

1 Surfactin stimulated by pectin molecular patterns and root exudates
2 acts as a key driver of *Bacillus*-plant mutualistic interaction

3 Grégory Hoff^{1,2*}, Anthony Arguelles-Arias¹, Farah Boubssi¹, Jelena Prsic¹, Thibault Meyer^{1,3}, Heba
4 M. M. Ibrahim⁴, Sébastien Steels¹, Patricio Luzuriaga¹, Aurélien Legras¹, Laurent Franzil¹, Michelle
5 Lequart⁵, Catherine Rayon⁵, Victoria Osorio⁶, Edwin de Pauw⁶, Yannick Lara⁷, Estelle Deboever⁸,
6 Barbara de Coninck⁴, Philippe Jacques¹, Magali Deleu⁸, Emmanuel Petit⁵, Olivier Van
7 Wuytswinkel⁵, Marc Ongena^{1*}

8 ¹ Microbial Processes and Interactions, TERRA Teaching and Research Center, BioEcoAgro,
9 Joint Research Unit/UMR transfrontalière 1158, University of Liège - Gembloux Agro-Bio Tech,
10 Gembloux, Belgium

11 ² Ecology and Biodiversity, Department of Biology, Utrecht University, Padualaan 8, 3584 CH,
12 Utrecht, The Netherlands

13 ³ UMR Ecologie Microbienne, F-69622, University of Lyon, Université Claude Bernard Lyon 1,
14 CNRS, INRAE, VetAgro Sup, Villeurbanne, France

15 ⁴ Division of Plant Biotechnics, Department of Biosystems, Faculty of Bioscience Engineering, KU
16 Leuven, Leuven, Belgium

17 ⁵ Unité Biologie des Plantes et Innovation, BioEcoAgro, Joint Research Unit/UMR transfrontalière
18 1158, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France

19 ⁶ Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of
20 Liège, Liège, Belgium

21 ⁷ Astrobiology, UR-ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium

22 ⁸ Molecular Biophysics at Interfaces Laboratory, Gembloux Agro-Bio Tech, University of Liège,
23 Gembloux, Belgium

24 * Grégory Hoff g.hoff@uu.nl
25 Marc Ongena marc.ongena@uliege.be

26

27 **Abstract**

28 *Bacillus velezensis* is considered as model species belonging to the so-called *B. subtilis*
29 complex that typically evolved to dwell in the soil rhizosphere niche and establish intimate
30 association with plant roots. This bacterium provides protection to its natural host against
31 diseases and represents one of the most promising biocontrol agents. However, the
32 molecular basis of the cross-talk that this bacterium establishes with its natural host has
33 been poorly investigated. We show here that these plant-associated bacteria have evolved
34 some polymer-sensing system to perceive their host and that in response, they increase
35 the production of the surfactin-type lipopeptide. Furthermore, we demonstrate that
36 surfactin synthesis is favoured upon growth on root exudates and that this lipopeptide is
37 a key component used by the bacterium to optimize biofilm formation, motility and early
38 root colonization. In this specific nutritional context, the bacterium also modulates
39 qualitatively the pattern of surfactin homologues co-produced *in planta* and mainly forms
40 variants that are the most active at triggering plant immunity. Surfactin represents a shared
41 good as it reinforces the defensive capacity of the host.

42 **Importance**

43 Within the plant-associated microbiome, some bacterial species are of particular interest
44 due to the disease protective effect they provide via direct pathogen suppression and/or
45 stimulation of host immunity. While these biocontrol mechanisms are quite well
46 characterized, we still poorly understand the molecular basis of the cross talk these
47 beneficial bacteria initiate with their host. Here we show that the model species *Bacillus*
48 *velezensis* stimulates production of the surfactin lipopeptide upon sensing pectin as cell
49 surface molecular pattern and upon feeding on root exudates. Surfactin favors bacterial
50 rhizosphere fitness on one hand and primes the plant immune system on the other hand.
51 Our data therefore illustrate how both partners use this multifunctional compound as
52 unique shared good to sustain mutualistic interaction.

53 **Keywords:**

54 Lipopeptides, plant-associated bacteria, cell wall polymers, plant immunity, molecular
55 crosstalk

56
57

58 **Introduction**

59

60 Soil is among the richest ecosystems in terms of microbial diversity, but only a
61 subset of these microbes has evolved to efficiently establish in the competitive and
62 nutrient-enriched rhizosphere layer surrounding plant roots (1). The rhizosphere includes
63 plant beneficial bacteria dwelling on the rhizoplane as multicellular biofilm communities,
64 feeding on exuded carbohydrates (2, 3), and, in turn, contributing to host fitness via growth
65 stimulation and protection against phytopathogens (4, 5). This biocontrol activity is
66 mediated via competition for nutrients and space, direct growth inhibition of the pathogenic
67 (micro)organisms and more indirectly, by stimulating the host defensive capacity in an
68 immunization-like process which leads to induced systemic resistance (ISR, (6, 7)). This
69 ISR mechanism results in enhanced defense lines and reduced disease symptoms upon
70 perception of plant beneficial microbes (6, 8).

71 From an ecological viewpoint, rhizosphere establishment and persistence of these
72 beneficial bacteria rely on various traits but efficient root colonization and high
73 competitiveness toward the surrounding microbiological network are pivotal. It is
74 hypothesized that the potential to produce a wide range of chemically diverse and
75 bioactive secondary metabolites (BSMs) acting as signals and/or antimicrobials is a
76 common key feature of these beneficial bacteria (5, 9, 10). Members of the *Bacillus*
77 *velezensis* species are considered as archetypes of plant-associated beneficial bacilli and
78 are among the most prolific BSMs producers with more than 12% of their genome devoted
79 to the synthesis of compounds contributing to both ecological competence and biocontrol
80 activity (11–15). Among their BSM arsenal, the cyclic lipopeptide surfactin, is synthesized
81 non-ribosomally by a multi-modular mega-enzyme machinery (encoded by the *srfA*
82 operon) and is formed as a mix of naturally co-produced homologues varying in the length
83 of the fatty acid chain. This multifunctional compound is of particular interest because it
84 retains important roles in key developmental processes such as bacterial motility, biofilm
85 formation and root colonization (16–18), but also because it represents the best described
86 *Bacillus* triggers for plant immunity (6, 8). The potential of surfactin to stimulate ISR has
87 been demonstrated on various plants including Solanaceae like tobacco and tomato on
88 which it acts as main if not sole elicitor formed by *B. subtilis* and *B. velezensis* species
89 (10, 19). In support to its key role in interaction with the host plant, we also previously
90 reported that surfactin is promptly formed in the course of early colonization and that its
91 production is stimulated upon sensing root tissues (20).

92 However, in contrast to the well-studied interactions between plants and microbial
93 pathogens or nitrogen-fixing bacteria (21), relatively little is known on the molecular basis
94 of cooperative interactions between plants and beneficial bacteria such as *B. velezensis*
95 (11, 20, 22). More specifically, how and to what extent the expression of key bacterial
96 BSMs may be modulated by plant factors is poorly understood. A better knowledge is not
97 only critical for providing new insights in rhizosphere chemical ecology but also for
98 optimizing the use of these species as biocontrol agents, which still suffer from insufficient
99 efficacy in practice (23). Here, we investigated the molecular interaction driving the early
100 steps of partnership establishment between plant roots and *B. velezensis*. We show that
101 cell wall pectin acts in synergy with soluble root exudates as plant host cues perceived by
102 *B. velezensis*. In response, the bacterium stimulates the production of specific surfactin
103 variants as key components of its secretome to further improve the fitness of both partners
104 *i.e.* early root colonization and thus rhizosphere competence of the bacterium and priming
105 of immunity in the host plant.

106
107

108 **Results**

109

110 **Pectin fragments of high polymerization degree act as host cues triggering**
111 **surfactin production**

112 We previously described that early production of surfactin, as a mix of naturally co-
113 produced homologues varying in the length of the fatty acid chain, is stimulated in contact
114 with root tissues and several plant cell wall-associated polymers (PCWP) (20). In this
115 work, we further investigated this phenomenon focusing on the impact of pectin, as it
116 represents complex sugar polymers typically found in the plant primary cell wall and
117 particularly abundant in the middle lamella layer (24). We first tested the effect of crude
118 pectin extracted from tobacco root PCWP (referred as cPec, Fig. 1ab for composition and
119 related structure). An 8-fold increase of surfactin production was detected at the early
120 exponential growth phase ($OD_{600}=0.2-0.25$) in *B. velezensis* GA1 liquid cultures
121 supplemented with cPec compared to an un-supplemented culture (Fig. 1cd). Surfactin
122 production was also 10 times enhanced upon addition at the same concentration of pure
123 commercially available homogalacturonan (HG) with high degree of polymerization (DP)
124 (Fig. S1ab) but low level of methyl-esterification (HGLM) according to the manufacturer
125 (Fig. 1d). HG was tested as the most abundant pectic polysaccharide constituent, which
126 represents 65% of crude primary cell wall pectin (24). Production of this lipopeptide was
127 also enhanced to a similar level upon addition of highly methylated HG (HGHM), showing
128 that the degree of methyl-esterification of the polymer is not a major trait influencing
129 perception by the bacterium (Fig. S2). Altogether, this supports a key role of the pectin
130 backbone as plant molecular pattern that is sensed by the bacterium to stimulate surfactin
131 synthesis.

132 Interestingly, by screening the CAZy database (25) for genes encoding
133 carbohydrate-active enzymes potentially involved in PCWP degradation by *B. velezensis*,
134 two putative pectate/pectin lyases encoding genes were detected. These two genes,
135 referred as *pelA* and *pelB* (accessions GL331_08735 and GL331_04125 in *B. velezensis*
136 GA1, respectively), are highly conserved among all sequenced *Bacillus* genomes that
137 belong to the “Operational Group *B. amyloliquefaciens*” (Table S1) (26). *pelA* and *pelB*
138 are readily expressed in GA1 *in vitro* and the corresponding enzymes efficiently convert
139 HG into unsaturated oligogalacturonides with consistent activity occurring at the beginning
140 of stationary phase (Fig. S2). However, the bacterial perception of oligomers with lower

141 polymerization degree compared to HG is not obvious since oligogalacturonides (OG) did
142 not stimulate surfactin biosynthesis (Fig. 1d, Fig. S1c for OG characterization).
143 Supplementation with galacturonic acid (GA) led to a reduction of surfactin production at
144 mid exponential phase ($OD_{600}=0.35$, Fig. 1d). Surfactin production is thus specifically
145 boosted upon sensing long degree of polymerization (DP) polymers, but is somehow
146 inhibited in presence of GA constituting the pectin backbone. Such HG-driven surfactin
147 stimulation also occurs in other *B. velezensis* isolates tested (FZB42, QST713 and S499)
148 and to a lower extent *B. pumilus* QST 2808. It does not occur in the non-rhizosphere
149 dwelling isolates *B. amyloliquefaciens* DSM7 or *B. subtilis* ATCC 21332 (Fig. 1e)
150 suggesting that this trait may be specific to bacilli with a plant-associated lifestyle.

151 **The root nutritional context favors early surfactin production**

152 *Bacillus velezensis* quickly colonize tomato plantlets in a gnotobiotic system and
153 forms visible biofilm-like structures covering the main root and embedding lateral roots
154 after 24-48h post inoculation (Fig. 2a). This is correlated with consistent *srfAA* gene
155 expression and surfactin production rate in the cell population at these early times but it
156 was maintained albeit to a lower level, over the investigated timeframe of seven days (Fig.
157 2ab). Since surfactin enhancement linked to the perception of the pectin backbone is only
158 transient (Fig. 1d), we hypothesized that root exudates, constantly secreted by the plant,
159 may also positively impact the synthesis of the lipopeptide. Surfactin production rate was
160 thus compared upon growth in a classical laboratory medium (LB) and in a root exudate-
161 mimicking medium (REM) reflecting the content of carbohydrates typically released by
162 tomato or tobacco roots (27). It revealed an earlier and higher production by cells growing
163 in REM (Fig. 2c). Surfactin production in REM medium is initiated earlier and is more
164 efficient in *B. velezensis* compared to other closely related but non plant-associated
165 species such as *B. amyloliquefaciens* or *B. subtilis* (Fig. 2d).

166 Addition of HG in REM medium compared to LB revealed a cumulative effect of
167 this PCWP and root exudates on surfactin production (Fig 3a). This could be of clear
168 ecological benefit for the bacterium since surfactin is known to favor motility of multicellular
169 communities and biofilm formation (16, 28, 29). However, a recent study questioned the
170 real role of surfactin in these key functions, since its production appears as non-essential
171 for pellicle biofilm formation in *B. subtilis* NCIB 3610, suggesting a strain dependant role
172 (30). We previously reported that motility and biofilm formation are boosted upon growth
173 on root exudates (27). Here we show that HG supplementation also favors *B. velezensis*

174 GA1 spreading on low-agar medium (Fig 3b) and early biofilm formation based on pellicle
175 development at the air-liquid interface (31) (Fig 3c). The role of surfactin in swarming,
176 pellicle formation and early root colonization was further confirmed for *B. velezensis* GA1.
177 Indeed, swarming motility on low agar plates was almost reduced to zero in a surfactin
178 deficient mutant, and the same mutant was more than 3 times less efficient to produce
179 pellicles at the air liquid interface and to promptly colonize tomato roots after 1 day post
180 inoculation when compared to the WT (Fig 3def). Collectively, these data allow correlating
181 the positive impact of PCWP on bacterial motility, biofilm formation and early root
182 colonization through an anticipated surfactin production in *B. velezensis*.

183 **Surfactin induction by PCWP is not linked to major transcriptional changes.**

184 Both HG and root exudates stimulate surfactin production in GA1. However, while
185 no activation of the *srfA* biosynthetic gene cluster was observed upon HG addition (Fig.
186 4a), an early and high surfactin gene expression was measured in *srfAp::gfp* cells growing
187 in REM compared to LB medium (Fig. 4b). To unravel transcriptome wide changes in GA1
188 associated with the perception of HG, RNA-sequencing was performed on cells grown in
189 REM with our without addition of HG and collected at various time points (lag, early
190 exponential and a mid-exponential phases). The data confirmed that HG perception is not
191 linked to an increased expression of the *srfA* operon but also revealed a quite limited and
192 transient transcriptional reprogramming with only 58 genes differentially expressed over
193 this timeframe (Table 1). Remarkably, more than 30% of these genes are involved in
194 stress response or cell wall modifications and are down regulated in the presence of HG
195 (Fig. 4c). We thus hypothesize that a long-term co-evolution process may have facilitated
196 *Bacillus* establishment on the roots by the inhibition of a costly stress response after
197 perception of HG. Addition of HG also leads to a 4.2-fold reduced expression of *flgM*
198 encoding an inhibitor of SigD, the σ factor involved in the activation of motility related
199 genes (32). This may contribute to enhanced spreading of multicellular communities in
200 addition to the positive effect of surfactin mentioned above.

201 **Root exudates drive the bacterium to form surfactin homologues with long fatty
202 acid chain (LFAC) and variants enriched in valine**

203 The NRPS machinery works as an assembly line in which each module is
204 responsible for recruiting and binding a specific amino acid to the nascent peptide after a
205 first lipo-initiation step for binding the fatty acid (FA) taken up from the cellular pool (Fig.
206 1A) (33, 34). In that way, surfactin is typically composed of saturated C₁₂ to C₁₉-FA of the

207 linear, iso or anteiso type of branching (35). Beside an increased production of surfactin,
208 we also observed an effect on the pattern of surfactin variants synthesized by *B.*
209 *velezensis* in the presence of artificial plant exudates, as well as in naturally produced
210 exudates and in planta upon root colonization (Fig. S4). Indeed, UPLC-MS profiling
211 revealed that the surfactin pattern produced by GA1 in REM medium is enriched in
212 surfactin *iso-C*₁₄ (*iC*₁₄) and other variants compared to LB medium (Fig. 5b). They
213 correspond to variants of the canonical structure with substitution of Leu by Val for the last
214 residue of the cyclic peptide moiety (Val₇) and, to a much lower extent, to the same
215 substitution in position 2 (Val₂, Fig. 5c, see Fig. S5). Valine is used both as precursor for
216 the synthesis of branched fatty acids with an even number of carbons, and as a building
217 block by the NRPS to form the peptide moiety. Supplementation of the medium with
218 deuterated L-Val-d⁸ resulted in an additional increase in the proportions of surfactin *iso-*
219 *C*14 and Val₇ isoforms labeled at the expected positions in the peptide and in the fatty acid
220 tail (Fig. S6). Based on these data, the higher relative proportions of *iC*₁₄Val⁷ formed in
221 REM, but also *in planta* (Fig. 5c), most probably result from some enrichment of the
222 intracellular pool in valine upon growth in the presence of root exudates (Supplementary
223 Discussion). Given the reduced specificity of NRPS domains involved in selection and
224 activation of leucine at positions 2 and 7, the megaenzyme would preferably bind valine
225 as it is more available in the pool.

226 As already described in *B. subtilis* (36, 37), the pleiotropic regulator CodY acts as
227 repressor of surfactin synthesis in *B. velezensis* GA1 as illustrated by the 1.9-fold increase
228 in production by the Δ codY mutant of strain GA1. Interestingly, CodY activity/codY
229 expression is also itself negatively impacted by high cellular concentrations in branched
230 chain amino acids (38). Both quantitative and qualitative changes in surfactin production
231 upon growth in exudates could therefore be, at least partly, due to a lower CodY activity
232 (Supplementary Discussion). In support to the role played by this regulator, a similar
233 impact on surfactin pattern were observed by deleting codY in GA1 or by supplementing
234 the culture medium of the wild-type with valine (Fig. 5d).

235 **Long fatty acid chain surfactins act as key triggers of receptor-independent plant**
236 **immunity**

237 Based on the potential of surfactin as host immunity elicitor (9, 39), we next wanted
238 to evaluate the possible relevance of quantitative and qualitative modulation of the
239 surfactin pattern driven by the plant for its own benefit.

240 Upon application as root treatment, pure surfactin used as mixture of isoforms
241 formed in REM medium, induced systemic resistance in hydroponically-grown tobacco
242 plants providing approximatively 45-50% significant disease reduction on leaves
243 subsequently infected with the pathogen *Botrytis cinerea* (Fig. 6a). The various isoforms
244 were then HPLC-purified and tested individually revealing that only long fatty acid
245 homologues (C_{14}/C_{15}) provided systemic protection to a similar level whereas short fatty
246 acid homologues (C_{12}/C_{13}) were inactive (Fig. 6b). Moreover, plant immunization by
247 surfactin is dose-dependent and concentrations up to 5 μM are sufficient to significantly
248 stimulate ISR (Fig. 6c). Interestingly, such low μM concentration are actually in the range
249 of those that could accumulate in the root vicinity within a few days upon colonization by
250 GA1 (Fig. S7).

251 We next wanted to correlate this systemic protection induced by the lipopeptide
252 with its potential to trigger locally early immune-related events such as the extracellular
253 burst in reactive oxygen species (ROS) involved in defense and signaling in pathogen-
254 triggered immunity (PTI) (40, 41). By contrast with flagellin (epitope Flg22), one of the best
255 characterized Microbe-Associated Molecular Patterns (MAMPs) isolated from bacterial
256 pathogens, treatment with surfactin did not induced burst in apoplastic ROS in root tissues
257 (Fig. 6d). However, surfactin-mediated ROS signaling still occurs since a clear cytoplasmic
258 ROS accumulation was observed (Fig 6e). Little information is available about the spatio-
259 temporal dynamics of such ROS burst but it may originate from different organelles and
260 has been occasionally described in response to perception of biotic and abiotic stresses
261 (42, 43). Using cytoplasmic ROS as marker, the same trend as for ISR tests could be
262 observed regarding the influence of the structure on the activity of surfactin since long fatty
263 acid homologues but not short ones efficiently stimulated early immune reaction (Fig 6f).
264 This means that a single additional methylene group in the fatty acid tail of the molecule
265 (C_{14} versus C_{13}) likely determines its immunization potential (Fig 6b,f). By contrast,
266 substitution of Leu⁷ by a Val in the C_{14} homologue does not impact activity suggesting that
267 the peptide moiety is not essential for perception by plant cells. In addition, the μM
268 concentrations required for optimal eliciting activity of surfactin are very high compared
269 with PAMPs active in the nM range (44). Our previous data showed that surfactin elicitation
270 is still active after treating cells with proteases or after a first application indicating that
271 there is no saturation of high-affinity but low abundance binding sites on receptors (45,
272 46). All this indicates that surfactin is perceived by plant cells via a mechanism
273 independent of high-affinity pattern-recognition receptors (PRRs) involved in MAMP

274 perception (40, 41, 44, 47, 48). We therefore postulated that surfactin perception relies on
275 some interaction with the lipid phase of the plant plasma membrane. Binding experiments
276 via isothermal titration calorimetry and leakage assays based on the release of fluorescent
277 probe were performed using liposomes prepared with lipids specific to plant plasma
278 membrane (PLPC/sitosterol/glucosylCeramide). It revealed that long fatty acid
279 homologues have a higher affinity for these vesicles than the short fatty acid forms and
280 display a higher destabilizing effect on the lipid bilayer when added at concentrations of 5
281 μM or higher (Fig. 6gh). These biophysical data thus correlated well with the contrasting
282 biological activities of longer $\text{C}_{14}/\text{C}_{15}$ and shorter $\text{C}_{12}/\text{C}_{13}$ surfactin homologues.

283 According to the priming concept (49), we previously showed that ISR triggered by
284 the lipopeptide in that plant as well as in tobacco and *Arabidopsis*, is not associated with
285 a fast and strong expression of defensive mechanisms before pathogen infection (20, 39).
286 In order to verify that surfactin elicitation does not cause a massive release of
287 antimicrobials from plant tissues, tomato roots were pre-treated with the lipopeptide before
288 inoculation with *B. velezensis*. As expected, it did not impacted subsequent colonization
289 in terms of rate and dynamics compared to untreated plants indicating the absence of
290 potential adverse effects on the bacterial partner (Fig. 6i).

291
292

293 **Discussion**

294

295 A large part of the interactions between bacteria and plants is known to be
296 mediated by small-size secreted products (50). However, a better understanding of the
297 chemical cross-talk at the plant-bacteria interface and its impact on bacterial ecology, plant
298 fitness and immune responses remains challenging. In epiphytic soil bacilli, root exudates
299 induce expression of an array of genes involved in various functions such as chemotaxis
300 and nutrient acquisition (51–53). Our data further illustrate that utilization of this cocktail
301 of molecules released by roots but also the perception of some cell wall polymers may
302 also drive these bacteria to efficiently produce key components of the secondary
303 metabolome and more specifically the multifunctional surfactin lipopeptide (20). As an
304 amphiphilic molecule and powerful biosurfactant, surfactin is presumably viewed as
305 membrane active compound with potent antimicrobial activity. However, this lipopeptide
306 is poorly antibacterial and antifungal (54). In *B. velezensis*, more obvious ecological
307 functions of this CLP are to contribute to motility, biofilm formation and roots colonization.
308 An enhanced production upon host perception thus constitutes a major force driving
309 successful rhizosphere establishment.

310 Homogalacturonan acts as a cue to enhance surfactin secretion by bacterial cells
311 but no transcriptional induction of the corresponding biosynthesis operon was observed.
312 Surfactin synthesis is integrated in a complex network involving several pleiotropic
313 regulators acting directly or indirectly on the expression of the *srfA* operon (55–58).
314 However, we hypothesize that surfactin induction by HG may rather rely on post-
315 transcriptional changes as reported for the effect of the DegU and YczE regulators on
316 production of another CLP, bacillomycin D (59). Despite the relatively close genetic
317 proximity of the two species, our data suggest that regulation of surfactin could be slightly
318 different in *B. velezensis* and *B. subtilis*. As it represents a key infochemical devoted to
319 cross-talk with the host plant, surfactin regulation may have been fine-tuned in rhizosphere
320 species to better fit with the nutritional or more broadly ecological context.

321 Deciphering the mechanism by which *B. velezensis* recognizes pectin and
322 enhances surfactin production would help to identify candidate genes and pathways that
323 are responsible for plant sensing, ensuring persistence on roots which globally remains
324 very poorly known for beneficial rhizobacteria. We are currently investigating whether
325 some cell surface proteins may act as receptors for homogalacturonan perception and

326 binding as recently described for *Sphingomonas* sp. (60), another beneficial species living
327 in association with plants (61). Some insights could be obtained by scrutinizing the few
328 genes conserved in *B. velezensis* but missing in non-plant-associated *B.*
329 *amyloliquefaciens* strains that are not responsive to pectin (62). Interestingly, shorter
330 fragments of HG and galacturonic acid do not stimulate surfactin secretion. It is therefore
331 tempting to hypothesize that sensing unaltered polymer could indicate a healthy host
332 suitable for bacterial colonization while the perception of monomers or low DP oligomers
333 may reflect a dead or infected plant that is unable to adequately provide resources.

334 Our data illustrate for the first time that *B. velezensis* can also modulate
335 qualitatively its surfactin pattern by growing in its natural nutritional context, *i.e.* on root
336 exudates. Substitution of leucine by valine in the peptide part is not expected to impact
337 the contribution of the lipopeptide to colonization by the producing strain itself considering
338 the minor effect of these structural changes on motility and biofilm formation potential (18).
339 Small modifications in the peptide sequence may nevertheless avoid surfactin hijacking
340 for use as signal prompting heterologous biofilm formation by closely related competitor
341 species (18). Based on our observations, the most obvious benefit of an increased
342 proportion of long fatty acid chain homologues is for the host plant since they represent
343 the most active forms for priming immunity with no impact on host fitness (20, 39), by
344 contrast with PTI (63, 64). As the bacterial partner does not have to face strong defensive
345 responses from this reaction, it ensures positive mutualistic co-habitation allowing
346 establishment of populations on roots. Persistence of threshold populations is necessary
347 for consistent production of other specialized secondary metabolites more directly
348 involved in warding off both microbial competitors and plant soilborne pathogens in the
349 context of biocontrol.

350 Surfactin stimulation upon sensing host molecular patterns may thus reflect an
351 aspect of plant-*Bacillus* coevolution as it makes a shared good out of this multifunctional
352 lipopeptide. To some extent, it might represent a facet of the plant-driven selection process
353 resulting in active recruitment of this bacterium as species that provides beneficial
354 functions. Other bacterial genera such as *Pseudomonas* also prevailing in the rhizosphere
355 microbiome actively produce CLPs with similar roles as surfactin. Evaluating whether their
356 synthesis is also modulated by plant cues would conceptually allow broadening the
357 significance of these lipopeptide-mediated inter-kingdom interactions for bacterial
358 ecology, plant health and biocontrol.

359

360 **Materials and Methods**

361

362 **Bacterial media and growth conditions.** Cultures were performed at 26°C in root exudates
363 mimicking medium (EM) (27) or in LB medium. To test the effect of plant cell wall polymers, each
364 specific plant polysaccharide was added at a final concentration of 0.1% in the culture medium.
365 Low (HGLM, <5%) and high (HGHM, >95%) methylated homogalacturonan were provided from
366 Elicityl Oligotech whereas oligogalacturonides and D-galacturonic acid were provided from Sigma.

367 **Strains construction.** All the bacteria strains used in this study are listed in table 2. All the primers
368 used in this study are available upon request. To follow the expression level of the *srf* operon in
369 GA1, we constructed a *gfp* transcriptional fusion under the control of the *srf* promoter and integrated
370 it into the *amyE* locus. First, a GA1 *amyE* amplicon containing a native *KasI* restriction site was
371 integrated in the PGEMT easy. In parallel, a *cat-gfp* cassette containing respectively (i) a
372 chloramphenicol resistance gene (*cat*) and (ii) a promoterless *gfpmut3.1* gene was amplified with
373 primers containing *KasI* sites at their 5' extremities using the pGFP star as a matrix (65). The
374 pGEMT *amyE* plasmid and the *cat-gfp* amplicon were both digested by *KasI* (NEB) and the two
375 linear fragments with compatible 5' overhangs were ligated together to obtain the PGEMT *amyEup-*
376 *cat-gfp-amyEdw* plasmid. To construct the final mutation cassette, an overlap extension PCR was
377 assessed by following the method developed by Bryksin and Matsumura (66). One first fragment
378 containing the upper *amyE* homologous region and the *cat* gene, and one second fragment
379 englobing the *gfpmut3.1* gene and the lower *amyE* homologous region were both amplified using
380 the PGEMT *amyEup-cat-gfp-amyEdw* plasmid as a matrix. A third fragment was amplified using
381 GA1 genome as matrix with chimeric primers designed to obtain a *srf* promoter amplicon flanked
382 by 20 bp connectors in 5' and 3' containing respectively homologies to the upper and lower *amyE*
383 fragments. All three fragments were joined together with a second PCR race to obtain the final
384 cassette. *B. velezensis* GA1 transformation was performed after modification from the protocol
385 developped by Jarmer *et al.* (67). Briefly, one colony was inoculated into LB liquid medium at 37°C
386 (160 rpm) during 6h and cells were washed two times with peptone water. Until 1µg of the
387 recombinant cassette was added to the GA1 cells suspension adjusted to an OD_{600nm} of 0.01 into
388 MMG liquid medium (19 g l-1 K₂HPO₄ anhydrous; 6 g l-1 KH₂PO₄; 1 g l-1 Na₃ citrate anhydrous;
389 0.2 g l-1 MgSO₄ 7H₂O; 2 g l-1 Na₂SO₄; 50 µM FeCl₃ (sterilized by filtration at 0.22 µm); 2µM MnSO₄;
390 8 g l-1 Glucose; 2 g l-1 L-glutamic acid; pH 7.0). Cells were incubated at 37°C with shaking, and
391 colonies who integrated the cassette by a double crossing over event were selected on LB plate
392 supplemented with chloramphenicol. Proper integration of the *cat-gfp* locus was verified by PCR.
393 Knock-out mutant strains were constructed by gene replacement by homologous recombination. A
394 cassette containing a chloramphenicol resistance gene flanked respectively by 1 kb of the upstream
395 region and 1 kb of the downstream region of the targeted gene was constructed by a three partners
396 overlap PCR. This recombination cassette was also introduced in *B. velezensis* GA1 by inducing

397 natural competence as described above (67). Double homologous recombination event was
398 selected by chloramphenicol resistance. Deletion was confirmed by PCR analysis with the
399 corresponding upstream and downstream primers.

400 **Fluorescence measurement.** Fluorescence accumulation was evaluated thanks to the channel
401 FL1 of a BD accuri C6 flow cytometer (Biosciences) with the following parameters: 20000 events,
402 medium flow rate (35 $\mu\text{l}\cdot\text{min}^{-1}$), FSC threshold of 20000.

403 **Genome sequencing.** GA1 genome sequence was reconstructed using a combined approach of
404 two sequencing technologies which generated short paired end reads and long reads. The resulted
405 sequences were then used for hybrid assembly. More precisely, genomic DNA was extracted and
406 purified from *B. velezensis* GA1 using the GeneJET Genomic DNA purification (ThermoFisher
407 scientific). First half of extracted DNA was sent to the GIGA sequencing facility (Liège, Belgium),
408 and use as DNA template for illumina MiSeq sequencing after being prepared using nextera library
409 kit illumina. Sequencing run generated 150 bp paired-end read, which were trimmed and corrected
410 using an in-house python script and SPAdes 3.14 (68) before assembly. The second half of
411 extracted DNA was used to generate long reads with a MinION Oxford nanopore plateform. DNA
412 library was constructed using the Rapid Sequencing kit (SQK-RAD0004, Oxford nanopore).
413 Adapters were trimmed from generated reads with Porechop software
414 (<https://github.com/rrwick/Porechop>). Trimmed reads were then filtered by size (>500) and Q-score
415 (>10) using NanoFilt implemented in NanoPack (69). Finally, hybrid assembly was performed using
416 hybridSPAdes algorithm implemented in SPAdes 3.14 (70).

417 **Transcriptome library preparation and sequencing.** RNA extraction was performed for each
418 sample using the NucleoSpin RNA kit (Macherey-Nagel). Total RNAs were quantified using
419 Nanodrop (Thermofisher). For sequencing, all samples were sent to the GIGA-genomics platform
420 in Liège. Quality was assessed using the RNA 6000 Nano Chip on a 2100 Bioanalyzer (Agilent).
421 cDNA libraries were prepared employing Universal Prokaryotic RNA-Seq, Prokaryotic AnyDeplete
422 kit (Nugen) according to the manufacturer's instructions, with . cDNA libraries were quantified and
423 normalized by using the KAPA SYBR Fast Mastermix (Sigma-Aldrich) with P5-P7 Illumina primers
424 according to the manufacturer's instructions. Prepared libraries were sequenced on a NextSeq 550
425 device (Illumina) by using the following parameters : paired end, 80 cycles read 1, 8 cycles index,
426 80 cycles read 2.

427 **RNA-seq data analysis.** The raw RNA-seq reads were trimmed using Trimmomatic v0.39 (71).
428 We performed quality control on the trimmed reads using FastQC v0.11.8 (Babraham
429 Bioinformatics). Trimmed reads were mapped to the GA1 reference genome (see section "genome
430 sequencing" for accession numbers) using BWA-mem v0.7.17 (72) with the following settings: mem
431 -k 50 -B 40 -v 1. At least 95.4% of reads uniquely mapped to the annotated reference genome
432 (Table S2). SAMtools v1.9 (73) was used to generate the BAM files and their indices. To calculate

433 the read counts, the python-based tool HTSeq v0.9 (74) was employed with the following
434 parameters: htseq-count -q -s no -f. The Cufflinks function cuffnorm (75) was used to generate the
435 FPKM (fragments per kilobase of transcript per million mapped reads) tables using the following
436 settings: --compatible-hits-norm --library-norm-method classic-fpkm. Genes with low reads counts
437 (<25) were removed before further analysis. Differential expression analysis was conducted
438 according to the DESeq2 pipeline (10.1186/s13059-014-0550-8) with cut-off parameters of $p < 0.05$
439 and $\log_2\text{fold-change} > 1.5$.

440 **Motility and biofilm assays.** Swarming motility assays were performed according to Molinatto *et*
441 *al.* 2017 (76). Diameter of the bacterial swarming pattern was measured 48h after inoculation on
442 REM soft agar plates (0.8% agar) supplemented or not with 0.1% HGLM. Quantification of total
443 biofilm was performed by crystal violet staining. Strain of interest was inoculated at a final OD_{600} of
444 0.1 in a 96 wells microplate containing 200 μl of REM medium supplemented or not with 0.1 %
445 HGLM. The plate was incubated at 30°C during 24h without shaking. Medium and planctonic cells
446 were discarded and wells were washed with PBS. Biofilm pellicle was stained with 0.1% crystal
447 violet during 10 min and washed with PBS. The stained biofilm was dissolved with 30% acetic acid.
448 Absorbance was measured at 595 nm.

449 **Plant growth conditions and roots colonization assays.** For sterilization, tomato seeds were
450 first immersed in a 70% ethanol solution during 2 minutes, transferred in a 20% bleach solution
451 under shaking for 20 minutes and rinsed three times with sterile water. Sterilized tomato seeds
452 were pre-germinated on solid Hoagland medium at 22°C under a 16h/8h night/day cycle. After 4
453 days, 5 μL of cultures containing the strain of interest and calibrated at $OD_{600}=1$ were deposited on
454 the root top. After 1 and 3 days of colonization, roots were harvested, deposited separately in a
455 peptone water solution supplemented with 0.1% of Tween, and vortexed vigorously to tear off the
456 bacterial cells from the roots. Several dilutions were plated on LB media to evaluate the level of
457 colonization. Measurements of surfactin production by GA1 cells colonizing roots were performed
458 on 1x1x0.7 cm pieces of gelified medium containing roots based on the assumption that the
459 produced lipopeptide diffused to a maximal distance of 5 mm from each part of the root and is
460 uniformly distributed over the surface as we previously observed via imaging-MS (77). A 10-fold
461 concentration factor was applied to estimate concentrations around the root surface in order to take
462 into account diffusion constraints in a solid matrix. Surfactin was quantified by UPLC-MS as
463 described below.

464 **Plant cell wall extraction.** Tobacco seeds were sterilized as described above for tomato seeds
465 and deposited on Hoagland plates at 22°C during one week for a successful germination process.
466 Each plantlet was then transferred in a seedholder filled with soft agar and put in Araponics boxes
467 containing the nutritive solution described above. Cell wall extraction was performed on 6 weeks
468 old plants grown at 22°C with a 16h/8h day-night alternance. Roots were harvested, lyophilized

469 and reduced to powder using a Retsch MM400 grinder. 500 mg of powder was resuspended in 40
470 ml of ethanol 80% at 90°C for 20 min. The insoluble cell wall fraction was recovered by
471 centrifugation and the pellet obtained was washed once with water to obtain the Alcoholic Insoluble
472 Residue (AIR) used for fractionation. AIR was freeze-dried before use in fractionation protocol.
473 Sequential extraction of root cell walls was performed using a protocol derived from Carpita (78)
474 and Silva *et al.* (79). Dry AIR was resuspended in 40 ml water and incubated at 100°C for 20 min.
475 Supernatant was recovered after centrifugation as a soluble pectic fraction (cPEC).

476 **Monosaccharide composition analysis using HPAEC-PAD.** Before monosaccharide
477 composition analysis, cPec fraction was dialyzed during 24h against a large volume of water and
478 freeze-dried. 2 mg of dried fraction material was hydrolyzed in 1 ml of 2M Trifluoroacetic acid (TFA)
479 at 121°C for 90 min. TFA was evaporated under nitrogen gas flux and the hydrolysed dried residue
480 was resuspended in 1 ml water, filtered on 0,2 µm cartridge and stored in vials at 20° before
481 HPAEC-PAD. High Performance Anion Exchange Chromatography with Pulsed Amperometric
482 detection (HPAEC-PAD) was used for neutral and acidic monosaccharide composition analysis
483 using a Dionex DX-500 system (Dionex Corporation) equipped with a CarboPac PA-1 analytical
484 column (4 mm x 250 mm). The elution was performed with a flow rate of 1 mL·min⁻¹ in a gradient
485 mode. The gradient for neutral sugars (eluent A: deionized water, eluent B: 160 mM NaOH and
486 eluent C: 200 mM NaOH) was 10% B for 25 min, 100% B for 10 min and finally an equilibration
487 step with 10% B (15 min). The gradient for uronic acid (eluent A: 160 mM NaOH and eluent B: 160
488 mM NaOH + 600 mM AcONa) was 0% B for 5 minutes, 30 minutes of linear gradient from 0 to
489 100% B, 100% B for 5 minutes and finally an equilibration step with 0% B (10 minutes). Detection
490 was performed with a pulsed amperometric ED50 detector (Dionex Corporation). 20 mL of sample
491 was injected with an autosampler. Each carbohydrate concentration was determined after
492 integration of the respective areas (Chromeleon management system, Dionex) and comparison
493 with standard curves.

494 **LC-MS analyses.** Detection of metabolites and quantification was performed by LC-MS. 10 µL of
495 samples were analyzed using UPLC-MS with UPLC (Acquity H-class, Waters) coupled to a single
496 quadrupole mass spectrometer (SQD mass analyzer, Waters) using an C18 column (Acquity UPLC
497 BEH C18 2.1 mm x 50 mm, 1.7 µm). Elution was performed at 40°C with a constant flow rate of
498 0.6 mL/min using a gradient of Acetonitrile (solvent B) and water (solvent A) both acidified with
499 0.1% formic acid as follows: starting at 15% B during 2 min, solvent B was then raised from 15%
500 to 95% in 5 min and maintained at 95% up to 9.5 min before going back to initial conditions at 9.8
501 min during 3 minutes before next injection if needed. Compounds were detected in electrospray
502 positive ion mode by setting SQD parameters as follows: source temperature 130°C; desolvation
503 temperature 400°C, and nitrogen flow: 1000 L·h⁻¹ with mass range from m/z 800 to 1550.
504 Surfactins were quantified based on their retention times and masses compared to commercial
505 standards (98% purity, Lipofabrik).

506 **Induction of systemic resistance and ROS measurements.** ISR assays were performed as
507 previously described (39) on 4 weeks-old tobacco plants cultivated in hydroponic conditions using
508 Hoagland solution as nutrient base. Plants were treated with pure surfactin at the root level and
509 infected on leaves by applying a spore suspension of the phytopathogen *Botrytis cinerea* prepared
510 as detailed previously (39). Spreading lesions occurred starting from 48h post-infection and the
511 diameter size was measured two days later. Five plants were used per treatment and experiments
512 were repeated independently at least twice. For determination of cytoplasmic ROS stimulation,
513 fluorescent probe (DCFH-DA) was used. Plants used in this experiment were grown on Hoagland
514 medium for two weeks as described above. Experiments were performed on nine samples per
515 treatment each containing three root segments (approx 100 mg FW) collected from different plants
516 (n=9). Roots were treated with 50 μ M DCFH-DA for 10 minutes, rinsed with PBS upon removing
517 the probe, and finally treated. All the operations were conducted in a 96-well black microplate.
518 Fluorescence measurements were performed on a Spark (Tecan) microplate reader (exc 485 nm;
519 em = 535 nm) with readings every 10 minutes. Stimulation of apoplastic hydrogen peroxide
520 production in root cells was measured via chemiluminescence (ferricyanide-catalysed oxidation of
521 luminol). Means and standard deviations were calculated from measurements performed on three
522 samples per treatment, each containing three root segments (approximatively 100 mg FW)
523 collected from different plants. Extracellular ROS in tomato roots was conducted according to
524 Bisceglia *et al.* (80) with minor changes. Namely, instead of leaf discs, tomato roots, three
525 segments (approximatively 100 mg FW from the same plant) per sample, were used. Plants were
526 grown for two weeks on Hoagland medium, and chemiluminescence was measured in Tecan Spark
527 plate reader.

528 **ITC analysis.** ITC analyses were performed with a VP-ITC Microcalorimeter (Microcal). The
529 calorimeter cell (volume of 1.4565 mL) was filled with a 10 μ M (below the CMC concentration)
530 surfactin solution in buffer (Tris 10mM, NaCl 150mM, 1mM EDTA at pH 8.5). The syringe was filled
531 with a suspension of LUV at a lipid concentration of 5 mM. A series of 10 μ l injections was performed
532 at constant time intervals (6 min) at 25°C. The solution in the titration cell was stirred at 305 RPM.
533 Prior to each analysis, all solutions were degassed using a sonicator bath. The heats of dilution of
534 vesicles were determined by injecting vesicles in buffer and subtracted from the heats determined
535 in the experiments. Data were processed by software Origin 7 (Originlab) using the cumulative
536 model described by Heerklotz and Seelig (81). All measurements were repeated at least three
537 times with two different vesicle preparations.

538 **Leakage assays.** Membrane permeabilization was followed as described by Van Bambeke *et al.*
539 (82). Release of 8-hydroxypyrene-1,3,6 trisulfonic acid (HTPS) coentrapped with and quenched by
540 p-xylene-bis-pyridinium bromide (DPX) from liposomes can be monitored by the fluorescence
541 increase upon dilution following their leakage from the vesicles. Surfactin C12 or Surfactin C14 was
542 added from a stock solution in DMSO and fluorescence intensities were immediately recorded. The

543 percentage of HPTS released was defined as $[(F_t - F_{\text{contr}})/(F_{\text{tot}} - F_{\text{contr}})] / 100$, where F_t is the
544 fluorescence signal measured after 15 min in the presence of Surfactin C12 or Surfactin C14,
545 F_{contr} is the fluorescence signal measured at the same time for control liposomes, and F_{tot} is the
546 total fluorescence signal obtained after complete disruption of the liposomes by 0.05% Triton X-
547 100. All fluorescence determinations were performed at room temperature on a Perkin Elmer LS-
548 50B Fluorescence Spectrophotometer (Perkin-Elmer Ltd.) using λ_{exc} of 450 nm and a λ_{em} of 512
549 nm.

550 **Statistical analyses.** All statistical analyses were performed on GraphPad prism. Before each
551 statistical analysis, variance homoscedasticity was verified by using a Brown-Forsythe test.
552 ANOVA analysis was used for multiple comparison and significant differences were indicated by
553 different letters. Statistical differences between means were evaluated by two-tailed Student's t-
554 test. Number of biological replicates used for each experiment are indicated in the corresponding
555 figure legend. P-Values are indicated in the figure legends.

556 **Data availability** The RNA-seq datasets produced for this study are deposited at
557 <https://www.ebi.ac.uk/ena/> under the project reference PRJEB39762. All other datasets analyzed
558 for this study are included in the supplementary files. The Genome Resulting assembly of the GA1
559 strain was deposited in the GenBank database under the accession numbers CP046386 and
560 CP046387.

561

562

563 **Acknowledgments**

564

565 This work was supported by the EU Interreg V France-Wallonie-Vlaanderen portfolio
566 SmartBiocontrol (Bioprotect and Bioscreen projects, avec le soutien du Fonds européen
567 de développement régional - Met steun van het Europees Fonds voor Regionale
568 Ontwikkeling), by the PDR research project ID 26084552 from the F.R.S.-FNRS (National
569 fund for Scientific Research in Belgium) and by the EOS project ID 30650620 from the
570 FWO/F.R.S.-FNRS. FB is recipient of a F.R.I.A. fellowship (Formation à la Recherche
571 dans l'Industrie et l'Agriculture) and MO is senior research associate at the F.R.S.-
572 F.N.R.S. We are grateful to the KU Leuven HPC infrastructure and the Flemish
573 Supercomputer Center (VSC) for providing the computational resources and services to
574 perform the RNA-seq analysis. We gratefully acknowledge Claire Bertrand and Loïc
575 Ongena for critically reading the manuscript.

576

577 **References**

578

579 1. Andrews JH, Harris RF. 2000. The Ecology and Biogeography of Microorganisms
580 on Plant Surfaces. *Annu Rev Phytopathol* 38:145–80.

581 2. Zhelnina K, Louie KB, Hao Z, Mansoori N, Da Rocha UN, Shi S, Cho H, Karaoz U,
582 Loqué D, Bowen BP, Firestone MK, Northen TR, Brodie EL. 2018. Dynamic root
583 exudate chemistry and microbial substrate preferences drive patterns in
584 rhizosphere microbial community assembly. *Nat Microbiol* 3:470–480.

585 3. Vieira S, Sikorski J, Dietz S, Herz K, Schrumpf M, Bruelheide H, Scheel D, Friedrich
586 MW, Overmann J. 2020. Drivers of the composition of active rhizosphere bacterial
587 communities in temperate grasslands. *ISME J* 14:463–475.

588 4. Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller
589 D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C. 2013. Plant growth-
590 promoting rhizobacteria and root system functioning. *Front Plant Sci* 4:1–19.

591 5. Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E,
592 Subramanian S, Smith DL. 2018. Plant growth-promoting rhizobacteria: Context,
593 mechanisms of action, and roadmap to commercialization of biostimulants for
594 sustainable agriculture. *Front Plant Sci*. Frontiers Media S.A.

595 6. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker
596 PAHM. 2014. Induced Systemic Resistance by Beneficial Microbes. *Annu Rev
597 Phytopathol* 52:347–375.

598 7. Köhl J, Kolnaar R, Ravensberg WJ. 2019. Mode of action of microbial biological
599 control agents against plant diseases: Relevance beyond efficacy. *Front Plant Sci*
600 10:1–19.

601 8. van Loon LC, Bakker PAHM, Pieterse CMJ. 1998. Systemic Resistance Induced
602 By Rhizosphere Bacteria. *Annu Rev Phytopathol* 36:453–483.

603 9. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart
604 P. 2007. Surfactin and fengycin lipopeptides of *Bacillus subtilis* as elicitors of
605 induced systemic resistance in plants. *Environ Microbiol* 9:1084–1090.

606 10. Ongena M, Jacques P. 2008. *Bacillus* lipopeptides: versatile weapons for plant
607 disease biocontrol. *Trends Microbiol* 16:115–125.

608 11. Wu K, Fang Z, Guo R, Pan B, Shi W, Yuan S, Guan H, Gong M, Shen B, Shen Q.
609 2015. Pectin enhances bio-control efficacy by inducing colonization and secretion
610 of secondary metabolites by *Bacillus amyloliquefaciens* SQY 162 in the rhizosphere
611 of tobacco. *PLoS One* 10:1–17.

612 12. Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ. 2020. *Bacillus*
613 species in soil as a natural resource for plant health and nutrition. *J Appl Microbiol*
614 128:1583–1594.

615 13. Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I,
616 Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater

617 J, Süssmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriis R. 2007.
618 Comparative analysis of the complete genome sequence of the plant growth-
619 promoting bacterium *Bacillus amyloliquefaciens* FZB42. *Nat Biotechnol* 25:1007–
620 1014.

621 14. Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriis
622 R. 2009. Genome analysis of *Bacillus amyloliquefaciens* FZB42 reveals its potential
623 for biocontrol of plant pathogens. *J Biotechnol* 140:27–37.

624 15. Molinatto G, Puopolo G, Sonego P, Moretto M, Engelen K, Viti C, Ongena M, Pertot
625 I. 2016. Complete genome sequence of *Bacillus amyloliquefaciens* subsp.
626 *plantarum* S499, a rhizobacterium that triggers plant defences and inhibits fungal
627 phytopathogens. *J Biotechnol* 238:56–59.

628 16. van Gestel J, Vlamakis H, Kolter R. 2015. From Cell Differentiation to Cell
629 Collectives: *Bacillus subtilis* Uses Division of Labor to Migrate. *PLoS Biol* 13:1–29.

630 17. López D, Vlamakis H, Losick R, Kolter R. 2009. Paracrine signaling in a bacterium.
631 *Genes Dev* 23:1631–1638.

632 18. Aleti G, Lehner S, Bacher M, Compant S, Nikolic B, Plesko M, Schuhmacher R,
633 Sessitsch A, Brader G. 2016. Surfactin variants mediate species-specific biofilm
634 formation and root colonization in *Bacillus*. *Environ Microbiol* 18:2634–2645.

635 19. Pršić J, Ongena M. 2020. Elicitors of Plant Immunity Triggered by Beneficial
636 Bacteria. *Front Plant Sci* 11:1–12.

637 20. Debois D, Fernandez O, Franzil L, Jourdan E, de Brogniez A, Willems L, Clément
638 C, Dorey S, De Pauw E, Ongena M. 2015. Plant polysaccharides initiate
639 underground crosstalk with bacilli by inducing synthesis of the immunogenic
640 lipopeptide surfactin. *Environ Microbiol Rep* 7:570–582.

641 21. Gage DJ. 2004. Infection and Invasion of Roots by Symbiotic, Nitrogen-Fixing
642 Rhizobia during Nodulation of Temperate Legumes. *Microbiol Mol Biol Rev* 68:280–
643 300.

644 22. Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R. 2013. *Bacillus subtilis*
645 biofilm induction by plant polysaccharides. *Proc Natl Acad Sci U S A* 110:E1621–
646 30.

647 23. Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borriis R. 2018. *Bacillus*
648 *velezensis* FZB42 in 2018: The gram-positive model strain for plant growth
649 promotion and biocontrol. *Front Microbiol* 9:1–14.

650 24. Mohnen D. 2008. Pectin structure and biosynthesis. *Curr Opin Plant Biol* 11:266–
651 277.

652 25. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The
653 carbohydrate-active enzymes database (CAZy) in 2013. *Nucleic Acids Res* 42:490–
654 495.

655 26. Fan B, Blom J, Klenk HP, Borriis R. 2017. *Bacillus amyloliquefaciens*, *Bacillus*
656 *velezensis*, and *Bacillus siamensis* Form an “Operational Group B.

657 "amyloliquefaciens" within the *B. subtilis* species complex. *Front Microbiol* 8:22.

658 27. Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, Ongena M. 2012. Impact
659 of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain
660 *Bacillus amyloliquefaciens* S499. *FEMS Microbiol Ecol* 79:176–191.

661 28. Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH. 2013. Biocontrol of
662 tomato wilt disease by *Bacillus subtilis* isolates from natural environments depends
663 on conserved genes mediating biofilm formation. *Environ Microbiol* 15:848–864.

664 29. Grau RR, De Oña P, Kunert M, Leñini C, Gallegos-Monterrosa R, Mhatre E, Vileta
665 D, Donato V, Hölscher T, Boland W, Kuipers OP, Kovács ÁT. 2015. A duo of
666 potassium-responsive histidine kinases govern the multicellular destiny of *Bacillus*
667 *subtilis*. *MBio* 6:1–16.

668 30. Thérien M, Kiesewalter HT, Auria E, Charron-Lamoureux V, Wibowo M, Maróti G,
669 Kovács ÁT, Beauregard PB. 2020. Surfactin production is not essential for pellicle
670 and root-associated biofilm development of *Bacillus subtilis*. *Biofilm* 2:100021.

671 31. Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R. 2013. Sticking together:
672 Building a biofilm the *Bacillus subtilis* way. *Nat Rev Microbiol* 11:157–168.

673 32. Caramori T, Barillà D, Nessi C, Sacchi L, Galizzi A. 1996. Role of FlgM in σ-D-
674 dependent gene expression in *Bacillus subtilis*. *J Bacteriol* 178:3113–3118.

675 33. Strioker M, Tanović A, Marahiel MA. 2010. Nonribosomal peptide synthetases:
676 Structures and dynamics. *Curr Opin Struct Biol* 20:234–240.

677 34. Süßmuth RD, Mainz A. 2017. Nonribosomal Peptide Synthesis—Principles and
678 Prospects. *Angew Chemie - Int Ed* 56:3770–3821.

679 35. Diomandé SE, Nguyen-The C, Guinebretière MH, Broussolle V, Brillard J. 2015.
680 Role of fatty acids in *Bacillus* environmental adaptation. *Front Microbiol* 6:1–20.

681 36. Serrò P, Sonenshein AL. 1996. CodY is required for nutritional repression of
682 *Bacillus subtilis* genetic competence. *J Bacteriol* 178:5910–5915.

683 37. Dhali D, Coutte F, Arias AA, Auger S, Bidnenko V, Chataigné G, Lalk M, Niehren
684 J, de Sousa J, Versari C, Jacques P. 2017. Genetic engineering of the branched
685 fatty acid metabolic pathway of *Bacillus subtilis* for the overproduction of surfactin
686 C14 isoform. *Biotechnol J* 12:1–10.

687 38. Brinsmade SR, Kleijn RJ, Sauer U, Sonenshein AL. 2010. Regulation of CodY
688 activity through modulation of intracellular branched-chain amino acid pools. *J
689 Bacteriol* 192:6357–6368.

690 39. Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart P, Dommes J,
691 Ongena M. 2014. Plant Defense Stimulation by Natural Isolates of *Bacillus*
692 Depends on Efficient Surfactin Production. *Mol Plant-Microbe Interact* 27:87–100.

693 40. Saijo Y, Loo EP, Yasuda S. 2018. Pattern recognition receptors and signaling
694 in plant–microbe interactions. *Plant J* 93:592–613.

695 41. Waszczak C, Carmody M, Kangasjärvi J. 2018. Reactive Oxygen Species in Plant

696 Signaling. Annu Rev Plant Biol 69:209–236.

697 42. Mignolet-Spruyt L, Xu E, Idänheimo N, Hoeberichts FA, Mühlenbock P, Brosche M,
698 Van Breusegem F, Kangasjärvi J. 2016. Spreading the news: Subcellular and
699 organellar reactive oxygen species production and signalling. J Exp Bot 67:3831–
700 3844.

701 43. Ashtamker C, Kiss V, Sagi M, Davydov O, Fluhr R. 2007. Diverse subcellular
702 locations of cryptogein-induced reactive oxygen species production in tobacco
703 bright yellow-2 cells. Plant Physiol 143:1817–1826.

704 44. Bigeard J, Colcombet J, Hirt H. 2015. Signaling mechanisms in pattern-triggered
705 immunity (PTI). Mol Plant 8:521–539.

706 45. Jourdan E, Henry G, Duby F, Dommes J, Barthélémy JP, Thonart P, Ongena M.
707 2009. Insights into the defense-related events occurring in plant cells following
708 perception of surfactin-type lipopeptide from *Bacillus subtilis*. Mol Plant-Microbe
709 Interact 22:456–468.

710 46. Henry G, Deleu M, Jourdan E, Thonart P, Ongena M. 2011. The bacterial
711 lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to
712 trigger immune-related defence responses. Cell Microbiol 13:1824–1837.

713 47. Zipfel C, Oldroyd GED. 2017. Plant signalling in symbiosis and immunity. Nature
714 543:328–336.

715 48. Schellenberger R, Touchard M, Clément C, Baillieul F, Cordelier S, Crouzet J,
716 Dorey S. 2019. Apoplastic invasion patterns triggering plant immunity: plasma
717 membrane sensing at the frontline. Mol Plant Pathol 20:1602–1616.

718 49. Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CMJ, Pozo MJ, Ton
719 J, van Dam NM, Conrath U. 2016. Recognizing Plant Defense Priming. Trends
720 Plant Sci 21:818–822.

721 50. Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S,
722 Miao J, Wang K, Devescovi G, Stillman K, Monteiro F, Rangel Alvarez B, Lundberg
723 DS, Lu TY, Lebeis S, Jin Z, McDonald M, Klein AP, Feltcher ME, Rio TG, Grant SR,
724 Doty SL, Ley RE, Zhao B, Venturi V, Pelletier DA, Vorholt JA, Tringe SG, Woyke T,
725 Dangl JL. 2018. Genomic features of bacterial adaptation to plants. Nat Genet
726 50:138–150.

727 51. Fan B, Carvalhais LC, Becker A, Fedoseyenko D, Von Wirén N, Borris R. 2012.
728 Transcriptomic profiling of *Bacillus amyloliquefaciens* FZB42 in response to maize
729 root exudates. BMC Microbiol 12.

730 52. Feng H, Zhang N, Du W, Zhang H, Liu Y, Fu R, Shao J, Zhang G, Shen Q, Zhang
731 R. 2018. Identification of chemotaxis compounds in root exudates and their sensing
732 chemoreceptors in plant-growth-promoting rhizobacteria *bacillus amyloliquefaciens*
733 SQR9. Mol Plant-Microbe Interact 31:995–1005.

734 53. Zhang N, Yang D, Wang D, Miao Y, Shao J, Zhou X, Xu Z, Li Q, Feng H, Li S, Shen
735 Q, Zhang R. 2015. Whole transcriptomic analysis of the plant-beneficial
736 rhizobacterium *Bacillus amyloliquefaciens* SQR9 during enhanced biofilm

737 formation regulated by maize root exudates. *BMC Genomics* 16:1–21.

738 54. Raaijmakers JM, de Bruijn I, Nybroe O, Ongena M. 2010. Natural functions of
739 lipopeptides from *Bacillus* and *Pseudomonas*: More than surfactants and
740 antibiotics. *FEMS Microbiol Rev* 34:1037–1062.

741 55. HayashiTaku K. 2014. The H₂O₂ Stress-Responsive Regulator PerR Positively
742 Regulates *srfA* Expression in *Bacillus subtilis* The H₂O₂ Stress-Responsive
743 Regulator PerR Positively Regulates *srfA* Expression in *Bacillus subtilis* 187:6659–
744 6667.

745 56. Wolf D, Rippa V, Mobarec JC, Sauer P, Adlung L, Kolb P, Bischofs IB. 2015. The
746 quorum-sensing regulator ComA from *Bacillus subtilis* activates transcription using
747 topologically distinct DNA motifs. *Nucleic Acids Res* 44:2160–2172.

748 57. Mariappan A, Makarewicz O, Chen XH, Borriss R. 2012. Two-component response
749 regulator DegU controls the expression of bacilysin in plant-growth-promoting
750 bacterium *bacillus amyloliquefaciens* FZB42. *J Mol Microbiol Biotechnol* 22:114–
751 125.

752 58. Zhi Y, Wu Q, Xu Y. 2017. Genome and transcriptome analysis of surfactin
753 biosynthesis in *Bacillus amyloliquefaciens* MT45. *Sci Rep* 7:1–13.

754 59. Koumoutsi A, Chen XH, Vater J, Borriss R. 2007. DegU and YczE positively
755 regulate the synthesis of bacillomycin D by *Bacillus amyloliquefaciens* strain
756 FZB42. *Appl Environ Microbiol* 73:6953–6964.

757 60. Konishi H, Hio M, Kobayashi M, Takase R, Hashimoto W. 2020. Bacterial
758 chemotaxis towards polysaccharide pectin by pectin-binding protein. *Sci Rep* 10:1–
759 12.

760 61. Muller DB, Schubert OT, Rost H, Aebersold R, Vorholt JA. 2016. Systems-level
761 proteomics of two ubiquitous leaf commensals reveals complementary adaptive
762 traits for phyllosphere colonization. *Mol Cell Proteomics* 15:3256–3269.

763 62. Hossain MJ, Ran C, Liu K, Ryu C-MM, Rasmussen-Ivey CR, Williams MA, Hassan
764 MK, Choi S-KK, Jeong H, Newman M, Kloepper JW, Liles MR. 2015. Deciphering
765 the conserved genetic loci implicated in plant disease control through comparative
766 genomics of *Bacillus amyloliquefaciens* subsp. *plantarum*. *Front Plant Sci* 6:1–14.

767 63. Birkenbihl RP, Liu S, Somssich IE. 2017. Transcriptional events defining plant
768 immune responses. *Curr Opin Plant Biol* 38:1–9.

769 64. Huot B, Yao J, Montgomery BL, He SY. 2014. Growth-defense tradeoffs in plants:
770 A balancing act to optimize fitness. *Mol Plant*.

771 65. Trauth S, Bischofs IB. 2014. Ectopic integration vectors for generating fluorescent
772 promoter fusions in *Bacillus subtilis* with minimal dark noise. *PLoS One* 9.

773 66. Bryksin A V., Matsumura I. 2010. Overlap extension PCR cloning: a simple and
774 reliable way to create recombinant plasmids. *Biotechniques* 48:463–465.

775 67. Jarmer H, Berka R, Knudsen S, Saxild HH. 2002. Transcriptome analysis
776 documents induced competence of *Bacillus subtilis* during nitrogen limiting

777 conditions. *FEMS Microbiol Lett* 206:197–200.

778 68. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
779 Nikolenko SI, Pham S, Prjibelski AD, Pyshkin A V., Sirotnik A V., Vyahhi N, Tesler
780 G, Alekseyev MA, Pevzner PA. 2012. SPAdes: A new genome assembly algorithm
781 and its applications to single-cell sequencing. *J Comput Biol* 19:455–477.

782 69. De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. 2018. NanoPack:
783 Visualizing and processing long-read sequencing data. *Bioinformatics* 34:2666–
784 2669.

785 70. Antipov D, Korobeynikov A, McLean JS, Pevzner PA. 2016. HybridSPAdes: An
786 algorithm for hybrid assembly of short and long reads. *Bioinformatics* 32:1009–
787 1015.

788 71. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina
789 sequence data. *Bioinformatics* 30:2114–2120.

790 72. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler
791 transform. *Bioinformatics* 25:1754–1760.

792 73. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,
793 Durbin R. 2009. The Sequence Alignment/Map format and SAMtools.
794 *Bioinformatics* 25:2078–2079.

795 74. Anders S, Pyl PT, Huber W. 2015. HTSeq-A Python framework to work with high-
796 throughput sequencing data. *Bioinformatics* 31:166–169.

797 75. Trapnell C, Williams B a, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg
798 SL, Wold BJ, Pachter L. 2011. Transcript assembly and abundance estimation from
799 RNA-Seq reveals thousands of new transcripts and switching among isoforms. *Nat
800 Biotechnol* 28:511–515.

801 76. Molinatto G, Franzil L, Steels S, Puopolo G, Pertot I, Ongena M. 2017. Key impact
802 of an uncommon plasmid on *bacillus amyloliquefaciens* subsp. *plantarum* S499
803 developmental traits and lipopeptide production. *Front Microbiol* 8:1–18.

804 77. Debois D, Ongena M, Cawoy H, De Pauw E. 2013. MALDI-FTICR MS imaging as
805 a powerful tool to identify *paenibacillus* antibiotics involved in the inhibition of plant
806 pathogens. *J Am Soc Mass Spectrom* 24:1202–1213.

807 78. Carpita NC. 1984. Cell wall development in maize coleoptiles. *Plant Physiol*
808 76:205–212.

809 79. Silva GB, Ionashiro M, Carrara TB, Crivellari AC, Tiné MAS, Prado J, Carpita NC,
810 Buckeridge MS. 2011. Cell wall polysaccharides from fern leaves: Evidence for a
811 mannan-rich Type III cell wall in *Adiantum raddianum*. *Phytochemistry* 72:2352–
812 2360.

813 80. Bisceglia N, Gravino M, Savatin D. 2015. Luminol-based Assay for Detection of
814 Immunity Elicitor-induced Hydrogen Peroxide Production in *Arabidopsis thaliana*
815 Leaves. *Bio-Protocol* 5.

816 81. Heerklotz H, Seelig J. 2000. Titration calorimetry of surfactant-membrane

817 partitioning and membrane solubilization. *Biochim Biophys Acta - Biomembr*
818 1508:69–85.

819 82. Van Bambeke F, Kerkhofs A, Schanck A, Remacle C, Sonveaux E, Tulkens PM,
820 Mingeot-Leclercq M-P. 2000. Biophysical studies and intracellular destabilization of
821 pH-sensitive liposomes. *Lipids* 35:213–223.

822 83. Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P. 2009.
823 *Bacillus amyloliquefaciens* GA1 as a source of potent antibiotics and other
824 secondary metabolites for biocontrol of plant pathogens. *Microb Cell Fact* 8:1–12.

825 84. Pandin C, Le Coq D, Deschamps J, Védie R, Rousseau T, Aymerich S, Briandet R.
826 2018. Complete genome sequence of *Bacillus velezensis* QST713: A biocontrol
827 agent that protects *Agaricus bisporus* crops against the green mould disease. *J*
828 *Biotechnol* 278:10–19.

829 85. Serrano L, Manker D, Brandi F, Cali T. 2013. The use of *Bacillus subtilis* QST 713
830 and *Bacillus pumilus* qst 2808 as protectant fungicides in conventional application
831 programs for black leaf streak control. *Acta Hortic* 986:149–156.

832
833

834 **Figures and Tables**

835

836 **Figure 1: Impact of pectin on early surfactin production.** **a** Sugar composition analysis
837 of crude pectin (cPec) extracted from tobacco roots. Composition is expressed as Molar
838 Ratio percentage (Molar %) for each fraction. Galacturonic acid (orange) constituting the
839 pectin backbone (**b** for schematization) is the main sugar of the cPec fraction. Other minor
840 sugars (rhamnose, galactose, arabinose...) are typically found in the pectin side chains
841 (Mohnen et al. 2008, **b**). **b** Schematization of pectin structure. Homogalacturonan (HG)
842 contains an assembly of at least 100 galacturonic acid (GalA) residues that can be acetyl
843 or methyl esterified. Rhamnogalacturonan I (RGI) is constituted by a succession of GalA-
844 Rha dimers, each one containing an alternance of rhamnosyl and galacturonic acid units.
845 The Rha unit can be branched with variable neutral sugar side chains including essentially
846 galactosyl and/or arabinosyl units. Rhamnogalacturonan II (RGII) structure is well
847 conserved within the HG polymer. RGII englobes 9 GalA units substituted by four side
848 chains with complex sugars, including apiose, DHA, aceric acid and KDO, neutral sugars
849 like, rhamnose, galactose, arabinose, xylose, and fucose or also organic acids such as
850 galacturonic and glucuronic acid. RGII can also complex with Bore allowing a crosslink
851 between two HG molecules. **c** Surfactin (cyclic structure represented up) production in a
852 root exudates mimicking (REM) medium at early growth phase ($OD_{600}=0.2$) with (red
853 chromatogram) or without (blue chromatogram) addition of crude pectin extract added to
854 the GA1 cultures. The main peak represents C15 surfactin whereas the minor left and
855 right peaks represents C14 and C16 surfactins, respectively. **d** Surfactin accumulation in
856 the early (left panel, $OD_{600}=0.2$) and mid (right panel, $OD_{600}=0.35$) exponential growth
857 phase of GA1 cultures in REM medium supplemented with different sized pectin fragments
858 : homogalacturonan low methylated (HGLM), DP>150; oligogalacturonides (OG), DP=15;
859 galacturonic acid (GA), DP=1. Means \pm std err. from three biological replicates of one
860 experiment are shown. Significate difference between each condition is indicated by
861 different letters, p-value < 0.01. **e** Comparison of surfactin induction level by HGLM in the
862 early exponential growth phase for different *Bacillus* species : *Bacillus velezensis* (*B. v*),
863 *Bacillus amyloliquefaciens* (*B. a*), *Bacillus subtilis* (*B. s*) and *Bacillus pumilus* (*B. p*). For
864 each strain tested, surfactin accumulation was normalized with the control condition
865 without HGLM represented by the black dotted line. Means \pm std err. from three biological
866 replicates are shown.

867 **Figure 2: Impact of the specific rhizosphere nutritional context on early surfactin**
868 **production.** **a** Evaluation of bacterial population (black line, left axis) and relative *srfAA*
869 expression on roots (grey bars, right axis) in a time frame of seven days post inoculation
870 (dpi). *Bacillus* progression on roots characterized by a biofilm formation was assessed by
871 microscopy at each time point (upper part). **b** Surfactin production rate on roots.
872 Means \pm std err. from three biological replicates of one experiment are shown **c** Surfactin
873 accumulation measured by UPLC-MS in a 8h time course experiment in REM medium
874 (grey bars) compared to LB medium (red bars). Means \pm std err. from three biological
875 replicates of one experiment are shown *** P-value <0.001, ** P-value <0.01, * P-value
876 <0.05 **d** Comparison of early surfactin accumulation (μ M of surfactin on y axis linked to
877 OD_{600} on x axis) in different *Bacillus* species, including *B. velezensis* (GA1 and S499 in
878 green), *B. pumilus* (QST 2808 in orange), *B. amyloliquefaciens* (DSM 7 in red) and *B.*
879 *subtilis* (ATCC 21332 in blue). Circle symbols are representing plant associated bacteria
880 whereas triangle symbols are representing non-plant associated bacteria.

881 **Figure 3: Ecological importance of an early surfactin accumulation. a** Evaluation of
882 HGLM and root exudates synergistic effect on early surfactin production. Time course
883 experiment for surfactin quantification was performed in REM (grey curves) and LB (red
884 curves) medium with (circle symbols) or without (square symbols) addition of HGLM.
885 Means \pm std err. from three biological replicates of one experiment are shown **b** Swarming
886 potential of *B. velezensis* GA1 on soft agar plates after addition of HGLM or not. The box
887 plots encompass the 1st and 3rd quartile, the whiskers extend to the minimum and
888 maximum points, and the midline indicates the median (n=7 biological replicates of one
889 experiment). **c** Evaluation of *B. velezensis* ability to form pellicles on microwells plates
890 after addition of HGLM or not. The box plots encompass the 1st and 3rd quartile, the
891 whiskers extend to the minimum and maximum points, and the midline indicates the
892 median (n=8 biological replicates of one experiment). Pellicle formation is illustrated on
893 the right **d** Comparison of *B. velezensis* GA1 WT and (red) and a Δ srfAA mutant (grey) for
894 their swarming potential in a time course study. Means \pm std err. from three biological
895 replicates of one experiment are shown. Time course study is illustrated right. **e**
896 Comparison of pellicle formation between GA1 WT strain (red) and a Δ srfAA mutant
897 (grey). The box plots encompass the 1st and 3rd quartile, the whiskers extend to the
898 minimum and maximum points, and the midline indicates the median (n=8 biological
899 replicates of one experiment) **** P-value <0.0001. **f** *In vitro* comparison of root
900 colonization ability of GA1 (red boxes) and GA1 Δ srfAA (grey boxes) on tomato plantlets.
901 The box plots encompass the 1st and 3rd quartile, the whiskers extend to the minimum and
902 maximum points, and the midline indicates the median (n=7 biological replicates of one
903 experiment) *** P-value <0.001, ns non significant.

904 **Figure 4: Impact of plant triggers perception on *Bacillus* transcriptome. a** Surfactin
905 expression measured by fluorescence in the GA1 *PsrfAp::gfp* reporter strain at early
906 exponential phase in REM medium (grey bars) compared to REM medium supplemented
907 with HGLM (red bars). Means \pm std err. from three biological replicates of one
908 representative experiment are shown ns = non significant **b** Surfactin expression
909 measured by fluorescence in the GA1 *PsrfAp::gfp* reporter strain in a 24h time course
910 study in EM medium (grey bars) compared to LB medium (red bars). Means \pm std err. from
911 three biological replicates of one representative experiment are shown *** P-value <0.001.
912 **c** Classification of the different genes carrying a significant fold change (1.5 log2) 5 and
913 8 hours after addition of HG when compared to the control condition. The outer circle
914 represents the proportion of up (dark blue) and down (red) regulated genes. The inner
915 circle represents the proportion of genes belonging to the different functional family
916 described in the legend.

917 **Figure 5: Qualitative impact of root exudates on surfactin production. a**
918 Representation of the NRPS machinery leading to the assembly of the surfactin molecule.
919 This mega-enzyme is organized in 7 functional units called modules which are each
920 responsible for the incorporation of one amino acid building block into the growing peptide
921 chain. Each module is subdivided into different domains including an adenylation (A, violet
922 circle) and a peptidyl carrier protein (PCP, red circle) catalyzing the peptide initiation, and
923 one condensation domain (C, brown circle) responsible for peptide elongation. The
924 termination of the peptide synthesis is performed by a thioesterase domain (TE, blue
925 circle) in the last module. Modules 3 and 6 also possess an epimerization domain (E,
926 green circle). Surfactin molecule contains a 7 amino acids chain structured as follow: L-
927 Glu – L-Leu – D-Leu – L-Val – L-Asp – D-Leu – L-Leu. In some specific variants, Leu in
928 position 2 and/or 7 can be substituted by a Val and more rarely by an Ile, and inversely,
929 Val in position 4 can be substituted by a Leu and also more rarely by a Ile. In addition to

930 the amino acid chain variability, multiple homologs with the same peptidic core but
931 differences in terms of fatty acid chain length (C₁₂ to C₁₇) or isomerisation of this latter (iso,
932 anteiso or linear configuration) can also be produced. **b** Comparison of surfactin pattern
933 in REM and LB medium. Based on MS-MS analyses, nine different surfactin forms were
934 identified (a: C₁₂-Glu-Leu-Leu-Val-Asp-Leu-Leu ; b: C₁₃-Glu-Leu-Leu-Val-Asp-Leu-Leu ; c
935 : iso-C₁₄-Glu-Leu-Leu-Val-Asp-Leu-Leu ; c': n-C₁₄-Glu-Leu-Leu-Val-Asp-Leu-Leu ; d : C₁₅-
936 Glu-Leu-Leu-Val-Asp-Leu-Leu ; e: C₁₃-Glu-Leu-Leu-Val-Asp-Leu-Val ; f: C₁₄-Glu-Leu-
937 Leu-Val-Asp-Leu-Val ; g: C₁₄-Glu-Leu-Leu-Val-Asp-Leu-Val and h: C₁₄-Glu-Val-Leu-Val-
938 Asp-Leu-Val.) **c** Relative proportions of surfactin variants in LB, REM, REM supplemented
939 with valine, and *in planta*. **d** Qualitative and quantitative role of CodY on surfactin
940 production. In a WT strain, 95% of the surfactin molecules are carrying a Leu in position
941 7 (grey bars) and only 5% are carrying a Val (red bars) whereas in Δ codY mutant almost
942 25% of the surfactin molecules are carrying a Val in position 7 and 75% a Leu. In addition,
943 amount of total surfactin production rate of 150 % can be observed in Δ codY mutant
944 compared to WT strain. Proportion of iso-C₁₄ is also affected by CodY, 36 % of total C₁₄
945 are iso-fatty acid (grey bars) and 64% are linear (red bars) in WT strain whereas in Δ codY
946 mutant 55% of C₁₄ are iso-C₁₄ and 45 % are linear. Again, total amount of C₁₄ is higher in
947 Δ codY mutant (increase of 190 %).

948 **Figure 6: Impact of surfactin homologues on Solanaceae plant immunity. abc**
949 Systemic resistance induced in hydroponically-grown tobacco by surfactin and expressed
950 as reduction of *B. cinerea* infection (illustration of the reduction in the diameter of
951 spreading lesions on infected leaves) in plants treated at the root level prior to pathogen
952 inoculation on leaves compared to control plants. Data represent results grouped from two
953 independent experiments with similar results and each involving 5 plants with 4 lesions on
954 the second leave (n=40). The box plots encompass the 1st and 3rd quartile, the whiskers
955 extend to the minimum and maximum points, and the midline indicates the median (n=7
956 biological replicates of one experiment). **a** Effect of surfactin homologues (SF mix) as
957 naturally co-produced by the bacterium (C₁₂/C₁₃/C₁₄/C₁₅ in relative proportions
958 8/17/33/42%) **** P-value <0.0001 **b** Effect of HPLC-purified surfactin homologues
959 applied at 10 μ M with fatty acid chains from C₁₂ to C₁₅. Significante difference between
960 each condition is indicated by different letters, p-value < 0.05 **c** Effect of the most active
961 C₁₄ homologue tested at various concentrations. Significante difference between each
962 condition is indicated by different letters, p-value < 0.05 **de** Stimulation of oxidative burst
963 in root tissues upon treatment with a SF mix and to the response observed by treating
964 roots with flagellin (flg22, 1 μ M) used as positive control. **d** Stimulation of apoplastic ROS
965 accumulation (DCFH-DA fluorescent probe) in root tissues upon treatment with a surfactin
966 mix applied at 15 μ M. Means and standard deviations are shown for one representative
967 experiment performed on nine samples per treatment each containing three root segments
968 (approx 100 mg FW) collected from different plants (n=9). Similar trend was obtained in
969 an independent assay. **e** Stimulation of cytoplasmic hydrogen peroxide production in root
970 cells. Means and s.d. were calculated from measurements performed on three samples
971 per treatment each containing three root segments (approx 100 mg FW) collected from
972 different plants. Data represent values obtained from two independent experiments (n=6
973 per treatment). **f** Stimulation of cytoplasmic hydrogen peroxide production in root cells
974 after treatment with C₁₂ and C₁₄ surfactin homologues as representative of short and long
975 fatty acid chains respectively. Flg22 was used as control. The box plots encompass the
976 1st and 3rd quartile, the whiskers extend to the minimum and maximum points, and the
977 midline indicates the median (n=6 biological replicates of one experiment).Significante
978 difference between each condition is indicated by different letters, p-value < 0.0001. **g**
979 Binding coefficient (K) of Surfactin homologues (C₁₂ to C₁₅) to large unilamellar vesicles

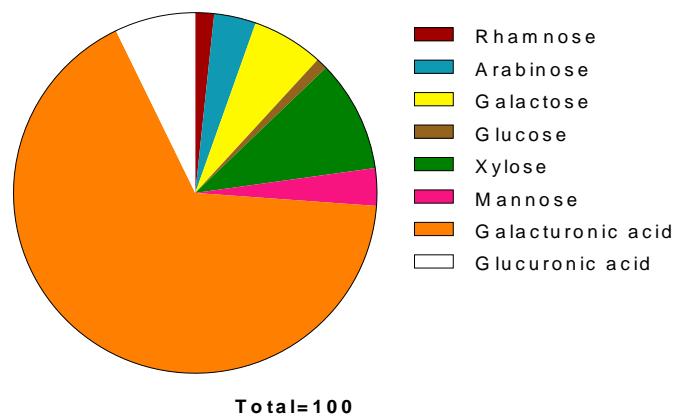
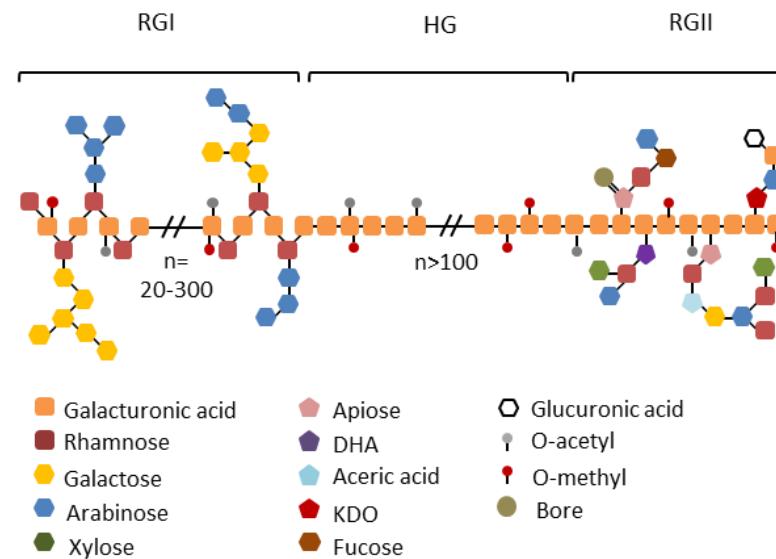
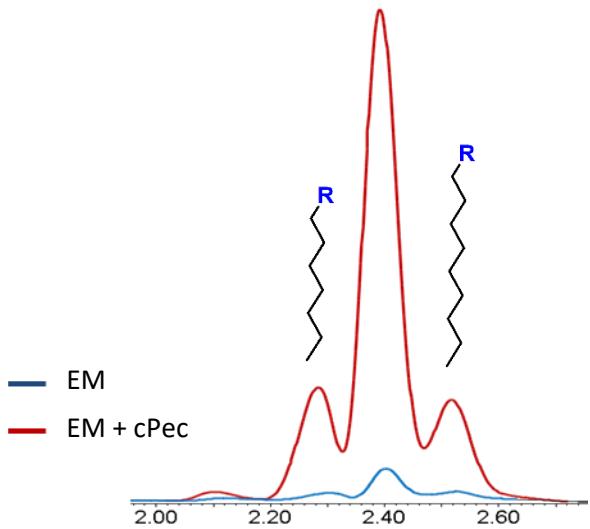
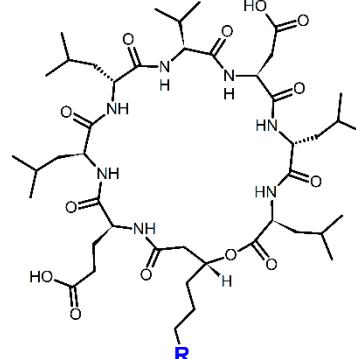
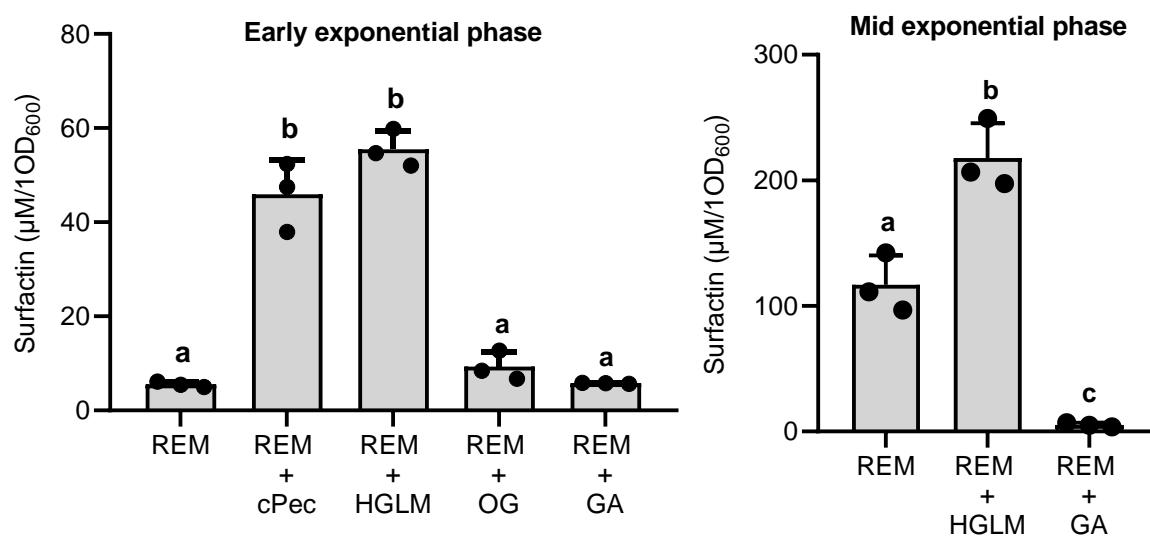
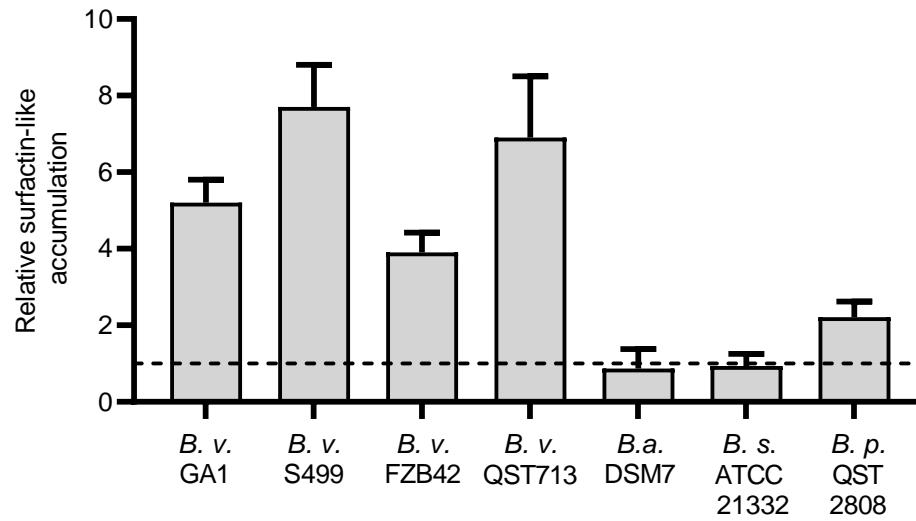
980 (LUV) composed by PLPC/Sitosterol/Glucosylceramide (60:20:20 molar ratio).
981 Means \pm std err. from three to five biological replicates of one representative experiment
982 are shown. Significante difference between each condition is indicated by different letters,
983 p-value < 0.05. **h** Release of 8-hydroxypyrene-1,3,6 trisulfonic acid (HPTS) from
984 PLPC/Sitosterol/Glucosylceramide (60:20:20 molar ratio) LUV, upon addition of surfactin
985 C₁₂ or C₁₄ at different concentrations. The ordinate shows the amount of HPTS released
986 after 15 min in the presence of the C₁₂ or C₁₄ as a percentage of the total amount released
987 by Triton X-100. **i** Influence of roots pretreatment with 10 μ M of surfactin (blue boxes)
988 compared to non-treated roots (red boxes) on *B. velezensis* GA1 root colonization. The
989 box plots encompass the 1st and 3rd quartile, the whiskers extend to the minimum and
990 maximum points, and the midline indicates the median (n=5 biological replicates of one
991 experiment). Ns= non significante.

992

993

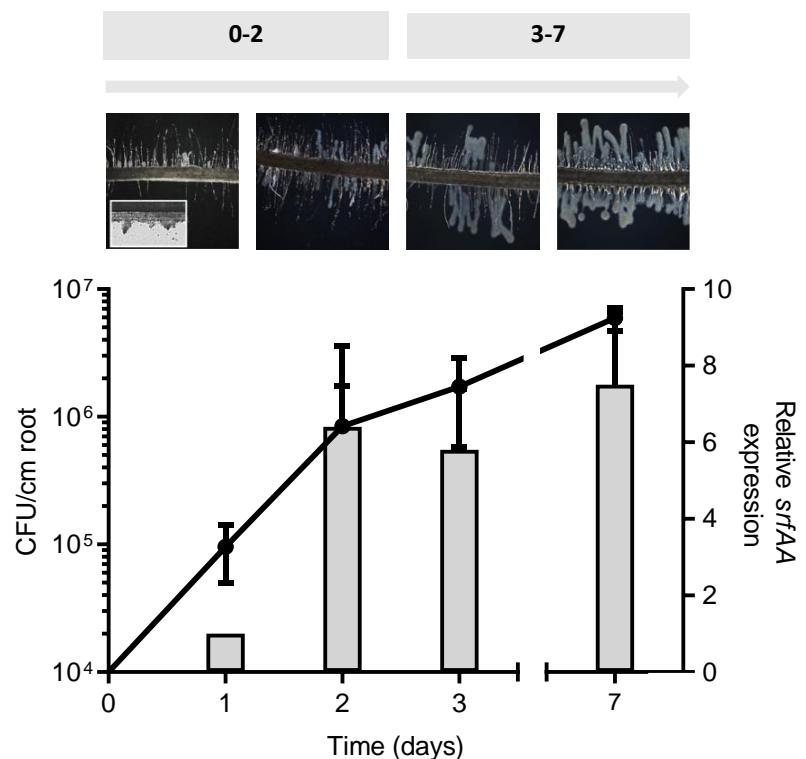
994
995**Table 1:** Differentially expressed genes in *B. velezensis* GA1 after HGLM perception

Locus_tag	Name	Fold change		Conservation				Category	Informations		
		5h	8h	<i>B. amylo.</i> DSM7		<i>B. subtilis</i> 168					
				QC (%)	ID (%)	QC (%)	ID (%)				
GL331_00010	<i>floT</i> (<i>yuaG</i>)		-3.048	100	93.2	97	81.46	Stress	Inner membrane protein, flotillin-like protein		
GL331_00015	<i>yuaF</i>	-3.016		99	93.4	94	68.97	Stress	Involved in the control of membrane fluidity		
GL331_00985	<i>yusU</i>	-3.072		100	95.12	99	76.37	Unknown	Unknown		
GL331_01085	<i>liaH</i>		-4.878	100	93.95	100	77.21	Stress	<i>lia</i> operon expression modulator, similar to phage shock protein, resistance against oxidative stress and cell wall antibiotics		
GL331_01090	<i>liaI</i>		-3.846	100	93.96	100	69.71		Resistance against oxidative stress and cell wall antibiotics		
GL331_01180	<i>fhuD</i>	-3.176		100	95.1	99	77.31	Transport	Hydroxamate siderophore ABC transporter		
GL331_01520	<i>opuCA</i>		3.066	100	95.61	99	82.35	Transport	Glycine betaine/carnitine/choline/arsenobetaine/arsenocholine ABC transporter		
GL331_02210	<i>hpf</i>	-4.636		100	97	100	83.71	Stress	General stress protein, required for ribosome dimerization in the stationary phase, protects essential ribosomal proteins		
GL331_02265	<i>flgN</i>	-3.608		100	96.48	76	76.55	Motility	Flagellar filament assembly protein		
GL331_02270	<i>flgM</i>	-4.334		100	98.5	100	77.15		Negative regulator of flagellin synthesis, anti- <i>sigD</i>		







GL331_02275	<i>yvyF</i>	-4.562		100	95.71	100	78.38		Unknown
GL331_02335	<i>tuaF</i>		-5.05	100	92.51	100	70.91	Cell wall	Teichuronic acid biosynthesis protein
GL331_02355	<i>tuaB</i>		-3.262	100	94.41	100	73.25	Cell wall	Polymer export
GL331_03100	<i>maeA</i>		-3.69	100	97.29	100	82.88	Metabolism	Malate utilization
GL331_03645	<i>ywcE</i>		-3.516	100	96.93	89	85.04	Sporulation	Holin, spore morphogenesis and germination protein
GL331_03950	<i>cydB</i>	-5.742	-3.506	100	95.38	100	79.45	Metabolism	Cytochrome d ubiquinol oxidase subunit 2
GL331_03955	<i>cydA</i>	-4.792		100	96.52	100	82.3		Cytochrome d ubiquinol oxidase subunit 1
GL331_04110			-3.374	/	/	/	/	Unknown	Hypothetical protein
GL331_04120	<i>wapA</i>		-4.134	/	/	92	77.81	Cell wall	Cell wall-associated protein precursor
GL331_04135	<i>yxiE</i>	-3.784		100	95.53	98	78.25	Stress	Universal stress protein
GL331_04235		-3.672		100	94.18	89	75.79	Transport	Hydroxamate siderophore ABC transporter
GL331_04550			3.198	99	96.39	/	/	Transport	Transport protein (putative quinolone resistance)
GL331_04560	<i>thiF</i>		3.138	/	/	/	/	Metabolism	Thiazole biosynthesis adenylyltransferase
GL331_04675			-3.768	100	92.69	/	/	Unknown	PIG-L family deacetylase
GL331_05550	<i>ctsR</i>	-3.034		100	96.77	100	86.45	Regulation	Transcriptional repressor, protein synthesis, modification and degradation
GL331_06040	<i>btr</i>	-3.352		100	91.23	72	68.27	Regulation	Transcriptional activator, regulation of iron acquisition
GL331_06530	<i>yceF</i>		-3.108	100	96.77	100	82.43	Stress	General stress protein, manganese resistance protein
GL331_06540	<i>yceH</i>		-3.104	100	95.22	98	83.68		Similar to toxic anion resistance protein
GL331_06585		-3.342		100	94.65	97	81.42	Metabolism	L-lactate dehydrogenase
GL331_07095	<i>yczJ</i>		-4.126	100	95.64	99	74.38	Unknown	Unknown
GL331_07100			-3.124						
GL331_07310	<i>gsiB</i>	-3.068		100	96.6	93	89.97	Stress	General stress protein, response to glucose starvation or to water deficits

GL331_08210	<i>pspA</i>		-3.664	100	93.74	96	74.52	Stress	Phage shock protein A homolog, paralogous to <i>liaH</i>
GL331_08215	<i>ydjG</i>		-3.246	99	94.43	99	75.05		Unknown
GL331_08225	<i>ydjI</i>		-3.014	99	97.01	98	77.93		Unknown
GL331_09875	<i>nhaX</i>	-3.04		99	92.59	99	74.9	Stress	Universal stress protein
GL331_10225	<i>yzhC</i>	-3.306		100	94.87	100	85.04	Unknown	Unknown
GL331_10530	<i>argJ</i>		3.852	99	94.82	99	77.23	Metabolism	Biosynthesis of arginine
GL331_10535	<i>argB</i>		5.39	100	91.51	100	71.5		
GL331_10540	<i>argD</i>		4.64	100	93.96	96	74.62		
GL331_10545	<i>carA</i>		5.726	100	93.48	100	73.46		
GL331_10715	<i>cwlQ</i>	-3.67		100	92.43	75	77.02	Cell wall	Bifunctional cell wall hydrolase
GL331_14205	<i>iseA</i>	-5.102		100	93.19	100	72	Cell wall	Cell wall endopeptidases and cell separation inhibitor
GL331_15495	<i>sigX</i>		-3.024	100	97.44	99	87.18	Sigma factor	RNA polymerase sigma factor
GL331_15575	<i>ribH</i>		3.352	100	95.91	100	81.29	Metabolism	Riboflavin biosynthesis
GL331_15580	<i>ribA</i>		3.946	100	94.57	100	78.11		
GL331_15585	<i>ribE</i>		3.896	100	94.29	100	74.88		
GL331_15590	<i>ribD</i>		4.102	100	94.44	99	76.73		
GL331_15930	<i>loaP</i>	-3.848		/	/	/	/	Regulation	Antiterminator involved in regulation of polyketide synthesis
GL331_16515	<i>pstBB</i>		-5.384	99	92.7	93	73.36	Metabolism, Transport	High-affinity phosphate uptake, phosphate ABC transporter
GL331_16520	<i>pstBA</i>		-4.924	100	92.32	89	77		
GL331_16525	<i>pstA</i>		-4.038	100	94.8	99	79.07		
GL331_17335			-5.61	100	89.17	48	75.86	Unknown	Unknown
GL331_17345	<i>safA</i>		-4.26	99	89.73	42	76.04	Sporulation	Major organizer of the inner spore coat
GL331_17895	<i>pftB</i>	-3.294		100	95.03	100	81.73		Pyruvate transporter

GL331_17900	<i>pftA</i>	-3.958		100	97.28	83	79.89	Metabolism, Transport	
GL331_18085	<i>ytzJ</i>	-3.29		100	98.96	100	84.38	Unknown	Unknown
GL331_18115	<i>argH</i>		5.002	100	95.06	99	83.98	Metabolism	Biosynthesis of arginine
GL331_18120	<i>argG</i>		5.144	100	95.3	100	81.77		


Table 2 : Strains used in this study

Strain	Characteristics	Sources
<i>Bacillus velezensis</i>		
<i>B. velezensis</i> GA1	Wild-type strain	(83)
<i>B. velezensis</i> GA1 <i>Psrf_gfp</i>	<i>amyE::Psrf_gfp+chl</i> ; Chl+	This study
<i>B. velezensis</i> GA1 Δ <i>srfAA</i>	Δ <i>srfAA::chl</i> ; Chl+	This study
<i>B. velezensis</i> GA1 Δ <i>codY</i>	Δ <i>codY::chl</i> ; Chl+	This study
<i>B. velezensis</i> S499	Wild-type strain	(15)
<i>B. velezensis</i> FZB42	Wild-type strain	(13)
<i>B. velezensis</i> QST713	Wild-type strain	(84)
<i>Bacillus amyloliquefaciens</i>		
<i>B. amyloliquefaciens</i> DSM7	Wild-type strain	ATCC
<i>Bacillus subtilis</i>		
<i>B. subtilis</i> ATCC 21332	Wild-type strain	ATCC
<i>Bacillus pumilus</i>		
<i>B. pumilus</i> QST 2808	Wild-type strain	(85)
<i>Escherichia coli</i>		
<i>E. coli</i> dh5 α	Wild-type strain	CGSC
<i>E. coli</i> dh5 α pGEM-T Easy <i>amyE</i>	pGEM-T Easy <i>amyE</i> ; Amp+	This study
<i>E. coli</i> dh5 α pGEM-T Easy <i>amyEup-cat-gfp-amyEdw</i>	pGEM-T Easy <i>amyEup-cat-gfp-amyEdw</i> ; Amp+ Chl+	This study
<i>E. coli</i> dh5 α pGFP_Star	pGFP-Star ; Chl+	This study

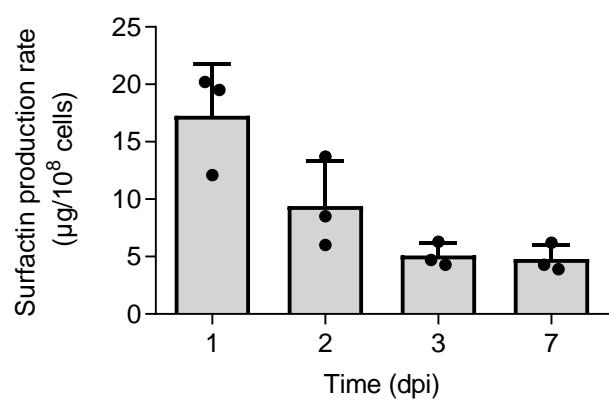
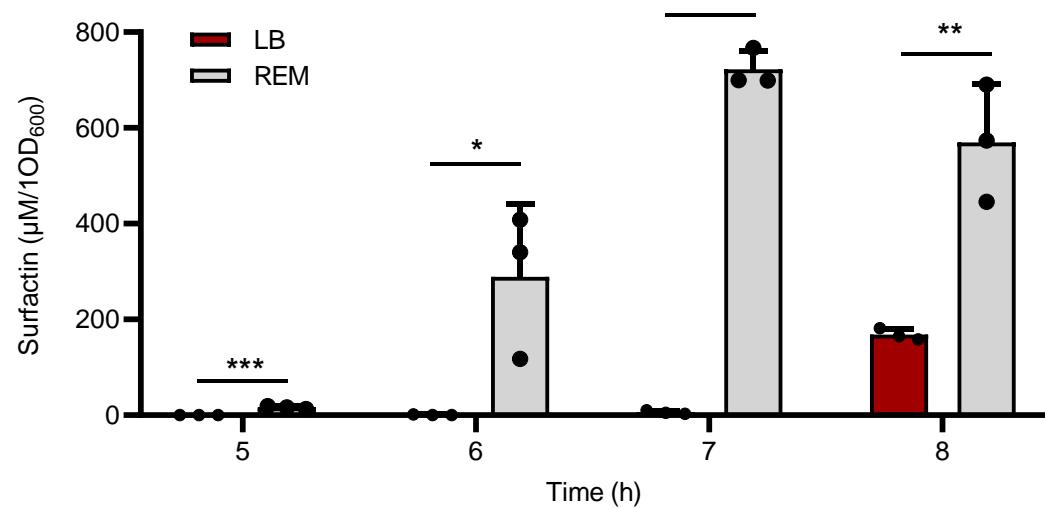
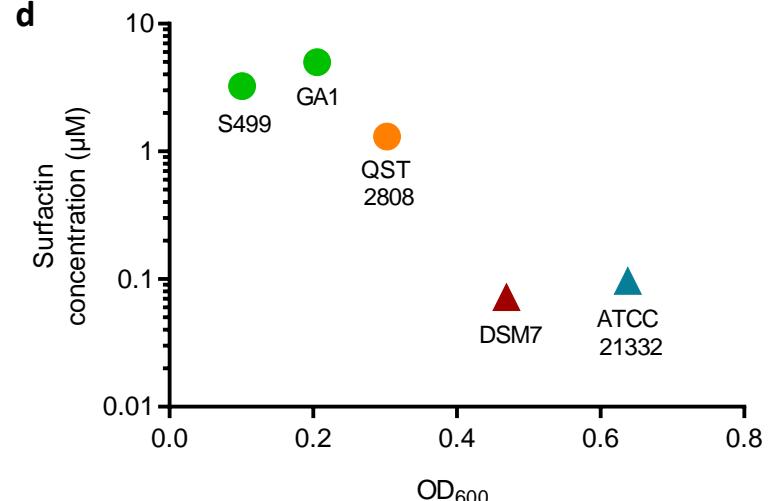
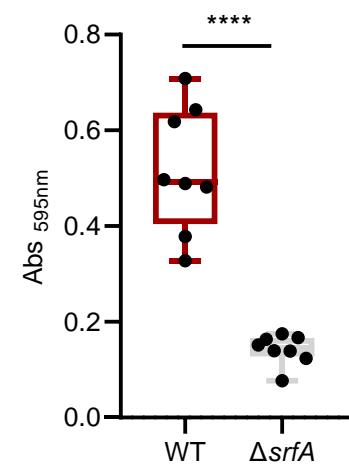
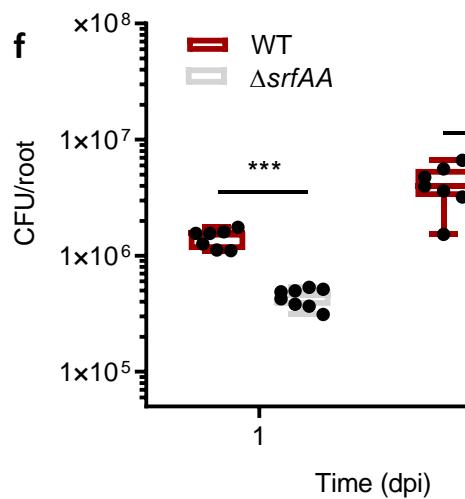
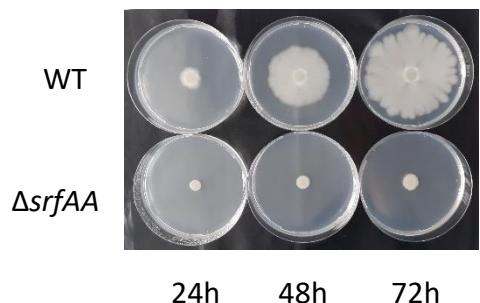
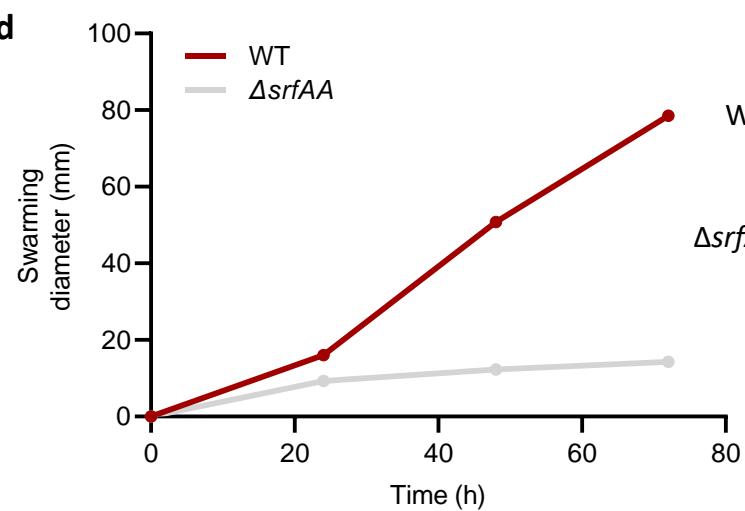
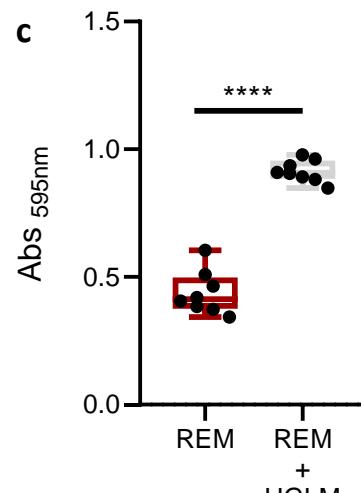
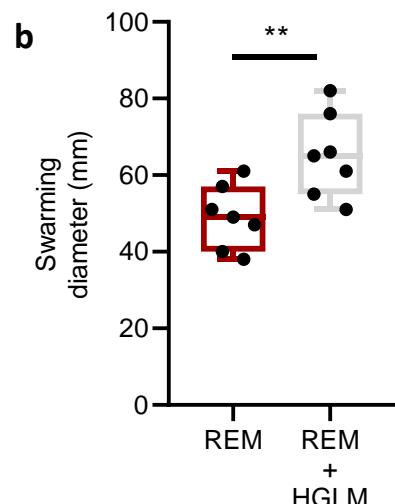
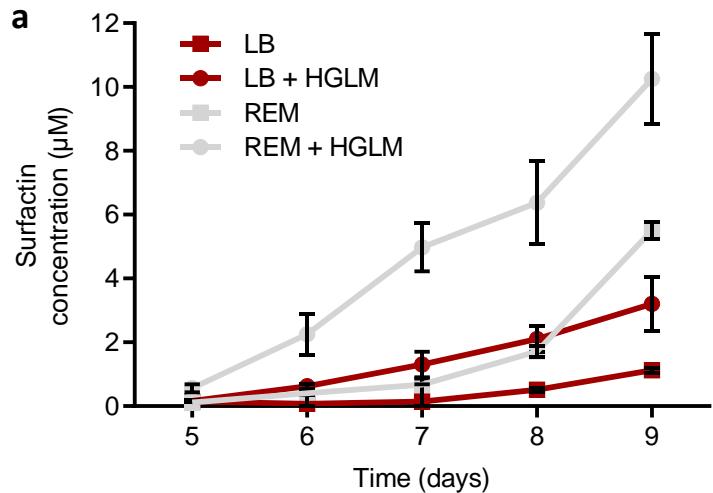
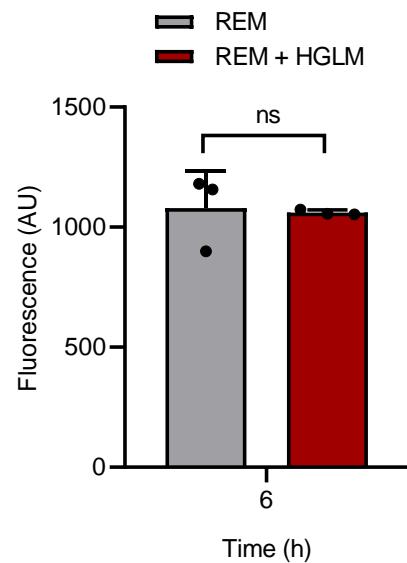
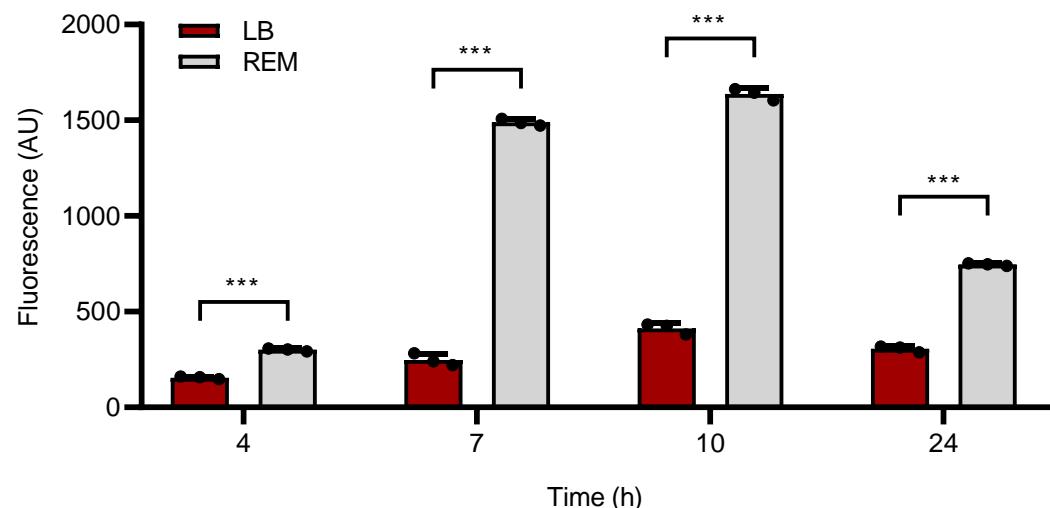
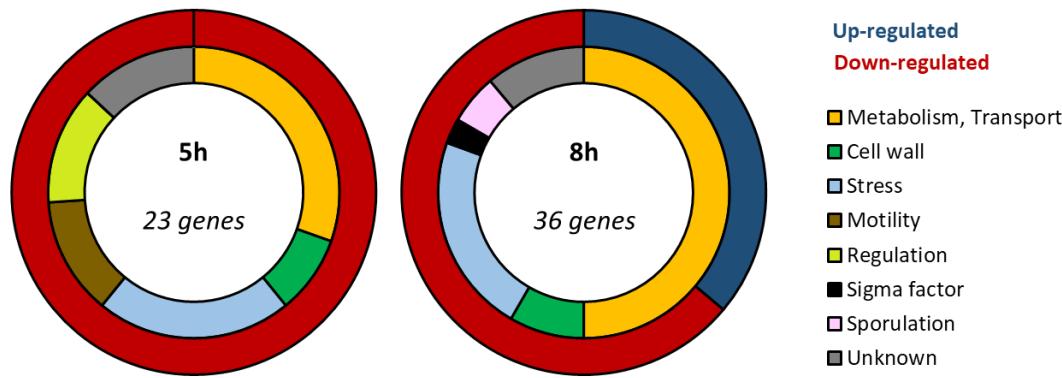

a**b****c****d****e**

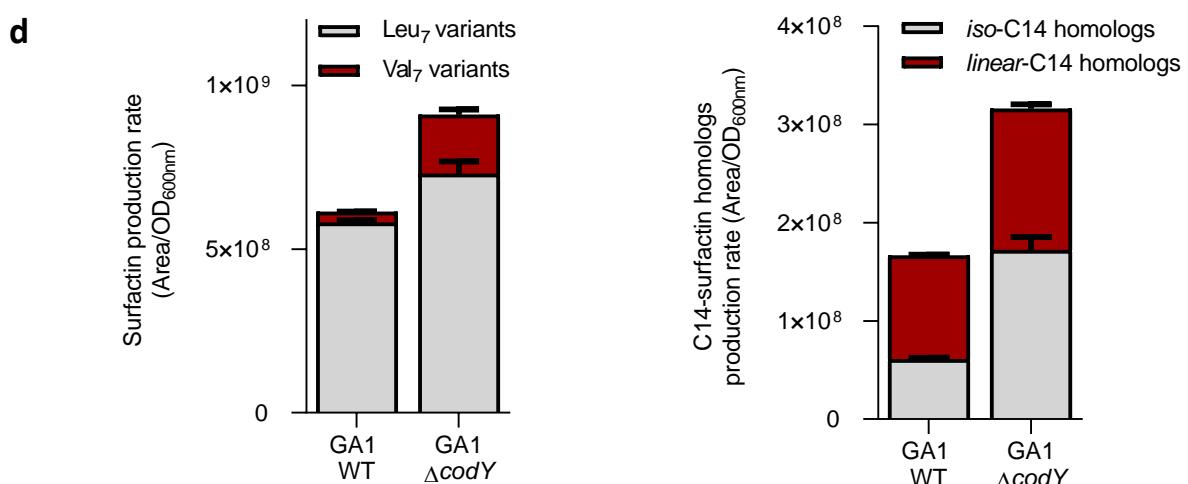
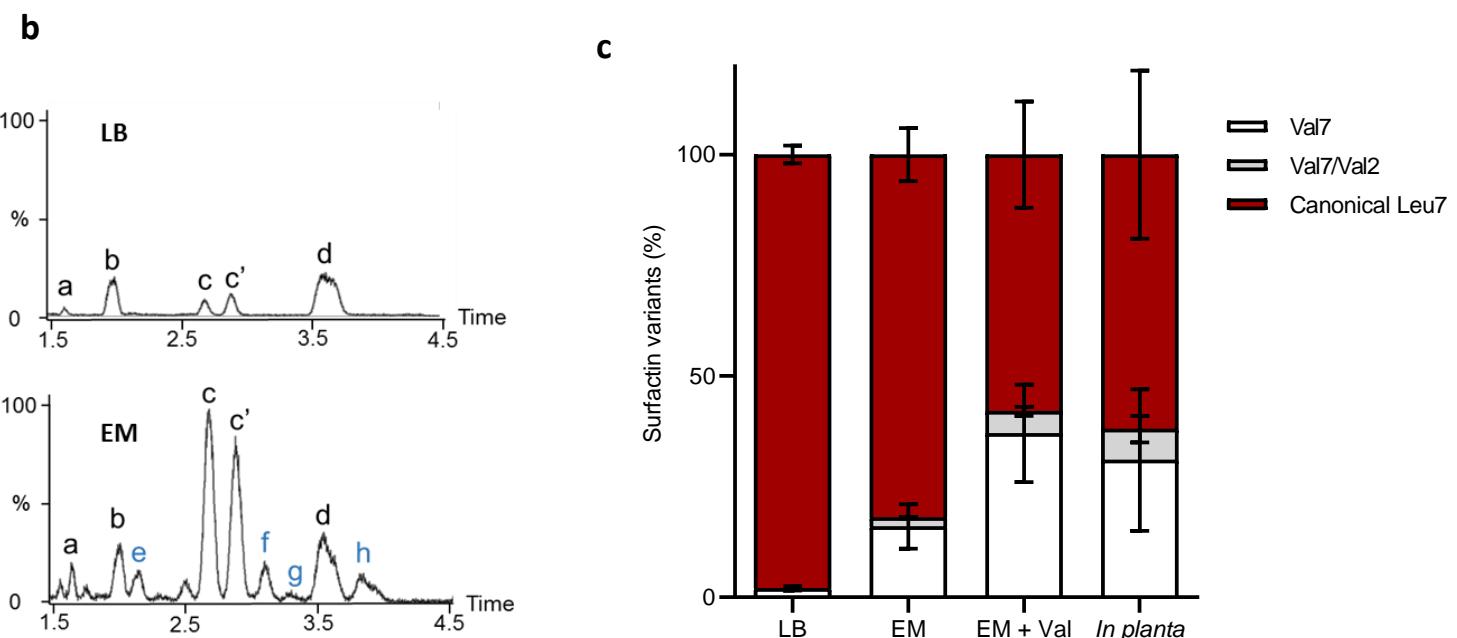
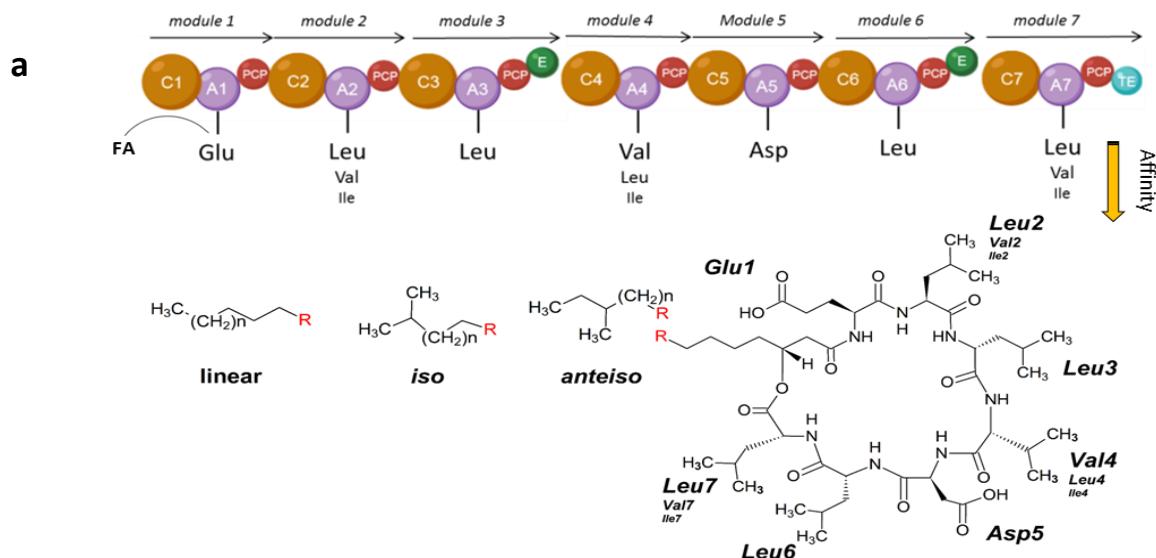
Figure 1: Impact of pectin on early surfactin production. **a** Sugar composition analysis of crude pectin (cPec) extracted from tobacco roots. Composition is expressed as Molar Ratio percentage (Molar %) for each fraction. Galacturonic acid (orange) constituting the pectin backbone (**b** for schematization) is the main sugar of the cPec fraction. Other minor sugars (rhamnose, galactose, arabinose...) are typically found in the pectin side chains (Mohnen et al. 2008, **b**). **b** Schematization of pectin structure. Homogalacturonan (HG) contains an assembly of at least 100 galacturonic acid (GalA) residues that can be acetyl or methyl esterified. Rhamnogalacturonan I (RGI) is constituted by a succession of GalA-Rha dimers, each one containing an alternance of rhamnosyl and galacturonic acid units. The Rha unit can be branched with variable neutral sugar side chains including essentially galactosyl and/or arabinosyl units. Rhamnogalacturonan II (RGII) structure is well conserved within the HG polymer. RGII englobes 9 GalA units substituted by four side chains with complex sugars, including apiose, DHA, aceric acid and KDO, neutral sugars like, rhamnose, galactose, arabinose, xylose, and fucose or also organic acids such as galacturonic and glucuronic acid. RGII can also complex with Bore allowing a crosslink between two HG molecules. **c** Surfactin (cyclic structure represented up) production in a root exudates mimicking (REM) medium at early growth phase ($OD_{600}=0.2$) with (red chromatogram) or without (blue chromatogram) addition of crude pectin extract added to the GA1 cultures. The main peak represents C15 surfactin whereas the minor left and right peaks represents C14 and C16 surfactins, respectively. **d** Surfactin accumulation in the early (left panel, $OD_{600}=0.2$) and mid (right panel, $OD_{600}=0.35$) exponential growth phase of GA1 cultures in REM medium supplemented with different sized pectin fragments : homogalacturonan low methylated (HGLM), DP>150; oligogalacturonides (OG), DP=15; galacturonic acid (GA), DP=1. Means \pm std err. from three biological replicates of one experiment are shown. Significante difference between each condition is indicated by different letters, p-value < 0.01. **e** Comparison of surfactin induction level by HGLM in the early exponential growth phase for different *Bacillus* species : *Bacillus velezensis* (*B. v*), *Bacillus amyloliquefaciens* (*B. a*), *Bacillus subtilis* (*B. s*) and *Bacillus pumilus* (*B. p*). For each strain tested, surfactin accumulation was normalized with the control condition without HGLM represented by the black dotted line. Means \pm std err. from three biological replicates are shown.

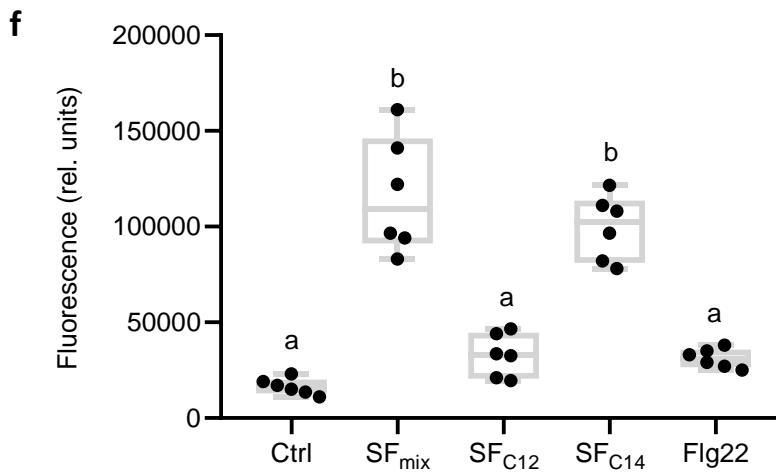
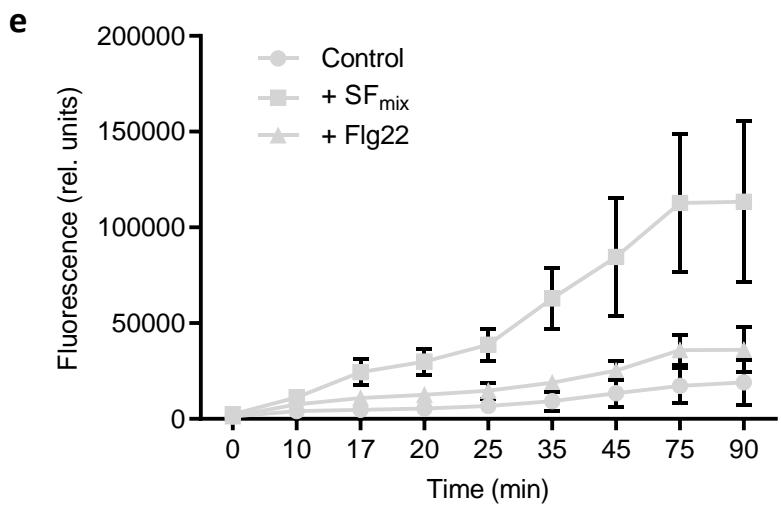
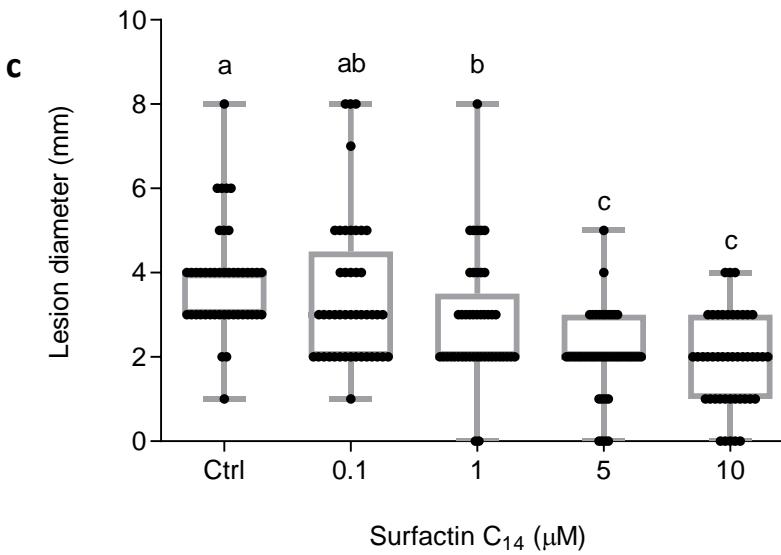
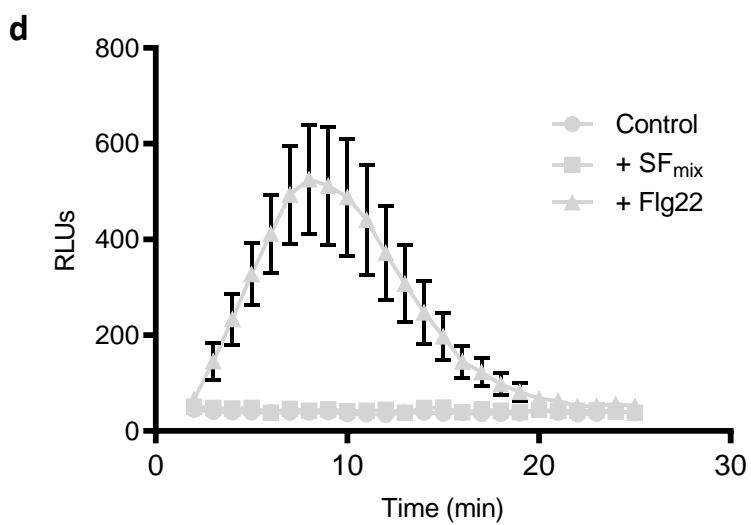
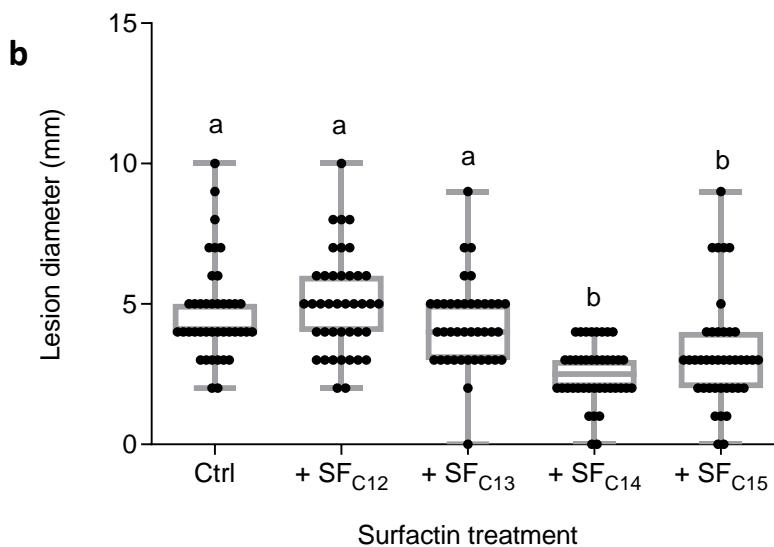
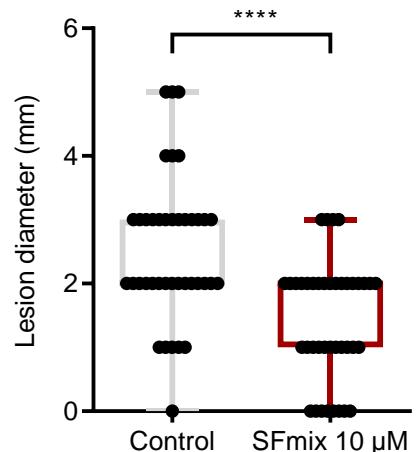

a


b








C




d




Figure 2: Impact of the specific rhizosphere nutritional context on early surfactin production. a Evaluation of bacterial population (black line, left axis) and relative *srfAA* expression on roots (grey bars, right axis) in a time frame of seven days post inoculation (dpi). *Bacillus* progression on roots characterized by a biofilm formation was assessed by microscopy at each time point (upper part). **b** Surfactin production rate on roots. Means \pm std err. from three biological replicates of one experiment are shown **c** Surfactin accumulation measured by UPLC-MS in a 8h time course experiment in REM medium (grey bars) compared to LB medium (red bars). Means \pm std err. from three biological replicates of one experiment are shown *** P-value <0.001 , ** P-value <0.01 , * P-value <0.05 **d** Comparison of early surfactin accumulation (μ M of surfactin on y axis linked to OD_{600} on x axis) in different *Bacillus* species, including *B. velezensis* (GA1 and S499 in green), *B. pumilus* (QST 2808 in orange), *B. amyloliquefaciens* (DSM 7 in red) and *B. subtilis* (ATCC 21332 in blue). Circle symbols are representing plant associated bacteria whereas triangle symbols are representing non-plant associated bacteria.







Figure 3: Ecological importance of an early surfactin accumulation. **a** Evaluation of HGLM and root exudates synergistic effect on early surfactin production. Time course experiment for surfactin quantification was performed in REM (grey curves) and LB (red curves) medium with (circle symbols) or without (square symbols) addition of HGLM. Means \pm std err. from three biological replicates of one experiment are shown **b** Swarming potential of *B. velezensis* GA1 on soft agar plates after addition of HGLM or not. The box plots encompass the 1st and 3rd quartile, the whiskers extend to the minimum and maximum points, and the midline indicates the median (n=7 biological replicates of one experiment). **c** Evaluation of *B. velezensis* ability to form pellicles on microwells plates after addition of HGLM or not. The box plots encompass the 1st and 3rd quartile, the whiskers extend to the minimum and maximum points, and the midline indicates the median (n=8 biological replicates of one experiment). Pellicle formation is illustrated on the right **d** Comparison of *B. velezensis* GA1 WT and (red) and a Δ srfAA mutant (grey) for their swarming potential in a time course study. Means \pm std err. from three biological replicates of one experiment are shown. Time course study is illustrated right. **e** Comparison of pellicle formation between GA1 WT strain (red) and a Δ srfAA mutant (grey). The box plots encompass the 1st and 3rd quartile, the whiskers extend to the minimum and maximum points, and the midline indicates the median (n=8 biological replicates of one experiment) **** P-value <0.0001. **f** *In vitro* comparison of root colonization ability of GA1 (red boxes) and GA1 Δ srfAA (grey boxes) on tomato plantlets. The box plots encompass the 1st and 3rd quartile, the whiskers extend to the minimum and maximum points, and the midline indicates the median (n=7 biological replicates of one experiment) *** P-value <0.001, ns non significant.

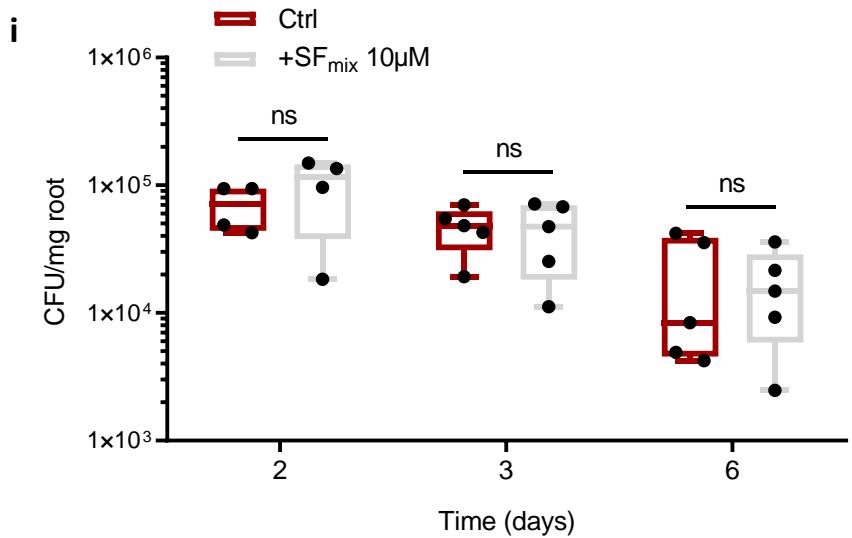
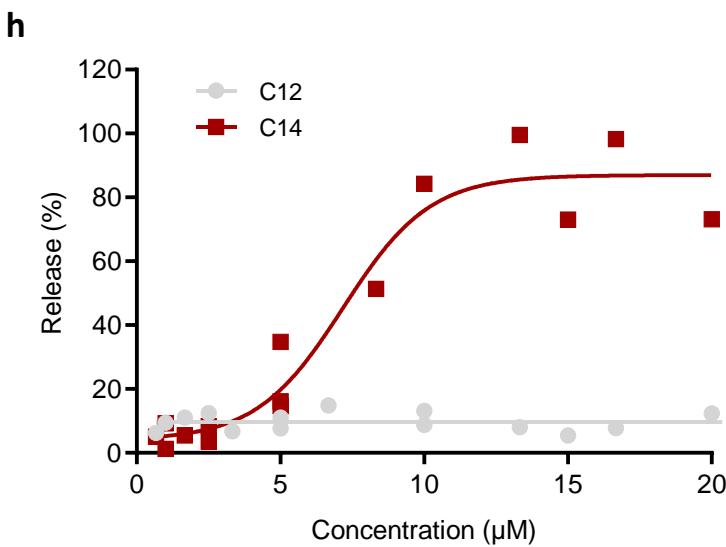
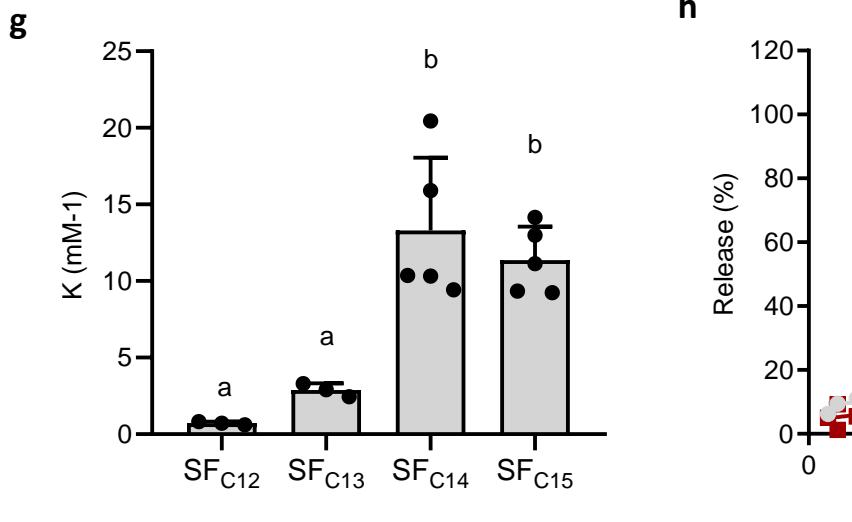



a**b****c**

Figure 4: Impact of plant triggers perception on *Bacillus* transcriptome. a Surfactin expression measured by fluorescence in the GA1 *PsrfAp::gfp* reporter strain at early exponential phase in REM medium (grey bars) compared to REM medium supplemented with HGLM (red bars). Means \pm std err. from three biological replicates of one representative experiment are shown ns = non significant **b** Surfactin expression measured by fluorescence in the GA1 *PsrfAp::gfp* reporter strain in a 24h time course study in EM medium (grey bars) compared to LB medium (red bars). Means \pm std err. from three biological replicates of one representative experiment are shown *** P-value <0.001 . **c** Classification of the different genes carrying a significant fold change (1.5 log2) 5 and 8 hours after addition of HG when compared to the control condition. The outer circle represents the proportion of up (dark blue) and down (red) regulated genes. The inner circle represents the proportion of genes belonging to the different functional family described in the legend.

Figure 5: Qualitative impact of root exudates on surfactin production. **a** Representation of the NRPS machinery leading to the assembly of the surfactin molecule. This mega-enzyme is organized in 7 functional units called modules which are each responsible for the incorporation of one amino acid building block into the growing peptide chain. Each module is subdivided into different domains including an adenylation (A, violet circle) and a peptidyl carrier protein (PCP, red circle) catalyzing the peptide initiation, and one condensation domain (C, brown circle) responsible for peptide elongation. The termination of the peptide synthesis is performed by a thioesterase domain (TE, blue circle) in the last module. Modules 3 and 6 also possess an epimerization domain (E, green circle). Surfactin molecule contains a 7 amino acids chain structured as follow: L-Glu – L-Leu – D-Leu – L-Val – L-Asp – D-Leu – L-Leu. In some specific variants, Leu in position 2 and/or 7 can be substituted by a Val and more rarely by an Ile, and inversely, Val in position 4 can be substituted by a Leu and also more rarely by a Ile. In addition to the amino acid chain variability, multiple homologs with the same peptidic core but differences in terms of fatty acid chain length (C₁₂ to C₁₇) or isomerisation of this latter (iso, anteiso or linear configuration) can also be produced. **b** Comparison of surfactin pattern in REM and LB medium. Based on MS-MS analyses, nine different surfactin forms were identified (a: C₁₂-Glu-Leu-Leu-Val-Asp-Leu-Leu ; b: C₁₃-Glu-Leu-Leu-Val-Asp-Leu-Leu ; c : iso-C₁₄-Glu-Leu-Leu-Val-Asp-Leu-Leu ; c' : n-C₁₄-Glu-Leu-Leu-Val-Asp-Leu-Leu ; d : C₁₅-Glu-Leu-Leu-Val-Asp-Leu-Leu ; e: C₁₃-Glu-Leu-Leu-Val-Asp-Leu-Val ; f: C₁₄-Glu-Leu-Leu-Val-Asp-Leu-Val ; g: C₁₄-Glu-Leu-Leu-Val-Asp-Leu-Val and h: C₁₄-Glu-Val-Leu-Val-Asp-Leu-Val.) **c** Relative proportions of surfactin variants in LB, REM, REM supplemented with valine, and *in planta*. **d** Qualitative and quantitative role of CodY on surfactin production. In a WT strain, 95% of the surfactin molecules are carrying a Leu in position 7 (grey bars) and only 5% are carrying a Val (red bars) whereas in Δ codY mutant almost 25% of the surfactin molecules are carrying a Val in position 7 and 75% a Leu. In addition, amount of total surfactin production rate of 150 % can be observed in Δ codY mutant compared to WT strain. Proportion of iso-C14 is also affected by CodY, 36 % of total C₁₄ are iso-fatty acid (grey bars) and 64% are linear (red bars) in WT strain whereas in Δ codY mutant 55% of C₁₄ are iso-C₁₄ and 45 % are linear. Again, total amount of C₁₄ is higher in Δ codY mutant (increase of 190 %).

Figure 6: Impact of surfactin homologues on Solanaceae plant immunity. **abc** Systemic resistance induced in hydroponically-grown tobacco by surfactin and expressed as reduction of *B. cinerea* infection (illustration of the reduction in the diameter of spreading lesions on infected leaves) in plants treated at the root level prior to pathogen inoculation on leaves compared to control plants. Data represent results grouped from two independent experiments with similar results and each involving 5 plants with 4 lesions on the second leave (n=40). The box plots encompass the 1st and 3rd quartile, the whiskers extend to the minimum and maximum points, and the midline indicates the median (n=7 biological replicates of one experiment). **a** Effect of surfactin homologues (SF mix) as naturally co-produced by the bacterium (C12/C13/C14/C15 in relative proportions 8/17/33/42%) **** P-value <0.0001 **b** Effect of HPLC-purified surfactin homologues applied at 10 μ M with fatty acid chains from C12 to C15. Significante difference between each condition is indicated by different letters, p-value < 0.05 **c** Effect of the most active C14 homologue tested at various concentrations. Significante difference between each condition is indicated by different letters, p-value < 0.05 **de** Stimulation of oxidative burst in root tissues upon treatment with a SF mix and to the response observed by treating roots with flagellin (flg22, 1 μ M) used as positive control. **d** Stimulation of apoplastic ROS accumulation (DCFH-DA fluorescent probe) in root tissues upon treatment with a surfactin mix applied at 15 μ M. Means and standard deviations are shown for one representative experiment performed on nine samples per treatment each containing three root segments (approx 100 mg FW) collected from different plants (n=9). Similar trend was obtained in an independent assay. **e** Stimulation of cytoplasmic hydrogen peroxide production in root cells. Means and s.d. were calculated from measurements performed on three samples per treatment each containing three root segments (approx 100 mg FW) collected from different plants. Data represent values obtained from two independent experiments (n=6 per treatment). **f** Stimulation of cytoplasmic hydrogen peroxide production in root cells after treatment with C₁₂ and C₁₄ surfactin homologues as representative of short and long fatty acid chains respectively. Flg22 was used as control. The box plots encompass the 1st and 3rd quartile, the whiskers extend to the minimum and maximum points, and the midline indicates the median (n=6 biological replicates of one experiment). Significante difference between each condition is indicated by different letters, p-value < 0.0001. **g** Binding coefficient (K) of Surfactin homologues (C₁₂ to C₁₅) to large unilamellar vesicles (LUV) composed by PLPC/Sitosterol/Glucosylceramide (60:20:20 molar ratio). Means \pm std err. from three to five biological replicates of one representative experiment are shown Significante difference between each condition is indicated by different letters, p-value < 0.05 **h** Release of 8-hydroxypyrene-1,3,6 trisulfonic acid (HPTS) from PLPC/Sitosterol/Glucosylceramide (60:20:20 molar ratio) LUV, upon addition of surfactin C₁₂ or C₁₄ at different concentrations. The ordinate shows the amount of HPTS released after 15 min in the presence of the C₁₂ or C₁₄ as a percentage of the total amount released by Triton X-100. **i** Influence of roots pretreatment with 10 μ M of surfactin (blue boxes) compared to non-treated roots (red boxes) on *B. volezensis* GA1 root colonization. The box plots encompass the 1st and 3rd quartile, the whiskers extend to the minimum and maximum points, and the midline indicates the median (n=5 biological replicates of one experiment). Ns= non significante.