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Abstract

Inferring cellular trajectories using a variety of omic data is a critical task in single-cell data science.
However, accurate prediction of cell fates, and thereby biologically meaningful discovery, is challenged
by the sheer size of single-cell data, the diversity of omic data types, and the complexity of their
topologies. We present VIA, a scalable trajectory inference algorithm that overcomes these limitations by
using lazy-teleporting random walks to accurately reconstruct complex cellular trajectories beyond
tree-like pathways (e.g. cyclic or disconnected structures). We show that VIA robustly and efficiently
unravels the fine-grained sub-trajectories in a 1.3-million-cell transcriptomic mouse atlas without losing
the global connectivity at such a high cell count. We further apply VIA to discovering elusive lineages
and less populous cell fates missed by other methods across a variety of data types, including single-cell
proteomic, epigenomic, multi-omics datasets, and a new in-house single-cell morphological dataset.

Background

Single-cell omics data captures snapshots of cells that catalog cell types and molecular states with high
precision. These high-content readouts can be harnessed to model evolving cellular heterogeneity and
track dynamical changes of cell fates in tissue, tumour, and cell population. However, current
computational methods face four critical challenges. First, it remains difficult to accurately reconstruct
high-resolution cell trajectories and automatically detect the pertinent cell fates and lineages without
relying on prior knowledge of input parameter settings. This is a foundational but unmet attribute of
trajectory inference (TI) that could make lineage prediction less biased towards input parameters, and thus
minimize the confounding factors that impact the underlying hypothesis testing. However, even the few
algorithms which automate cell fate detection (e.g. SlingShot', Palantir’ , STREAM® and Monocle3°)
exhibit low sensitivity to cell fates and are highly susceptible to changes in input parameters. Second,
current trajectory inference (TI) methods predominantly work well on tree-like trajectories (e.g. Slingshot
and STREAM), but lack the generalisability to infer disconnected, cyclic or hybrid topologies without
imposing restrictions on transitions and causality*. This attribute is crucial in enabling unbiased discovery
of complex trajectories which are commonly not well known a priori, especially given the increasing
diversity of single-cell omic datasets. Third, the growing scale of single-cell data, notably cell atlases of
whole organisms®’, embryos®’ and human organs'’, exceeds the existing TI capacity, not just in runtime
and memory, but in preserving both the fine-grain resolution of the embedded trajectories and the global
connectivity among them. Very often, such global information is lost in current TI methods after
extensive and multiple rounds of dimension reduction or subsampling. Fourth, fueling the advance in
single-cell technologies is the ongoing pursuit to understand cellular heterogeneity from a broader
perspective beyond transcriptomics. A notable example is the emergence of single-cell imaging
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technologies that now allow information-rich profiling of morphological and biophysical phenotypes of
single-cells, and thus offer novel mechanistic cues to cellular functions that cannot be solely inferred by
proteomic or sequencing data (e.g. in cancer’’, ageing®, drug responses®'). However, the applicability of
TI to a broader spectrum of single-cell data has yet to be fully exploited.

To overcome these recurring challenges, we present VIA, a graph-based TI algorithm that uses a new
strategy to compute pseudotime, and reconstruct cell lineages based on lazy-teleporting random walks
integrated with Markov chain Monte Carlo (MCMC) refinement (Fig. 1). VIA relaxes common
constraints on traversing the graph, and thus allows capture of cellular trajectories not only in
multi-furcations and trees, but also in disconnected and cyclic topologies. The lazy-teleporting MCMC
characteristics also make VIA robust to a wide range of pre-processing and input algorithmic parameters,
and allow VIA to consistently identify pertinent lineages that remain elusive or even lost in other
top-performing and popular TI algorithms we benchmark®, which are chosen for comparative analysis
conditional on meeting several of the following criteria: automated lineage path and cell fate prediction,
recovery of complex topologies not limited to trees, scalability and generalizability to multiple
single-cell-modalities. We validate the performance of VIA and thus its ability to offer better
interpretation of the underlying biology across a variety of transcriptomic, epigenomic and integrated
multi-omic datasets (seven biological datasets with a further two datasets presented in Supplementary).
Notably, we show in subsequent sections that VIA accurately detects minor dendritic sub-populations and
their characteristic gene expression trends in human hematopoiesis; automatically identifies pancreatic
islets including rare delta cells; and recovers endothelial and cardiomyocyte bifurcation in integrated data
sets of single-cell RNA-sequencing (scRNA-seq) and single-cell sequencing assay for
transposase-accessible chromatin (scATAC-seq).

Another defining attribute of VIA is its resilience in handling the wide disparity in single-cell data size,
structure and dimensionality across modalities. Specifically, VIA is highly scalable with respect to
number of cells (10 to >10° cells) and features, without requiring extensive dimensionality reduction or
subsampling which compromise global information. Most TI methods require two stages of
dimensionality reduction in the form of PCA followed by a subsequent stage of UMAP, MLLE or
diffusion components. Only a low number of components from the second layer of dimensionality
reduction is retained as an input to the TI method (e.g. STREAM, Monocle3, Slingshot and even PAGA
and Palantir which subset the diffusion components after PCA). In VIA, we show that for cytometry data
there is no need for any dimensionality reduction, and for transcriptomic data we show that VIA does not
need a second dimensionality reduction step but robustly infers lineages on a wide range of input
principal components (PCs). Although PCA is a common step in analyzing transcriptomic data in order to
strengthen the signal in the data, we also show that in-principle, VIA can handle 1000s of genes as direct
inputs without any PCA at all (Supplementary Note S5 and Fig. S27-S29). We showcase the scalability
of sample size by analyzing the fine-grained developmental sub-trajectories in the 1.3-million-cell mouse
organogenesis atlas in terms of fast runtime and preservation of global cell-type connectivity, which is
otherwise lost in existing TI methods. We also show that VIA is robust against the dimensionality drop
(down to 10’s - 100’s antibodies or morphological features) in mass cytometry (proteomics) and imaging
cytometry (morphological) data. For instance, VIA consistently reconstructs the pseudotime that
recapitulates murine embryonic stem cells (ESCs) differentiation toward mesoderm cells in CyTOF data,
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where the lazy-teleporting MCMCs contribute to the high accuracy of inference. Lastly, we hypothesize
that VIA can also be applied to imaging cytometry for gaining a mechanistic biophysical understanding of
cellular progress. To this end, we profiled the biophysical and morphological phenotypes of single-cell

live breast cancer cells with our recently developed high-throughput imaging flow cytometer, called
FACED?¥. Validated with the in-situ fluorescence image capture, we found that VIA reliably reconstructs
the continuous cell-cycle progressions from G1-S-G2/M phase, and reveals subtle changes in cell mass

accumulation.

Fig.1: VIA algorithm workflow
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Figure 1. General workflow of VIA algorithm. Step 1: Single-cell level graph is clustered such that each node
represents a cluster of single cells (computed by our clustering algorithm PARC™"). The resulting cluster graph forms
the basis for subsequent random walks. Step 2: 2-stage pseudotime computation: (i) The pseudotime (relative to a
user defined start cell) is first computed by the expected hitting time for a lazy-teleporting random walk along an
undirected graph. At each step, the walk (with small probability) can remain (orange arrows) or teleport (red arrows)
to any other state. (ii) Edges are then forward biased based on the expected hitting time (See forward biased edges
illustrated as the imbalance of double-arrowhead size). The pseudotime is further refined on the directed graph by
running Markov chain Monte Carlo (MCMC) simulations (See 3 highlighted paths starting at root). Step 3: Consensus
vote on terminal states based on vertex connectivity properties of the directed graph. Step 4: lineage likelihoods
computed as the visitation frequency under lazy-teleporting MCMC simulations. Step 5: Projection of temporal
ordering and lineage probabilities to single-cell level using the original single-cell-KNN graph to enable visualization
that combines network topology and single-cell level pseudotime/lineage probability properties onto an embedding
using GAMs, as well as unsupervised downstream analysis (e.g. gene expression trend along pseudotime for each

lineage).
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Results

Algorithm

VIA first represents the single-cell data as a cluster graph (i.e. each node is a cluster of single cells),
computed by our recently developed data-driven community-detection algorithm, PARC, which allows
scalable clustering whilst preserving global properties of the topology needed for accurate TI'' (Step 1 in
Fig. 1). The root (starting point) is designated by the user, either as a single-cell index or using group or
cluster level labels. The cell fates and their lineage pathways are then computed by a two-stage
probabilistic method, which is the key algorithmic contribution of this work (Step 2 in Fig. 1, see
Methods for detailed explanation). In the first stage of Step 2, VIA models the cellular process as a
modified random walk that allows degrees of laziness (remaining at a node/state) and teleportation
(jumping to any other node/state) with pre-defined probabilities. The pseudotime, and thus the graph
directionality, can be computed based on the theoretical hitting times of nodes (See the theory and
derivation in Methods and Supplementary Note 2). The lazy-teleporting behavior prevents the expected
hitting time from converging to a local distribution in the graph as otherwise occurs in regular random
walks, especially when the sample size grows'2. More specifically, the laziness and teleportation factors
regulate the weights given to each eigenvector-value pair in the expected hitting time formulation such
that the stationary distribution (given by the local-node degree-properties in regular walks) does not
overwhelm the global information provided by other ‘eigen-pairs’. Moreover, the computation does not
require subsetting the first £ eigenvectors (bypassing the need for the user to select a suitable threshold or
subset of eigenvectors) since the dimensionality is not on the order of number of cells, but is equal to the
number of clusters. Hence all eigenvalue-eigenvector pairs can be incorporated without causing a
bottleneck in runtime. Consequently in VIA, the modified walk on a cluster-graph not only enables
scalable pseudotime computation for large datasets in terms of runtime, but also preserves information
about the global neighborhood relationships within the graph. In the second stage of Step 2, VIA infers
the directionality of the graph by biasing the edge-weights with the initial pseudotime computations, and
refines the pseudotime through lazy-teleporting MCMC simulations on the forward biased graph.

Next (Step 3 in Fig. 1), the MCMC-refined graph-edges of the lazy-teleporting random walk enable
accurate predictions of terminal cell fates through a consensus vote of various vertex connectivity
properties derived from the directed graph. The cell fate predictions obtained using this approach are
more accurate and robust to changes in input data and parameters compared to other TI methods (Fig.2
simulated complex topologies and Fig. S1 summary of lineage detection accuracy for all benchmarked
real datasets). Trajectories towards identified terminal states are then resolved using lazy-teleporting
MCMC simulations (Step 4 in Fig. 1). The single-cell level KNN graph constructed in Step 1 is then
used to project the lineage probabilities of trajectories (pathways from root to cell fate), and temporal
ordering derived from the cluster-graph topology onto a single-cell level. Together, these four steps
facilitate holistic topological visualization of TI on the single-cell level (e.g. using UMAP or PHATE'*")
and critically enable data-driven downstream analyses such as recovering gene expression trends and
single-cell level pathways of lineages, that are essential to biological validation and discovery of lineage
commitment (Methods) (Step 5 in Fig.1).
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VIA accurately captures complex topologies obscured in other Tl methods

We first generate and analyze simulated datasets (see Methods) to demonstrate that VIA’s probabilistic
approach to graph-traversal allows it to infer cell fates when the underlying data spans combinations of
multifurcating trees and cyclic/disconnected topologies - topologies and lineages often obscured in
existing TI methods. In VIA, the relaxation of edge constraints in computing lineage pathways and
pseudotime enables accurate detection of cell fates and complex trajectories by avoiding prematurely
imposing constraints on node-to-node mobility. Other methods resort to constraints such as reducing the
graph to a tree, imposing unidirectionality by thresholding edges based on pseudotime directionality,

32 and computing shortest paths for pseudotime™'.

removing outgoing edges from terminal states
The availability of a reference truth model for the synthetics datasets allows us to quantify TI accuracy
using a composite metric which assesses multiple layers of the inferred trajectory including topology,
pseudotime and lineage prediction. The metric assesses “local” graph similarity between the inferred and
reference graphs using the Graph Edit Distance (GED) and an F1-Branch score (which labels branches in
the inferred topology as true or false positives, or the lack thereof as a false negative). “Global” graph
similarity is computed using the Ipsen-Mikhailov metric®® (Methods), and pseudotime quality is captured
by the Pearson correlation between the inferred and reference pseudotimes. Terminal cell fate prediction
is evaluated using the F1-score. The breakdown of the composite score and further detail on each metric
is available in Supplementary Note S3 and Fig. S2- SS.

The differences in accuracy between VIA and other methods is most significant for complex topologies,
particularly those with disconnected components comprising various connected topologies, whilst the
ability to accurately detect cell fates is highlighted by multilineage furcating topologies. In the 4-leaf
multifurcation topology (Fig. 2a top), VIA accurately captures the two cascading bifurcations which lead
to 4 leaf nodes. In particular, VIA detects the elusive ‘M2’ terminal state whereas other methods (Palantir,
PAGA, Slingshot, STREAM and Monocle3) merge it with the ‘M8’ lineage. Monocle3 and STREAM
typically only capture a single bifurcation and thus merge the pairs of leaves that otherwise arise from the
second layer of bifurcation (Fig. 2a). Even for the fairly simple cyclic topology (Fig. 2a), other methods
tend to fragment the structure to varying degrees depending on the parameter choice whereas VIA
consistently preserves the global cyclic structure (Supplementary Fig. S4c under various K (KNN)).
This is not to say VIA is invariant to parameter choice, but rather that VIA predictably modulates the
graph resolution across a wide range of K without disrupting the underlying global topology (see the
increase in the number of nodes in K=30 versus K=5 in Supplementary Fig. S4¢). This characteristic is
important for robustly analyzing multiple levels of resolution in complex graph topologies, as also shown
in our later investigation of the 1.3-million-cell mouse atlas. The performance comparison for the
disconnected hybrid topologies (Fig. 2) shows that VIA disentangles the cyclic and bifurcating lineages
(that comprise Disconnectedl) and captures the key leaf-states in the bifurcation as well as the ‘tail’
extending from the cyclic topology. Palantir overly fragments the two trajectories, whereas Monocle3 and
Slingshot merge them, STREAM is not well suited to non-tree trajectories given the underlying structure
is assumed to be a spanning tree.
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We also show that VIA is flexible to using clustering methods other than PARC by substituting PARC
with Kmeans clustering to show that the lazy-teleporting MCMC:s still enable faithful recovery of various
topologies as well as the associated cell fates (Supplementary Note S6 and Fig S30-S32). The main
drawback of using K-means is that under- or over-clustering can occur based on the user-choice of K,
whereas methods like PARC enable a more data-driven resolution of the data where the recovery of less
populous cell types is not dependent on an adequately large number of clusters.

Fig. 2: VIA performance comparison for complex hybrid topologies
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Figure 2 Tl performance comparisons on complex hybrid topologies. (a) Topologies of four representative
synthetic datasets (Multifurc1, Cyclic1, Disconn1 and Conn1) output by different TI methods. The reference
topologies are shown on the left. Each dataset contains 1000 ‘cells’ and is run with 10 PCs and KNN = 20. VIA is
shown at the cluster graph level but can also be projected to the single-cell level as shown in later examples. (b)
Composite accuracy score is shown for each method across all 9 synthetic datasets (detailed breakdown available in
Supplementary Fig. S2-S5). Note STREAM does not work on the Disconnected data (producing highly distorted
results) and therefore excluded in Disconn1 and Disconn?2.
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VIA reveals rare lineages in epigenomic and transcriptomic landscapes of
human hematopoiesis.

To assess the performance of VIA on inferring real cellular trajectory, we first considered a range of
scRNA-seq datasets, including hematopoiesis®?’, endocrine genesis, B-cell differentiation®® and
embryonic stem (ES) cell differentiation in embryoid bodies'’. We present the analyses of CD34+ human
hematopoiesis and endocrine differentiation here, whereas the generalizable performance of VIA on other
scRNA-seq datasets is presented in Supplementary Fig. S1, S6 and S13. We highlight human
hematopoiesis as it has been extensively studied not only with scRNA-seq, but also other single-cell
omics modalities, notably scATAC-seq. Hence, it allows us to reliably assess lineage identification
performance and downstream analyses using VIA.

First, we show that VIA consistently reveals from the scRNA-seq dataset the typical hierarchical
bifurcations during hematopoiesis that result in key committed lineages of hematopoietic stem cells
(HSCs) to monocytic, lymphoid, erythroid, classical and plasmacytoid dendritic cell (¢cDCs and pDCs)
lineages and megakaryocytes (Fig. 3a). The automated detection of these terminal states in VIA, as
quantified by Fl1-scores on the annotated cells, remains robust to varying the number of neighbors in the
KNN graph, and the number of PCs (Fig. 3c). Specifically, VIA’s sustained sensitivity to rarer cell types
(e.g. DCs and megakaryocytes) can be attributed to a better underlying graph structure where nodes are
well delineated by PARC (as rare cell types are well separated by graph pruning in the clustering stage)
and edges governing the random walk pathways are not prematurely removed due to restrictions on
causality.

In contrast, the sensitivity of Palantir and Slingshot in detecting rarer lineages drops significantly outside
a favourable "sweet spot" of parameters. Slingshot can only recover the major cell populations
(monocytes, erythroid and B cells) and confuses the DC populations with the monocytes and the
megakaryocytes with the erythroid cells. Palantir can only identify the DCs and megakaryocytes for a
handful of parameter options, whereas VIA achieves this goal across a wider range of parameters (Fig.
3c¢). To verify that VIA reliably delineates the megakaryocyte, cDC and pDC lineages, we used VIA to
automatically plot the lineage specific trends for selected marker genes. We showed that while both DC
lineages exhibit elevated /RFS, the CSFIR is specific to the cDC, and the CD/23 remains elevated for
pDCs whereas it is first up-regulated, then down-regulated in ¢cDCs (Fig.3b and Supplementary Fig.
S7-S9). Marker genes known to increase along a specific lineage are correlated against the pseudotime
along each lineage as an indicator of correct cell ordering (Fig. 3d). The gene trends inferred by each
method are provided in Supplementary Fig. S9 to show a side-by-side comparison of nuances in the
quality of plotted expressions, such as the presence of cross-talk between distinct lineages, or distortion of
the trends due to unrelated cells assimilated into lineages.

We find that VIA’s interpretation of the human scATAC-seq profiles (Fig. 3e) mirrors the continuous
landscape of scRNA-seq human hematopoietic data (Fig. 3a). We use two common preprocessing
pipelines®'?’ (see Methods), intended to alleviate challenges posed by the sparsity of scATAC-seq data, to
show that VIA consistently predicts the expected hierarchy of lineages furcating from hematopoietic
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progenitors to their descendants. The graph topology of VIA (colored by pseudotime) captures the
progression of multipotent progenitors (MPPs) towards the lymphoid-primed MPPs (LMPP) and the
common myeloid progenitors (CMPs) which in turn give rise to the CLP and MEP lineages respectively.
The known joint contribution of LMPPs and CMPs towards the GMP lineage is also captured by the VIA
graph. We verified the lineages identified by VIA by analyzing the changes in the accessibility of TF
motifs associated with known regulators of the lineage commitments, e.g. GATA! (erythroid), CEBPD
(myeloid) and IRF8 (DCs) (Fig 3e, Supplementary Fig. S10c). Again, we note that the detection of these
lineages is less straightforward in other methods, which generally face a sharp drop in accuracy of
detecting relevant cell fates as the input number of PCs exceeds ~50PCs (e.g. Palantir often misses the
CLP and monocyte lineages, see Supplementary Fig. S6 for Palantir’s outputs across parameters and
Fig. 3g for the corresponding prediction accuracy). The quality of the lineage pathways and gene trends is
indicated in Fig. 3h by the correlation of lineage cell ordering against marker gene expression. Visual
comparisons of the topologies and predicted gene trends of each method are shown in Supplementary
Fig. S11. We emphasize that VIA’s robustness in handling both the scRNA-seq and scATAC-seq datasets
demonstrates its unique ability to achieve stable prediction and thus faithful query of the underlying
biology without biasing specific sets of input parameters which nontrivially vary across datasets - as also
evident from our series of “stress tests” on VIA’s performance and the gene-trend comparisons
(Supplementary Fig. S1).

Fig.3: Detection of elusive cell types and their gene trends in scRNA-seq hematopoiesis
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Figure 3 VIA analysis of human hematopoiesis based on scRNA-seq and scATAC-seq" data (a) VIA graph
colored by inferred pseudotime. Identified terminal state nodes are outlined in red and labeled according to their
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representative annotated cell type (b) pseudo-temporal trends of marker genes for key minor populations (see
Supplementary Fig. S5-S7 for gene trends of all lineages and single-cell pathways) (c) F1-scores for terminal state
detection of mDC, pDC, Mega, Ery, Mono and B cell lineages (d) Pearson correlation of marker gene expression and
pseudotime along respective lineages indicate the quality of cell ordering along lineages. A side-by-side comparison
of the inferred gene trends by each method provides a more holistic assessment of the quality of expression
prediction and can be found in Supplementary Fig.S9 (e) Graph topology of scATAC-seq hematopoietic data using
Buenrostro™ pre-processing protocol, nodes colored by inferred pseudotime (f) pseudo-temporal trends of
transcription-factor motifs (g) F1-scores for terminal state detection of MEP, CLP, pDC and Mono lineages for
KNN=20 and different number of PCs. Pre-processed using k-mer Z Scores protocol yields a more challenging input
as shown by the performance drop for other methods beyond 50PCs. VIA's F1-scores are more robust to choice of
number of PCs (h) Correlations of gene expression and pseudotime (Full gene-trend and topology comparison in
Supplementary Fig. S11).

VIA detects small endocrine Delta lineages and Beta subtypes

We use a scRNA-seq dataset of E15.5 murine pancreatic cells to again examine whether VIA can
automatically detect multiple lineages, in particular less populous ones. This data spans all developmental
stages from initial endocrine progenitor-precursor (EP) state (low level of Ngn3, or Ngn3“"), to
intermediate EP (high level of Ngn3, or Ngn3"¢") and Fev" states, to terminal states of hormone-producing
alpha, beta, epsilon and delta cells’ (Fig. 4a).

A key challenge in analyzing this dataset is the automated detection of the small delta-cell population (a
mere 3% of the total population), which otherwise requires manual assignment in CellRank and Palantir
(see Supplementary Fig. S15-S16 for a comparison of topology and automated gene trend plots along
predicted lineages by different methods). In contrast, the well-delineated nodes of the VIA cluster-graph
(a result of the accurate terminal state prediction enabled by the lazy-teleporting MCMC property of VIA
on the inferred topology) lends itself to automatically detecting this small population of delta cells,
together with all other key lineages (alpha, beta and epsilon lineages) (Fig. 4a-c). As evidenced by the
corresponding gene-expression trend analysis, VIA detects all of the hormone-producing cells including
delta cells which show exclusively elevated Hhex, Sst and Cd24a (Fig. 4c-e). To show that this is not a
co-incidence of parameter choice, we verify that these populations can be identified for a wide range of
chosen highly variable genes (HVGs prior to PCA) and number of PCs (See Supplementary Fig.S1c).
Interestingly, consistent with an observation by Bastidas-Ponce et al’., we see two groups of Fev+
populations branching from the Ngn+ populations, which subsequently progress towards the distinct cell
lines. We show consistency in predicted topology, cell fates and gene trends when applying VIA directly
on 1000s of HVGs without PCA for a wide range of HVGs (see Supplementary Fig. S29), and under
artificial degradation of the data to test robustness to noise (see Supplementary Fig. S18 and Note S4 to
see that VIA is more robust to the addition of noise than other methods which merge major lineages).

Interestingly, we find VIA often automatically detects two Beta-cell subpopulations (Beta-1 and Beta-2)
(Fig.4b-¢) that express common Beta-cell markers, such as Dikl, Pdxl, but differ in their expressions of
InsI and Ins2 (Fig. 4c-e). The pseudotime order within this Beta-cell heterogeneity %, undetectable by
other TI methods (as shown in the gene correlation comparisons Supplementary Fig. S15), can further
be reconciled in the VIA graph where the immature Beta-2 population precedes the mature Beta-1
population. We find that the immature Beta-2 population strongly expresses /ns2, and weakly expresses
Insl, followed by the mature Beta-1 cells which express both types of /ns®® (Fig. 4d-f). VIA graphs
colored by Ins! and Ins2 further show the difference in /ns expression by the two Beta populations).
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Fig. 4: Detection of endocrine Beta cell sub-types and rare Delta cell population
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Figure 4. VIA detects small populations in endocrine progenitor cell differentiation. (a) VIA graph topology
Pancreatic Islets: Colored by VIA pseudotime with detected terminal states shown in red and annotated based on
known cell type as Alpha, Beta-1, Beta-2, Delta and Epsilon lineages where Beta-2 is Ins1°¥Ins2+ Beta subtype
(Supplementary Fig. S8 for graph node-level gene expression intensity of Ins1 and Ins2). (b) TSNE colored by
reference cell type annotations. (c) colored by inferred pseudotime with predicted cell fates in red-black circles (d)
VIA inferred cluster-level pathway shows gene regulation along endocrine progenitor (EP) to Fev+ cells followed by
expression of islet specific genes. (e) gene-expression trends along pseudotime for each pancreatic islet. (f) Beta-2
subtype expresses Ins2 but not Ins1, suggestive of an immature Beta cell subtype. (g) Marker gene-pseudotime
correlations along respective lineages. Full comparison of gene trends can be referred to Supplementary Fig. S15.
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VIA recovers Isl1+ cardiac progenitor bifurcation in multi-omic data

We next demonstrate the applicability of VIA in single-cell multi-omics analysis by investigating murine
lls]+ cardiac progenitor cells (CPC) which are known to bifurcate towards endothelial and
cardiomyocyte fates (Fig. 5). VIA consistently uncovers the bifurcating lineages using both single-cell
transcriptomic (scRNA-seq) and chromatin accessibility (scATAC-seq) information®, as well as their data
integration (see Methods for data integration using Seurat). Other methods that are also applicable to
non-transcriptomic data, fail to uncover the two main lineages.

Other methods typically only detect the cardiomyocyte lineage (the inability to detect a bifurcation is
exacerbated when the number of input principal components (PCs) increases), and instead falsely detect
several intermediate and early stages as final cell fates. For instance STREAM consistently merges the
cardiomyocyte and endothelial lineages and instead presents the intermediate stage as a separate
bifurcation. See Supplementary Fig. S20-S21 for sample outputs across parameters, and Fig. 5g for the
corresponding prediction accuracy of each method. PAGA does not offer automated cell fate prediction or
lineage paths and is therefore not benchmarked for this dataset. The disparity in trajectory inference is
evident in the scRNAseq and integrated data where Monocle3, Slingshot and Palantir do not resolve
either of the two cell fates (Fig. 5g), and STREAM detects multiple spurious branches that fragment the
structure entirely. We hypothesized that lowering the K (number of nearest neighbors) in Palantir and VIA
would be more appropriate given the extremely low cell count (~200 cells) of the scRNA-seq dataset.
Whilst this approach did not alter the outcome for Palantir, we found that VIA is able to capture the
transition from early to intermediate CPCs and finally lineage committed cells.

More importantly, VIA automatically generates a pseudotemporal ordering of relevant cells (without
requiring manual selection of relevant cells as done in Jia et al.*’) along each lineage and their marker-TF
pairs (Fig. S¢ and Supplementary Fig. S19f for differential gene expression analysis). Hence, VIA can
be used to faithfully interpret relationships between transcription factor dynamics and gene expression in
an unsupervised manner. The highlighted gene and TF pairs in the cardiac lineage show a strong
correlation between expression and accessibility of Gata and Homeobox Hox genes which are known to
be related to the regulation of cardiomyocyte proliferation™***. VIA’s reliable performance against
user-reconfiguration (number of PCs, individual or integrated omic data) suggests its utility in
transferable interpretation between scRNA-seq and scATAC-seq data.
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Fig. 5: Multi-omic integration of cardiac progenitor cells (scRNA-seq + scATAC-seq)
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Figure 5. Multi-omic integrated analysis of scRNA-seq and scATAC-seq cardiac progenitors (a) VIA graph for
scRNA-seq data only and (b) scATAC-seq data only. (¢) Gene-TF pair expression along VIA inferred pseudotime for
each CM lineage (see Supplementary Fig.S19 for Top 5 most differentially expressed genes for each VIA node
along each lineage as well as node-level TF motif accessibility) (d) schematic of data integration of the individual
sc-modalities (e) scRNA-seq and scATAC-seq data of Isl1+ Cardiac Progenitors (CPs) integrated using Seurat3
before PHATE. Colored by annotated cell-type and experimental modality (f) Colored by VIA pseudotime with
VIA-inferred trajectory towards Endothelial and Myocyte lineages projected on top (g) Accuracy of detecting the CM
and Endo lineages in the individual and integrated data. This is challenging for other methods which either detect
several early/intermediate stages or merge cell fates (see outputs for these methods in Fig.$20-S21)

VIA preserves global connectivity when scaling to millions of cells

VIA is designed to be highly scalable and offers automated lineage prediction without extensive
dimension reduction or subsampling even at large cell counts. To showcase this, we use VIA to explore
the 1.3-million scRNA-seq mouse organogenesis cell atlas (MOCA)®. While this dataset is inaccessible to
most TI methods from a runtime and memory perspective, VIA can efficiently resolve the underlying
developmental heterogeneity, including 9 major trajectories (Fig. 6a,b) with a runtime of ~40 minutes,
compared to the next fastest method PAGA which has a runtime of 3 hours, Palantir and STREAM which
takes over 4 hours and 6.5 hours respectively. Other methods like Slingshot and CellRank were deemed
infeasible due to extremely long runtimes on much smaller datasets. (Supplementary Table S3 for a
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summary of runtimes). Going beyond the computational efficiency, VIA also preserves wider
neighborhood information and reveals a globally connected topology of MOCA which is otherwise lost in
the Monocle3 analysis which first reduces the input data dimensionality using UMAP.

The overall cluster graph of VIA consists of three main branches that concur with the known
developmental process at early organogenesis.'® (Fig. 6a). It starts from the root stem which has a high
concentration of E9.5 early epithelial cells made of multiple sub-trajectories (e.g. epidermis, and
foregut/hindgut epithelial cells derived from the ectoderm and endoderm). The stem is connected to two
distinct lineages: 1) mesenchymal cells originated from the mesoderm which arises from interactions
between the ectoderm and endoderm'’ and 2) neural tube/crest cells derived from neurulation when the
ectoderm folds inwards'.

The sparsity of early cells (only ~8% are E9.5) and the absence of earlier ancestral cells make it
particularly challenging to capture the simultaneous development of trajectories. However, VIA is able to
capture the overall pseudotime structure depicting early organogenesis (Fig. 6b). For instance, at the
junction of the epithelial-to-mesenchymal branch, we find early mesenchymal cells from E9.5-E10.5.
Cells from later mesenchymal developmental stages (e.g. myocytes from E12.5- E13.5) reside at the
leaves of the branch. Similarly, at the junction of epithelial-to-neural tube, we find dorsal tube neural cells
and notochord plate cells which are predominantly from E9.5-E10.5 and more developed neural cells at
branch tips (e.g. excitatory and inhibitory neurons appearing at E12.5-E13.5). In contrast, the pseudotime
gradient of PAGA’s nodes offer little salient information at this scale, with 90% of cells predicted to be in
the first 10% of the pseudotime color scale (see Supplementary Fig. S22c-d).

VIA also consistently places the other smaller dispersed groups of trajectories (e.g. endothelial,
hematopoietic) in biologically relevant neighborhoods (see Supplementary Note 7 for a detailed
explanation of VIA’s structural connections supported by known transitions in organogenesis literature).
While VIA’s connected topology offers a coarse-grained holistic view, it does not compromise the ability
to delineate individual lineage pathways, such as the erythroid and white blood cell lineages within the
hematopoietic super group (consistent with annotations made by Cao et al.,*) as shown in Fig. 6c.

As such, TI using VIA uniquely preserves both the global and local structures of the data. Whilst
manifold-learning methods are often used to extensively reduce dimensionality to mitigate the
computational burden of large single-cell datasets, they tend to incur loss of global information and be
sensitive to input parameters. VIA is sufficiently scalable to bypass such a step, and therefore retains a
higher degree of neighborhood information when mapping large datasets. This is in contrast to
Monocle3’s® UMAP-reduced inputs that reveal different disconnected super-groups and fluctuating
connectivity depending on input parameters. As shown in Fig. 6e (and Supplementary Fig. S22 for
varying KNN), methods such as Monocle3 which require a very low dimensional representation (e.g. first
2-3 components of UMAP) for TI are susceptible to unpredictable changes in the composition of super
cell groups, their relative positions and inter-connectivity. For instance, in UMAP, the neural tube group is
sometimes shown as a single super group, and other times fragmented across the embedding without
context of neighboring groups. Similarly the hematopoietic supergroup is shown as a single, two or even
three separate groups dispersed across the embedding landscape (Fig. 6e). In contrast, VIA uncovers
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biologically consistent structures across the same range of parameters. In VIA, the cells belonging to
these fine-grained supergroups remain connected and neighborhood relationships are preserved, for
instance the neural crest cells (containing Peripheral Nervous System neurons and glial cells) remain
adjacent to the neural tube (Fig. 6d and Fig. S22a).

Fig. 6: Large-scale (1.3 million cells) trajectory inference of mouse organogenesis
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Figure 6 VIA accurately infers global connectivity and sub-trajectories in the 1.3-million scRNA-seq mouse
organogenesis cell atlas. (a) MOCA graph trajectory (nodes colored by pseudotime) and shaded-colored regions
corresponding to major cell groups. Stem branch consists of epithelial cells derived from ectoderm and endoderm,
leading to two main branches: 1) the mesenchymal and 2) the neural tube and neural crest. Other major groups are
placed in the biologically relevant neighborhoods, such as the adjacencies between hepatocyte and epithelial
trajectories; the neural crest and the neural tube; as well as the links between early mesenchyme with both the
hematopoietic cells and the endothelial cells (see Supplementary Note 7) (b) Colored by VIA pseudotime. (c)
Lineage pathways and probabilities of neuronal, myocyte and WBC lineages. (d) VIA graph preserves key
relationships across choice of number of PCs whereas (e) UMAP embedding is first step in Monocle3 and highly
susceptible to choice of number of PCs (or Kin KNN see Fig.S22)
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VIA's lazy-teleporting MCMCs delineate mesoderm differentiation in mass
cytometry data

Broad applicability of TI beyond transcriptomic analysis is increasingly critical, but existing methods
have limitations contending with the disparity in the data structure (e.g. sparsity and dimensionality)
across a variety of single-cell data types. While we have shown that VIA can be used to successfully
interrogate scATACseq, scRNAseq and their integrated data, we further investigate whether VIA can cope
with the significant drop in data dimensionality (10-100), as often presented in flow/mass cytometry data,
and still delineate continuous biological processes.

We applied VIA on a time-series mass cytometry data (28 antibodies, 90K cells) capturing murine
embryonic stem cells (ESCs) differentiation toward mesoderm cells*®. The mESCs are captured at 12
intervals within the first 11 days and hence provide sufficiently granular temporal annotation to allow a
correlation assessment of the inferred pseudotimes. We quantified that the pseudotimes computed by VIA
shows a Pearson correlation of ~88% with the actual annotated days. We further verified that VIA’s
performance is critically improved by the lazy-teleporting MCMCs (Fig. 7d), without which the
correlation drops closer to PAGA’s. Palantir and Monocle suffer from low connectivity of cells between
the Day 0-1 and the subsequent early stages (even when increasing K in KNN), and thus result in loss of
pseudotime gradient and low correlation to the true annotations.

More importantly, unlike previous analysis® of the same data which required chronological labels to
visualize the chronological developmental hierarchy, we ran VIA without such supervised adjustments
and accurately captured the sequential development. Not only can it achieve faster runtime (running in 2
minutes on the full antibody-feature set versus Slingshot which required 6 hours even on a subset of first
5 PCs see Supplementary Table S3 for more runtime comparisons), VIA detects 3 terminal states
corresponding to cells in the final developmental stages of Day 10-11 which are indicated by upregulation
of Pdgfra, Cd44 and Gata4 mesodermal markers (Fig. 7f). In contrast, other methods struggle to identify
the correct terminal states (e.g. Palantir, STREAM and Slingshot Fig. 7e) and do not depict salient
structures (e.g. STREAM where the Day10-11 branch is placed in between Day 0 and Day 5 branches).
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Fig. 7: CyTOF ESC to Mesoderm
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Figure 7 VIA analysis of mESC differentiation toward mesoderm cells from mass cytometry. (a) UMAP plot
colored by annotated days 0-11. Three regions of Day 10-11 marked in dotted black lines. (b) VIA cluster-graph
colored by pseudotime (c) Terminal states and VIA output projected onto UMAP. Terminal states are located in the
areas containing Day 10-11 cells. (d) Comparison of Pearson correlation of pseudotime and annotated Days across
Tl methods for varying number of K number of nearest neighbors. PAGA and Palantir’'s pseudotime computation is
misguided by the weak link connecting Day 0 cells to other early cells. The effect is that Day 0 cells appear
exaggeratedly far, while the remaining early and late cells are temporally squeezed. VIA's 2-step pseudotime
computation produces a pseudotime scale closer to the annotated dates. “VIA no-LT” denotes VIA without the
lazy-teleporting MCMC stage of the pseudotime calculation. For Slingshot and STREAM there is no K (NN) setting
thus only a single correlation value is presented. STREAM’s pseudotime is distorted by the insertion of Day 8-11 cells
in between Day 0 and Day 5. (e) Example outputs of Palantir, PAGA and Slingshot with the terminal states (black
circles) predicted by Slingshot and Palantir. Red ‘X’ denotes incorrect (false positive) or missing (false negative)
terminal state. STREAM places Day 10-11 cells in between Day 0 and Day 5-6 cells. (f) Gene expression of key
mesodermal markers
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VIA captures morphological trends of live cells in cell cycle progression

Apart from the omics technologies, optical microscopy is a powerful parallel advance in single-cell
analysis for generating the “fingerprint” profiles of cell morphology. Such spatial information is typically
obscured in sequencing data, but can effectively underpin cell states and functions without costly and
time-consuming sequencing protocols. However, trajectory predictions based on morphological profiles
of single cells have only been scarcely studied until recently, but advancements in high-throughput
imaging cytometry are now making large-scale image data generation and related studies feasible. We
thus sought to test if VIA can predict biologically relevant progress based on single-cell morphological
snapshots captured by our recently developed high-throughput imaging flow cytometer, called FACED? -
a technology that is at least 100 times faster than state-of-the-art imaging flow cytometry (Fig. 8a).

Our FACED imaging platform captured multiple image contrasts of single cells, including fluorescence
(FL), and quantitative phase images (QPI), which measure high-resolution biophysical properties of cells,
which are otherwise inaccessible in other methods®. Using the QPIs captured by FACED, we first
generated spatially-resolved single-cell biophysical profiles of two live breast cancer cell types
(MDA-MB231 and MCF7) undergoing cell cycle progressions (38 features including cell shape, size, dry
mass density, optical density and their subcellular textures (see Supplementary Table S6 and Table S7
for definitions of features)). The QPI together with the FL images of individual cells were also used to
train a convolutional neural network (CNN)-based regression model for predicting the DNA content. We
first validated that there is a high correlation (Pearson’s correlation coefficient r = 0.72) between the
actual DNA content determined by the FL images and DNA content predicted by the QPI
(Supplementary Fig. S24a). In addition, the predicted percentages of cells in each cell cycle phases (i.e.
Gl, S and G2/M) by the biophysical profile are highly consistent with the ground truth defined by the
DNA dye (Supplementary Fig. S24b). Based on the biophysical profiles as validated by the above tests,
VIA reliably reconstructed the continuous cell-cycle progressions from G1-S-G2/M phase of both types
of live breast cancer cells (Methods)(Fig. 8b-g).

Intriguingly, according to the pseudotime ordered by VIA, not only does it reveal the known cell growth
in size and mass*, and general conservation of cell mass density™ (as derived from the FACED images
(Methods)) throughout the G1/S/G2 phases, but also a slow-down trend during the G1/S transition in
both cell types, consistent with the lower protein-accumulation rate during S phase® (Fig. 8f-g). The
variation in biophysical textures (e.g. peak phase, and phase fiber radial distribution) along the VIA
pseudotime likely relates to known architectural changes of chromosomes and cytoskeletons during the
cell cycles (Fig. 8f-g). We find other methods on this dataset to be sensitive to the choice of early cells
and detecting intermediate cells as terminal cell fates (e.g. Palantir, Slingshot), and often adding
additional edges or branches (e.g. STREAM, PAGA), see Supplementary Fig. S23 for Palantir,
Slingshot, Monocle3, STREAM and PAGA outputs. The slowdown during the S-phase is missed by the
gene trend prediction available in other methods. To probe subsets of the morphological features, we
remove volume and volume related features (e.g. Dry Mass, Area) and test whether this can still be used
to infer the topology and cell ordering that reveals the slow-down observed in the S-phase. We found that
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VIA is consistently able to reveal these trends in both cell lines, whereas other methods struggle to
maintain the linear progression expected along the cell-cycle with spurious linkages emerging (see
Supplementary Fig. S25-S26) and intermediate states being selected as final G2 stages. These results
further substantiate the growing body of work?**** on imaging biophysical cytometry for gaining a
mechanistic understanding of biological systems, especially when combined with omics analysis*'.

Fig. 8: FACED Imaging Cytometry Cell Cycle
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Figure 8 VIA predicts cell cycle progression based on single-cell biophysical morphology (a) FACED
high-throughput imaging flow cytometry of MDA-MB231 and MCF7 cells, followed by image reconstruction and
biophysical feature extraction. See Methods detailed experimental workflow. (b) Randomly sampled quantitative
phase images (QPI) and fluorescence images (FL) of MCF7 cells and (d) MDA-MB231 cells. (¢) Single-cell UMAP
embedding colored by the known cell-cycle phase (left), given by DNA-labelled fluorescence images. VIA inferred
cluster-graph topology, nodes colored by pseudotime (mid) and UMAP colored by VIA pseudotime for MCF7 (e) VIA
analysis repeated for MDA-MB231 cells. (f) Unsupervised image-feature-trends of global and local biophysical
textures against VIA pseudotime for MCF7 and (g) MDA-MB231 cells (see Supplementary Table S6 for feature
definitions). Cell cycle pseudotime boundaries are defined here as the intersection of the pseudotime probability
density functions of each cell cycle stage (annotated based on fluorescence intensity).
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Conclusion

With the growing scale and complexity of single-cell datasets, there is an unmet need for accurate cell
fate prediction and lineage detection in the complex topologies of interest in biology (not limited to trees).
This challenge, broadly faced by the current TI methods, is further compounded by susceptibility to
algorithmic parameter changes, limited scalability to large data size; and insufficient generalizability to
multi-omic data beyond transcriptomic data. We introduced VIA, which alleviates these challenges by
fast and scalable construction of cluster-graph of cells, followed by pseudotime, and reconstructing cell
lineages based on lazy-teleporting random walks and MCMC simulations. This strategy critically relaxes
common constraints on graph traversal and causality that impede accurate prediction of elusive lineages
and less populous cell fates. We validated the efficacy of these measures in terms of detecting various
challenging topologies on simulated data, as well as robust prediction of cell fates and temporally
changing feature trends on a variety biological processes (spanning epigenomic, transcriptomic,
integrated omic, as well as imaging and mass cytometric data) to show that VIA detects pertinent
biological lineages and their pathways that remain undetected by other methods.

Notably, VIA distinguished between dendritic subtypes in an scRNA-seq hematopoiesis dataset;
identified the rare delta cell islet in pancreatic development, a population requiring manual assignment in
other TI methods; and revealed the bifurcation towards cardiomyocyte and endothelial lineage
commitment in a multi-omic scATAC-seq and scRNA-seq dataset which proved challenging for other
methods. In order to demonstrate that these biological findings are robust to user parameter tuning, we
conducted a series of ‘stress tests’ of the inferred topology and cell fates on both simulated and biological
data, which show that VIA behaves more predictably (allowing controllable degrees of analytical
granularity) and accurately than other methods with regards to topology and lineage prediction. In other
methods, user parameter choice can incur fragmentation or spurious linkages in the modeled topology,
and consequently only yield biologically sensible lineages for a narrow sweet spot of parameters (See the
summary in Supplementary Fig. S1 and sample outputs by other methods in Supplementary Fig. S6,
S9, S11-13, S15-18, S20-21, S22 and S23).

We also demonstrated on the 1.3 million MOCA dataset that VIA is highly scalable with a runtime of ~40
minutes (compared to 3-4 hours on the next fastest method). Importantly, VIA not only recovers the
fine-grained sub-trajectories, but also maintains global connectivity between related cell types and thus
captures key relationships among lineages in early embryogenesis. It also computes a more salient
pseudotime measure supported by lazy-teleporting MCMCs, compared to other methods whose
pseudotime scale was distorted at such high cell counts (Supplementary Fig. S22¢-d). We showed that
methods which require UMAP (or t-SNE) before parsing MOCA are highly susceptible to user defined
input parameters that can significantly and unpredictably fragment the global topology.

We also assessed whether VIA can be generalized to non-transcriptomic single-cell datasets, especially
those with significant dimensionality disparity compared to sequencing data. We first applied VIA to the
mESC CyTOF dataset and showed that the lazy-teleporting MCMCs strategy in VIA enables it to
outperform other methods in correctly correlating the pseudotime of the mesoderm development to the
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annotated dates. We finally explored the utility of VIA in analyzing emerging image-based single-cell
biophysical profile data. We showed that VIA not only successfully identified the progression of G1/S/G2
stages, but also revealed the subtle changes in biophysical-related cellular properties, which are otherwise
obscured in other methods. VIA could thus motivate new strategies in single-cell analysis that link
cellular biophysical phenotypes and biochemical/biomolecular information, to discover how molecular
signatures translate into the emergent cellular biophysical properties, which has already shown effective
in studies of cancer, ageing, and drug responses. Overall, VIA offers an advancement to TI methods to
robustly study a diverse range of single-cell data. Together with its scalable computation and efficient
runtime, VIA could be useful for multifaceted exploratory analysis to uncover novel biological processes,
potentially those deviated from the healthy trajectories

Methods

VIA Algorithm

VIA applies a scalable probabilistic method to infer cell state dynamics and differentiation hierarchies by
organizing cells into trajectories along a pseudotime axis in a nearest-neighbor graph which is the basis
for subsequent random walks. Single cells are represented by graph nodes that are connected based on
their feature similarity, e.g. gene expression, transcription factor accessibility motif, protein expression or
morphological features of cell images. A typical routine in VIA mainly consists of four steps:

1. Accelerated and scalable cluster-graph construction. VIA first represents the single-cell data in a
k-nearest-neighbor (KNN) graph where each node is a cluster of single cells. The clusters are
computed by our recently developed clustering algorithm, PARC'". In brief, PARC is built on
hierarchical navigable small world (HNSW>*) accelerated KNN graph construction and a fast
community-detection algorithm (Leiden method*?), which is further refined by data-driven pruning.
The combination of these steps enables PARC to outperform other clustering algorithms in
computational run-time, scalability in data size and dimension (without relying on subsampling of
large-scale, high-dimensional single-cell data (>1 million cells)), and sensitivity of rare-cell detection.
We employ the cluster-level topology, instead of a single-cell-level graph, for TI as it provides a
coarser but clearer view of the key linkages and pathways of the underlying cell dynamics without
imposing constraints on the graph edges. Together with the strength of PARC in clustering scalability
and sensitivity, this step critically allows VIA to faithfully reveal complex topologies namely cyclic,
disconnected and multifurcating trajectories (Fig. 2). If the user prefers to use another clustering
method or group-labels of cell types according to apriori information, VIA can easily accommodate
such a substitution and the robustness of the lazy-teleporting random walks to different clustering
approaches is shown in Supplementary Note S6 and Fig. S30-S32 for real and synthetic data. The
root cell is initialized by the user in one of two ways: If for instance there are some cell
type/group/cluster level labels available in advance, the desired starting group can be indicated to
VIA, which will then automatically select a cluster in its cluster-graph that contains a majority of this
particular cell type/group classification. In the case of many clusters satisfying this criteria, it
subsequently proceeds to select the cluster in the VIA graph that has connectivity metrics indicative
of a root (leaf) node (such as high out degree, low betweenness and low centrality). The user can also
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choose to provide a specific single cell as the root node. In the case that the user wishes to select the
root based on the VIA graph, one would save the VIA-cluster-graph labels and use them to guide
selection of the root node as described in the first approach.

2. Probabilistic pseudotime computation. The trajectories are then modeled in VIA as (i)
lazy-teleporting random walk paths along which the pseudotime is computed and further refined by
(i1) MCMC simulations. The root is a single cell chosen by the user.These two sub-steps are detailed
as follows:

(1) Lazy-teleporting random walk: We first compute the pseudotime as the expected hitting time
of a lazy-teleporting random walk on an undirected cluster-graph generated in Step 1. The
lazy-teleporting nature of this random walk ensures that as the sample size grows, the expected
hitting time of each node does not converge to the stationary probability given by local node
properties, but instead continues to incorporate the wider global neighborhood information'.
Here we highlight the derivation of the closed form expression of the hitting time of this modified
random walk with a detailed derivation in Supplementary Note 2.

The cluster graph constructed in VIA is defined as a weighted connected graph G (V, E, W) with
a vertex set V of n vertices (or nodes), i.e. V' = {v,---,v, } and an edge set E, i.e. a set of
ordered pairs of distinct nodes. W is an n xn weight matrix that describes a set of edge weights

2

w; = w;;, the n xn probability transition matrix, £, of a standard random walk on G is given by
P=D'w ()

where D is the n xn degree matrix, which is a diagonal matrix of the weighted sum of the degree

of each node, i.e. the matrix elements are expressed as

between node i and j, w;>0 are assigned to the edges ("i,"j)' For an undirected graph,

_Zewa  Si=]
ay={ge 2o
where £k are the neighbouring nodes connected to node i. Hence, d; (which can be reduced as d;)
is the degree of node i. We next consider a /azy random walk, defined as Z, with probability
(1—x) of being lazy (where 0 <x < 1), i.e. staying at the same node, then

Z=xP+(1-xI (3

where [ is the identity matrix. When teleportation occurs with a probability ( 1 — a ), the modified
lazy-teleporting random walk Z’can be written as follows, where J is an n xn matrix of ones.

Z=oZ+(1-wls “4)

Here we adapt the concept of personalized PageRank vector, originally used for recording (or
ranking) personal preferences of a web-surfer toward particular website pages®”, to rank the
importance of other nodes (clusters of cells) to a given node, depending on the similarities among
nodes (related to P in the graph), and the lazy-teleporting random walk characteristics in the
graph (set by probabilities of teleporting and being lazy). Based on this concept, one could model
the likelihood to transit from one node (cluster of cells) to another, and thus construct the
pseudotime based on the hitting time, which is a parameter describing the expected number of
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steps it takes for a random walk that starts at node i and visit node j for the first time. Consider
the teleporting probability of (1 —a) and a seed vector s specifying the initial probability

distribution across the n nodes (such that )s, =1, where s_ is the probability of starting at

node m) the personalized PageRank vector pr,(s) (which is defined as a column vector) is the
unique solution to*®

pro(s) = apry(s)' Z+(1—a)s”. (5)

Substituting Z (Eq. (3)) into Eq. (5), we can express the personalized PageRank vector pr, (s) in
terms of the inverse of the f-normalized Laplacian, Rg,, of the modified random walk

(Supplementary Note 2), i.e.
pra(s)" =Bs"D "Ry, D™ (6)

2(1- D00 .
where P = %2_—(10;2 , and RB,NL =m§1 TEEEAE ®, and m, are the m"™ eigenvector and

eigenvalue of the normalized Laplacian. In the expression of Rgy, the p and x regulate the
weight of contribution in each eigenvalue-eigenvector pair of the summation such that the first
eigenvalue-eigenvector pair (corresponding to the stationary distribution and given by the
local-node degree-properties) remains included in the overall expression, but does not overwhelm
the global information provided by subsequent ‘eigen-pairs’. Moreover, computation of Rgy, 1s
not limited to a subset of the first k£ eigenvectors (bypassing the need for the user to select a
suitable threshold or subset of eigenvectors) since the dimensionality is not on the order of
number of cells, but equal to the number of clusters and hence all eigenvalue-eigenvector pairs
can be incorporated without causing a bottleneck in runtime.
The expected hitting time from node g to node r is given by*,

T T
ha (q,7) = [p u(zr) 10 _[p a(zrq) 1@ )

where e¢; is an indicator vector with 1 in the i entry and 0 elsewhere (i.e. s, =1 if m =i and
sm=0if m#i). We can substitute Eq. (6) into Eq. (7), making use of the fact that

;,]: = [D_ler] (r), and D_O'SRﬁ,NL D™ is symmetric, to obtain a closed form expression of the
hitting time in terms of R
T . — -
ha(q:7) = Ble, —eg) DRy, D e, (8)

(il)) MCMC simulation: The hitting time metric computed in Step-1 is used to infer
graph-directionality. Instead of pruning edges in the ‘reverse’ direction, edge-weights are biased

based on the time difference between nodes using the logistic function with growth factor b =1.
) = ——
1+e *(1710)
We then recompute the pseudotimes on the forward biased graph: Since there is no closed form
solution of hitting times on a directed graph, we perform MCMC simulations (parallely processed
to enable fast simulations of 1000s of teleporting, lazy random walks starting at the root node of
the cluster graph) and use the first quartile of the simulated pseudotime values for a respective
node as the refined pseudotime for that node relative to the root. This refinement step ensures that
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the pseudotime is robust to the spurious links (or conversely, links that are too weakly weighted)
that can distort calculations based purely on the closed form solution of hitting times
(Supplementary Fig. 7d). By using this 2-step pseudotime computation, VIA mitigates the
issues of convergence issues and spurious edge-weights, both of which are common in
random-walk pseudotime computation on large and complex datasets'*.

3. Automated terminal-state detection. The algorithm uses the refined directed and weighted graph
(edges are re-weighted using the refined pseudotimes) to predict which nodes represent the terminal
states based on a consensus vote of pseudotime and multiple vertex connectivity properties, including
out-degree (i.e. the number of edges directed out of a node), closeness C(g), and betweenness B(q).

C(q)=—1
> Ugq.r)

q#r

rt( )
B(g)= ¥ =%
r#q#t

l(gq,r) is the distance between node ¢ and node  (i.e. the sum of edges in a shortest path connecting
them). o,,1s the total number of shortest paths from node r to node ¢. ©,,(g) is the number of these
paths passing through node g. The consensus vote is performed on nodes that score above (or below
for out-degree) the median in terms of connectivity properties. We show on multiple simulated and
real biological datasets that VIA more accurately predicts the terminal states, across a range of input
data dimensions and key algorithm parameters, than other methods attempting the same
(Supplementary Fig. S1).

4. Automated trajectory reconstruction. VIA then identifies the most likely path of each lineage by
computing the likelihood of a node traversing towards a particular terminal state (e.g. differentiation).
These lineage likelihoods are computed as the visitation frequency under lazy-teleporting MCMC
simulations from the root to a particular terminal state, i.e. the probability of node i reaching
terminal-state j as the number of times cell i is visited along a successful path (i.e. terminal-state j is
reached) divided by the number of times cell i is visited along all of the simulations. In contrast to
other trajectory reconstruction methods which compute the shortest paths between root and terminal
node'?, the lazy-teleporting MCMC simulations in VIA offer a probabilistic view of pathways under
relaxed conditions that are not only restricted to the random-walk along a tree-like graph, but can also
be generalizable to other types of topologies, such as cyclic or connected/disconnected paths. In the
same vein, we avoid confining the graph to an absorbing Markov chain'>? (AMC) as this places
prematurely strict / potentially inaccurate constraints on node-to-node mobility and can impede
sensitivity to cell fates (as demonstrated by VIA’s superior cell fate detection across numerous
datasets (Supplementary Fig. S1).

Downstream visualization and analysis

VIA generates a visualization that combines the network topology and single-cell level
pseudotime/lineage probability properties onto an embedding based on UMAP or PHATE. Generalized
additive models (GAMs) are used to draw edges found in the high-dimensional graph onto the lower
dimensional visualization (Fig. 1). An unsupervised downstream analysis of cell features (e.g. marker
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gene expression, protein expression or image phenotype) along pseudotime for each lineage is performed
(Fig. 1). Specifically, VIA plots the expression of features across pseudotime for each lineage by using
the lineage likelihood properties to weight the GAMs. A cluster-level lineage pathway is automatically
produced by VIA to visualize feature heat maps at the cluster-level along a lineage-path to see the
regulation of genes. VIA provides the option of gene imputation before plotting the lineage specific gene
trends. The imputation is fast as it relies on the single-cell KNN (scKNN) graph computed in Step 1.
Using an affinity-based imputation method*, this step computes a “diffused” transition matrix on the
scKNN graph used to impute and denoise the original gene expressions.

Simulated Data

We employed the DynToy* (https:/github.com/dynverse/dyntoy) package, which generates synthetic

single-cell gene expression data (~1000 cells x 1000 ‘genes’), to simulate different complex trajectory
models. Using these datasets, we tested that VIA consistently and more accurately captures both tree and
non-tree like structures compared to other methods (Fig.2). The types of topologies span multifurcating,
cyclic, connected (hybrid of cyclic and multifurcating) and disconnected (hybrid of the first three) . All
methods are subject to the same data pre-processing steps, PCA dimension reduction and root-cell to
initialize the path.

The composite accuracy metric assesses multiple layers of the inferred trajectory, taking into account the
topological similarity between the reference model and the inferred topology, the correlation between the
real and ‘pseudo’ times, and the prediction accuracy of the terminal cell fates (lineages). Absolute
measurements of similarities are converted into a percentage scale before taking the arithmetic mean (of
the 5 metrics, see below) which gives the composite accuracy. Since PAGA does not predict lineages, the
composite score is simply the average of the first 4 metrics for PAGA. A detailed explanation of the 5
metrics can be referred to Supplementary Note 3. The 5 metrics are:

Ipsen-Mikhailov (IM): is used to measure the similarity of global graph topology. The IM ranges from 0
to 1 and equals the difference in spectral densities of two graphs.

Graph Edit Distance (GED): is the cost of converting G;; to Gy Wwith the least possible number of
operations. Each operation has a cost of one and includes insertion/deletion of edges and nodes.
F1-Branch score: We compute the harmonic mean of recall and precision for the local branch accuracy
relative to the reference model. A False Negative edge in the inferred model is when there is an edge in
the reference model between cell types that is absent in the inferred trajectory. A False Positive edge in
the inferred model is an edge that is not actually present in the reference model.

Temporal Correlation: Pearson Correlation coefficient is used as a measure of how closely the inferred
pseudotime follows the true sampling times.

F1-Cell Fate score: Similar to the F1-branch score, we use the harmonic mean of recall and precision to
quantify the prediction accuracy of terminal states.
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Benchmarked Methods

The methods were mainly chosen based on their superior performance in a recent large-scale
benchmarking study*, including a select few recent methods claiming to supersede those in the study.
Specifically, recent and popular methods exhibiting reasonable scalability, and automated cell fate
prediction in multi-lineage trajectories, not limited to tree-topologies, were favoured as candidates for
benchmarking (See Supplementary Table S1 for the key characteristics of methods). Performance
stress-tests in terms of lineage detection of each biological dataset, automated gene trend prediction along
lineages, and pseudotime correlation were conducted over a range of key input parameters (e.g. numbers
of k-nearest neighbors, highly variable genes (HVGs), principal components (PCs)) and pre-processing
protocols (see Supplementary Fig. 1). Methods that focus exclusively on a single data modality or on
topology without predicting cell fates and their lineage pathways (e.g. TinGa*, Tempora®) were generally
not included in the benchmarking as they would require manual selection of cell fates and differentiation
pathways. All comparisons were run on a computer with an Intel(R) Xeon (R) W-2123 central processing
unit (3.60GHz, 8 cores) and 126 GB RAM.

Details of parameter settings for each of the benchmarked methods can be found in Supplementary
Tables S4-S5, with an emphasis on the rationale for changes deviating from default parameters.

Quantifying terminal state prediction accuracy for parameter tests was done using the F1-score, defined
as the harmonic mean of recall and precision and calculated as:

_ i
Fy = 550sgpm

Where #p is a true-positive: the identification of a terminal cluster that is in fact a final differentiated cell
fate; fp is a false positive identification of a cluster as terminal when in fact it represents an intermediate
state; and fn is a false negative where a known cell fate fails to be identified

Downstream analysis enabled by the automated lineage prediction capabilities of each method is key to
facilitating the exploration of biological data. The unsupervised gene-trend analysis inferred by VIA is
compared to the lineage gene-trends predicted by other methods both quantitatively and qualitatively. We
follow an approach used by Chen et al.”*, where pseudotime is correlated against expression of a marker
gene known to monotonically increase along the lineage. The gene-expression of such markers can be
considered a surrogate for the correct sampling time and thus the resulting correlation is an indication of
the accuracy of cell ordering by pseudotime. We also provide a side-by-side comparison of the predicted
topology and gene-trends generated by each method to visually assess how well separated the predicted
lineages are (e.g. if multiple lineages that represent distinct cell fates exhibit significant cross-talk in the
plotted trends or uniquely express the genes most relevant to their lineages). The Pearson correlation

coefficient is given by p, , , where o is the standard deviation and py is the mean of X
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Built-in functions for gene-trend plotting (wherever available), and in other cases manually selection of
branches/clusters or extension of a method by adding GAMs to general gene-trend curves was required to
facilitate comparison (e.g. PAGA and STREAM) . Additionally, when methods cannot automatically
detect all the relevant lineages, we either chose the most relevant lineage (e.g. for the megakaryocyte
lineage, we plotted its CD41 marker gene along the detected erythroid lineage which often absorbed the
smaller megakaryocytic cell line), or we noted that the lineage was missed, (e.g. in the small delta cell
population in the endocrine dataset) when the lost lineage was not an obvious part of another lineage.
Given that these nuances are not necessarily captured by the correlation coefficient,the outputs of the
gene-trend plots inferred by each method are shown for three datasets which have multiple lineages of
different abundances, and well known lineage markers (scRNA-seq and scATAC-seq hematopoiesis, and
endocrine genesis in Supplementary Fig. S9, S11 and S15).

PAGA?®, 1t uses a cluster-graph representation to capture the underlying topology. PAGA computes a
unified pseudotime by averaging the single-cell level diffusion pseudotime computed by DPT, but
requires manual specification of terminal cell fates and clusters that contribute to lineages of interest in
order to compare gene expression trends across lineages.

Palantir®. It uses diffusion-map*® components to represent the underlying trajectory. Pseudotimes are
computed as the shortest path along a KNN-graph constructed in a low-dimensional diffusion component
space, with edges weighted such that the distance between nodes corresponds to the diffusion
pseudotime*” (DPT). Terminal states are identified as extrema of the diffusion maps that are also outliers
of the stationary distribution. The lineage-likelihood probabilities are computed using Absorbing Markov
Chains (constructed by removing outgoing edges of terminal states, and thresholding reverse edges).

Slingshot'. It is designed to process low-dimensional embeddings of the single-cell data. By default
Slingshot runs clustering based on Gaussian mixture modeling and recommends using the first few PCs as
input. Slingshot connects the clusters using a minimum spanning tree and then fits principle curves for
each detected branch. It uses the orthogonal projection against each principal curve to fit a separate
pseudotime for each lineage, and hence the gene expressions cannot be compared across lineages. Also,
the runtimes are prohibitively long for large datasets or high input dimensions.

CellRank". This method combines the information of RNA velocity (computed using scVelo**) and
gene-expression to infer trajectories. Given it is mainly suited for the scRNA-seq data, with the
RNA-velocity computation limiting the overall runtime for larger dataset, we limit our comparison to the
pancreatic dataset which the authors of CellRank used to highlight its performance.

Monocle3* The workflow consists of three steps: the first is to project the data to two or three dimensions
using UMAP (this is a strict requirement), followed by Louvain clustering on a K-Nearest Neighbor
graph constructed in the low-dimensional UMAP space. A cluster-graph is then created and partitioned to
deduce disconnected trajectories. Subsequently, it learns a principal graph in the low-dimensional space
along which it calculates pseudotimes as the geodesic distance from root to cell.

STREAM®,  After selecting the desired number of PCs, STREAM projects the cells to a lower

dimensional PCA space using a non-linear dimensionality reduction method (such as Modified Locally
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Linear Embedding, Spectral Embedding or UMAP). In the embedded space, STREAM constructs a
tree-model trajectory using an Elastic Principal Graph implementation called EIPiGraph. The results are
visualized as a branching structure or re-organized as a subway plot relative to a user-designated starting
branch.

Biological Data

The pre-processing steps described below for each dataset are not included in the reported runtimes as
these steps are typically very fast, (typically less than 1-10% of the total runtime depending on the
method. E.g. only a few minutes for pre-processing 100,000s of cells) and only need to be performed
once as they remain the same for all subsequent analyses. It should also be noted that visualization (e.g.
UMAP, t-SNE) are not included in the runtimes. VIA provides a subsampling option at the visualization
stage to accelerate this process for large datasets without impacting the previous computational steps.
However, to ensure fair comparisons between TI methods (e.g. other methods do not have an option to
compute the embedding on a subsampled input and transfer the results between the full trajectory and the
sampled visualization, or rely on a slow version of tSNE), we simply provide each TI method with a
pre-computed visualization embedding on which the computed results are projected.

ScRNA-seq of mouse pre-B cells. This dataset®® models the pre-BI cell (Hardy fraction C’) process
during which cells progress to the pre-BIl stage and B cell progenitors undergo growth arrest and
differentiation. Measurements were obtained at 0, 2, 6, 12, 18 and 24 hours (h) for a total of 313 cells x
9,075 genes. We follow a standard Scanpy preprocessing recipe® that filters cells with low counts, and
genes that occur in less than 3 cells. The filtered cells are normalized by library size and log transformed.
The top 5000 highly variable genes (HVG) are retained. Cells are renormalized by library count and
scaled to unit variance and zero mean. VIA identifies the terminal state at 18-24 h and accurately
recapitulates the gene expression trends* along inferred pseudotime of Igll1, Slc7a5, Fox01, Myc, Ldha
and Lig4. (Supplementary Fig. S6a). We show the results generalize across a range of PCs for two
values of K of the graph with higher accuracy in locating the later cell fates than Slingshot and Palantir.
(Supplementary Fig. S6b).

ScRNA-seq of human CD34+ bone marrow cells. This is a scRNA-seq dataset of 5800 cells
representing human hematopoiesis®. We used the filtered, normalized and log-transformed count matrix
provided by Setty et al*., with PCA performed on all the remaining (~14000) genes. The cells were
annotated using SingleR*" which automatically labeled cells based on the hematopoietic reference dataset
Novershtern Hematopoietic Cell Data - GSE24759°". The annotations are in agreement with the labels
inferred by Setty et al. for the 7 clusters, including the root HSCs cluster that differentiates into 6 different
lineages: monocytes, erythrocytes, and B cells, as well as the less populous megakaryocytes, cDCs and
pDCs. VIA consistently identifies these lineages across a wider range of input parameters and data
dimensions (e.g. the number of K and PCs provided as input to the algorithms see Fig. 2p, and
Supplementary Fig. S7 -S9). Notably, the upregulated gene expression trends of the small populations
can be recovered in VIA, i.e. pDC and cDC show elevated CD123 and CSF1R levels relative to other
lineages, and the upregulated CD41 expression in megakaryocytes (Supplementary Fig. S7-S9).
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ScRNA-seq of human embryoid body. This is a midsized scRNA-seq dataset of 16,825 human cells in
embryoid bodies (EBs)">. We followed the same pre-processing steps as Moon et al. to filter out dead
cells and those with too high or low library count. Cells are normalized by library count followed by
square root transform. Finally the transformed counts are scaled to unit variance and zero mean. The
filtered data contained 16825 cells x 17580 genes. PCA is performed on the processed data before
running each TI method. VIA identifies 6 cell fates, which, based on the upregulation of marker genes as
cells proceed towards respective lineages, are in accord with the annotations given by Moon et al., (See
the gene heatmap and changes in gene expression along respective lineage trajectories in Supplementary
Fig. S13). Note that Palantir and Slingshot do not capture the cardiac cell fate, and Slingshot also misses
the neural crest (see the F1-scores summary for terminal state detection Supplementary Fig. S13).

ScRNA-seq of mouse organogenesis cell atlas. This is a large and complex scRNA-seq dataset of mouse
organogenesis cell atlas (MOCA) consisting of 1.3 million cells®. The dataset contains cells from 61
embryos spanning 5 developmental stages from early organogenesis (E9.5-E10.5) to organogenesis
(E13.5). Of the 2 million cells profiled, 1.3 million are ‘high-quality’ cells that are analysed by VIA. The
runtime is approximately 40 minutes which is in stark contrast to the next fastest tool Palantir which takes
4 hours (excluding visualization). The authors of MOCA manually annotated 38 cell-types based on the
differentially expressed genes of the clusters. In general, each cell type exclusively falls under one of 10
major and disjoint trajectories inferred by applying Monocle3 to the UMAP of MOCA. The authors
attributed the disconnected nature of the 10 trajectories to the paucity of earlier stage common
predecessor cells. We followed the same steps as Cao et al.® to retain high-quality cells (i.e. remove cells
with less than 400 mRNA, and remove doublet cells and cells from doubled derived sub-clusters). PCA
was applied to the top 2000 HVGs with the top 30 PCs selected for analysis. VIA analyzed the data in the
high-dimensional PC space. We bypass the step in Monocle3® which applies UMAP on the PCs prior to
TI as this incurs an additional bias from choice of manifold-learning parameters and a further loss in
neighborhood information. As a result, VIA produces a more connected structure with linkages between
some of the major cell types that become segregated in UMAP (and hence Monocle3), and favors a
biologically relevant interpretation (Fig. 2, Supplementary Fig. S11). A detailed explanation of these
connections (graph-edges) extending between certain major groups using references to literature on
organogenesis is presented in Supplementary Note 3.

ScRNA-seq of murine endocrine development’. This is an scRNA-seq dataset of E15.5 murine
pancreatic cells spanning all developmental stages from an initial endocrine progenitor-precursor (EP)
state (low level of Ngn3, or Ngn3""), to the intermediate EP (high level of Ngn3, or Ngn3"¢") and Fev"
states, to the terminal states of hormone-producing alpha, beta, epsilon and delta cells’ Following steps
by Lange et al'*, we preprocessed the data using scVelo to filter genes, normalize each cell by total counts
over all genes, keep the top most variable genes, and take the log-transform. PCA was applied to the
processed gene matrix. We assessed the performance of VIA and other TI methods (CellRank, Palantir,
Slingshot) across a range of number of retained HVGs and input PCs (Fig. 2m, Supplementary Fig. SZ).

ScATAC-seq of human bone marrow cells. This scATAC-seq data profiles 3072 cells isolated from
human bone marrow using fluorescence activated cell sorting (FACS), yielding 9 populations*’: HSC,
MPP, CMP, CLP, LMPP, GMP, MEP, mono and plasmacytoid DCs (Fig. 3a and Supplementary Fig.
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S10-11). We examined TI results for two different preprocessing pipelines to gauge how robust VIA is on
the scATAC-seq analysis which is known to be challenging for its extreme intrinsic sparsity. We used the
pre-processed data consisting of PCA applied to the z-scores of the transcription factor (TF) motifs used
by Buenrostro et a*”. Their approach corrects for batch effects in select populations and weighting of PCs
based on reference populations and hence involves manual curation. We also employed a more general

approach used by Chen et al.*"

which employs ChromVAR to compute k-mer accessibility z-scores across
cells. VIA infers the correct trajectories and the terminal cell fates for both of these inputs, again across a

wide range of input parameters (Fig. 3d and Supplementary Fig. S11-S13).

ScRNA-seq and scATAC-seq of IslI+ cardiac progenitor cells. This time-series dataset captures
murine Is//+ cardiac progenitor cells (CPCs) from E7.5 to E9.5 characterized by scRNA-seq (197 cells)
and scATAC-seq (695 cells)*. The Is//+ CPCs are known to undergo multipotent differentiation to
cardiomyocytes or endothelial cells. For the scRNA-seq data, the quality filtered genes and the size-factor
normalized expression values are provided by Jia et al.** as a “Single Cell Expression Set” object in R.
Similarly, the cells in the scATAC-seq experiment were provided in a “SingleCellExperiment” object with
low quality cells excluded from further analysis. The accessibility of peaks was transformed to a binary
representation as input for TF-IDF (term frequency-inverse document frequency) weighting prior to
singular value decomposition (SVD). The highlighted TF motifs in the heatmap (Fig. 2j) correspond to
those highlighted by Jia et al. We tested the performance when varying the number of SVDs used. We
also considered the outcome when merging the scATAC-seq and scRNA-seq data using Seurat3**.
Despite the relatively low cell count of both datasets, and the relatively under-represented scRNA-seq cell
count, the two datasets overlapped reasonably well and allowed us to infer the expected lineages in an
unsupervised manner (Fig. 2d and Supplementary Fig. S8. In contrast, Jia et al., performed a supervised
TI by manually selecting cells relevant to the different lineages (for the scATAC-seq cells) and choosing
the two diffusion components that best characterize the developmental trajectories in low dimension®.

Mass cytometry data of mouse embryonic stem cells (mESC). This is a mass cytometry (or CyTOF)
dataset, consisting of 90,000 cells and 28 antibodies (corresponding to ~7000 cells each from Day 0-11
measurements), that represents differentiation of mESC to mesoderm cells**. An arcsinh transform with a
scaling factor of 5 was applied on all features - a standard procedure for CyTOF datasets, followed by
normalization to unit variance and zero mean. All 28 antibodies are used by the TI methods (with the
exception of Slingshot which requires PCA followed by subsetting of the first 5 PCs in order to
computationally handle the high cell count) (Supplementary Fig. S9). To improve Palantir performance
we used 5000 waypoints (instead of default 1200) but this takes almost 20 minutes to complete
(excluding time taken for embedding the visualization). VIA runs in ~3 minutes and produces results
consistent with the known ordering and identifies regions of Day 10-11 cells.

Single-cell biophysical phenotypes derived from imaging flow cytometry. This is the in-house dataset
of single-cell biophysical phenotypes of two different human breast cancer types (MDA-MB231 and
MCF7). Following our recent image-based biophysical phenotyping strategy*>!, we defined the
spatially-resolved biophysical features of a cell in a hierarchical manner based on both bright-field and
quantitative phase images captured by the FACED imaging flow cytometer (i.e., from the bulk features to

the subcellular textures)®’. At the bulk level, we extracted the cell size, dry mass density, and cell shape.
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At the subcellular texture level, we parameterized the global and local textural characteristics of optical
density and mass density at both the coarse and fine scales (e.g., local variation of mass density, its
higher-order statistics, phase entropy radial distribution etc.). This hierarchical phenotyping approach®*-*
allowed us to establish a single-cell biophysical profile of 38 features, which were normalized based on
the z-score (See Supplementary Table S4 and Table S5). All these features, without any PCA, are used
as input to VIA. In order to weigh the features, we use a mutual information classifier to rank the features,
based on the integrated fluorescence intensity of the fluorescence FACED images of the cells (which
serve as the ground truth of the cell-cycle stages). Following normalization, the top 3 features (which

relate to cell size) are weighted (using a factor between 3-10).

Imaging flow cytometry experiment

FACED imaging flow cytometer setup

A multimodal FACED imaging flow cytometry (IFC) platform was used to obtain the quantitative phase
and fluorescence images of single cells in microfluidic flow at an imaging throughput of ~70,000
cells/sec. The light source consisted of an Nd:YVO picosecond laser (center wavelength = 1064 nm,
Time-Bandwidth) and a periodically-poled lithium niobate (PPLN) crystal (Covesion) for second
harmonic generation of a green pulsed beam (center wavelength = 532 nm) with a repetition rate of 20
MHz. The beam was then directed to the FACED module, which mainly consists of a pair of
almost-parallel plane mirrors. This module generated a linear array of 50 beamlets (foci) which were
projected by an objective lens (40X, 0.6NA, MRHO08430, Nikon) on the flowing cells in the microfluidic
channel for imaging. Each beamlet was designed to have a time delay of 1 ns with the neighboring
beamlet in order to minimize the fluorescence crosstalk due to the fluorescence decay. Detailed
configuration of the FACED module can be referred to Wu et al.**. The epi-fluorescence image signal
was collected by the same objective lens and directed through a band-pass dichroic beamsplitter (center:
575nm, bandwidth: 15nm). The filtered orange fluorescence signal was collected by the photomultiplier
tube (PMT) (rise time: 0.57 ns, Hamamatsu). On the other hand, the transmitted light through the cell was
collected by another objective lens (40X, 0.8NA, MRD07420, Nikon). The light was then split equally by
the 50:50 beamsplitter into two paths, each of which encodes different phase-gradient image contrasts of
the same cell (a concept similar to Scherlien photography). The two beams are combined,
time-interleaved, and directed to the photodetector (PD) (bandwidth: >10 GHz, Alphalas) for detection.
The signals obtained from both PMT and PD were then passed to a real-time high-bandwidth digitizer (20
GHz, 80 GS/s, Lecroy) for data recording.

Cell culture and preparation

MDA-MB231 (ATCC) and MCF7 (ATCC), which are two different breast cancer cell lines, were used for
the cell cycle study. The culture medium for MDA-MB231was ATCC modified RPMI 1640 (Gibco)
supplemented with 10% fetal bovine serum (FBS) (Gibco) and 1% antibiotic-antimycotic (Anti-Anti)
(Gibco), while that for MCF7 was DMEM supplemented with 10% FBS (Gibco) and 1% Anti-Anti
(Gibco). The cells were cultured inside an incubator under 5% CO, and 37°C, and subcultured twice a
week. 1e6 cells were pipetted out from each cell line and stained with Vybrant DyeCycle orange stain

(Invitrogen).
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Data Availability

Data used in Figures 1-3 as well as Supplementary Figures S1-S15) is available on:
1. Pancreatic data: Gene Expression Omnibus (GEO) under accession code GSE132188.
2. Cardiac progenitor data is available from the ENA repository under the accession code
PRJEB23303 or from [https://github.com/loosolab/cardiac-progenitors].
3. B-cell: STATegraData GitHub repository. [https://github.com/STATegraData/STATegraData)]
4. Mass cytometry mesoderm: Cytobank

[https://community.cytobank.org/cytobank/experiments/71953].

5. Raw and processed data for scRNA-seq Human Hematopoeisis are available through the Human
Cell Atlas data portal at
https://data.humancellatlas.org/explore/projects/091cf39b-01bc-42¢5-9437-t419a66c8a45.

6. Embryoid Body: Mendeley Data repository at https://doi.org/10.17632/v6n743h5ng.1.

. Mouse Organogenesis : NCBI Gene Expression Omnibus under accession number GSE119945

8. FACED cell cycle: https://github.com/ShobiStassen/VIA and on  FigShare
https://doi.org/10.6084/m9.figshare.13601405.v1

9. scATAC-seq Hematopoiesis: GEO: GSE96772. Processed scATAC-seq data, which include PC
values and TF scores per cell can be found in Data S1. of
https://doi.org/10.1016/j.cell.2018.03.074

10. Toy Data: https://github.com/ShobiStassen/VIA

Code Availability

VIA is available as a pip installable python library “pyVIA” with tutorials and sample data available on
https://github.com/ShobiStassen/VIA and https://pypi.org/project/py VIA/
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