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ABSTRACT

The root system is critical for the survival of nearly all land plants and a key target for improving
abiotic stress tolerance, nutrient accumulation, and yield in crop species. Although many
methods of root phenotyping exist, within field studies one of the most popular methods is the
extraction and measurement of the upper portion of the root system, known as the root crown,
followed by trait quantification based on manual measurements or 2D imaging. However, 2D
techniques are inherently limited by the information available from single points of view. Here,
we used X-ray computed tomography to generate highly accurate 3D models of maize root
crowns and created computational pipelines capable of measuring 71 features from each
sample. This approach improves estimates of the genetic contribution to root system
architecture, and is refined enough to detect various changes in global root system architecture
over developmental time as well as more subtle changes in root distributions as a result of
environmental differences. We demonstrate that root pulling force, a high-throughput method of
root extraction that provides an estimate of root biomass, is associated with multiple 3D traits
from our pipeline. Our combined methodology can therefore be used to calibrate and interpret
root pulling force measurements across a range of experimental contexts, or scaled up as a
stand-alone approach in large genetic studies of root system architecture.
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INTRODUCTION

In maize, the entirety of primary, seminal, lateral, crown, and brace roots together form a
complex architecture which controls the plant’s ability to effectively acquire water, scavenge
nutrients, and resist lodging (Hochholdinger, 2009). As a result, root growth and development
are fundamental to overall plant development and competitiveness (Lynch, 1995), and several
prominent large-effect, loss-of-function mutants in cereal seedling root development have been
identified and reviewed previously (Hochholdinger et al., 2017; Bray and Topp, 2018). However,
root system architecture of mature, field-grown plants at the quantitative level has been
understudied and underutilized due to the relative difficulty in obtaining measurements, with
significant tradeoffs intrinsic to any particular phenotyping method (Pauli et al., 2016; Topp et
al., 2016). Nevertheless, because root growth is highly plastic and affected by environmental
conditions such as substrate moisture and texture (Sharp, 2004; Rich and Watt, 2013), field-
based studies are valuable despite their challenges.

In its simplest form, root phenotyping of crop species such as maize or rice can be performed by
manual measurement of a limited set of amenable traits, such as root biomass, length, width, or
the growing angle, either in soil or soil-free conditions. Currently known genes controlling
guantitative root system architecture traits in rice were identified using such measurements,
including PSTOL1 (Gamuyao et al., 2012), DRO1 (Uga et al., 2013), and a recent DRO1
homolog (Kitomi et al., 2020). In field conditions, additional techniques for quantifying roots
exist, such as the use of minirhizotrons, soil core sampling, and measuring of root pulling force
(Holbert and Koehler, 1924; Bohm and Béhm, 1979; Samson and Sinclair, 1994; Wasson et al.,
2014). Historically, root pulling force (RPF) has been useful as a field assay because of its
simplicity and potential for scalability, and has been applied to both monocots and dicots
(Ortman et al., 1968; O’'Toole and Soemartono, 1981; Donovan et al., 1982; Bailey et al., 2002;
Landi et al., 2002; Fletcher et al., 2015). RPF is generally correlated with greater root biomass
and branching, but more nuanced interpretations and its relationship with recently tractable
architectural measurements have yet to be established.

More intricate phenotyping of root system architecture can be performed upon two-dimensional
images of either field-excavated root crowns, or young gel-media grown root systems, followed
by analysis with specialized software (Le Bot et al., 2010; Lobet et al., 2011; Galkovskyi et al.,
2012; Colombi et al., 2015; Das et al., 2015; Symonova et al., 2015; Delory et al., 2018;
Seethepalli et al., 2020). Such methods have been used to quantify root system architecture in
diverse crops such as maize, wheat, rice, and cowpea (Bucksch et al., 2014; Cané et al., 2014;
Burridge et al., 2017; Wedger et al., 2019). However, 2D-based measurements have a limitation
in that images are typically taken from only one or two camera perspectives, with information
lost from roots occluding each other in the image.

As a result, interest and capacity towards three-dimensional root phenotyping has been
increasing, driven in part by technical advances and interdisciplinary approaches (Morris et al.,
2017). For example, young cereal plants grown in a gel-based media can be imaged over a
360° rotation, allowing digital reconstruction in 3D and high-throughput feature extraction (lyer-
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88 Pascuzzi et al., 2010; Clark et al., 2011). By scaling this technique to mapping populations,

89  studies have identified new univariate or multivariate root QTLs, demonstrating the value of

90 high-throughput and high-information-content trait capture for dissection of plant architecture

91 (Topp etal., 2013; Zurek et al., 2015). Other 3D-based solutions include the use of X-ray

92  computed tomography (XRT), which is capable of imaging any plant structure, including roots

93  within soil based upon physical density properties (Mairhofer et al., 2012; Mooney et al., 2012;

94  Bao et al., 2014; Rogers et al., 2016; Duncan et al., 2019; Li et al., 2019; Li et al., 2020;

95 Helliwell et al.). While XRT has been applied to plant physiology in some form for nearly two

96 decades, instrument accessibility and technical limitations typically restrict its use to small plant

97  structures, low throughput, and/or limited fields of view.

98

99  Here we integrate two protocols, first sampling via RPF and washing mature, lignified, field-
100 grown maize root crowns, followed by imaging via XRT and trait quantification for over 290 roots
101  across multiple field seasons. By imaging the roots absent of soil or other media, scanning and
102  segmentation times were significantly reduced such that replication across two environments
103  and/or two time points was possible. We extracted up to 71 3D features for each root crown
104  sample, including up to 65 traits with significant variation between genotypes, as well as root
105 shape or distributional traits, which showed differences between experimental contexts. The
106  median broad-sense heritability across all traits ranged from 0.23 to 0.56, depending on the
107  germplasm and conditions. Finally, we examined covariance between 3D traits and RPF values
108 to identify correlations between high-resolution phenomics and high-throughput field data. This
109  study illustrates the contributions of both phenotyping approaches, and provides insights into
110 the root architectural attributes that influence RPF, which can be used for the mapping of root
111 traits, multi-environment studies, and crop breeding.
112
113
114

115 MATERIALS AND METHODS

116

117  Plant Germplasm and Experimental Design

118

119  All plants were grown at the Colorado State University Agricultural Research Development &
120 Education Center in Fort Collins, CO, USA (40.649 N, -105.000 W) in 2017 and 2018. The

121  Genomes 2 Fields (G2F) germplasm (https://www.genomes2fields.org/) was planted in May
122 2017 in a split-plot design with full irrigation or limited irrigation (drought) treatments, with two
123 field replicates per treatment for a total of 1060 plots total. Prior to planting, the field was

124  fertilized with nitrogen at 65 Ibs per acre. From 260 genotypes planted as part of a large field
125 trial, 30 genotypes were selected for root imaging in this study across both irrigation treatments
126  (Supplemental Table 1), for a total sample size of N = 107 roots.

127

128 The Shoot Apical Meristem (SAM) diversity panel (Leiboff et al., 2015) along with 11 hybrid and
129 4 inbred check lines were planted in May 2018 using a split-plot design with full irrigation or
130 limited irrigation (drought) treatments, with three field replicates per treatment. Prior to planting,
131 the field was fertilized with nitrogen at 190 Ib per acre. From 390 genotypes planted as part of a
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132 large field trial, 20 genotypes were subsampled for root imaging in this study across both

133 irrigation treatments (Supplemental Table 1). Root systems were harvested at 9 weeks after
134  planting (time point 1) and again at 16 weeks after planting (time point 2), for a total sample size
135 of N =187 roots.

136

137 In both the G2F and SAM experiments, each plot consisted of two 12-foot rows with 30-inch
138  spacing between rows and 9-inch spacing between plants within rows. The irrigated treatments
139 received approximately 1 inch of water per week, while the drought treatments were irrigated
140 until well established (approx. 5 weeks after planting) and then received only natural

141  precipitation (103.8 mm and 69.9 mm in the 2017 and 2018 growing seasons, respectively),
142  except at the root harvesting when it also received irrigation to homogenize the root harvesting
143  process.

144

145  Field Phenotyping and 2D Root Imaging

146

147  The protocol used for root pulling and harvesting was similar to that in (Fletcher et al., 2015).
148  Briefly, all plants were irrigated 24 hours prior to sampling to homogenize soil conditions at root
149 harvest. Maize plants were tied at the base of the stem, just above the root crown, with a rope
150 attached to a dynamometer. The root system was extracted from the soil by vertical manual
151  pulling, with the required force (Kg) needed measured using a hand-held Imada DS2 digital
152  force gauge (Imada Inc., Northbrook, IL, USA). Within each field treatment (full vs limited

153 irrigation), two roots per genotype were harvested from the G2F population and an average of 4
154  roots per genotype (across two time points) were harvested for the SAM population. After

155  pulling, root samples were washed to remove all remaining soil and allowed to dry before

156 imaging.

157

158 Roots from the G2F 2017 experiment were also imaged in 2D using a photography station

159 equipped with a Sony a7 Il mirrorless camera. Roots were placed horizontally on a flat surface
160 with a black background, and the resulting images were then cropped and analyzed using DIRT
161 (Das et al., 2015).

162

163 3D Root Imaging and Feature Extraction

164

165 For 3D phenotyping in the G2F and SAM populations, root samples were clamped at the stem
166  with a small vise and imaged using a North Star X5000 X-ray system (North Star Imaging, MN,
167 USA). The sample was continuously imaged while rotated using the North Star efX-CT software
168  system, generating 1800 radiographs per sample (approx. 3 minutes). To provide an internal
169 calibration of the image geometry, a fixed standard (15 mm large tool, North Star Imaging) was
170 imaged with each sample batch. The radiographs were then reconstructed using efX-CT and
171  exported as an unadjusted RAW volume, resulting in a voxel size of 109-113 pm depending on
172  the sample batch. For each sample, the RAW volume was converted to 2D slices using the
173  custom Python script raw2img. The slices were then thresholded and binarized using the

174  custom script batch-segmentation, which subsequently converted each sample to a 3D point
175 cloud and quantified 19 root traits adapted from (Galkovskyi et al., 2012). Finally, each sample
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176  was converted to a 3D skeleton using the custom script batch-skeleton, which then quantified
177  an additional root 52 traits. The raw phenotype data is available in Supplemental File 1.
178
179  Alist and description of root features measured using batch-segmentation and batch-skeleton
180 are available in Supplemental Table 2. Mean, standard deviation, skewness, kurtosis, energy,
181  entropy, and smoothness from the distributions of root biomass (volume), convex hull, and
182  solidity were calculated using the method described in Malik and Baharudin, 2012. Fractal
183 dimension, which measures the degree to which root subsections approximate a smaller copy of
184  the whole root crown, was estimated by taking the 2D projection of the 3D volume, then
185 calculated using a similar approach to that described in Grift et al., 2011. DensityS features are
186  computationally similar to plant compactness traits described in Yang et al., 2014. Scripts used
187  for image processing and feature extraction are available at https://github.com/Topp-Roots-Lab/
188
189  Statistical Analysis
190
191 All downstream (i.e. post feature extraction) analysis was performed in the R statistical
192  computing environment. Initially, principal component analysis using all 71 3D roots traits was
193 used to identify large outliers, leading to the removal of 2 samples in the G2F 2017 data and 3
194  samples in the SAM 2018 data. Additionally, for all univariate analysis, outliers within each trait
195 were identified and omitted if they were beyond the 1st quartile minus 1.5 * interquartile-range
196  orthe 3rd quartile plus 1.5 * interquartile-range.
197
198  After univariate outlier removal, analysis of variance (ANOVA) was performed for each trait
199  using the car package (Fox and Weisberg, 2018). Subsequently, the ANOVA p-values were
200 adjusted using the Benjamini-Hochberg method. Individual two-sample comparisons as seen in
201  boxplots were performed using Mann-Whitney U tests. Correlations between root traits were
202  calculated using Spearman’s correlation coefficient. Linear regressions were performed using
203  the Im function in R.
204
205 Variance components were estimated by using the Ime4 package (Bates et al., 2015) to fit the
206 linear model Yj ~ G; + E; + (G*E);; + e, where Y is the phenotypic value, G; is the it genotype,
207  Ejis the j" environment, (G*E); is the interaction between the i genotype and the j"
208  environment, and ey is the residual error of the k™ sample from the i genotype and j"
209 environment. Broad-sense heritability was calculated using the equation

JG

2 : . . .
210 H-= P P —— where 0 is the estimated phenotypic variance due to genotype,

211  ocyxe is the estimated phenotypic variance due to genotype x environment, Gresiqual iS the residual
212  variance, e is the number of environments, and re is the average number of biological replicates
213  per genotype across both environments (Nyquist and Baker, 1991). This heritability estimator is
214  optimized as a predictor of the response to selection. For the SAM 2018 data, variance

215 components and broad-sense heritability were calculated separately for the two time points.
216

217  Principal component analysis (PCA) of the 3D root data within the G2M and SAM experiments
218 was performed using the base R prcomp function. For PCA-LDA, PCA was performed upon
219 each genotype subset, and the number of principal components required to explain 90% of the
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220 trait variance was used as inputs into the LDA function from the MASS package (Venables and
221  Ripley, 2002).

222

223  The randomForest (Liaw et al., 2002) and caret (Kuhn and Others, 2008) R packages were
224 used for random forest classification, with mtry and ntree parameters found using a grid search
225  approach between every combination of mtry between 1 to 20 and ntree values of 500, 1000,
226 2500, 5000. Parameters giving the best accuracy were kept, as calculated by 10-fold cross
227  validation repeated 3 times. From the final random forest models, the proximity matrix was

228  calculated and non-metric multidimensional scaling was used to visualize the distances between
229  samples.

230

231

232

233 RESULTS

234

235 Field and 3D Phenotyping Capture Variation in Maize Root System Architecture

236

237 In each of two field seasons, we sampled 50 maize genotypes (30 from the G2F panel and 20
238 from the SAM panel) that were grown under two different irrigation treatments, providing two
239  environments in terms of soil moisture. At the designated time point(s) for sampling (see

240  Methods), root crowns were excavated by tying the base of the stem with rope to a digital force
241  gauge, and manually placing a vertical force on the plant until the root crown was ruptured and
242  lifted free from the soil. The force gauge attached to the root system measured the kilogram of
243  force required for this process, also known as the root pulling force (RPF).

244

245  Field-pulled root samples, which maintain their 3D structure due to lignification, were washed
246  clean and subsequently imaged using a Northstar X5000 X-Ray computed tomography system
247  (Figure 1, Supplemental Figure 1A). Scans were then exported as vertical (y-axis) image slices,
248  thresholded using an automated algorithm, and converted to a skeletonized image and a point
249 cloud image for trait analysis (Supplemental Figure 1B-D). These were analyzed for 19 3D traits
250 using an established 3D-analysis pipeline (Bray and Topp, 2018) as well as 52 additional traits
251  predominantly focused on 3D root distribution traits using a newly developed series of feature
252  extraction tools. In total, 71 traits from the 3D volumes were extracted and used for analysis
253  (Supplemental Table 2).

254

255 Inthe G2F data set, root samples were also photographed for 2D image analysis via DIRT

256  using recommended protocols (Supplemental Figure 1E) (Das et al., 2015). Correlations

257  between the most directly comparable 2D and 3D traits were as we expected - for example, 2D
258 area and 3D surface area had a Pearson correlation coefficient of 0.754.

259

260 To assess the degree to which traits derived from field-pulled root crown samples would

261  respond to selection, we estimated broad-sense heritability (H?) in the G2F experiment for each
262 3D and 2D trait, as well as for RPF (Supplemental Figure 2). Traits related to overall root crown
263  size showed similar H? values between 3D measurements (e.g. 3D surface area H? = 0.47) and
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2D measurements (e.g. 2D area H? = 0.44). The traits with highest heritability, however, were
3D-derived maximum root count (H? = 0.76) and average root radius (H? = 0.74), illustrating
where 3D root phenotyping is particularly adept. Among 2D traits, high heritability did not
necessarily result in high association with RPF, although some traits such as 2D area had a
strong positive association (Supplemental Figure 2E-F). Nevertheless, depending on the
experimental conditions and amount of replication, it is probable that many root traits - though
computationally extractable - have questionable value due to high background noise and
sensitivity to sampling variation. In total, for example, 19 3D traits and 33 2D traits had
calculated H? values of less than 0.05; therefore, both 3D and 2D root traits must be screened
and evaluated for a given data set before drawing conclusions. Reassuringly, however, RPF
itself had a H? value of 0.67 in the G2F experiment, which is remarkably high for a physical field-
based root measurement, even when compared to the architectural traits measured from 3D
images.

In the SAM experiment, broad-sense heritability for 3D traits were calculated separately within
each time point (Supplemental Figure 3A-C). In general, H? values here were higher than in the
G2F experiment, which reflects a combination of the field conditions, genetic variation, and
sample sizes. As an average across both time points, root crown width (“HorEqDiameter”, mean
H? = 0.81), fractal dimension top view (mean H? = 0.81), maximum root count (mean H? = 0.80),
convex hull volume (mean H? = 0.79), and surface area (mean H* = 0.79) were among the
most heritable traits, although the individual performance of these traits fluctuated depending on
the time point. However, the average heritability across all 3D traits was only slightly higher at
first time point (0.510) than at second time point (0.505), suggesting that heritability of most
roots traits is relatively static over this time span. One interesting exception to this is RPF itself,
which had a H? value of only 0.59 at the first time point, but significantly increased to a H? value
of 0.85 by the second time point. This indicates that RPF measurements taken later in the plant
life cycle may be more informative and reliable for the purposes of distinguishing genotypic
differences in maize root system architecture, as well as for breeding. Overall, however, traits
with higher average heritability across time points tended to also have a greater correlation in
measurements between time points (Supplemental Figure 3D).

Focusing on 3D root traits and RPF, we subsequently wanted to examine whether genotype and
environment effects were significant factors on a trait-by-trait basis (Figure 2). Using analysis of
variance (ANOVA), in the G2F experiment we detected 21 root traits where genotype had a
significant effect, and 35 traits where the environment (irrigation regime) had a significant effect
(Figure 2B, Supplemental Figure 4A, Supplemental Figure 5). Root traits affected by both
genotype and environment include RPF, average root radius, median/maximum number of
roots, convex hull skewness, and solidity in several regions along the middle of the root crown.
Non-parametric tests for differences between environments confirmed that RPF, average root
radius, and convex hull volume, for example, were higher in the high irrigation environment,
whereas solidity was higher in the low irrigation environment (Figure 2C). These meet
expectations of soil moisture effects on root system architecture (e.g. more expansive growth
under higher moisture availability), providing confidence to our 3D phenotyping.
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In the SAM experiment, the situation was somewhat reversed: in support of the overall higher
trait heritability, a remarkable 65 root traits had a significant effect from genotype, but only 17
traits had a significant effect from environment, while 37 traits had a significant effect from time
point (Figure 2B, Supplemental Figure 4A, Supplemental Figure 6). Traits such as RPF, surface
area, volume, root crown depth, fractal dimension side view, and biomass distribution skewness
were affected by all three variables. Again, non-parametric tests for differences in RPF, volume,
and fractal dimension side, for example, confirmed the impacts of environment and time point as
detected by ANOVA (Figure 2D). The somewhat divergent trends in 3D root phenotypes
between the G2F and SAM experiments, however, indicate that additional generalizations about
root system architecture and how growth plasticity relates to it may be difficult to come by, as
root variation is highly dependent on the experimental conditions and/or genotypes. Indeed,
although the sample sizes here precluded strong statistical power to test genotype-environment
interactions using ANOVA, variance component analysis suggests that such interactions may
have a significant influence on a number of root architecture traits (Supplemental Figure 2B;
Supplemental Figure 3B-C).

Next, we applied supervised multivariate classification methods to determine which traits were
most closely associated with differences in genotype, environment, or time (Supplemental Table
3). Because of the high number of genotypes (18 in the G2F set and 16 in the SAM set, after
filtering for genotypes with the least missing data), in both experiments the data was split into
every possible combination of three genotypes, generating 816 different genotype combinations
in the G2F set and 560 different genotype combinations in the SAM set. We performed PCA-
LDA for genotype classification upon each three-genotype data subset, in each case using the
minimum number of principal components to explain 90% of the variance (5-7 PC’s with a
median of 6 in G2F data; 9-13 PC’s with a median of 11 in SAM data) as the inputs for LDA
(Figure 3A-B). Across all genotype combination subsets, the average classification accuracy
using leave-one-out cross-validation was 54.6% in the G2F and 67.2% in the SAM, both
significantly higher than the 1/3 expected by random chance, particularly considering the
realistic possibility that numerous genotypes may in actuality be phenotypically similar.

We examined what traits were most important towards PCA-LDA classification across all
genotype combinations (Supplemental Figure 7-8). In both the G2F and SAM populations,
maximum root count, average root radius, and specific root length tended to be very important
for genotype discrimination. Additionally, the median root count, number of root tips, elongation,
and average edge length were important in genotypic classification among the G2F population,
while several root solidity and density traits were important in genotypic classification among the
SAM population. Although RPF was not among the top traits for genotypic classification, it was
still well above average, ranking 12th overall in the G2F set and 19th overall in the SAM set.
Interestingly, traits related to overall root size such as volume or surface area did not seem to
be important factors overall in discriminating between genotypes, suggesting that these metrics,
although intuitive and undoubtedly important in other contexts, are by themselves insufficient to
distinguish between multiple and often subtly distinct genotypes, highlighting the need for the
more comprehensive phenotyping described here.
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352  To evaluate the overall effect of the environment (influential in the G2F experiment) and time
353  (highly influential in the SAM experiment), we performed random forest classification to

354  distinguish between the two possible levels of each variable upon root system architecture. For
355 these classifications we included all genotypes, which increased the sample size for each

356  model. Using 10-fold cross validation, the best model parameters resulted in a classification
357 accuracy of 81.0%, indicating that while the environment had an effect which was detectable
358 using classification techniques, the contrasting irrigation regimes were not so dramatic as to
359 resultin a shift in root system architecture obvious across every sample (Figure 3C).

360 Nevertheless, changes in density and solidity distributions, as well as root crown depth, were
361 the most distinguishing features, with RPF being less important (Figure 3D). Here, the

362 importance of solidity distributions in the upper half of the root crown (including SolidityVHist 02-
363  11) is consistent with ANOVA analysis (Supplemental Figure 4A); in particular, the low broad-
364  sense heritability of SolidityVHist 05-10, coupled with disproportionately high variance from
365 environment and genotype-environment effects, indicates that these are more determined by
366  environmental factors than by genetics in this experiment (Supplemental Figure 2A-B). On the
367 other hand, DensityS5 (a measure of relative compactness), which had a moderately high

368 heritability in this experiment, is still important for distinguishing the effect of environment,

369  suggesting that this trait is strongly affected by both genotype and environment.

370

371  For classifying roots based on time point in the SAM data, using 10-fold cross validation the
372  best model parameters resulted in a random forest classification accuracy of 78.6% (Figure 3E),
373  which was reasonable when considering that samples across both environmental conditions
374  were included. Here, differences in convex hull volume, volume, depth, root crown width, and
375  solidity distribution were the most distinguishing features, with RPF closely behind these and
376  other important traits (Figure 3F). Furthermore, solidity distribution features at the very top and
377  bottom of the root crown (SolidityVHist 01 and 17-19) appear to be relevant. Again, these

378  results are unsurprising given the expectation of increasing root crown size over time, and are
379 largely consistent with ANOVA results on time point effects upon these traits (Figure 2B).

380

381 Root Architecture Relationships and Correspondence to Root Pulling Force

382

383  Root pulling force has been used historically and recently as a proxy for root biomass and root
384  volume. Nevertheless, to have additional and more detailed information on the architectural
385 changes that RPF measures would increase its utility as a field assay. We first calculated

386  correlations between RPF and 3D root phenotype across all measured samples, irrespective of
387 genotype and environment, or time point in the case of the SAM data. In both experiments, RPF
388  was most correlated with root volume, fractal dimension, surface area, total root length, root
389  crown width, number of bifurcating clusters, and number of root tips. (Figure 4A-B,

390 Supplemental Table 4). Traits negatively correlated with RPF were generally weaker and less
391  consistent between the two experiments, but did include convex hull energy (a measure of root
392  system uniformity) and Density S5 in both cases.

393

394  Associations between root pulling force and root system architecture traits are most useful if
395 they are not only significantly correlated, but also exhibit a close linear relationship. Regression
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396 analysis between RPF and positively correlated 3D architecture traits (as observed in the G2F
397  experiment), such as fractal dimension and surface area, showed a reasonably good fit (Figure
398 4C-E). In contrast, there was a relatively poor fit with convex hull kurtosis, the most negatively
399 correlated trait (Figure 4F). These may in part be due to sampling error or noise, but also

400 because multiple root characteristics that may not be strongly correlated to each other

401 nevertheless each contribute to RPF in various ways. Nevertheless, the regression fit between
402  physical root biomass (i.e. root crown weight) in the SAM experiment and RPF or other

403  positively correlated 3D architecture traits was extremely high, while again relatively poor with
404  negatively correlated traits such as solidity in the upper root crown (Figure 4G-J). This high

405  goodness-of-fit was not a by-product of regression between two time points; rather, regression
406  between physical root biomass and these 3D traits remained high even when observing trends
407  and regressions within each time point (Supplemental Figure 4B-J). Furthermore, regression fit
408  was typically higher in time point 1 than in time point 2, which might be due to root crown traits
409  beginning to diverge in ways more independent of biomass, such as in architectural and spatial
410  orientation, which could nonetheless contribute to RPF.

411

412  To explore the degree to which trends across multiple traits may be associated with RPF, we
413  performed principal component analysis (PCA) from the G2F and SAM data using the 3D-based
414  root phenotypes alone (Supplemental Figure 9A, E). In the G2F data, RPF was more tightly
415  associated with principal component 2 (Supplemental Figure 9B), which was primarily

416 composed of traits related to overall size, i.e. surface area, volume, total root length, and

417  number of root tips, but also significantly composed of 3D biomass distribution traits

418  (Supplemental Figure 9l). On the other hand, in the SAM data, RPF was more tightly associated
419  with principal component 1 (Supplemental Figure 9F), which as with the G2F data was primarily
420 composed of traits related to overall size, including surface area, volume, and total root length,
421  and additionally fractional dimension side/top, but notably not of 3D biomass distribution traits
422  (Supplemental Figure 9J). Both PC1 and PC2 were statistically different between the two

423  environmental conditions in the G2F data and between the two time points in the SAM data
424  (Supplemental Figure 9C-H), but the differences between the G2F and SAM results here likely
425  derive from the fact that much of the phenotypic variation in the SAM data is greatly affected by
426  sampling time point, which an unsupervised method such as PCA does not distinguish.

427

428  As a whole, multiple analytical approaches corroborate the conclusion that distinct sets of root
429 traits are relevant depending on the germplasm, environment, and developmental time stage,
430 reinforcing the relevance of high-dimensional root phenotyping. This also demonstrates not only
431 the complexity of root architectures, but its propensity to change under different contexts and
432  genetic influences, and its ability to adapt to various conditions.

433

434

435

436 DISCUSSION

437

438  We have shown that using X-ray computed tomography, changes in 3D root architecture
439  between different treatments and conditions in the field can be measured in a biologically

10
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440 interpretable way, while also with high precision and detail. For example, soil moisture

441  conditions affect the solidity of the root system, particularly in the mid-portion of the crown. In
442  contrast, changes over time influence not only the overall size of the root crown, but also solidity
443  in the upper and lower portions of the crown. Interesting, in both contexts, the depth (i.e., the
444  length of the vertical axis) of the root crown also was a distinguishing feature. This is likely

445  specific to root crowns excavated using the root pulling method, as under standard shovel

446  excavation, the root depth would be arbitrary. By using root pulling, however, the depth is a

447  function of the root system and the soil conditions, as these determine where the root crown
448  breaks and therefore encapsulates some information. Finally, in many instances the 3D

449  architectural measurements were easily sufficient to distinguish different maize genotypes,

450 primarily using an entirely different set of traits including specific root length, median/maximum
451  root count, average root radius, and so on.

452

453  To date, 2D imaging has been by far the most popular form of quantifying root system

454  architecture, whether in Arabidopsis grown on media plates, or root crowns excavated from the
455  field. While relatively straightforward and convenient, 2D imaging does not represent true root
456  system architecture in its natural form, and therefore may omit important information. More

457  recently, optical imaging platforms have been developed to perform 3D imaging of plants

458  growing in gel media (Clark et al., 2011; Topp et al., 2013; Jiang et al., 2019). Here, we present
459  a new approach to quantifying hundreds of field-excavated root crowns using X-ray CT, which is
460 typically restricted to very small sample sizes or reconstituted soils from pot experiments (Bao et
461  al., 2014). Our results suggest that 3D imaging and the root architectural traits derived from it
462  have higher heritability, and therefore may be more informative, than methods using 2D

463 imaging. Therefore, we anticipate that future studies and breeding efforts in quantitative root
464  system architecture will increasingly utilize 3D phenotyping.

465

466  Nonetheless, the significant overhead associated with 3D imaging and analysis of roots will be a
467 limitation to many researchers for the foreseeable future. We addressed this by making explicit
468 comparisons between high information content 3D phenotypes and root pulling force, which is
469  accessible and can be scaled to high throughput levels. RPF measurements had several

470  significant positive correlations with 3D architecture traits including volume, surface area, total
471  root length, number of roots, and fraction dimension. Indeed, fractal dimension was a

472  surprisingly powerful trait, not only being highly correlated with RPF, but also having high

473  heritability and contributing significantly to differentiating root system architecture over time. This
474  is additional evidence that fractal dimension of root systems (Tatsumi et al., 1989; Eghball et al.,
475 1993; Nielsen et al., 1997; Eshel, 1998; Grift et al., 2011), is indeed a useful feature for

476  quantifying maize root crowns under a variety of scenarios.

477

478  However, there remains sufficient sources of variance among features such that future

479  improvements could strengthen the relationship between the above traits and RPF values. For
480 example, we performed root pulling manually by hand, but a field robot or other form of

481  mechanical assistance may result in more consistent RPF measurements (Mayer, 2019).

482  Furthermore, while the fields were flooded just prior to root pulling to standardize the soil

483  moisture conditions at the time of RPF sampling, local heterogeneity in soil texture or
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484  compactness may influence the measurements. This can be addressed in part by integrating
485  larger studies whereby spatial effects can be modeled, which likewise would be facilitated with
486  mechanization of the root pulling process. Finally, it should be noted that several traits not

487  measurable by our XRT system could contribute to RPF, including the abundance of root hairs
488  and variation in rhizosheath formation. Indeed, the fact that the heritability of RPF here

489 increased later in development suggests that it may be controlled by different genetic factors
490 overtime, and therefore it may also be possible to select and breed for early and later root

491 phenotypes at least partially independently.

492

493 A better understanding of the exact nature and the potential interactions between the many root
494  traits investigated here, such as exactly how fractal dimension and root volume together affect
495 RPF, as well as the addition of more traits that could theoretically be calculated from 3D imaging
496  (such as those relating to topology), may lead to additional insight into the relationship between
497  root system architecture and RPF. Fully resolving this relationship would be particularly

498  beneficial for multi-environment phenotyping, which requires high sample sizes to which the
499 RPF method is well-suited for. Indeed, our study suggests that many more field-scale studies,
500 utilizing wide-ranging conditions and germplasms, will be needed to fully characterize and

501 understand quantitative root system architecture and genotype-environment interactions in

502 diverse plant species such as maize.

503

504
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Figure 1: Pipeline for 3D root imaging using X-ray computed tomography. Samples are excised from the soil in the field using
the root pulling force method, and the measurement recorded. The root crown is washed, dried, and then imaged using the
NorthStar Imaging X5000 (see Methods) to generate radiographs as the sample is rotated 360° across the vertical axis. From
the radiographs, a 3D reconstruction is generated using the FDK algorithm. Slices along the vertical axis are exported for
automated thresholding, from which a skeleton and point cloud model of the root crown are generated. 3D root traits are then
measured from the skeleton and point cloud, and analyzed. See Supplementary Figure 1 for large example images of 3D

models.

Reconstruction & 3D Skeleton, Feature
Thresholding Point Cloud Extraction



https://doi.org/10.1101/2021.03.03.433776
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.433776; this version posted March 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Figure 2: RPF and 3D global root system architecture traits are affected by genotype, environment, and developmental time
point. (A) 3D reconstructions from X-ray imaging of genotype Tx601 root crowns in the SAM 2018 experiment, at the two time
points (9 vs 16 weeks) and from each environment (limited vs full irrigation). (B) ANOVA for genotype, environment, and time
point (in SAM 2018) effects upon RPF and 3D root traits (adjusted p < 0.05); for legibility, G2F 2017 and SAM 2018
experiments were separately scaled, and non-significant features were set at a -log10(p) value of 0. (C) Boxplot of selected
traits significantly different between the two environmental conditions in the G2F 2017 experiment (Mann-Whitney U Test p <
0.05). (D) Boxplot of selected traits significantly different between the two development time points and/or the two
environmental conditions in the SAM 2018 experiment (Mann-Whitney U Test p < 0.05).
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Figure 3: Classification based on genotype, environment, and time point using 3D root system architecture traits and RPF.
Examples of highly distinguishable genotypes by PCA-LDA in the G2F 2017 data (A) and SAM 2018 data (B). Random forest
classification of all samples based on environment in the G2F 2017 data (C) and importance of the 12 most influential traits

plus RPF (D). Random forest classification of all samples based on time point in the SAM 2018 data (E) and importance of the
12 most influential traits plus RPF (F).
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Figure 4: RPF and 3D root system architecture traits are strongly associated with each other and root biomass. Heatmap of
RPF and its 20 most correlated traits (10 most positive and 10 most negative) in the G2F 2017 (A) and SAM 2018 (B) datasets.
Regression of example traits positively correlated to RPF such as fractal dimension side/top (C, D) and surface area (E), and
example traits negatively correlated to RPF such as convex hull volume (F), within the G2F 2017 dataset. Regression of
example traits positively correlated to root biomass such as RPF (G), volume (H), and number of tips (I), and example traits
negatively correlated to root biomass such as solidity vertical histogram-01 (J), within the SAM 2018 dataset. Adjusted r-

squared values for C-J shown in respective plot insets.
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