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Abstract: Previous genome-wide association studies (GWAS) of hematological traits have 

identified over 10,000 distinct trait-specific risk loci, but the underlying causal mechanisms 

at these loci remain incompletely characterized. We performed a transcriptome-wide 

association study (TWAS) of 29 hematological traits in 399,835 UK Biobank (UKB) 

participants of European ancestry using gene expression prediction models trained from 

whole blood RNA-seq data in 922 individuals. We discovered 557 TWAS signals associated 

with hematological traits distinct from previously discovered GWAS variants, including 10 

completely novel gene-trait pairs corresponding to 9 unique genes. Among the 557 

associations, 301 were available for replication in a cohort of 141,286 participants of 

European ancestry from the Million Veteran Program (MVP). Of these 301 associations, 199 

replicated at a nominal threshold (� = 0.05) and 108 replicated at a strict Bonferroni 

adjusted threshold (� = 0.05/301). Using our TWAS results, we systematically assigned 

4,261 out of 16,900 previously identified hematological trait GWAS variants to putative 

target genes. Compared to coloc, our TWAS results show reduced specificity and increased 

sensitivity to assign variants to target genes.  

 

Introduction.  
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Blood cells facilitate key physiological processes in human health such as immunity, 

oxygen transport, and clotting. Blood cell traits have been associated with risk for complex 

diseases, including asthma, autoimmune conditions, and cardiovascular disease. Genome-

wide association studies (GWAS) in both large European and trans-ethnic cohorts have 

identified thousands of loci associated with hematological traits including red blood cell, 

white blood cell, and platelet indices.1–3 

While variant-level analyses provide general insights into the genetic architecture of 

blood cell traits, functional mechanisms for these mostly non-coding signals remain elusive. 

Transcriptome-wide association studies (TWAS) have been successful in identifying new 

genetic loci and prioritizing potential causal genes at known loci for many complex traits 4–

7. TWAS associates phenotypes of interest with gene expressions predicted from genotype-

based prediction models built in a reference eQTL dataset. TWAS results can lead to an 

increased understanding of the functional mechanisms underlying previously observed 

variant-trait associations by positing relationships between genetic variants, effector 

gene(s), and phenotypes. Additionally, TWAS has increased statistical power compared to 

single variant association tests by aggregating multiple modest strength single variant 

signals into a combined test8. Here, we conducted a large TWAS of 29 hematological traits 

by studying 399,835 participants of European ancestry from the UK Biobank (Figure 1)9. 

First, we trained gene expression prediction models using a reference dataset of 922 

participants of European ancestry from the Depression Genes and Networks (DGN) cohort 

with both genotype and RNA-seq data from whole blood10. Second, we applied the gene 

expression prediction models trained in DGN to our discovery UK Biobank participants 

(n=399,835) to obtain predicted gene expression levels and performed association testing 
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between predicted gene expression values and blood cell phenotypes. Third, we attempted 

to replicate associations identified in UK Biobank in 141,286 European ancestry 

participants from the Million Veteran Program (MVP) study.11 Finally, we performed 

follow-up analyses including conditional association tests on known GWAS variants, fine-

mapping of TWAS loci, and TWAS-based gene assignment for GWAS variants. We 

demonstrate advantages of TWAS over single-variant analyses by comparing to a recent 

large GWAS of hematological traits in UK Biobank Europeans3.  

As previously mentioned, TWAS results can shed light on the functional mechanisms 

underlying variant-trait associations by linking variants to target genes. Designing 

appropriate functional experiments to interrogate biological mechanisms or to identify 

potential drug targets necessitates accurately assigning GWAS variants to target genes. 

Often, variants are linked to target genes using distance based approaches, which can lead 

to inaccurate assignments (“Nearest Gene” in Figure 2).12,13 Colocalization based methods 

(“eQTL Colocalization” in Figure 2) evaluate the evidence that a GWAS variant coincides 

with an eQTL signal for a gene in a relevant cell type and if these signals are likely driven by 

the same biological process or the same set of variants. While useful, colocalization 

methods may be underpowered in situations where there are multiple variants which are 

associated both with a complex trait in GWAS and linked to the same target gene but with 

low or moderate effect size. 

We leveraged our TWAS results to assign GWAS variants to target genes. For each 

GWAS variant-trait association, our TWAS based approach identified a set of potential 

target genes associated with the same phenotype utilizing TWAS association results and 

gene expression prediction models (“TWAS” in Figure 2). We then used individual level 
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genotypes in our testing cohort (UK Biobank) to identify variant-gene pairs where the 

variant genotype and the predicted gene expression values are correlated (r2 > 0.2). By 

effectively aggregating multiple smaller effect eQTLs for a gene, we hypothesized that our 

TWAS based approach would be better powered than coloc to identify target gene(s) for a 

GWAS variant . We systematically assigned the 16,900 conditionally distinct variant-trait 

associations identified by Vuckovic et al. to target genes and compared our TWAS-based 

assignments to those from coloc, a commonly used eQTL colocalization method.  

 

Methods. 

Included Cohorts.  

Depression Genes and Networks (DGN). The DGN study was designed to collect samples of 

individuals with and without major depressive disorder, ages 21-60, from a survey 

research panel broadly representative of the United States population.10. Genotyping and 

RNA-sequencing procedures have been described previously.10  For 922 European ancestry 

participants from the DGN study, we obtained both genotype data imputed to the TOPMed 

Freeze 8 reference panel and RNA-seq data.14,15 For training gene expression prediction 

models, we included bi-allelic variants that are common and well-imputed (MAF > 0.05, 

Rsq > 0.8) in both DGN and in the UK Biobank. In all, 5,652,397 variants were included, 

here forward referred to as QC variants. DGN whole-blood RNA-seq data was obtained for 

922 European ancestry participants.10  As described previously, quantified gene expression 

values were normalized using the hidden covariates with prior (HCP) method16, correcting 

for technical and biological factors.10  
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UK Biobank (UKB) Europeans: UKB recruited 500,000 people aged between 40-69 years in 

2006-2010, establishing a prospective biobank study to understand risk factors for 

common diseases such as cancer, heart disease, stroke, diabetes, and dementia.9 

Participants are being followed-up through health records from the UK National Health 

Service. UKB has genotype data, imputed with UK10K as reference, on all enrolled 

participants, as well as extensive baseline questionnaires and physical measures and 

stored blood and urine samples. Hematological traits were assayed as previously 

described.1 Genotyping on custom Axiom arrays, subsequent quality control, and 

imputation has been previously described.9  

 For our TWAS, we analyzed UKB participants of European ancestry to match the 

genetic ancestry of DGN participants used for model training. Participants were included in 

our analysis if identified as European through a combination of self-reported ancestry and 

k-means clustering of genetic principal components (PCs) in order to minimize genomic 

inflation due to population stratification, and for consistency with previously published 

blood cell trait GWAS in UKB.3 First, we calculated PCs and their loadings for all 488,377 

genotyped UKB participants using LD pruned variants (pairwise r2 < 0.1) with MAF �0.01 

and missing rate �0.015 in the UK Biobank data set that overlapped with the participants 

in the 1000G Phase 3 v5 (1KG) reference panel.9 Reference ancestries used included 504 

European (EUR), 347 American (AMR), 661 African (AFR), 504 East Asian (EAS) and 489 

South Asian (SAS) samples (overall 2504). We projected the 1KG reference panel dataset 

on the calculated PC loadings from UK Biobank. We then used k-means clustering with 4 

dimensions, defined by the first 4 PCs, to identify individuals that clustered with the 

majority of 1KG reference panels in each ancestry.  We used self-reported 
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ancestry/ethnicity, in some circumstances, to adjust these groups. UKB participants 

defined as European ancestry include those that cluster with the most 1KG EUR by k-means 

clustering.  We adjusted this group by removing those that self-reported as Indian, 

Pakistani, Bangladeshi, any other Asian background, Black or Black British, Caribbean, 

African, Any other Black background, or Chinese (n=32).  Additionally, we removed any 

individuals with self-reported mixed ancestry (n=402). A total of 451,305 remained in the 

European ancestry group. Participants were also excluded based on factors likely to cause 

major perturbations in hematological indices including positive pregnancy status, drug 

treatments, cancer self-report, ICD9 and ICD10 disease codes (see Supplemental Text), and 

surgical procedures. Participants were included only if they had complete data for all 

covariates and phenotypes. In total, 399,835 samples were included in the analysis. 

As aforementioned, we included only bi-allelic and well-imputed common variants 

(Rsq > 0.8, MAF > 0.05) in UKB. All 29 blood cell phenotypes were adjusted for age, age2, 

top 10 genotype PCs, center, genotyping array, and sex. For white blood cell traits, 

phenotypes were  log10(x + 1) transformed before regression. Residuals from these 

regression models were inverse normal transformed and serve as phenotypes.  

 

Million Veteran Program (MVP) Europeans 

The MVP is an observational cohort study and mega-biobank in the Department of Veteran 

Affairs healthcare system which began enrollment in 2011. As of Release 3, 318,725 

individuals of European ancestry (as defined by HARE17) have available electronic health 

records (EHR), survey, and genotype data. After quality control largely following the 

guidelines established in Marees et al 2018, 308,778 individuals of European ancestry 
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remained.18 Only a subset of 15 hematological traits out of the 29 analyzed in UKB were 

available for replication in MVP. For our replication study, participants were limited to 

those with available data among these 15 traits (n =  141,286). Phenotypes were adjusted 

for covariates following the same procedure as in UKB.  

 

 

Training of Gene Expression Prediction Models. We trained gene expression prediction 

models using an elastic net pipeline following the well-established PrediXcan 

methodology.8 Our decision to use an in-house pipeline rather than the publicly available 

weights from PrediXcan was two-fold. First, we performed TOPMed freeze 8 based 

imputation, enhancing genome coverage and imputation quality compared to the 1000G 

Phase 1 v3 reference panel underlying the PrediXcan weights, the 1000G Phase 1 v3 

ShapeIt2 (no singletons) panel. Second, by training our own prediction models, we ensured 

that every variant present in the prediction models was available in our UKB dataset.  

For each gene, we included variants within a 1Mb window of the gene start and end 

positions and excluded variants in high pairwise LD (r2 > 0.9) with other variants in the 

window. We tuned the elastic net penalty parameters using 5 fold cross validation with the 

`glmnet` function in R. We obtained 12,898 elastic net models where more than one variant 

was included in the prediction model. Models with a single variant were excluded from our 

TWAS since there is no difference between the TWAS approach and single variant GWAS in 

this setting. We further excluded models with model R2 <= 0.05, leading to  10,004 models 

for subsequent analysis (Figure S1).  
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Association Testing with REGENIE. Using the 10,004 models trained in DGN, we 

predicted gene expression values in UKB European ancestry participants. We then 

performed association testing between predicted gene expression and covariate-adjusted 

blood cell phenotypes with REGENIE.19 We used an LD (linkage disequilibrium) pruned 

(plink --indep-pairwise 50 5 0.1) set of 174,957 variants with MAF > 0.01 in the genotype 

data available for UKB Europeans to fit the REGENIE null model accounting for cryptic 

relatedness. We analyze all 29 phenotypes simultaneously using the grouping option 

available in REGENIE and set the number of blocks to 1,000. 

To control Type I error at � = 0.05, we considered a TWAS association significant if 

p < 0.05/(10,004 * 29) = 1.72*10-7. Note that this Bonferroni adjusted significance 

threshold is rather quite conservative due to correlations among the blood cell phenotypes 

and among predicted expressions of genes. Results from this TWAS association analysis are 

referred throughout the manuscript as the marginal TWAS results. After the marginal 

analysis, we partitioned the results into TWAS loci for each trait by beginning with the 

most significant TWAS gene not assigned to a TWAS locus, assigning all genes within 1Mb 

of the gene not yet in a locus to its locus, and then proceeded similarly for the entire 

genome until all significant genes were in a locus.  

 

Conditional Analysis. In order to assess which marginally significant TWAS genes provide 

novel findings above and beyond the discoveries in GWAS of blood cell traits in Europeans, 

we tested the association between predicted gene expression and phenotype while 

conditioning on reported blood cell trait GWAS variants. This methodology has been 

described in a previous TWAS of blood cell traits from our group.20 We partitioned the 
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distinct GWAS variants from Vuckovic et al. into three phenotype categories: red blood cell 

(RBC), white blood cell (WBC), and platelet (PLT) traits.3 We considered all distinct GWAS 

variants as determined by conditional analysis on individual level data, referred to as 

conditionally independent variants by Vuckovic et al. For a TWAS gene associated with one 

trait in the above categories, we conditioned on any distinct variant reported as associated 

with any trait within the corresponding phenotype category on the same chromosome.  

 

Replication Analysis in MVP. We conducted two replication analyses in MVP Europeans 

to follow up on our results from the UKB TWAS: one for the marginal TWAS results and a 

second restricted to only conditionally significant genes.  In both analyses, our DGN trained 

gene expression prediction models were used to impute gene expression values in MVP 

Europeans. Association testing was performed via boltLMM.21 The Bonferroni adjusted 

thresholds for replication were determined by the number of marginal or conditional 

associations in the UKB available for replication, respectively. 

 

TWAS fine mapping via FINEMAP. We modified the FINEMAP software to compute 

credible sets of genes from our marginal TWAS results.22 We substituted GWAS summary 

statistics for our TWAS summary statistics from the marginal TWAS analysis. In place of an 

LD matrix, we used a gene-gene correlation matrix computed on the predicted gene 

expression values in UKB Europeans. We compute the FINEMAP credible sets and posterior 

probabilities of inclusion for all TWAS loci with at least 2 genes.  

 

TWAS variant-to-gene assignments.  
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We assigned the distinct GWAS variants from Vuckovic et al. to putative target genes using 

our TWAS results.3 For a GWAS variant-trait association, we considered all significant 

TWAS genes for the matching trait in any TWAS locus within 1Mb of the variant. We 

assigned the variant to a gene if the TWAS gene had both a FINEMAP posterior probability 

of inclusion greater than 0.5, and evidence of correlation (r2 > 0.2) between the variant 

genotype and predicted gene expression. We performed our TWAS assignments on 10,239 

variant trait associations across 10 hematological traits from Vuckovic et al.3 These 10 

traits were chosen based on data availability for eQTLs in relevant cell types including 

platelets, CD4+, CD8+, CD14+, CD15+, and CD19+ cells. In their work, they performed eQTL 

co-localization analyses using coloc. For a GWAS variant, we assigned the eGene(s) 

corresponding to any co-localizing eQTL as the target gene.  

 

Open Targets. Open Targets Genetics is an open-access integrative resource which 

aggregates human GWAS and functional genomics data including gene expression, protein 

abundance, chromatin interaction, and conformation data in order to make robust 

connections between GWAS loci and potentially causal genes.23 In order to assign 

potentially causal genes to a given GWAS variant, Open Targets provides a disease-agnostic 

variant-to-gene (V2G) score which combines a single aggregated score for each GWAS 

variant-gene prediction. This analysis combines four different data types: eQTL and pQTL 

datasets, chromatin interaction and conformation datasets, Variant Effect Predictor  (VEP) 

scores, and distance from the canonical transcription start site for a target gene. We 

compare the TWAS and coloc variant-to-gene assignments to the sets of potentially causal 

genes identified by Open Targets. Performance is assessed by checking if any TWAS/coloc 
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assigned gene for a given variant is either the most likely gene identified by Open Targets 

(OT Max) or any gene identified by Open Targets (OT Any).  

 

BLUEPRINT specifically expressed genes. We also assessed the quality of the gene 

assignments for the TWAS and coloc-based methods by determining if the assigned gene is 

cell-type specifically expressed in gene expression data from BLUEPRINT.24 We group 

available expression data into five cell type groups: erythrocytes, megakaryocytes, 

macrophages and monocytes, nCD4 cells, and neutrophils. We classified genes as cell type 

group-specific or shared via Shannon entropy across the five cell type groups. We first 

exponentiated the BLUEPRINT MMSEQ expression quantifications, to be comparable to 

RPKM. Then, for each gene, we calculated the normalized gene expression by dividing gene 

expression in each cell type group by the sum across all five cell type groups. Next, we 

calculated Shannon entropy using the normalized gene expression values. We defined the 

shared genes across cell type groups as those with entropy < 0.1 and the cell type-specific 

genes as those with entropy > 0.5 and gene expression > 1 in the respective cell type. 

Biologically plausible cell type groups selected for the 29 phenotypes analyzed are detailed 

in Supplemental Table S1.  

 

Results. 

Marginal TWAS Results. 

Using an elastic net-based pipeline, we trained gene expression prediction models using 

imputed genotypes and whole blood RNA-seq data from 922 European ancestry 

participants from the DGN cohort10. In total, we trained prediction models for 12,989 
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genes, 10,004 of which passed our quality control filter (model R2 > 0.05 and >1 variant 

selected in model) (Supplementary Figure 1).  

 We conducted a TWAS in 399,835 participants of European ancestry from the UKB 

for 29 blood cell phenotypes: 11 white blood cell indices, 4 platelet indices, and 14 red 

blood cell indices (see Supplemental Table S1). 11,759 gene-trait associations were 

transcriptome-wide significant at the Bonferroni adjusted threshold of 1.72 �10-7. The 

11,759 associations were grouped into 4,835 trait-specific TWAS loci (see Methods) with 

the most significant gene at each TWAS locus assigned as the sentinel TWAS gene, resulting 

in 1,792 unique sentinel genes. Among these 1,792 genes, 1,112 were sentinel genes for 

more than one trait (see Figure S2). Of the 4,835 TWAS loci, 2,375 (49.1%) had multiple 

TWAS significant genes. Additionally, the 1Mb region surrounding 9 sentinel genes did not 

contain any distinct GWAS variants from Vuckovic et al.  

 We generated credible sets at all TWAS loci using FINEMAP (see Methods for 

details).22 8,928 out of 11,759 (76%) marginal TWAS associations were included in the 

FINEMAP credible sets for their trait-specific loci. The average number of genes in each 

FINEMAP credible set was 3.97 (SD = 2.3) and the median was 4 (see Supplemental Table 

S2). In 297 (6.1%) trait specific loci, the sentinel TWAS gene was not included in the 

credible set.  

In order to replicate significant results from our marginal TWAS analysis, we 

predicted gene expression values in 141,286 European ancestry participants from MVP 

using models trained in DGN (see Methods).11 For the replication analysis, 15 out of the 29 

UKB analyzed blood cell traits were available in MVP. 9,492 out of the 10,004 (94.8%) gene 

expression prediction models were comprised of variants that overlapped completely with 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.03.453690doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.453690
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

variants available in MVP. Replication was thus attempted in MVP for 5,993 gene-trait pairs 

with fully matching phenotype and gene expression prediction model variants. Among the 

attempted  5,993 gene-trait pairs marginally significant in UKB (marginal in contrast to 

conditional on nearby GWAS variants), 4,245 (71.3%) replicated in MVP at a nominal 

significance threshold (� = 0.05) with the same direction of effect, and 2,357 (39.3%) 

replicated at the Bonferroni corrected threshold (� = 8.34 �10-6) with the same direction 

of effect (Figure S3).  

 

Conditional Analyses Adjusting for Nearby GWAS Variants.  

We then used conditional analysis  to determine which of the 11,759 gene-phenotype 

associations in UKB represent novel findings beyond the recently published GWAS (see 

Methods for details)3. Of the 11,759 marginal gene-trait associations, 557 were 

conditionally significant at the Bonferroni corrected threshold (� = 0.05/11,759 = 

4.25�10-6, Figure 3). These 557 associations represent 395 distinct genes in 463 trait-

specific loci; 276 genes were conditionally significant for one trait, and 119 for multiple 

traits (Figure S4).  

Of the 557 conditionally significant associations discovered from UKB, 301 had both 

matching phenotypes and predicted gene expression in MVP, and thus were subject for 

replication. 199 (66.1%) associations replicate at a nominal threshold (� = 0.05) with 

consistent direction of effect (Figure S5), and 108 associations (35.9%) replicate at a 

Bonferroni adjusted threshold (0.05/301 = 1.66�10-4) with matching direction of effect.  

Additionally, 36 of the 557 conditionally significant TWAS associations had no 

GWAS significant (p < 5 �10-8) variants for the associated trait within 1Mb of the gene. 
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These 36 associations reflect TWAS’s increased power over single-variant GWAS analyses 

by aggregating multiple sub-genome-wide significant GWAS variants. For example, raftlin 

family member 2 (RFTN2) (GRCh37 chr2:198,432,948 - 198,540,769) which plays a role in 

TICAM-1 signaling in dendritic cells25, was associated with white blood cell count via 

marginal (p = 1.32�10-7) and conditional analysis (p = 2.69�10-7). In Vuckovic et al., the 

sentinel variant at the locus did not achieve genome-wide significance (p = 2�10-6). The 

association between RFTN2 and white blood cell count replicated in MVP (p = 1.9�10-8) 

with the same direction of effect.  

 

Novel TWAS Loci 

We discovered 10 conditionally significant gene-trait associations that have no previously 

identified distinct GWAS variants within �1Mb of the locus for any blood cell trait. Among 

the 10 associations, 4 were unable to be assessed for replication in MVP due to phenotype 

unavailability or missing variants in the TWAS prediction model. 3 out of the remaining 6 

associations replicated in MVP at a nominal significance threshold (� = 0.05) with the same 

direction of effect as in UKB, namely, interleukin 1 receptor associated kinase 1 binding 

protein 1 (IRAK1BP1) for mean platelet volume (beta = 0.0304, p = 3.4�10-6), and SNHG5 

for neutrophil count (beta = -0.0146, p = 0.0061) and white blood cell count (beta = -

0.0134, p = 0.013). The association between IRAK1BP1 and mean platelet volume also 

achieved significance at the Bonferroni adjusted replication threshold.  
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IRAK1BP1 (GRCh37 chr6:79,577,189 - 79,656,157). The TWAS association between 

IRAK1BP1 and mean platelet volume discovered by our TWAS demonstrates the utility of 

TWAS to discover and confirm trait-associated loci beyond GWAS and conditional analysis 

at the single variant level. In our TWAS, IRAK1BP1 demonstrated evidence of association 

with mean platelet volume despite no conditionally distinct GWAS signals within 1Mb of 

the gene. The 1Mb region around IRAK1BP1 contains several genome-wide significant 

variants in Vuckovic et al., with lead variant GRCh37 chr6:79617522 (p=6.4�10-13) (Figure 

4a). However, this region was grouped into a mean platelet volume locus over 8Mb away 

via individual-level conditional analysis (sentinel variant GRCh37 chr6:71326034_G_A). 

Importantly, in the Vuckovic et al. results, no target gene was identified for 

chr6:71326034_G_A via Ensembl Variant Effect Predictor (VEP)26 limiting the biological 

interpretation of the findings at the GWAS locus. Our TWAS prediction model for IRAK1BP1 

is primarily driven by variants in high LD with chr6:79617522; of the top 15 variants in 

terms of absolute value of the TWAS weights, 13/15 are in high LD (r2 > 0.8 in  TOP-LD 

EUR) with chr6:79617522 (Figure 4b). 

After conditioning on all distinct platelet-related variants on chromosome 6, 

including chr6:71326034_G_A, the marginal TWAS association for IRAK1BP1 and mean 

platelet volume (p = 9.47�10-12) was not attenuated (p = 5.33�10-14), demonstrating that 

the IRAK1BP1 TWAS signal is distinct from previously reported GWAS variants. 

Furthermore, the association between IRAK1BP1 and mean platelet volume replicated in 

MVP Europeans at the Bonferroni adjusted threshold (p =  3.4�10-6). Thus, with TWAS, we 

combined several trait-associated variants at the IRAK1BP1 locus into a stronger signal 

which demonstrated statistical independence from the previously reported 
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chr6:71326034_G_A signal and all other distinct platelet variants on chromosome 6. 

Additionally, these results link the variants to putative target genes via our gene expression 

prediction models. 

Figure 4 shows that there is cell-type specific epigenetic evidence that supports our 

findings. IRAK1BP1 is a component of  the IRAK1-dependent TNFRSF1A signaling pathway, 

which can activate NF-kappa-B and regulate cellular apoptosis and inflammation.27  

Variants in the gene expression prediction model for IRAK1BP1 in high LD with 

chr6:79617522 overlapped with megakaryocyte ATACseq peaks from BLUEPRINT (Figure 

4e).24 Additionally, we observed via megakaryocyte pcHi-C data that these same variants in 

the IRAK1BP1 prediction model interact with the promoter region for the nearby gene, 

lebercilin LCA5 (LCA5) (Figure 4c). LCA5 plays roles in centrosomal functions in nonciliary 

cells.28 While both IRAK1BP1 and LCA5 are expressed in megakaryocyte cells using 

expression data from BLUEPRINT, the expression level is higher in LCA5, suggesting a 

potential role for LCA5 in platelet trait variability, despite not being captured by TWAS 

(Figure 4d). LCA5 is not present in the DGN reference panel, and thus unavailable to fit a 

prediction model, likely because of low expression in whole blood (median TPM 0.018 in 

GTEx v8).29 Integration of our TWAS results with expression and chromatin conformation 

data in platelet producing megakaryocyte cells reveals novel candidate genes at this 

genomic locus; it is possible that the variants in IRAK1BP1 aggregated by the TWAS 

prediction model impact the expression of LCA5 through spatial proximity to the promoter 

region of the gene. The IRAK1BP1 locus shows both the statistical power gains possible 

through TWAS analysis and the importance of full consideration of other potential target 
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genes as well as complementary functional annotation resources in biological 

interpretation of a TWAS identified signal.  

 

TWAS Genes Implicated in Novel Phenotype Categories 

 Our TWAS conditional analysis identified 92 conditionally significant associations 

grouped into 70 loci with no distinct GWAS sentinels for the corresponding phenotype 

category within 1Mb of the gene. These gene-trait associations represent novel TWAS 

findings; our results support that the previously reported association at the locus is 

extended to a new class of correlated phenotypes (for example, extension of loci already 

associated with red blood cell related traits to platelet or white blood cell indices). Among 

the 92 associations, 42 were unable to be assessed for replication in MVP due to 

unavailable phenotype data or missing genotypes for at least one variant in the TWAS 

prediction model, and 35 out of the remaining 50 were replicated at a nominal significance 

threshold (� = 0.05) with the same direction of effect as in UKB. 17 out of 50 are replicated 

at the Bonferroni adjusted threshold for the total number of conditionally significant 

associations (� = 0.05/557 = 8.98�10-5). 

 

CD79B (GRCh37 chr17:62,006,100 - 62,009,714). One such example is the 1Mb region 

surrounding B-cell antigen receptor complex-associated protein beta chain (CD79B), which 

was associated with lymphocyte count (p = 9.81�10-10), hematocrit (p = 1.22�10-9), 

plateletcrit (p = 3.37�10-9), white blood cell count (p = 8.49�10-9), and hemoglobin 

percentage (p = 1.21�10-7) in our TWAS marginal analysis. Supporting the role of this gene 

in blood cell indices, an extremely rare mutation in CD79B, rs267606711, has been 
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reported to cause agammaglobulinemia 6 [MIM: 612692], an immunodeficiency 

characterized by profoundly low or absent serum antibodies and low or absent circulating 

B cells due to an early block of B-cell development30,31. 

In Vuckovic et al., the region surrounding CD79B contained several borderline 

genome-wide significant variants for lymphocyte count, with lead variant 

17:62008437_C_T (p = 2.3�10-9). However, in their conditional analysis, the region was 

clumped into nearby lymphocyte count GWAS signals, namely 17:57929535_A_G (p = 

1.16�10-25) with annotated target gene RNA, U6 small nuclear 450, pseudogene (RNU6-

450P) and 17:65087308_G_C (p = 4.34�10-10) with target gene helicase with zinc finger 

(HELZ) (with both genes assigned based on distance). After conditioning on the set of 186 

white blood cell count distinct variants identified by GWAS conditional analysis on 

chromosome 17, including 17:57929535_A_G and 17:65087308_G_C, CD79B continued to 

demonstrate evidence of association with lymphocyte count (p = 9.8�10-10) and white 

blood cell count (p = 8.5�10-9).  

Further, there were 6 distinct GWAS signals from individual level GWAS conditional 

analysis across both red blood cell and platelet traits within 1Mb of CD79B. To control for 

confounding due to correlated hematological traits, we further conditioned on the 6 

distinct variants for red blood cell and platelet traits in addition to the set of 186 white 

blood cell distinct variants. The association with lymphocyte count remained nominally 

significant (p = 3.03�10-4) and the white blood cell count association was attenuated (p = 

0.16). CD79B demonstrated some evidence of association with lymphocyte count in MVP 

Europeans as well (p = 1.1�10-5) with matching direction of association, despite not 

achieving the Bonferroni adjusted threshold (� =  8.34�10-6). Therefore, supporting the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.03.453690doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.453690
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

increased power of TWAS above single variant GWAS, our findings suggest the biologically 

plausible CD79B association with lymphocyte count was likely distinct from previously 

reported genetic loci in the neighborhood.   

 

TWAS fine mapping via Conditional Analysis 

TWAS conditional analysis was also used to fine map TWAS loci in which multiple genes 

achieved the Bonferroni adjusted significance threshold (see Supplemental Table S2). For 

example, erythropoietin (EPO) (GRCh37 chr7:100,720,800-100,723,700) encodes the 

primary regulator of red blood cell production and has been well studied for its impact on 

blood cells through its causal role in familial erythrocytosis [MIM: 617907] and Diamond-

Blackfan anemia-like [MIM: 617911].32 The 1Mb region surrounding EPO also contains 28 

distinct GWAS signals across 21 different blood cell traits. In our marginal TWAS analysis, 

13 marginally significant TWAS genes associated with hemoglobin concentration at this 

locus including EPO (p = 2�10-12), with the TWAS sentinel gene being solute carrier family 

12 member 9 (SLC12A9) (p = 2.51�10-29). However, despite the well-studied links to blood 

cell genetics, the EPO gene was not included in the 95% FINEMAP credible set. Yet after we 

condition the TWAS predicted expression on the distinct red blood cell signals at this locus, 

EPO was the only conditionally significant gene at the locus (p = 2.19�10-6). The 

association between SLC12A9 and hemoglobin was completely attenuated after 

conditioning (p = 0.71). This suggests that while the genetic link between EPO and blood 

cell traits are well established, the full set of causal variants and overall genetic 

architecture underlying the association remains elusive.  
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TWAS-based assignment of variants to target genes 

To compare co-localization and TWAS approaches of assigning GWAS variants to 

potential causal genes, we considered 10,239 variant-trait associations across 10 

hematological traits from Vuckovic et al. (see Methods). In their analyses, coloc identified 

427 out of 10,239 associations (4.2%) which colocalized with at least one eQTL. (Figure 

5a). We take the eGene(s) corresponding to these eQTLs as the gene(s) assigned to the 

GWAS variant by coloc. In comparison, our TWAS based approach assigned target genes to 

1,738 variant-trait associations, a four-fold increase compared to coloc. Of the 269 

associations assigned to at least one gene by both methods, 80% of the associations have at 

least one assigned gene in common, demonstrating that the two methods tend to assign 

variants to the same genes where they both assign a target gene. Of the 158 associations 

assigned to genes by coloc but not by our TWAS-based approach, 13 were assigned to genes 

with no expression data in our DGN reference dataset, 23 were assigned to TWAS genes 

with poor model predictive performance (model R2 <= 0.05), 51 variant-trait associations 

were not within +/- 1MB of any TWAS loci, 49 were only nearby TWAS loci with a non-

significant sentinel gene, and 22 had low correlations between variant dosage for the lead 

GWAS variant and imputed TWAS gene expression (r2 < 0.2) (Figure S6).  

 To illustrate one example where the two methods agree, Figure 6 highlights the 

concordant TWAS and coloc assignment of rs6062304 (GRCh37 chr20:62351539_A_T), a 

distinct variant for lymphocyte percentage, to Lck interacting transmembrane adaptor 1 

(LIME1), a gene with known involvement in T cell signaling.33,34 In Vuckovic et al., 

rs6062304 was assigned via VEP annotation to zinc finger CCCH-type and G-patch domain 

containing (ZGPAT), which has no clear link to blood cells. Figure 6a shows Vuckovic et al. 
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GWAS results overlaid with the marginal TWAS results for lymphocyte percentage. Six 

TWAS genes are significant, and a subset of 3 genes are included in the FINEMAP 95% 

credible set: LIME1, ZGPAT, and regulator of telomere elongation helicase 1 (RTEL1). Figure 

6a shows that LIME1 predicted expression is highly correlated (r2 =  0.905) with 

rs6062304, while ZGPAT  is moderately correlated (r2 = 0.556). coloc assigns LIME1 as an 

eGene because of the high LD (r2 = 0.916) between rs6062304 and an eQTL for LIME1, 

rs6062497 (Figure 6b). Similarly, Figure 6c demonstrates that variants with the largest 

weights in the LIME1 gene expression prediction model are in high LD with rs6062304. In 

contrast, Figure 6d reveals that variants in high LD with rs6062304 have smaller TWAS 

weights in the ZGPAT model, suggesting that the ZGPAT association with lymphocytes at 

this locus is not primarily due to rs6062304. While both LIME1 and ZGPAT correlations 

pass the r2 cutoff for the TWAS-based gene assignment (r2 > 0.2), LIME1 predicted 

expression is much more correlated with rs6062304, and is the most likely target gene at 

this locus according to the TWAS based approach. This highlights the value of considering 

correlation of predicted gene expression with the lead GWAS variant in TWAS assignment 

of likely target genes, as done in our pipeline. Thus, using different approaches, TWAS-

based and coloc-based variant-to-gene assignment methods assign rs6062304 to a 

biologically plausible target gene, improving upon distance-based approaches. 

However, in scenarios where eQTLs have not been identified in a target tissue of 

interest, likely due to small sample size for a given expression dataset, TWAS-based 

methods, which combine multiple potential eQTLs which may be in LD with a GWAS 

variant, are better powered to assign GWAS variants to target genes. Figure 5a shows that 

there are 1,469 variant-trait pairs which are assigned to a target gene via TWAS not 
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assigned to a gene by coloc. One such example is the TWAS assignment of rs1985157 to 

leucine rich repeat containing 25 (LRRC25) (GRCh37 chr19:18513594_T_C), a distinct 

variant for neutrophil count and neutrophil percentage. Neither VEP nor coloc assigned 

rs1985157 to a target gene. Our TWAS marginal analysis identified 4 significant genes for 

neutrophil count at this locus, LRRC25, elongation factor for RNA polymerase II (ELL), 

single stranded DNA binding protein 4 (SSBP4), and inositol-3-phosphate synthase 1 

(ISYNA1) (Figure 7a). However, only LRRC25 predicted gene expression values have a 

strong correlation with rs1985157 (r2 = 0.863). Two other TWAS-assigned genes are 

moderately correlated with rs1985157 (ELL r2 = 0.46) and (SSBP4 r2 = 0.47). Figure 7c 

shows that variants in the LRRC25 prediction model that are in high LD with rs1985157 

have the largest weights in absolute value. In contrast, Figure 7d shows that SSBP4 

predicted expression is driven by variants in moderate LD with rs1985157. Several studies 

have suggested that LRRC25 plays a key role in innate immune response and 

autophagy.35,36 Further, cell-type specific gene expression data from BLUEPRINT suggest 

that LRRC25 is specifically expressed in neutrophils.24 Our results show that TWAS-based 

variant-to-gene assignment methods can identify biologically plausible target genes, even 

when coloc fails to do so. 

In order to understand the differences in the TWAS and coloc gene assignments and 

to examine whether the additional variants assigned to genes by TWAS over coloc have 

relevant epigenetic evidence to the phenotype of interest, we compared the gene 

assignments of TWAS and coloc using BLUEPRINT cell-type specific expression data and 

Open Targets V2G scores (see Methods for details).23 We hypothesized that genes with 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.03.453690doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.453690
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

cell-type specific expression in BLUEPRINT in relevant cell types are more likely to be 

relevant target genes for GWAS associations.  

We found that the TWAS-based approach assigned GWAS variants to genes 

identified by external datasets at a slightly lower rate than the coloc assignments, but 

identified target genes for more than double the number of variants (see Figure 5b-c). 

Specifically, Figure 5d shows that 84% of the TWAS-based variant-to-gene assignments are 

supported by Open Targets (OT Any genes), and 64% of genes assigned by TWAS are the 

most likely target gene as identified by Open Targets (OT Max gene). In comparison, 88% of 

the coloc assigned genes are supported by OT Any genes and 78% as the OT Max gene. On 

the other hand, Figure 5c shows that 294 TWAS pairs are assigned to an OT Any gene and 

226 pairs assigned to an OT Max gene, much larger number of supported assignments than 

the 85 and 76 coloc pairs, a 3.46 and 1.97 fold increase respectively.  The proportion of 

variants assigned to cell-type specifically expressed genes in BLUEPRINT expression data is 

lower compared to the Open Targets assignments (Figure 5d). However, the TWAS-based 

approach matches 3.12-fold more variants to specifically expressed genes in trait-relevant 

cell types and 3.73-fold more genes to specifically expressed genes for any blood cell 

compared to coloc. Therefore, our results suggest that TWAS, compared to coloc, is less 

specific but more sensitive when assigning variants to target genes.  

 We then applied our TWAS-based variant-to-gene assignment to all 29 

hematological traits considered in our UKB TWAS. We successfully assigned 4,261 variant-

trait associations to 1,842 distinct potentially causal TWAS genes with an average of 1.45 

(SD = 0.81) genes assigned per variant-trait association (see Supplemental Table S3). Of the 

4,261 associations, 746 (17.5%) were assigned to specifically expressed genes in trait-
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relevant cell types, and 1,982 (46.5%) were assigned to specifically expressed genes for 

any blood cell. Both rates were comparable to the performance of the TWAS variant-to-

gene assignments in the phenotype restricted results above. For the 813 overlapping 

variant-to-gene assignments from the Open Targets datasets, the replication rates were 

similar to the phenotype restricted results for OT Any genes (78.2%), but the replication 

rate decreased for the OT Max gene (54.5%). 

 

Discussion. 

Our TWAS of blood cell traits in UKB Europeans demonstrates the utility of TWAS to 

identify novel loci and to extend known loci to additional phenotype categories, even in 

well-studied hematological traits for which over 10,000 loci have been reported by 

previous GWAS studies2,3.  

In total, our TWAS conditional analysis identifies 557 conditionally significant TWAS 

loci across 29 blood cell phenotypes, 199 of which replicated in MVP at a nominal 

significance level and 108 at a Bonferroni adjusted threshold. Our TWAS conditional 

analysis results suggest that as GWAS sample sizes and statistical power for single variant 

analysis continue to increase, additional statistically distinct variant signals, with lower 

allele frequencies or effect sizes, will continue to be discovered. Often, these conditionally 

significant TWAS genes are not the most marginally significant genes at their respective 

TWAS locus, suggesting that marginal TWAS results can be driven by previously discovered 

GWAS variants. Despite the promises of TWAS offering increased interpretability for GWAS 

results, deciphering the relationship between variant and gene level effects remains 

challenging.20,37,38  
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As a subset of the 557 conditionally significant results, we identify 10 novel loci 

previously undiscovered even after several large-scale GWAS in both European and trans-

ethnic cohorts. In addition, we replicate 3 out of 6 of the novel TWAS loci available for 

replication in MVP at a nominal significance threshold, and 1 at a Bonferroni adjusted 

significance threshold. Used in a less studied complex trait compared to hematological 

traits, a marginal TWAS analysis may be expected to identify even more novel signals, due 

to enhanced power over single variant GWAS analyses. For traits with a large sample size 

GWAS previously conducted, combining TWAS conditional analysis with previously 

conducted GWAS conditional analysis can further expand our ability to distinguish 

statistically distinct signals and link variants to target genes at complex loci, as 

demonstrated by our analysis at the IRAK1BP1 locus.  

 Further, we demonstrate the utility of TWAS conditional analysis to extend 

previously reported associations at genomic loci to a new class of correlated phenotypes, 

identifying 92 such loci. Due to the shared genetic architecture of blood cell traits which is 

mediated through the differentiating of common progenitor cells, variants which impact 

one class of blood cell traits may plausibly have an effect on other hematological traits. 

However, through conditioning our TWAS predicted expression on all distinct blood cell 

associated variants in a region, we demonstrate that TWAS can identify loci associations 

which are statistically distinct from previous GWAS discoveries. The CD79B locus 

demonstrates a robust association with lymphocyte count despite conditioning on 

previously identified white blood cell, red blood cell and platelet associated variants at the 

locus. This robust association confirms previously reported biological roles for CD79B with 
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lymphocyte function, and establishes relevant variant-level candidates for functional 

validation through the TWAS prediction model.30,31  

 We address some challenges with interpreting TWAS loci at the scale of biobank-

sized analyses through our adapted TWAS fine mapping via FINEMAP and conditional 

analysis with individual level TWAS data.20 To our knowledge, all TWAS fine mapping 

methods and software are currently designed for summary-statistics based TWAS 

approaches, with limited functionality to input user generated TWAS statistics from 

individual level data such as those generated by our REGENIE-based approach.37,39 To 

overcome this challenge, we substitute the variant-level LD matrix for the predicted 

expression correlation matrix in our UKB sample in the widely-used FINEMAP software to 

generate credible sets of genes. However, the main shortcoming of our approach is that we 

are only addressing correlation at the gene level via predicted expression values. In 

addition to previous research, future methodological research and software development 

should be done to address this challenge.37,38 

Our application of TWAS conditional analysis to TWAS locus fine mapping as 

demonstrated through the example of the EPO locus provides a way forward to combine 

trait-specific variant-level and gene-level information to identify gene-trait associations 

which are not driven by existing GWAS knowledge, where additional single variant signals 

likely remain to be discovered. This approach could be extended to consider step-wise 

TWAS-on-TWAS conditional analyses to generate credible sets of genes at a locus, similar 

to step-wise analyses in GWAS based on individual level data. Direct conditional analysis is 

only possible when using individual level genotype data in the discovery cohort, which 

presents an advantage of using non-summary statistics based methods to perform TWAS 
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when possible. In addition, we are better able to account for confounding due to LD from a 

potentially mis-specified LD reference panel than when using summary statistics based 

methods for both TWAS and conditional analysis. While improving the match of LD 

reference panels to study populations, especially for non-European populations, will 

improve the usefulness of summary statistics based TWAS, our work suggests distinct 

advantages of leveraging individual level genotype data when possible.  

Additionally, we perform systematic variant-to-gene assignment for distinct 

hematological trait GWAS signals using a TWAS-based approach, and demonstrate that 

many of our assignments are supported by external resources. Our results suggest that our 

TWAS-based approach of assigning GWAS variants to target genes can map many more 

variants to target genes using biobank scale data. This increased number of variants 

assigned to target genes comes at a price of decreased sensitivity. At both the LRRC25 and 

LIME1 loci, TWAS identifies additional genes that are moderately correlated with the GWAS 

variant of interest. Thus, our results support complementary roles of TWAS and 

colocalization approaches. We propose first using colocalization to assign GWAS variants to 

target genes using available cell-type specific eQTL data relevant to the trait of interest, and 

then leveraging the additional assignments generated by TWAS for GWAS variants not 

assigned to a target gene. Additionally, several refinements could be made to the TWAS-

based variant-to-gene assignments. By leveraging cell/tissue type specific gene expression 

datasets to train gene expression models in the future, the TWAS based approach could be 

extended to match the common practice of conducting eQTL colocalization or other target 

gene assignment analyses in trait-relevant cell/tissue types.40–43 The TWAS based approach 

could be further refined through a modified conditional TWAS analysis, in which a GWAS 
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variant is conditioned separately on predicted gene expression values of potential target 

genes at the locus, and the attenuation in the GWAS signal for each gene is assessed.  

There are still several future directions for the improvement of biobank-scale TWAS 

studies. First, increasing sample sizes in tissue specific expression datasets will allow 

future TWAS studies to train gene expression prediction models in cell/tissue types which 

are directly relevant to tissues of interest. Already, several TWAS methods have been 

developed to leverage multiple tissues to train better gene expression prediction 

models.6,7,44 Additionally, the TWAS variant-to-gene assignment approach would benefit 

from larger expression datasets to train cell/tissue type specific gene expression prediction 

models to assess the correlation between predicted expression and a GWAS variant of 

interest across several relevant models. For example, at the identified IRAK1BP1 locus, it 

would be useful to have larger megakaryocyte specific gene expression datasets available 

for TWAS model training; similar cell-type specific panels would be useful for other 

hematological indices and for complex trait analysis more generally.  Such cell-type specific 

reference panels are becoming increasingly available, though not always in adequate 

sample sizes for TWAS and not always with publicly available individual level data.45 

Second, extending the variable selection procedure for prediction models past the 1Mb cis-

region surrounding TWAS genes either via trans-eQTL datasets or by selecting variants 

which are highly likely to be in interesting epigenomic regions will improve TWAS 

models.46,47  

 In summary, we conduct a large-scale TWAS of well-studied hematological traits 

and discover novel loci. We show that TWAS-based approaches for assigning variants to 

their target genes are comparable in specificity to co-localization based approaches, but are 
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able to assign many more variants (4.07 fold increase) to target genes. Our careful use of 

conditional analysis, TWAS-based fine mapping, and TWAS-based variant-to-gene 

assignments in the context of blood cell traits will be broadly useful to the practice of TWAS 

for other complex traits.  
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REGENIE: https://rgcgithub.github.io/regenie/ 

boltLMM: https://alkesgroup.broadinstitute.org/BOLT-LMM/BOLT-LMM_manual.html  

FINEMAP: http://www.christianbenner.com/#  

GTEx Portal: https://www.gtexportal.org/home/  

OMIM: https://www.omim.org/ 

WashU Epigenome Browser: https://epigenomegateway.wustl.edu/ 

TOP-LD: http://topld.genetics.unc.edu/topld/ 

 

 

Data and code availability 

This paper did not generate any new datasets. Codes to analyze the data can be found at 

https://github.com/brycerowland/UKB_BCT_TWAS.git.  

 

Figure Titles and Legends 

Figure 1 - UK Biobank TWAS of Blood Cell Traits Overview. (a) We trained gene expression prediction 

models using whole blood gene expression data from 922 Depression Genes and Networks (DGN) European 

ancestry participants by fitting an elastic net model on the cis-SNPs (+/- 1Mb) for each gene. Models with r2 > 

0.05 are considered sufficiently predicted, and are subject to association testing in UKB. w represents the 

TWAS weights in the prediction model. (b) Using our DGN-trained models, we predicted gene expression in 

399,835 UKB participants of European ancestry and performed association testing with 29 hematological 

traits. 11,759 gene-trait associations were significant at the Bonferroni adjusted threshold (out of 290,116 

tested). (c) TWAS results from UKB were replicated in 141,286 MVP participants of European ancestry for 15 

hematological traits available in MVP. (d) We further conditioned our TWAS significant associations in UKB 

on GWAS signals reported from Vuckovic et al. to determine which TWAS signals were driven by previously 

reported GWAS variants (TWAS CA for TWAS conditional analysis). (e) We used the TWAS associations and 
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prediction models (blue stars) to assign GWAS signals from Vuckovic et al. (gold star) to plausible target 

genes (see Figure 2), assessing correlation between each GWAS variant and predicted gene expression of each 

TWAS significant gene.  

 

Figure 2 - TWAS variant-to-gene Approach. Comparison of our TWAS-based approach to variant-to-gene 

assignment with two commonly used approaches: distance-based and colocalization based assignments. We 

consider the problem of assigning a GWAS variant (gold star) in a non-coding region to a target gene. The 

nearest-gene approach assigns the variant to the closest gene at the locus (Gene A), but ignores epigenomic 

evidence at the locus. Colocalization based approaches assign the variant to a target gene based on evidence 

that the GWAS signal is not distinct from an eQTL signal for a target gene (green star, Gene B). Our TWAS 

based approach assesses the correlation between the GWAS variant and TWAS predicted gene expression 

which aggregates smaller effect cis-eQTLs for a gene (blue stars, Gene C). For presentation brevity, we use 

“high r2” but the threshold to define high correlation can be lenient.  

 

Figure 3 - Manhattan Plot of TWAS Conditional Analysis Results. Figure 3 shows the -log10(p-value) for 

TWAS genes after conditioning on distinct GWAS signals from Vuckovic et al. for a given phenotype category. 

The red dashed line denotes the Bonferroni adjusted significance threshold (� = 4.25�10-6). Named genes 

have -log10(p-value) > 12. The conditional TWAS analysis assesses whether a TWAS signal is driven 

primarily from signals at previously discovered GWAS loci, which is a crucial step for our analysis of well-

studied hematological traits. The maximum -log10(p-value) for each gene is plotted and stratified by 

phenotype category.  

 

Figure 4 - IRAK1BP1 locus EpiGenome Browser. Figure 4 demonstrates the cell-type specific epigenetic 

information linking IRAK1BP1 and mean platelet volume. Figure 4a shows that variants within IRAK1BP1 

were identified as GWAS significant variants in Vuckovic et al., 2020, but the signal at this locus was 

attenuated after conditioning on a locus 8Mb away (sentinel variant chr6:71326034_G_A). (b) Several of these 

variants are included in the IRAK1BP1 TWAS prediction model. (c) Promoter-capture Hi-C data support that 
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TWAS model variants for IRAK1BP1 form a loop with the promoter region of LCA5, a mendelian disease gene 

for Leber congenital amaurosis. LCA5 was not available in our DGN expression dataset. (d) LCA5 is more 

strongly expressed in MK cell lines compared to IRAK1BP1. (e) TWAS model variants overlap with MK 

ATACseq peaks. This locus shows both the statistical power gains possible through TWAS analysis and the 

importance of full consideration of other potential target genes and complementary functional annotation 

resources in interpretation of a TWAS identified signal. 

 

Figure 5 - TWAS and coloc variant-to-gene assignments. We compare our TWAS-based variant-to-gene 

assignments with assignments from coloc using a set of 10,239 variants associated with 10 hematological 

traits. (A) Coloc successfully assigns 427 variants to target causal genes, while our TWAS based approach 

assigns 1,738 to target genes. (B-C) We compare these assignments in a variety of settings, using variant-to-

gene assignments both considering phenotype-specific and phenotype-agnostic approaches. The TWAS based 

approach has increased sensitivity to assign genes to potentially causal genes (B) and decreased specificity to 

coloc (C).  

 

Figure 6 - TWAS and coloc variant-to-gene assignments agree at LIME1 locus. The LIME1-lymphocyte 

percentage associated locus illustrates one example where the TWAS- and coloc- based variant-to-gene 

assignments agree. (A) Genes in the FINEMAP credible set are colored by their correlation with rs6062304. 

The predicted gene expression with LIME1  is highly correlated with rs6062304, whereas neither ZGPAT nor 

RTEL1 are. (B) An eQTL for LIME1, rs6062497, is in high LD with rs6062304, and in turn coloc assigns LIME1 

as an eGene. (C-D) Model variants for LIME1 and ZGPAT are colored by their LD with rs6062304, respectively. 

The variants with the largest effect sizes in the TWAS prediction model for LIME1 are in high LD with 

rs6062304, whereas those for ZGPAT are not.  

 

Figure 7 - TWAS assigns rs1985157 to LRRC25. Figure 7 illustrates how TWAS assigned rs1985157 to 

LRRC25 when coloc failed to do so with no eQTL in the region. (A) LRRC25 predicted gene expression was 

highly correlated with rs1985157 (r2 = 0.863), whereas the prediction from SSBP4 (r2 = 0.47) and ELL (r2 = 

0.457) were not as highly correlated despite both genes being significant. (B) LD patterns for variants at the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.03.453690doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.453690
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 

locus. (C-D) Only model variants for LRRC25 and SSBP4 are colored by their LD with rs1985157, respectively. 

Variants with the largest TWAS weights (in absolute values) for LRRC25 are in high LD with rs1985157, 

whereas those for SSBP4 are not.  
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