

1 **Comammox *Nitrospira* bacteria outnumber canonical nitrifiers irrespective of nitrogen
2 source and availability.**

3
4 Katherine J. Vilardi¹, Irmarie Cotto¹, Maria Sevillano Rivera¹, Zihan Dai^{2,3}, Christopher L.
5 Anderson¹, Ameet Pinto⁴

6
7 ¹ Department of Civil and Environmental Engineering, Northeastern University, Massachusetts,
8 MA, USA

9 ² Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-
10 Environmental Sciences, Chinese Academy of Sciences, Beijing, China

11 ³ University of Chinese Academy of Sciences, Beijing, China

12 ⁴ School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA,
13 USA.

14

15 Corresponding author email: apinto36@gatech.edu

16

17 Keywords: comammox bacteria, nitrification, drinking water biofiltration, electron donor

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48 **Abstract**

49

50 Complete ammonia oxidizing bacteria coexist with canonical ammonia and nitrite oxidizing
51 bacteria in a wide range of environments. Whether this is due to competitive or cooperative
52 interactions, or a result of niche separation is not yet clear. Understanding the factors driving
53 coexistence of nitrifiers is critical to manage nitrification processes occurring in engineered and
54 natural ecosystems. In this study, microcosm-based experiments were used to investigate the
55 impact of nitrogen source and loading on the population dynamics of nitrifiers in drinking water
56 biofilter media. Shotgun sequencing of DNA followed by co-assembly and reconstruction of
57 metagenome assembled genomes revealed clade A2 comammox bacteria were likely the primary
58 nitrifiers within microcosms and increased in abundance over *Nitrosomonas-like* ammonia and
59 *Nitrospira-like* nitrite oxidizing bacteria irrespective of nitrogen source type or loading. Changes
60 in comammox bacterial abundance did not correlate with either ammonia or nitrite oxidizing
61 bacterial abundance in urea amended systems where metabolic reconstruction indicated potential
62 for cross feeding between ammonia and nitrite oxidizing bacteria. In contrast, comammox
63 bacterial abundance demonstrated a negative correlation with nitrite oxidizers in ammonia
64 amended systems. This suggests potentially weaker synergistic relationships between ammonia
65 and nitrite oxidizers might enable comammox bacteria to displace nitrite oxidizers from complex
66 nitrifying communities.

67

68

69

70 **Introduction**

71
72 Nitrification, the biological transformation of ammonia to nitrate via nitrite, is an important
73 process in engineered and natural ecosystems. While nitrification mediated by ammonia
74 oxidizing microorganisms (AOM) (Kowalchuk & Stephen, 2001, Stahl & de la Torre, 2012),
75 including ammonia oxidizing bacteria (AOB) and archaea (AOA), and nitrite oxidizing bacteria
76 (NOB) (Daims *et al.*, 2016) has been extensively investigated, complete ammonia oxidation
77 (comammox) performed by comammox bacteria is understudied in large part due to its recent
78 discovery. All known comammox bacteria belong to *Nitrospira* sub-lineage II (Daims *et al.*,
79 2015, van Kessel *et al.*, 2015, Pinto *et al.*, 2016) and are currently divided into two clades, A
80 and B, with clade A further separated into sub-clades A1 and A2 (Palomo *et al.*, 2019). Due to
81 close phylogenetic relatedness, comammox-*Nitrospira* cannot be distinguished from *Nitrospira*-
82 NOB based on the 16S rRNA gene sequence or the marker genes for nitrite oxidation (*nxrAB*)
83 (Daims *et al.*, 2015). Thus, characterization of comammox bacteria has been largely enabled by
84 shotgun DNA sequencing followed by reconstruction of assembled genomes (Palomo *et al.*,
85 2016, Pinto *et al.*, 2016, Camejo *et al.*, 2017, Wang *et al.*, 2017, Annavajhala *et al.*, 2018,
86 Poghosyan *et al.*, 2019) and the development of primers targeting subunits of comammox
87 bacteria ammonia monooxygenase (*amo*) gene (Bartelme *et al.*, 2017, Pjevac *et al.*, 2017, Fowler
88 *et al.*, 2018, Wang *et al.*, 2018, Beach & Noguera, 2019, Cotto *et al.*, 2020).

89

90 Within the engineered water cycle, clade A1 comammox bacteria have been primarily detected
91 in wastewater treatment plants while clade A2 and B have been associated with drinking water
92 treatment and distribution systems (Palomo *et al.*, 2019). It is unclear if this translates into
93 physiological differences between the clades/sub-clades since there is only one comammox

94 isolate and an enrichment whose kinetic parameters have been reported. To date, kinetic
95 parameters of comammox bacteria are confined to two clade A representatives, cultured
96 *Candidatus N. inopinata* and an enrichment of *Candidatus N. krefftii* (Kits *et al.*, 2017, Sakoula *et*
97 *al.*, 2020). Both demonstrate a high affinity for ammonia, with half-saturation constants orders of
98 magnitude lower than strict AOB. Comparatively, the *Candidatus N. krefftii* enrichment
99 exhibited a higher affinity for nitrite compared to *Candidatus N. inopinata* and demonstrated
100 partial inhibition of ammonia oxidation even at low ammonia concentrations (Sakoula *et al.*,
101 2020). This suggests that clade-specific comammox bacterial niche, if applicable, may be arise
102 from a combination of factors ranging from affinity to inhibition. Beyond clade specific traits,
103 identifying the potential environmental and physiological factors driving the coexistence of
104 comammox bacteria with canonical nitrifiers is also important to better understand comammox
105 bacteria role in complex nitrifying communities (Gulay *et al.*, 2019, Liu *et al.*, 2019, Wang *et al.*,
106 2019, Wang *et al.*, 2019, Zheng *et al.*, 2019, Gottshall *et al.*, 2020, Wang *et al.*, 2020, He *et al.*,
107 2021, Shao & Wu, 2021). Comammox bacteria have been detected along with their canonical
108 nitrifying counterparts in wastewater treatment plants (Gonzalez-Martinez *et al.*, 2016, Roots *et*
109 *al.*, 2019, Zheng *et al.*, 2019, Cotto *et al.*, 2020, Yang *et al.*, 2020), drinking water systems
110 (Pinto *et al.*, 2016, Tatari *et al.*, 2017, Wang *et al.*, 2017, Fowler *et al.*, 2018, Poghosyan *et al.*,
111 2020) and soils (Prosser & Nicol, 2012, Shi *et al.*, 2018, Liu *et al.*, 2019, He *et al.*, 2021) at
112 varying abundances over a wide range of ammonium concentrations. While there is currently no
113 quantitative estimate of the contribution of comammox bacteria to nitrification compared to
114 AOB and NOB, several studies have investigated comammox bacterial dynamics in the context
115 of mixed nitrifying communities. For instance, DNA/RNA stable isotope probing provided
116 support for comammox *Nitrospira* contributing to ammonia oxidation in lab-scale biofilters

117 exposed to very low ammonium concentrations (Gulay *et al.*, 2019). Soil microcosms amended
118 with high ammonia concentrations were enriched in AOB compared to those with lower
119 ammonia concentrations where clade B comammox bacteria proliferated (Wang *et al.*, 2019, He
120 *et al.*, 2021). Interestingly, in a lab-scale partial nitrification-anammox reactor operating with
121 incrementally increased ammonia loadings, comammox bacteria initially dominated over strict
122 AOB but its abundance significantly declined as loadings were further increased (Shao & Wu,
123 2021).

124

125 Comammox bacteria may also acquire ammonia via urea degradation. Specifically, genes
126 encoding for urea transport and the urease enzyme are distributed among many *Nitrospira*
127 populations (Koch *et al.*, 2015), including most comammox populations (Palomo *et al.*, 2018).
128 While this may diversify potential nitrogen sources for comammox bacteria (Daims *et al.*, 2016),
129 this could be a potential advantage for canonical nitrifiers involved in a reciprocal feeding
130 strategy as observed with co-cultured *Nitrospira moscoviensis* converting urea to ammonia for
131 *Nitrosomonas europaea* (Koch *et al.*, 2015). The tight interplay between canonical nitrifiers is
132 well established; however, our understanding of comammox competition (or lack thereof) with
133 AOM and its impact on strict NOB in mixed communities is limited.

134

135 To better understand the comammox bacterial role within these complex nitrifying communities,
136 we investigated their population dynamics across two nitrogen sources (ammonia or urea) at
137 three total nitrogen dosing strategies. Thus, the objectives of this study were (1) to determine if
138 comammox bacteria and canonical nitrifiers exhibit concentration and nitrogen source dependent
139 dynamics when subject to repeat nitrogen amendments and (2) to determine if these dynamics

140 are consistent or variable at the clade or population within each functional guild.
141 Characterization of microbial communities in biofilters at drinking water treatment plants has
142 revealed rich nitrifier diversity (Fowler *et al.*, 2018, Gulay *et al.*, 2019), making it an ideal
143 sample source for this study. Collectively, our microcosm-based study offers novel insights
144 regarding the ecophysiology of clade 2 associated comammox bacteria; information on this clade
145 are very limited. Further, while other microcosm studies have focused on competitive
146 interactions between comammox bacteria and strict AOB under controlled conditions (Wang *et*
147 *al.*, 2019, He *et al.*, 2021), there is only limited assessment of NOB response to experimental
148 treatment. This study explicitly assesses the NOB dynamics in response to nitrogen source and
149 loading rates in the context of the broader nitrifying community.

150

151

152 **Materials and Methods**

153 **Experimental design and execution:** Granular activated carbon (GAC) with coexisting AOB,
154 NOB, and comammox bacterial populations from biofilters at the drinking water treatment plant
155 (DWTP) in Ann Arbor, (AA) Michigan was used as the inoculum for this experimental work
156 (Pinto *et al.*, 2016). Microcosms consisted of 3 grams of GAC supplemented with 10 mL of filter
157 influent from AA DWTP in 40 mL pre-sterilized glass vials (DWK Life Sciences – Fisher
158 033395C). A total of 96 glass microcosms were prepared such that two biological replicates for
159 each of the three nitrogen concentrations (1.5, 3.5 and 14 mg-N/L) for the two nitrogen sources
160 (i.e., ammonium (direct) and urea (indirect)) were harvested weekly for analyses over the period
161 of the 8-week experiment. Ammonium was spiked in at 0.1, 0.25 and 1 mM (in the form of
162 ammonium chloride solution), corresponding to final concentrations of 1.5, 3.5 and 14 mg-N/L.
163 For urea, 0.05, 0.125 and 0.5 mM (in the form of urea solution) were used to ensure similar

164 concentrations of total nitrogen as the ammonium microcosms. Microcosms were maintained by
165 removing approximately 10 mL of spent filter influent and subsequently replenishing them with
166 10 mL of fresh influent and the respective nitrogen source spike every two days. Once a week,
167 two microcosms per condition (i.e., nitrogen concentration and nitrogen source) were sacrificed
168 and two 0.5 g GAC samples from each microcosm were transferred to Lysing Matrix E tubes
169 (MP Biomedical Lysing Matrix E – Fisher MP116914100) and stored at -80°C until further
170 processing. Additionally, aqueous samples were collected and filtered through 0.2 µM filters
171 (Sartorius Minisart NML Syringe Filter – Fisher Scientific 14555269) for chemical analyses. The
172 sampled aqueous volume was replaced with fresh substrate to increase the ammonia and urea
173 concentrations to microcosm specific concentrations. Hach Company Test n' Tube Vials were
174 used to determine concentrations of ammonia-N (Hach, Cat No. 2606945), nitrite-N (Hach, Cat
175 No. 2608345) and nitrate-N (Hach, Cat No. 2605345) in microcosms. All samples were analyzed
176 on a Hach DR1900 photospectrometer (Hach – DR1900-01H). Alkalinity of filtered liquid
177 samples were measured using Hach Alkalinity Total TNTplus Vials (Hach – TNT870).

178

179 **DNA extraction and qPCR:** GAC samples were subjected to DNA extraction using the
180 DNAeasy PowerSoil kit (Qiagen, Inc – Cat No.12888) on the QIAcube (Qiagen, Inc – Cat No.
181 9002160) following manufacturer's instructions with a few modifications. Specifically, the
182 lysing buffer from the PowerBead tubes were transferred to the Lysing Matrix E tubes and C1
183 buffer was added. Prior to bead beating, an equal volume of chloroform was added (610 µL).
184 Bead beating consisted of four rounds of 40 seconds on a FastPrep-24 instrument (MP Bio –
185 116005500) with bead beading tubes placed on ice for two minutes between each bead beating.
186 Samples were then centrifuged at 10,000 g for 1 minute and 750 µL of aqueous phase used to

187 purify DNA using the QIAcube Protocol for the DNeasy PowerSoil Kit. Each round of
188 extractions included a reagent blank as a negative control. After extraction, DNA concentration
189 was determined using a Qubit instrument with the dsDNA Broad Range Assay (ThermoFisher
190 Scientific – Cat No. Q32850) (Table S1). DNA was stored in a -80°C freezer until future use.

191
192 qPCR assays were conducted using QuantStudio 3 Real-Time PCR System (ThermoFisher
193 Scientific – Cat. No. A28567). Primer sets targeting the 16S rRNA gene of AOB (Hermansson
194 & Lindgren, 2001), 16S rRNA gene of *Nitrospira* (Graham *et al.*, 2007), *amoB* gene of clade A
195 comammox bacteria (Cotto *et al.*, 2020) and 16S rRNA gene for total bacteria (Caporaso *et al.*,
196 2011) were used (Table S2). Previously published primer set for the *amoB* gene of clade A
197 comammox bacteria was updated based on metagenomic data generated as part of this study
198 (Cotto *et al.*, 2020). Based on alignments of *amoB* gene sequences from the comammox MAGs
199 assembled in this study, the previously published forward primer for comammox clade A *amoB*
200 from Cotto et. al 2020 had one mismatch with one of our bins. Thus, this forward primer was
201 further modified by changing the 13th position from G to a degenerate base S (seven base pairs
202 from 3'-end). The use of the modified primers resulted in increased abundance of comammox
203 bacteria in this study as shown in supplementary Figure S1, indicating the ability to capture
204 comammox *amoB* gene sequences not amplified by previous primer set.

205

206 The qPCR reactions were carried out in 20 µL volumes, which included 10 µL Luna Universal
207 qPCR Master Mix (New England Biolabs, Inc., Cat. No. NC1276266), 5 µL of 10-fold diluted
208 template DNA, primer concentrations are outlined in Table S4 and DNase/RNase free water
209 (Fisher Scientific, Cat. No. 10977015) to make up the remaining volume to 20 µL. Each sample
210 per assay was subject to qPCR in triplicate and qPCR plates were prepared using the epMotion

211 M5073 liquid handling system (Eppendorf, Cat. No. 5073000205D). The cycling conditions used
212 in this study were as follows: initial denaturing at 95°C for 1 minute, 40 cycles of denaturing at
213 95°C for 15 seconds, annealing temperatures and time used are listed in Table S2 and extension
214 at 72°C for 1 minute. qPCR analysis proceeded with a negative control and 7-point standard
215 curve ranging from 10^3 - 10^9 copies of 16S rRNA gene of *Nitrosomonas europaea* for total
216 bacteria quantification, 10^2 - 10^8 copies of 16S rRNA genes of *Nitrosomonas europaea* and *Ca*
217 *Nitrospira inopinata* for AOB and *Nitrospira* quantification, respectively, and 10^2 – 10^8 copies of
218 *amoB* gene of *Ca Nitrospira inopinata* for the quantification of comammox bacteria. The primer
219 used to detect the 16S rRNA gene of *Nitrospira* would inclusively track both comammox-
220 *Nitrospira* and *Nitrospira*-NOB. Thus, *Nitrospira*-NOB abundance was estimated by subtracting
221 the copy number of comammox bacteria *amoB* from the copy number of 16S rRNA gene of
222 *Nitrospira*.

223

224 **Metagenomic analyses:** A subset of samples were selected for metagenomic analysis including
225 DNA extracted from the initial GAC inoculum and samples from weeks four and eight (n=13)
226 for all nitrogen sources and dosing strategies. DNA extracts from duplicate microcosms for each
227 time point were pooled in equal mass proportion before sending DNA templates for sequencing
228 at the Roy J. Carver Biotechnology Center at University of Illinois Urbana-Champaign
229 Sequencing Core. Two lanes of Illumina NovaSeq were used to generate paired-end reads
230 ranging from 29 to 68 million per sample (2x150-bp read length) (Table S3). Raw paired-end
231 reads were trimmed and quality filtered with fastp (Chen *et al.*, 2018) (Table S5). Filtered reads
232 were mapped to the UniVec Database (National Center for Biotechnology Information) using
233 BWA (Li & Durbin, 2009) to remove potential vector contamination. Subsequent unmapped

234 reads were extracted, sorted and indexed using SAMtools v1.3.1 (Li *et al.*, 2009) then converted
235 back to FASTQ using bedtools v2.19.1 (Quinlan & Hall, 2010).

236

237 Small subunit rRNA sequence reconstruction from quality filtered short reads was carried out
238 using the Phyloflash v3.4 (Gruber-Vodicka *et al.*, 2020). Briefly, bbmap was used to map short
239 reads against the SILVA 138.1 NR99 database with the default minimum identity of 70%
240 followed by assembly of full-length sequences with Spades (kmers = 99,111,127) and detection
241 of closest-matching database sequences using usearch global within VSEARCH at a minimum
242 identity of 70%. For read pairs, taxonomic classification was performed by taking the lowest
243 common ancestor using SILVA taxonomy (Pruesse *et al.*, 2007). Assembled sequences from all
244 samples belonging to nitrifying bacteria were clustered at 99% identity using vsearch v2.15.2
245 (Rognes *et al.*, 2016). Reference *Nitrospira* and *Nitrosomonadaceae* 16S rRNA reference
246 sequences were obtained from ARB-SILVA and aligned with assembled sequences using muscle
247 v3.8.1551 (Edgar, 2004). Construction of 16S rRNA phylogenetic trees for *Nitrospira* and
248 *Nitrosomonadaceae* was performed using IQ-TREE v1.6.12 (Nguyen *et al.*, 2015) with model
249 finder option (Kalyaanamoorthy *et al.*, 2017) selecting TIM3+F+I+G4 and TPM2u+F+I+G4 as
250 models for respective trees.

251

252 Quality filtered paired-end reads from all samples were co-assembled with metaSPAdes v3.11.1
253 (Nurk *et al.*, 2017) with k-mers lengths 21, 33, 55, 77, 99, and 119, and phred off-set of 33.
254 Quality evaluation of the assembled scaffolds was performed using Quast v5.0.2 (Gurevich *et*
255 *al.*, 2013) (Table S4). Open reading frames (ORF) on scaffolds were predicted using Prodigal
256 v2.6.2 (Hyatt *et al.*, 2010) with the “meta” flag and functional prediction of resulting protein

257 sequences were determined by similarity searches of the KEGG database (Hiroyuki Ogata, 1999)
258 using kofamscan (Aramaki *et al.*, 2020). Taxonomic classification of scaffolds harboring
259 nitrogen cycling genes was performed using kaiju v1.7.4 (Menzel *et al.*, 2016) against the NCBI
260 nr database with default parameters. CoverM v0.5.0 (www.github.com/wwood/CoverM) was
261 used to calculate reads per kilobase million (RPKM) of these scaffolds as a metric for estimating
262 relative abundance in each sample.

263

264 Scaffolds were binned into clusters and manually refined using Anvi'o (v5.1 and 5.5) (Eren *et*
265 *al.*, 2015) with three binning algorithms including CONCOCT (Alneberg *et al.*, 2014), Metabat2
266 v2.5 (Kang *et al.*, 2019) and Maxbin2 v2.2.7 (Wu *et al.*, 2016). DAS_tool v1.1.2 (Sieber *et al.*,
267 2018) was used to merge bins from the three approaches to generate final metagenome
268 assembled genomes (MAGs). Completeness and contamination of the final set was determined
269 using CheckM v1.0.7 (Parks *et al.*, 2015) followed by taxonomic classification using the
270 Genome Taxonomy Database Toolkit v1.2.0 with release 89 v04-RS89 (Chaumeil *et al.*, 2019).
271 CoverM was used to calculate RPKM for each bin. Similar to the annotation of the metagenome,
272 functional prediction of bin ORFs were determined by similarity searches against the KEGG
273 database using kofamscan. The annotation of genes of interest were further confirmed by
274 querying protein sequences against the NCBI-nr database using BLASTP. MAGs were also
275 annotated using Prokka as a secondary annotation method (Seemann, 2014). The Up-to-date
276 Bacterial Core Gene pipeline (UBCG) (Na *et al.*, 2018) with default parameters was used to
277 extract and align a set of 92 single copy core genes from *Nitrospira* and *Nitrosomonas* references
278 genomes (Table S5) and nitrifier MAGs for phylogenomic tree reconstruction. Maximum
279 likelihood trees were generated based on the nucleotide alignment using IQ-TREE with model

280 finder selecting the GTR+F+R10 and GTR+F+R4 models for *Nitrospira* and *Nitrosomonas* trees,
281 respectively, with 1000 bootstrap iterations. For outgroups, two *Leptospirillum* and three
282 *Nitrosospira* genomes were used for *Nitrospira* and *Nitrosomonas* trees, respectively. Pairwise
283 alignments of comammox *amoA* and *hao* and *Nitrospira* *nxrA* protein sequences were created
284 using muscle. Maximum likelihood trees were inferred by IQ-TREE with model finder selecting
285 LG+G4 for the *amoA* tree and LG+I+G4 for *hao* and *nxrA* trees with 1000 bootstrap iterations
286 for each tree. The *amoA* and *hao* protein sequences from *Nitrosomonas europaea* and
287 *Nitrosomonas oligotropha* were used as the outgroup for comammox trees. All trees were
288 visualized using the Interactive Tree of Life (itol) (Letunic & Bork, 2019). Pairwise
289 comparisons of average nucleotide identity of 38 *Nitrospira* and 15 *Nitrosomonadaceae*
290 genomes (Table S5) with nitrifier MAGs obtained in this study was determined using FastANI
291 v1.31 (Jain *et al.*, 2018).

292

293 **Statistical analysis**

294 The relative abundance of each nitrifier population was tested to determine if significant
295 differences existed between concentration or source of electron donor types using ANOVA and
296 Welch t-tests, respectively, with R version 4.0.4. Shapiro Wilks tests were used to confirm
297 normality prior to these statistical tests. Linear regression and correlation analysis were used to
298 examine the relationship between the abundance of nitrifying guilds in each of the nitrogen
299 amendments over time.

300

301

302 **Results**

303 **Microbial community composition in microcosms and nitrogen biotransformation**
304 **potential.**

305 Microcosms consisting of granular activated carbon (GAC) from drinking water biofilters were
306 subject to intermittent amendments of nitrogen using two nitrogen sources (ammonia or Urea)
307 across three nitrogen concentrations (14, 3.5, and 1.5 mg-N/L). The conditions used in these
308 experiments are denoted as 14A, 3.5A, 1.5A, 14U, 3.5U and 1.5U where A or U represents
309 ammonia or urea amendments, respectively, and the number represents the concentration of
310 nitrogen source spike in mg/L as nitrogen. Two microcosms were sacrificed on a weekly basis
311 over the duration of a eight week experiment (n=96 total microcosms). Extracted DNA from the
312 inocula and weeks four and eight were subject to shotgun DNA sequencing (n=13).

313
314 Initial assessment of taxonomic diversity in the samples based on analyses of metagenomic reads
315 mapping to the small subunit rRNA database (SILVA SSU NR99 version 138.1) indicated that
316 the GAC inocula largely consisted of bacteria with archaea and eukaryota constituting a small
317 proportion of the overall metagenomic reads (~0.002%). The bacterial community was primarily
318 composed of Gammaproteobacteria (20-30%), Alphaproteobacteria (25-31%) and Nitrospirota
319 (8-15%) (Figure 1A). *Nitrospira* and *Nitrosomonadaceae* were the only nitrifiers identified and
320 constituted 9-15% of the overall microbial community in samples. Full length 16S rRNA gene
321 sequences were assembled from each sample (n=13) resulting in a total of eight sequences with
322 closest matching SILVA database hits to uncultured *Nitrospira* bacteria (Accession numbers:
323 MF040566, AY328760, JN868922). Clustering of all eight *Nitrospira* 16S rRNA gene sequences
324 at 99% identity resulted in two *Nitrospira* operational taxonomic units (OTUs) with one cluster
325 composed of six sequences (Nitrospira OTU 1) and the other cluster with two sequences

326 (Nitrospira OTU 2). Phylogenetic placements of these OTUs revealed both clustered within
327 *Nitrospira* sublineage II (supplementary figure S2A). Diversity of *Nitrospira* was likely
328 underrepresented as full length *Nitrospira* 16S rRNA gene sequences could not be assembled
329 from some samples despite a large portion of extracted 16S rRNA gene reads mapping to
330 *Nitrospira* references in the SILVA database. Limited assembly of these reads could be due to
331 several closely related *Nitrospira* species/strains coexisting in the samples making re-
332 construction of full length sequences difficult. For canonical AOB, *Nitrosomonas* sp. AL212
333 (CP002552) was the closest matching database hit to one assembled sequence while another six
334 had hits closest to *Nitrosomonadaceae* (Accession numbers: FPLP01009519, KJ807851,
335 FPLK01002446) but could not be further classified at the genus or species level. Phylogenetic
336 placement of the single *Nitrosomonas* OTU affiliated it with *Nitrosomonas* sp. AL212 and
337 *Nitrosomonas ureae* (Figure S2B).

338
339 Following co-assembly of metagenomic reads, predicted protein coding genes from scaffolds
340 associated with the nitrogen metabolism were taxonomically classified (Figure 1B). The majority
341 of methane/ammonia monooxygenase (*pmo-amo*) like genes (KEGG orthology: K10944,
342 K10945, K10946) were associated with either nitrifiers (i.e., *Nitrospira* or *Nitrosomonas*) or
343 methanotrophs (i.e., *Methylocystis*) (Figure 1C). While some *amoCAB* genes could not be
344 classified to the genus level using kaiju software, blastp searches against the NCBI non-
345 redundant protein database indicated these were closely related to *Nitrosomonas*. All retrieved
346 *hao* sequences (KEGG orthology: K10535) were associated with Nitrospira which is likely due
347 to the low relative abundance of *Nitrosomonas*-like populations and the resulting inability to
348 assemble their *hao* genes. Potential for ureolytic activity was detected across four phyla based on

349 the urease alpha subunit (*ureC*). *ureC* sequences associated with Nitrospirota and
350 Gammaproteobacteria could be classified at the genus level as *Nitospira* and *Nitrosomonas*.
351 Sequences identified as nitrate reductase/nitrite oxidoreductase alpha and beta subunits (K00370,
352 K00371) were subject to further classification to differentiate between nitrite oxidoreductase
353 genes belonging to NOB from nitrate reductases belonging to other community members.
354 Phylogenetic placement of most *Nitospira nxrA* sequences found in this study cluster within a
355 branch containing both comammox and *Nitospira*-NOB species (Candidatus *N. inopinata*,
356 Candidatus *N. nitrosa* and *N. defluvii*) (Figure 1D). While other sequences clustered on a
357 separate branch with Candidatus *N. nitrificans*, a single *Nitospira nxrA* sequence clustered
358 closely within a branch containing only *Nitospira*-NOB belonging to sublineage II.

359

360

361 **Phylogenomic placement of nitrifying populations and their metabolism.**

362 Metagenome assembled genomes (MAGs) were obtained from GAC microcosms after
363 dereplication of MAGs from three binning approaches. All 204 MAGs were classified as
364 bacteria, with 145 MAGs exhibiting completeness greater than 70% and contamination less than
365 10% (Table S6). Approximately 62% of the metagenomic reads mapped to these MAGs. Nine
366 MAGs in total were classified as nitrifying bacteria belonging to *Nitrosomonas* and *Nitospira*
367 (Table S7). Genome annotation confirmed that four *Nitospira* MAGs had key ammonia
368 (ammonia monooxygenase and hydroxylamine oxidoreductase) and nitrite (nitrite
369 oxidoreductase) oxidation genes (Figure S3). Quality assessment for these comammox MAGs
370 indicated two high (Bin_49_2_2 and Bin_49_4) and one medium quality (Bin_260) (Table S1)
371 according to (Bowers *et al.*, 2017). A fourth comammox MAG (Bin_13) was assembled with

372 high completeness (89%) but also possessed high redundancy (18%) that could not be improved
373 with further manual refinement. The remaining two *Nitrospira* MAGs (Bin_7_1 and Bin_188),
374 which were likely strict NOB due to lack of ammonia oxidation genes, were less complete
375 (38.04% and 48.25%) with low redundancy (8.76% and 8.46%). The low completeness was
376 likely not due to their lower abundance, but potentially high level of strain heterogeneity which
377 may have affected the assembly of reads associated with *Nitrospira*-NOB. For example, RPKM-
378 based relative abundance estimated using all reads (total RPKM) showed the two *Nitrospira*-
379 NOB MAGs exhibited similar relative abundance to comammox bacteria MAGs Bin_49_2_2
380 and Bin_49_4 (~7-10 total RPKM), but the CheckM estimated strain heterogeneities for Bin_7_1
381 and Bin_188 were 40 and 75, respectively, compared to 0 for both Bin_49_2_2 and Bin_49_4.
382 Two MAGs classifying as *Nitrosomonas* were deemed high (Bin_83) and medium quality
383 (Bin_168); however, a third *Nitrosomonas* MAG was considered low quality.
384
385 A maximum likelihood tree based on 91 single copy core genes confirmed all *Nitrospira* MAGs
386 affiliated with sublineage II (Figure 2A). Four of the *Nitrospira* MAGs from this study clustered
387 within clade A comammox *Nitrospira* (Bin_49_2_2, Bin_49_4, Bin_260 and Bin_13) but were
388 separated into distinct groups on the phylogenomic tree; namely, forming three clusters with
389 MAGs obtained from tap water, drinking water filters, and freshwater. *amoA*-based phylogenetic
390 analysis corroborated their placement into clade A (Figure 2B); however, *hao*-based phylogeny
391 distinguished three of comammox MAGs (Bin_49_2_2, Bin_49_4, Bin_260) as clade A2
392 (Palomo et al. 2019) while one clustered within clade A1 (Bin_13) (Figure 2C). Consistent
393 across all trees, Bin_49_2_2 and Bin_260 cluster closely with comammox MAGs *Nitrospira* sp.
394 SG-bin2 and ST-bin4 (ANI ~ 92%) derived from tap water metagenomes (Wang *et al.*, 2017).

395 Bin_49_4 clustered closely with Nitrospirae bacterium Ga0074138 (ANI ~ 99%), which was
396 previously detected in GAC from the same drinking water treatment plant (Pinto *et al.*, 2016),
397 along with other tap water and groundwater-fed rapid sand filter MAGs (Palomo *et al.*, 2016,
398 Wang *et al.*, 2017). Bin_13 associated with comammox MAGs obtained from freshwater,
399 UBA5698 and UBA5702 (Parks *et al.*, 2017) (ANI ~ 90%); however, its high contamination
400 (18%) likely renders ANI comparison less accurate. Overall, the MAGs demonstrated less than
401 95% ANI to other reference comammox bacterial MAGs (Figure S4) suggesting comammox
402 bacteria detected in GAC microcosms are distinct from one another and previously published
403 comammox MAGs; as a result, they are likely novel *Nitrospira* species. The two remaining
404 *Nitrospira* MAGs, Bin_7_1 and Bin_188, clustered with strict *Nitrospira*-NOB MAGs recovered
405 from tap water, *Nitrospira*_sp_ST-bin5 (Wang *et al.*, 2017) (ANI ~ 94%), and a rapid sand filter,
406 *Nitrospira* CG24D (ANI ~ 87%) (Palomo *et al.*, 2016) (Figure 2A and S3). However, since
407 Bin_7_1 and Bin_188 were highly incomplete, the possibly they are novel comammox bacteria
408 cannot be excluded. Only two strict AOB MAGs (Bin_83 and Bin_168) from this study were
409 used for phylogenomic analysis due high redundancy and low completeness of the third
410 (Bin_195). Both Bin_83 and Bin_168 originate from *Nitrosomonas* cluster 6a and clustered
411 closely with *Nitrosomonas ureae* and *Nitrosomonas* sp. AL212 (Figure 2D). Bin_168 shares a
412 high sequence similarity to *N. ureae* (ANI ~ 98%) while Bin_83 shares less than 83% ANI to
413 any of the references on the tree including Bin_168.

414

415 All comammox MAGs demonstrated the potential for ureolytic activity with the presence of the
416 *ureABC* operon in addition to most genes for urease accessory proteins (Figure S2). *Nitrospira*-
417 NOB MAGs did not contain genes encoding for urease; however, two *ureC* sequences found on

418 assembled scaffolds that were classified as *Nitrospira* but were not binned into any of the
419 *Nitrospira* MAGs. Queries of these *ureC* genes against the NCBI non-redundant database
420 revealed one sequence shared the highest percent identity to *Nitrospira lenta* and *Nitrospira*
421 *moscoviensis* while top hits for the second sequence belonged to an unclassified *Nitrospira*. One
422 *Nitrospira*-NOB MAG (Bin_7_1) did harbor genes for the urea transport system permease
423 proteins (*urtBC*), urea transport system substrate-binding proteins (*urtA*) and urea transport
424 system ATP-binding proteins (*urtDE*). This suggests that the two unbinned *ureC* genes likely
425 belonged to *Nitrospira*-like NOB bacteria. *Nitrosomonas* MAGs Bin_168 and Bin_83 each
426 contained the *ureCAB* operon and some genes for urease accessory proteins and urea transport. A
427 third *ureC* sequence found in the metagenome classified as *Nitrosomonas* but was not binned
428 into any *Nitrosomonas* MAGs.

429

430 **The impact of nitrogen amendments on nitrifying populations.**

431 To address concentration and nitrogen source-dependent dynamics of the three nitrifier
432 populations detected in our metagenomic analysis, qPCR-assays were used to estimate their
433 abundances over time in the nitrogen amended microcosms. In the high ammonia amendment
434 (14A), strict AOB relative abundance increased 2.4-fold from weeks 1-3 but remained below 2%
435 of total bacteria for the duration of the experiment whereas comammox relative abundance
436 increased markedly over time reaching 2.8% of total bacteria by end of the experiment (Figure
437 3B). Similar to strict AOB, *Nitrospira*-NOB relative abundance increased early on but thereafter
438 reduced from 4% at its peak in week two to 1.8% by week eight. Weekly measurements for
439 nitrogen concentrations taken alongside biomass samples indicated the presence of residual
440 ammonia and accumulated nitrite concentrations were highest during the first three weeks of the

441 experiment but gradually reduced over time with most inorganic nitrogen present as nitrate
442 (Figure S5). While comammox bacteria were always dominant, qPCR-based abundance of strict
443 AOB as a portion of AOM was significantly higher when ammonia and nitrite accumulated in
444 weeks 1-3 as compared to weeks 5-8 (Welch's t-test, p-value < 0.05) (Figure 3A).

445

446 The qPCR data was in concordance with metagenomic estimation of MAG abundance with clade
447 A2 comammox (Bin_49_2_2, Bin_49_2 and Bin_260) highly abundant compared to strict AOB
448 (Bin_83, Bin_168 and Bin_195) and clade A1 comammox (Bin_13) in the inocula and at weeks
449 four and eight in the high ammonia amendment (Figure 4). In particular, clade A2 MAGs
450 Bin_49_2_2 and Bin_49_4 were the most dominant comammox populations while strict AOB
451 was dominated by Bin_83 at each time point. *Nitrospira*-NOB MAGs had comparable
452 abundance to clade A2 comammox MAGs but displayed limited variation in abundance in the
453 high ammonia amendments. This contrasts with the qPCR data, where *Nitrospira*-NOB were
454 significantly more abundant than comammox bacteria at earlier timepoints and then
455 demonstrated a significant decrease in abundance over time. This is likely due to the fact that the
456 two assembled *Nitrospira*-NOB MAG's do not represent the entirety of NOB diversity in the
457 microcosms as several *nxr* genes were not binned into MAGs and that metagenomic data is only
458 available for select timepoints as compared to qPCR data.

459

460 Nitrifier populations in mid and low ammonia amendments displayed similar dynamics to those
461 observed in high ammonia with comammox relative abundance increasing to 3% and 2.2% of
462 total bacteria by week eight, respectively. Interestingly, Bin_260, the least abundant clade A2
463 comammox MAG in the inocula, demonstrated significant increase in abundance in the low

464 ammonia amendment over the course of the experiment compared to its abundance in the other
465 ammonia amendments. Consistent with the ammonia amended microcosms, strict AOB in urea
466 amended microcosms increased in relative abundance only at earlier time points followed by low
467 but stable relative abundance (~2% of total bacteria). In the high urea amendment, relative
468 abundance of comammox bacteria remained largely unchanged at earlier time points followed by
469 an increase in abundance. Despite this, mean relative abundance of comammox bacteria
470 compared to strict AOB was still approximately 2-fold greater in all urea amendments. Similar to
471 the ammonia amendments, *Nitrospira*-NOB relative abundance did increase initially followed by
472 a decline in all urea amendments. Interestingly though, the relative abundance of comammox
473 bacteria and *Nitrospira*-NOB were similar in the later weeks of the experiment after *Nitrospira*-
474 NOB's initial rise in urea amendments. Clade A2 comammox MAG Bin_260 was consistently
475 lower in abundance than Bin_49_2_2 and Bin_49_2 in the urea amendments except for mid urea.
476 Abundance of the clade A1 comammox MAG remained lower than all clade A2 MAGs and
477 displayed minimal enrichment in all the urea amendments which was consistent with ammonia
478 amended microcosms. Bin_168, which showed high sequence similarity to *Nitrosomonas ureae*,
479 did not exhibit enrichment in any of the urea amendments and remained low in abundance with
480 all other strict AOB MAGs.

481
482 There was no significant difference in the mean qPCR-based relative abundance of strict AOB or
483 *Nitrospira*-NOB between the high ammonia (14A) and urea amendments (14U) (Welch t-test, p
484 > 0.05) but the mean relative abundance of comammox bacteria was significantly greater in high
485 ammonia than in the high urea amendment (Welch t-test, p < 0.05). Comparatively, out of all
486 nitrogen amendments, mean relative abundance of comammox bacteria was the lowest in high

487 urea (1.8% of total bacteria). Comparisons between the mid ammonia (3.5A) and urea
488 amendments (3.5U) as well as the low ammonia (1.5A) and urea (1.5U) amendments revealed no
489 significant difference in mean relative abundance for any of the nitrifier populations (Welch t-
490 test, $p > 0.05$). Additionally, no significant differences were detected when testing the mean
491 relative abundance of the three nitrifier populations between high, mid, and low concentrations
492 within each amendment type (ANOVA, $p > 0.05$).

493
494 The relative abundance of the nitrifying groups were used to examine potential correlations
495 between the different populations in each of the nitrogen amendments. The ratio of comammox
496 bacteria as portion of AOM to comammox bacteria as a portion of total *Nitrospira* revealed a
497 strong positive relationship in all amendments (Pearson $R = 0.75$ - 0.87 , $p < 0.001$) (Figure S6A),
498 however, the change in relative abundance of comammox bacteria was not directly correlated
499 with that of strict AOB in any of the nitrogen amendments (Figure S6B). Strict AOB and
500 *Nitrospira*-NOB abundances were strongly correlated for all urea amendments and high (14A)
501 and mid ammonia (3.5A) (Pearson $r = 0.58$ - 0.82 , $p < 0.05$, Figure 5A) but exhibited a weaker
502 relationship in low ammonia (Pearson $r = 0.42$, $p > 0.05$). Interestingly, while comammox
503 bacteria abundance was significantly and negatively correlated with that of *Nitrospira*-NOB in
504 ammonia amendments (Pearson $r = -0.37$ to -0.61) ($p < 0.05$), there was no significant
505 association between them in the urea amendments ($p > 0.05$) (Figure 5B).

506

507 **Discussion**

508 **Key nitrifiers encompassing *Nitrospira* and *Nitrosomonas*-like bacteria share ureolytic
509 potential.**

510

511 16S rRNA gene sequences assembled from short reads indicated *Nitrospira*- and *Nitrosomonas*-
512 like populations were the only nitrifiers present in the microcosms. The proportion of 16S rRNA
513 gene reads mapping to *Nitrospira*-like populations in this study suggested that they were highly
514 abundant in the inocula and nitrogen amendments. Surveys of other DWTP biofilters using 16S
515 rRNA gene amplicon sequencing have indicated that sublineage II *Nitrospira* account for a
516 dominant portion of the bacterial community (Gulay *et al.*, 2016) with further investigation
517 confirming high contributions to its abundance were from comammox-*Nitrospira* (Palomo *et al.*,
518 2016, Tatari *et al.*, 2017). The strict AOB OTU found in this study was affiliated with
519 oligotrophic *Nitrosomonas* cluster 6a which exhibit maximum growth rates at ammonia
520 concentrations similar to the ones used for high and mid nitrogen amendments (Bollmann *et al.*,
521 2011, Sedlacek *et al.*, 2019). Despite this, the proportions of SSU reads mapping to
522 *Nitrosomonas*-like populations in all nitrogen amendments were consistently low. Taxonomic
523 classification of nitrogen cycling genes revealed metabolic potential for nitrification processes
524 were confined to *Nitrospira*- and *Nitrosomonas*-like populations corroborating with assembled
525 16S rRNA gene sequences. Additionally, phylogeny of *amoA* sequences found in the
526 metagenome indicated ammonia oxidation could be mediated by both *Nitrospira* and
527 *Nitrosomonas*.

528
529 We assembled a total of nine nitrifier MAGs which included comammox-*Nitrospira* (n=4),
530 *Nitrospira*-NOB-like (n=2), and *Nitrosomonas*-like (n=3) populations. Three of the four
531 comammox MAGs assembled were identified as clade A2 based on phylogenetic analyses of
532 hydroxylamine dehydrogenase (*hao*) which has previously been shown to dominate drinking
533 water biofilters along with comammox clade B (Palomo *et al.*, 2019). The remaining comammox

534 MAG assembled from biofilter media in this study was affiliated with clade A1 based on *hao*
535 gene phylogeny, which while atypical for drinking water biofilters is consistent with previously
536 published metagenome from the Ann Arbor drinking water filters (Pinto *et al.*, 2016). Similar
537 coexistence of clade A1 and A2 comammox bacteria with canonical nitrifiers has been observed
538 in tertiary rotating biological contactors treating municipal wastewater with low ammonium
539 concentrations (Spasov *et al.*, 2020). However, phylogenomic placement of clade A sub-groups
540 in this study separated the comammox MAGs into distinct clusters associated with freshwater
541 (Bin_13, clade A1), groundwater biofilters (Bin_49_4, clade A2) and tap water (Bin_260 and
542 Bin_49_2_2, clade A2). Maintenance of high functional redundancy for the complete ammonia
543 oxidation pathway may rely on coexisting comammox populations avoiding direct competition
544 through distinct physiological niches. Additionally, the inocula were sourced from low
545 substrate conditions which may also allow for the coexistence of multiple comammox
546 populations. Strict AOB MAGs obtained in this study associated with low ammonia adapted
547 *Nitrosomonas* cluster 6a (Koops *et al.*, 2006) which is consistent with the inocula source being
548 an oligotrophic environment (i.e., DWTPs). Furthermore, close relatives of *Nitrospira*-NOB
549 MAGs obtained in this study originated from a tap water source where *Nitrospira*-NOB also
550 coexisted with strict AOB and comammox bacteria under oligotrophic conditions (Wang *et al.*,
551 2017). Our findings, consistent with previous studies, confirm the nitrifier community
552 encompassed multiple populations capable of single and two-step nitrification within a single
553 system with *Nitrospira* as the dominant nitrifier. However, the mechanism behind high abundances
554 of *Nitrospira*-NOB in biofilters is not yet completely understood. Further, assessment of metabolic
555 versatility revealed initiation of nitrification through urea degradation was possible by all three
556 nitrifying guilds. Though ureolytic activity is a widespread trait among cultured comammox-

557 *Nitrospira* representatives and curated MAGs, the capability is confined to only some
558 *Nitrospira*-NOB and *Nitrosomonas* species (Koch *et al.*, 2015, Sedlacek *et al.*, 2019). Here in
559 particular, this a would allow *Nitrospira*-NOB to play a role in nitrite production in urea
560 microcosms by crossing feeding ammonia from urea degradation to strict AOB, a mutualistic
561 strategy which may not be active in ammonia amended microcosms.

562

563 **Comammox bacterial abundance increased irrespective of nitrogen source or loading but
564 may compete with NOB depending on nitrogen source type.**

565 We tested the impact of nitrogen source and loading rates on temporal dynamics of a mixed
566 nitrifying community to determine whether comammox bacteria are outcompeted at higher
567 concentrations and/or favored in urea amendments due to their ureolytic activity. qPCR-based
568 abundance tracking revealed comammox bacteria demonstrated a preferential enrichment over
569 strict AOB in the nitrogen amendments irrespective of nitrogen source or availability.
570 Additionally, strict AOB abundance did not exhibit any significant difference across the nitrogen
571 amendment types. This is in contrast to previous work in soil microcosms where AOB
572 abundance increased in response to high ammonia amendments (He *et al.*, 2021). However, strict
573 AOB populations in these soil microcosms were primarily *Nitrosospira* compared to oligotrophic
574 *Nitrosomonas* cluster 6a which were the primary AOB in this study. Here, both comammox
575 bacteria and strict AOB demonstrated increased abundance in all amendments during the earlier
576 weeks of the experiment. Ultimately, while comammox bacteria were enriched over time our
577 findings demonstrated this increased abundance was not associated with a decrease in the
578 abundance of strict AOB in any of the nitrogen amendments. This suggests a lack of direct
579 competition between the two comammox and strict AOB which could be attributable to the two

580 ammonia oxidizers occupying separate nitrogen availability niches (Martens-Habbena *et al.*,
581 2009, Kits *et al.*, 2017). Stable abundances of strict AOB compared to enrichment of comammox
582 could be due to a combination of factors ranging from (1) higher abundances of comammox
583 bacteria in the inocula and (2) significantly higher biomass yields per mole of ammonia oxidizers
584 for comammox bacteria compared to AOB (Kits *et al.*, 2017).

585

586 Clade A2 associated comammox bacterial MAGs were dominant in the inocula and over the
587 course of the experiment showed increased abundance in all amendments. In contrast,
588 comammox bacteria belonging to clade A1 were lower in abundance and did not demonstrate
589 significant change over time in any amended microcosm. Though physiological differences
590 between comammox bacteria clades/sub-clades have yet to be established, earlier studies of
591 DWTP biofilters have observed higher abundances of clade B (Fowler *et al.*, 2018) or
592 alternatively both clades found at the same DWTP but within separate rapid sand filters, where
593 clade B was more abundant in the secondary filters receiving lower ammonia concentrations
594 (Poghosyan *et al.*, 2020). In this study, the lack of clade A1 enrichment over the course of the
595 experiment may also indicate distinct physiological niches within clades (i.e., subclade-level
596 niche differentiation). Future research is necessary to develop a clearer understanding of
597 physiological differences between comammox bacteria at the clade/sub-clade level. Since
598 cultivability of comammox bacteria remains an ongoing challenge, integrating multiple ‘omics
599 techniques (i.e., metatranscriptomics and metaproteomics) may be an appropriate strategy for
600 examining ammonia utilization and the expressed metabolisms of multiple coexisting
601 comammox bacteria populations alongside canonical nitrifiers.

602

603 The negative association between comammox bacteria and canonical NOB observed in ammonia
604 amendments could be a result of nitrite limitation resulting from complete nitrification driven by
605 comammox bacteria. The possibility of comammox bacteria being a source of leaked nitrite to
606 Nitrospira-NOB seems unlikely in this case as this would likely form a positive association
607 between the two. Nitrite limitation driven competition between comammox bacteria and NOB is
608 supported by the fact the negative associations between the groups were stronger at medium (3.5
609 mg-N/l) and low (1.5 mg-N/l) nitrogen availability as compared to the high ammonia
610 amendments (i.e., 14 mg-N/l). In contrast, there was no significant association between the
611 abundance of comammox bacteria and Nitrospira-NOB in the urea amended systems irrespective
612 of nitrogen loading. We hypothesize that this variable observations between ammonia and urea
613 amended systems likely emerge from the extent of metabolic coupling between AOB and NOB
614 and the resultant ability of comammox to outcompete NOB. Specifically, while the rate of nitrite
615 availability for NOB in ammonia amended systems is largely dictated by ammonia oxidation
616 activity of AOB it is likely that nitrite availability in urea amended systems would be dictated by
617 a combination of both AOB activity and indirectly by NOB. In this case, the production of nitrite
618 could be mediated by *Nitrospira*-NOB capable of ureolytic activity by crossing feeding ammonia
619 to strict AOB who in turn provide nitrite at a rate at which *Nitrospira*-NOB. This tight coupling
620 between AOB and NOB is supported by stronger and more significant correlation between AOB
621 and NOB abundance in urea amended systems as compared to ammonia amended systems. Thus,
622 it appears that while comammox bacteria may outcompete *Nitrospira*-NOB in systems where
623 AOB abundances are low and nitrite availability is largely dictated by AOB activity, this
624 competitive exclusion may be limited in scenarios with established AOB-NOB cross feeding via
625 urea where nitrite availability is governed not only by AOB's ammonia oxidation rate but also by

626 NOB's ureolytic activity. Since urea is used directly by urease-positive nitrifiers, variabilities in
627 their affinities for the substrate would play a role in the outcome of competition in urea
628 microcosms but was not assessed in this study.

629

630 Altogether, our study demonstrates that comammox bacteria will dominate over canonical
631 nitrifiers in communities sourced from nitrogen limited environments irrespective of nitrogen
632 source type or loading rate without directly competing with canonical AOB. Further, our study
633 also indicates comammox bacteria and AOB may occupy independent niches in communities
634 sources from low nitrogen environments. Interestingly, we see evidence of potential competitive
635 exclusion of NOB by comammox bacteria governed by nitrogen source dependent metabolic
636 coupling between AOB and NOB.

637

638 **Data availability**

639 Raw sequence reads, metagenome assembly, and MAGs are available on NCBI at Bioproject
640 number PRJNA764197.

641

642 **Funding sources**

643 This work was supported by NSF Graduate Research Fellowship and Cochrane Fellowship to
644 KV and by NSF Award number: 1703089.

645

646

647

648

649

650

651

652

653

654

655
656
657
658
659
660
661
662
663
664
665
666
667
668

669 References

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF & Quince C (2014) Binning metagenomic contigs by coverage and composition. *Nat Methods* **11**: 1144-1146.

Annavajhala MK, Kapoor V, Santo-Domingo J & Chandran K (2018) Comammox Functionality Identified in Diverse Engineered Biological Wastewater Treatment Systems. *Environ Sci Technol Lett* **5**: 110-116.

Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S & Ogata H (2020) KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. *Bioinformatics* **36**: 2251-2252.

Bartelme RP, McLellan SL & Newton RJ (2017) Freshwater Recirculating Aquaculture System Operations Drive Biofilter Bacterial Community Shifts around a Stable Nitrifying Consortium of Ammonia-Oxidizing Archaea and Comammox Nitrospira. *Front Microbiol* **8**: 101.

Beach NK & Noguera DR (2019) Design and Assessment of Species-Level qPCR Primers Targeting Comammox. *Front Microbiol* **10**: 36.

Bollmann A, French E & Laanbroek HJ (2011) Isolation, cultivation, and characterization of ammonia-oxidizing bacteria and archaea adapted to low ammonium concentrations. *Methods Enzymol* **486**: 55-88.

Bowers RM, Kyrpides NC, Stepanauskas R, *et al.* (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. *Nat Biotechnol* **35**: 725-731.

Camejo PY, Santo Domingo J, McMahon KD & Noguera DR (2017) Genome-Enabled Insights into the Ecophysiology of the Comammox Bacterium "Candidatus Nitrospira nitrosa". *mSystems* **2**.

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N & Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. *Proc Natl Acad Sci U S A* **108 Suppl 1**: 4516-4522.

Chaumeil PA, Mussig AJ, Hugenholtz P & Parks DH (2019) GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. *Bioinformatics*.

Chen S, Zhou Y, Chen Y & Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics* **34**: i884-i890.

701 Cotto I, Dai Z, Huo L, *et al.* (2020) Long solids retention times and attached growth phase favor
702 prevalence of comammox bacteria in nitrogen removal systems. *Water Res* **169**: 115268.

703 Daims H, Lucker S & Wagner M (2016) A New Perspective on Microbes Formerly Known as
704 Nitrite-Oxidizing Bacteria. *Trends Microbiol* **24**: 699-712.

705 Daims H, Lebedeva EV, Pjevac P, *et al.* (2015) Complete nitrification by Nitrospira bacteria.
706 *Nature* **528**: 504-509.

707 Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space
708 complexity. *BMC Bioinformatics* **5**: 113.

709 Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML & Delmont TO (2015)
710 Anvi'o: an advanced analysis and visualization platform for 'omics data. *PeerJ* **3**: e1319.

711 Fowler SJ, Palomo A, Dechesne A, Mines PD & Smets BF (2018) Comammox Nitrospira are
712 abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. *Environ
713 Microbiol* **20**: 1002-1015.

714 Gonzalez-Martinez A, Rodriguez-Sanchez A, van Loosdrecht MCM, Gonzalez-Lopez J &
715 Vahala R (2016) Detection of comammox bacteria in full-scale wastewater treatment bioreactors
716 using tag-454-pyrosequencing. *Environ Sci Pollut Res Int* **23**: 25501-25511.

717 Gottshall EY, Bryson SJ, Cogert KI, Landreau M, Sedlacek CJ, Stahl DA, Daims H & Winkler
718 M (2020) Sustained nitrogen loss in a symbiotic association of Comammox Nitrospira and
719 Anammox bacteria. *bioRxiv*.

720 Graham DW, Knapp CW, Van Vleck ES, Bloor K, Lane TB & Graham CE (2007) Experimental
721 demonstration of chaotic instability in biological nitrification. *ISME J* **1**: 385-393.

722 Gruber-Vodicka HR, Seah BKB & Pruesse E (2020) phyloFlash: Rapid Small-Subunit rRNA
723 Profiling and Targeted Assembly from Metagenomes. *mSystems* **5**.

724 Gulay A, Musovic S, Albrechtsen HJ, Al-Soud WA, Sorensen SJ & Smets BF (2016) Ecological
725 patterns, diversity and core taxa of microbial communities in groundwater-fed rapid gravity
726 filters. *ISME J* **10**: 2209-2222.

727 Gulay A, Fowler SJ, Tatari K, Thamdrup B, Albrechtsen HJ, Al-Soud WA, Sorensen SJ & Smets
728 BF (2019) DNA- and RNA-SIP Reveal Nitrospira spp. as Key Drivers of Nitrification in
729 Groundwater-Fed Biofilters. *mBio* **10**.

730 Gurevich A, Saveliev V, Vyahhi N & Tesler G (2013) QUAST: quality assessment tool for
731 genome assemblies. *Bioinformatics* **29**: 1072-1075.

732 He S, Li Y, Mu H, Zhao Z, Wang J, Liu S, Sun Z & Zheng M (2021) Ammonium concentration
733 determines differential growth of comammox and canonical ammonia-oxidizing prokaryotes in
734 soil microcosms. *Applied Soil Ecology* **157**.

735 Hermansson A & Lindgren PE (2001) Quantification of ammonia-oxidizing bacteria in arable
736 soil by real-time PCR. *Appl Environ Microbiol* **67**: 972-976.

737 Hiroyuki Ogata SG, Kazushige Sato, Wataru Fujibuchi, Hidemasa Bono and Minoru Kanehisa
738 (1999) KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids Research* **27**.

739 Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW & Hauser LJ (2010) Prodigal:
740 prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics*
741 **11**: 119.

742 Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT & Aluru S (2018) High throughput ANI
743 analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat Commun* **9**: 5114.

744 Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A & Jermiin LS (2017) ModelFinder:
745 fast model selection for accurate phylogenetic estimates. *Nat Methods* **14**: 587-589.

746 Kang DD, Li F, Kirton E, Thomas A, Egan R, An H & Wang Z (2019) MetaBAT 2: an adaptive
747 binning algorithm for robust and efficient genome reconstruction from metagenome assemblies.
748 *PeerJ* **7**: e7359.

749 Kits KD, Sedlacek CJ, Lebedeva EV, *et al.* (2017) Kinetic analysis of a complete nitrifier reveals
750 an oligotrophic lifestyle. *Nature* **549**: 269-272.

751 Koch H, Lucke S, Albertsen M, Kitzinger K, Herbold C, Spieck E, Nielsen PH, Wagner M &
752 Daims H (2015) Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the
753 genus Nitrospira. *Proc Natl Acad Sci U S A* **112**: 11371-11376.

754 Koops H-P, Purkhold U, Pommerening-Röser A, Timmermann G & Wagner M (2006) The
755 Lithoautotrophic Ammonia-Oxidizing Bacteria. *The Prokaryotes*, p.^pp. 778-811.

756 Kowalchuk GA & Stephen JR (2001) Ammonia-Oxidizing Bacteria: A Model for Molecular
757 Microbial Ecology. *Annu Rev Microbiol* **55**: 485-529.

758 Letunic I & Bork P (2019) Interactive Tree Of Life (iTOL) v4: recent updates and new
759 developments. *Nucleic Acids Res* **47**: W256-W259.

760 Li H & Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler
761 transform. *Bioinformatics* **25**: 1754-1760.

762 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R &
763 Genome Project Data Processing S (2009) The Sequence Alignment/Map format and SAMtools.
764 *Bioinformatics* **25**: 2078-2079.

765 Liu T, Wang Z, Wang S, Zhao Y, Wright AL & Jiang X (2019) Responses of ammonia-oxidizers
766 and comammox to different long-term fertilization regimes in a subtropical paddy soil. *European
767 Journal of Soil Biology* **93**.

768 Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR & Stahl DA (2009) Ammonia
769 oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. *Nature* **461**:
770 976-979.

771 Menzel P, Ng KL & Krogh A (2016) Fast and sensitive taxonomic classification for
772 metagenomics with Kaiju. *Nat Commun* **7**: 11257.

773 Na SI, Kim YO, Yoon SH, Ha SM, Baek I & Chun J (2018) UBCG: Up-to-date bacterial core
774 gene set and pipeline for phylogenomic tree reconstruction. *J Microbiol* **56**: 280-285.

775 Nguyen LT, Schmidt HA, von Haeseler A & Minh BQ (2015) IQ-TREE: a fast and effective
776 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol* **32**: 268-
777 274.

778 Nurk S, Meleshko D, Korobeynikov A & Pevzner PA (2017) metaSPAdes: a new versatile
779 metagenomic assembler. *Genome Res* **27**: 824-834.

780 Palomo A, Dechesne A & Smets BF (2019) Genomic profiling of Nitrospira species reveals
781 ecological success of comammox Nitrospira. *bioRxiv*.

782 Palomo A, Jane Fowler S, Gulay A, Rasmussen S, Sicheritz-Ponten T & Smets BF (2016)
783 Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel
784 physiology of Nitrospira spp. *ISME J* **10**: 2569-2581.

785 Palomo A, Pedersen AG, Fowler SJ, Dechesne A, Sicheritz-Ponten T & Smets BF (2018)
786 Comparative genomics sheds light on niche differentiation and the evolutionary history of
787 comammox Nitrospira. *ISME J* **12**: 1779-1793.

788 Parks DH, Imelfort M, Skennerton CT, Hugenholtz P & Tyson GW (2015) CheckM: assessing
789 the quality of microbial genomes recovered from isolates, single cells, and metagenomes.
790 *Genome Res* **25**: 1043-1055.

791 Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, Hugenholtz P &
792 Tyson GW (2017) Recovery of nearly 8,000 metagenome-assembled genomes substantially
793 expands the tree of life. *Nat Microbiol* **2**: 1533-1542.

794 Pinto AJ, Marcus DN, Ijaz UZ, Bautista-de Lose Santos QM, Dick GJ & Raskin L (2016)
795 Metagenomic Evidence for the Presence of Comammox Nitrospira-Like Bacteria in a Drinking
796 Water System. *mSphere* **1**.

797 Pjevac P, Schauberger C, Poghosyan L, *et al.* (2017) AmoA-Targeted Polymerase Chain
798 Reaction Primers for the Specific Detection and Quantification of Comammox Nitrospira in the
799 Environment. *Front Microbiol* **8**: 1508.

800 Poghosyan L, Koch H, Lavy A, Frank J, van Kessel M, Jetten MSM, Banfield JF & Lucker S
801 (2019) Metagenomic recovery of two distinct comammox Nitrospira from the terrestrial
802 subsurface. *Environ Microbiol* **21**: 3627-3637.

803 Poghosyan L, Koch H, Frank J, van Kessel M, Cremers G, van Alen T, Jetten MSM, Op den
804 Camp HJM & Lucker S (2020) Metagenomic profiling of ammonia- and methane-oxidizing
805 microorganisms in two sequential rapid sand filters. *Water Res* **185**: 116288.

806 Prosser JI & Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for
807 niche specialisation and differentiation. *Trends Microbiol* **20**: 523-531.

808 Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J & Glockner FO (2007) SILVA:
809 a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data
810 compatible with ARB. *Nucleic Acids Res* **35**: 7188-7196.

811 Quinlan AR & Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic
812 features. *Bioinformatics* **26**: 841-842.

813 Rognes T, Flouri T, Nichols B, Quince C & Mahe F (2016) VSEARCH: a versatile open source
814 tool for metagenomics. *PeerJ* **4**: e2584.

815 Roots P, Wang Y, Rosenthal AF, Griffin JS, Sabba F, Petrovich M, Yang F, Kozak JA, Zhang H
816 & Wells GF (2019) Comammox Nitrospira are the dominant ammonia oxidizers in a mainstream
817 low dissolved oxygen nitrification reactor. *Water Res* **157**: 396-405.

818 Sakoula D, Koch H, Frank J, Jetten MSM, van Kessel M & Lucker S (2020) Enrichment and
819 physiological characterization of a novel comammox Nitrospira indicates ammonium inhibition
820 of complete nitrification. *ISME J*.

821 Sedlacek CJ, McGowan B, Suwa Y, Sayavedra-Soto L, Laanbroek HJ, Stein LY, Norton JM,
822 Klotz MG & Bollmann A (2019) A Physiological and Genomic Comparison of Nitrosomonas
823 Cluster 6a and 7 Ammonia-Oxidizing Bacteria. *Microb Ecol* **78**: 985-994.

824 Seemann T (2014) Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**: 2068-2069.

825 Shao YH & Wu JH (2021) Comammox Nitrospira Species Dominate in an Efficient Partial
826 Nitrification-Anammox Bioreactor for Treating Ammonium at Low Loadings. *Environ Sci
827 Technol* **55**: 2087-2098.

828 Shi X, Hu H-W, Wang J, He J-Z, Zheng C, Wan X & Huang Z (2018) Niche separation of
829 comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under
830 long-term nitrogen deposition. *Soil Biology and Biochemistry* **126**: 114-122.

831 Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG & Banfield JF (2018)
832 Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy.
833 *Nat Microbiol* **3**: 836-843.

834 Spasov E, Tsuji JM, Hug LA, Doxey AC, Sauder LA, Parker WJ & Neufeld JD (2020) High
835 functional diversity among Nitrospira populations that dominate rotating biological contactor
836 microbial communities in a municipal wastewater treatment plant. *ISME J* **14**: 1857-1872.

837 Stahl DA & de la Torre JR (2012) Physiology and diversity of ammonia-oxidizing archaea. *Annu
838 Rev Microbiol* **66**: 83-101.

839 Tatari K, Musovic S, Gulay A, Dechesne A, Albrechtsen HJ & Smets BF (2017) Density and
840 distribution of nitrifying guilds in rapid sand filters for drinking water production: Dominance of
841 Nitrospira spp. *Water Res* **127**: 239-248.

842 van Kessel MA, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJ, Kartal B, Jetten MS &
843 Lucke S (2015) Complete nitrification by a single microorganism. *Nature* **528**: 555-559.

844 Wang J, Wang J, Rhodes G, He JZ & Ge Y (2019) Adaptive responses of comammox Nitrospira
845 and canonical ammonia oxidizers to long-term fertilizations: Implications for the relative
846 contributions of different ammonia oxidizers to soil nitrogen cycling. *Sci Total Environ* **668**:
847 224-233.

848 Wang M, Huang G, Zhao Z, Dang C, Liu W & Zheng M (2018) Newly designed primer pair
849 revealed dominant and diverse comammox amoA gene in full-scale wastewater treatment plants.
850 *Bioresour Technol* **270**: 580-587.

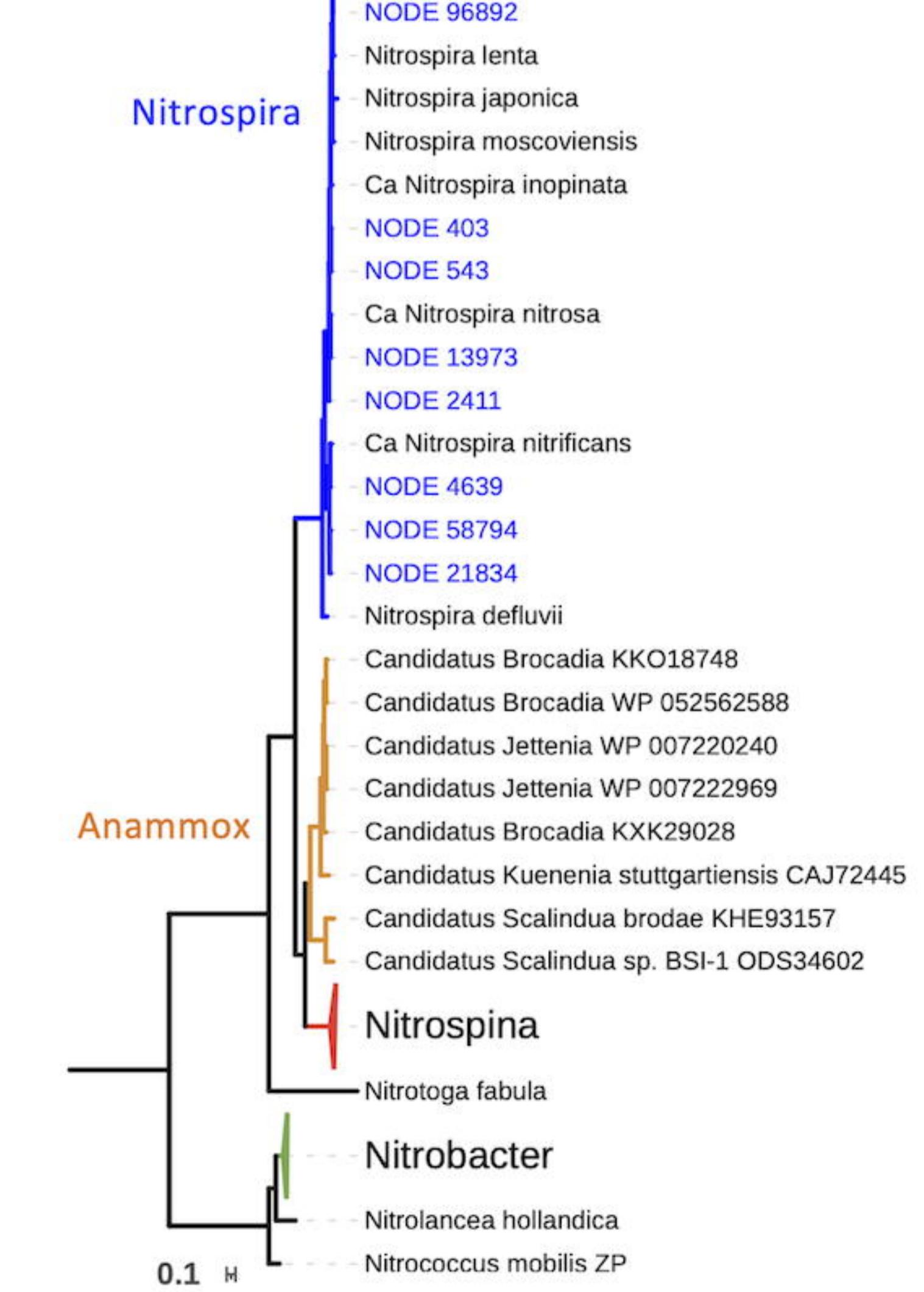
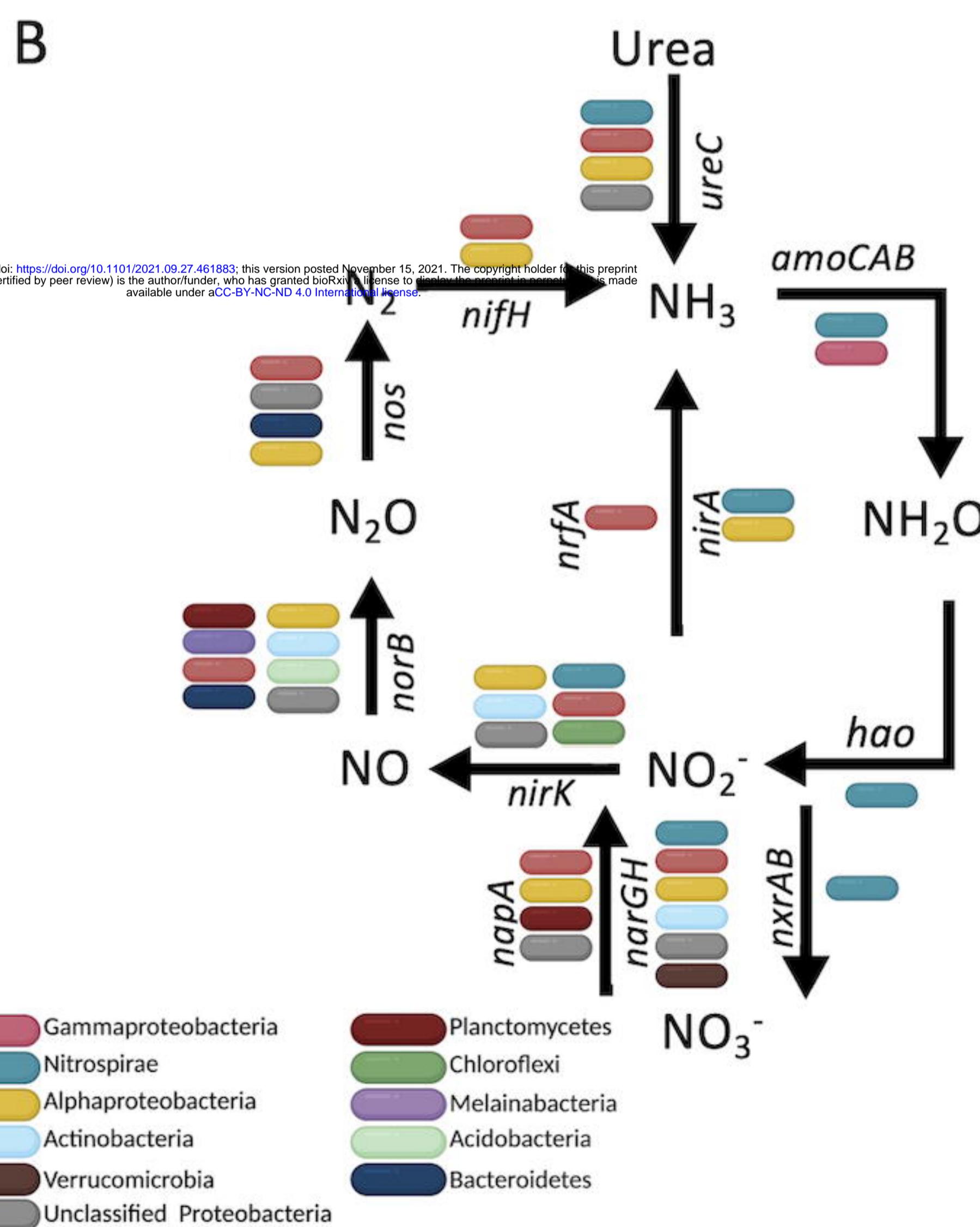
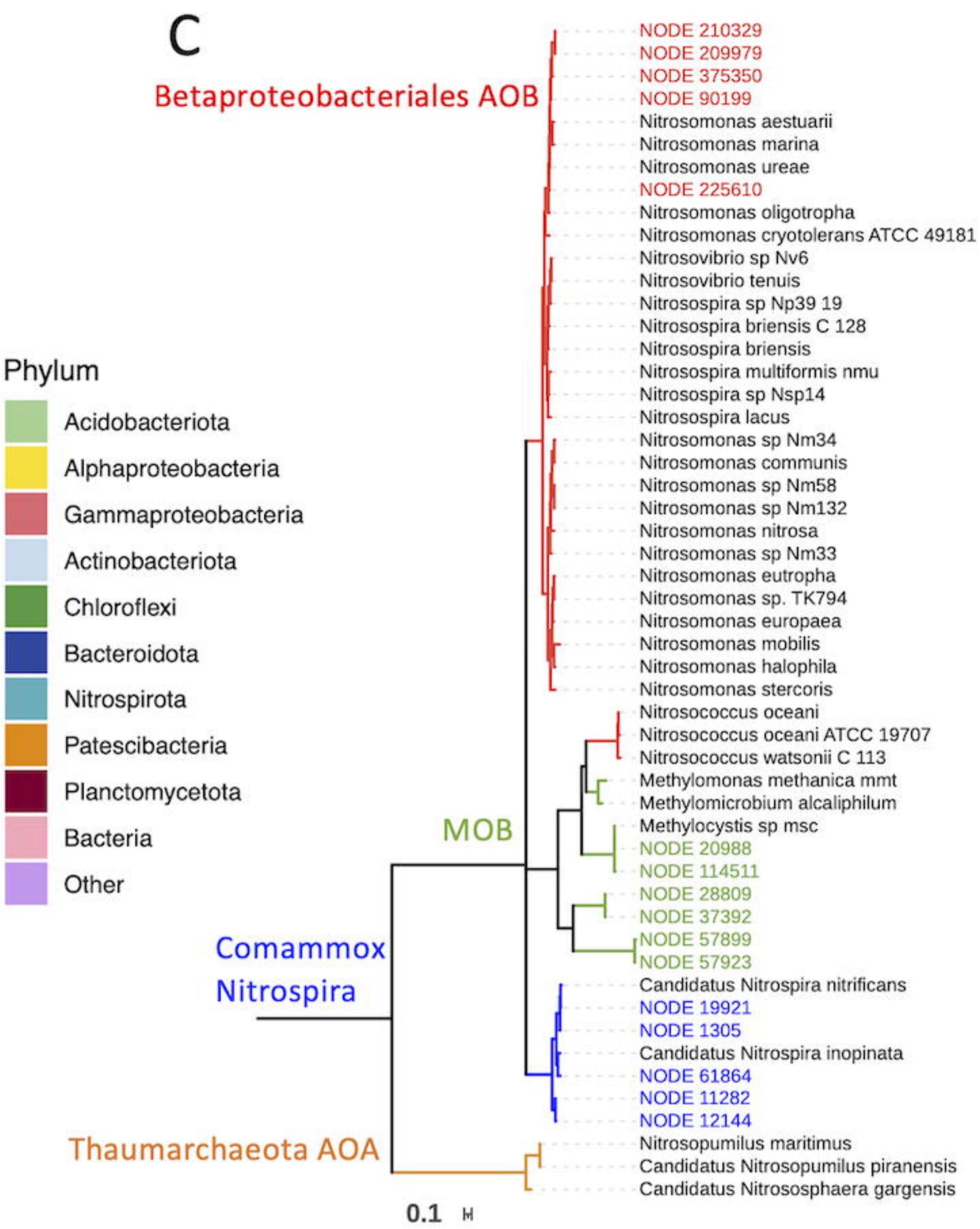
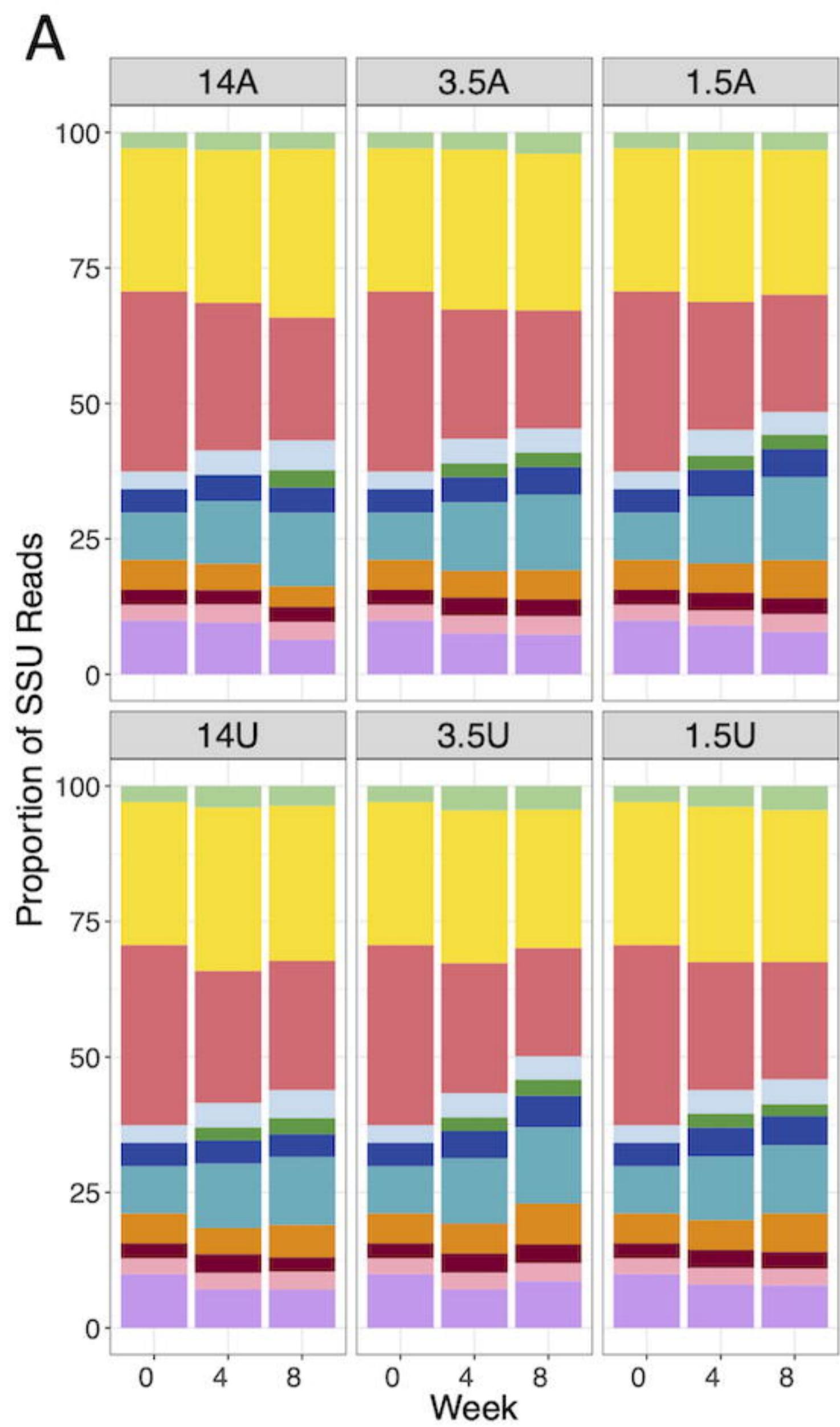
851 Wang X, Wang S, Jiang Y, Zhou J, Han C & Zhu G (2020) Comammox bacterial abundance,
852 activity, and contribution in agricultural rhizosphere soils. *Sci Total Environ* **727**: 138563.

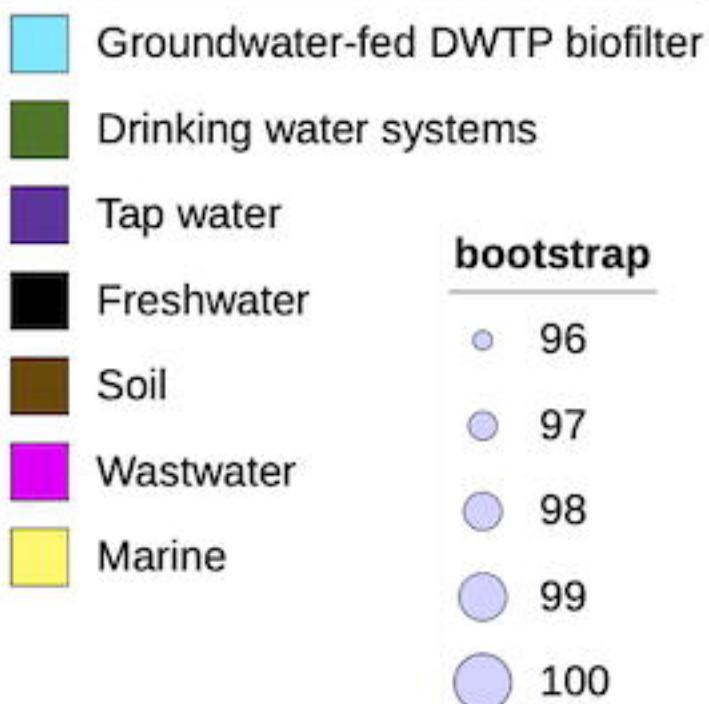
853 Wang Y, Ma L, Mao Y, Jiang X, Xia Y, Yu K, Li B & Zhang T (2017) Comammox in drinking
854 water systems. *Water Res* **116**: 332-341.

855 Wang Z, Cao Y, Zhu-Barker X, Nicol GW, Wright AL, Jia Z & Jiang X (2019) Comammox
856 Nitrospira clade B contributes to nitrification in soil. *Soil Biology and Biochemistry* **135**: 392-
857 395.

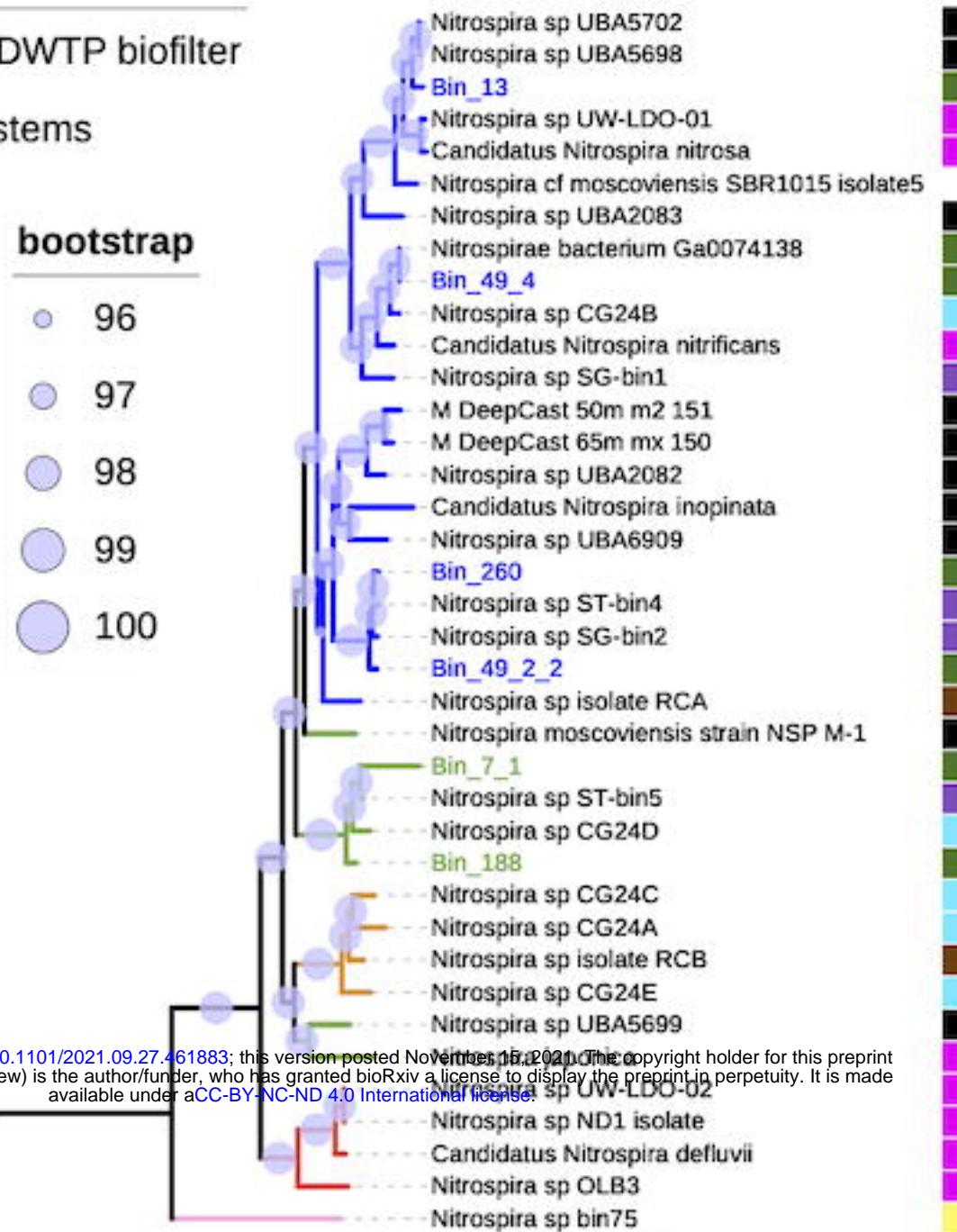
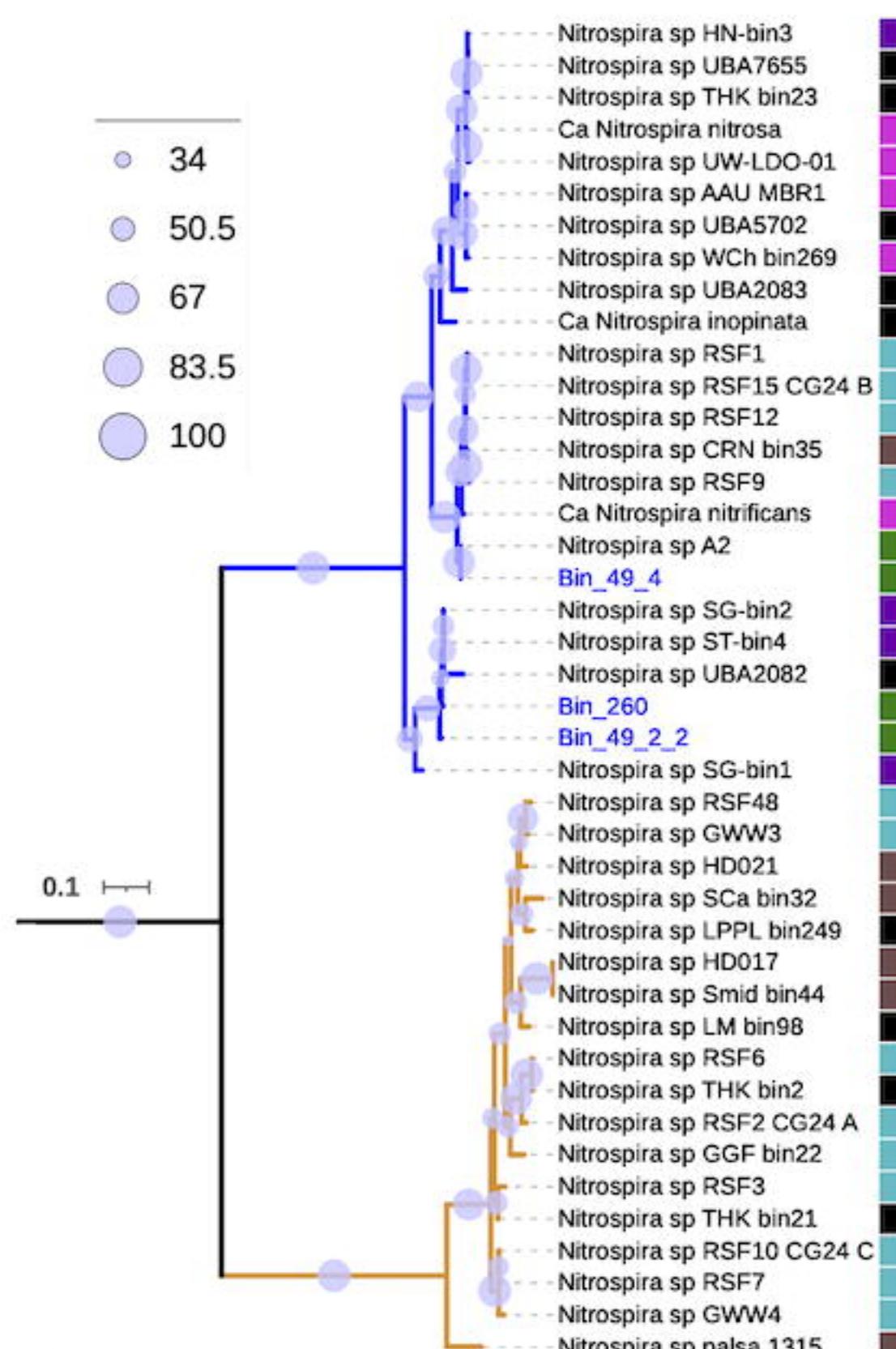
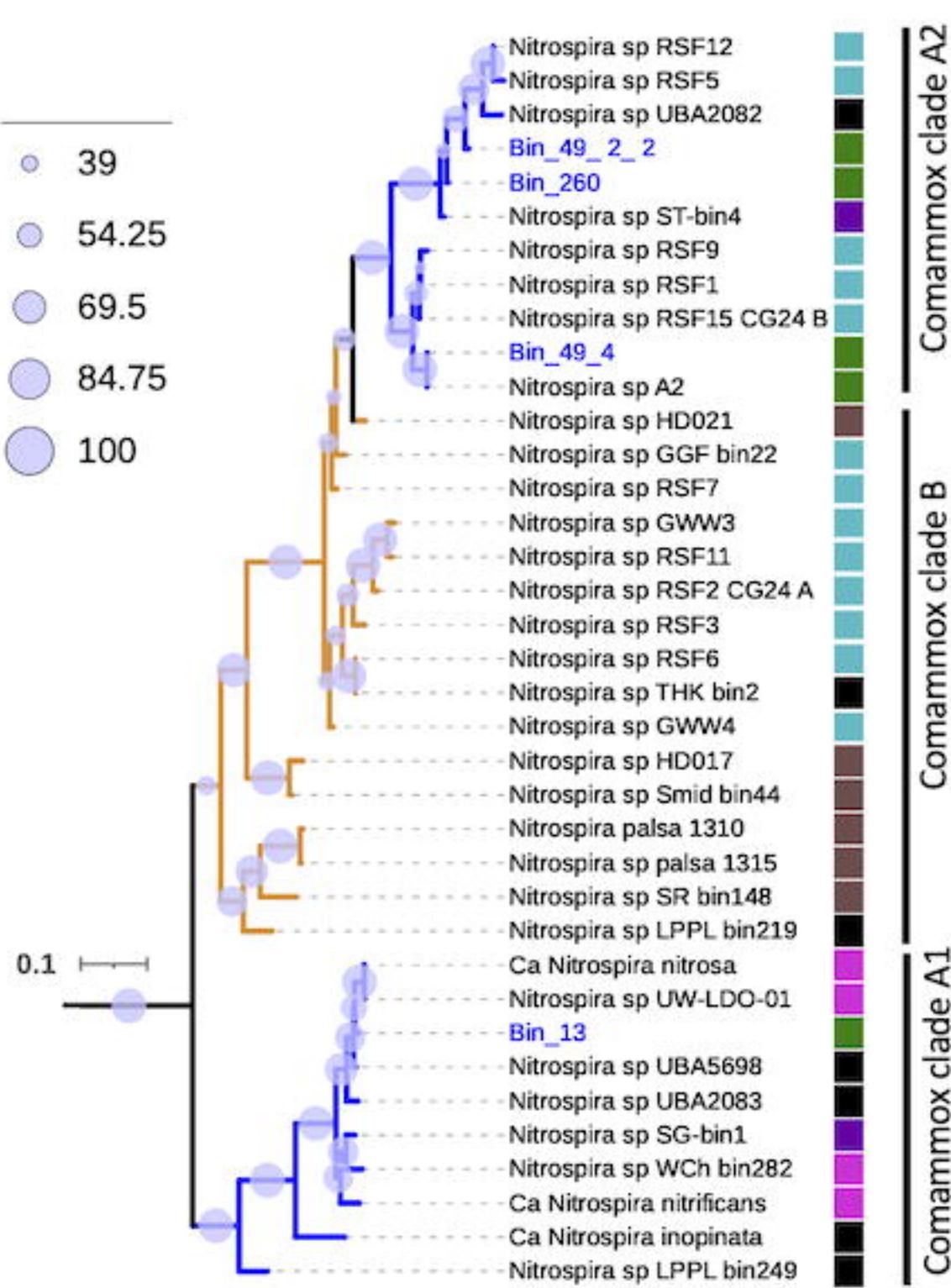
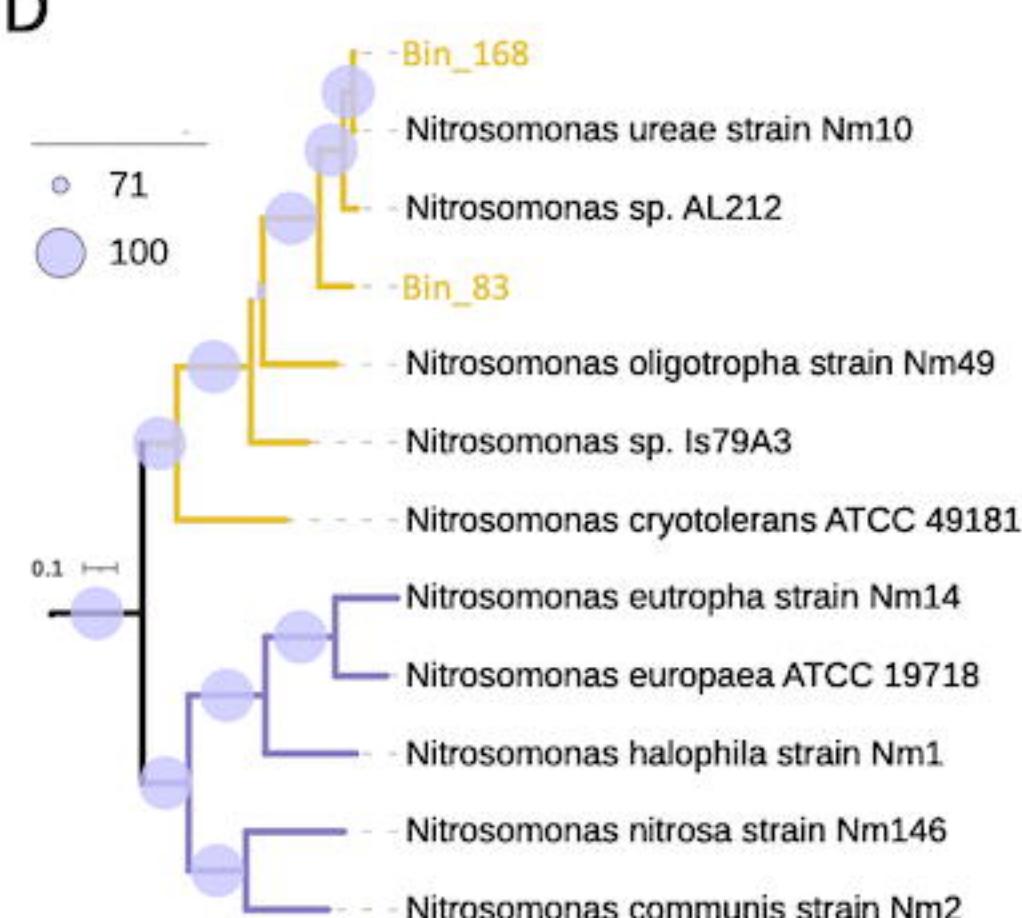
858 Wu YW, Simmons BA & Singer SW (2016) MaxBin 2.0: an automated binning algorithm to
859 recover genomes from multiple metagenomic datasets. *Bioinformatics* **32**: 605-607.

860 Yang Y, Daims H, Liu Y, Herbold CW, Pjevac P, Lin J-G, Li M & Gu J-D (2020) Activity and
861 Metabolic Versatility of Complete Ammonia Oxidizers in Full-Scale Wastewater Treatment
862 Systems. *mBio* **11**:e03175-19.

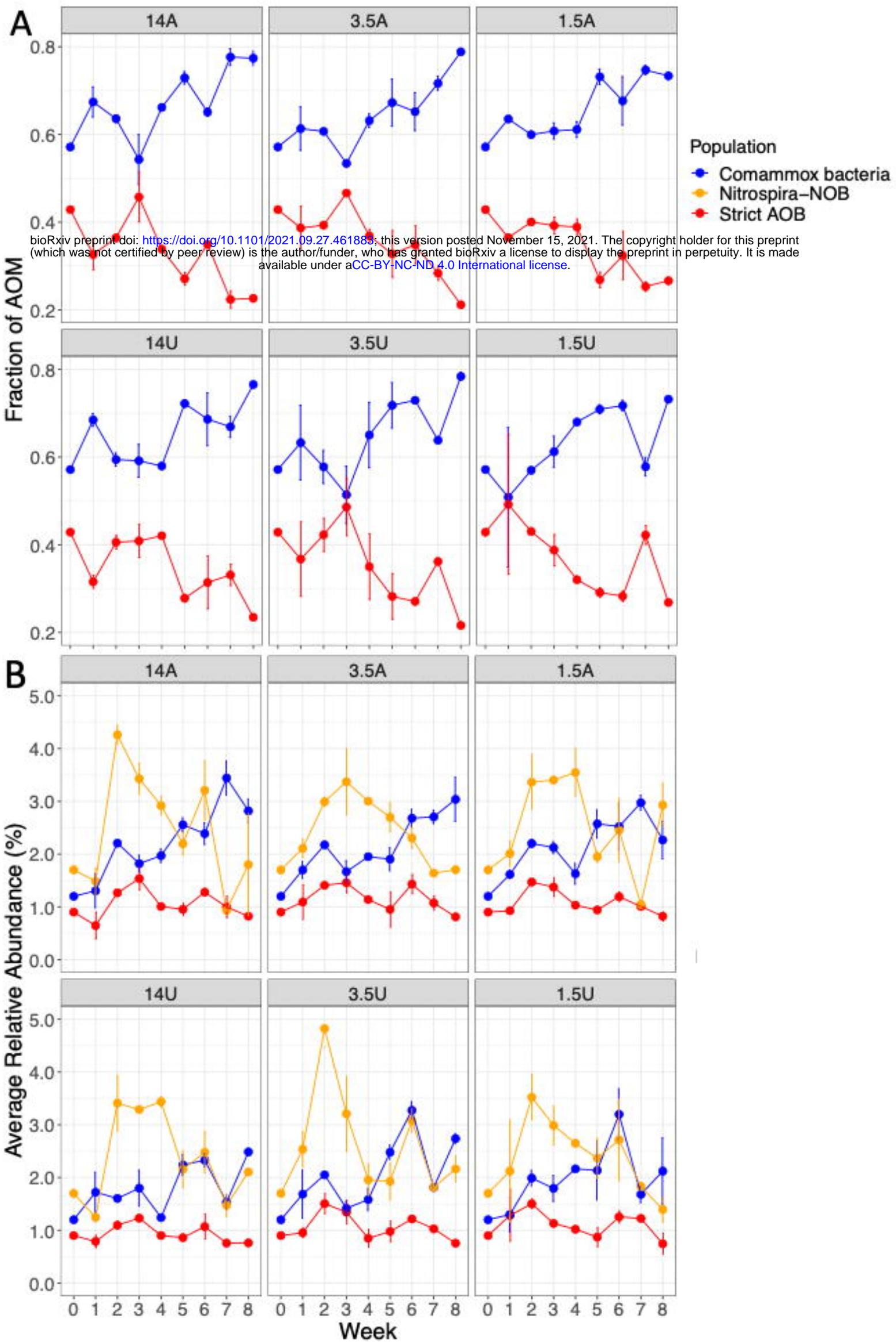




863 Zheng M, Wang M, Zhao Z, Zhou N, He S, Liu S, Wang J & Wang X (2019) Transcriptional
864 activity and diversity of comammox bacteria as a previously overlooked ammonia oxidizing
865 prokaryote in full-scale wastewater treatment plants. *Sci Total Environ* **656**: 717-722.

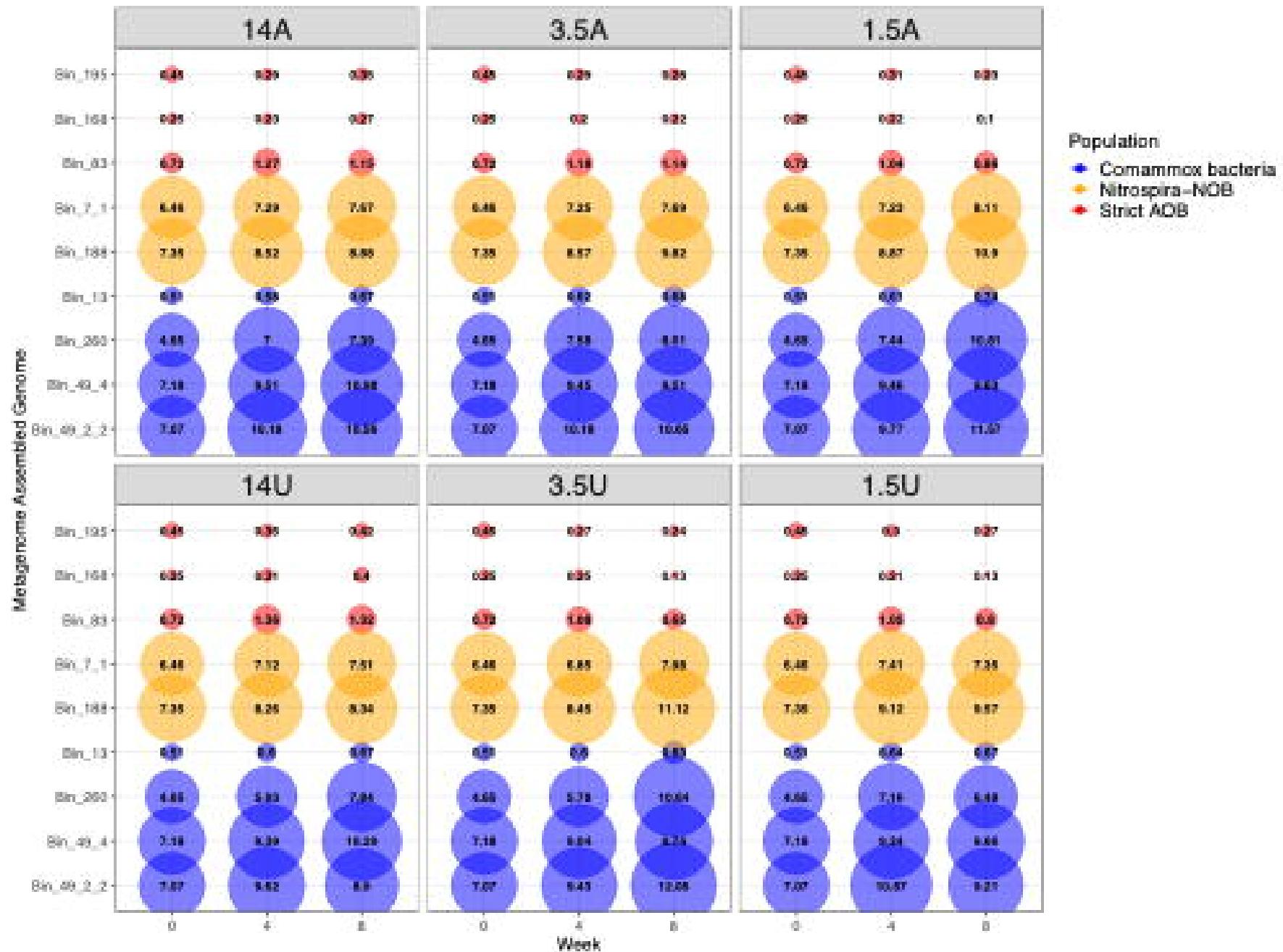

866

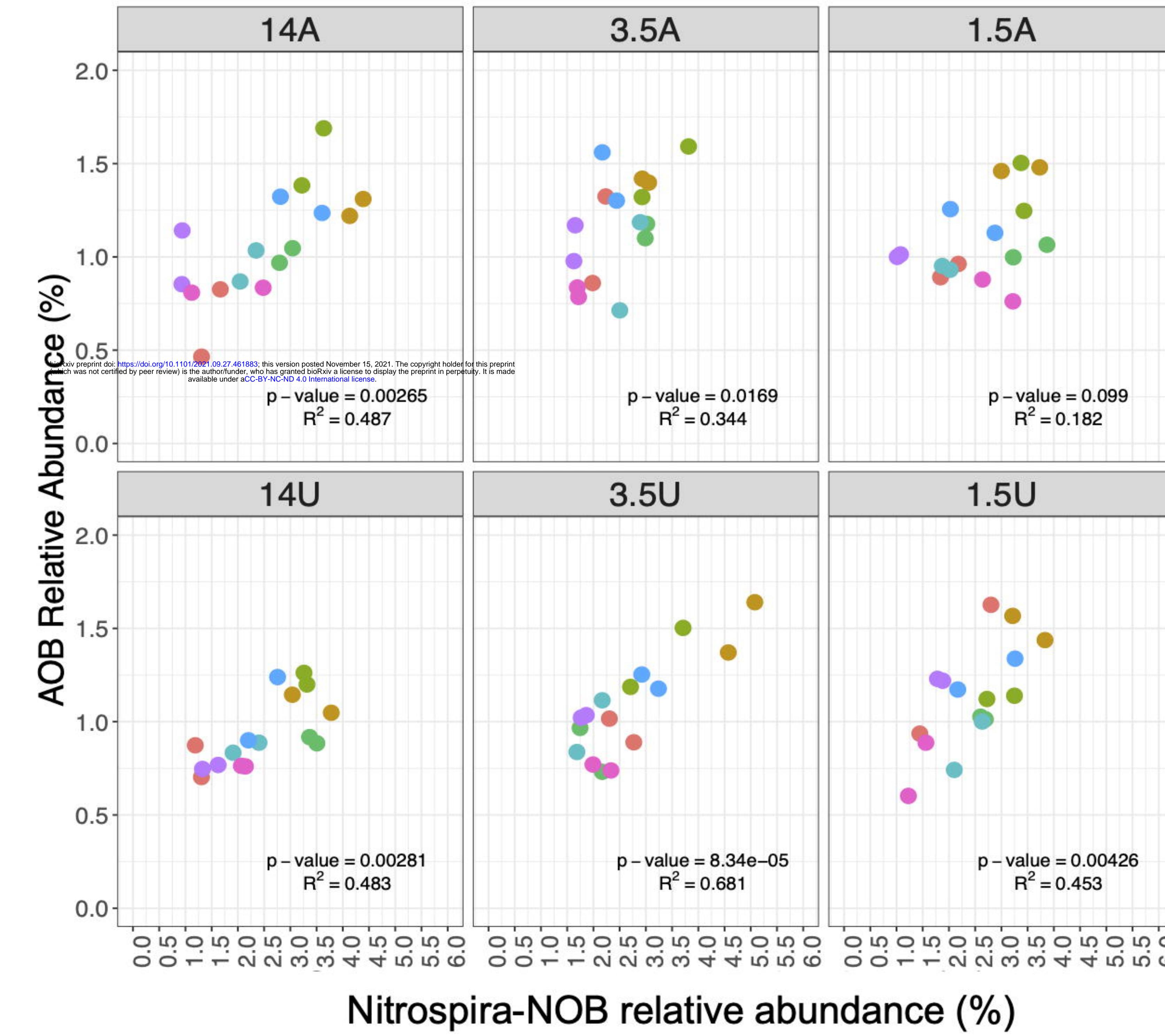
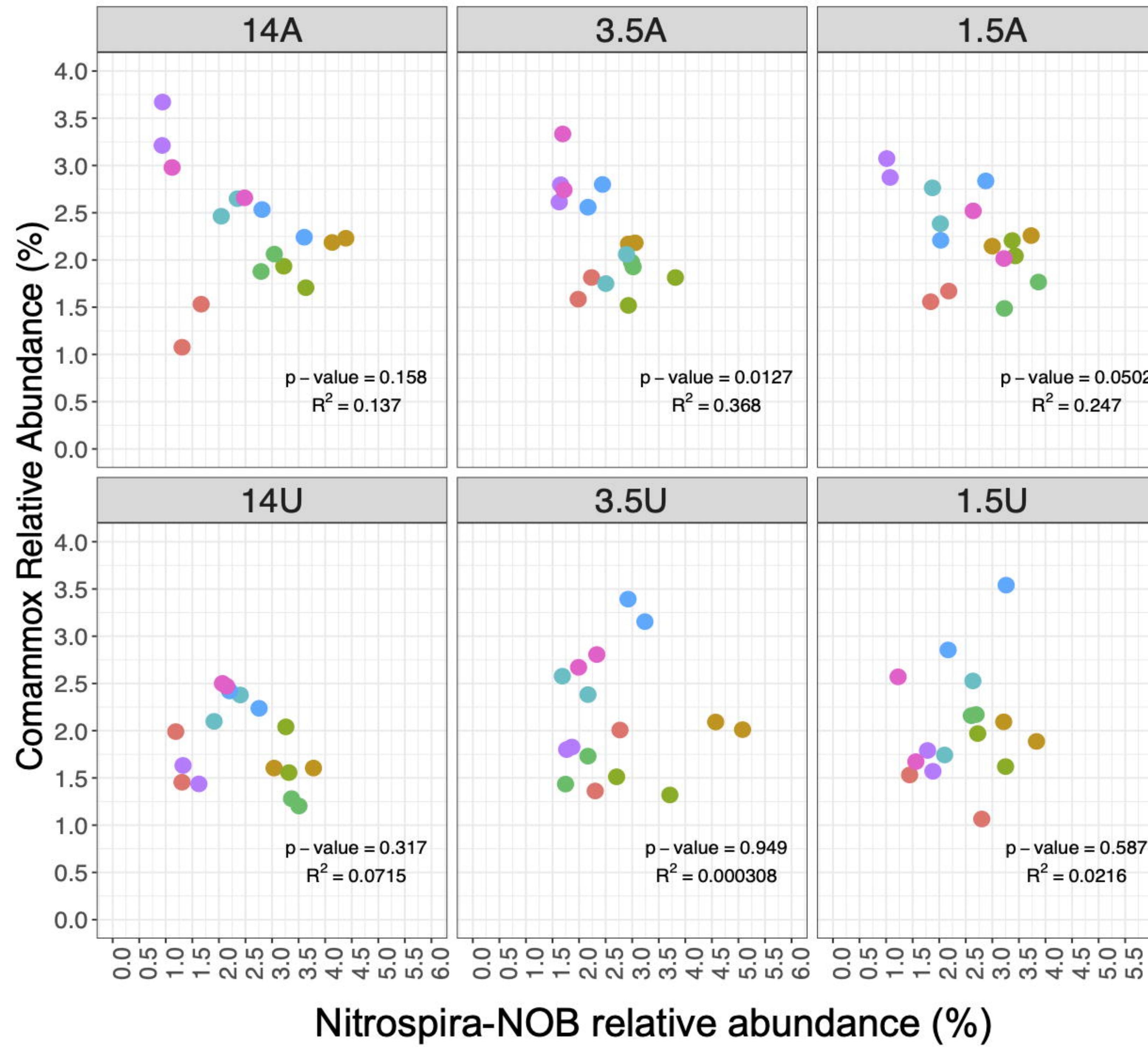
867





868

869




A**Environment of Origin**



bioRxiv preprint doi: <https://doi.org/10.1101/2021.09.27.461883>; this version posted November 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

B**C****D**

Sublineage II clade A comammox-Nitrospira
 Sublineage II Nitrospira-NOB
 Sublineage II clade B comammox-Nitrospira
 Sublineage I Nitrospira-NOB
 Sublineage IV Nitrospira-NOB
 Nitrosomonas cluster 6a
 Nitrosomonas cluster 7

A**B****Week**

- Week 1
- Week 2
- Week 3
- Week 4
- Week 5
- Week 6
- Week 7
- Week 8