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Abstract

Human  early  visual  cortex  response  amplitudes  monotonically  increase  with  numerosity

(object  number),  regardless  of  object  size  and spacing.  However,  numerosity  is  typically

considered a high-level visual or cognitive feature, while early visual responses follow image

contrast in the spatial frequency domain. We found that, at fixed contrast, aggregate Fourier

power  (at  all  orientations  and  spatial  frequencies)  followed  numerosity  closely  but

nonlinearly  with  little  effect  of  object  size,  spacing  or  shape.  This  would  allow

straightforward numerosity estimation from spatial frequency domain image representations.

Using 7T fMRI, we showed monotonic responses originate in primary visual cortex (V1) at

the stimulus’s retinotopic location. Responses here and in neural network models followed

aggregate Fourier power more closely than numerosity.  Truly numerosity tuned responses

emerged  after  lateral  occipital  cortex  and  were  independent  of  retinotopic  location.  We

propose  numerosity’s  straightforward perception  and neural  responses  may have  built  on

behaviorally beneficial spatial frequency analyses in simpler animals.
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Introduction

Humans and many other animals use visual numerosity, the number of items in a set, to guide

behavior. Many species have neurons tuned to numerosity, decreasing in response amplitude

with  distance from a specific  preferred  numerosity  (1–3).  Functional  magnetic  resonance

imaging (fMRI) has identified numerosity-tuned neuronal populations in specific areas of

human association cortex using both population receptive field modeling approaches  (4, 5)

and fMRI adaptation  (or  repetition  suppression)(6).  Other  fMRI studies  using multivoxel

pattern analyses (7, 8) and representational similarity analyses (9) also support the existence

of numerosity-tuned neural  populations in the human brain.  Response properties of these

neurons  mirror  properties  of  numerosity  perception  (3,  6,  10).  Numerosity  perception  is

correlated with numerosity tuned responses between trials (3, 10), and repetition suppression

(6) and multivoxel pattern discriminability between individuals (11, 12).

There remains considerable debate over  how such numerosity-tuned responses are

derived from visual inputs. One view proposes that numerosity tuning and perception reflect

non-numerical image features that are often correlated with numerosity, like density (13), or

contrast energy at high spatial frequencies (14). However, growing convergent evidence from

psychophysical,  neuroimaging  and  computational  research  indicates  numerosity  itself  is

represented and perceived  (15–19).  These views could  be reconciled  by a  non-numerical

image  feature  from  which  numerosity  could  be  estimated  regardless  of  other  image

parameters like item size and spacing.

Computational  modeling  shows  numerosity-tuned  responses  in  various  neural

networks that are not trained for numerosity discrimination. The first of these models  (20)

pre-dates the discovery of numerosity tuned neurons. It implements specific stages that: (1)

detect where contrast lies in the image; (2) normalize the local contrast so that each item

contributes  equally;  (3)  sum normalized  contrast  to  give  a  monotonically  increasing  and
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decreasing response to numerosity; (4) weight these monotonic responses differently to give

numerosity-tuned responses with different numerosity preferences.  A simple unsupervised

network  can  develop  monotonically  increasing  and  tuned  responses  with  no  need  for

monotonically decreasing responses to numerosity (as inhibitory synapses are sufficient) (21).

Neither model shows how the monotonic stage disregards size and spacing. It has since been

shown that monotonic (22) and tuned (23) responses to numerosity emerge in a probabilistic

hierarchical generative network trained only to efficiently encode the image and maximize

the likelihood of reconstructing the image, and even in a randomly-weighted network. In this

model,  the  first  stage  decomposes  the  image using  spatial  receptive  fields  with  surround

suppression, as in the early visual system. The resulting monotonic responses to numerosity

are  spatially  selective  (22),  but  responses  are  almost  invariant  to  item size  and  spacing

without the need for explicit object individuation or size normalization (19). Another class of

neural  network  model,  deep  convolutional  neural  networks,  also  show  monotonic  and

numerosity-tuned units,  even in  randomly-weighted  networks  (24).  Here monotonic units

emerge early in the network and feed into numerosity-tuned units, where different weights on

these inputs give numerosity-tuned responses with different numerosity preferences.

EEG and fMRI results show that early visual cortex responses to numerosity stimuli

appear to monotonically increase with numerosity, regardless of item size or spacing (25, 26).

This  monotonic  response  emerges  very  quickly  after  stimulus  presentation,  suggesting  it

reflects feedforward processing, and is not computed from other parameters like stimulus

area and density. This early visual cortex response to numerosity is surprising, as numerosity

is generally considered a relatively high-level visual feature. Early visual neurons respond to

image  contrast  in  the  frequency  domain:  at  specific  positions,  orientations  and  spatial

frequencies  (27). So, it  is unclear how early visual neural responses could closely follow
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numerosity regardless of size and spacing, although such responses spontaneously emerge

somehow in the image representations of computational models.

Association cortex recording sites with numerosity-tuned responses largely overlap

with higher visual field maps (5), but their spatial population receptive fields (pRF) do not

necessarily overlap with the numerosity stimulus area (5, 28), and numerosity preferences are

unrelated  to  pRF  position  or  size  (28).  Numerosity  tuning  in  functionally  homologous

macaque brain areas locations  (29) also does not require the responding single neurons to

have spatial receptive fields including the stimulus region, or even have discernible receptive

fields at all (30). Indeed, spatial receptive field properties of numerosity-tuned neurons do not

influence numerosity preferences,  tuning width or firing rate.  For early visual monotonic

responses, some properties of EEG event related potentials suggest these emerge in V2 or V3

(31), but their precise visual field map and retinotopic location remains unclear.

Here we use computational modeling of human 7T fMRI data to ask precisely where

in the early visual cortex monotonic responses emerge, whether they can be explained by the

spatial frequency domain image representation in the early visual cortex, and how they relate

to location-independent numerosity tuned responses in the human association cortices.

Results

Numerosity response profiles differ between early visual cortex and association cortices

We  presented  fixed  contrast  displays  of  gradually  changing  numerosity  to  our

participants while collecting 7T fMRI data (see Methods). We included different stimulus

configurations that held total item area, individual item size, or total item perimeter constant

across numerosities, or placed items in a dense group (Fig. 1). These configurations varied

item size and spacing considerably but produced similar responses.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.03.28.437364doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.28.437364
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1: Example displays from each stimulus configuration and numerosity.

Different  cortical  locations showed different relationships  between numerosity and

response  amplitude.  These  were  well  captured  by  response  models  with  monotonically

increasing,  monotonically  decreasing,  or  tuned  responses  to  log(numerosity)  at  different

locations (Supplementary Fig. 2c–d). We compared the response variance explained by these

models  in  cross-validated  data  (Fig.  2a  and Supplementary  Fig.  4).  Separate  visual  field

mapping data demonstrate that monotonically increasing responses were consistently found

only in early visual cortex’s central visual field representation. Numerosity tuned response

were found outside early visual cortex, in previously described areas of temporal-occipital,

parietal-occipital,  superior parietal,  and frontal cortices containing topographic numerosity

maps (5). These largely overlapped with higher extrastriate visual field maps. Monotonically

decreasing responses were found next to areas showing tuned responses.
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Fig. 2: Relationships between responses to numerosity and visual field position . a Visual
position  preferences  (eccentricity  and  polar  angle,  left  and  middle)  and  best  fitting
numerosity model (right, colors) at each cortical location,  for two illustrative participants.
Dashed black  lines  and labels  show visual  field  map borders  and names  respectively.  b
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Progression of each numerosity model’s fit with preferred visual field eccentricity (colors) in
representative  visual  field  maps  (grouped  across  participants).  Cyan  shows  fits  of
monotonically increasing responses to aggregate Fourier power, which are often hidden by
the very similar blue line (monotonically increasing responses to numerosity) that is drawn
on top. Filled circles show mean variance explained per eccentricity bin, error bars show the
standard error of the mean. Solid lines show the best fit to changes with eccentricity, dashed
lines  are  bootstrap  95%  confidence  intervals  determined  by  bootstrapping. c Model  fit
variance explained by numerosity (tuned, reds) and aggregate Fourier power (monotonically
increasing,  blues)  response models  for  each visual  field map hemisphere at  eccentricities
below 1° (left) and between 2° and 5.5° (right). Points represent the population marginal
mean, error bars are 95% confidence intervals; non-overlapping error bars show significant
differences at p < 0.05.

Early visual monotonic responses

Early visual (V1–V3, LO1) responses were consistently predicted more closely by

monotonically  increasing  rather  than  tuned  responses  to  numerosity  (Fig.  2b).  Critically,

model  fits  depended  on the  recording  sites’ visual  field  position  preferences:  those  near

fixation  (the  stimulus  location)  showed  better  fits,  gradually  decreasing  to  zero  into  the

periphery. These progressions were well captured by cumulative Gaussian sigmoid functions

(Supplementary  Fig.  5c).  Inflection  points  of  these  sigmoid  curves  fell  at  eccentricities

between one and two degrees of visual angle (Fig. 2b and Supplementary Fig. 2a).

A location-specific  monotonic  response  to  numerosity  that  has  emerged by V1 is

perhaps surprising: numerosity is generally considered a complex visual or cognitive feature,

and  responses  of  V1  neurons  depend  on  contrast  at  specific  orientations  and  spatial

frequencies  within  their  receptive  field.  Images  are  often  transformed  into  this  spatial

frequency domain using a 2-dimensional Fourier decomposition, which similarly separates

changes across an image into the contrast at each orientation and spatial frequency (32). We

therefore  reasoned  that  aggregate  Fourier  power  (across  all  orientations  and  spatial

frequencies) in the spatial frequency domain might closely predict the measured aggregate

response of V1 populations. We summed the absolute Fourier decomposition of the displays

within the first spatial frequency harmonic, across all orientations (Fig. 3a–b). This revealed
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that aggregate Fourier power followed numerosity closely, but nonlinearly, and similarly in

all stimulus configurations (Fig. 3c). The aggregate power of the second harmonic showed a

similar pattern at half the amplitude. Indeed, aggregate Fourier power changed very little over

a wide range of item sizes, spacings and shapes that were not tested in our experiments.

Fourier power followed numerosity closely except in extreme cases, and except for and a

slight increase in Fourier power with item spacing (Fig. 3d–g and Supplementary Figs. 7–10).

Global  changes  in  item  contrast  do  not  affect  perceived  numerosity  until  items

become  less  visible  (33).  However,  Fourier  power  increased  linearly  with  the  contrast

between items and the background (Fig. 3h). This effect could therefore be compensated for

simply by divisive normalization: dividing the Fourier power by the mean contrast of the

items. Using a mixture of black and white items gave very slightly (approximately 1.6%)

higher  Fourier  power  than  using  black  items  only,  which  is  unsurprising  because  the

difference in luminance between any item and the rest of the display increased slightly here.

Numerosity perception is less accurate in displays where different items have variable

contrasts than in fixed-contrast displays (34). As we increased the range of item contrasts in a

display, the range of Fourier powers in different displays also increased considerably (Fig.

3i):  the  95% confidence  intervals  were  approximately  300% greater  when  the  range  of

contrasts was 0.85 than when it was 0.1, regardless of whether Fourier power is normalized

by the  mean contrast  of  the items.  The mean Fourier  power  also increased,  but  only by

approximately 10%.

Connecting  dot  pairs  with bars  reduced the  numerosity  of  items perceived in  the

display. This perceived numerosity was originally compared to numerosity perceived when

bars were placed among the dots but fully unconnected  (14, 35)(Fig. 3j, black inset). The

Fourier  power of a connected pair  (red) was lower than fully unconnected dots and bars

(black), superficially predicting the connectedness illusion. However, rotating the dots and
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bars  to  break  the  connection  (magenta)  had  the  same  lower  Fourier  power  while  it  is

perceived as  more  numerous.  Furthermore,  the  Fourier  power  of  the  connected  pair  was

greater than the dots alone (gray), while connected pairs are perceived as less numerous than

dots alone. Connecting illusory contour inducers (blue) also reduce perceived numerosity and

had lower Fourier power than dots alone, but these inducers again had the same effect when

rotated to break the connection (cyan). Therefore, while bars and illusory contour affected

Fourier power, these effects were not consistent with perceptual effects: the connectedness

illusion likely results from higher-order segmentation processes (36).
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Fig. 3: Aggregate Fourier power followed numerosity closely with little effect of item
size, spacing, shape or connectedness. a 2-dimensional Fourier transforms for each image
in  Fig.  1.  b Fourier  power  spectral  density  at  each  spatial  frequency,  collapsed  over
orientation. The limit of the first harmonic (f1) was used to determine the aggregate Fourier
power of each image. c Aggregate Fourier power b follows numerosity closely and similarly
across  stimulus  configurations.  We  divided  aggregate  Fourier  power  by  the  product  of
number  display  pixels  and the  square  root  of  two here,  making the  power  of  one  circle
approximately one for any display resolution. Points show the mean power of all stimuli of
the  same  numerosity  in  the  same  stimulus  configuration,  error  bars  show  the  standard
deviation.  Upper  middle  panel  shows  all  configurations  overlaid;  other  panels  show
individual configurations. d Aggregate Fourier power as a function of numerosity for a fixed
item size (black line). Red lines show y = x0.466 and y = x0.470, which approximate the observed
relationship.  e  Aggregate  Fourier  power  of  one  circle  of  different  diameters  was
approximately  constant  for  diameters  above  3  pixels:  smaller  circles  were  inaccurately
rendered.  f  Aggregate  Fourier  power  for  a  group of  7  circles  (each  16  pixels  diameter)
increased slightly with spacing for stimulus area diameters above 70 pixels. Smaller areas had
little space between items: at 50 pixels all items touch (Supplementary Fig. 9). Gray lines
show the standard deviation across displays. g Aggregate Fourier power was approximately
constant  for  regular  polygons above 3 corners.  Triangles  and 3-pointed stars  had greater
Fourier power than circles, while other stars had less Fourier power.  h Aggregate Fourier
power for a group of 7 circles (each 16 pixels diameter) increased linearly as the absolute
Weber contrast of items increased (red). Therefore, normalizing Fourier power by dividing by
item contrast gave an approximately constant value for all contrasts (black). Fourier power
was slightly higher for a random mixture of black and white items (magenta and gray) than
only  black  items  (red  and  black).  Fine  lines  show  the  95% confidence  intervals  across
displays.  (I)  When  item  contrasts  were  randomly  chosen  from a  range  centered  on  0.5
contrast,  the  mean  Fourier  power  across  displays  increased  only  slightly  as  this  range
increased. The 95% confidence intervals increased considerably. j Effects of connections by a
bar and an illusory contour on Fourier power, together with control dot pairs with the same
change to the dot but no connection and no reduction in perceived numerosity. Compared to
dots alone,  bars increased Fourier power while  illusory contour inducers reduced Fourier
power, regardless of connectedness.

Several  other  non-numerical  stimulus  features  have  been  proposed to  account  for

numerosity perception because they are correlated with numerosity in some cases, though

none shows this generalization across displays. We quantified several such features for each

numerosity and stimulus configurations  (17, 18) and tested predictions of response models

that monotonically follow these features against the recorded early visual (V1-V3) responses.

We  tested  predictions  of  position  selective  pRFs  responding  either  to  dot  bodies  (i.e.

luminance) or edges (i.e. contrast)  (5).  All of these models predicted response amplitudes

significantly less  well  than log(numerosity)  (all  Z ≥  3.21,  p < .0013 in  paired  Wilcoxon

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.03.28.437364doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.28.437364
http://creativecommons.org/licenses/by-nc-nd/4.0/


signed rank tests, false discovery rate (FDR) corrected  (37) for all comparisons against the

log(numerosity) response model, n=20 hemisphere measurements) (Fig. 4a).

However, early visual responses were significantly better predicted by monotonically

increasing responses to log(Fourier power) than log(numerosity) (and all other models), both

across all stimulus configurations (Median difference = 0.0054, Z = 3.92, p = 0.000095, FDR

corrected with the other comparisons against the log(numerosity) model) and within each

configuration, though this difference is not significant in the high density configuration (Z =

1.83,  p  = 0.0674, FDR corrected for the comparisons in different stimulus configurations)

(Fig. 4c). Conversely, numerosity tuned models predict the tuned response of six previously

identified numerosity maps  (5) significantly better than models tuned to aggregate Fourier

power  across  all  stimulus  configurations  (Median  difference  =  0.0104,  Z =  -3.32,  p =

0.00089)  (Fig.  4b),  as  previously  shown  for  other  non-numerical  features  (17,  18).

Numerosity-tuned  models  also  fit  better  within  each  stimulus  configuration,  though  this

difference is not significant in the high density configuration (Z  = -1.46,  p  = 0.1454, FDR

corrected for the comparisons in different stimulus configurations) (Fig. 4d).
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Fig. 4: Responses to aggregate Fourier power predict early visual monotonic responses
better  than  numerosity,  but  numerosity  predicts  tuned  responses  better. a Variance
explained by monotonic response models for numerosity and non-numerical visual features,
and visual position selective pRF models in V1-V3. b Variance explained by tuned response
models for numerosity  and aggregate Fourier power in the association cortex numerosity
maps.  c Variance explained by monotonic response models for numerosity (saturated bars)
and Fourier power (unsaturated bars) in V1-V3 in each stimulus configuration.  d Variance
explained by tuned response models for numerosity and Fourier power in the association
cortex numerosity  maps in  each stimulus  configuration.  Bar  height  is  the mean variance
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explained across all maps. Error bars show 95% confidence intervals, reflecting the range of
fits between individual maps. Markers show the median variance explained for each measure:
different shapes are different participants; filled and unfilled symbols are odd and even runs;
black  is  left  hemisphere  and  gray  is  right  hemisphere.  P-values  show  significance  of
differences in paired Wilcoxon signed rank tests.

Comparison to neural network models

Although it is beyond the scope of this study to implement neural network models and

test  how  they  respond  to  our  stimuli,  the  studies  of  Stoianov  and  Zorzi  (22) (their

Supplementary Figure 4A) and Kim and colleagues  (24) (their  Figure 5B) show that  the

monotonic responses in their networks increase nonlinearly with numerosity. We therefore

ask  whether  this  nonlinearity  follows  the  nonlinear  relationship  between  numerosity  and

Fourier power. We took the data from 8 lines shown in each of these studies and normalized

these to fall within the same range (Fig. 5). This revealed that both studies show very similar

relationships between numerosity and response amplitude,  which was not apparent in the

original figures because they use log (Figure 5A) and linear (Figure 5B) numerosity axes

respectively.  We then rescaled  the  log(numerosity)  function  and the  relationship  between

numerosity and aggregate Fourier power to best fit all these data points. Finally, we fit the

quadratic function that best follows these data points (response ∝ -0.0147 ×  numerosity2  +

numerosity).  This  set  of  lines  was  better  correlated  with  aggregate  Fourier  power  than

log(numerosity)  (p =  0.000001,  t =  7.62,  n =  16  lines,  in  a  paired  t-test  of  correlation

coefficients).  There  was  no  significant  difference  in  the  correlation  of  these  lines  with

aggregate Fourier power and the best fitting quadratic function (p = 0.53, t = 0.63, n = 16).

Therefore,  like  the  responses  of  the  early  visual  cortex,  the  monotonic  responses  in  a

hierarchical generative network trained to efficiently encode images (22) and in an untrained

deep convolutional neural network  (24) both follow aggregate Fourier power more closely

than numerosity. We did not extend this comparison to numerosity-tuned responses, which

exhibit a range of preferred numerosities rather than having a single shape. Furthermore, the
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population  tuning  functions  of  our  fMRI  voxels  are  broader  and  not  straightforwardly

comparable to the single-unit tuning functions of neural network models.

Fig.  5:  Comparison  between  the  monotonic  responses  in  neural  network  models  of
numerosity processing and the relationship of numerosity to aggregate Fourier power.  a
Shown on a log numerosity scale, following Stoianov and Zorzi  (22).  b Shown on a linear
scale following Kim and colleagues (24). Responses shown in neural network studies (black
and gray lines) are fit very closely by the relationship between numerosity and aggregate
Fourier power (red), more closely than by log(numerosity) and similarly to the best quadratic
fit to these responses. 

Differences in model fits within and between visual field maps

We  separated  each  visual  field  map  into  two  eccentricity  ranges:  near  to  the

stimulus/fixation  (below  1°  eccentricity)  and  far  from  the  stimulus/fixation  (2–5.5°

eccentricity). A linear mixed-effects model (fixed effects: visual field map, eccentricity range;

random effects: participant) revealed that monotonically increasing Fourier power response

models fit better near fixation (p = 4.4 × 10-7, F(1, 148) = 27.94), and differed between visual

field maps (p < 10-10,  F(16, 148) = 10.44). Post-hoc multiple comparisons revealed better

model fits in the early visual field maps (V1, V2, V3, LO1) than elsewhere (Fig. 2c).
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Numerosity tuned response model fits also differed between visual field maps (p < 10-

10,  F(16, 133) = 10.79) in a similar linear mixed-effects model, but here post-hoc multiple

comparisons showed poorer model fits in the early visual field maps than elsewhere. Also,

unlike  monotonically  increasing  Fourier  power  responses  of  early  visual  field  maps,

numerosity  tuned  response  model  fits  did  not  differ  significantly  between  near  and  far

eccentricities (p = 0.195, F(1, 133) = 1.70). Therefore, progressions of tuned model fits with

eccentricity were captured better by quadratic than sigmoid functions (Supplementary Fig.

5c).

Monotonically decreasing responses outside early visual cortex 

Some  monotonically  decreasing  responses  were  seen  outside  early  visual  cortex.

Average  model  fits  across  whole  visual  field  maps  did  not  differ  significantly  between

monotonically decreasing and tuned numerosity models (one-way ANOVA, p = 0.281, F(1,

283) = 1.17). However, tuned models fit better (p = 0.0003,  F(1, 49) = 14.86) within the

previously described numerosity maps. Monotonically decreasing models generally fit better

just outside the numerosity maps (Fig. 2a). Such responses are predicted by computational

models  of  numerosity-tuned  response  derivation  (21,  24),  but  typically  at  early  stages

preceding numerosity tuned responses, not alongside them (though see  (23)). Alternatively,

numerosity-tuned neural populations with preferred numerosities below one (38) would also

decrease their responses as numerosity increases. These populations would be expected in the

continuous topographic representation of numerosity, near populations with low numerosity

preferences.  We calculated the cortical  distance between each recording site best fit by a

numerosity  tuned  response  and  the  nearest  recording  site  best  fit  by  a  monotonically

decreasing response. This distance was significantly positively correlated with the recording

site’s  preferred  numerosity  (Spearman  rank  order  correlation,  ρ = 0.585,  p <  0.001;  see
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Supplementary  Fig.  11),  suggesting  monotonically  decreasing  sites  are  tuned,  but  with

preferred numerosities below one.

Discussion

We  found  monotonic  increases  in  neural  population  response  amplitude  with  increasing

numerosity  in  the  retinotopic  locations  of  our  stimuli,  beginning  in  V1.  While  these

monotonic  responses  follow  numerosity  closely,  they  are  better  predicted  by  aggregate

Fourier power, which follows numerosity closely over a wide range of stimulus parameters

for a fixed contrast.  Monotonic responses shown in neural network studies of numerosity

were also better predicted by aggregate Fourier power than by numerosity. Conversely, tuned

responses overlapping with visual field maps in association cortices were not limited to the

stimulus’s  retinotopic  location,  and  were  better  predicted  by  tuning  for  numerosity  than

aggregate Fourier power. We also found monotonically decreasing responses to numerosity

near recording sites tuned to low numerosities, likely reflecting tuning for numerosities below

one.

Numerosity  is  generally  seen as  a  high-level  visual  feature  or  cognitive  property,

while  Fourier  power  is  a  low-level  representation  of  image  contrast. Contrast  energy  at

specific orientations and spatial frequencies drives V1 neurons’ responses (27). Therefore, the

cortical response to any visual image begins with an approximate Fourier decomposition (27,

32). This transforms the visual image from the spatial domain (the image’s projection onto

the retina) to the spatial frequency domain (a neural representation of the spatial frequency,

orientation and phase of contrast). In the spatial domain, it does not seem possible to estimate

numerosity  regardless of item size and spacing:  the area that  must be integrated and the

luminance,  contrast  or  edge  extent  within  that  area  change  with  item size  and  spacing.
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However, numerosity is not directly estimated from the visual image, it is estimated from the

early visual image representation, which is in the spatial frequency domain. Many functions

in the spatial domain correspond to other functions in the frequency domain, and numerosity

(spatial domain) corresponds to a nonlinear function of aggregate Fourier power (frequency

domain) at a fixed contrast. This makes it potentially straightforward to estimate numerosity

from  the  early  visual,  frequency  domain  image  representation.  Functional  neuroimaging

measures aggregate responses of large neural populations with a broad range of orientation

and  spatial  frequency preferences  (39).  Aggregate  Fourier  power  similarly  sums contrast

energy across orientations and spatial frequencies, and we propose this is why early visual

neuroimaging responses follow numerosity with little effect of size or spacing: these early

visual responses reflect aggregate Fourier power.

It is possible to generate phase-scrambled images that contain the same Fourier power

distributions but with the locations of image contrast (an orthogonal phase component in the

frequency domain) randomized. Such images yield strong responses in primary visual cortex,

but even V2 responds poorly to such images as they lack the phase (position) structure found

in natural images (40). Hard edges contain contrast at many frequencies with linked phases.

Analysis of this phase structure may be important for object individuation. Therefore, we

expect phase (position) structure to be required for numerosity-tuned responses to be derived

from early visual, frequency domain image representations. As such, derivation of numerosity

from frequency domain image representations simplifies object normalization processes that

are required to disregard size and spacing, but is still compatible with object individuation

processes and may also simplify these.

We sum Fourier power only within the first harmonic. This is a clear local minimum

in the Fourier spectrum, but its spatial frequency varies with item size. The visual system

seems unlikely to flexibly identify this limit and aggregate responses within it as we do in our
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analyses. We use this limit because the aggregate Fourier power in every harmonic (and so

the total Fourier power to infinite spatial frequency) is proportional to the power in the first

harmonic. For example, we show that the second harmonic’s power also follows numerosity

closely, at half the amplitude. However, using a discrete Fourier decomposition on a pixelated

image we cannot evaluate the power in further harmonic because they exceed the Nyquist

frequency (a mathematical limit on which frequencies can be evaluated at a given sampling

density). We therefore use a metric we can quantify that is equivalent to total Fourier power.

The human visual system transforms images into the spatial frequency domain, but it does

not use a discrete Fourier decomposition and its input is not pixelated: these are limitations

imposed by computer models. Nevertheless, the visual system is still likely to have some

spatial frequency limit. The finding that the aggregate response of early visual cortex is not

affected by item size  (25, 26) suggests it does not follow the Fourier power over a fixed

spatial frequency range, but is proportional to aggregate Fourier power in the first harmonic

and so to total Fourier power. It is unclear why this is so. It may be that the visual system

samples the image very densely (certainly far more densely than 768 × 768 pixels as we do

here) and little power falls  beyond the frequencies it  can evaluate.  Alternatively,  neurons

responding  to  a  specific  spatial  frequency  and  its  harmonics  will  typically  be  activated

together  and  are  likely  to  interact.  Although  the  nature  of  these  interactions  is  unclear,

responses to higher harmonics may be suppressed, for example. Finally, there are certainly

differences  between  the  visual  system’s  spatial  frequency  representation  and  a  discrete

Fourier decomposition, which is only a mathematical model. But it is clear that numerosity

could be straightforwardly estimated from V1’s population response, as it is from a Fourier

transform. The properties of lab numerosity displays in a Fourier transform and the Fourier

decomposition’s close relationship to early visual spatial frequency analysis give an insight

into how this computation could be achieved. 
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Aggregate  Fourier  power  within  the  first  harmonic  follows  numerosity  closely

because  it  is  approximately  constant  with  item size  and  spacing.  Why  is  this  constant?

Increasing item size moves Fourier power to a narrower range of lower spatial frequencies

(Supplementary  Fig.  8).  Its  extent  in  the  Fourier  spectrum (bandwidth)  follows 1/period,

because spatial frequency is the inverse of spatial period. Conversely, Fourier power spectral

density is high at these low frequencies because power spectral density of hard edges follows

1/frequency.  Aggregate  Fourier  power,  reflecting  the  product  of  bandwidth  (1/period,  i.e.

frequency) and amplitude (1/frequency), is therefore constant. 

Previous  computational  studies  using  neural  networks  have  shown  monotonically

increasing responses to numerosity in a network that first decomposes the image using spatial

receptive  fields  with  surround  suppression  (22),  as  in  the  early  visual  system.  This  is

conceptually  similar  to  the  transformation  into  the  spatial  frequency  domain  image

representation  that  we  describe.  These  networks’ monotonic  responses  are  also  spatially

selective  (22) and almost independent of item size  (19), like we see here, when trained as

generative models of numerosity  displays.  Even when network connections  are  randomly

weighted, monotonic and numerosity-tuned units are found, suggesting that numerosity is

reflected  in  image statistics  (19,  24).  Aggregate  Fourier  power  may provide  an  effective

statistic given that it is so straightforward to determine in spatial frequency domain image

representations, and that the monotonic responses in these networks follow aggregate Fourier

power  more  closely  than  they  follow numerosity.  Training  to  efficiently  encode (but  not

discriminate)  numerosity  displays  increases  the  discriminability  of  different  numerosities

from the network responses and reduces the influence of non-numerical properties of test

displays (19). When transformed into the spatial frequency domain, numerosity displays (like

the natural  images biological  visual  systems learn from  (41))  have the same 1/frequency

power distribution that we propose underlies  the size invariance of monotonic responses.
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Therefore,  this  training  may  make  network  responses  more  sensitive  to  numerosity  by

incorporating this distribution into the spatial structure of network connections.

The aggregate  Fourier  power of  a  group of  items  is  affected  only  slightly  by its

spacing. In Fourier decompositions, position becomes a phase component that we do not

analyze. Like item size, spacing does not affect Fourier power because increasing the distance

between  items  moves  power  to  lower  frequencies,  with  lower  bandwidths  and  higher

amplitudes. Nevertheless, the ratio of item size and spacing affects which frequencies fall

within the first harmonic (Supplementary Fig. 9). If the distance between items is smaller

than the item size, the between-item component of the Fourier spectrum falls outside the first

harmonic, reducing power within this harmonic. Studies of numerosity perception avoid such

crowding. If item spacing is very low (almost touching), the local minimum used to identify

the first harmonic reflects group size rather than item size. Aggregate power then reflects one

item (the group) rather than the group’s numerosity. Neither limitation would affect Fourier

power if aggregated by the visual system over all frequencies. 

On the other hand, item shape affects aggregate Fourier power considerably. Triangles

have a greater aggregate Fourier power than other polygons (which have similar power to

circles). Notably, their Fourier spectrum lacks a clear local minimum because a triangle’s

sides  are  so  far  from  parallel  (Supplementary  Fig.  10).  Our  procedure  may  therefore

overestimate the first harmonic’s extent. Conversely, most stars have less aggregate Fourier

power than polygons and circles. Stars contain higher frequency features that fall beyond the

first  harmonic.  Again,  neither limitation would affect Fourier  power if  aggregated by the

visual system over all frequencies.

Numerosity  estimation  from aggregate  Fourier  power  may explain  several  known

effects  of  stimulus  properties  on  numerosity  perception.  First,  increasing  item  spacing
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slightly increases Fourier power and increases perceived numerosity  (16). Similarly, tightly

crowding items together reduces Fourier power and reduces perceived numerosity  (34, 42,

43).  Second,  blurring  items  decreases  their  range  of  spatial  frequencies,  and  reduces

perceived  numerosity  (34).  Third,  complex  shapes  disrupt  the  relationship  between

numerosity and Fourier power. Such shapes affect both perceived numerosity (35) and early

visual response amplitudes  (36). So perceived numerosity, like V1 activation,  depends on

image properties.

Unlike  Fourier  decompositions,  biological  visual  systems  process  different  image

locations with distinct neural populations. Our stimulus fell entirely in the central visual field.

Humans can only integrate a limited spatial extent to estimate numerosity without making

eye movements  (44, 45). Very high numerosity stimuli must either be too large to see at a

glance, be so dense that items are crowded, or use items too small to resolve.  Aggregate

Fourier power is unaffected by such limitations, so follows numerosity closely until at least

175. Human vision perceives such high numerosities differently to lower numerosities (46).

So,  the human visual  system may approximate a  Fourier  decomposition to  transform the

image into the frequency domain, but has its own limitations.

Previous  studies  of non-numerical  features  in  numerosity  stimuli  have focused on

total item perimeter, area, density, or pattern extent. These follow numerosity in some stimuli

(17,  18),  but  any  single  feature  can  be  kept  constant  across  numerosities.  Numerosity

estimation in the spatial frequency domain moves beyond this approach because item size

and spacing have little effect here. Nevertheless, complex shapes, crowding, blurring, phase

scrambling and contrast variations disrupt the relationship between numerosity and aggregate

Fourier  power.  These  factors  therefore  allow  strong  tests  that  a  human  or  animal  is

responding to numerosity rather than aggregate Fourier power alone, which would otherwise

give the appearance of numerosity-guided behavior and may itself be beneficial. 
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Some researchers have seen texture or spatial  frequency metrics as non-numerical

image features  that  can be used to  perform numerosity  discrimination tasks  without  true

numerosity perception (13, 14, 47). Numerosity’s potentially straightforward estimation from

the early visual spatial frequency domain image representation does not imply that humans

perceive aggregate Fourier power rather than numerosity, but instead shows how numerosity

itself could be straightforwardly estimated in the brain.

However, further processes are certainly involved in numerosity perception. There are

situations where numerosity perception differs from true image numerosity. First, connecting

items  with  lines  or  illusory  contours  (35,  48,  49) reduces  perceived  numerosity.  This  is

generally thought to reflect higher-level grouping processes rather than image features (47).

We show that lines or illusory contour inducers on items affect Fourier power, but this effect

does  not  depend  on  whether  a  connection  between  items  is  formed.  Conversely,  in  the

connectedness illusion the reduction in perceived numerosity requires a connection. This is

consistent with early visual EEG event related potentials, which initially reflect numerosity

with no effect of connectedness, and are only affected by connectedness later  (36). So, the

connectedness  illusion  does  not  affect  numerosity  perception  at  the  stage  of  numerosity

estimation and is likely to reflect later processes. Similarly, numerosity adaptation affects

numerosity perception  (50) without affecting image content. This affects numerosity-tuned

neural  responses  (51) but  it  is  unclear  whether  early  visual  responses  are  also  affected.

Adaptation to the rate of finger tapping also affects visual numerosity perception (52) , and

this  effect  seems  very  unlikely  to  arise  in  early  visual  cortex.  Higher-level  effects  and

contextual effects on numerosity perception are expected considering the extensive network

of numerosity-tuned responses in human association cortices, which successively transform

the  representation  of  numerosity  and  include  areas  involved  in  attention,  multisensory

integration and action planning (5, 53).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.03.28.437364doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.28.437364
http://creativecommons.org/licenses/by-nc-nd/4.0/


Our model for estimating numerosity from aggregate Fourier power is conceptually

similar to a spatial frequency analysis that Dakin and colleagues proposed to explain why

numerosity perception is affected by density in very dense displays (14). That analysis uses

the responses of high spatial frequency Laplacian Gaussian filters as a metric for numerosity.

Such filters  are  not  orientation-selective  and do not  transform the  image into  the  spatial

frequency domain, so do not closely model the response selectivity of neurons early visual

cortex. Dakin and colleagues’ analysis was limited to items of a single size. Any such high

spatial frequency filter’s response is strongly affected by item size (Supplementary Fig. 12a–

c) while early visual cortex responses  (25, 26), numerosity tuned responses  (2, 4, 17) and

numerosity perception  (15, 16) are not. Therefore, this filter response predicts early visual

responses poorly (Fig. 4a), as we have previously shown for numerosity-tuned responses (17,

18). Dakin and colleagues proposed that subjects perceive the response ratio of high and low

spatial  frequency filters,  which  is  affected  by density,  rather  than  perceiving  numerosity.

Aggregate Fourier power is similarly affected by density. Their response ratio metric does not

closely follow numerosity (Supplementary Fig. 12d) and also predicts early visual responses

poorly (Fig. 4a), while aggregate Fourier power potentially allows straightforward estimation

of numerosity itself. These differences are vital because humans rapidly and spontaneously

perceive  numerosity  (15,  16).  Therefore,  while  we  were  inspired  by  their  insight  that

numerosity must be estimated from early visual responses, both of Dakin and colleagues’

proposed metrics for numerical vision predict neural responses and perception of numerosity

poorly, particularly with respect to item size changes.

Models for subsequently computing numerosity-tuned responses rely on comparing

monotonically increasing and decreasing responses  (20, 21, 24), with their relative weights

determining numerosity  preferences.  Human early visual  population receptive fields  have
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inhibitory surrounds  (54),  so populations  with receptive fields further  from stimulus  area

should  monotonically  decrease  their  responses  with  increasing  numerosity.  However,  we

observe no early visual monotonically decreasing responses, perhaps because negative fMRI

responses have low amplitudes or fewer neurons with monotonically decreasing responses

are  needed  (21).  Using  differently  weighted  excitatory  and  inhibitory  synapses,  tuned

responses could be computed with monotonically increasing inputs only  (20, 24). So, early

visual  neural  populations  alone  may provide  sufficient  inputs  to  derive  numerosity-tuned

responses.

Numerosity-tuned responses emerge in neural network computational models trained

to  efficiently  encode numerosity  displays,  or  even if  all  weights  are  random  (19,  24).  If

monotonic responses here arise from relationships between numerosity and image statistics

(as we propose above), random weights from two resulting monotonic units could produce

numerosity-tuned units with various numerosity preferences. These neural network models

produce  monotonic  responses  very  early,  by  their  second  (22) or  third  (24) layers.

Numerosity-tuned units  can  occur  in  the  same layer  (23),  though in  a  feedforward  deep

convolutional network  (24) numerosity-tuned units occur later, in the fourth layer, and are

derived from responses of monotonic units  in the third layer. Another deep convolutional

neural network trained for object recognition  (55) shows monotonic and numerosity-tuned

units far later, in layers 11 and 13 respectively. Responses of earlier layers were not examined

there, perhaps because only later units have inputs converging from the entire image. We kept

our numerosity patterns small so that eye movements were not required to see the whole

pattern clearly, and these patterns should easily fall within V1 population receptive fields.

Late-stage responses in a ventral stream model do not seem to be a close model for either the

monotonic responses of the human brain’s early visual cortex (25, 26) or the emergence of

numerosity-tuned neurons in the lateral occipital cortex and their spread through the dorsal
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visual stream areas of the superior parietal lobule (5, 56). Nevertheless, both response types

seem so straightforward to compute that they may also emerge in ventral stream areas to

support object recognition processes. They may also emerge far later than early visual cortex

if the items are spread over a large area (too big for early visual receptive fields), though even

here the response of an early visual neural population should follow numerosity if averaged

over many displays.

The transformation from monotonic to tuned responses that our results suggest also

seems to transform Fourier power to numerosity. Which further processes would be needed to

transform  the  early  visual  aggregate  Fourier  power  response  into  a  representation  of

numerosity that follows perceptual properties? We did not manipulate image contrast (i.e. dot

darkness) in our fMRI stimuli, but Fourier power linearly decreases as contrast is reduced. It

is well  established that early visual neural response amplitudes depend on image contrast

(57),  so  we  expect  that  reducing  image  contrast  would  reduce  V1  response  amplitudes.

Therefore, early visual responses are unlikely to follow numerosity (as others have proposed)

as  numerosity  does  not  depend on contrast,  and more  likely  to  follow aggregate  Fourier

power (as we propose) as this does depend on contrast. Transforming early visual Fourier

power responses into numerosity tuned responses would also require normalization for image

contrast.  Unlike  early  visual  field  maps,  the  responses  of  the  first  areas  where  we  find

numerosity tuned responses (visual field maps TO1 and TO2, i.e. area MT) are minimally

effected by contrast (57). Therefore, contrast normalization at this stage would be sufficient

to yield contrast-independent numerosity tuned responses. Global image contrast changes do

not affect perceived numerosity until items become less visible (33). But contrast variations

within a display may disrupt global normalization processes, potentially underlying the lower

numerosity  discrimination  performance  in  contrast-varying  displays  compared  to  fixed

contrast displays  (34). Indeed, our results show that the range of aggregate Fourier power
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levels  in  different  displays  increased  considerably  as  the  range  of  contrasts  increased,

regardless  of  whether  Fourier  power  is  normalized  by  mean  item  contrast.  The  mean

aggregate Fourier power across displays increased only slightly here, so any bias in perceived

numerosity would likely be hard to detect given the large variation.

After contrast normalization, converting from aggregate Fourier power to numerosity

may be as simple as including an exponential nonlinearity to compensate for sub-additive

accumulation of Fourier power with numerosity. Nonlinear interactions between excitatory

and inhibitory inputs to numerosity-tuned populations seem sufficient to implement this. This

nonlinearity  is  the  main  difference  between  predictions  of  monotonically  increasing

responses  to  Fourier  power  and  numerosity  in  our  stimulus  set.  As  a  compressive

nonlinearity, this might reflect fMRI response amplitude saturation with increasing neural

activity. We believe this interpretation is unlikely because our numerosity stimuli produce

response amplitudes far below the early visual cortex’s maximum fMRI response, and the

same compressive nonlinearity is seen in monotonic responses of neural network models. We

would not expect numerosity-tuned responses to show such saturation because they don’t

increase response amplitude with numerosity. 

Our  experimental  design  cannot  conclusively  demonstrate  that  numerosity-tuned

responses are derived from early visual frequency domain image representations, because we

do not disrupt the early visual image representation and show effects on numerosity-tuned

responses. Nevertheless, several findings suggest numerosity-tuned responses are computed

from these early visual monotonic responses. First, almost all visual inputs to the cortex come

through the primary visual cortex, which represents image features in the frequency domain

and  shows  monotonic  responses.  There  is  no  other  known  pathway  through  which

numerosity-tuned neurons could be activated by visual inputs. Second, proceeding through

the visual hierarchy, monotonic response model fits decrease in the same lateral  occipital
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visual field maps where numerosity-tuned response model fits begin increasing, suggesting a

transformation  from  monotonic  to  tuned  responses.  Third,  computational  models  for

numerosity-tuned  responses  (20–24) generally  derive  these  responses  from  monotonic

responses to  numerosity.  Our results  differ  from this  process  only by showing that  early

visual monotonic responses more closely follow frequency domain image properties, which

also predict monotonic neural network responses more closely than numerosity does.

Unlike early visual monotonically increasing responses, numerosity tuned responses

are not limited to neural populations with spatial receptive fields including the stimulus area.

At the macroscopic scale, topographic maps of visual space and numerosity largely overlap,

perhaps unsurprising as both are visually driven. This goes against the simplistic view of

single brain areas having single functions. Indeed numerosity selectivity is found in many

brain areas with diverse functions (5), many with spatial aspects: motion perception, spatial

attention and eye movements (58–61). Numerical representations here may facilitate motion

tracking, dividing attention and planning eye movements across multiple items respectively

(5, 44, 45, 62, 63). But at a finer scale these response preferences are independent  (5, 28),

perhaps allowing neural responses to numerosity regardless of stimulus position (30). Linking

specific numerosities and visual field positions would restrict all of these processes, and there

is no link between particular numerosities and visual field positions in our stimuli or natural

scenes. Conversely, to begin estimating numerosity from image contrast requires analysis of

spatial responses in the stimulus area. 

This  distinction  between  the  spatial  selectivity  of  early  visual  monotonically

responding populations and tuned populations in association cortices may reflect fundamental

differences between the processes that estimate and use numerosity.  Simpler animals like

bees,  zebrafish  and newborn  chickens  display  numerosity  guided behaviors,  but  lack  the
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complex numerical cognition of humans. Our findings suggest that apparently numerosity-

guided behaviors in these animals may require only selective responses to orientation and

spatial  frequency  in  their  simpler  visual  systems  (64–66),  with  or  without  extracting

numerosity from these spatial representations  (67). The human brain appears to have built

complex cognitive functions with inputs from these simple numerical responses (62).

Methods

Participants

We acquired fMRI data from eleven participants (aged 25–39 years, one female, one

left-handed). All had normal or corrected-to-normal visual acuity, good mathematical abilities

and were well  educated.  Participants were familiarized with the numerosity stimuli  using

tasks  that  required numerosity  judgments before scanning.  Written informed consent  was

obtained  from all  participants.  All  experimental  procedures  were  approved  by the  ethics

committee of University Medical Center Utrecht.

Data from participants P1-P5 were included in a previous study (5), although we use

updated preprocessing protocols here. These participants were scanned while viewing all four

stimulus configurations (Fig. 1), to test for responses to non-numerical features over a broad

range of stimulus parameters. P6-P11 were only scanned while viewing the constant area and

constant size configurations: previous studies show very similar responses across stimulus

configurations,  and  non-numerical  features  that  differ  between  configurations  predict

numerosity selective (17) and monotonic (25) responses poorly.

Visual stimuli

Following experimental protocols  described previously  (4,  5,  28),  we acquired 7T

fMRI data while participants viewed numerosity and visual field mapping stimuli. All stimuli
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were  presented  by  back-projection  on  a  15  ×  9  cm screen  inside  the  MRI  bore,  which

participants viewed through prism glasses and a mirror attached to the head coil. Distance

from the participants’ eyes to the display was 41 cm, with a visible resolution of 1,024 × 538

pixels.

Visual stimuli were generated using MATLAB and Psychtoolbox-3 (68). Stimuli were

sets of black circles (items) on a middle gray background. A diagonal cross of thin red lines

intersected the center of the screen and covered the entire display throughout the experiment

to aid with accurate fixation. 

Numerosity  stimuli  consisted of  groups of black dots (items)  within 0.75° (visual

angle,  radius)  of  a  fixation  cross  at  the  center  of  the  display.  We  used  four  stimulus

configurations with different progressions of item size and spacing with numerosity (Fig. 1).

The first three kept total item area (and display luminance), individual item size, or total item

perimeter constant. These placed items randomly but approximately homogeneously within

the stimulus  area.  The fourth (“high density”) grouped the items constant total  item area

entirely inside a 0.375° radius circular area, randomly placed inside the stimulus area. 10% of

displays showed white items instead of black, and participants responded to these displays

with  a  button  press  (80-100%  accurately  in  each  run).  No  numerosity  judgments  were

required.

The numerosities  one through seven were first  presented in  ascending order,  with

numerosity changing every 4200 ms (two TRs, see Supplementary Fig. 1c–d inset). Within

this period, a numerosity pattern was shown for 300 ms, alternating with 400 ms of gray

background, repeated six times. Each numerosity pattern had items drawn in new, random

positions.  These short  presentations  prevented participants from counting.  Following this,

twenty items were presented in the same way for eight TRs (16.8s, 24 presentations of a

pattern). These periods of twenty items served to distinguish between very small and very
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large tuning widths (4, 69). Then numerosities one through seven were presented as before,

but in descending order, followed by another long period of twenty items. This cycle was

repeated 4 times in each scanning run.

Repeated  presentation  of  stimuli  with  the  same  numerosity  likely  caused  some

adaptation  (50) or  repetition suppression.  To minimize effects  of  adaptation on estimated

response models, we used a single model to summarize responses to both increasing and

decreasing numerosity. This ensured each numerosity presentation was preceded by stimuli

that caused both higher and lower responses, reducing dependence on preceding stimuli.

In a separate scanning session, visual field mapping was used to delineate visual field

maps  and  determine  the  position  selectivity  of  our  recording  sites,  following  protocols

described  previously  (69,  70).  Briefly,  a  bar  filled  with  a  moving  checkerboard  pattern

stepped across a 6.35° (radius) circle in the display center in eight (cardinal and diagonal)

directions. Participants fixated the same central fixation cross, pressing a button when this

changed color to ensure fixation and attention.

fMRI acquisition and data pre-processing

We acquired MRI data on a 7T Philips Achieva scanner, following protocols described

fully in our previous studies (5, 28, 71). Briefly, we acquired T1-weighted anatomical scans,

automatically  segmented  these  with  Freesurfer,  then  manually  edited  labels  to  minimize

segmentation errors using ITK-SNAP. This provided a highly accurate cortical surface model

at  the  gray-white  matter  border  to  characterize  cortical  organization.  We  acquired  T2*-

weighted functional images using a 32-channel head coil at a resolution of 1.77 × 1.77 × 1.75

mm, with 41 interleaved slices of 128 × 128 voxels. The resulting field of view was 227 ×

227 × 72 mm. TR was 2100 ms, TE was 25 ms, and flip angle was 70 degrees. We used a

single shot gradient echo sequence with SENSE acceleration factor 3.0 and anterior-posterior
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encoding. This covered most of the brain but omitted anterior frontal and temporal lobes,

where 7T fMRI has low response amplitudes and large spatial distortions. Each functional

run acquired 182 images (382.2s) of which the first six (12.6s) were discarded to ensure a

steady  signal  state.  In  each  scan  session,  we acquired  six  to  eight  repeated  runs  in  one

stimulus  configuration,  plus  a  top-up scan  with  the  opposite  phase-encoding direction  to

correct  for  image  distortion  in  the  gradient  encoding  direction  (72),  and  a  T1-weighted

anatomical image with the same resolution, position and orientation as the functional data.

Different stimulus configurations were tested in different sessions.

Co-registration  of  functional  data  to  the  high-resolution  anatomical  space  was

performed using AFNI (afni.nimh.nih.gov; (73)), which differs from our previous studies. A

single transformation matrix was constructed, incorporating all the steps from the raw data to

the cortical surface model to reduce the number of interpolation steps to one. No other spatial

or  temporal  smoothing  procedures  were  applied.  A T1  image  with  the  same  resolution,

position and orientation as the functional data was first used to determine the transformation

to a higher resolution (1 mm isotropic) whole-brain T1 image (3dUnifize, 3dAllineate). For

the fMRI data, we first applied motion correction to two series of images that were acquired

using  opposing  phase-encoding  directions  (3dvolreg).  Subsequently,  we  determined  the

distortion transformation between the average images of these two series (3dQwarp). We then

determined  the  transformation  in  brain  position  between  and  within  functional  scans

(3dNwarpApply).  Then we determined the transformation that  co-registers this  functional

data to the T1 acquired in the same space (3dvolreg). We applied the product of all these

transformations to every functional volume to transform our functional data to the whole-

brain T1 anatomy. We repeated this for each fMRI session to transform all their data to the

same anatomical space.
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We  then  imported  these  data  into  mrVista  (github.com/vistalab/vistasoft).  We

averaged visual field mapping scan runs. We averaged scans in the same numerosity stimulus

configuration together. For each stimulus configuration we also averaged data from odd runs

and  averaged  data  from  even  runs  for  cross-validation.  Within  these  averaged  runs,  we

averaged repeated stimulus cycles.

Analyses of visual features co-varying with numerosity

Following  previously  described  methods  (17,  18),  we  quantified  several  non-

numerical features of each display in each numerosity stimulus configuration using methods

analogous to those described fully in  (17). For monotonic models, we tested predictions of

responses monotonically increasing or decreasing linearly or logarithmically (whichever fit

best) with: [1] numerosity; individual item [2] area and [3] perimeter; total item [4] area (74)

and [5] perimeter  (75); [6] area and [7] perimeter of the convex hull  (76); density of [8]

luminance, [9] edges, and [10] number within the convex hull; root mean square contrast [11]

across the display and [12] in the convex hull; and [13] aggregate Fourier power. We also

tested a  model  proposed to  capture  numerosity  perception  using the  responses  of  a  high

spatial frequency Laplacian of Gaussian center-surround filter (14). We used a filter with a 2-

pixel  standard  deviation  here,  but  other  filter  sizes  made  very  similar  predictions

(Supplementary Fig. 12). We convolved this filter with each image and summed the response

over  all  image  locations.  We also  tested  the  ratio  of  responses  of  high  and  low spatial

frequency filters (the response ratio model (14)). We used filters with standard deviations of 1

and 34 pixels here as the prediction of this  filter  pair  was most  strongly correlated with

numerosity in our displays. We also tested spatial pRF models following the visual positions

of [14] edges and [15] luminance, summing these across all displays of the same numerosity.
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Additionally, for each display we determined the aggregate Fourier power within the

first harmonic using MATLAB functions. We first normalized each image to a value of zero

on the background and one in the items. We took a two-dimensional Fourier transform of the

resulting image (fft2) and shifted the zero-frequency component to the center (fftshift) (Fig.

3a). We then took annular frequency bins (at all orientations) at intervals of 1 cycle/image

(excluding zero frequency), in which we summed the absolute power spectral density (PSD)

of the Fourier transform. Plotting PSD across frequencies (Fig. 3b) identifies a clear local

minimum at the end of the first harmonic. We identified this by finding the lowest frequency

above the frequency of the global maximum PSD where: either the first or second derivative

of PSD reaches its maximum and the PSD is below 25% of the global maximum PSD. This

effectively identifies the sharpest change in PSD, i.e. the end of the first harmonic, avoiding

artefacts resulting from the image pixelation or Fourier transform discretization. We summed

PSDs of all frequency bins until this frequency to give the aggregate Fourier power in the

first  harmonic  for  each  display.  We  also  determined  how  well  the  relationship  between

aggregate Fourier power and numerosity generalizes across a much greater range of item

sizes,  spacings  and  shapes  that  were  not  included  in  our  fMRI  experiments.  Display

resolution affects Fourier power. We arbitrarily evaluated our stimuli’s power in 768 × 768-

pixel images but divided it by 768 × 768 × 20.5 to generalize to any resolution. This makes

aggregate Fourier power in the first harmonic very nearly one for one-item displays.

We used the following MATLAB code to determine the aggregate Fourier power in

the first harmonic, from images placed in the image buffer using Psychtoolbox-3 (68):

ItemColor = 0; %Intensity values in the first color channel
BackgroundColor = 128;
GetImageSize = 768; %Image must be square, must be an even number of pixels

%Get image from image buffer
NumImage = Screen('GetImage', display.windowPtr, [display.numpixels(1)/2-
GetImageSize/2 display.numpixels(2)/2-GetImageSize/2 
display.numpixels(1)/2+GetImageSize/2 
display.numpixels(2)/2+GetImageSize/2]);
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%Normalise image so background is zero and item is one
NumImage = (BackgroundColor-single(NumImage(:,:,1)))./(BackgroundColor-
ItemColor);

%Take 2D Fourier transform, shift zero frequency component to centre
FourierImage = abs(single(fftshift(fft2(NumImage, GetImageSize, 
GetImageSize))));

%Sum over all orientations for each frequency
[x,y] = meshgrid(-GetImageSize/2:GetImageSize/2-1, -GetImageSize/2: 
GetImageSize/2-1);
[~,Radius] = cart2pol(x,y);
Radius = round(Radius);
FreqBins = zeros(1,(GetImageSize/2));
for RadCounter = 1:(GetImageSize/2)

FreqBins(RadCounter) = sum(FourierImage(Radius==RadCounter));
end

%Find the limit of the first harmonic. For robustness, use the 1st and 2nd 
derivative, and use whichever returns the lowest frequency.
[maxVal, maxPos] = max(FreqBins);
deriv1 = [diff(FreqBins)];
deriv1(FreqBins>(maxVal/4)) = 0;
deriv1(1:maxPos) = 0;
[~, whichMin1] = max(deriv1);

deriv2 = [0 diff(diff(FreqBins))];
deriv2(FreqBins>(maxVal/4)) = 0;
deriv2(1:maxPos) = 0;
[~, whichMin2] = max(deriv2);
whichMin = min([whichMin1 whichMin2]);

%Sum to this limit to get the aggregate Fourier power in the first harmonic
AggregatePower = sum(FreqBins(1:whichMin));

%Compensate for the image resolution
AggregatePower = AggregatePower/(GetImageSize^2*sqrt(2));

%To convert this to a numerosity estimate if preferred. This is somewhat 
approximate and descriptive of the observed relationship.
NumerosityEstimate = AggregatePower^2.2;

We also determined how well the relationship between aggregate Fourier power and

numerosity generalizes across a much greater range of item sizes, spacings and shapes that

were  not  included  in  our  fMRI experiments.  We tested  single  circles  from 1-240 pixels

diameter placed at the image center. We then tested images of 7 circles, each of diameter 16

pixels,  spaced randomly but  evenly within a  50 to  528 pixel  diameter  circular  area.  The

minimum center-to-center distance increased with the group area. We then tested images of
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16-pixel diameter circles from numerosity 1-175 within a 700-pixel diameter circular area,

placed at least 24 pixels apart (edge-to-edge).

We then tested regular convex polygons from 3 corners (equilateral triangle) to 10

corners  (regular  decagon),  plus  a  circle  (i.e.  infinite  corners),  with  all  corners  30  pixels

(radius) from the image center. We also tested regular stars with 3 to 10 points (at 30 pixels

radius), interleaved with concave corners at 10 pixels radius. Spatial frequency differs with

orientation in these shapes, so we determined the frequency of the first harmonic separately at

each orientation and summed the PSD within the resulting area.

We finally tested pairs of dots with and without connecting elements to determine

whether the effects of these connecting elements on Fourier power predict their effects on

perception. All dots we 30 pixels in diameter. All bars were 4 pixels wide and the same length

as the (edge-to-edge) distance between dots. Illusory contour inducers were 4 pixels wide, the

same color as the background, and extending 10 pixels into the dot. To separate effects of

connected configurations from changes to image properties, we included conditions where

the bar or illusory contour inducer was split in the middle and rotated around the dot center.

To model predictions of the mean fMRI response to aggregate Fourier power (or any

other  non-numerical  feature)  we  took  the  mean  value  over  all  displays  of  the  same

numerosity and stimulus configuration.

Neural response models

For  each  stimulus  configuration’s  data  and  cross-validation  splits,  we  fit  several

candidate response models testing how well a putative neural population with monotonic or

tuned responses to  each stimulus  feature predicts  the observed responses.  For  monotonic

response  models,  we  convolved  the  sequence  of  presented  feature  amplitudes  with  a

canonical hemodynamic response function (HRF) to give a predicted fMRI time course. We
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found the optimal scaling for this prediction using a general linear model (Supplementary

Fig. 1) to determine the baseline and β (scaling factor) for each recording site. This revealed

whether  responses increased or decreased with feature amplitude (the sign of  β)  and the

response variance explained by the scaled prediction (R2).  Log(numerosity) predicts early

visual EEG (25, 31, 77) and fMRI (26) response amplitudes well. To give each non-numerical

feature the best possible chance of explaining these responses, we tested both logarithmic and

linear scaling and chose that which gave the highest variance explained across all recording

sites  and  participants.  For  each  non-numerical  feature,  the  best  performing  model

(logarithmic  or  linear)  was  consistent  with  that  chosen  to  best  predict  numerosity  tuned

responses (17, 78). 

We quantified these model fits under cross-validation between odd and even scanning

runs per condition: we fit the model’s free parameters on one half of the data and evaluated

the resulting model’s fit on the complementary half. This primarily compensates for the free

parameters in the visual position selective pRF models and the tuned models: the monotonic

models  have  no  free  parameters.  Using  cross-validated  model  fits  allows  an  unbiased

comparison between the monotonic model fits, visual position selective pRF model fits, and

tuned model fits.  We refit  the scaling factor to evaluate the prediction,  as scaling factors

change between scans and sessions, but did not allow the scaling factor of monotonic models

to change sign.

We then compared the cross-validated variance explained in visual field maps V1-V3

between  the  monotonic  numerosity  model  and alternative  monotonic  and visual  position

selective pRF models. We first excluded from this comparison any recording site where no

model explained more than 20% of the response variance (i.e. R2<0.2) before cross-validation

That is, we selected voxels based on model fits in the data on which the model was fit, rather

than that on which the model was evaluated, to avoid circularity between voxel selection and
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model comparison. We also avoid by selecting voxels where any compared model performs

well, rather than voxels where one specific model performs well. We then took the median

cross-validated  fit  from each hemisphere (across  V1-V3),  and from both cross-validation

halves.  To  compare  any  two  models,  we  then  took  the  paired  difference  between  these

models’ fits in each hemisphere, resulting in a distribution of differences in model fits. We

determined whether this distribution showed a significant difference between model fits using

Wilcoxon signed-rank tests, as this population of fit differences was not normally distributed.

We then corrected the resulting p-values for multiple comparisons using false discovery rate

correction (37).

We  calculated  the  proportion  of  variance  in  the  responses  to  all  stimulus

configurations  (Area,  Size,  Perimeter,  Density)  that  these  models  explained,  rather  than

simply  averaging  the  variance  explained  values  from  each  stimulus  configuration.  This

ensured that configurations with larger fMRI signal variance were weighted more heavily in

the average across stimulus configurations. Arbitrary differences in fMRI response amplitude

between scan sessions  (79) prevented  us  from quantifying differences  in  neural  response

amplitude between stimulus configurations.

We estimated tuned response models as previously described (4, 5, 17), following a

pRF modeling approach (69). For tuned response models, we only compared predictions of

tuning for numerosity and aggregate Fourier power: we have previously demonstrated that

numerosity tuning predicts responses better than tuning for other features (5, 17). Briefly, for

each recording site, we start with a large set of candidate neural response models describing

numerosity or Fourier power tuning using logarithmic Gaussian functions (3–5) characterized

by  two  parameters:  (1)  a  preferred  numerosity  or  Fourier  power  (mean  of  the  Gaussian

distribution) and (2) a tuning width (standard deviation of the Gaussian). Candidate neural

response time courses reflected the amplitude of the Gaussian at the numerosity or Fourier

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.03.28.437364doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.28.437364
http://creativecommons.org/licenses/by-nc-nd/4.0/


power presented at each time point. We convolved these with an HRF to generate candidate

fMRI  time  courses.  We  found  the  candidate  fMRI  time  course  best  correlated  with  the

response at each recording site, giving the neural response model parameters that best predict

that recording site’s response and the response variance explained by that prediction (R2). 

We restricted candidate preferred numerosities to be between 1.05–6.95, within the

range of numerosities presented. Beyond the tested range, tuning function parameters cannot

be determined accurately (4, 5, 69) and neural response amplitude predictions monotonically

increase or  decrease within the presented numerosity  range,  complicating comparisons to

monotonic models.

We used the same procedure to compare the cross-validated variance explained in the

numerosity maps between the numerosity-tuned model and aggregate Fourier power tuned

model, as we have previously demonstrated that the numerosity-tuned model fits better than

models tuned to other non-numerical visual features.

Visual field mapping analysis

Visual field mapping data were analyzed following a standard pRF analysis (69, 70).

We identified visual field map borders based on reversals in the cortical progression of the

polar angle of recording sites’ visual field position preferences, drawing these by hand on the

cortical  surface  of  an  inflated  rendering  of  each  participant’s  brain  (Fig.  2a  and

Supplementary Figs.  3 and 4).  As well  as the early visual  field maps (V1,  V2,  V3),  we

identified higher visual field maps in the lateral/temporal occipital (LO1-LO2, TO1-TO2),

parietal  association  (V3A/B,  IPS0-IPS5)  and  frontal  (sPCS1-sPCS2,  iPCS)  cortices  with

reference to landmarks identified in previous studies (59, 80–82).

We  binned  recording  sites  in  each  visual  field  map  by  pRF  eccentricity,  at  0.2˚

intervals from 0˚ to 5.5˚. We took the mean and standard error of the variance explained by
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each response model among the recording sites within each bin in plotted this against bin

eccentricity. We fit relationships between bin mean variance explained in each numerosity

response  model  and  eccentricity  using  cumulative  Gaussian  sigmoid  functions  with  4

parameters: the point of inflection (cumulative Gaussian mean), slope (standard deviation),

maximum  asymptote  (variance  explained  at  fixation)  and  minimum  asymptote  (variance

explained at 5.5˚ eccentricity). We also fit quadratic curves to these, with three parameters:

intercept, slope and quadratic term. This includes the possibility of a constant relationship,

linear relationship,  and more complex relationships that allow for an increase in variance

explained in the middle of the eccentricity range, which was often observed. For both fit

functions, we bootstrapped these fits using 1000 samples drawn from the unbinned variance

explained  data  across  all  participants.  We  took  the  median  of  these  bootstrapped  fit

parameters as the best fitting curve. We determined 95% confidence intervals from the 2.5

and 97.5 percentile from the distribution of bootstrapped fits at each eccentricity. For each

visual field map and response model, we chose the function that gave the best correlation

between the fit and the bin means.

Analysis of relationship between spatial and numerical responses 

We also analyzed how variance explained by the best fitting response models was

related to recording sites’ spatial pRFs. We use pRF eccentricity (distance from the visual

field center, where numerosity stimuli were presented) to quantify the pRF’s coverage of the

stimulus  area:  pRF  size  linearly  follows  eccentricity  (69,  70),  so  pRFs  with  shared

eccentricities cover the numerosity stimulus area similarly. For each visual field map, we

binned all participants’ recording sites by eccentricity. We fit relationships between bin mean

variance  explained  and  eccentricity  using  a  sigmoid  cumulative  Gaussian  function  (i.e.

variance explained decreasing with eccentricity) and a quadratic function (allowing many
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relationships between variance explained and eccentricity).  For each visual field map and

response model, we chose the function that best fit the bin means.

Analysis of differences in model fits within and between visual field maps

We used linear mixed effects models to determine how the goodness of fit  of our

monotonic and tuned response models differed between visual field maps and eccentricity

ranges. These models included visual field map and eccentricity range as fixed factors and

participant as a random factor, because the quality of fMRI data varies between sessions and

participants. Marginal tests for the fixed effects were adjusted using Satterthwaite degrees of

freedom  approximation  (83).  To  determine  which  visual  field  maps  showed  different

goodness of fit, we used post-hoc multiple comparisons as part of the linear mixed effects

statistical model. These are corrected for multiple comparisons by using Tukey’s honestly

significant  difference test  (84),  which gives the marginal  means and confidence intervals

shown in Fig. 2c.

Comparison to neural network models

To  compare  the  predictions  of  monotonic  responses  to  aggregate  Fourier  power

against the responses of neural network models, we first extracted the data from Stoianov and

Zorzi  (22) (their Supplementary Figure 4A) and Kim and colleagues  (24) (their Figure 5B)

using graphreader.com. Each of these figures shows several lines, so we repeated this for 8

lines from each figure, evaluating these lines at each integer shown. Stoianov and Zorzi show

responses on a log numerosity axis without normalization, while Kim and colleagues show

responses on a linear numerosity axis normalized from zero (for the smallest response seen,

to numerosity 1) to one (for the largest response seen, to numerosity 30). We normalized the

responses  shown  by  Stoianov  and  Zorzi  globally  following  Kim’s  approach  (the  mean
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response to numerosity 1 was normalized to 0, the mean response to numerosity 30 was

normalized  to  1)  ,  though we kept  the  differences  between different  lines’ start  and end

points. We then plotted the data from both studies on the same axes with both log and linear

scales. Finding that the monotonic responses shown by these studies are very similar, we

subsequently treated them as one set of 16 lines. While we could not determine the aggregate

Fourier power of the displays used in these studies, our own results show that item size and

spacing have minimal effects on aggregate Fourier power. Therefore, we took the nonlinear

function of numerosity predicted by aggregate Fourier power in our own displays and linearly

scaled this to fit all the data points. We similarly scaled the log(numerosity) function. Finally,

we fit a quadratic function (second-degree polynomial) to all these data. Then, for each of the

16 lines shown in the neural network studies we calculated the correlation coefficient to each

of these 3 functions. We performed paired  t-tests on the sets of 16 correlation coefficients

from each function.
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Data availability

The data sets generated during the current study are available from the corresponding author

upon reasonable request. 

Code availability

The code that supports the findings of this study is available from the Vistasoft repository

(https://github.com/vistalab/vistasoft).
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