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Abstract  
Inferring  cellular  trajectories  using  a  variety  of  omic  data  is  a  critical  task  in  single-cell  data  science.                  
However,  accurate  prediction  of  cell  fates,  and  thereby  biologically  meaningful  discovery,  is  challenged              
by  the  sheer  size  of  single-cell  data,  the  diversity  of  omic  data  types,  and  the  complexity  of  their                   
topologies.  We  present  VIA,  a  scalable  trajectory  inference  algorithm  that  overcomes  these  limitations  by               
using  lazy-teleporting  random  walks  to  accurately  reconstruct  complex  cellular  trajectories  beyond            
tree-like  pathways  (e.g.  cyclic  or  disconnected  structures).  We  show  that  VIA  robustly  and  efficiently               
unravels  the  fine-grained  sub-trajectories  in  a  1.3-million-cell  transcriptomic  mouse  atlas  without  losing             
the  global  connectivity  at  such  a  high  cell  count.  We  further  apply  VIA  to  discovering  elusive  lineages                  
and  less  populous  cell  fates  missed  by  other  methods  across  a  variety  of  data  types,  including  single-cell                  
proteomic,   epigenomic,   multi-omics   datasets,   and   a   new   in-house   single-cell   morphological   dataset.   

Background  
Single-cell  omics  data  captures  snapshots  of  cells  that  catalog  cell  types  and  molecular  states  with  high                 
precision.  These  high-content  readouts  can  be  harnessed  to  model  evolving  cellular  heterogeneity  and              
track  dynamical  changes  of  cell  fates  in  tissue,  tumour,  and  cell  population.  However,  current               
computational  methods  face  four  critical  challenges.  First,  it  remains  difficult  to  accurately  reconstruct              
high-resolution  cell  trajectories  and  automatically  detect  the  pertinent  cell  fates  and  lineages  without              
relying  on  prior  knowledge  of  input  parameter  settings.  This  is  a  foundational  but  unmet  attribute  of                 
trajectory  inference  (TI)  that  could  make  lineage  prediction  less  biased  towards  input  parameters,  and  thus                
minimize  the  confounding  factors  that  impact  the  underlying  hypothesis  testing.  However,  even  the  few               
algorithms  which  automate  cell  fate  detection  (e.g.  SlingShot 1 ,  Palantir 2  ,  STREAM 63  and  Monocle3 6 )              
exhibit  low  sensitivity  to  cell  fates  and  are  highly  susceptible  to  changes  in  input  parameters.  Second,                 
current  trajectory  inference  (TI)  methods  predominantly  work  well  on  tree-like  trajectories  (e.g.  Slingshot              
and  STREAM),  but  lack  the  generalisability  to  infer  disconnected,  cyclic  or  hybrid  topologies  without               
imposing  restrictions  on  transitions  and  causality 4 .  This  attribute  is  crucial  in  enabling  unbiased  discovery               
of  complex  trajectories  which  are  commonly  not  well  known  a  priori,  especially  given  the  increasing                
diversity  of  single-cell  omic  datasets.  Third,  the  growing  scale  of  single-cell  data,  notably  cell  atlases  of                 
whole  organisms 6 ,7 ,  embryos 8 ,9  and  human  organs 10 ,  exceeds  the  existing  TI  capacity,  not  just  in  runtime                
and  memory,  but  in  preserving  both  the  fine-grain  resolution  of  the  embedded  trajectories  and  the  global                 
connectivity  among  them.  Very  often,  such  global  information  is  lost  in  current  TI  methods  after                
extensive  and  multiple  rounds  of  dimension  reduction  or  subsampling.  Fourth,  fueling  the  advance  in               
single-cell  technologies  is  the  ongoing  pursuit  to  understand  cellular  heterogeneity  from  a  broader              
perspective  beyond  transcriptomics.  A  notable  example  is  the  emergence  of  single-cell  imaging             
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technologies  that  now  allow  information-rich  profiling  of  morphological  and  biophysical  phenotypes  of             
single-cells,  and  thus  offer  novel  mechanistic  cues  to  cellular  functions  that  cannot  be  solely  inferred  by                 
proteomic  or  sequencing  data  (e.g.  in  cancer 59 ,  ageing 60 ,  drug  responses 61 ).  However,  the  applicability  of               
TI   to   a   broader   spectrum   of   single-cell   data   has   yet   to   be   fully   exploited.   
 
To  overcome  these  recurring  challenges,  we  present  VIA,  a  graph-based  TI  algorithm  that  uses  a  new                 
strategy  to  compute  pseudotime,  and  reconstruct  cell  lineages  based  on  lazy-teleporting  random  walks              
integrated  with  Markov  chain  Monte  Carlo  (MCMC)  refinement  ( Fig.  1 ).  VIA  relaxes  common              
constraints  on  traversing  the  graph,  and  thus  allows  capture  of  cellular  trajectories  not  only  in                
multi-furcations  and  trees,  but  also  in  disconnected  and  cyclic  topologies.  The  lazy-teleporting  MCMC              
characteristics  also  make  VIA  robust  to  a  wide  range  of  pre-processing  and  input  algorithmic  parameters,                
and  allow  VIA  to  consistently  identify  pertinent  lineages  that  remain  elusive  or  even  lost  in  other                 
top-performing  and  popular  TI  algorithms  we  benchmark 4 ,  which  are  chosen  for  comparative  analysis              
conditional  on  meeting  several  of  the  following  criteria:  automated  lineage  path  and  cell  fate  prediction,                
recovery  of  complex  topologies  not  limited  to  trees,  scalability  and  generalizability  to  multiple              
single-cell-modalities.  We  validate  the  performance  of  VIA  and  thus  its  ability  to  offer  better               
interpretation  of  the  underlying  biology  across  a  variety  of  transcriptomic,  epigenomic  and  integrated              
multi-omic  datasets  (seven  biological  datasets  with  a  further  two  datasets  presented  in Supplementary ).              
Notably,  we  show  in  subsequent  sections  that  VIA  accurately  detects  minor  dendritic  sub-populations  and               
their  characteristic  gene  expression  trends  in  human  hematopoiesis;  automatically  identifies  pancreatic            
islets  including  rare  delta  cells;  and  recovers  endothelial  and  cardiomyocyte  bifurcation  in  integrated  data               
sets  of  single-cell  RNA-sequencing  (scRNA-seq)  and  single-cell  sequencing  assay  for           
transposase-accessible   chromatin   (scATAC-seq).   
 
Another  defining  attribute  of  VIA  is  its  resilience  in  handling  the  wide  disparity  in  single-cell  data  size,                  
structure  and  dimensionality  across  modalities.  Specifically,  VIA  is  highly  scalable  with  respect  to              
number  of  cells  (10 2  to  >10 6  cells)  and  features,  without  requiring  extensive  dimensionality  reduction  or                
subsampling  which  compromise  global  information.  Most  TI  methods  require  two  stages  of             
dimensionality  reduction  in  the  form  of  PCA  followed  by  a  subsequent  stage  of  UMAP,  MLLE  or                 
diffusion  components.  Only  a  low  number  of  components  from  the  second  layer  of  dimensionality               
reduction  is  retained  as  an  input  to  the  TI  method  (e.g.  STREAM,  Monocle3,  Slingshot  and  even  PAGA                  
and  Palantir  which  subset  the  diffusion  components  after  PCA).  In  VIA,  we  show  that  for  cytometry  data                  
there  is  no  need  for  any  dimensionality  reduction,  and  for  transcriptomic  data  we  show  that  VIA  does  not                   
need  a  second  dimensionality  reduction  step  but  robustly  infers  lineages  on  a  wide  range  of  input                 
principal  components  (PCs).  Although  PCA  is  a  common  step  in  analyzing  transcriptomic  data  in  order  to                 
strengthen  the  signal  in  the  data,  we  also  show  that  in-principle,  VIA  can  handle  1000s  of  genes  as  direct                    
inputs  without  any  PCA  at  all (Supplementary  Note  S5  and  Fig.  S27-S29).  We  showcase  the  scalability                 
of  sample  size  by  analyzing  the  fine-grained  developmental  sub-trajectories  in  the  1.3-million-cell  mouse              
organogenesis  atlas  in  terms  of  fast  runtime  and  preservation  of  global  cell-type  connectivity,  which  is                
otherwise  lost  in  existing  TI  methods.  We  also  show  that  VIA  is  robust  against  the  dimensionality  drop                  
(down  to  10’s  -  100’s  antibodies  or  morphological  features)  in  mass  cytometry  (proteomics)  and  imaging                
cytometry  (morphological)  data.  For  instance,  VIA  consistently  reconstructs  the  pseudotime  that            
recapitulates  murine  embryonic  stem  cells  (ESCs)  differentiation  toward  mesoderm  cells  in  CyTOF  data,              
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where  the  lazy-teleporting  MCMCs  contribute  to  the  high  accuracy  of  inference.  Lastly,  we  hypothesize               
that  VIA  can  also  be  applied  to  imaging  cytometry  for  gaining  a  mechanistic  biophysical  understanding  of                 
cellular  progress.  To  this  end,  we  profiled  the  biophysical  and  morphological  phenotypes  of  single-cell               
live  breast  cancer  cells  with  our  recently  developed  high-throughput  imaging  flow  cytometer,  called              
FACED 33 .  Validated  with  the  in-situ  fluorescence  image  capture,  we  found  that  VIA  reliably  reconstructs               
the  continuous  cell-cycle  progressions  from  G1-S-G2/M  phase,  and  reveals  subtle  changes  in  cell  mass               
accumulation.  

Figure  1.  General  workflow  of  VIA  algorithm. Step  1: Single-cell  level  graph  is  clustered  such  that  each  node                   
represents  a  cluster  of  single  cells  (computed  by  our  clustering  algorithm  PARC 11 ).  The  resulting  cluster  graph  forms                  
the  basis  for  subsequent  random  walks. Step  2: 2-stage  pseudotime  computation:  (i)  The  pseudotime  (relative  to  a                  
user  defined  start  cell)  is  first  computed  by  the  expected  hitting  time  for  a  lazy-teleporting  random  walk  along  an                    
undirected  graph.  At  each  step,  the  walk  (with  small  probability)  can  remain  (orange  arrows)  or  teleport  (red  arrows)                   
to  any  other  state.  (ii)  Edges  are  then  forward  biased  based  on  the  expected  hitting  time  (See  forward  biased  edges                     
illustrated  as  the  imbalance  of  double-arrowhead  size).  The  pseudotime  is  further  refined  on  the  directed  graph  by                  
running  Markov  chain  Monte  Carlo  (MCMC)  simulations  (See  3  highlighted  paths  starting  at  root). Step  3: Consensus                  
vote  on  terminal  states  based  on  vertex  connectivity  properties  of  the  directed  graph. Step  4 :  lineage  likelihoods                  
computed  as  the  visitation  frequency  under  lazy-teleporting  MCMC  simulations. Step  5 :  Projection  of  temporal               
ordering  and  lineage  probabilities  to  single-cell  level  using  the  original  single-cell-KNN  graph  to  enable  visualization                
that  combines  network  topology  and  single-cell  level  pseudotime/lineage  probability  properties  onto  an  embedding              
using  GAMs,  as  well  as  unsupervised  downstream  analysis  (e.g.  gene  expression  trend  along  pseudotime  for  each                 
lineage).   
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Results  

Algorithm  
VIA  first  represents  the  single-cell  data  as  a  cluster  graph  (i.e.  each  node  is  a  cluster  of  single  cells),                    
computed  by  our  recently  developed  data-driven  community-detection  algorithm,  PARC,  which  allows            
scalable  clustering  whilst  preserving  global  properties  of  the  topology  needed  for  accurate  TI 11  ( Step  1  in                 
Fig.  1) .  The  root  (starting  point)  is  designated  by  the  user,  either  as  a  single-cell  index  or  using  group  or                     
cluster  level  labels.  The  cell  fates  and  their  lineage  pathways  are  then  computed  by  a  two-stage                 
probabilistic  method,  which  is  the  key  algorithmic  contribution  of  this  work  ( Step  2  in  Fig.  1 ,  see                  
Methods for  detailed  explanation).  In  the  first  stage  of  Step  2,  VIA  models  the  cellular  process  as  a                   
modified  random  walk  that  allows  degrees  of laziness  (remaining  at  a  node/state)  and teleportation               
(jumping  to  any  other  node/state)  with  pre-defined  probabilities.  The  pseudotime,  and  thus  the  graph               
directionality,  can  be  computed  based  on  the  theoretical  hitting  times  of  nodes  (See  the  theory  and                 
derivation  in Methods  and  Supplementary  Note  2 ).  The  lazy-teleporting  behavior  prevents  the  expected              
hitting  time  from  converging  to  a  local  distribution  in  the  graph  as  otherwise  occurs  in  regular  random                  
walks,  especially  when  the  sample  size  grows 12 .  More  specifically,  the  laziness  and  teleportation  factors               
regulate  the  weights  given  to  each  eigenvector-value  pair  in  the  expected  hitting  time  formulation  such                
that  the  stationary  distribution  (given  by  the  local-node  degree-properties  in  regular  walks)  does  not               
overwhelm  the  global  information  provided  by  other  ‘eigen-pairs’.  Moreover,  the  computation  does  not              
require  subsetting  the  first k eigenvectors  (bypassing  the  need  for  the  user  to  select  a  suitable  threshold  or                   
subset  of  eigenvectors)  since  the  dimensionality  is  not  on  the  order  of  number  of  cells,  but  is  equal  to  the                     
number  of  clusters.  Hence  all  eigenvalue-eigenvector  pairs  can  be  incorporated  without  causing  a              
bottleneck  in  runtime.  Consequently  in  VIA,  the  modified  walk  on  a  cluster-graph  not  only  enables                
scalable  pseudotime  computation  for  large  datasets  in  terms  of  runtime,  but  also  preserves  information               
about  the  global  neighborhood  relationships  within  the  graph.  In  the  second  stage  of  Step  2,  VIA  infers                  
the  directionality  of  the graph  by  biasing  the  edge-weights  with  the  initial  pseudotime  computations,  and                
refines   the   pseudotime   through   lazy-teleporting   MCMC   simulations   on   the   forward   biased   graph.   
 
Next (Step  3  in  Fig . 1),  the  MCMC-refined  graph-edges  of  the  lazy-teleporting  random  walk  enable                
accurate  predictions  of  terminal  cell  fates  through  a  consensus  vote  of  various  vertex  connectivity               
properties  derived  from  the  directed  graph.  The  cell  fate  predictions  obtained  using  this  approach  are                
more  accurate  and  robust  to  changes  in  input  data  and  parameters  compared  to  other  TI  methods  ( Fig.2                  
simulated  complex  topologies and  Fig.  S1  summary  of  lineage  detection  accuracy  for  all  benchmarked               
real  datasets ) .  Trajectories  towards  identified  terminal  states  are  then  resolved  using  lazy-teleporting             
MCMC  simulations  ( Step  4  in  Fig.  1 ).  The  single-cell  level  KNN  graph  constructed  in Step  1  is  then                   
used  to  project  the  lineage  probabilities  of  trajectories  (pathways  from  root  to  cell  fate),  and  temporal                 
ordering  derived  from  the  cluster-graph  topology  onto  a  single-cell  level.  Together,  these  four  steps               
facilitate  holistic  topological  visualization  of  TI  on  the  single-cell  level  (e.g.  using  UMAP  or  PHATE 14 ,15 )                
and  critically  enable  data-driven  downstream  analyses  such  as  recovering  gene  expression  trends  and              
single-cell  level  pathways  of  lineages,  that  are  essential  to  biological  validation  and  discovery  of  lineage                
commitment   ( Methods )   ( Step   5   in   Fig.1 ).  
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VIA   accurately   captures   complex   topologies   obscured   in   other   TI   methods  
We  first  generate  and  analyze  simulated  datasets  (see Methods )  to  demonstrate  that  VIA’s  probabilistic               
approach  to  graph-traversal  allows  it  to  infer  cell  fates  when  the  underlying  data  spans  combinations  of                 
multifurcating  trees  and  cyclic/disconnected  topologies  -  topologies  and  lineages  often  obscured  in             
existing  TI  methods.  In  VIA,  the  relaxation  of  edge  constraints  in  computing  lineage  pathways  and                
pseudotime  enables  accurate  detection  of  cell  fates  and  complex  trajectories  by  avoiding  prematurely              
imposing  constraints  on  node-to-node  mobility.  Other  methods  resort  to  constraints  such  as  reducing  the               
graph  to  a  tree,  imposing  unidirectionality  by  thresholding  edges  based  on  pseudotime  directionality,              
removing   outgoing   edges   from   terminal   states 13 , 2    and   computing   shortest   paths   for   pseudotime 2 ,1 .   
 
The  availability  of  a  reference  truth  model  for  the  synthetics  datasets  allows  us  to  quantify  TI  accuracy                  
using  a  composite  metric  which  assesses  multiple  layers  of  the  inferred  trajectory  including  topology,               
pseudotime  and  lineage  prediction.  The  metric  assesses  “local”  graph  similarity  between  the  inferred  and               
reference  graphs  using  the  Graph  Edit  Distance  (GED)  and  an  F1-Branch  score  (which  labels  branches  in                 
the  inferred  topology  as  true  or  false  positives,  or  the  lack  thereof  as  a  false  negative).  “Global”  graph                   
similarity  is  computed  using  the  Ipsen-Mikhailov  metric 66  ( Methods ),  and  pseudotime  quality  is  captured              
by  the  Pearson  correlation  between  the  inferred  and  reference  pseudotimes.  Terminal  cell  fate  prediction               
is  evaluated  using  the  F1-score.  The  breakdown  of  the  composite  score  and  further  detail  on  each  metric                  
is   available   in    Supplementary   Note   S3    and    Fig.   S2-   S5 .  
 
The  differences  in  accuracy  between  VIA  and  other  methods  is  most  significant  for  complex  topologies,                
particularly  those  with  disconnected  components  comprising  various  connected  topologies,  whilst  the            
ability  to  accurately  detect  cell  fates  is  highlighted  by  multilineage  furcating  topologies.  In  the  4-leaf                
multifurcation  topology  ( Fig.  2a  top) ,  VIA  accurately  captures  the  two  cascading  bifurcations  which  lead               
to  4  leaf  nodes.  In  particular,  VIA  detects  the  elusive  ‘M2’  terminal  state  whereas  other  methods  (Palantir,                  
PAGA,  Slingshot,  STREAM  and  Monocle3)  merge  it  with  the  ‘M8’  lineage.  Monocle3  and  STREAM               
typically  only  capture  a  single  bifurcation  and  thus  merge  the  pairs  of  leaves  that  otherwise  arise  from  the                   
second  layer  of  bifurcation  ( Fig.  2a) .  Even  for  the  fairly  simple  cyclic  topology  ( Fig.  2a) ,  other  methods                  
tend  to  fragment  the  structure  to  varying  degrees  depending  on  the  parameter  choice  whereas  VIA                
consistently  preserves  the  global  cyclic  structure  (Supplementary  Fig.  S4c  under  various  K  (KNN)) .              
This  is  not  to  say  VIA  is  invariant  to  parameter  choice,  but  rather  that  VIA  predictably  modulates  the                   
graph  resolution  across  a  wide  range  of  K  without  disrupting  the  underlying  global  topology  (see  the                 
increase  in  the  number  of  nodes  in  K=30  versus  K=5  in Supplementary  Fig.  S4c ).  This  characteristic  is                  
important  for  robustly  analyzing  multiple  levels  of  resolution  in  complex  graph  topologies,  as  also  shown                
in  our  later  investigation  of  the  1.3-million-cell  mouse  atlas.  The  performance  comparison  for  the               
disconnected  hybrid  topologies  ( Fig.  2 )  shows  that  VIA  disentangles  the  cyclic  and  bifurcating  lineages               
(that  comprise  Disconnected1)  and  captures  the  key  leaf-states  in  the  bifurcation  as  well  as  the  ‘tail’                 
extending  from  the  cyclic  topology.  Palantir  overly  fragments  the  two  trajectories,  whereas  Monocle3  and               
Slingshot  merge  them,  STREAM  is  not  well  suited  to  non-tree  trajectories  given  the  underlying  structure                
is   assumed   to   be   a   spanning   tree.  
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We  also  show  that  VIA  is  flexible  to  using  clustering  methods  other  than  PARC  by  substituting  PARC                  
with  Kmeans  clustering  to  show  that  the  lazy-teleporting  MCMCs  still  enable  faithful  recovery  of  various                
topologies  as  well  as  the  associated  cell  fates  ( Supplementary Note  S6  and Fig  S30-S32 ).  The  main                 
drawback  of  using  K-means  is  that  under-  or  over-clustering  can  occur  based  on  the  user-choice  of  K,                  
whereas  methods  like  PARC  enable  a  more  data-driven  resolution  of  the  data  where  the  recovery  of  less                  
populous   cell   types   is   not   dependent   on   an   adequately   large   number   of   clusters.  

 
Figure  2  TI  performance  comparisons  on  complex  hybrid  topologies.  (a) Topologies  of  four  representative               
synthetic  datasets  ( Multifurc1,  Cyclic1,  Disconn1  and  Conn1 )  output  by  different  TI  methods.  The  reference               
topologies  are  shown  on  the  left.  Each  dataset  contains  1000  ‘cells’  and  is  run  with  10  PCs  and  KNN  =  20.  VIA  is                        
shown  at  the  cluster  graph  level  but  can  also  be  projected  to  the  single-cell  level  as  shown  in  later  examples. (b)                      
Composite  accuracy  score  is  shown  for  each  method  across  all  9  synthetic  datasets  (detailed  breakdown  available  in                  
Supplementary  Fig.  S2-S5 ).  Note  STREAM  does  not  work  on  the  Disconnected  data  (producing  highly  distorted                
results)   and   therefore   excluded   in    Disconn1   and   Disconn2 .  
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VIA  reveals  rare  lineages  in  epigenomic  and  transcriptomic  landscapes  of           
human   hematopoiesis.  
To  assess  the  performance  of  VIA  on  inferring  real  cellular  trajectory,  we  first  considered  a  range  of                  
scRNA-seq  datasets,  including  hematopoiesis 2 , 27 ,  endocrine  genesis,  B-cell  differentiation 26  and          
embryonic  stem  (ES)  cell  differentiation  in  embryoid  bodies 15 .  We  present  the  analyses  of  CD34+  human                
hematopoiesis  and  endocrine  differentiation  here,  whereas  the  generalizable  performance  of  VIA  on  other              
scRNA-seq  datasets  is  presented  in Supplementary  Fig.  S1,  S6  and  S13 .  We  highlight  human               
hematopoiesis  as  it  has  been  extensively  studied  not  only  with  scRNA-seq,  but  also  other  single-cell                
omics  modalities,  notably  scATAC-seq.  Hence,  it  allows  us  to  reliably  assess  lineage  identification              
performance   and   downstream   analyses   using   VIA.   
 
First,  we  show  that  VIA  consistently  reveals  from  the  scRNA-seq  dataset  the  typical  hierarchical               
bifurcations  during  hematopoiesis  that  result  in  key  committed  lineages  of  hematopoietic  stem  cells              
(HSCs)  to  monocytic,  lymphoid,  erythroid,  classical  and  plasmacytoid  dendritic  cell  (cDCs  and  pDCs)              
lineages  and  megakaryocytes  ( Fig.  3a ).  The  automated  detection  of  these  terminal  states  in  VIA,  as                
quantified  by  F1-scores  on  the  annotated  cells,  remains  robust  to  varying  the  number  of  neighbors  in  the                  
KNN  graph,  and  the  number  of  PCs  ( Fig.  3c ).  Specifically,  VIA’s  sustained  sensitivity  to  rarer  cell  types                  
(e.g.  DCs  and  megakaryocytes)  can  be  attributed  to  a  better  underlying  graph  structure  where  nodes  are                 
well  delineated  by  PARC  (as  rare  cell  types  are  well  separated  by  graph  pruning  in  the  clustering  stage)                   
and  edges  governing  the  random  walk  pathways  are  not  prematurely  removed  due  to  restrictions  on                
causality.   
 
In  contrast,  the  sensitivity  of  Palantir  and  Slingshot  in  detecting  rarer  lineages  drops  significantly  outside                
a  favourable  ''sweet  spot''  of  parameters.  Slingshot  can  only  recover  the  major  cell  populations               
(monocytes,  erythroid  and  B  cells)  and  confuses  the  DC  populations  with  the  monocytes  and  the                
megakaryocytes  with  the  erythroid  cells.  Palantir  can  only  identify  the  DCs  and  megakaryocytes  for  a                
handful  of  parameter  options,  whereas  VIA  achieves  this  goal  across  a  wider  range  of  parameters  ( Fig.                 
3c ).  To  verify  that  VIA  reliably  delineates  the  megakaryocyte,  cDC  and  pDC  lineages,  we  used  VIA  to                  
automatically  plot  the  lineage  specific  trends  for  selected  marker  genes.  We  showed  that  while  both  DC                 
lineages  exhibit  elevated IRF8 ,  the CSF1R  is  specific  to  the  cDC,  and  the CD123  remains  elevated  for                  
pDCs  whereas  it  is  first  up-regulated,  then  down-regulated  in  cDCs  ( Fig.3b  and  Supplementary  Fig.               
S7-S9) .  Marker  genes  known  to  increase  along  a  specific  lineage  are  correlated  against  the  pseudotime                
along  each  lineage  as  an  indicator  of  correct  cell  ordering (Fig.  3d) .  The  gene  trends  inferred  by  each                   
method  are  provided  in Supplementary  Fig.  S9  to  show  a  side-by-side  comparison  of  nuances  in  the                 
quality  of  plotted  expressions,  such  as  the  presence  of  cross-talk  between  distinct  lineages,  or  distortion  of                 
the   trends   due   to   unrelated   cells   assimilated   into   lineages.   
 
We  find  that  VIA’s  interpretation  of  the  human  scATAC-seq  profiles  ( Fig.  3e )  mirrors  the  continuous                
landscape  of  scRNA-seq  human  hematopoietic  data  ( Fig.  3a ).  We  use  two  common  preprocessing              
pipelines 31 ,27 (see Methods ),  intended  to  alleviate  challenges  posed  by  the  sparsity  of  scATAC-seq  data,  to                
show  that  VIA  consistently  predicts  the  expected  hierarchy  of  lineages  furcating  from  hematopoietic              
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progenitors  to  their  descendants.  The  graph  topology  of  VIA  (colored  by  pseudotime)  captures  the               
progression  of  multipotent  progenitors  (MPPs)  towards  the  lymphoid-primed  MPPs  (LMPP)  and  the             
common  myeloid  progenitors  (CMPs)  which  in  turn  give  rise  to  the  CLP  and  MEP  lineages  respectively.                 
The  known  joint  contribution  of  LMPPs  and  CMPs  towards  the  GMP  lineage  is  also  captured  by  the  VIA                   
graph.  We  verified  the  lineages  identified  by  VIA  by  analyzing  the changes  in  the  accessibility  of  TF                  
motifs  associated  with  known  regulators  of  the  lineage  commitments,  e.g. GATA1  (erythroid), CEBPD              
(myeloid)  and  IRF8  (DCs) (Fig  3e,  Supplementary  Fig.  S10c).  Again,  we  note  that  the  detection  of  these                  
lineages  is  less  straightforward  in  other  methods,  which  generally  face  a  sharp  drop  in  accuracy  of                 
detecting  relevant  cell  fates  as  the  input  number  of  PCs  exceeds  ~50PCs  (e.g.  Palantir  often  misses  the                  
CLP  and  monocyte  lineages, see  Supplementary  Fig.  S6 for  Palantir’s  outputs  across  parameters  and               
Fig.  3g for  the  corresponding  prediction  accuracy).  The  quality  of  the  lineage  pathways  and  gene  trends  is                  
indicated  in Fig.  3h by  the  correlation  of  lineage  cell  ordering  against  marker  gene  expression.  Visual                 
comparisons  of  the  topologies  and  predicted  gene  trends  of  each  method  are  shown  in Supplementary                
Fig.  S11 .  We  emphasize  that  VIA’s  robustness  in  handling  both  the  scRNA-seq  and  scATAC-seq  datasets                
demonstrates  its  unique  ability  to  achieve  stable  prediction  and  thus  faithful  query  of  the  underlying                
biology  without  biasing  specific  sets  of  input  parameters  which  nontrivially  vary  across  datasets  -  as  also                 
evident  from  our  series  of  “stress  tests”  on  VIA’s  performance  and  the  gene-trend  comparisons               
( Supplementary   Fig.   S1 ).  

 
Figure  3  VIA  analysis  of  human  hematopoiesis  based  on  scRNA-seq  and  scATAC-seq 13  data  (a)  VIA  graph                 
colored  by  inferred  pseudotime.  Identified  terminal  state  nodes  are  outlined  in  red  and  labeled  according  to  their                  
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representative  annotated  cell  type (b)  pseudo-temporal  trends  of  marker  genes  for  key  minor  populations  (see                
Supplementary  Fig.  S5-S7  for  gene  trends  of  all  lineages  and  single-cell  pathways) (c)  F1-scores  for  terminal  state                  
detection  of  mDC,  pDC,  Mega,  Ery,  Mono  and  B  cell  lineages (d)  Pearson correlation  of  marker  gene  expression  and                    
pseudotime  along  respective  lineages  indicate  the  quality  of  cell  ordering  along  lineages.  A  side-by-side  comparison                
of  the  inferred  gene  trends  by  each  method  provides  a  more  holistic  assessment  of  the  quality  of  expression                   
prediction  and  can  be  found  in  Supplementary  Fig.S9  (e)  Graph  topology  of  scATAC-seq  hematopoietic  data  using                  
Buenrostro 13  pre-processing  protocol,  nodes  colored  by  inferred  pseudotime (f)  pseudo-temporal  trends  of             
transcription-factor  motifs (g)  F1-scores  for  terminal  state  detection  of  MEP,  CLP,  pDC  and  Mono  lineages  for                 
KNN=20  and  different  number  of  PCs.  Pre-processed  using k-mer  Z  Scores  protocol  yields  a  more  challenging  input                  
as  shown  by  the  performance  drop  for  other  methods  beyond  50PCs.  VIA's  F1-scores  are  more  robust  to  choice  of                    
number  of  PCs  (h)  Correlations  of  gene  expression  and  pseudotime  (Full  gene-trend  and  topology  comparison  in                  
Supplementary   Fig.   S11).   

VIA   detects   small   endocrine   Delta   lineages   and   Beta   subtypes   
We  use  a  scRNA-seq  dataset  of  E15.5  murine  pancreatic  cells  to  again  examine  whether  VIA  can                 
automatically  detect  multiple  lineages,  in  particular  less  populous  ones.  This  data  spans  all  developmental               
stages  from  initial  endocrine  progenitor-precursor  (EP)  state  (low  level  of Ngn3  ,  or Ngn3 low ),  to               
intermediate  EP  (high  level  of Ngn3  ,  or Ngn3 high )  and  Fev +  states,  to  terminal  states  of  hormone-producing                 
alpha,   beta,   epsilon   and   delta   cells 5    ( Fig.   4a ).  
 
A  key  challenge  in  analyzing  this  dataset  is  the  automated  detection  of  the  small  delta-cell  population  (a                  
mere  3%  of  the  total  population),  which  otherwise  requires  manual  assignment  in  CellRank  and  Palantir                
(see  Supplementary  Fig.  S15-S16  for  a comparison  of  topology  and  automated  gene  trend  plots  along                
predicted  lineages  by  different  methods).  In  contrast,  the  well-delineated  nodes  of  the  VIA  cluster-graph               
(a  result  of  the  accurate  terminal  state  prediction  enabled  by  the  lazy-teleporting  MCMC  property  of  VIA                 
on  the  inferred  topology)  lends  itself  to  automatically  detecting  this  small  population  of  delta  cells,                
together  with  all  other  key  lineages  (alpha,  beta  and  epsilon  lineages)  ( Fig.  4a-c) .  As  evidenced  by  the                  
corresponding  gene-expression  trend  analysis,  VIA  detects  all  of  the  hormone-producing  cells  including             
delta  cells  which  show  exclusively  elevated  Hhex,  Sst  and  Cd24a  ( Fig.  4c-e ).  To  show  that  this  is  not  a                    
co-incidence  of  parameter  choice,  we  verify  that  these  populations  can  be  identified  for  a  wide  range  of                  
chosen  highly  variable  genes  (HVGs  prior  to  PCA)  and  number  of  PCs  ( See  Supplementary  Fig.S1c ).                
Interestingly,  consistent  with  an  observation  by Bastidas-Ponce  et  al 5 .,  we  see  two  groups  of Fev+                
populations  branching  from  the Ngn+ populations,  which  subsequently  progress  towards  the  distinct  cell              
lines.  We  show  consistency  in  predicted  topology,  cell  fates  and  gene  trends  when  applying  VIA  directly                 
on  1000s  of  HVGs  without  PCA  for  a  wide  range  of  HVGs  ( see  Supplementary  Fig.  S29 ),  and  under                   
artificial  degradation  of  the  data  to  test  robustness  to  noise  ( see  Supplementary  Fig.  S18  and  Note  S4 to                   
see   that   VIA   is   more   robust   to   the   addition   of   noise   than   other   methods   which   merge   major   lineages).  
 
Interestingly,  we  find  VIA  often  automatically  detects  two  Beta-cell  subpopulations  (Beta-1  and  Beta-2)              
(Fig.4b-e) that  express  common  Beta-cell  markers,  such  as Dlk1,  Pdx1 , but  differ  in  their  expressions  of                 
Ins1  and Ins2 (Fig.  4c-e) .  The  pseudotime  order  within  this  Beta-cell  heterogeneity 29 ,30 ,  undetectable  by                
other  TI  methods  (as  shown  in  the  gene  correlation  comparisons Supplementary  Fig.  S15 ),  can  further                
be  reconciled  in  the  VIA  graph  where  the  immature  Beta-2  population  precedes  the  mature  Beta-1                
population.  We  find  that  the  immature  Beta-2  population  strongly  expresses Ins2 ,  and  weakly  expresses               
Ins1 ,  followed  by  the  mature  Beta-1  cells  which  express  both  types  of Ins 30 (Fig.  4d-f).  VIA  graphs                  
colored   by    Ins1    and    Ins2    further   show   the   difference   in    Ins    expression   by   the   two   Beta   populations).  
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Figure  4.  VIA  detects  small  populations  in  endocrine  progenitor  cell  differentiation.  (a)  VIA  graph  topology                
Pancreatic  Islets:  Colored  by  VIA  pseudotime  with  detected  terminal  states  shown  in  red  and  annotated  based  on                  
known  cell  type  as  Alpha,  Beta-1,  Beta-2,  Delta  and  Epsilon  lineages  where  Beta-2  is Ins1 low Ins2+  Beta  subtype                  
( Supplementary  Fig.  S8 for  graph  node-level  gene  expression  intensity  of  Ins1  and  Ins2). (b)  TSNE  colored  by                  
reference  cell  type  annotations. (c) colored  by  inferred  pseudotime  with  predicted  cell  fates  in  red-black  circles (d)                  
VIA  inferred  cluster-level  pathway  shows  gene  regulation  along  endocrine  progenitor  (EP)  to Fev+  cells  followed  by                 
expression  of  islet  specific  genes. (e) gene-expression  trends  along  pseudotime  for  each  pancreatic  islet.  (f)  Beta-2                 
subtype  expresses  Ins2  but  not  Ins1,  suggestive  of  an  immature  Beta  cell  subtype.  (g) Marker  gene-pseudotime                 
correlations   along   respective   lineages.   Full   comparison   of   gene   trends   can   be   referred   to    Supplementary   Fig.   S15.  
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VIA   recovers   Isl1+   cardiac   progenitor   bifurcation   in   multi-omic   data  
We  next  demonstrate  the  applicability  of  VIA  in  single-cell  multi-omics  analysis  by  investigating  murine               
Ils1+  cardiac  progenitor  cells  (CPC)  which  are  known  to  bifurcate  towards  endothelial  and              
cardiomyocyte  fates  ( Fig.  5 ).  VIA  consistently  uncovers  the  bifurcating  lineages  using  both  single-cell              
transcriptomic  (scRNA-seq)  and  chromatin  accessibility  (scATAC-seq)  information 20 ,  as  well  as  their  data             
integration ( see  Methods for  data  integration  using  Seurat).  Other  methods  that  are  also  applicable  to                
non-transcriptomic   data,   fail   to   uncover   the   two   main   lineages.   
 
Other  methods  typically  only  detect  the  cardiomyocyte  lineage  (the  inability  to  detect  a  bifurcation  is                
exacerbated  when  the  number  of  input  principal  components  (PCs)  increases),  and  instead  falsely  detect               
several  intermediate  and  early  stages  as  final  cell  fates.  For  instance  STREAM  consistently  merges  the                
cardiomyocyte  and  endothelial  lineages  and  instead  presents  the  intermediate  stage  as  a  separate              
bifurcation. See  Supplementary  Fig.  S20-S21 for  sample  outputs  across  parameters ,  and  Fig.  5g for  the                
corresponding  prediction  accuracy  of  each  method.  PAGA  does  not  offer  automated  cell  fate  prediction  or                
lineage  paths  and  is  therefore  not  benchmarked  for  this  dataset.  The  disparity  in  trajectory  inference  is                 
evident  in  the  scRNAseq  and  integrated  data  where  Monocle3,  Slingshot  and  Palantir  do  not  resolve                
either  of  the  two  cell  fates  ( Fig.  5g ),  and  STREAM  detects  multiple  spurious  branches  that  fragment  the                  
structure  entirely.  We  hypothesized  that  lowering  the  K  (number  of  nearest  neighbors)  in  Palantir  and  VIA                 
would  be  more  appropriate  given  the  extremely  low  cell  count  (~200  cells)  of  the  scRNA-seq  dataset.                 
Whilst  this  approach  did  not  alter  the  outcome  for  Palantir,  we  found  that  VIA  is  able  to  capture  the                    
transition   from   early   to   intermediate   CPCs   and   finally   lineage   committed   cells.   
 
More  importantly,  VIA  automatically  generates  a  pseudotemporal  ordering  of  relevant  cells  (without             
requiring  manual  selection  of  relevant  cells  as  done  in  Jia  et  al. 20 )  along  each  lineage  and  their  marker-TF                   
pairs  ( Fig.  5c  and  Supplementary  Fig.  S19f for  differential  gene  expression  analysis) . Hence,  VIA  can                
be  used  to  faithfully  interpret  relationships  between  transcription  factor  dynamics  and  gene  expression  in               
an  unsupervised  manner.  The  highlighted  gene  and  TF  pairs  in  the  cardiac  lineage  show  a  strong                 
correlation  between  expression  and  accessibility  of Gata and  Homeobox Hox  genes  which  are  known  to                
be  related  to  the  regulation  of  cardiomyocyte  proliferation 23,24,25 .  VIA’s  reliable  performance  against             
user-reconfiguration  (number  of  PCs,  individual  or  integrated  omic  data)  suggests  its  utility  in              
transferable   interpretation   between   scRNA-seq   and   scATAC-seq   data.  
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Figure  5.  Multi-omic  integrated  analysis  of  scRNA-seq  and  scATAC-seq  cardiac  progenitors  (a) VIA  graph  for                
scRNA-seq  data  only  and (b) scATAC-seq  data  only. (c)  Gene-TF  pair  expression  along  VIA  inferred  pseudotime  for                  
each  CM  lineage  (see Supplementary  Fig.S19  for  Top  5  most  differentially  expressed  genes  for  each  VIA  node                  
along  each  lineage  as  well  as  node-level  TF  motif  accessibility) (d) schematic  of  data  integration  of  the  individual                   
sc-modalities  (e) scRNA-seq  and  scATAC-seq  data  of  Isl1+  Cardiac  Progenitors  (CPs)  integrated  using  Seurat3               
before  PHATE.  Colored  by  annotated  cell-type  and  experimental  modality  (f)  Colored  by  VIA  pseudotime  with                
VIA-inferred  trajectory  towards  Endothelial  and  Myocyte  lineages  projected  on  top  (g) Accuracy  of  detecting  the  CM                 
and  Endo  lineages  in  the  individual  and  integrated  data.  This  is  challenging  for  other  methods  which  either  detect                   
several   early/intermediate   stages   or   merge   cell   fates   (see   outputs   for   these   methods   in    Fig.S20-S21 )  

VIA   preserves   global   connectivity   when   scaling   to   millions   of   cells   
VIA  is  designed  to  be  highly  scalable  and  offers  automated  lineage  prediction  without  extensive               
dimension  reduction  or  subsampling  even  at  large  cell  counts.  To  showcase  this,  we  use  VIA  to  explore                  
the  1.3-million  scRNA-seq  mouse  organogenesis  cell  atlas  (MOCA) 8 .  While  this  dataset  is  inaccessible  to               
most  TI  methods  from  a  runtime  and  memory  perspective,  VIA  can  efficiently  resolve  the  underlying                
developmental  heterogeneity,  including  9  major  trajectories  ( Fig.  6a,b )  with  a  runtime  of  ~40  minutes,               
compared  to  the  next  fastest  method  PAGA  which  has  a  runtime  of  3  hours,  Palantir  and  STREAM  which                   
takes  over  4  hours  and  6.5  hours  respectively.  Other  methods  like  Slingshot  and  CellRank  were  deemed                 
infeasible  due  to  extremely  long  runtimes  on  much  smaller  datasets.  ( Supplementary  Table  S3 for  a                
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summary  of  runtimes).  Going  beyond  the  computational  efficiency,  VIA  also  preserves  wider             
neighborhood  information  and  reveals  a  globally  connected  topology  of  MOCA  which  is  otherwise  lost  in                
the   Monocle3   analysis   which   first   reduces   the   input   data   dimensionality   using   UMAP.   
 
The  overall  cluster  graph  of  VIA  consists  of  three  main  branches  that  concur  with  the  known                 
developmental  process  at  early  organogenesis. 16  ( Fig.  6a) .  It  starts  from  the  root  stem  which  has  a  high                  
concentration  of  E9.5  early  epithelial  cells  made  of  multiple  sub-trajectories  (e.g.  epidermis,  and              
foregut/hindgut  epithelial  cells  derived  from  the  ectoderm  and  endoderm).  The  stem  is  connected  to  two                
distinct  lineages:  1)  mesenchymal  cells  originated  from  the  mesoderm  which  arises  from  interactions              
between  the  ectoderm  and  endoderm 17  and  2)  neural  tube/crest  cells  derived  from  neurulation  when  the                
ectoderm   folds   inwards 1 .   
 
The  sparsity  of  early  cells  (only  ~8%  are  E9.5)  and  the  absence  of  earlier  ancestral  cells  make  it                   
particularly  challenging  to  capture  the  simultaneous  development  of  trajectories.  However,  VIA  is  able  to               
capture  the  overall  pseudotime  structure  depicting  early  organogenesis  ( Fig.  6b ).  For  instance,  at  the               
junction  of  the  epithelial-to-mesenchymal  branch,  we  find  early  mesenchymal  cells  from  E9.5-E10.5.             
Cells  from  later  mesenchymal  developmental  stages  (e.g.  myocytes  from  E12.5-  E13.5)  reside  at  the               
leaves  of  the  branch.  Similarly,  at  the  junction  of  epithelial-to-neural  tube,  we  find  dorsal  tube  neural  cells                  
and  notochord  plate  cells  which  are  predominantly  from  E9.5-E10.5  and  more  developed  neural  cells  at                
branch  tips  (e.g.  excitatory  and  inhibitory  neurons  appearing  at  E12.5-E13.5).  In  contrast,  the  pseudotime               
gradient  of  PAGA’s  nodes  offer  little  salient  information  at  this  scale,  with  90%  of  cells  predicted  to  be  in                    
the   first   10%   of   the   pseudotime   color   scale    (see   Supplementary   Fig.   S22c-d) .   
 
VIA  also  consistently  places  the  other  smaller  dispersed  groups  of  trajectories  (e.g.  endothelial,              
hematopoietic)  in  biologically  relevant  neighborhoods  (see Supplementary  Note  7 for  a  detailed             
explanation  of  VIA’s  structural  connections  supported  by  known  transitions  in  organogenesis  literature).             
While  VIA’s  connected  topology  offers  a  coarse-grained  holistic  view,  it  does  not  compromise  the  ability                
to  delineate  individual  lineage  pathways,  such  as  the  erythroid  and  white  blood  cell  lineages  within  the                 
hematopoietic   super   group   (consistent   with   annotations   made   by   Cao   et   al., 8 )   as   shown   in    Fig.   6c .   
 
As  such,  TI  using  VIA  uniquely  preserves  both  the  global  and  local  structures  of  the  data.  Whilst                  
manifold-learning  methods  are  often  used  to  extensively  reduce  dimensionality  to  mitigate  the             
computational  burden  of  large  single-cell  datasets,  they  tend  to  incur  loss  of  global  information  and  be                 
sensitive  to  input  parameters.  VIA  is  sufficiently  scalable  to  bypass  such  a  step,  and  therefore  retains  a                  
higher  degree  of  neighborhood  information  when  mapping  large  datasets.  This  is  in  contrast  to               
Monocle3’s 8  UMAP-reduced  inputs  that  reveal  different  disconnected  super-groups  and  fluctuating           
connectivity  depending  on  input  parameters.  As  shown  in Fig.  6e  (and Supplementary Fig.  S22 for                
varying  KNN ), methods  such  as  Monocle3  which  require  a  very  low  dimensional  representation  (e.g.  first                
2-3  components  of  UMAP)  for  TI  are  susceptible  to  unpredictable  changes  in  the  composition  of  super                 
cell  groups,  their  relative  positions  and  inter-connectivity.  For  instance,  in  UMAP,  the  neural  tube  group  is                 
sometimes  shown  as  a  single  super  group,  and  other  times  fragmented  across  the  embedding  without                
context  of  neighboring  groups.  Similarly  the  hematopoietic  supergroup  is  shown  as  a  single,  two  or  even                 
three  separate  groups  dispersed  across  the  embedding  landscape  ( Fig.  6e ).  In  contrast,  VIA  uncovers               
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biologically  consistent  structures  across  the  same  range  of  parameters.  In  VIA,  the  cells  belonging  to                
these  fine-grained  supergroups  remain  connected  and  neighborhood  relationships  are  preserved,  for            
instance  the  neural  crest  cells  (containing  Peripheral  Nervous  System  neurons  and  glial  cells)  remain               
adjacent   to   the   neural   tube   ( Fig.   6d   and   Fig.   S22a ).   

Figure  6  VIA  accurately  infers  global  connectivity  and  sub-trajectories  in  the  1.3-million  scRNA-seq  mouse               
organogenesis  cell  atlas.  (a) MOCA  graph  trajectory  (nodes  colored  by  pseudotime)  and  shaded-colored  regions               
corresponding  to  major  cell  groups.  Stem  branch  consists  of  epithelial  cells  derived  from  ectoderm  and  endoderm,                 
leading  to  two  main  branches:  1)  the  mesenchymal  and  2)  the  neural  tube  and  neural  crest.  Other  major  groups  are                     
placed  in  the  biologically  relevant  neighborhoods,  such  as  the  adjacencies  between  hepatocyte  and  epithelial               
trajectories;  the  neural  crest  and  the  neural  tube;  as  well  as  the  links  between  early  mesenchyme  with  both  the                    
hematopoietic  cells  and  the  endothelial  cells  (see Supplementary  Note  7 ) (b)  Colored  by  VIA  pseudotime. (c)                 
Lineage  pathways  and  probabilities  of  neuronal,  myocyte  and  WBC  lineages. (d)  VIA  graph  preserves  key                
relationships  across  choice  of  number  of  PCs  whereas  (e)  UMAP  embedding  is  first  step  in  Monocle3  and  highly                   
susceptible   to   choice   of   number   of   PCs   (or   K   in   KNN   see    Fig.S22 )  
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VIA’s  lazy-teleporting  MCMCs  delineate  mesoderm  differentiation  in  mass         
cytometry   data   
Broad  applicability  of  TI  beyond  transcriptomic  analysis  is  increasingly  critical,  but  existing  methods              
have  limitations  contending  with  the  disparity  in  the  data  structure  (e.g.  sparsity  and  dimensionality)               
across  a  variety  of  single-cell  data  types.  While  we  have  shown  that  VIA  can  be  used  to  successfully                   
interrogate  scATACseq,  scRNAseq  and  their  integrated  data,  we  further  investigate  whether  VIA  can  cope               
with  the  significant  drop  in  data  dimensionality  (10-100),  as  often  presented  in  flow/mass  cytometry  data,                
and   still   delineate   continuous   biological   processes.   
 
We  applied  VIA  on  a  time-series  mass  cytometry  data  (28  antibodies,  90K  cells)  capturing  murine                
embryonic  stem  cells  (ESCs)  differentiation  toward  mesoderm  cells 32 .  The  mESCs  are  captured  at  12               
intervals  within  the  first  11  days  and  hence  provide  sufficiently  granular  temporal  annotation  to  allow  a                 
correlation  assessment  of  the  inferred  pseudotimes.  We  quantified  that  the  pseudotimes  computed  by  VIA               
shows  a  Pearson  correlation  of  ~88%  with  the  actual  annotated  days.  We  further  verified  that  VIA’s                 
performance  is  critically  improved  by  the  lazy-teleporting  MCMCs  ( Fig.  7d ),  without  which  the              
correlation  drops  closer  to  PAGA’s.  Palantir  and  Monocle  suffer  from  low  connectivity  of  cells  between                
the  Day  0-1  and  the  subsequent  early  stages  (even  when  increasing  K  in  KNN),  and  thus  result  in  loss  of                     
pseudotime   gradient   and   low   correlation   to   the   true   annotations.   
 
More  importantly,  unlike  previous  analysis 32  of  the  same  data  which  required  chronological  labels  to               
visualize  the  chronological  developmental  hierarchy,  we  ran  VIA  without  such  supervised  adjustments             
and  accurately  captured  the  sequential  development.  Not  only  can  it  achieve  faster  runtime  (running  in  2                 
minutes  on  the  full  antibody-feature  set  versus  Slingshot  which  required  6  hours  even  on  a  subset  of  first                   
5  PCs see Supplementary Table  S3 for  more  runtime  comparisons),  VIA  detects  3  terminal  states                
corresponding  to  cells  in  the  final  developmental  stages  of  Day  10-11  which  are  indicated  by  upregulation                 
of Pdgfra , Cd44  and Gata4  mesodermal  markers (Fig.  7f) .  In  contrast,  other  methods  struggle  to  identify                 
the  correct  terminal  states  (e.g.  Palantir,  STREAM  and  Slingshot Fig.  7e )  and  do  not  depict  salient                 
structures   (e.g.   STREAM   where   the   Day10-11   branch   is   placed   in   between   Day   0   and   Day   5   branches).   
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Figure  7  VIA  analysis  of  mESC  differentiation  toward  mesoderm  cells  from  mass  cytometry . .  (a)  UMAP  plot                 
colored  by  annotated  days  0-11.  Three  regions  of  Day  10-11  marked  in  dotted  black  lines. (b)  VIA  cluster-graph                   
colored  by  pseudotime (c)  Terminal  states  and  VIA  output  projected  onto  UMAP.  Terminal  states  are  located  in  the                   
areas  containing  Day  10-11  cells. (d)  Comparison  of  Pearson  correlation  of  pseudotime  and  annotated  Days  across                 
TI  methods  for  varying  number  of  K  number  of  nearest  neighbors.  PAGA  and  Palantir’s  pseudotime  computation  is                  
misguided  by  the  weak  link  connecting  Day  0  cells  to  other  early  cells.  The  effect  is  that  Day  0  cells  appear                      
exaggeratedly  far,  while  the  remaining  early  and  late  cells  are  temporally  squeezed.  VIA’s  2-step  pseudotime                
computation  produces  a  pseudotime  scale  closer  to  the  annotated  dates.  “VIA  no-LT”  denotes  VIA  without  the                 
lazy-teleporting  MCMC  stage  of  the  pseudotime  calculation.  For  Slingshot  and  STREAM  there  is  no  K  (NN)  setting                  
thus  only  a  single  correlation  value  is  presented.  STREAM’s  pseudotime  is  distorted  by  the  insertion  of  Day  8-11  cells                    
in  between  Day  0  and  Day  5. (e)  Example  outputs  of  Palantir,  PAGA  and  Slingshot  with  the  terminal  states  (black                     
circles)  predicted  by  Slingshot  and  Palantir.  Red  ‘X’  denotes  incorrect  (false  positive)  or  missing  (false  negative)                 
terminal  state.  STREAM  places  Day  10-11  cells  in  between  Day  0  and  Day  5-6  cells. (f)  Gene  expression  of  key                     
mesodermal   markers   
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VIA   captures   morphological   trends   of   live   cells   in   cell   cycle   progression  
 
Apart  from  the  omics  technologies,  optical  microscopy  is  a  powerful  parallel  advance  in  single-cell               
analysis  for  generating  the  “fingerprint”  profiles  of  cell  morphology.  Such  spatial  information  is  typically               
obscured  in  sequencing  data,  but  can  effectively  underpin  cell  states  and  functions  without  costly  and                
time-consuming  sequencing  protocols.  However,  trajectory  predictions  based  on  morphological  profiles           
of  single  cells  have  only  been  scarcely  studied  until  recently,  but  advancements  in  high-throughput               
imaging  cytometry  are  now  making  large-scale  image  data  generation  and  related  studies  feasible.  We               
thus  sought  to  test  if  VIA  can  predict  biologically  relevant  progress  based  on  single-cell  morphological                
snapshots  captured  by  our  recently  developed  high-throughput  imaging  flow  cytometer,  called  FACED 33  -              
a   technology   that   is   at   least   100   times   faster   than   state-of-the-art   imaging   flow   cytometry    (Fig.   8a) .  
 
Our  FACED  imaging  platform  captured  multiple  image  contrasts  of  single  cells,  including  fluorescence              
(FL),  and  quantitative  phase  images  (QPI),  which  measure  high-resolution  biophysical  properties  of  cells,              
which  are  otherwise  inaccessible  in  other  methods 62 .  Using  the  QPIs  captured  by  FACED,  we  first                
generated  spatially-resolved  single-cell  biophysical  profiles  of  two  live  breast  cancer  cell  types             
(MDA-MB231  and  MCF7)  undergoing  cell  cycle  progressions  (38  features  including  cell  shape,  size,  dry               
mass  density,  optical  density  and  their  subcellular  textures  ( see  Supplementary  Table  S6  and  Table  S7                
for  definitions  of  features)).  The  QPI  together  with  the  FL  images  of  individual  cells  were  also  used  to                   
train  a  convolutional  neural  network  (CNN)-based  regression  model  for  predicting  the  DNA  content.  We               
first  validated  that  there  is  a  high  correlation  (Pearson’s  correlation  coefficient  r  =  0.72)  between  the                 
actual  DNA  content  determined  by  the  FL  images  and  DNA  content  predicted  by  the  QPI                
( Supplementary  Fig.  S24a ).  In  addition,  the  predicted  percentages  of  cells  in  each  cell  cycle  phases  (i.e.                 
G1,  S  and  G2/M)  by  the  biophysical  profile  are  highly  consistent  with  the  ground  truth  defined  by  the                   
DNA  dye  ( Supplementary  Fig.  S24b ).  Based  on  the  biophysical  profiles  as  validated  by  the  above  tests,                 
VIA  reliably  reconstructed  the  continuous  cell-cycle  progressions  from  G1-S-G2/M  phase  of  both  types              
of   live   breast   cancer   cells   ( Methods )( Fig.   8b-g) .   
 
Intriguingly,  according  to  the  pseudotime  ordered  by  VIA,  not  only  does  it  reveal  the  known  cell  growth                  
in  size  and  mass 34 ,  and  general  conservation  of  cell  mass  density 35  (as  derived  from  the  FACED  images                  
( Methods ))  throughout  the  G1/S/G2  phases,  but  also  a  slow-down  trend  during  the  G1/S  transition  in                
both  cell  types,  consistent  with  the  lower  protein-accumulation  rate  during  S  phase 36  ( Fig.  8f-g ).  The                
variation  in  biophysical  textures  (e.g.  peak  phase,  and  phase  fiber  radial  distribution)  along  the  VIA                
pseudotime  likely  relates  to  known  architectural  changes  of  chromosomes  and  cytoskeletons  during  the              
cell  cycles  ( Fig.  8f-g ).  We  find  other  methods  on  this  dataset  to  be  sensitive  to  the  choice  of  early  cells                     
and  detecting  intermediate  cells  as  terminal  cell  fates  (e.g.  Palantir,  Slingshot),  and  often  adding               
additional  edges  or  branches  (e.g.  STREAM,  PAGA), see  Supplementary  Fig.  S23 for  Palantir,              
Slingshot,  Monocle3,  STREAM  and  PAGA  outputs.  The  slowdown  during  the  S-phase  is  missed  by  the                
gene  trend  prediction  available  in  other  methods.  To  probe  subsets  of  the  morphological  features,  we                
remove  volume  and  volume  related  features  (e.g.  Dry  Mass,  Area)  and  test  whether  this  can  still  be  used                   
to  infer  the  topology  and  cell  ordering  that  reveals  the  slow-down  observed  in  the  S-phase.  We  found  that                   
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VIA  is  consistently  able  to  reveal  these  trends  in  both  cell  lines,  whereas  other  methods  struggle  to                  
maintain  the  linear  progression  expected  along  the  cell-cycle  with  spurious  linkages  emerging  ( see              
Supplementary  Fig. S25-S26 )  and  intermediate  states  being  selected  as  final  G2  stages.  These  results               
further  substantiate  the  growing  body  of  work 37 ,38,39,40  on  imaging  biophysical  cytometry  for  gaining  a               
mechanistic   understanding   of   biological   systems,   especially   when   combined   with   omics   analysis 41 .   

 
Figure  8  VIA  predicts  cell  cycle  progression  based  on  single-cell  biophysical  morphology  (a)  FACED               
high-throughput  imaging  flow  cytometry  of  MDA-MB231  and  MCF7  cells,  followed  by  image  reconstruction  and               
biophysical  feature  extraction.  See Methods detailed  experimental  workflow. (b)  Randomly  sampled  quantitative             
phase  images  (QPI)  and  fluorescence  images  (FL)  of  MCF7  cells  and (d)  MDA-MB231  cells. (c)  Single-cell  UMAP                  
embedding  colored  by  the  known  cell-cycle  phase  (left),  given  by  DNA-labelled  fluorescence  images.  VIA  inferred                
cluster-graph  topology,  nodes  colored  by  pseudotime  (mid)  and  UMAP  colored  by  VIA  pseudotime  for  MCF7 (e)  VIA                  
analysis  repeated  for  MDA-MB231  cells. (f)  Unsupervised  image-feature-trends  of  global  and  local  biophysical              
textures  against  VIA  pseudotime  for  MCF7  and (g) MDA-MB231  cells (see  Supplementary  Table  S6  for  feature                 
definitions). Cell  cycle  pseudotime  boundaries  are  defined  here  as  the  intersection  of  the  pseudotime  probability                
density   functions   of   each   cell   cycle   stage   (annotated   based   on   fluorescence   intensity).  
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Conclusion  
With  the  growing  scale  and  complexity  of  single-cell  datasets,  there  is  an  unmet  need  for  accurate  cell                  
fate  prediction  and  lineage  detection  in  the  complex  topologies  of  interest  in  biology  (not  limited  to  trees).                  
This  challenge,  broadly  faced  by  the  current  TI  methods,  is  further  compounded  by  susceptibility  to                
algorithmic  parameter  changes,  limited  scalability  to  large  data  size;  and  insufficient  generalizability  to              
multi-omic  data  beyond  transcriptomic  data.  We  introduced  VIA,  which  alleviates  these  challenges  by              
fast  and  scalable  construction  of  cluster-graph  of  cells,  followed  by  pseudotime,  and  reconstructing  cell               
lineages  based  on  lazy-teleporting  random  walks  and  MCMC  simulations.  This  strategy  critically  relaxes              
common  constraints  on  graph  traversal  and  causality  that  impede  accurate  prediction  of  elusive  lineages               
and  less  populous  cell  fates.  We  validated  the  efficacy  of  these  measures  in  terms  of  detecting  various                  
challenging  topologies  on  simulated  data,  as  well  as  robust  prediction  of  cell  fates  and  temporally                
changing  feature  trends  on  a  variety  biological  processes  (spanning  epigenomic,  transcriptomic,            
integrated  omic,  as  well  as  imaging  and  mass  cytometric  data)  to  show  that  VIA  detects  pertinent                 
biological   lineages   and   their   pathways   that   remain   undetected   by   other   methods.   
 
Notably,  VIA  distinguished  between  dendritic  subtypes  in  an  scRNA-seq  hematopoiesis  dataset;            
identified  the  rare  delta  cell  islet  in  pancreatic  development,  a  population  requiring  manual  assignment  in                
other  TI  methods;  and  revealed  the  bifurcation  towards  cardiomyocyte  and  endothelial  lineage             
commitment  in  a  multi-omic  scATAC-seq  and  scRNA-seq  dataset  which  proved  challenging  for  other              
methods.  In  order  to  demonstrate  that  these  biological  findings  are  robust  to  user  parameter  tuning,  we                 
conducted  a  series  of  ‘stress  tests’  of  the  inferred  topology  and  cell  fates  on  both  simulated  and  biological                   
data,  which  show  that  VIA  behaves  more  predictably  (allowing  controllable  degrees  of  analytical              
granularity)  and  accurately  than  other  methods  with  regards  to  topology  and  lineage  prediction.  In  other                
methods,  user  parameter  choice  can  incur  fragmentation  or  spurious  linkages  in  the  modeled  topology,               
and  consequently  only  yield  biologically  sensible  lineages  for  a  narrow  sweet  spot  of  parameters  (See  the                 
summary  in Supplementary  Fig.  S1 and  sample  outputs  by  other  methods  in Supplementary  Fig.  S6,                
S9,   S11-13,   S15-18,   S20-21,   S22   and   S23 ).   
 
We  also  demonstrated  on  the  1.3  million  MOCA  dataset  that  VIA  is  highly  scalable  with  a  runtime  of  ~40                    
minutes  (compared  to  3-4  hours  on  the  next  fastest  method).  Importantly,  VIA  not  only  recovers  the                 
fine-grained  sub-trajectories,  but  also  maintains  global  connectivity  between  related  cell  types  and  thus              
captures  key  relationships  among  lineages  in  early  embryogenesis.  It  also  computes  a  more  salient               
pseudotime  measure  supported  by  lazy-teleporting  MCMCs,  compared  to  other  methods  whose            
pseudotime  scale  was  distorted  at  such  high  cell  counts  ( Supplementary  Fig. S22c-d ).  We  showed  that                
methods  which  require  UMAP  (or  t-SNE)  before  parsing  MOCA  are  highly  susceptible  to  user  defined                
input   parameters   that   can   significantly   and   unpredictably   fragment   the   global   topology.  
 
We  also  assessed  whether  VIA  can  be  generalized  to  non-transcriptomic  single-cell  datasets,  especially              
those  with  significant  dimensionality  disparity  compared  to  sequencing  data.  We  first  applied  VIA  to  the                
mESC  CyTOF  dataset  and  showed  that  the  lazy-teleporting  MCMCs  strategy  in  VIA  enables  it  to                
outperform  other  methods  in  correctly  correlating  the  pseudotime  of  the  mesoderm  development  to  the               
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annotated  dates.  We  finally  explored  the  utility  of  VIA  in  analyzing  emerging  image-based  single-cell               
biophysical  profile  data.  We  showed  that  VIA  not  only  successfully  identified  the  progression  of  G1/S/G2                
stages,  but  also  revealed  the  subtle  changes  in  biophysical-related  cellular  properties,  which  are  otherwise               
obscured  in  other  methods.  VIA  could  thus  motivate  new  strategies  in  single-cell  analysis  that  link                
cellular  biophysical  phenotypes  and  biochemical/biomolecular  information,  to  discover  how  molecular           
signatures  translate  into  the  emergent  cellular  biophysical  properties,  which  has  already  shown  effective              
in  studies  of  cancer,  ageing,  and  drug  responses.  Overall,  VIA  offers  an  advancement  to  TI  methods  to                  
robustly  study  a  diverse  range  of  single-cell  data.  Together  with  its  scalable  computation  and  efficient                
runtime,  VIA  could  be  useful  for  multifaceted  exploratory  analysis  to  uncover  novel  biological  processes,               
potentially   those   deviated   from   the   healthy   trajectories   

Methods  

VIA   Algorithm  
VIA  applies  a  scalable  probabilistic  method  to  infer  cell  state  dynamics  and  differentiation  hierarchies  by                
organizing  cells  into  trajectories  along  a  pseudotime  axis  in  a  nearest-neighbor  graph  which  is  the  basis                 
for  subsequent  random  walks.  Single  cells  are  represented  by  graph  nodes  that  are  connected  based  on                 
their  feature  similarity,  e.g.  gene  expression,  transcription  factor  accessibility  motif,  protein  expression  or              
morphological   features   of   cell   images.   A   typical   routine   in   VIA   mainly   consists   of   four   steps:  
 

1. Accelerated  and  scalable  cluster-graph  construction .  VIA  first  represents  the  single-cell  data  in  a              
k-nearest-neighbor  (KNN)  graph  where  each  node  is  a  cluster  of  single  cells.  The  clusters  are                
computed  by  our  recently  developed  clustering  algorithm,  PARC 11. .  In  brief,  PARC  is  built  on               
hierarchical  navigable  small  world  (HNSW 58 )  accelerated  KNN  graph  construction  and  a  fast             
community-detection  algorithm  (Leiden  method 42 ),  which  is  further  refined  by  data-driven  pruning.            
The  combination  of  these  steps  enables  PARC  to  outperform  other  clustering  algorithms  in              
computational  run-time,  scalability  in  data  size  and  dimension  (without  relying  on  subsampling  of              
large-scale,  high-dimensional  single-cell  data  (>1  million  cells)),  and  sensitivity  of  rare-cell  detection.             
We  employ  the  cluster-level  topology,  instead  of  a  single-cell-level  graph,  for  TI  as  it  provides  a                 
coarser  but  clearer  view  of  the  key  linkages  and  pathways  of  the  underlying  cell  dynamics  without                 
imposing  constraints  on  the  graph  edges.  Together  with  the  strength  of  PARC  in  clustering  scalability                
and  sensitivity,  this  step  critically  allows  VIA  to  faithfully  reveal  complex  topologies  namely  cyclic,               
disconnected  and  multifurcating  trajectories  ( Fig.  2 ).  If  the  user  prefers  to  use  another  clustering               
method  or  group-labels  of  cell  types  according  to  apriori  information,  VIA  can  easily  accommodate               
such  a  substitution  and  the  robustness  of  the  lazy-teleporting  random  walks  to  different  clustering               
approaches  is  shown  in Supplementary  Note  S6  and  Fig.  S30-S32 for  real  and  synthetic  data.  The                 
root  cell  is  initialized  by  the  user  in  one  of  two  ways:  If  for  instance  there  are  some  cell                    
type/group/cluster  level  labels  available  in  advance,  the  desired  starting  group  can  be  indicated  to               
VIA,  which  will  then  automatically  select  a  cluster  in  its  cluster-graph  that  contains  a  majority  of  this                  
particular  cell  type/group  classification.  In  the  case  of  many  clusters  satisfying  this  criteria,  it               
subsequently  proceeds  to  select  the  cluster  in  the  VIA  graph  that  has  connectivity  metrics  indicative                
of  a  root  (leaf)  node  (such  as  high  out  degree,  low  betweenness  and  low  centrality).  The  user  can  also                    
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choose  to  provide  a  specific  single  cell  as  the  root  node.  In  the  case  that  the  user  wishes  to  select  the                      
root  based  on  the  VIA  graph,  one  would  save  the  VIA-cluster-graph  labels  and  use  them  to  guide                  
selection   of   the   root   node   as   described   in   the   first   approach.   

 

2. Probabilistic  pseudotime  computation .  The  trajectories  are  then  modeled  in  VIA  as  (i)             
lazy-teleporting  random  walk  paths  along  which  the  pseudotime  is  computed  and  further  refined  by               
(ii)  MCMC  simulations.  The  root  is  a  single  cell  chosen  by  the  user.These  two  sub-steps  are  detailed                  
as   follows:  

(i) Lazy-teleporting  random  walk :  We  first  compute  the  pseudotime  as  the  expected  hitting  time               
of  a  lazy-teleporting random  walk  on  an  undirected  cluster-graph  generated  in  Step  1.  The               
lazy-teleporting  nature  of  this  random  walk  ensures  that  as  the  sample  size  grows,  the  expected                
hitting  time  of  each  node  does  not  converge  to  the  stationary  probability  given  by  local  node                 
properties,  but  instead  continues  to  incorporate  the  wider  global  neighborhood  information 12 .            
Here  we  highlight  the  derivation  of  the  closed  form  expression  of  the  hitting  time  of  this  modified                  
random   walk   with   a   detailed   derivation   in    Supplementary   Note   2 .  
 

The  cluster  graph  constructed  in  VIA  is  defined  as  a  weighted  connected  graph G ( V , E , W )  with                   
a  vertex  set V  of n  vertices  (or  nodes),  i.e. and  an  edge  set E ,  i.e.  a  set  of           V =  {v , ,  }1 ⋯ vn           
ordered  pairs  of  distinct  nodes. W  is  an  weight  matrix  that  describes  a  set  of  edge  weights        n ×n           
between  node i  and j ,  are  assigned  to  the  edges .  For  an  undirected  graph,      ≥0wij        v ,( i vj)     

,    the     probability   transition   matrix,    P,    of   a   standard   random   walk   on   G   is   given   by wwij =  ji  ×nn   
D WP =  −1 (1)  

where D  is  the  degree  matrix,  which  is  a  diagonal  matrix  of  the  weighted  sum  of  the  degree      ×nn                
of   each   node,   i.e.   the   matrix   elements   are   expressed   as   

 
where k  are  the  neighbouring  nodes  connected  to  node i .  Hence,  (which  can  be  reduced  as )            dii       di  
is   the   degree   of   node    i .   We   next   consider   a    lazy    random   walk,   defined   as    Z ,   with   probability   
( )   of   being   lazy   (where   0   ),   i.e.   staying   at   the   same   node,   then 1 − x < x < 1  
 

xP 1 )IZ =  + ( − x (3)  
 
where I  is  the  identity  matrix.  When  teleportation  occurs  with  a  probability  ( ),  the  modified             1 − α    
lazy-teleporting   random   walk     Z'    can   be   written   as   follows,   where   is   an     matrix   of   ones.  J  ×nn   
 

αZ 1 ) JZ ′ =  + ( − α n
1 (4)  

 
Here  we  adapt  the  concept  of  personalized  PageRank  vector,  originally  used  for  recording  (or               
ranking )  personal  preferences  of  a  web-surfer  toward  particular  website  pages 43 ,  to rank  the              
importance  of  other  nodes  (clusters  of  cells)  to  a  given  node,  depending  on  the  similarities  among                 
nodes  (related  to P in  the  graph),  and  the  lazy-teleporting  random  walk  characteristics  in  the                
graph  (set  by  probabilities  of  teleporting  and  being  lazy).  Based  on  this  concept,  one  could  model                 
the  likelihood  to  transit  from  one  node  (cluster  of  cells)  to  another,  and  thus  construct  the                 
pseudotime  based  on  the  hitting  time,  which  is  a  parameter  describing  the  expected  number  of                
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steps  it  takes  for  a  random  walk  that  starts  at  node i  and  visit  node j  for  the  first  time.  Consider                      
the  teleporting  probability  of  ( )  and  a  seed  vector s  specifying  the  initial  probability     1 − α           

distribution  across  the n  nodes  (such  that ,  where s m  is  the  probability  of  starting  at        ∑
 

m
sm = 1          

node m )  the  personalized  PageRank  vector (which  is  defined  as  a  column  vector)  is  the       prα (s)           
unique   solution   to 56  

. αpr Z 1 )sprα (s)T =  α (s)T + ( − α T (5)  
 
Substituting Z  (Eq.  (3))  into  Eq.  (5),  we  can  express  the  personalized  PageRank  vector  in               prα (s)   
terms  of  the  inverse  of  the 𝛃 -normalized  Laplacian, of  the  modified  random  walk         Rβ,NL      
( Supplementary   Note   2),   i.e.  

  , s D R  Dprα (s)T = β T −0.5
β,NL

0.5 (6)  

where ,  and .  and  are  the m th eigenvector  and  β = (2−α)
2(1−α)   Rβ,NL = ∑

 

m=1

Φ Φm
T
m

β+2x(1−β)η[ m]  Φm   ηm       

eigenvalue  of  the  normalized  Laplacian.  In  the  expression  of R 𝛃,NL, the  𝛃  and x  regulate  the                  
weight  of  contribution  in  each  eigenvalue-eigenvector  pair  of  the  summation  such  that  the  first               
eigenvalue-eigenvector  pair  (corresponding  to  the  stationary  distribution  and  given  by  the            
local-node  degree-properties)  remains  included  in  the  overall  expression,  but  does  not  overwhelm             
the  global  information  provided  by  subsequent  ‘eigen-pairs’.  Moreover,  computation  of R 𝛃,NL  is              
not  limited  to  a  subset  of  the  first k eigenvectors  (bypassing  the  need  for  the  user  to  select  a                    
suitable  threshold  or  subset  of  eigenvectors)  since  the  dimensionality  is  not  on  the  order  of                
number  of  cells,  but  equal  to  the  number  of  clusters  and  hence  all  eigenvalue-eigenvector  pairs                
can   be   incorporated   without   causing   a   bottleneck   in   runtime.  

The   expected   hitting   time   from   node    q    to   node    r    is   given   by 44 ,  
 

hα (q, )r = dr

pr (e ) (r)[ α r
T ] − dq

pr (e ) (q)[ α r
T ]  (7)  

 
where is  an  indicator  vector  with  1  in  the i th  entry  and  0  elsewhere  (i.e.  if  and  ei               sm = 1   m = i   

if ).  We  can  substitute  Eq.  (6)  into  Eq.  (7),  making  use  of  the  fact  that  sm = 0  ≠im                
,  and  is  symmetric,  to  obtain  a  closed  form  expression  of  the  1

dr
= D e[ −1

r] (r)   R  DD−0.5
β,NL

−0.5            
hitting   time   in   terms   of   Rβ,NL  

(e ) D R  D ehα (q, )r = β r − eq
T −0.5

β,NL
−0.5

r (8)  
 

(ii) MCMC  simulation :  The  hitting  time  metric  computed  in  Step-1  is  used  to  infer               
graph-directionality.  Instead  of  pruning  edges  in  the  ‘reverse’  direction,  edge-weights  are  biased             
based   on   the   time   difference   between   nodes   using   the   logistic   function   with   growth   factor   b   =1.   

(t) f =  1
1+e −b (t − t )1 0  

  

We  then  recompute  the  pseudotimes  on  the  forward  biased  graph:  Since  there  is  no  closed  form                 
solution  of  hitting  times  on  a  directed  graph,  we  perform  MCMC  simulations  (parallely  processed               
to  enable  fast  simulations  of  1000s  of  teleporting,  lazy  random  walks  starting  at  the  root  node  of                  
the  cluster  graph)  and  use  the  first  quartile  of  the  simulated  pseudotime  values  for  a  respective                 
node  as  the  refined  pseudotime  for  that  node  relative  to  the  root.  This  refinement  step  ensures  that                  
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the  pseudotime  is  robust  to  the  spurious  links  (or  conversely,  links  that  are  too  weakly  weighted)                 
that  can  distort  calculations  based  purely  on  the  closed  form  solution  of  hitting  times               
( Supplementary  Fig.  7d ).  By  using  this  2-step  pseudotime  computation, VIA  mitigates  the             
issues  of  convergence  issues  and  spurious  edge-weights,  both  of  which  are  common  in              
random-walk   pseudotime   computation   on   large   and   complex   datasets 12. .  
 

3. Automated  terminal-state  detection.  The  algorithm  uses  the  refined  directed  and  weighted  graph             
(edges  are  re-weighted  using  the  refined  pseudotimes)  to  predict  which  nodes  represent  the  terminal               
states  based  on  a  consensus  vote  of  pseudotime  and  multiple  vertex  connectivity  properties,  including               
out-degree   (i.e.   the   number   of   edges   directed   out   of   a   node),   closeness    C( q ) ,   and   betweenness    B( q ).    

C (q) = 1

(q,r)∑
 

q≠r
l

 

B (q) = ∑
 

r=q≠t/
σrt

σ (q)rt  

 is  the  distance  between  node q  and  node r  (i.e.  the  sum  of  edges  in  a  shortest  path  connecting l (q, )r                     
them). is  the  total  number  of  shortest  paths  from  node r  to  node t .  is  the  number  of  these  σrt              σrt (q)       
paths  passing  through  node q .  The  consensus  vote  is  performed  on  nodes  that  score  above  (or  below                  
for  out-degree)  the  median  in  terms  of  connectivity  properties.  We  show  on  multiple  simulated  and                
real  biological  datasets  that  VIA  more  accurately  predicts  the  terminal  states,  across  a  range  of  input                 
data  dimensions  and  key  algorithm  parameters,  than  other  methods  attempting  the  same             
(Supplementary   Fig.   S1).  

 
4. Automated  trajectory  reconstruction .  VIA  then  identifies  the  most  likely  path  of  each  lineage  by               

computing  the  likelihood  of  a  node  traversing  towards  a  particular  terminal  state  (e.g.  differentiation).               
These  lineage  likelihoods  are  computed  as  the  visitation  frequency  under  lazy-teleporting  MCMC             
simulations  from  the  root  to  a  particular  terminal  state,  i.e.  the  probability  of node  i reaching                 
terminal-state  j as  the  number  of  times cell  i  is  visited  along  a  successful  path  (i.e. terminal-state  j  is                    
reached)  divided  by  the  number  of  times cell  i  is  visited  along  all  of  the  simulations.  In  contrast  to                    
other  trajectory  reconstruction  methods  which  compute  the  shortest  paths  between  root  and  terminal              
node 1 ,2 ,  the  lazy-teleporting  MCMC  simulations  in  VIA  offer  a  probabilistic  view  of  pathways  under               
relaxed  conditions  that  are  not  only  restricted  to  the  random-walk  along  a  tree-like  graph,  but  can  also                  
be  generalizable  to  other  types  of  topologies,  such  as  cyclic  or  connected/disconnected  paths.  In  the                
same  vein,  we  avoid  confining  the  graph  to  an  absorbing  Markov  chain 13,3  (AMC)  as  this  places                 
prematurely  strict  /  potentially  inaccurate  constraints  on  node-to-node  mobility  and  can  impede             
sensitivity  to  cell  fates  (as  demonstrated  by  VIA’s  superior  cell  fate  detection  across  numerous               
datasets   ( Supplementary   Fig.   S1 ).   

Downstream   visualization   and   analysis  
VIA  generates  a  visualization  that  combines  the  network  topology  and  single-cell  level             
pseudotime/lineage  probability  properties  onto  an  embedding  based  on  UMAP  or  PHATE.  Generalized             
additive  models  (GAMs)  are  used  to  draw  edges  found  in  the  high-dimensional  graph  onto  the  lower                 
dimensional  visualization  ( Fig.  1 ).  An  unsupervised  downstream  analysis  of  cell  features  (e.g.  marker              
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gene  expression,  protein  expression  or  image  phenotype)  along  pseudotime  for  each  lineage  is  performed               
( Fig.  1 ).  Specifically,  VIA  plots  the  expression  of  features  across  pseudotime  for  each  lineage  by  using                 
the  lineage  likelihood  properties  to  weight  the  GAMs.  A  cluster-level  lineage  pathway  is  automatically               
produced  by  VIA  to  visualize  feature  heat  maps  at  the  cluster-level  along  a  lineage-path  to  see  the                  
regulation  of  genes.  VIA  provides  the  option  of  gene  imputation  before  plotting  the  lineage  specific  gene                 
trends.  The  imputation  is  fast  as  it  relies  on  the  single-cell  KNN  (scKNN)  graph  computed  in  Step  1.                   
Using  an  affinity-based  imputation  method 45 ,  this  step  computes  a  “diffused”  transition  matrix  on  the               
scKNN   graph   used   to   impute   and   denoise   the   original   gene   expressions.   
 

Simulated   Data  
We  employed  the  DynToy 4  ( https://github.com/dynverse/dyntoy )  package,  which  generates  synthetic          
single-cell  gene  expression  data  (~1000  cells  x  1000  ‘genes’),  to  simulate  different  complex  trajectory               
models.  Using  these  datasets,  we  tested  that  VIA  consistently  and  more  accurately  captures  both  tree  and                 
non-tree  like  structures  compared  to  other  methods (Fig.2).  The  types  of  topologies  span  multifurcating,               
cyclic,  connected  (hybrid  of  cyclic  and  multifurcating)  and  disconnected  (hybrid  of  the  first  three)  .  All                 
methods  are  subject  to  the  same  data  pre-processing  steps,  PCA  dimension  reduction  and  root-cell  to                
initialize   the   path.   
 
The  composite  accuracy  metric  assesses  multiple  layers  of  the  inferred  trajectory,  taking  into  account  the                
topological  similarity  between  the  reference  model  and  the  inferred  topology,  the  correlation  between  the               
real  and  ‘pseudo’  times,  and  the  prediction  accuracy  of  the  terminal  cell  fates  (lineages).  Absolute                
measurements  of  similarities  are  converted  into  a  percentage  scale  before  taking  the  arithmetic  mean  (of                
the  5  metrics,  see  below)  which  gives  the  composite  accuracy.  Since  PAGA  does  not  predict  lineages,  the                  
composite  score  is  simply  the  average  of  the  first  4  metrics  for  PAGA.  A  detailed  explanation  of  the  5                    
metrics   can   be   referred   to    Supplementary   Note   3.    The   5   metrics   are:  
 
Ipsen-Mikhailov  (IM): is  used  to  measure  the  similarity  of  global  graph  topology.  The  IM  ranges  from  0                  
to   1   and   equals   the   difference   in   spectral   densities   of   two   graphs.  
Graph  Edit  Distance  (GED): is  the  cost  of  converting  to  with  the  least  possible  number  of          GT I  GREF        
operations.   Each   operation   has   a   cost   of   one   and   includes   insertion/deletion   of   edges    and    nodes.  
F1-Branch  score: We  compute  the  harmonic  mean  of  recall  and  precision  for  the  local  branch  accuracy                 
relative  to  the  reference  model. A  False  Negative  edge  in  the  inferred  model  is  when  there  is  an  edge  in                     
the  reference  model  between  cell  types  that  is  absent  in  the  inferred  trajectory.  A  False  Positive  edge  in                   
the   inferred   model   is   an   edge   that   is   not   actually   present   in   the   reference   model.   
Temporal  Correlation: Pearson  Correlation  coefficient  is  used  as  a  measure  of  how  closely  the  inferred                
pseudotime   follows   the   true   sampling   times.  
F1-Cell  Fate  score: Similar  to  the  F1-branch  score,  we  use  the  harmonic  mean  of  recall  and  precision  to                   
quantify   the   prediction   accuracy   of   terminal   states.   
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Benchmarked   Methods   
The  methods  were  mainly  chosen  based  on  their  superior  performance  in  a  recent  large-scale               
benchmarking  study 4 ,  including  a  select  few  recent  methods  claiming  to  supersede  those  in  the  study.                
Specifically,  recent  and  popular  methods  exhibiting  reasonable  scalability,  and  automated  cell  fate             
prediction  in  multi-lineage  trajectories,  not  limited  to  tree-topologies,  were  favoured  as  candidates  for              
benchmarking  (See Supplementary  Table  S1  for  the  key  characteristics  of  methods).  Performance             
stress-tests  in  terms  of  lineage  detection  of  each  biological  dataset,  automated  gene  trend  prediction  along                
lineages,  and  pseudotime  correlation  were  conducted  over  a  range  of  key  input  parameters  (e.g.  numbers                
of  k-nearest  neighbors,  highly  variable  genes  (HVGs),  principal  components  (PCs))  and  pre-processing             
protocols  (see Supplementary  Fig.  1 ).  Methods  that  focus  exclusively  on  a  single  data  modality  or  on                 
topology  without  predicting  cell  fates  and  their  lineage  pathways  (e.g.  TinGa 64 ,  Tempora 65 )  were  generally               
not  included  in  the  benchmarking  as  they  would  require  manual  selection  of  cell  fates  and  differentiation                 
pathways.  All  comparisons  were  run  on  a  computer  with  an  Intel(R)  Xeon  (R)  W-2123  central  processing                 
unit   (3.60GHz,   8   cores)   and   126   GB   RAM.  
 
Details  of  parameter  settings  for  each  of  the  benchmarked  methods  can  be  found  in Supplementary                
Tables   S4-S5,    with   an   emphasis   on   the   rationale   for   changes   deviating   from   default   parameters.  
 
Quantifying  terminal  state  prediction  accuracy  for  parameter  tests  was  done  using  the  F1-score,  defined               
as   the   harmonic   mean   of   recall   and   precision   and   calculated   as:  

F 1 =  tp
tp + 0.5(fp+fn)   

 
Where tp  is  a  true-positive:  the  identification  of  a  terminal  cluster  that  is  in  fact  a  final  differentiated  cell                    
fate; fp  is  a  false  positive  identification  of  a  cluster  as  terminal  when  in  fact  it  represents  an  intermediate                     
state;   and    fn    is   a   false   negative   where   a   known   cell   fate   fails   to   be   identified   
 
Downstream  analysis  enabled  by  the  automated  lineage  prediction  capabilities  of  each  method  is  key  to                
facilitating  the  exploration  of  biological  data.  The  unsupervised  gene-trend  analysis  inferred  by  VIA  is               
compared  to  the  lineage  gene-trends  predicted  by  other  methods  both  quantitatively  and  qualitatively.  We               
follow  an  approach  used  by  Chen  et  al. 63 ,  where  pseudotime  is  correlated  against  expression  of  a  marker                  
gene  known  to  monotonically  increase  along  the  lineage.  The  gene-expression  of  such  markers  can  be                
considered  a  surrogate  for  the  correct  sampling  time  and  thus  the  resulting  correlation  is  an  indication  of                  
the  accuracy  of  cell  ordering  by  pseudotime.  We  also  provide  a  side-by-side  comparison  of  the  predicted                 
topology  and  gene-trends  generated  by  each  method  to  visually  assess  how  well  separated  the  predicted                
lineages  are  (e.g.  if  multiple  lineages  that  represent  distinct  cell  fates  exhibit  significant  cross-talk  in  the                 
plotted  trends  or  uniquely  express  the  genes  most  relevant  to  their  lineages).  The  Pearson  correlation                
coefficient   is   given   by   ,   where   is   the   standard   deviation   and   is   the   mean   of   X ρx,y σX μX  
 

ρx,y = σ σX Y

E[(X−μ )−(Y −μ )]X  Y    

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.02.10.430705doi: bioRxiv preprint 

https://docs.google.com/document/d/17hKqD3B5gmaBgnhrDUYigPD_-Ue37OFupUwD5jHxSOU/edit#smartreference=pwzzqt446v1
https://doi.org/10.1101/2021.02.10.430705
http://creativecommons.org/licenses/by-nc/4.0/


Built-in  functions  for  gene-trend  plotting  (wherever  available),  and  in  other  cases  manually  selection  of               
branches/clusters  or  extension  of  a  method  by  adding  GAMs  to  general  gene-trend  curves  was  required  to                 
facilitate  comparison  (e.g.  PAGA  and  STREAM)  .  Additionally,  when  methods  cannot  automatically             
detect  all  the  relevant  lineages,  we  either  chose  the  most  relevant  lineage  (e.g.  for  the  megakaryocyte                 
lineage,  we  plotted  its  CD41  marker  gene  along  the  detected  erythroid  lineage  which  often  absorbed  the                 
smaller  megakaryocytic  cell  line),  or  we  noted  that  the  lineage  was  missed,  (e.g.  in  the  small  delta  cell                   
population  in  the  endocrine  dataset)  when  the  lost  lineage  was  not  an  obvious  part  of  another  lineage.                  
Given  that  these  nuances  are  not  necessarily  captured  by  the  correlation  coefficient,the  outputs  of  the                
gene-trend  plots  inferred  by  each  method  are  shown  for  three  datasets  which  have  multiple  lineages  of                 
different  abundances,  and  well  known  lineage  markers  (scRNA-seq  and  scATAC-seq  hematopoiesis,  and             
endocrine   genesis   in    Supplementary     Fig.   S9,   S11   and   S15 ).   
 
PAGA 28 . It  uses  a  cluster-graph  representation  to  capture  the  underlying  topology.  PAGA  computes  a               
unified  pseudotime  by  averaging  the  single-cell  level  diffusion  pseudotime  computed  by  DPT,  but              
requires  manual  specification  of  terminal  cell  fates  and  clusters  that  contribute  to  lineages  of  interest  in                 
order   to   compare   gene   expression   trends   across   lineages.   
 
Palantir 2 . It  uses  diffusion-map 46.  components  to  represent  the  underlying  trajectory.  Pseudotimes  are             
computed  as  the  shortest  path  along  a  KNN-graph  constructed  in  a  low-dimensional  diffusion  component               
space,  with  edges  weighted  such  that  the  distance  between  nodes  corresponds  to  the  diffusion               
pseudotime 47.  (DPT).  Terminal  states  are  identified  as  extrema  of  the  diffusion  maps  that  are  also  outliers                 
of  the  stationary  distribution.  The  lineage-likelihood  probabilities  are  computed  using  Absorbing  Markov             
Chains   (constructed   by   removing   outgoing   edges   of   terminal   states,   and   thresholding   reverse   edges).   
 
Slingshot 1 . It  is  designed  to  process  low-dimensional  embeddings  of  the  single-cell  data.  By  default               
Slingshot  runs  clustering  based  on  Gaussian  mixture  modeling  and  recommends  using  the  first  few  PCs  as                 
input.  Slingshot  connects  the  clusters  using  a  minimum  spanning  tree  and  then  fits  principle  curves  for                 
each  detected  branch.  It  uses  the  orthogonal  projection  against  each  principal  curve  to  fit  a  separate                 
pseudotime  for  each  lineage,  and  hence  the  gene  expressions  cannot  be  compared  across  lineages.  Also,                
the   runtimes   are   prohibitively   long   for   large   datasets   or   high   input   dimensions.   
 
CellRank 13 . This  method  combines  the  information  of  RNA  velocity  (computed  using  scVelo 48. )  and              
gene-expression  to  infer  trajectories.  Given  it  is  mainly  suited  for  the  scRNA-seq  data,  with  the                
RNA-velocity  computation  limiting  the  overall  runtime  for  larger  dataset,  we  limit  our  comparison  to  the                
pancreatic   dataset   which   the   authors   of   CellRank   used   to   highlight   its   performance.   
 
Monocle3 6.  The  workflow  consists  of  three  steps:  the  first  is  to  project  the  data  to  two  or  three  dimensions                    
using  UMAP  (this  is  a  strict  requirement),  followed  by  Louvain  clustering  on  a  K-Nearest  Neighbor                
graph  constructed  in  the  low-dimensional  UMAP  space.  A  cluster-graph  is  then  created  and  partitioned  to                
deduce  disconnected  trajectories.  Subsequently,  it  learns  a  principal  graph  in  the  low-dimensional  space              
along   which   it   calculates   pseudotimes   as   the   geodesic   distance   from   root   to   cell.   
 
STREAM 63 . After  selecting  the  desired  number  of  PCs,  STREAM  projects  the  cells  to  a  lower                 
dimensional  PCA  space  using  a  non-linear  dimensionality  reduction  method  (such  as  Modified  Locally              
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Linear  Embedding,  Spectral  Embedding  or  UMAP).  In  the  embedded  space,  STREAM  constructs  a              
tree-model  trajectory  using  an  Elastic  Principal  Graph  implementation  called  ElPiGraph.  The  results  are              
visualized  as  a  branching  structure  or  re-organized  as  a  subway  plot  relative  to  a  user-designated  starting                 
branch.   

Biological   Data  
The  pre-processing  steps  described  below  for  each  dataset  are  not  included  in  the  reported  runtimes  as                 
these  steps  are  typically  very  fast,  (typically  less  than  1-10%  of  the  total  runtime  depending  on  the                  
method.  E.g.  only  a  few  minutes  for  pre-processing  100,000s  of  cells)  and  only  need  to  be  performed                  
once  as  they  remain  the  same  for  all  subsequent  analyses.  It  should  also  be  noted  that  visualization  (e.g.                   
UMAP,  t-SNE)  are  not  included  in  the  runtimes.  VIA  provides  a  subsampling  option  at  the  visualization                 
stage  to  accelerate  this  process  for  large  datasets  without  impacting  the  previous  computational  steps.               
However,  to  ensure  fair  comparisons  between  TI  methods  (e.g.  other  methods  do  not  have  an  option  to                  
compute  the  embedding  on  a  subsampled  input  and  transfer  the  results  between  the  full  trajectory  and  the                  
sampled  visualization,  or  rely  on  a  slow  version  of  tSNE),  we  simply  provide  each  TI  method  with  a                   
pre-computed   visualization   embedding   on   which   the   computed   results   are   projected.   
 
ScRNA-seq  of  mouse  pre-B  cells. This  dataset 26  models  the  pre-BI  cell  (Hardy  fraction  C’)  process                
during  which  cells  progress  to  the  pre-BII  stage  and  B  cell  progenitors  undergo  growth  arrest  and                 
differentiation.  Measurements  were  obtained  at  0,  2,  6,  12,  18  and  24  hours  (h)  for  a  total  of  313  cells  x                      
9,075  genes.  We  follow  a  standard  Scanpy  preprocessing  recipe 49  that  filters  cells  with  low  counts,  and                 
genes  that  occur  in  less  than  3  cells.  The  filtered  cells  are  normalized  by  library  size  and  log  transformed.                    
The  top  5000  highly  variable  genes  (HVG)  are  retained.  Cells  are  renormalized  by  library  count  and                 
scaled  to  unit  variance  and  zero  mean.  VIA  identifies  the  terminal  state  at  18-24  h  and  accurately                  
recapitulates  the  gene  expression  trends 26  along  inferred  pseudotime  of IgII1 , Slc7a5 , Fox01 , Myc , Ldha               
and Lig4 .  ( Supplementary  Fig.  S6a). We  show  the  results  generalize  across  a  range  of  PCs  for  two                  
values  of  K  of  the  graph  with  higher  accuracy  in  locating  the  later  cell  fates  than  Slingshot  and  Palantir.                    
( Supplementary   Fig.   S6b).  
 
ScRNA-seq  of  human  CD34+  bone  marrow  cells. This  is  a  scRNA-seq  dataset  of  5800  cells                
representing  human  hematopoiesis 2. .  We  used  the  filtered,  normalized  and  log-transformed  count  matrix             
provided  by  Setty  et  al 2. .,  with  PCA  performed  on  all  the  remaining  (~14000)  genes.  The  cells  were                  
annotated  using SingleR 50.  which  automatically  labeled  cells  based  on  the  hematopoietic  reference  dataset              
Novershtern  Hematopoietic  Cell  Data  - GSE24759 51. .  The  annotations  are  in  agreement  with  the  labels               
inferred  by  Setty  et  al.  for  the  7  clusters,  including  the  root  HSCs  cluster  that  differentiates  into  6  different                    
lineages:  monocytes,  erythrocytes,  and  B  cells,  as  well  as  the  less  populous  megakaryocytes,  cDCs  and                
pDCs.  VIA  consistently  identifies  these  lineages  across  a  wider  range  of  input  parameters  and  data                
dimensions  (e.g.  the  number  of  K  and  PCs  provided  as  input  to  the  algorithms  see Fig.  2p,  and                   
Supplementary  Fig.  S7  -S9 ).  Notably,  the  upregulated  gene  expression  trends  of  the  small  populations               
can  be  recovered  in  VIA,  i.e.  pDC  and  cDC  show  elevated  CD123  and  CSF1R  levels  relative  to  other                   
lineages,   and   the   upregulated   CD41   expression   in   megakaryocytes   ( Supplementary   Fig.   S7-S9) .   
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ScRNA-seq  of  human  embryoid  body. This  is  a  midsized  scRNA-seq  dataset  of  16,825  human  cells  in                 
embryoid  bodies  (EBs) 15 .  We  followed  the  same  pre-processing  steps  as  Moon  et  al.  to  filter  out  dead                  
cells  and  those  with  too  high  or  low  library  count.  Cells  are  normalized  by  library  count  followed  by                   
square  root  transform.  Finally  the  transformed  counts  are  scaled  to  unit  variance  and  zero  mean.  The                 
filtered  data  contained  16825  cells  ×  17580  genes.  PCA  is  performed  on  the  processed  data  before                 
running  each  TI  method.  VIA  identifies  6  cell  fates,  which,  based  on  the  upregulation  of  marker  genes  as                   
cells  proceed  towards  respective  lineages,  are  in  accord  with  the  annotations  given  by  Moon  et  al.,  (See                  
the  gene  heatmap  and  changes  in  gene  expression  along  respective  lineage  trajectories  in Supplementary               
Fig.  S13).  Note  that  Palantir  and  Slingshot  do  not  capture  the  cardiac  cell  fate,  and  Slingshot  also  misses                    
the   neural   crest    ( see   the   F1-scores   summary   for   terminal   state   detection    Supplementary   Fig.   S13).  
 
ScRNA-seq  of  mouse  organogenesis  cell  atla s . This  is  a  large  and  complex  scRNA-seq  dataset  of  mouse                 
organogenesis  cell  atlas  (MOCA)  consisting  of  1.3  million  cells 6. .  The  dataset  contains  cells  from  61                
embryos  spanning  5  developmental  stages  from  early  organogenesis  (E9.5-E10.5)  to  organogenesis            
(E13.5).  Of  the  2  million  cells  profiled,  1.3  million  are  ‘high-quality’  cells  that  are  analysed  by  VIA.  The                   
runtime  is  approximately  40  minutes  which  is  in  stark  contrast  to  the  next  fastest  tool  Palantir  which  takes                   
4  hours  (excluding  visualization).  The  authors  of  MOCA  manually  annotated  38  cell-types  based  on  the                
differentially  expressed  genes  of  the  clusters.  In  general,  each  cell  type  exclusively  falls  under  one  of  10                  
major  and  disjoint  trajectories  inferred  by  applying  Monocle3  to  the  UMAP  of  MOCA.  The  authors                
attributed  the  disconnected  nature  of  the  10  trajectories  to  the  paucity  of  earlier  stage  common                
predecessor  cells.  We  followed  the  same  steps  as  Cao  et  al. 6  to  retain  high-quality  cells  (i.e.  remove  cells                   
with  less  than  400  mRNA,  and  remove  doublet  cells  and  cells  from  doubled  derived  sub-clusters).  PCA                 
was  applied  to  the  top  2000  HVGs  with  the  top  30  PCs  selected  for  analysis.  VIA  analyzed  the  data  in  the                      
high-dimensional  PC  space.  We  bypass  the  step  in  Monocle3 6  which  applies  UMAP  on  the  PCs  prior  to                  
TI  as  this  incurs  an  additional  bias  from  choice  of  manifold-learning  parameters  and  a  further  loss  in                  
neighborhood  information.  As  a  result,  VIA  produces  a  more  connected  structure  with  linkages  between               
some  of  the  major  cell  types  that  become  segregated  in  UMAP  (and  hence  Monocle3),  and  favors  a                  
biologically  relevant  interpretation  ( Fig.  2,  Supplementary  Fig.  S11 ).  A  detailed  explanation  of  these              
connections  (graph-edges)  extending  between  certain  major  groups  using  references  to  literature  on             
organogenesis   is   presented   in    Supplementary   Note   3.  
 
ScRNA-seq  of  murine  endocrine  development 5 . This  is  an  scRNA-seq  dataset  of  E15.5  murine              
pancreatic  cells  spanning  all  developmental  stages  from  an  initial  endocrine  progenitor-precursor  (EP)             
state  (low  level  of Ngn3  ,  or Ngn3 low ),  to  the  intermediate  EP  (high  level  of Ngn3  ,  or Ngn3 high )  and  Fev +                    
states,  to  the  terminal  states  of  hormone-producing  alpha,  beta,  epsilon  and  delta  cells 5.  Following  steps                
by  Lange  et  al 13. ,  we  preprocessed  the  data  using  scVelo  to  filter  genes,  normalize  each  cell  by  total  counts                    
over  all  genes,  keep  the  top  most  variable  genes,  and  take  the  log-transform.  PCA  was  applied  to  the                   
processed  gene  matrix.  We  assessed  the  performance  of  VIA  and  other  TI  methods  (CellRank,  Palantir,                
Slingshot)   across   a   range   of   number   of   retained   HVGs   and   input   PCs   ( Fig.   2m ,    Supplementary   Fig.   SZ) .   
 
ScATAC-seq  of  human  bone  marrow  cells. This  scATAC-seq  data  profiles  3072  cells  isolated  from               
human  bone  marrow  using  fluorescence  activated  cell  sorting  (FACS),  yielding  9  populations 27 : HSC,              
MPP,  CMP,  CLP,  LMPP,  GMP,  MEP,  mono  and  plasmacytoid  DCs  ( Fig.  3a  and  Supplementary  Fig.                
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S10-11 ).  We  examined  TI  results  for  two  different  preprocessing  pipelines  to  gauge  how  robust  VIA  is  on                  
the  scATAC-seq  analysis  which  is  known  to  be  challenging  for  its  extreme  intrinsic  sparsity.  We  used  the                  
pre-processed  data  consisting  of  PCA  applied  to  the  z-scores  of  the  transcription  factor  (TF)  motifs  used                 
by  Buenrostro  et  a 27. .  Their  approach  corrects  for  batch  effects  in  select  populations  and  weighting  of  PCs                  
based  on  reference  populations  and  hence  involves  manual  curation.  We  also  employed  a  more  general                
approach  used  by Chen  et  al. 31.  which  employs  ChromVAR  to  compute  k-mer  accessibility  z-scores  across                
cells.  VIA  infers  the  correct  trajectories  and  the  terminal  cell  fates  for  both  of  these  inputs,  again  across  a                    
wide   range   of   input   parameters   ( Fig.   3d   and   Supplementary   Fig.   S11-S13 ).   
 
ScRNA-seq  and  scATAC-seq  of Isl1+  cardiac  progenitor  cells. This  time-series  dataset  captures             
murine Isl1+  cardiac  progenitor  cells  (CPCs)  from  E7.5  to  E9.5  characterized  by  scRNA-seq  (197  cells)                
and  scATAC-seq  (695  cells) 20. .  The Isl1+ CPCs  are  known  to  undergo  multipotent  differentiation  to               
cardiomyocytes  or  endothelial  cells.  For  the  scRNA-seq  data,  the  quality  filtered  genes  and  the  size-factor                
normalized  expression  values  are  provided  by  Jia  et  al. 20  as  a  “Single  Cell  Expression  Set”  object  in  R.                   
Similarly,  the  cells  in  the  scATAC-seq  experiment  were  provided  in  a  “SingleCellExperiment”  object  with               
low  quality  cells  excluded  from  further  analysis.  The  accessibility  of  peaks  was  transformed  to  a  binary                 
representation  as  input  for  TF-IDF  (term  frequency-inverse  document  frequency)  weighting  prior  to             
singular  value  decomposition  (SVD).  The  highlighted  TF  motifs  in  the  heatmap  ( Fig.  2j )  correspond  to                
those  highlighted  by  Jia  et  al.  We  tested  the  performance  when  varying  the  number  of  SVDs  used.  We                   
also  considered  the  outcome  when  merging  the  scATAC-seq  and  scRNA-seq  data  using  Seurat3 52. .              
Despite  the  relatively  low  cell  count  of  both  datasets,  and  the  relatively  under-represented  scRNA-seq  cell                
count,  the  two  datasets  overlapped  reasonably  well  and  allowed  us  to  infer  the  expected  lineages  in  an                  
unsupervised  manner  ( Fig.  2d  and  Supplementary  Fig.  S8 .  In  contrast,  Jia  et  al.,  performed  a  supervised                 
TI  by  manually  selecting  cells  relevant  to  the  different  lineages  (for  the  scATAC-seq  cells)  and  choosing                 
the   two   diffusion   components   that   best   characterize   the   developmental   trajectories   in   low   dimension 20 .  
 
Mass  cytometry  data  of  mouse  embryonic  stem  cells  (mESC) . This  is  a  mass  cytometry  (or  CyTOF)                 
dataset,  consisting  of  90,000  cells  and  28  antibodies  (corresponding  to  ~7000  cells  each  from  Day  0-11                 
measurements),  that  represents  differentiation  of  mESC  to  mesoderm  cells 32. .  An  arcsinh  transform  with  a               
scaling  factor  of  5  was  applied  on  all  features  -  a  standard  procedure  for  CyTOF  datasets,  followed  by                   
normalization  to  unit  variance  and  zero  mean.  All  28  antibodies  are  used  by  the  TI  methods  (with  the                   
exception  of  Slingshot  which  requires  PCA  followed  by  subsetting  of  the  first  5  PCs  in  order  to                  
computationally  handle  the  high  cell  count) (Supplementary  Fig.  S9) .  To  improve  Palantir  performance               
we  used  5000  waypoints  (instead  of  default  1200)  but  this  takes  almost  20  minutes  to  complete                 
(excluding  time  taken  for  embedding  the  visualization).  VIA  runs  in  ~3  minutes  and  produces  results                
consistent   with   the   known   ordering   and   identifies   regions   of   Day   10-11   cells.  
 
Single-cell  biophysical  phenotypes  derived  from  imaging  flow  cytometry.  This  is  the  in-house  dataset              
of  single-cell  biophysical  phenotypes  of  two  different  human  breast  cancer  types  (MDA-MB231  and              
MCF7).  Following  our  recent  image-based  biophysical  phenotyping  strategy 53 , 54 ,  we  defined  the            
spatially-resolved  biophysical  features  of  a  cell  in  a  hierarchical  manner  based  on  both  bright-field  and                
quantitative  phase  images  captured  by  the  FACED  imaging  flow  cytometer  (i.e.,  from  the  bulk  features  to                 
the  subcellular  textures) 67 .  At  the  bulk  level,  we  extracted  the  cell  size,  dry  mass  density,  and  cell  shape.                   
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At  the  subcellular  texture  level,  we  parameterized  the  global  and  local  textural  characteristics  of  optical                
density  and  mass  density  at  both  the  coarse  and  fine  scales  (e.g.,  local  variation  of  mass  density,  its                   
higher-order  statistics,  phase  entropy  radial  distribution  etc.).  This  hierarchical  phenotyping  approach 53 , 54            
allowed  us  to  establish  a  single-cell  biophysical  profile  of  38  features,  which  were  normalized  based  on                 
the  z-score  ( See  Supplementary  Table  S4  and  Table  S5 ).  All  these  features,  without  any  PCA,  are  used                  
as  input  to  VIA.  In  order  to  weigh  the  features,  we  use  a  mutual  information  classifier  to  rank  the  features,                     
based  on  the  integrated  fluorescence  intensity  of  the  fluorescence  FACED  images  of  the  cells  (which                
serve  as  the  ground  truth  of  the  cell-cycle  stages).  Following  normalization,  the  top  3  features  (which                 
relate   to   cell   size)   are   weighted   (using   a   factor   between   3-10).   

Imaging   flow   cytometry   experiment  

FACED   imaging   flow   cytometer   setup   

A  multimodal  FACED  imaging  flow  cytometry  (IFC)  platform  was  used  to  obtain  the  quantitative  phase                
and  fluorescence  images  of  single  cells  in  microfluidic  flow  at  an  imaging  throughput  of  ~70,000                
cells/sec.  The  light  source  consisted  of  an  Nd:YVO  picosecond  laser  (center  wavelength  =  1064  nm,                
Time-Bandwidth)  and  a  periodically-poled  lithium  niobate  (PPLN)  crystal  (Covesion)  for  second            
harmonic  generation  of  a  green  pulsed  beam  (center  wavelength  =  532  nm)  with  a  repetition  rate  of  20                   
MHz.  The  beam  was  then  directed  to  the  FACED  module,  which  mainly  consists  of  a  pair  of                  
almost-parallel  plane  mirrors.  This  module  generated  a  linear  array  of  50  beamlets  (foci)  which  were                
projected  by  an  objective  lens  (40X,  0.6NA,  MRH08430,  Nikon)  on  the  flowing  cells  in  the  microfluidic                 
channel  for  imaging.  Each  beamlet  was  designed  to  have  a  time  delay  of  1  ns  with  the  neighboring                   
beamlet  in  order  to  minimize  the  fluorescence  crosstalk  due  to  the  fluorescence  decay.  Detailed               
configuration  of  the  FACED  module  can  be  referred  to  Wu  et  al. 33. .  The  epi-fluorescence  image  signal                 
was  collected  by  the  same  objective  lens  and  directed  through  a  band-pass  dichroic  beamsplitter  (center:                
575nm,  bandwidth:  15nm).  The  filtered  orange  fluorescence  signal  was  collected  by  the  photomultiplier              
tube  (PMT)  (rise  time:  0.57  ns,  Hamamatsu).  On  the  other  hand,  the  transmitted  light  through  the  cell  was                   
collected  by  another  objective  lens  (40X,  0.8NA,  MRD07420,  Nikon).  The  light  was  then  split  equally  by                 
the  50:50  beamsplitter  into  two  paths,  each  of  which  encodes  different  phase-gradient  image  contrasts  of                
the  same  cell  (a  concept  similar  to  Scherlien  photography 55. ).  The  two  beams  are  combined,               
time-interleaved,  and  directed  to  the  photodetector  (PD)  (bandwidth:  >10  GHz,  Alphalas)  for  detection.              
The  signals  obtained  from  both  PMT  and  PD  were  then  passed  to  a  real-time  high-bandwidth  digitizer  (20                  
GHz,   80   GS/s,   Lecroy)   for   data   recording.  
 
Cell   culture   and   preparation   
MDA-MB231  (ATCC)  and  MCF7  (ATCC),  which  are  two  different  breast  cancer  cell  lines,  were  used  for                 
the  cell  cycle  study.  The  culture  medium  for  MDA-MB231was  ATCC  modified  RPMI  1640  (Gibco)               
supplemented  with  10%  fetal  bovine  serum  (FBS)  (Gibco)  and  1%  antibiotic-antimycotic  (Anti-Anti)             
(Gibco),  while  that  for  MCF7  was  DMEM  supplemented  with  10%  FBS  (Gibco)  and  1%  Anti-Anti                
(Gibco).  The  cells  were  cultured  inside  an  incubator  under  5%  CO 2  and  37°C,  and  subcultured  twice  a                  
week.  1e6  cells  were  pipetted  out  from  each  cell  line  and  stained  with  Vybrant  DyeCycle  orange  stain                  
(Invitrogen).    
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Data   Availability  
Data   used   in   Figures   1-3   as   well   as   Supplementary   Figures   S1-S15)   is   available   on:  

1. Pancreatic   data:   Gene   Expression   Omnibus   (GEO)   under   accession   code   GSE132188.   
2. Cardiac  progenitor  data  is  available  from  the  ENA  repository  under  the  accession  code              

PRJEB23303   or   from   [ https://github.com/loosolab/cardiac-progenitors ].   
3. B-cell:   STATegraData   GitHub   repository.   [ https://github.com/STATegraData/STATegraData ]  
4. Mass   cytometry   mesoderm:   Cytobank  

[ https://community.cytobank.org/cytobank/experiments/71953 ].   
5. Raw   and   processed   data   for   scRNA-seq   Human   Hematopoeisis   are   available   through   the   Human  

Cell   Atlas   data   portal   at  
https://data.humancellatlas.org/explore/projects/091cf39b-01bc-42e5-9437-f419a66c8a45 .  

6. Embryoid   Body:   Mendeley   Data   repository   at   https://doi.org/10.17632/v6n743h5ng.1.  
7. Mouse   Organogenesis   :   NCBI   Gene   Expression   Omnibus   under   accession   number    GSE119945  
8. FACED  cell  cycle: https://github.com/ShobiStassen/VIA  and  on  FigShare        

https://doi.org/10.6084/m9.figshare.13601405.v1   
9. scATAC-seq   Hematopoiesis:   GEO:   GSE96772.   Processed   scATAC-seq   data,   which   include   PC  

values   and   TF   scores   per   cell   can   be   found   in   Data   S1.   of  
https://doi.org/10.1016/j.cell.2018.03.074   

10. Toy   Data:    https://github.com/ShobiStassen/VIA  
 

Code   Availability  
VIA   is   available   as   a   pip   installable   python   library   “pyVIA”   with   tutorials   and   sample   data   available   on  
https://github.com/ShobiStassen/VIA    and    https://pypi.org/project/pyVIA/  
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