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ABSTRACT

Multiplexed imaging technologies enable the study of biological tissues at
single-cell resolution while preserving spatial information. Currently, high-dimension
imaging data analysis is technology-specific and requires multiple tools, restricting
analytical scalability and result reproducibility. Here we present SIMPLI (Single-cell
Identification from MultiPlexed Images), a novel, flexible and technology-agnostic
software that unifies all steps of multiplexed imaging data analysis. After raw image
processing, SIMPLI performs a spatially resolved, single-cell analysis of the tissue
slide as wells as cell-independent quantifications of marker expression to investigate
features undetectable at the cell level. SIMPLI is highly customisable and can run on
desktop computers as well as high-performance computing environments, enabling
workflow parallelisation for large datasets. SIMPLI produces multiple tabular and
graphical outputs at each step of the analysis. Its containerised implementation and
minimum configuration requirements make SIMPLI a portable and reproducible

solution for multiplexed imaging data analysis.

SIMPLI is available at: https://qgithub.com/ciccalab/SIMPLI.
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MAIN

A detailed investigation of tissue composition and function in health and
disease requires spatially resolved, single-cell approaches that precisely quantify cell
types and states as well as their interactions in situ. Recent technological advances
have enabled to stain histological sections with multiple tagged antibodies that are
subsequently detected using fluorescence microscopy or mass spectrometry*. High-
dimensional imaging approaches such as imaging mass cytometry (IMC)?,
multiplexed ion beam imaging (MIBI)®, co-detection by indexing (CODEX),
multiplexed immunofluorescence (mIF, including cyclF)®> and multiplexed
immunohistochemistry (mIHC)®’ enable quantification and localisation of cells in
sections from formalin-fixed paraffin-embedded (FFPE) tissues, including clinical
diagnostic samples. This is of particular value for mapping the tissue-level
characteristics of disease conditions and for predicting the outcome of therapies that
depend on the tissue environment, such as cancer immunotherapy. For example, a
recent IMC phenotypic screen of breast cancer subtypes revealed the association
between the heterogeneity of somatic mutations and that of the tumour
microenvironment®. Similarly, a CODEX-based profile of FFPE tissue microarrays
from high-risk colorectal cancer patients correlated PD1°CD4" T cells with patient

survival®.

The analysis of multiplexed images requires the conversion of pixel intensity
data into single-cell data, which can then be characterised phenotypically, quantified
comparatively and localised spatially back in the tissue. Currently available tools are
technology-specific and cover only some steps of the whole analytical workflow
(Table 1). For example, several computational approaches have been developed to

process raw images and extract single-cell data either interactively (llastik™,
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CellProfiler4'!, CODEX Toolkityy or via command line (imcyto®,
ImcSegmentationPipeline®). Distinct sets of tools can then perform cell phenotyping
(CellProfiler Analyst**, Cytomapper™, Immunocluster*®) or analyse cell-cell spatial
interactions (CytoMap®’, ImaCytE'®, SPIAT, neighbouRhood®). Similarly, a few
tools enable direct pixel-based analysis through pixel classification'® or quantification
of pixel positive areas™. Despite such a variety of tools, none of them can perform all
of the required analytical steps in a common pipeline. Two exception are
histoCAT++** and QuPath?, which however have been developed specifically for
interactive use and are not well suited for the analysis of large datasets. Moreover,
all of these tools relies on ad hoc configuration files and input formats, making the
analysis challenging for users with limited computational skills and restricting the

scalability, portability and reproducibility in different computing environments.

Here we introduce SIMPLI (Single-cell Identification from MultiPLexed Images),
a tool that combines processing of raw images, extraction of single-cell data, and
spatially resolved quantification of cell types or functional states into a single pipeline
(Table 1). This is achieved through the integration of well-established tools and
newly developed scripts into the same workflow, enabling ad hoc configurations of
the analysis while ensuring interoperability between its different parts. SIMPLI can be
run on desktop computers as well as on high-performance-computing environments,
where it can be easily applied to large datasets due to automatic workflow
parallelisation. To demonstrate the flexibility of SIMPLI to work with different
technologies and experimental conditions, we analyse the phenotypes and spatial
distribution of cells in different tissues (human colon, appendix, colorectal cancer)

using multiplexed images obtained with distinct technologies (IMC, mIF, CODEX).
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Table 1. Features of representative tools for the analysis of multiplexed imaging data

Computational tool Imagg Cell . Cell phenotyping Spatial analysis Pixell Parallelisation Imaging.
processing | segmentation | preselected | unsupervised | homotypic | heterotypic | analysis technologies

SIMPLI v v v v v v v v 1-6
CODEX Toolkit* v v v v x x 3
CellProfiler4* v v v x x Partial v v 1-6
HistoCAT++2 v v v v x v x x 1,2,4,5
QuPath? v v v x x x v v 1-6
Cytomapper® Partial v v x x x v v 1-5
llastik™® x v v x Partial x Partial v 1-6
ImcSegmentationPipeline™ v v x x x Partial x v 1
Imeyto™ v v x x x x x v 1
SPIAT* x x v x v v x x 25,6
Giotto?® x x x v v v x x 1-6
ImaCytE™® x x x v x v x x 1
CellProfiler Analyst™ x x v x x x x x 1-6
Immunocluster'® x x x v x x x x 1
NeighbouRhood” x x x x x x x 1-5
CytoMAP"’ x x x x x x x 2

For each tool, reported are the steps of the analytical workflow that it can perform, whether it can be parallelised and the

multiplexed imaging platform it can be applied to (1: IMC; 2: mIF; 3: CODEX; 4: MIBI; 5: mIHC; 6: spatial transcriptomic
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visualisation). A method was considered compatible with a given imaging technology if this was reported in the original publication

or other studies.
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RESULTS
Overview of the SIMPLI analytical workflow

SIMPLI performs the analysis of multiplexed imaging data in three steps
(Methods, Fig. 1), further divided into stand-alone processes (Supplementary Fig. 1).
Each process can be run independently or even skipped with the possibility of using

alternative input data at each point of the workflow.

The first step of SIMPLI consists of raw data processing (Fig. 1a). Data can
be single or multichannel images or text files from a variety of high-dimensional
imaging technologies. After data extraction, pixel values for each marker can be
normalised by rescaling their values in each sample to allow the user to apply the
same thresholds for background noise reduction across samples. Alternatively,
sample-specific thresholds can be applied directly to individual, non-normalised
images to minimise the effect of non-uniform staining. Finally, masks of specific
tissue compartments or markers are derived for subsequent use. The obtained

images can then be analysed at the cell (Fig. 1b) and pixel (Fig. 1c) levels.

The cell-based analysis aims to investigate the qualitative and quantitative cell
composition of the tissue and is formed of (1) single-cell data extraction, (2) cell
phenotyping and (3) spatial analysis of cell-cell distances (Fig. 1b). To extract cell
data, SIMPLI implements single-cell segmentation with either a conventional
approach based on CellProfiler4™ or a deep learning approach based on StarDist**.
The former enables deterministic filtering based on cells size and shape, as well as
marker intensities. The latter applies pre-trained models (either provided by SIMPLI
or supplied by the user) to identify cells with high accuracy. After cell segmentation,

SIMPLI produces the masks of each individual cell together and calculates the
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expression values for each marker. Cells belonging to tissue compartments or
positive for certain markers can then be identified based on their overlap with
previously derived tissue compartment or marker masks. Cell functional phenotypes
can be further characterised with two alternative approaches. The first applies
unsupervised clustering to all cells or preselected subsets of cells (for example those
mapping to specific tissue compartments or positive for certain markers) using
marker expression levels. This leads to the unbiased classification of cells into
clusters with similar expression profiles indicating similar phenotypes. The second
approach identifies cells with designated phenotypes by applying combinations of
user-defined thresholds to the expression values of the markers of interest. These
thresholds can be identified through an expert guided examination of the original
images using the visualisation plots produced by SIMPLI. Finally, a spatial analysis
of the distance between cells within the imaged tissue leads to the identification of
cell aggregations of the same (homotypic) or different (heterotypic) cell types. In the
case of homotypic aggregations, SIMPLI identifies groups of cells of the same type
within a user-defined distance and visually localises them as clusters in the tissue
image. In the case of heterotypic aggregations, SIMPLI computes the distance
distribution between distinct cell types and compares them across cell types and

experimental conditions.

The pixel-based approach implemented in SIMPLI enables quantification of
areas positive for a specific marker or combination of markers, independently of their
association with cells (Fig. 1c). The obtained marker-positive areas are then
normalised over the area of the whole image, or those of specific tissue
compartments or positive for certain markers using the predefined masks, to allow

comparisons across samples. The pixel-based analysis is useful for the investigation
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of tissue features that are not detectable at the cell level. For instance, extracellular
or secreted proteins cannot be quantified with approaches dependent on cell
segmentation. In addition, being completely cell agnostic, the pixel-based analysis

can provide an independent validation of cell-based observations.

SIMPLI generates tables, plots and images as outputs of each process, thus

enabling the visualisation of results at each step of the analysis.
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Figure 1. Schematics of the SIMPLI workflow
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a. Raw images are extracted from IMC or MIBI data or directly imported from other
imaging technologies. After their optional normalisation, these images are
thresholded to remove the background noise and produce tissue compartment or
marker masks. The resulting images can be analysed using a cell-based or a pixel-
based approach.

b. In the cell-based analysis, single cells are segmented with deterministic or deep
learning models and phenotyped using unsupervised or supervised approaches. The
distribution of cells in the tissue can then be investigated through a spatial analysis
of homotypic or heterotypic aggregations.

c. In the pixel-based approach, areas positive for user-defined combination of
markers are measured and normalised over the area of the whole image or of the

masks defining compartments or areas positive for certain markers.
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IMC quantification of secreted and cell-associated IgA in human colon

To test its performance and versatility, we applied SIMPLI to four case studies
describing the analysis of multiplexed tissue images of diverse origin, size and
resolution and obtained with different technologies (Table 2).

As a first case study, we used SIMPLI to compare the levels of secreted and
cell-associated immunoglobulin A (IgA), the major immunoglobulin isotype in
intestinal mucosa®, from IMC-derived multiplexed images of normal human colon.
We stained six colon sections (CLN1-CLN6, Supplementary Table 1) with 26
antibodies marking T cells, macrophages, dendritic cells and B cells as well as
stromal components (Supplementary Table 2) and ablated one region of interest
(ROI) per sample.

Using SIMPLI, we extracted and normalised the 28 single channel images (26
antibodies and two DNA intercalators) for each of the six ROIs and combined them
into a single image per ROI (Fig. 2a). This normalisation enabled selection of a
single threshold for each marker to be used across all samples, thus reducing the
complexity of the analysis configuration. By applying these thresholds to the E-
cadherin and vimentin expression, we obtained the masks for the epithelium and the
lamina propria, respectively (Fig. 2b). We used these masks to assign cells to the
two compartments and normalise marker values or positive areas in the downstream
analyses.

We then used the pixel-based approach to quantify both the IgA expressed by
the plasma cells resident in the diffuse lymphoid tissue of the lamina propria as well
as the secreted IgA undergoing transcytosis to traverse the epithelial compartment
(Fig. 2b). As expected, most secreted IgA was localised in the epithelial crypts with

only minimal presence of IgA™ area in the surface epithelium (Supplementary Fig.
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2a). Quantification of the normalised IgA™ areas in the two compartments
(Supplementary Fig. 2b) confirmed higher IgA™ levels in the lamina propria than in
the epithelium (Fig. 2c). To assess the impact of image normalisation, we repeated
the same analysis starting from the raw images and applying sample-specific
thresholds to remove the background noise. The resulting IgA levels correlated
linearly with those obtained from normalised images (Supplementary Fig. 2c),
showing that data normalisation has no impact on the results,

Next, we quantified the IgA” plasma cells in the lamina propria using the cell-
based approach. First, we performed single-cell segmentation with the deterministic
approach and retained only cells overlapping for at least 30% or their area with the
lamina propria mask (Fig. 2d). We verified that varying the threshold of the overall
had a minimal impact on the proportion of cells assigned to the lamina propria
(Supplementary Fig. 2e). We then identified IgA" plasma cells, T cells, macrophages,
and dendritic cells resident in the lamina propria according to the highest overlap
between the cell area and the mask of each immune cell population (Fig. 2e). Again,
we verified that the relative proportion of these cell populations changed only
minimally varying the threshold of the overlap with the lamina propria mask
(Supplementary Fig. 2e). Finally, we quantified the four immune cell populations
across the six samples and observed that IgA” plasma cells constitute approximately
25% of all identified immune cells (Fig. 2f). This is consistent with previous
guantifications of the fraction of plasma cells over the total mononucleated cells in
the lamina propria of healthy individuals®.

The relative proportion of IgA* plasma cells positively correlated with the

normalised IgA* area in the lamina propria, demonstrating that the quantification
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from the single-cell analysis is supported by the cell agnostic measurements at the

pixel-level (Fig. 29).
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Table 2. Description of the case studies used to test SIMPLI.

Case Imaging Analysed | Channels ROI2 ResoIL_Jtion HPC _ CPU Elapsed RAM Processes
study | technology | samples (n) (n) (mm*) | (um/pixel) | platform | time (h) | real time (h) | (GB)
¢ Raw data processing
1 IMC 6 28 1.00 1.00 SGE |00:20:41| 00:06:10 | 4.1 |®Cellmasking —
(Fig.2) e Single-cell quantification
¢ Pixel intensity comparison
e Raw data processing
5 ¢ Cell masking
(Fig.3) IMC 1 28 1.00 1.00 SLURM | 00:06:25 00:05:30 4.2 |e Unsupervised clustering
¢ Expression thresholding
e Homotypic cell distances
3 e Thresholding & masking
(Fig.4) mIF 1 7 5.45 0.50 SLURM | 00:11:45| 00:08:23 16.7 | e Expression thresholding
e Heterotypic cell distances
4 CODEX 35 58 1.13 0.38 SGE |02:32:35| 00:26:01 | 22.5 |° EXpression thresholding
(Fig.5) o Heterotypic cell distances

For each case study, listed are the imaging technologies used to generate the tissue images, the number of samples and markers

used, the size of the analysed region of interest (ROI), the resolution of the obtained images, the high performance (HPC) platform

and the computational resources employed to perform the analysis. These include the central processing unit (CPU) time and the

elapsed real time, as well as the maximum random access memory (RAM) memory used. Finally, the specific analytical processes

performed in each case study are also listed (single cell segmentation was performed in all of them). SGE: Sun Grid Engine;

SLURM: Simple Linux Utility for Resource Management.

14

'asUd2I| [euoireUIdIU| 0 AG-DD® Japun ajgejiene
apeuw sl | ‘Aunadiad uiuudaid ayy Aejdsip 01 asuadl| B AIxHoIq pajueld sey oym ‘Ispunyloyine ayi si (mainal 19ad Aq paijiniad Jou sem Yyaiym)

wiudaud siys Joy J1epjoy WbuAdod 8yl "TZ0z ‘G 18qo100 paisod UoIsIaA sIy} 1988/ €7 T0 70 T20Z/TOTT 0T/610"10p//:sdny :10p uudaid Axyolq


https://doi.org/10.1101/2021.04.01.437886
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.437886; this version posted October 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 2. IgA quantification in human colon mucosa
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a. IMC image of a representative sample (CLN6) of normal colon mucosa after
extraction and normalisation of raw data.

b. Masks defining the lamina propria and the epithelial compartments overlaid with
IgA" areas. Lamina propria and epithelial masks were obtained by thresholding the
vimentin and E-cadherin channels, respectively.

c. Comparison of normalised IgA* areas in the lamina propria and epithelial
compartments in CLN1-CLN6. Normalised areas were measured as the proportion of
IgA™ area over the lamina propria and epithelium masks, respectively. Distributions

were compared using a two-sided Wilcoxon test.
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d. Outlines of the cells in the lamina propria. After single-cell segmentation, all cells
overlapping with the lamina propria mask by at least 30% of their area were
considered as cells resident in the lamina propria.

e. Outlines of immune cells resident in the lamina propria identified according to the
highest overlap between their area and the masks for IgA* cells, T cells,
macrophages and dendritic cells.

f. Relative proportions of T cells, IgA” cells, macrophages and dendritic cells over all
immune cells in the lamina propria across CLN1-CLN6.

g. Correlation between normalised IgA™ area and the proportion of IgA+ cells over
the total immune cells in in the lamina propria in CLN1-CLN6. Pearson correlation
coefficient R and associated p-value are shown.

Scale bar in all images = 100pm.
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Localisation of T follicular helper cells in IMC images of a germinal centre

As a second case study, we used SIMPLI to localise the immune cell
populations within a FFPE section of healthy human appendix (APP1,
Supplementary Table 1). After staining the tissue section with the 28 markers (26
antibodies and two DNA intercalators) used previously (Supplementary Table 2), we
performed IMC and used SIMPLI to extract and normalise the single channel images
from the raw IMC data for the ROI. The resulting combined image revealed a
germinal centre in the B cell area and follicle-associated epithelium forming the
boundary with the appendiceal lumen (Fig.3a).

We performed single-cell segmentation with both approaches implemented in
SIMPLI and observed high overlap (Supplementary Fig. 3a), indicating good
concordance between the two methods. We then classified the 7573 cells from
CellProfiler4 in immune and epithelial cells based on the highest overlap with the
corresponding masks obtained in the data extraction step (Fig. 3b). Using both
phenotyping approaches available in SIMPLI, we characterised the phenotypes of T
cells, that overall constituted approximately 27% of all cells (Fig. 3c). First, we
applied unsupervised clustering using seven markers of T cell function
(Supplementary Table 2). After inspection of the resulting clusters at different
resolution levels, we selected 0.25 resolution which returned five distinct cell clusters
(Fig. 3d). Based on the marker expression profiles, we assigned cluster 1 to CD4" T
cells, cluster 2 to CD8'CD45RO" T cells, cluster 3 to CD4"CD45RA" T cells, cluster
4 to CD4"CD45RO" T cells and cluster 5 to CD4'PD1" T cells (Fig. 3e). The latter
likely represented a set of PD1" T follicular helper cells known to be located in the
germinal centre?’. Interestingly, at higher resolution, cluster 5 was further divided into

two smaller clusters showing PD1 high and low expression (Supplementary Figure
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3a). Similarly, clusters 1 and 2 were further divided into smaller subpopulation based
on CD4 and CD45R0 expression levels, respectively (Supplementary Figure 3a).

We re-identified these PD1" T follicular helper cells with the second
phenotyping approach based on expression thresholding of CD4 and PD1 (Fig.1b).
Starting from all T cells, we first extracted CD4" T cells (20.1 CD4 expression, Fig.
3f) and, within those, we further identified PD1" cells (20.15 PD1 expression, Fig.
30). Both thresholds were chosen after manual inspection of the histological images.
The expression profile of the resulting PD1°CD4" T cells (Fig 3h) closely
recapitulated that of cluster 5 (Fig. 3e). We repeated the same analysis for clusters 1
to 4 confirming the high overlap between cells in unsupervised clusters and those re-
identified using marker expression thresholds (Supplementary Fig. 3b). Moreover,
these cells showed similar expression profiles (Supplementary Fig. 3c) and spatial
localisation (Supplementary Fig. 3d), indicating that cell phenotypes identified with
unsupervised clustering can be confirmed through user-guided thresholding of
marker expression.

Finally, we investigated the spatial localisation of PD1" T follicular helper cells
within the ROI by analysing their homotypic aggregations. This allowed us to localise
a single high-density cluster containing 84% of PD1°CD4" T cells within the germinal
centre (Fig. 3i). This distribution of PD1'CD4" T cells was in accordance with the
localisation of T helper cells in the in the follicles of secondary lymphoid organs?’

and was confirmed by the histological inspection of the tissue image (Fig. 3j).
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Figure 3. Single-cell characterisation of T cells in a human germinal centre
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a. IMC image of a normal appendix (APP1) showing a central germinal centre with
the columnar epithelium delimiting the appendiceal lumen.

b. Outlines of T cells, B cells, macrophages, dendritic and epithelial cells identified
through the highest overlap with the respective masks.

c. Proportions of T cells, B cells, macrophages, dendritic and epithelial cells over all
cells.

d. UMAP plot of 1,466 T cells grouped in five clusters resulting from unsupervised
clustering according to the expression of seven markers of T cell function
(Supplementary Table 2). Cluster 5 (circled) corresponds to PD1*CD4" T cells.

e. Expression profiles of the five clusters identified in (d). The mean intensity value of
each marker across all cells is reported. The colour scale was normalized across all
markers and cells.

f. Density plots of CD4 expression in T Cells. Cells with 20.1 CD4 expression were
considered as CD4" T cells.

g. Density plot of PD1 expression in CD4" T cells. Cells with 20.15 PD1" expression
were considered as PD1°CD4" T cells. Thresholds for CD4 and PDL1 were identified
through histological inspection of the PD1 channel images.

h. Expression profiles of the PD1°'CD4" T cells and rest of T cells. For both
populations, the mean intensity value of each marker across all cells is shown. The
colour scale was normalized across all markers and cells.

i. Position map of T cells within the ROI. The area of a high-density cluster of =25
PD1'CD4" T cells per 10,000um? is highlighted in red.

j- IMC image showing the localisation of the PD1 signal within the ROI.

Scale bar for all images = 100pum.
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mIF analysis of spatially resolved cell-cell interactions in rectal cancer

As a third case study, we applied SIMPLI to the spatial analysis of miF-
derived images of a rectal cancer sample (CRC1, Supplementary Table 1) stained
with anti CD8, PD1, Ki67, PDL1, CD68, GzB and DAPI antibodies (Supplementary
Table 2). We focused on a 5mm? ROI that was rich in T cells at the invasive margins
of the tumour (Fig. 4a). This allowed us to characterise the cell-cell interactions
between PDL1" cells and PD1°CD8" T cells at the tumour boundary in a larger ROI,

supporting the scalability of SIMPLI to the analysis of large regions (Table 2).

After image pre-processing and single-cell segmentation, we identified PDL1"
and PD1°CD8" cells by applying expert-defined thresholds to PDL1 (20.01), CD8
(20.01), and PD1 (20.005) expression levels, respectively. We extracted 2026 PDL1"
cells (Fig. 4b) and 3177 CD8" cells, 94 of which also expressed PD1 (Fig. 4c). The
two sets of PDL1" and PD1'CD8" cells constituted 3.7% and 0.2% of all cells in the

analysed region, respectively (Fig. 4d).

We characterised the spatial relationship between these cells, focusing on the
ones in close proximity to each other. Using the Euclidean distances between their
centroids, we identified 35 PDL1" cells and 21 PD1°CD8" T cells at a distance lower
than 12um apart, which corresponded to twice the maximum cell radius length. We
considered these cells proximal enough to be engaging in PD1-PDL1 mediated
interactions. By comparing PD1°CD8" T cells proximal to PDL1" cells and PD1°CD8"
T cells distal to PDL1" cells, we found no difference in the expression of cytotoxicity
(GzB) or proliferation (ki67) markers (Fig. 4e). This is in line with the broad range of
cytotoxic activity in this T cell subset observed in colorectal cancer®. On the
contrary, PDL1" cells proximal to PD1*CD8" T cells expressed higher levels of CD68

than PDL1" cells distal to PD1°CD8" T cells (Fig. 4f), suggesting spatial proximity
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between PDL1" macrophages and PD1°CD8" T cells. To validate this observation,
we identified 1392 macrophages by applying an expert-defined threshold to CD68
expression (20.01, Fig. 4g) and classified them as PDL1 and PDL1" cells,
respectively using 0.1 PDL1 expression threshold. Comparing the distance of the
resulting two populations from the nearest PD1'CD8" T cells, we confirmed that
PDL1'CD68" macrophages were significantly closer to PD1°CD8" T cells than PDL1"
CD68" macrophages (Fig. 4h). By inspecting the imaged tissue at 40x magnification,
we confirmed the localisation of PDL1"CD68" macrophages in close proximity to
PD1'CD8" cells, as well as the presence of both PD1'CD8'GzB T cells and

PD1°CD8"GzB" T cells proximal to PDL1" cells (Fig. 4i).
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Figure 4. Characterisation of PDL1" and PD1" cells at the tumour invasive margins
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a. CD3 immunohistochemistry (main image) and sequential mIF image (zoom-in, 20x
magnification) of a rectal cancer sample (CRC1). The mIF image corresponded to a
5mm? tissue area at the invasive margins of the tumour and was obtained by
combining the pre-processed images of seven markers. Scale bar = 50um.

b. Density plot of PDL1 expression in CD8" cells. Cells with 20.01 PDL1 expression
were considered as PDL1" cells.

c. Density plots of CD8 and PD1 expression in T cells. Cells with 20.01 CD8
expression and 20.005 PD1 expression were considered as PD1°CD8" T cells.
Expression thresholds were identified through histological inspection of PDL1, CD8
and PD1 channel images and are indicated as dotted lines in the corresponding
plots.

d. Proportions of PD1°CD8" cells, PD1°CD8" T cells and PDL1" cells over total cells.
e. Comparison of the mean intensity of GzB and Ki67 between PD1°CD8" T cells
proximal and distal to PDL1"cells. Proximal PD1°CD8" T cells were defined as those
at less than 12um from a PDL1" cell.

f. Comparison of the mean intensity of CD68 and Ki67 between PDL1"cells proximal
and distal to PD1°CD8" T cells. Proximal PDL1" cells were defined as those at less
than 12um from a PD1°CD8" T cell.

Distributions in (e) and (f) were compared using a two-sided Wilcoxon test.

g. Density plots of CD68 and PD1 expression in all cells. Cells with 20.01 CD68 and
PDL1 expression were considered as PDL1°CD68" cells.

h. Comparison of distance of PDL1" and PDL1'CD68" macrophages to the nearest

PD1'CD8" T cell.
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i. High resolution (40x magnification) mIF image of PD1°CD8" T cells in close
proximity to PDL1*CD68" cells. Zoom in images show each marker separately and
merged. Scale bar = 20um.

All distributions were compared using a two-sided Wilcoxon test.
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Comparison of cell distances in CODEX images of colorectal cancer subtypes

As a fourth case study, we used SIMPLI to compare the distances between
immune cells and tumour or endothelial cells in CLR (Crohn’s-like reaction) and DII
(diffuse inflammatory infiltration) colorectal cancer subtypes®. The high-dimensional
imaging data derived from 35 colorectal cancer samples (Supplementary Table 1)
and were obtained using CODEX with a 56 marker panel® (Supplementary Table 2).
Such a large number of antibodies enabled the identification and spatial localisation
of T cells, B cells, plasma cells, macrophages, NK cells, granulocytes, dendritic cells,
tumour cells, neuroendocrine cells, smooth muscle, nerves, lymphatic and blood

vessels (Fig 5a).

After single-cell segmentation, we quantified the main cell types identified in
the original study® by applying expert-defined thresholds to the expression of
markers representative of each population (CDX2, MUCL1 or cytokeratin for tumour
cells; CD34 or CD31 for endothelial cells; vimentin for stromal cells; CD11c for
dendritic cells; CD38 for B cells; CD3 and CD4 for CD4" T cells; CD3, CD4 and
FOXP3 for Tregs; CD3 and CD8 for CD8" T cells, CD68 for macrophages). The
obtained relative proportions of immune cells across all samples were highly

concordant with those reported the original study® (Fig 5b).

We then measured the distances of the main immune cell types from tumour
cells and blood vessels by performing a heterotypic spatial analysis. First, we
calculated the distances of each macrophage, CD8" T cell, CD4" T cell, Treg and B
cell to the nearest tumour cell or endothelial cell using the coordinates of the cell
centroids. From these, we derived the corresponding distance distributions from the
nearest tumour cell or endothelial cell in each sample. Finally, we compared the

resulting distributions between CLR and DIl colorectal cancer subtypes. After
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correcting for multiple testing, we considered biologically relevant only differences
between the median distances of the two subtypes bigger than 8um, corresponding
to the diameter of B and T lymphocytes®. With this approach, we found that Tregs
were significantly closer to tumour cells in DIl (median distance = 22.4um) compared
to CLR (35.6um, Fig 5c). On the contrary, B cells were more proximal to blood
vessels in CLR (33.5um) than in DIl (43.3um, Fig 5d). We further supported these
results with a permutation test, where we re-labelled randomly the identities to all
cells in each sample for 10000 times to derive an expected distribution of differences
in distances between CLR and DIl cells. The comparisons of observed values to the
expected distributions, confirmed that Tregs were significantly closer to tumour cells
in DII (Fig.5e) while B cells were more proximal to blood vessels in CLR (Fig 5f). We
supported the distinct spatial distributions of B cells in CLRs (Fig 5g) and DIl (Fig 5h)

through independent histological image inspection.

This novel result, not reported in the original study, showcases the discovery
potential of the quantitative analysis of spatial relationships between cell populations
implemented in SIMPLI. Additionally, the SIMPLI graphical representations of the
tissue composition as an overlay of cell boundaries color-coded by cell populations
greatly facilitates the visual inspection of their spatial interactions in their original

tissue context.
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Figure 5. Spatial localisation of immune cells in two colorectal cancer subtypes
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a. CODEX images of two representative CLR (CRC_12_24) and DIl (CRC_31_16)
colorectal cancer samples.

b. Proportions of CD8" T cells, CD4" T cells, Tregs, macrophages, dendritic cells, B
cells and other mixed immune cell populations across the 35 analysed samples. Cell
types were identified by applying expert-defined thresholds to the expression
intensity of representative markers and normalised over the total non-cancer cells.
These thresholds were derived through histological inspection of the channel
images. The cell proportion corresponding to each population from the original
study® is reported in brackets.

Distance distribution of Tregs to the nearest tumour cell (c) and of B cells to the
nearest endothelial cell (d) of CLR and DIl samples. Distances between cell pairs
were calculated using the cell centroids coordinates and the resulting distributions
were compared between CRC subtypes using a two-sided Wilcoxon test. Benjamini-
Hochberg FDR correction was applied for testing over ten cell type comparisons.
Only differences of at least 8um and with FDR <0.1 were considered significant.
Dashed lines represent the medians of the distributions.

Distribution of the expected differences between the median distances of Tregs to
the nearest tumour cell (e) and of B cells to the nearest endothelial cell (f) in CLR
and DIl samples. Expected values were calculated with a permutation test, where
cell identities were randomly reassigned for 10000 times within each sample. The
resulting median values were compared to the observed differences with a two-tailed
permutation test adjusted for multiple hypothesis testing with the Benjamini-

Hochberg correction.
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Single-cell outlines of B cells and blood vessels (upper panel) and associated
images (lower panel) form a representative CLR (CRC_17 34) (g) and DIl

(CRC_15_29) (h) sample. Scale bar = 100um.

30


https://doi.org/10.1101/2021.04.01.437886
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.437886; this version posted October 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

DISCUSSION

SIMPLI is an open-source, customisable and technology-independent tool for
the analysis of multiplexed imaging data. It enables the processing of raw images,
the extraction of cell data and the spatially resolved quantification of cell types or
functional states as well as a cell-independent analysis of tissues at the pixel level,

all within a single platform (Table 1).

In comparison to currently available software, SIMPLI increases the portability,
scalability and reproducibility of the analysis (Table 2). Moreover, it can easily
accommodate specific analytical requirements across a wide range of tissues and
imaging technologies at different levels of resolution and multiplexing through user-
friendly configuration files. SIMPLI interoperates with multiple software and
programming languages by leveraging workflow management and containerisation.
This makes the inclusion of new algorithms, features and imaging data formats easy
to implement, such as alternative methods of cell-segmentation, pixel and cell

classification or a Graphical User Interface for interactive data visualisation

Multiplexed imaging methods have proven to be a powerful approach for the
study of tissues through the in-depth characterisation of cell phenotypes and
interactions. SIMPLI represents an effort to make these analyses more accessible to
a wider community. This will enable exploitation of highly multiplexed imaging
technologies for multiple applications, ranging from basic life science and

pharmaceutical research to precision medical use in the clinics.
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ONLINE METHODS

SIMPLI description and implementation

SIMPLI's workflow is divided into three steps (raw image processing; cell-based
analysis; pixel-based analysis), which are constituted of multiple stand-alone
processes (Fig. 1 and Supplementary Fig. S1). Processes can be executed
sequentially or independently from the command-line or through a configuration file
that can be edited with any text editor. This allows the user to skip some of them and
use alternative input data for downstream analyses. Additionally, parameters and
options can be specified through the same configuration files without the need to
setup tool-specific input files in any specific directory structure.

Raw data from IMC or MIBI experiments (.mcd or .txt files) are converted into
single or multi-channel .tiff images with imctools®. Data from other multiplexed
imaging platforms may be supplied directly as raw single or multi-channel tiff images
(Supplementary Fig. 1a). Raw images can be thresholded individually to minimise
the effect of non-uniform staining and then used directly for the cell- and pixel-based
analyses. Alternatively, they can be first normalised across samples by rescaling
pixel values of each channel up to the 99" percentile of the distribution using the
EBImage® package and custom R scripts. Normalised images can then be
processed with CellProfiler4™ to generate thresholded images and masks of tissue
compartments or markers to be used in the following steps.

Pixel-based and cell-based analyses can be run as single workflows or in
parallel within the same run. Both of them provide multiple outputs of the various
processes, including tabular text files, visualisation plots and comparisons across

samples (Supplementary Fig. 1).
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The cell-based analysis is composed of cell data extraction, cell phenotyping
and spatial analysis (Supplementary Fig. 1b). The extraction of cell data starts with
single-cell segmentation using CellProfiler4'* or StarDist** with scikit-image® used
for feature extraction. In the latter case, default models or user-provided trained
models can be used. Cell segmentation returns (1) single-cell data consisting of the
marker expression values and the coordinates of each cell in the ROI and (2) the
ROI segmentation mask marking all the pixels belonging to each cell with its unique
identifier. Cells mapping to tissue compartments or positive for certain markers can
then be identified based on their overlap with the tissue compartments or marker
masks derived in the previous step. These cells are visualised in the ROI as outlines,
while their proportions are quantified in barplots and boxplots.

All cells, or only those in specific tissue compartments or positive for certain
markers can be further phenotyped using two approaches. The first consists of
unsupervised clustering based on the marker expression values using Seurat™®.
Cells are represented as nodes in a k-nearest neighbour graph based on their
Euclidean distances in a principal component analysis space. This graph is then
partitioned into clusters using the Louvain algorithm® at user-defined levels of
resolution leading to the unsupervised identification of cell phenotypes. Clusters of
cell phenotypes are plotted as scatterplots in Uniform Manifold Approximation and
Projection (UMAP)®* space. The second phenotyping approach is based on user-
defined thresholds of marker expression values that can be combined using logical
operators for the identification of designated cell phenotypes. The distributions of
cells are represented as density plots based on the marker expression levels. In both

phenotyping approaches, the expression profiles of the cell types are plotted as
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heatmaps, their proportions quantified in barplots and boxplots and their locations in
the ROI visualised as cell outlines.

Once cell populations and phenotypes have been identified, the spatial
analysis investigates the distance between cells of the same (homotypic
aggregations) or different (heterotypic aggregations) types. In the homotypic
analysis, clusters of cells of the same type within a user-defined distance are
identified with DBSCAN?®® as implemented in the fpc®’ R package. These homotypic
cell aggregations are visualised as position maps, reporting cell location and high-
density clusters in the ROI. In the heterotypic analysis, the cell distances, defined as
the Euclidean distances between cell centroids, are computed using custom R
scripts and visualised as density plots. The homotypic and heterotypic spatial
analyses can be run in parallel or singularly on one or more sets of cells.

The pixel-based analysis quantifies areas positive for user-defined
combination of markers using the EBImage31 package with custom R scripts
(Supplementary Fig. 1c). These measurements are performed starting from the
thresholded images produced in the raw image processing step (Supplementary Fig.
la). The marker positive areas obtained in this way are then normalised over the
area of the whole image or specific tissue or marker compartments. The resulting

normalised positive areas can then be quantified in barplots and boxplots.

SIMPLI is implemented as a Nextflow® pipeline employing Singularity
containers® hosted on Singularity Hub*® to manage all the libraries and software
tools. This allows SIMPLI to automatically manage all dependencies, irrespective of
the running platform. Nextflow also manages automatic parallelisation of all

processes while still allowing the selection of parts of the analysis to execute.
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Sample description

Six FFPE blocks of normal (non-cancerous) colon mucosa (CLN1-CLN6), one
of normal appendix (APP1), and one of rectal cancer (CRC1) were obtained from
eight individuals who underwent surgery for the removal of colorectal cancers
(Supplementary Table 1). All blocks were reviewed by an expert pathologist (MRJ).
All patients provided written informed consent in accordance with approved
institutional guidelines (University College London Hospital, REC Reference:

20/YH/0088; Istituto Clinico Humanitas, REC Reference: ICH-25-09).

Staining and IMC ablation of human colon mucosa and appendix

Four um-thick sections were cut from each block of samples CLN1-CLN6 and
APP1 with a microtome and used for staining with a panel of 26 antibodies targeting
the main immune, stromal and epithelial cell populations of the gastrointestinal tract
(Supplementary Table 2). The optimal dilution of each antibody in the panel was
identified by staining and ablating FFPE appendix sections. The resulting images
were reviewed by a mucosal immunologist (J.S.) and the dilution giving the best
signal to background ratio was selected for each antibody (Supplementary Table 2).
To perform the staining for IMC, slides were dewaxed after a one-hour incubation at
60°C, rehydrated and heat-induced antigen retrieval was performed with a pressure
cooker in Antigen Retrieval Reagent-Basic (R&D Systems). Slides were incubated in
a 10% BSA (Sigma), 0.1% Tween (Sigma), and 2% Kiovig (Shire Pharmaceuticals)
Superblock Blocking Buffer (Thermo Fisher) blocking solution at room temperature
for two hours. Each antibody was added to a primary antibody mix at the selected
concentration in blocking solution and incubated overnight at 4°C. After two washes

in PBS and PBS-0.1% Tween, the slides were treated with the DNA intercalator Cell-
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ID™ Intercalator-Ir (Fluidigm) (containing the two iridium isotopes 191Ir and 193Ir)
1.25 mM in a PBS solution. After a 30-minute incubation, the slides were washed
once in PBS and once in MilliQ water and air-dried. The stained slides were then
loaded in the Hyperion Imaging System (Fluidigm) imaging module to obtain light-
contrast high resolution images of approximately four mm?. These images were used
to select the ROI in each slide. For CLN1-CLN6, 1 mm? ROIs were selected to
contain the full thickness of the colon mucosa, with epithelial crypts in longitudinal
orientation. For APP1, a one mm? ROI containing a lymphoid follicle in its whole
depth alongside a portion of lamina propria and of epithelium was selected. ROIs

were ablated at a o um/pixel resolution and 200 Hz frequency.

IMC data analysis of human colon mucosa

Twenty-eight images from 26 antibodies (Supplementary Table 2) and two
DNA intercalators were obtained from the raw .txt files of the ablated regions in
CLN1-CLN6 using the data extraction process. Pixel intensities for each channel
were normalised to the 99" percentile in all samples and Otsu thresholding was
performed on the normalized images with a custom CellProfiler4 pipeline, which was
employed also to generate the masks for the lamina propria (using the Vimentin
channel including all <75-pixel large negative areas) and the epithelium (starting
from the Pan-keratin and E-cadherin channels, dilatating the images with a three-
pixel disk and the filling up of all <75-pixel large negative areas). These masks were
then added into a sum image, which underwent dilatation with a three-pixel disk and
filling up of all <25-pixel large negative areas. Positive features outside of the lamina
and epithelium were removed with an opening operation using a 150-pixel radius

and the lamina propria mask was subtracted from the sum image to generate the
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final mask for the epithelial compartment. These masks and the thresholded images
were used as input for the pixel-based and cell-based analysis processes. The IgA
masks employed for the pixel analysis were generated using a three-class global
Otsu thresholding with two background classes after applying a Gaussian filter with a
1.5-pixel large radius.

To evaluate the effect of normalisation on the downstream analysis, sample
specific thresholds were manually selected for IgA, E-Cadherin, Pan-Keratin and
Vimentin and applied to the raw images. The resulting thresholded images were
used to generate lamina propria and epithelial masks for each sample individually.

Pixel-level analysis was performed on the IgA masks derived from either the
normalised or the raw images and IgA® areas in the tissue, lamina propria and
epithelium were measured and normalised over the areas of the three
compartments.

Cell-level analysis started with CellProfiler4 segmentation first on DNA1 with
global Otsu thresholding to identify the cell nuclei. Then, cells were identified by
radially expanding each nucleus for up to 10 pixels over a membrane mask derived
from the IgA, CD3, CD68, CD11c and E-cadherin channels. After inspection by an
expert histologist (JS), only cells overlapping with the lamina propria mask by at least
30% were retained.

Cell identities were assigned according to the highest overlap of the cell area
with marker-specific thresholds defined by an expert histologist (JS): 215% of the IgA
mask for IgA cells; 215% of the CD3 mask for T cells; 225% of the CD68 mask for

macrophages; 215% of CD11c mask for dendritic cells.

IMC data analysis of human appendix
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Images from the same 26 antibodies and two DNA intercalators used in the
colon mucosa (Supplementary Table 2) were obtained from the raw .txt files of the
ablated region in APP1, normalised to the 99" percentile and thresholded with
CellProfiler4 as described above. For the cell-based analysis, nuclei were identified
using the DNA1 channel and cells were isolated through watershed segmentation
with the nuclei as seeds on a membrane mask summing up CD45, Pan-keratin and
E-cadherin thresholded images.

Cells were assigned to the epithelium or to immune cell populations if they
overlapped for 210% with the following masks: CD3 mask for T cells; CD20 and
CD27 masks for B cells; CD68 mask for macrophages; CD11c mask for dendritic
cells; E-cadherin® and Pan-keratin® masks for epithelial cells.

T cells were further phenotyped using unsupervised clustering at resolutions
between 0.1 and 1.0, with 0.05 intervals and based on the cell marker intensity for
CD3, CD45RA, CD45R0O, CD4, CDS8, Ki67 and PD1. The resulting clusters were
manually inspected and the clustering with the highest number of biologically
meaningful clusters (resolution = 0.25) was chosen. Clusters were re-identified using
mean intensity thresholds defined by an expert histologist (JS) for the following
markers: CD3 >0.06 for cluster 1; CD8a >0.125 for cluster 2; CD45RA >0.125 for
cluster 3; CD4 >0.125 and CD45RO >0.15 for cluster 4; and CD4 > 0.1 and PD1
>0.15 for cluster 5.

Homotypic aggregations of CD4"PD1" T cells (cluster 5, resolution = 0.25)
were computed using a minimum of five points per cluster and a reachability

parameter corresponding to a density of at least 5 cells/mm?.

CD3 staining and mIF of human rectal cancer
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Two 4 um thick serial sections were cut from CRC1 FFPE block using a
microtome. The first slide was dewaxed and rehydrated before carrying out HIER
with Antigen Retrieval Reagent-Basic (R&D Systems). The tissue was then blocked
and incubated with the anti-CD3 antibody (Dako, Supplementary Table 2) followed
by horseradish peroxidase (HRP) conjugated anti-rabbit antibody (Dako) and stained
with 3,3' diaminobenzidine (DAB) substrate (Abcam) and haematoxylin. Areas with
CD3" infiltration in the proximity of the tumour invasive margin were identified by a
clinical pathologist (M. R-J.)

The second slide was stained with a panel of six antibodies (CD8, PD1, Ki67,
PDL1, CD68, GzB, Supplementary Table 2), Opal fluorophores and 4’,6-diamidino-2-
phenylindole (DAPI) on a Ventana Discovery Ultra automated staining platform
(Roche). Expected expression and cellular localisation of each marker as well as
fluorophore brightness were used to minimise fluorescence spillage upon antibody-
Opal pairing. Following a one-hour incubation at a 60°C, the slide was subjected to
an automated staining protocol on an autostainer. The protocol involved
deparaffinisation (EZ-Prep solution, Roche), HIER (DISC. CC1 solution, Roche) and
seven sequential rounds of: one hour incubation with the primary antibody, 12
minutes incubation with the HRP-conjugated secondary antibody (DISC. Omnimap
anti-Ms HRP RUO or DISC. Omnimap anti-Rb HRP RUO, Roche) and 16 minute
incubation with the Opal reactive fluorophore (Akoya Biosciences). For the last round
of staining, the slide was incubated with Opal TSA-DIG reagent (Akoya Biosciences)
for 12 minutes followed by Opal 780 reactive fluorophore for our hour (Akoya
Biosciences). A denaturation step (100°C for 8 minutes) was introduced between
each staining round in order to remove the primary and secondary antibodies from

the previous cycle without disrupting the fluorescent signal. The slide was
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counterstained with DAPI (Akoya Biosciences) and coverslipped using ProLong Gold
antifade mounting media (Thermo Fisher Scientific). The Vectra Polaris automated
guantitative pathology imaging system (Akoya Biosciences) was used to scan the
labelled slide. Six fields of view, within the area selected by the pathologist, were
scanned at 20x and 40x magnification using appropriate exposure times and loaded
into inForm* for spectral unmixing and autofluorescence isolation using the spectral

libraries.

mIF data analysis

After spectral unmixing and merging of six 20x fields of view for a total of
>5mm? ROI (Table 2), one single-tiff image was extracted for each marker and its
intensity was rescaled from 0 to 1 with custom R scripts. The resulting single-tiff
images were pre-processed to remove the background noise with Otsu thresholding
in CellProfiler4 and used for cell segmentation by applying a global threshold to the
DAPI channel and selecting all objects with a diameter between four and 60 pixels.
PD1°'CD8" cells, CD68" cells and PDL1" cells were then identified using mean
intensity thresholds of 0.01 for CD8, 0.005 for PD1, 0.01 for CD68 and 0.01 for
PDLL1. All thresholds were inspected by an expert histologist (JS).

The distributions of minimum distances between PDL1" cells and PD1°CD8"
cells were calculated from the coordinates of the centroids of each cell in the image.
All PDL1" cells and PD1*CD8" cells at a distance from each other lower than double
the maximum cell radius (24 pixels = 12 um) were considered as proximal. All other

cells were classified as distal.

CODEX data analysis
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A published dataset of colorectal CODEX images® was downloaded from The
Cancer Imaging Archive (https://doi.org/10.7937/tcia.2020.fgn0-0326). It consisted of
processed CODEX data from 35 colorectal cancer samples divided in two groups
(CLR and DII) according to the peritumoral inflammatory levels and the presence of
tertiary lymphoid structures®. For each sample, four .tiff images were available
representing four 0.6mm spots from two 70-core tissue microarrays. These images
were hyperstacks of 58 channels including 56 antibodies (Supplementary Table 2)
and two DNA markers with a resolution of 377 nm/pixel. After manual review of all
140 spots, one representative image per sample was selected, having the best focus
and containing both tumour and peritumoural immune infiltrates.

The single-channel tiff files for each selected image were extracted and the
pixel intensities were rescaled from 0 to 1 with a custom R script. Using SIMPLI,
single-cell segmentation was performed in each of the 35 images by applying a
global threshold to the HOECHST channel to identify the nuclei and retaining all
objects with a diameter between 5 and 40 pixels. Each nucleus was then expanded
by 5 pixels in all directions to define the cell area.

Resulting single cells were assigned to ten phenotypes according to the mean
cell expression of CDX2 >0.15 or MUCL1 >0.15 or cytokeratin >0.15 for tumour cells;
CD34 >0.15 or CD31 >0.15 for endothelial cells; vimentin >0.1 for other stromal
cells; CD11c >0.3 for dendritic cells; CD38 >0.26 for B cells; CD4 >0.13 and CD3
>0.1 for CD4" T cells; CD4 >0.12 and FOXP3 >0.5 and CD3 >0.1 for Tregs; CD8
>0.16 and CD3 >0.1 for CD8" T cells, and CD68 >0.11 for macrophages. The
heterotypic spatial analysis was performed by calculating the minimum distances of
macrophages, CD8" T cells, CD4" T cells, Treg cells, and B cells to tumour cells and

endothelial cells using the coordinates of the cell centroids.
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https://qithub.com/ciccalab/SIMPLI. The software code is protected by copyright. No
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