do
here) and little power falls beyond the frequencies it can evaluate. Alternatively, neurons
responding to a specific spatial frequency and its harmonics will typically be activated
together and are likely to interact. Although the nature of these interactions is unclear,
responses to higher harmonics may be suppressed, for example. Finally, there are certainly
differences between the visual system’s spatial frequency representation and a discrete
Fourier decomposition, which is only a mathematical model. But it is clear that numerosity
could be straightforwardly estimated from V1’s population response, as it is from a Fourier
transform. The properties of lab numerosity displays in a Fourier transform and the Fourier
decomposition’s close relationship to early visual spatial frequency analysis give an insight

into how this computation could be achieved.
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Aggregate Fourier power within the first harmonic follows numerosity closely
because it is approximately constant with item size and spacing. Why is this constant?
Increasing item size moves Fourier power to a narrower range of lower spatial frequencies
(Supplementary Fig. 8). Its extent in the Fourier spectrum (bandwidth) follows 1/period,
because spatial frequency is the inverse of spatial period. Conversely, Fourier power spectral
density is high at these low frequencies because power spectral density of hard edges follows
1/frequency. Aggregate Fourier power, reflecting the product of bandwidth (1/period, i.e.
frequency) and amplitude (1/frequency), is therefore constant.

Previous computational studies using neural networks have shown monotonically
increasing responses to numerosity in a network that first decomposes the image using spatial
receptive fields with surround suppression (22), as in the early visual system. This is
conceptually similar to the transformation into the spatial frequency domain image
representation that we describe. These networks’ monotonic responses are also spatially
selective (22) and almost independent of item size (19), like we see here, when trained as
generative models of numerosity displays. Even when network connections are randomly
weighted, monotonic and numerosity-tuned units are found, suggesting that numerosity is
reflected in image statistics (19, 24). Aggregate Fourier power may provide an effective
statistic given that it is so straightforward to determine in spatial frequency domain image
representations, and that the monotonic responses in these networks follow aggregate Fourier
power more closely than they follow numerosity. Training to efficiently encode (but not
discriminate) numerosity displays increases the discriminability of different numerosities
from the network responses and reduces the influence of non-numerical properties of test
displays (19). When transformed into the spatial frequency domain, numerosity displays (like
the natural images biological visual systems learn from (41)) have the same 1/frequency

power distribution that we propose underlies the size invariance of monotonic responses.
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Therefore, this training may make network responses more sensitive to numerosity by
incorporating this distribution into the spatial structure of network connections.

The aggregate Fourier power of a group of items is affected only slightly by its
spacing. In Fourier decompositions, position becomes a phase component that we do not
analyze. Like item size, spacing does not affect Fourier power because increasing the distance
between items moves power to lower frequencies, with lower bandwidths and higher
amplitudes. Nevertheless, the ratio of item size and spacing affects which frequencies fall
within the first harmonic (Supplementary Fig. 9). If the distance between items is smaller
than the item size, the between-item component of the Fourier spectrum falls outside the first
harmonic, reducing power within this harmonic. Studies of numerosity perception avoid such
crowding. If item spacing is very low (almost touching), the local minimum used to identify
the first harmonic reflects group size rather than item size. Aggregate power then reflects one
item (the group) rather than the group’s numerosity. Neither limitation would affect Fourier
power if aggregated by the visual system over all frequencies.

On the other hand, item shape affects aggregate Fourier power considerably. Triangles
have a greater aggregate Fourier power than other polygons (which have similar power to
circles). Notably, their Fourier spectrum lacks a clear local minimum because a triangle’s
sides are so far from parallel (Supplementary Fig. 10). Our procedure may therefore
overestimate the first harmonic’s extent. Conversely, most stars have less aggregate Fourier
power than polygons and circles. Stars contain higher frequency features that fall beyond the
first harmonic. Again, neither limitation would affect Fourier power if aggregated by the

visual system over all frequencies.

Numerosity estimation from aggregate Fourier power may explain several known

effects of stimulus properties on numerosity perception. First, increasing item spacing
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slightly increases Fourier power and increases perceived numerosity (16). Similarly, tightly
crowding items together reduces Fourier power and reduces perceived numerosity (34, 42,
43). Second, blurring items decreases their range of spatial frequencies, and reduces
perceived numerosity (34). Third, complex shapes disrupt the relationship between
numerosity and Fourier power. Such shapes affect both perceived numerosity (35) and early
visual response amplitudes (36). So perceived numerosity, like V1 activation, depends on
image properties.

Unlike Fourier decompositions, biological visual systems process different image
locations with distinct neural populations. Our stimulus fell entirely in the central visual field.
Humans can only integrate a limited spatial extent to estimate numerosity without making
eye movements (44, 45). Very high numerosity stimuli must either be too large to see at a
glance, be so dense that items are crowded, or use items too small to resolve. Aggregate
Fourier power is unaffected by such limitations, so follows numerosity closely until at least
175. Human vision perceives such high numerosities differently to lower numerosities (46).
So, the human visual system may approximate a Fourier decomposition to transform the
image into the frequency domain, but has its own limitations.

Previous studies of non-numerical features in numerosity stimuli have focused on
total item perimeter, area, density, or pattern extent. These follow numerosity in some stimuli
(17, 18), but any single feature can be kept constant across numerosities. Numerosity
estimation in the spatial frequency domain moves beyond this approach because item size
and spacing have little effect here. Nevertheless, complex shapes, crowding, blurring, phase
scrambling and contrast variations disrupt the relationship between numerosity and aggregate
Fourier power. These factors therefore allow strong tests that a human or animal is
responding to numerosity rather than aggregate Fourier power alone, which would otherwise

give the appearance of numerosity-guided behavior and may itself be beneficial.
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Some researchers have seen texture or spatial frequency metrics as non-numerical
image features that can be used to perform numerosity discrimination tasks without true
numerosity perception (13, 14, 47). Numerosity’s potentially straightforward estimation from
the early visual spatial frequency domain image representation does not imply that humans
perceive aggregate Fourier power rather than numerosity, but instead shows how numerosity
itself could be straightforwardly estimated in the brain.

However, further processes are certainly involved in numerosity perception. There are
situations where numerosity perception differs from true image numerosity. First, connecting
items with lines or illusory contours (35, 48, 49) reduces perceived numerosity. This is
generally thought to reflect higher-level grouping processes rather than image features (47).
We show that lines or illusory contour inducers on items affect Fourier power, but this effect
does not depend on whether a connection between items is formed. Conversely, in the
connectedness illusion the reduction in perceived numerosity requires a connection. This is
consistent with early visual EEG event related potentials, which initially reflect numerosity
with no effect of connectedness, and are only affected by connectedness later (36). So, the
connectedness illusion does not affect numerosity perception at the stage of numerosity
estimation and is likely to reflect later processes. Similarly, numerosity adaptation affects
numerosity perception (50) without affecting image content. This affects numerosity-tuned
neural responses (51) but it is unclear whether early visual responses are also affected.
Adaptation to the rate of finger tapping also affects visual numerosity perception (52) , and
this effect seems very unlikely to arise in early visual cortex. Higher-level effects and
contextual effects on numerosity perception are expected considering the extensive network
of numerosity-tuned responses in human association cortices, which successively transform
the representation of numerosity and include areas involved in attention, multisensory

integration and action planning (5, 53).
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Our model for estimating numerosity from aggregate Fourier power is conceptually
similar to a spatial frequency analysis that Dakin and colleagues proposed to explain why
numerosity perception is affected by density in very dense displays (14). That analysis uses
the responses of high spatial frequency Laplacian Gaussian filters as a metric for numerosity.
Such filters are not orientation-selective and do not transform the image into the spatial
frequency domain, so do not closely model the response selectivity of neurons early visual
cortex. Dakin and colleagues’ analysis was limited to items of a single size. Any such high
spatial frequency filter’s response is strongly affected by item size (Supplementary Fig. 12a—
c) while early visual cortex responses (25, 26), numerosity tuned responses (2, 4, 17) and
numerosity perception (15, 16) are not. Therefore, this filter response predicts early visual
responses poorly (Fig. 4a), as we have previously shown for numerosity-tuned responses (17,
18). Dakin and colleagues proposed that subjects perceive the response ratio of high and low
spatial frequency filters, which is affected by density, rather than perceiving numerosity.
Aggregate Fourier power is similarly affected by density. Their response ratio metric does not
closely follow numerosity (Supplementary Fig. 12d) and also predicts early visual responses
poorly (Fig. 4a), while aggregate Fourier power potentially allows straightforward estimation
of numerosity itself. These differences are vital because humans rapidly and spontaneously
perceive numerosity (15, 16). Therefore, while we were inspired by their insight that
numerosity must be estimated from early visual responses, both of Dakin and colleagues’
proposed metrics for numerical vision predict neural responses and perception of numerosity

poorly, particularly with respect to item size changes.

Models for subsequently computing numerosity-tuned responses rely on comparing
monotonically increasing and decreasing responses (20, 21, 24), with their relative weights

determining numerosity preferences. Human early visual population receptive fields have


https://doi.org/10.1101/2021.03.28.437364
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.28.437364; this version posted September 29, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

inhibitory surrounds (54), so populations with receptive fields further from stimulus area
should monotonically decrease their responses with increasing numerosity. However, we
observe no early visual monotonically decreasing responses, perhaps because negative fMRI
responses have low amplitudes or fewer neurons with monotonically decreasing responses
are needed (21). Using differently weighted excitatory and inhibitory synapses, tuned
responses could be computed with monotonically increasing inputs only (20, 24). So, early
visual neural populations alone may provide sufficient inputs to derive numerosity-tuned
responses.

Numerosity-tuned responses emerge in neural network computational models trained
to efficiently encode numerosity displays, or even if all weights are random (19, 24). If
monotonic responses here arise from relationships between numerosity and image statistics
(as we propose above), random weights from two resulting monotonic units could produce
numerosity-tuned units with various numerosity preferences. These neural network models
produce monotonic responses very early, by their second (22) or third (24) layers.
Numerosity-tuned units can occur in the same layer (23), though in a feedforward deep
convolutional network (24) numerosity-tuned units occur later, in the fourth layer, and are
derived from responses of monotonic units in the third layer. Another deep convolutional
neural network trained for object recognition (55) shows monotonic and numerosity-tuned
units far later, in layers 11 and 13 respectively. Responses of earlier layers were not examined
there, perhaps because only later units have inputs converging from the entire image. We kept
our numerosity patterns small so that eye movements were not required to see the whole
pattern clearly, and these patterns should easily fall within V1 population receptive fields.
Late-stage responses in a ventral stream model do not seem to be a close model for either the
monotonic responses of the human brain’s early visual cortex (25, 26) or the emergence of

numerosity-tuned neurons in the lateral occipital cortex and their spread through the dorsal
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visual stream areas of the superior parietal lobule (5, 56). Nevertheless, both response types
seem so straightforward to compute that they may also emerge in ventral stream areas to
support object recognition processes. They may also emerge far later than early visual cortex
if the items are spread over a large area (too big for early visual receptive fields), though even
here the response of an early visual neural population should follow numerosity if averaged
over many displays.

The transformation from monotonic to tuned responses that our results suggest also
seems to transform Fourier power to numerosity. Which further processes would be needed to
transform the early visual aggregate Fourier power response into a representation of
numerosity that follows perceptual properties? We did not manipulate image contrast (i.e. dot
darkness) in our fMRI stimuli, but Fourier power linearly decreases as contrast is reduced. It
is well established that early visual neural response amplitudes depend on image contrast
(57), so we expect that reducing image contrast would reduce V1 response amplitudes.
Therefore, early visual responses are unlikely to follow numerosity (as others have proposed)
as numerosity does not depend on contrast, and more likely to follow aggregate Fourier
power (as we propose) as this does depend on contrast. Transforming early visual Fourier
power responses into numerosity tuned responses would also require normalization for image
contrast. Unlike early visual field maps, the responses of the first areas where we find
numerosity tuned responses (visual field maps TO1 and TO2, i.e. area MT) are minimally
effected by contrast (57). Therefore, contrast normalization at this stage would be sufficient
to yield contrast-independent numerosity tuned responses. Global image contrast changes do
not affect perceived numerosity until items become less visible (33). But contrast variations
within a display may disrupt global normalization processes, potentially underlying the lower
numerosity discrimination performance in contrast-varying displays compared to fixed

contrast displays (34). Indeed, our results show that the range of aggregate Fourier power
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levels in different displays increased considerably as the range of contrasts increased,
regardless of whether Fourier power is normalized by mean item contrast. The mean
aggregate Fourier power across displays increased only slightly here, so any bias in perceived
numerosity would likely be hard to detect given the large variation.

After contrast normalization, converting from aggregate Fourier power to numerosity
may be as simple as including an exponential nonlinearity to compensate for sub-additive
accumulation of Fourier power with numerosity. Nonlinear interactions between excitatory
and inhibitory inputs to numerosity-tuned populations seem sufficient to implement this. This
nonlinearity is the main difference between predictions of monotonically increasing
responses to Fourier power and numerosity in our stimulus set. As a compressive
nonlinearity, this might reflect fMRI response amplitude saturation with increasing neural
activity. We believe this interpretation is unlikely because our numerosity stimuli produce
response amplitudes far below the early visual cortex’s maximum fMRI response, and the
same compressive nonlinearity is seen in monotonic responses of neural network models. We
would not expect numerosity-tuned responses to show such saturation because they don’t
increase response amplitude with numerosity.

Our experimental design cannot conclusively demonstrate that numerosity-tuned
responses are derived from early visual frequency domain image representations, because we
do not disrupt the early visual image representation and show effects on numerosity-tuned
responses. Nevertheless, several findings suggest numerosity-tuned responses are computed
from these early visual monotonic responses. First, almost all visual inputs to the cortex come
through the primary visual cortex, which represents image features in the frequency domain
and shows monotonic responses. There is no other known pathway through which
numerosity-tuned neurons could be activated by visual inputs. Second, proceeding through

the visual hierarchy, monotonic response model fits decrease in the same lateral occipital
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visual field maps where numerosity-tuned response model fits begin increasing, suggesting a
transformation from monotonic to tuned responses. Third, computational models for
numerosity-tuned responses (20-24) generally derive these responses from monotonic
responses to numerosity. Our results differ from this process only by showing that early
visual monotonic responses more closely follow frequency domain image properties, which
also predict monotonic neural network responses more closely than numerosity does.

Unlike early visual monotonically increasing responses, numerosity tuned responses
are not limited to neural populations with spatial receptive fields including the stimulus area.
At the macroscopic scale, topographic maps of visual space and numerosity largely overlap,
perhaps unsurprising as both are visually driven. This goes against the simplistic view of
single brain areas having single functions. Indeed numerosity selectivity is found in many
brain areas with diverse functions (5), many with spatial aspects: motion perception, spatial
attention and eye movements (58-61). Numerical representations here may facilitate motion
tracking, dividing attention and planning eye movements across multiple items respectively
(5, 44, 45, 62, 63). But at a finer scale these response preferences are independent (5, 28),
perhaps allowing neural responses to numerosity regardless of stimulus position (30). Linking
specific numerosities and visual field positions would restrict all of these processes, and there
is no link between particular numerosities and visual field positions in our stimuli or natural
scenes. Conversely, to begin estimating numerosity from image contrast requires analysis of

spatial responses in the stimulus area.

This distinction between the spatial selectivity of early visual monotonically
responding populations and tuned populations in association cortices may reflect fundamental
differences between the processes that estimate and use numerosity. Simpler animals like

bees, zebrafish and newborn chickens display numerosity guided behaviors, but lack the
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complex numerical cognition of humans. Our findings suggest that apparently numerosity-
guided behaviors in these animals may require only selective responses to orientation and
spatial frequency in their simpler visual systems (64-66), with or without extracting
numerosity from these spatial representations (67). The human brain appears to have built

complex cognitive functions with inputs from these simple numerical responses (62).

Methods
Participants

We acquired fMRI data from eleven participants (aged 25-39 years, one female, one
left-handed). All had normal or corrected-to-normal visual acuity, good mathematical abilities
and were well educated. Participants were familiarized with the numerosity stimuli using
tasks that required numerosity judgments before scanning. Written informed consent was
obtained from all participants. All experimental procedures were approved by the ethics
committee of University Medical Center Utrecht.

Data from participants P1-P5 were included in a previous study (5), although we use
updated preprocessing protocols here. These participants were scanned while viewing all four
stimulus configurations (Fig. 1), to test for responses to non-numerical features over a broad
range of stimulus parameters. P6-P11 were only scanned while viewing the constant area and
constant size configurations: previous studies show very similar responses across stimulus
configurations, and non-numerical features that differ between configurations predict

numerosity selective (17) and monotonic (25) responses poorly.

Visual stimuli
Following experimental protocols described previously (4, 5, 28), we acquired 7T

fMRI data while participants viewed numerosity and visual field mapping stimuli. All stimuli
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were presented by back-projection on a 15 X 9 cm screen inside the MRI bore, which
participants viewed through prism glasses and a mirror attached to the head coil. Distance
from the participants’ eyes to the display was 41 c¢cm, with a visible resolution of 1,024 x 538
pixels.

Visual stimuli were generated using MATLAB and Psychtoolbox-3 (68). Stimuli were
sets of black circles (items) on a middle gray background. A diagonal cross of thin red lines
intersected the center of the screen and covered the entire display throughout the experiment
to aid with accurate fixation.

Numerosity stimuli consisted of groups of black dots (items) within 0.75° (visual
angle, radius) of a fixation cross at the center of the display. We used four stimulus
configurations with different progressions of item size and spacing with numerosity (Fig. 1).
The first three kept total item area (and display luminance), individual item size, or total item
perimeter constant. These placed items randomly but approximately homogeneously within
the stimulus area. The fourth (“high density”) grouped the items constant total item area
entirely inside a 0.375° radius circular area, randomly placed inside the stimulus area. 10% of
displays showed white items instead of black, and participants responded to these displays
with a button press (80-100% accurately in each run). No numerosity judgments were
required.

The numerosities one through seven were first presented in ascending order, with
numerosity changing every 4200 ms (two TRs, see Supplementary Fig. 1c—d inset). Within
this period, a numerosity pattern was shown for 300 ms, alternating with 400 ms of gray
background, repeated six times. Each numerosity pattern had items drawn in new, random
positions. These short presentations prevented participants from counting. Following this,
twenty items were presented in the same way for eight TRs (16.8s, 24 presentations of a

pattern). These periods of twenty items served to distinguish between very small and very
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large tuning widths (4, 69). Then numerosities one through seven were presented as before,
but in descending order, followed by another long period of twenty items. This cycle was
repeated 4 times in each scanning run.

Repeated presentation of stimuli with the same numerosity likely caused some
adaptation (50) or repetition suppression. To minimize effects of adaptation on estimated
response models, we used a single model to summarize responses to both increasing and
decreasing numerosity. This ensured each numerosity presentation was preceded by stimuli
that caused both higher and lower responses, reducing dependence on preceding stimuli.

In a separate scanning session, visual field mapping was used to delineate visual field
maps and determine the position selectivity of our recording sites, following protocols
described previously (69, 70). Briefly, a bar filled with a moving checkerboard pattern
stepped across a 6.35° (radius) circle in the display center in eight (cardinal and diagonal)
directions. Participants fixated the same central fixation cross, pressing a button when this

changed color to ensure fixation and attention.

fMRI acquisition and data pre-processing

We acquired MRI data on a 7T Philips Achieva scanner, following protocols described
fully in our previous studies (5, 28, 71). Briefly, we acquired T1-weighted anatomical scans,
automatically segmented these with Freesurfer, then manually edited labels to minimize
segmentation errors using ITK-SNAP. This provided a highly accurate cortical surface model
at the gray-white matter border to characterize cortical organization. We acquired T2*-
weighted functional images using a 32-channel head coil at a resolution of 1.77 x 1.77 x 1.75
mm, with 41 interleaved slices of 128 x 128 voxels. The resulting field of view was 227 x
227 x 72 mm. TR was 2100 ms, TE was 25 ms, and flip angle was 70 degrees. We used a

single shot gradient echo sequence with SENSE acceleration factor 3.0 and anterior-posterior
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encoding. This covered most of the brain but omitted anterior frontal and temporal lobes,
where 7T fMRI has low response amplitudes and large spatial distortions. Each functional
run acquired 182 images (382.2s) of which the first six (12.6s) were discarded to ensure a
steady signal state. In each scan session, we acquired six to eight repeated runs in one
stimulus configuration, plus a top-up scan with the opposite phase-encoding direction to
correct for image distortion in the gradient encoding direction (72), and a T1-weighted
anatomical image with the same resolution, position and orientation as the functional data.
Different stimulus configurations were tested in different sessions.

Co-registration of functional data to the high-resolution anatomical space was
performed using AFNI (afni.nimh.nih.gov; (73)), which differs from our previous studies. A
single transformation matrix was constructed, incorporating all the steps from the raw data to
the cortical surface model to reduce the number of interpolation steps to one. No other spatial
or temporal smoothing procedures were applied. A T1 image with the same resolution,
position and orientation as the functional data was first used to determine the transformation
to a higher resolution (1 mm isotropic) whole-brain T1 image (3dUnifize, 3dAllineate). For
the fMRI data, we first applied motion correction to two series of images that were acquired
using opposing phase-encoding directions (3dvolreg). Subsequently, we determined the
distortion transformation between the average images of these two series (3dQwarp). We then
determined the transformation in brain position between and within functional scans
(3dNwarpApply). Then we determined the transformation that co-registers this functional
data to the T1 acquired in the same space (3dvolreg). We applied the product of all these
transformations to every functional volume to transform our functional data to the whole-
brain T1 anatomy. We repeated this for each fMRI session to transform all their data to the

same anatomical space.
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We then imported these data into mrVista (github.com/vistalab/vistasoft). We
averaged visual field mapping scan runs. We averaged scans in the same numerosity stimulus
configuration together. For each stimulus configuration we also averaged data from odd runs
and averaged data from even runs for cross-validation. Within these averaged runs, we

averaged repeated stimulus cycles.

Analyses of visual features co-varying with numerosity

Following previously described methods (17, 18), we quantified several non-
numerical features of each display in each numerosity stimulus configuration using methods
analogous to those described fully in (17). For monotonic models, we tested predictions of
responses monotonically increasing or decreasing linearly or logarithmically (whichever fit
best) with: [1] numerosity; individual item [2] area and [3] perimeter; total item [4] area (74)
and [5] perimeter (75); [6] area and [7] perimeter of the convex hull (76); density of [8]
luminance, [9] edges, and [10] number within the convex hull; root mean square contrast [11]
across the display and [12] in the convex hull; and [13] aggregate Fourier power. We also
tested a model proposed to capture numerosity perception using the responses of a high
spatial frequency Laplacian of Gaussian center-surround filter (14). We used a filter with a 2-
pixel standard deviation here, but other filter sizes made very similar predictions
(Supplementary Fig. 12). We convolved this filter with each image and summed the response
over all image locations. We also tested the ratio of responses of high and low spatial
frequency filters (the response ratio model (14)). We used filters with standard deviations of 1
and 34 pixels here as the prediction of this filter pair was most strongly correlated with
numerosity in our displays. We also tested spatial pRF models following the visual positions

of [14] edges and [15] luminance, summing these across all displays of the same numerosity.
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Additionally, for each display we determined the aggregate Fourier power within the
first harmonic using MATLAB functions. We first normalized each image to a value of zero
on the background and one in the items. We took a two-dimensional Fourier transform of the
resulting image (fft2) and shifted the zero-frequency component to the center (fftshift) (Fig.
3a). We then took annular frequency bins (at all orientations) at intervals of 1 cycle/image
(excluding zero frequency), in which we summed the absolute power spectral density (PSD)
of the Fourier transform. Plotting PSD across frequencies (Fig. 3b) identifies a clear local
minimum at the end of the first harmonic. We identified this by finding the lowest frequency
above the frequency of the global maximum PSD where: either the first or second derivative
of PSD reaches its maximum and the PSD is below 25% of the global maximum PSD. This
effectively identifies the sharpest change in PSD, i.e. the end of the first harmonic, avoiding
artefacts resulting from the image pixelation or Fourier transform discretization. We summed
PSDs of all frequency bins until this frequency to give the aggregate Fourier power in the
first harmonic for each display. We also determined how well the relationship between
aggregate Fourier power and numerosity generalizes across a much greater range of item
sizes, spacings and shapes that were not included in our fMRI experiments. Display
resolution affects Fourier power. We arbitrarily evaluated our stimuli’s power in 768 x 768-
pixel images but divided it by 768 x 768 x 2°° to generalize to any resolution. This makes
aggregate Fourier power in the first harmonic very nearly one for one-item displays.

We used the following MATLAB code to determine the aggregate Fourier power in

the first harmonic, from images placed in the image buffer using Psychtoolbox-3 (68):

ItemColor = @; %Intensity values in the first color channel
BackgroundColor = 128;
GetImageSize = 768; %Image must be square, must be an even number of pixels

%Get image from image buffer

NumImage = Screen('GetImage', display.windowPtr, [display.numpixels(1)/2-
GetImageSize/2 display.numpixels(2)/2-GetImageSize/2
display.numpixels(1)/2+GetImageSize/2
display.numpixels(2)/2+GetImageSize/2]);
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%Normalise image so background is zero and item is one
NumImage = (BackgroundColor-single(NumImage(:,:,1)))./(BackgroundColor -
ItemColor);

%Take 2D Fourier transform, shift zero frequency component to centre
FourierImage = abs(single(fftshift(fft2(NumImage, GetImageSize,
GetImageSize))));

%Sum over all orientations for each frequency
[X,y] = meshgrid(-GetImageSize/2:GetImageSize/2-1, -GetImageSize/2:
GetImageSize/2-1);
[~,Radius] = cart2pol(x,y);
Radius = round(Radius);
FregBins = zeros(1, (GetImageSize/2));
for RadCounter = 1:(GetImageSize/2)
FregBins(RadCounter) = sum(FourierImage(Radius==RadCounter));
end

%Find the 1imit of the first harmonic. For robustness, use the 1st and 2nd
derivative, and use whichever returns the lowest frequency.
[maxval, maxPos] = max(FreqBins);

derivl = [diff(FregBins)];

derivi(FregBins>(maxval/4)) = 0;

derivi(1:maxPos) = 0;

[~, whichMin1] = max(derivl);

deriv2 = [0 diff(diff(FreqBins))];
deriv2(FreqgBins>(maxval/4)) = 0;

deriv2(1:maxPos) = 0;

[~, whichMin2] = max(deriv2);

whichMin = min([whichMinl whichMin2]);

%Sum to this limit to get the aggregate Fourier power in the first harmonic
AggregatePower = sum(FregBins(1:whichMin));

%Compensate for the image resolution
AggregatePower = AggregatePower/(GetImageSizen2*sqrt(2));

%To convert this to a numerosity estimate if preferred. This is somewhat
approximate and descriptive of the observed relationship.
NumerosityEstimate = AggregatePowern2.2;

We also determined how well the relationship between aggregate Fourier power and
numerosity generalizes across a much greater range of item sizes, spacings and shapes that
were not included in our fMRI experiments. We tested single circles from 1-240 pixels
diameter placed at the image center. We then tested images of 7 circles, each of diameter 16
pixels, spaced randomly but evenly within a 50 to 528 pixel diameter circular area. The

minimum center-to-center distance increased with the group area. We then tested images of
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16-pixel diameter circles from numerosity 1-175 within a 700-pixel diameter circular area,
placed at least 24 pixels apart (edge-to-edge).

We then tested regular convex polygons from 3 corners (equilateral triangle) to 10
corners (regular decagon), plus a circle (i.e. infinite corners), with all corners 30 pixels
(radius) from the image center. We also tested regular stars with 3 to 10 points (at 30 pixels
radius), interleaved with concave corners at 10 pixels radius. Spatial frequency differs with
orientation in these shapes, so we determined the frequency of the first harmonic separately at
each orientation and summed the PSD within the resulting area.

We finally tested pairs of dots with and without connecting elements to determine
whether the effects of these connecting elements on Fourier power predict their effects on
perception. All dots we 30 pixels in diameter. All bars were 4 pixels wide and the same length
as the (edge-to-edge) distance between dots. Illusory contour inducers were 4 pixels wide, the
same color as the background, and extending 10 pixels into the dot. To separate effects of
connected configurations from changes to image properties, we included conditions where
the bar or illusory contour inducer was split in the middle and rotated around the dot center.

To model predictions of the mean fMRI response to aggregate Fourier power (or any
other non-numerical feature) we took the mean value over all displays of the same

numerosity and stimulus configuration.

Neural response models

For each stimulus configuration’s data and cross-validation splits, we fit several
candidate response models testing how well a putative neural population with monotonic or
tuned responses to each stimulus feature predicts the observed responses. For monotonic
response models, we convolved the sequence of presented feature amplitudes with a

canonical hemodynamic response function (HRF) to give a predicted fMRI time course. We
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found the optimal scaling for this prediction using a general linear model (Supplementary
Fig. 1) to determine the baseline and f3 (scaling factor) for each recording site. This revealed
whether responses increased or decreased with feature amplitude (the sign of f) and the
response variance explained by the scaled prediction (R?). Log(numerosity) predicts early
visual EEG (25, 31, 77) and fMRI (26) response amplitudes well. To give each non-numerical
feature the best possible chance of explaining these responses, we tested both logarithmic and
linear scaling and chose that which gave the highest variance explained across all recording
sites and participants. For each non-numerical feature, the best performing model
(logarithmic or linear) was consistent with that chosen to best predict numerosity tuned
responses (17, 78).

We quantified these model fits under cross-validation between odd and even scanning
runs per condition: we fit the model’s free parameters on one half of the data and evaluated
the resulting model’s fit on the complementary half. This primarily compensates for the free
parameters in the visual position selective pRF models and the tuned models: the monotonic
models have no free parameters. Using cross-validated model fits allows an unbiased
comparison between the monotonic model fits, visual position selective pRF model fits, and
tuned model fits. We refit the scaling factor to evaluate the prediction, as scaling factors
change between scans and sessions, but did not allow the scaling factor of monotonic models
to change sign.

We then compared the cross-validated variance explained in visual field maps V1-V3
between the monotonic numerosity model and alternative monotonic and visual position
selective pRF models. We first excluded from this comparison any recording site where no
model explained more than 20% of the response variance (i.e. R°<0.2) before cross-validation
That is, we selected voxels based on model fits in the data on which the model was fit, rather

than that on which the model was evaluated, to avoid circularity between voxel selection and
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model comparison. We also avoid by selecting voxels where any compared model performs
well, rather than voxels where one specific model performs well. We then took the median
cross-validated fit from each hemisphere (across V1-V3), and from both cross-validation
halves. To compare any two models, we then took the paired difference between these
models’ fits in each hemisphere, resulting in a distribution of differences in model fits. We
determined whether this distribution showed a significant difference between model fits using
Wilcoxon signed-rank tests, as this population of fit differences was not normally distributed.
We then corrected the resulting p-values for multiple comparisons using false discovery rate
correction (37).

We calculated the proportion of variance in the responses to all stimulus
configurations (Area, Size, Perimeter, Density) that these models explained, rather than
simply averaging the variance explained values from each stimulus configuration. This
ensured that configurations with larger fMRI signal variance were weighted more heavily in
the average across stimulus configurations. Arbitrary differences in fMRI response amplitude
between scan sessions (79) prevented us from quantifying differences in neural response
amplitude between stimulus configurations.

We estimated tuned response models as previously described (4, 5, 17), following a
pRF modeling approach (69). For tuned response models, we only compared predictions of
tuning for numerosity and aggregate Fourier power: we have previously demonstrated that
numerosity tuning predicts responses better than tuning for other features (5, 17). Briefly, for
each recording site, we start with a large set of candidate neural response models describing
numerosity or Fourier power tuning using logarithmic Gaussian functions (3-5) characterized
by two parameters: (1) a preferred numerosity or Fourier power (mean of the Gaussian
distribution) and (2) a tuning width (standard deviation of the Gaussian). Candidate neural

response time courses reflected the amplitude of the Gaussian at the numerosity or Fourier
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power presented at each time point. We convolved these with an HRF to generate candidate
fMRI time courses. We found the candidate fMRI time course best correlated with the
response at each recording site, giving the neural response model parameters that best predict
that recording site’s response and the response variance explained by that prediction (R?).

We restricted candidate preferred numerosities to be between 1.05-6.95, within the
range of numerosities presented. Beyond the tested range, tuning function parameters cannot
be determined accurately (4, 5, 69) and neural response amplitude predictions monotonically
increase or decrease within the presented numerosity range, complicating comparisons to
monotonic models.

We used the same procedure to compare the cross-validated variance explained in the
numerosity maps between the numerosity-tuned model and aggregate Fourier power tuned
model, as we have previously demonstrated that the numerosity-tuned model fits better than

models tuned to other non-numerical visual features.

Visual field mapping analysis

Visual field mapping data were analyzed following a standard pRF analysis (69, 70).
We identified visual field map borders based on reversals in the cortical progression of the
polar angle of recording sites’ visual field position preferences, drawing these by hand on the
cortical surface of an inflated rendering of each participant’s brain (Fig. 2a and
Supplementary Figs. 3 and 4). As well as the early visual field maps (V1, V2, V3), we
identified higher visual field maps in the lateral/temporal occipital (LO1-LO2, TO1-TO2),
parietal association (V3A/B, IPS0-IPS5) and frontal (sPCS1-sPCS2, iPCS) cortices with
reference to landmarks identified in previous studies (59, 80-82).

We binned recording sites in each visual field map by pRF eccentricity, at 0.2°

intervals from 0° to 5.5°. We took the mean and standard error of the variance explained by
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each response model among the recording sites within each bin in plotted this against bin
eccentricity. We fit relationships between bin mean variance explained in each numerosity
response model and eccentricity using cumulative Gaussian sigmoid functions with 4
parameters: the point of inflection (cumulative Gaussian mean), slope (standard deviation),
maximum asymptote (variance explained at fixation) and minimum asymptote (variance
explained at 5.5° eccentricity). We also fit quadratic curves to these, with three parameters:
intercept, slope and quadratic term. This includes the possibility of a constant relationship,
linear relationship, and more complex relationships that allow for an increase in variance
explained in the middle of the eccentricity range, which was often observed. For both fit
functions, we bootstrapped these fits using 1000 samples drawn from the unbinned variance
explained data across all participants. We took the median of these bootstrapped fit
parameters as the best fitting curve. We determined 95% confidence intervals from the 2.5
and 97.5 percentile from the distribution of bootstrapped fits at each eccentricity. For each
visual field map and response model, we chose the function that gave the best correlation

between the fit and the bin means.

Analysis of relationship between spatial and numerical responses

We also analyzed how variance explained by the best fitting response models was
related to recording sites’ spatial pRFs. We use pRF eccentricity (distance from the visual
field center, where numerosity stimuli were presented) to quantify the pRF’s coverage of the
stimulus area: pRF size linearly follows eccentricity (69, 70), so pRFs with shared
eccentricities cover the numerosity stimulus area similarly. For each visual field map, we
binned all participants’ recording sites by eccentricity. We fit relationships between bin mean
variance explained and eccentricity using a sigmoid cumulative Gaussian function (i.e.

variance explained decreasing with eccentricity) and a quadratic function (allowing many
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relationships between variance explained and eccentricity). For each visual field map and

response model, we chose the function that best fit the bin means.

Analysis of differences in model fits within and between visual field maps

We used linear mixed effects models to determine how the goodness of fit of our
monotonic and tuned response models differed between visual field maps and eccentricity
ranges. These models included visual field map and eccentricity range as fixed factors and
participant as a random factor, because the quality of fMRI data varies between sessions and
participants. Marginal tests for the fixed effects were adjusted using Satterthwaite degrees of
freedom approximation (83). To determine which visual field maps showed different
goodness of fit, we used post-hoc multiple comparisons as part of the linear mixed effects
statistical model. These are corrected for multiple comparisons by using Tukey’s honestly
significant difference test (84), which gives the marginal means and confidence intervals

shown in Fig. 2c.

Comparison to neural network models

To compare the predictions of monotonic responses to aggregate Fourier power
against the responses of neural network models, we first extracted the data from Stoianov and
Zorzi (22) (their Supplementary Figure 4A) and Kim and colleagues (24) (their Figure 5B)
using graphreader.com. Each of these figures shows several lines, so we repeated this for 8
lines from each figure, evaluating these lines at each integer shown. Stoianov and Zorzi show
responses on a log numerosity axis without normalization, while Kim and colleagues show
responses on a linear numerosity axis normalized from zero (for the smallest response seen,
to numerosity 1) to one (for the largest response seen, to numerosity 30). We normalized the

responses shown by Stoianov and Zorzi globally following Kim’s approach (the mean
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response to numerosity 1 was normalized to O, the mean response to numerosity 30 was
normalized to 1) , though we kept the differences between different lines’ start and end
points. We then plotted the data from both studies on the same axes with both log and linear
scales. Finding that the monotonic responses shown by these studies are very similar, we
subsequently treated them as one set of 16 lines. While we could not determine the aggregate
Fourier power of the displays used in these studies, our own results show that item size and
spacing have minimal effects on aggregate Fourier power. Therefore, we took the nonlinear
function of numerosity predicted by aggregate Fourier power in our own displays and linearly
scaled this to fit all the data points. We similarly scaled the log(numerosity) function. Finally,
we fit a quadratic function (second-degree polynomial) to all these data. Then, for each of the
16 lines shown in the neural network studies we calculated the correlation coefficient to each
of these 3 functions. We performed paired t-tests on the sets of 16 correlation coefficients

from each function.
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Data availability
The data sets generated during the current study are available from the corresponding author

upon reasonable request.

Code availability
The code that supports the findings of this study is available from the Vistasoft repository

(https://github.com/vistalab/vistasoft).
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