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Abstract:

Carbohydrates and glycoproteins modulate key biological functions. Computational
approaches inform function to aid in carbohydrate structure prediction, structure
determination, and design. However, experimental structure determination of sugar
polymers is notoriously difficult as glycans can sample a wide range of low energy
conformations, thus limiting the study of glycan-mediated molecular interactions. In this
work, we expanded the RosettaCarbohydrate framework, developed and benchmarked
effective tools for glycan modeling and design, and extended the Rosetta software suite to
better aid in structural analysis and benchmarking tasks through the SimpleMetrics
framework. We developed a glycan-modeling algorithm, GlycanTreeModeler, that
computationally builds glycans layer-by-layer, using adaptive kernel density estimates
(KDE) of common glycan conformations derived from data in the Protein Data Bank (PDB)
and from quantum mechanics (QM) calculations. After a rigorous optimization of kinematic
and energetic considerations to improve near-native sampling enrichment and decoy
discrimination, GlycanTreeModeler was benchmarked on a test set of diverse glycan
structures, or “trees”. Structures predicted by GlycanTreeModeler agreed with native
structures at high accuracy for both de novo modeling and experimental density-guided
building. GlycanTreeModeler algorithms and associated tools were employed to design de
novo glycan trees into a protein nanoparticle vaccine that are able to direct the immune
response by shielding regions of the scaffold from antibody recognition. This work will
inform glycoprotein model prediction, aid in both X-ray and electron microscopy density
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solutions and refinement, and help lead the way towards a new era of computational
glycobiology.

Introduction:

Carbohydrates and glycoproteins are ubiquitous in biological organisms!. Viral
glycoproteins such as HIV envelope trimer, influenza hemagglutinin, and SARS-CoV-2 spike,
employ N-linked glycosylation as an immune evasion strategy, taking advantage of the fact
that host glycans on the surface of proteins are usually recognized as “self” by the adaptive
immune system?. Yet, HIV broadly neutralizing antibodies often target glycans as part of
their epitopes345. Small carbohydrate residues attached to serine or threonine can act in
signaling pathways akin to phosphorylation®, while glycans on the constant region of
antibodies act as mediators of effector function’:8. Glycans can also improve stability® and
solubilityl?, reduce aggregation!!, and even improve biological drug-targeting and vaccine
design through glycan masking of off-target regions?2.

The biosynthesis of glycoconjugates is complex. Carbohydrates can be attached to
certain amino acid residues including serine, threonine, asparagine, and (rarely)
tryptophan through covalent modification, forming glycoproteins. The attachment can be
made to nitrogen, oxygen, or carbon atoms, (known as N-, O-, or C-linked glycosylation,
respectively), with each process involving a multitude of enzymes, sugar moieties and
resulting carbohydrate structures. These processes are stochastic in nature, producing
glycoproteins that are heterogeneous in both the occupancy of a glycan at the glycosylation
site (macro-heterogenicity) and the chemical makeup of the N-, C-, or O-linked glycan
(micro-heterogenicity)13.

The most common form of glycosylation observed in glycoprotein structures is N-
linked glycosylation. Initiation of this process occurs during translation, by the protein
oligosaccharyltransferase (OST), which recognizes a multi-residue consensus motif, or
sequon, of NX(S/T) (where X is any residue except proline), and covalently attaches a lipid-
linked core-oligosaccharide to the asparagine residue through an N-glycoside linkage 1.
This process is not deterministic (not every sequon results in attachment of a glycan) and
certain amino acids in and around the sequon motif can affect the efficiency of this process,
resulting in higher or lower glycan occupancy at the sitel#15,

Upon successful protein folding in the endoplasmic reticulum, the initial N-linked
glycan is “trimmed down” by removal of several terminal glucosyl residues, while many
sugar processing enzymes in the Golgi apparatus can add or remove sugar residues from
the nascent branched sugar (tree). The resulting chemical makeup of the glycan tree
depends on which enzymes are available in the Golgi, which is heavily influenced by
species, disease statel6, developmental stagel’; and the local structure, sequence, and
environment of the glycosylation sitel8. In addition, a particular glycosylation site can
result in vastly different glycans!?, though this can be controlled to some extent through
various bioengineering techniques3.20.21,

Glycans are also conformationally flexible, being highly hydrophilic and typically
exposed on the surface of proteins, with a large number of conformational degrees of
freedom. However, as has been observed in molecular dynamics and NMR experiments,
glycan conformations can be influenced by their structural environment?2. Through the
plethora of high-resolution crystallographic and cryo-EM studies, we also know that
glycans can adopt stable conformations with well-defined density observed for many of the
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glycan residues in each tree, especially towards the root of the glycan tree, even for some
unrestrained glycans?324. Presumably, these low-energy, stable conformations are
occupied at higher frequency in solution. In addition, a recent QM study on glycan torsional
energies showed that the QM-derived conformational preferences of glycan torsions match
well with glycan structures analyzed from the protein data bank, indicating that
conformational diversity is also influenced by the chemical makeup of each glycan
structure?>.

Given the complex chemistry and conformational diversity involved, accurate
modeling of glycans is currently a grand challenge in computational biology. Computational
glycobiology tools and webapps have been developed for protein glycosylations?®,
validation of carbohydrate structural chemistry?’, statistical analysis?8, and docking?9:39.
Common methods in glycoprotein modeling typically involve molecular dynamics (MD)
simulations3! or adding glycans by manual placement and conformational tweaking into
their density for structure determination32. Recently, a new method for automatic building
of glycan structures from sequence was described33; this method, the CHARM-GUI Glycan
Modeler, was benchmarked only up to the first and second sugar.

Here we describe a new glycan modeling algorithm built within the Rosetta
software suite, a platform that incorporates state-of-the-art applications and modules for a
variety of macromolecular modeling and design tasks34. The new algorithm provides user
interfaces for the creation of tailor-made protocols3>36 and includes a reliable knowledge-
based energy function to evaluate models and designs3’. We build on earlier work that
enabled representing and evaluating carbohydrate structures within Rosetta38 and in
loading, representing, and refining glycans from the Protein Data Bank3°. We expand on
this foundational work through the addition of new carbohydrate-specific sampling
methods, an updated conformer database employing adaptive kernel density estimates, a
new framework for general analysis in Rosetta (SimpleMetrics), and a new algorithm for
accurately modeling complex carbohydrates, the GlycanTreeModeler.

We rigorously benchmark the new method on a set of diverse high-resolution
crystal structures of glycans in symmetric crystal environments, and we show that the
GlycanTreeModeler is capable of recapitulating native glycan structures with high accuracy
both through de novo and density-guided modeling*?. We then applied our glycan
modeling protocol with Rosetta sequence design of glycan sequons to engineer optimal
new glycans onto a protein nanoparticle vaccine scaffold and evaluated changes in immune
responses. We observed reduced reactivity to the underlying protein surface in
immunization experiments, thus demonstrating that glycans can be computationally
engineered to tailor immunogenicity of vaccines.

Results

The Rosetta GlycanTreeModeler builds whole glycan “trees” through an algorithm
that mimics the growth of natural trees. A primary difficulty in de novo glycan modeling is
the correct prediction of the base of glycoconjugate structures. To increase the accuracy of
the first few sugars of the tree, our algorithm begins modeling from the “root” (reducing
end) of the glycan tree out to the branching “foliage”. Monte Carlo optimization through
sampling of glycan degrees of freedom (DOFs) is carried out through the new
GlycanSampler, which includes routines for glycosidic torsion angle (backbone) sampling,
structure minimization, hydroxyl and other side-chain optimization, and neighbor protein
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side-chain optimization. During the protocol, the total amount of sampling scales linearly
with the number of glycan residues being modeled, ensuring even sampling regardless of
the size or quantity of glycans being modeled.

The GlycanSampler optimizes glycosidic torsion angles using statistically favorable
sets of phi, psi, and omega angles (conformers) and single torsions sampled from QM-
derived probabilities originally used for energetic evaluation of glycosidic linkages252°.
Conformer sets are dependent on each chemically distinct pair of saccharides making up a
glycosidic bond, whereas single torsions depend on the anomeric chemistry of the linkage.
We derived the conformers for this work by carrying out a new bioinformatic analysis of
glycans in the PDB through the use of adaptive kernel density estimates in a similar
manner to what was done for the 2010 Dunbrack Backbone-dependent Rotamer Library*!
(see supplemental).

To optimize the conformations of glycan residues on different branches at the same
time, the glycan tree is built layer-by-layer, with a layer defined as the residue distance to
the root (Figure 1a). Once each new layer is built and optimized, all previous layers are
then optimized further (Figure 1b). After all layers are built and optimized, a final
optimization is conducted. The lowest energy model (decoy) found during this Monte Carlo
algorithm is output at the end of the program as a PDB file. The lowest-energy structure of
all the output decoys is used as the “best” model produced by the algorithm. See the
supplemental material for more details [supp vid 1].
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Figure 1: Glycan Modeling Diagram. a. Glycan trees building layer by layer. Numbers indicate distance to
root of the glycan tree, which is the first residue. b. After a layer is built, Glycan Sampling is performed on the
new layer, and then all layers, before building the next layer. c. Diagram showing major components of the
GlycanSampler. The GS is a weighted random sampler, indicating that each DOF is sampled with a specific
probability. See supplemental for details.
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In order to examine the performance of GlycanTreeModeler, we built a new
benchmarking infrastructure in Rosetta. We developed the SimpleMetrics framework
within the XML interface to Rosetta (RosettaScripts3>), which allows for robust analysis
through more than 20 associated structural and energetic metrics, with data reporting at
any step in a RosettaScripts protocol. The Python scripting language was used to load the
resulting JSON scorefile for data analysis and figure creation using the numpy#?, pandas#3,
and seaborn*# libraries. To facilitate large scale benchmarking, we developed a general
application for parallel RosettaScripts computing, rosetta_scripts_jd3, enabling glycan
calculations to be run in parallel on a high-performance computing cluster. This application
can run multiple jobs within a single parallel run of Rosetta, with individually configured
glycan trees to be modeled, and any associated input files for each. The SimpleMetric
framework and rosetta_scripts_jd3 application are reviewed in detail in the supplemental
material.

Glycan masking was carried out through the use of two new RosettaScript
components; the CreateGlycanSequonMover, which designs typical and enhanced*>15 glycan
sequons into a protein at a desired position, and the SimpleGlycosylateMover, which adds
whole glycans of a given IUPAC onto a protein. Glycans were then sampled using the
GlycanTreeModeler.

Glycan Structure Test Set

The Rosetta GlycanTreeModeler algorithm was benchmarked against a set of 25
unique N-linked glycan trees ranging from three to twelve residues, across 19 unrelated
glycoprotein structures of better than 2 A resolution, totaling 139 sugar residues. Each
glycan tree was checked for chemical and structural inconsistencies (such as incorrect
isoform assignments, wrong linkages, or missing atoms) using the glycosciences.de pdb-
care webserver?’. Preparation and analysis of the structures can be found in the
supplemental material.

To assess the predictive capability of the GlycanTreeRelax algorithm, the dihedral
angles of the glycans are randomized at the start of the algorithm, and waters are removed.
Models are compared to the crystal structures using the all-heavy-atom Root Mean Square
Deviation (RMSD) metric, with the lowest energy model of all output decoys used for
assessment (Figure 2). The RMSD is calculated on all glycan residues that have an
acceptable fit to the density in the native model, as terminal glycan residues of some
glycans often cannot be observed in the density due to their higher flexibility. A description
of the methods used for the RMSD calculation is provided in the supplemental.
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Figure 2: Schematic of benchmarking protocol.

Protocol Optimization

Development of the glycan modeling protocol began with the implementation of the
GlycanSampler. Initial results showed that the sampler alone produced models that were
energetically favorable, but most final models were well above 5 A RMSD from native—the
mean and median RMSD values over the benchmark set were 7.6 A and 7.2 A, respectively.
For some of the more sterically confined input glycans, many of the decoys had major
clashes in their first few glycan residues, indicating that sampling of these residues was
insufficient, even after increasing the overall amount of sampling.

To correct for the sampling problem, we modeled our algorithm after the growth of
natural trees, in which we kinematically build and sample the glycan layer-by-layer,
essentially “growing” a glycan “tree”. We defined a layer as the number of residues to the
glycan root to enable branched glycan residues to sample conformations together. This
build-by-layer algorithm improved enrichment of near-native output models and decreased
the median RMSD to 6.1 A, but did not improve the overall mean. (Figure 3). We then
sought to systematically improve the algorithm through iterative benchmarking and
optimization of kinematic and energetic experiments.

The original build-by-layer algorithm builds two layers at a time, with an overlap of
one layer (window). Although this algorithm improved enrichments compared to the
GlycanSampler alone (all_sampler, Figure 3), once a layer is built and the overlap
refinement is complete, those layers are not optimized further, which makes refinement of
the overall orientation of the glycan difficult, especially for large, branching glycans (which
performed worse using this algorithm).

Two protocols were tested that include the build-by-layer protocol with more
optimization of previously built layers. The hybrid algorithm builds and optimizes glycan
layers as before but optimizes all previously built layers before the next build occurs. This
algorithm significantly improved enrichments for all near-native definitions (Figure 3). The
hybrid-GS algorithm is a simplified protocol implemented in RosettaScripts that splits
sampling time across the first two tested algorithms. It first runs build-by-layer and then
runs the GlycanSampler for optimization. This protocol did not improve enrichments,
indicating that additional sampling of previous layers during the build process instead of
after is important for improved model quality (figure S3).

Finally, since the hybrid algorithm is refining previously built layers, we removed
the window sampling and benchmarked the number of build layers. By building a single
layer at a time (hybrid-build-one), we further improved decoy enrichments (Figure 3);
however, building two layers at a time did not improve enrichments (Figure S4).
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Figure 3: Kinematic Sampling Optimization, Decoy Enrichment from each individual experiment. All
experiments were conducted with the same total amount of sampling. a. Boxplots without whiskers at decoy
enrichments of <1A, <2.5A, and <5.0A. b. Means of decoy enrichments of <14, <2.5A, and <5.0A. Asterisks
indicate statistically significant differences through paired t-test. Asterisk above bar indicate statistical
significance with all other groups. *,p <.05; **,p<.005; *** p<.0005

Each of the major kinematic experiments generally improved near-native model
quality (Figure 3, S5, and S6), but this was much more pronounced for the stem region of
the glycan, defined as the first two layers of the glycan tree (Figure S7). Through better
optimization of the base region through kinematics, the overall quality of output models
was improved. We then sought to improve decoy discrimination of these low-RMSD models
through improvements to the scoring function.
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Scoring Optimization

The default Rosetta energy function is composed of many individual energy terms,
each with an associated, optimized weight37. A core component of the RosettaCarbohydrate
framework is a specific energy term for the carbohydrate backbone, analogous to that of
the Ramachandran term used for peptide bonds. This QM-derived term is used to improve
backbone geometry arising from anomeric stereochemistry of both glycan residues in the
bond!® and is on by default at a weight of 1.0 when working with glycans in Rosetta. We
first sought to find a balance between the overall energetics of the glycan and the penalties
arising from this term when native geometries are not ideal. An initial small test of various
weights of this term indicated that a weight of 0.5 resulted in better decoy discrimination
through the PNear metric, though this was not statistically significant (Figure S8).
However, comparing the weight of 1.0 and 0.5 using a larger benchmark did result in
statistical significance at a lambda of 1 A (Figure 4).
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Figure 4: Funnel Plot quality of Scoring Benchmarks assessed by the pNear metric. a. Boxplot of pNear
values for each benchmark glycan, indicating funnel plot quality for lambdas of 1.0, 2.5, and 5.0 RMSD to
native. Higher pNear indicates better near-native discrimination from other decoys. Blue squares indicate
mean. b. Means of pNear over each experiment. Significance from paired t-test; * indicates p <.05.

We then sought to improve the overall discrimination through the recently
developed Rosetta-ICO (beta) energy function*t. Among other improvements, this energy
function includes an atomistic repulsive term within residues (intra_rep), and a more
accurate implicit solvation model that takes into account potential bridging waters - both
of which are important considerations for carbohydrate modeling.

Each of these energy function changes improved decoy discrimination through the
PNear metric. The sugar_bb energy term change was statistically significant at a lambda of
1.0 A, indicating that too high of a sugar_bb weight reduces the energy function’s ability to
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discriminate near-native models from decoys (Figure 4). Notably, both optimizations
together improved decoy discrimination for lambdas of both 2.5 and 5.0 A, which can help
distinguish poor quality models from acceptable ones. This improvement was statistically
significant compared to the base energy function of ref2015.
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statistical significance with all other groups through paired t-test. *|p <.05 **|p<.005 ***|p<.0005 a. Decoy
Enrichment in output models at <1.04, <2.54A, and <5.0A RMSD. b. Decoy Enrichment in output models of the
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Although these improvements were observed in decoy discrimination, using the
Rosetta-ICO energy function (beta) in combination with a lower sugar_bb weight also
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improved enrichment of near-native models, especially in the root/STEM region (First two
sugars, Figure 5). These changes also directly influenced the quality of the final models,
most likely due to improvements in PNear (Figure S9).

Benchmarking of De novo modeling

Using the optimized protocol and scoring function found during protocol
optimization, benchmarking was done on the set of 25 glycans described above. Across the
benchmark dataset, the median RMSD of the glycan predictions to the native structures
was 2.7 A, while the mean was 5 A. For the first two residues of the glycan tree, the median
was 1.28 A with a mean of 2.17 A. Of the 25 glycan trees, 20% of the glycans were
predicted at < 1 A accuracy and 72% (18/25) of the glycans were predicted at < 5 A
accuracy (Figure 6 and 7). The largest glycan in our dataset, with twelve residues, was
benchmarked at 2.5 A. Full results for each glycan are listed in Table S3.
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Figure 6: Near native structures from de novo modeling. (Top Scoring models for each glycan in the
benchmark set) Yellow=Native, Cyan=Model
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Figure 7: De novo predictions, Farthest from native. (Top Scoring models for each glycan in the
benchmark set) Yellow=Native, Cyan=Model

It is also useful to understand how well the algorithm predicts the internal structure
of the glycans, as a single dihedral angle change at the root of the glycan can significantly
change the overall structure of the glycan relative to the protein. For each of these
structures, the same lowest-energy models were superimposed onto the input glycan. The
median superimposed RMSD is 1.1 A, with a mean of 2.7 A. Overall, 32% (8/25) were <1 A
RMSD, 64% < 2.5 A RMSD and 92% of the predictions < 5 A. Both RMSD measurements of
the glycans were generally correlated to each other (Figure S10).

In addition, most of the glycan benchmarks in our dataset had convergent score vs.
RMSD (funnel) plots (Figure S11). This funnel-like quality is directly related to the ability of
the scoring function to discriminate near-native models from decoys and was quantified
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using the PNear metric*’ that estimates the Boltzmann-weighted probability of finding a
system near its native state at various near-native cutoffs (lambdas) [See supp]. A PNear
closer to 1.0 indicates the highest quality funnel possible. The worst-performing glycans in
our benchmark set had poor score vs. RMSD funnels, indicating that the scoring function
was not able to capture important biophysical properties of the structure (Figure S12). The
worst-performing glycan from the Fc antibody fragment of 3ave, had an RMSD of almost 25
A with an internal (superimposed) RMSD of 3.6 A. In this lowest-scoring model (and
others), the modeled glycan interacts with the more hydrophilic surface of a
crystallographic symmetry mate rather than the more hydrophobic glycan-interacting
surface of the parent protein that includes two aromatic rings (Figures 7, S13). This result
is further detailed through the low pNear metrics of the funnel plot with all lambdas being
less than .01, showing that the current energy function is unable to score these types of
interactions well. However, a scoreterm that accurately represents glycan-aromatic CH-nt
interactions#® may improve these results.

Solvent is implicitly represented in most Rosetta applications, but we observe that
half of the benchmark glycans have significant crystallographic waters in contact with the
surrounding protein. Attempting to understand the effect of waters, we modeled the
worst-performing and best-performing glycans and then predicted explicit waters around
the glycan for each output decoy using Rosetta-ECO#® in order to score more native-like
conformations that have these bridged waters. However, decoy discrimination as measured
by pNear was significantly worse for all lambda cutoffs (even for the best-performing
glycans), indicating that even with explicit waters and sufficient near-native sampling
distributions, the Rosetta energy function was unable to use this information to accurately
distinguish near-native decoys. (Table S4)

In the benchmark set, the internal (superimposed) RMSDs are generally low in
comparison to the overall RMSD (84% < 3 A), showing that the energy function, guided by
the QM-derived sugar_bb energy term, can accurately predict many glycan structures, but
may need to be further improved to more accurately score glycan-protein interactions in
the future.

Density Building

There are an increased number of glycoprotein structures being determined. To
assist structure determination, many recent glycan modeling tools have focused on their
ability to aid in glycan structure building and refinement using the experimental density,
especially for structures with many resolved glycans such as HIV Env. We tested the ability
of the GlycanTreeModeler to build glycan structures using crystallographic density
information to guide modeling and decoy discrimination using integrated density scoring??.
The experiment was conducted in the same manner as de novo modeling, by first
randomizing all backbone dihedral angles of the glycan to be modeled for each output
decoy and removing all crystallographic waters. For each of the 25 glycans, the lowest-
energy model was used for assessment.
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Figure 8. Best and Worst results from Density-guided modeling: a. Structural comparison of 3GML 165A
glycan; 0.08A RMSD; cyan=model | yellow=native b (and e). RMSD vs. Score (funnel) plot, top 80% by energy.
c (and f). Funnel plot of top 10% models with pNear metrics. d. Structural comparison of 1GAI 171A glycan;
0.88A RMSD; cyan=model | yellow=native

Without further refinement or any additional changes to the protocol, all glycans
were modeled at sub-angstrom accuracy. The best glycan in the current benchmark, with
six residues, was built at 0.08 A RMSD to native (3GML position 165A glycan), while the
worst, a five-residue glycan, was modeled at 0.88 A RMSD (1GAI position 171A glycan). For
both of these glycans, funnel plots were generally good, with respective PNear values of
0.99 and 0.46 at a lambda of 1.0 A (Figure 8). For 1GAI glycan 1714, the last residue in the
glycan is twisted in the best model compared to the native and fits two constituent oxygens
into the low residue density at a different angle than the solved structure. This twist can
clearly be seen in the funnel plot where the distribution of models less than 1 A is bimodal,
indicating two primary close solutions of the electron density. (Figure 8F).
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Figure 9. Density-guided Modeling Quality: a . Boxplot of the RMSD to native of the best-scoring decoy for
each of the benchmarked input glycans. b. Boxplot of the funnel quality for each of the benchmark glycans as
measured by the pNear metric. A value closer to 1.0 indicates a high-quality funnel.

Overall, the GlycanTreeModeler achieved a mean heavy atom RMSD of 0.48 A using
all residues and 0.34 A using residues that had acceptable fits into the density (133/139
total glycan residues, see supplemental). For both inclusion types, the median RMSD was
0.31 A and 0.28 A respectively, while the mean RMSD of the glycan root (first two sugar
residues) was .23 A (Figure 9a) (Table S5). Values for PNear with lambda of 1.0 A were
generally quite favorable, indicating high-quality funnels, with a mean of 0.86 and median
of 0.92 (Figure 9b). These results show that the GlycanTreeModeler can be effective for
modeling known glycans into electron density, especially with available methods for
refinement.
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Sugar coating protein surfaces

Addition of glycans to exposed protein surfaces can reduce B cell receptor access to
underlying surface epitopes; this approach (called “glycan masking”) has been used to
decrease the amount of antibodies elicited against off-target epitopes of designed
immunogens!?#%3! Given the predictive capability of the GlycanTreeModeler to accurately
model the spatial arrangement of complex glycans, we used the algorithm in combination
with RosettaScript SugarCoating methods for sequon design and computational
glycosylation to design four N-linked glycans onto the outer surface of the [53-50A trimeric
component of the 153-50 protein nanoparticle scaffold (Figure 10A; details of the design
approach are described in Materials and Methods of the supplemental text).153-50 was
selected as a model immunogen because it is currently in clinical trials as the nanoparticle
scaffold for SARS-CoV-252 and RSV>3 vaccines.

When glycosylated 153-50A trimers and 153-50B pentamers were mixed in vitro at
equimolar concentrations, the two components self-assembled into 153-50(gly)
nanoparticles that display 240 glycans on the outer surface (Figure 104, B). Biophysical
characterization by negative stain transmission microscopy (nsTEM), dynamic light
scattering (DLS), and size exclusion chromatography (SEC) confirmed the formation of
monodisperse particles with the known 153-50 morphology (Figure 10B). SDS-PAGE
analysis of the 153-50A(gly) trimer treated with PNGase F confirmed that the designed
glycans were present in the protein (Figure 10B). Mice were immunized three times with
5.57 pg of 153-50 or I53-50(gly) particles. Anti-153-50A trimer serum antibody titers were
significantly lower in mice immunized with 153-50(gly) particles compared to mice
immunized with [53-50 particles, whereas anti-153-50A(gly) trimer titers were unchanged
between the two groups (Figure 10C). These data demonstrate that the methods presented
here can be used for glycan tools for glycan masking by modeling the spatial arrangement
of putative glycans on protein surfaces.
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Figure 10. (A) Schematic of protein design models. On the left, twenty 153-50A trimers (gray) and twelve
[53-50B pentamers (orange) self-assemble into 153-50 protein nanoparticles>*. Rosetta sugarcoating design
protocols were used to glycosylate the outer surface of 53-50A trimers with 4 N-linked glycans (green) per
protomer to form 153-50 particles with 240 N-linked glycans (middle). The inset on the right is a close-up
view of glycosylated 153-50A trimers with 12 total glycans on the outward-facing surface. (B)
Characterization of bare versus glycosylated 153-50 particles using negative stain transmission electron
microscopy (nsTEM; scale bar, 100 nm), SDS-PAGE, dynamic light scattering (DLS), and size exclusion
chromatography (SEC) on a Superose 6 Increase 10/300 GL column (GE Healthcare). In the SEC
chromatogram, both 153-50 and 153-50(gly) particles reach peak elution at 12.5 mL; unassembled 153-50A
and 153-50B components elute at ~18 mL. (C) ELISA curves (left two plots) and corresponding ECso titers
(right bar plot) showing reduction in anti-I53-50A antibody responses when mice were immunized with 153-
50(gly) versus 153-50. BALB/c mice were immunized intramuscularly at 0, 3, and 6 weeks with 5.57 ug of
[53-50 or 153-50(gly) and serum antibody binding to 153-50A trimer (left) or 153-50A(gly) trimer (right) was
quantified via ELISA using 8-week sera (N=5 mice/group). For statistical analysis, Mann-Whitney tests were
used to compare among the experimental groups.
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Discussion

The GlycanTreeModeler and associated tools allow modelers to accurately model
glycans of interest through de novo and density-guided modeling. The algorithm and
energy function were rigorously optimized and benchmarked with glycans of varying
length and complexity at a median de novo RMSD of 2.7A. In fact, even before full
optimization and release, the GlycanSampler algorithm (previously the glycan_relax app)
was used to model glycans on HIV55, Hepatitis C>¢, vaccine candidates®7>8 and (with the
final optimized version) SARS-CoV-259%; illustrating the general utility of the algorithm.

The modular nature of Rosetta and the tools created for this work allow them to be
used in a variety of complex modeling and design tasks. The GlycanTreeModeler was used
with previously published density tools#? to build glycans into their crystallographic or
cryoEM experimental density with sub-Angstrom accuracy. However, while the results are
encouraging, a truly automated solution for glycoprotein modeling must also sample glycan
chemistries, branching, and kinematics simultaneously in order to build potential glycan
residues into the density of unknown glycans. Knowledge of the range of glycoforms and
occupancy occurring at a glycosylation site can be obtained through mass-spectroscopy
techniques!?9, but due to chemical and structural heterogeneity at any single glycan site,
modelers will typically need to build models for multiple different glycoforms at a single
site, especially for complex glycans. The tools presented here can sample and build
multiple potential whole glycans at a site through the SimpleGlycosylateMover, but core
Rosetta methods that also consider species and cell-type dependent glycan chemistries
during the GlycanTreeModeler or end-to-end deep learning methods would be a welcome
addition to the methods presented here.

By combining the tools through RosettaScripts, it becomes possible to
computationally design glycan sequons at ideal positions on a protein, and then build and
model multiple potential glycans at a variety of sites in a symmetric manner. This general
workflow was used to sugarcoat a clinically relevant nanoparticle vaccine scaffold with N-
linked glycans. In vitro and in vivo testing of this glycosylated scaffold showed a decrease
in the humoral immune response to the glycan-masked surface. Sugar coating therapeutics
using these methods could potentially reduce off-target effects of many preclinical
biologics, especially with respect to immunogenicity.

Most glycans are can sample a wide range of conformations in solution, as they are
mostly polar, usually exposed to solvent, and have many conformational degrees of
freedom. Thus, accurately predicting the lowest energy states (and highest occupancy
conformations) for glycans is difficult. While we can generalize that low energy
conformations found through the GlycanTreeModeler should be indicative of probable
solution conformations, the GlycanTreeModeler was not benchmarked on an experimental
ensemble of glycan structures. The few glycan ensembles found through solution NMR61
may approximate conformational ensembles in solution and could be the bases for future
benchmarking. However, even with this consideration, many of the benchmark glycans that
were modeled accurately to their crystal structures are not hindered by monomer or
crystal contacts, but have interactions to protein in their glycan root. Additionally,
predictions of the internal (superimposed) RMSDs of all glycans benchmarked were
generally favorable with a median benchmarked accuracy of 1.1 A and a mean of 2.7 4,
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indicating that the glycan root, subsequent torsional preferences, and intra-glycan
interactions may be determining structural factors for these isolated glycans.

Although the algorithm is capable of accurate de novo modeling of many glycans
(especially at their base) and has been used for experimental glycan masking, there is
certainly room for improvement. In nearly all of the benchmarks, the native structure is
sampled adequately, but in a subset of structures, the energy function is not able to choose
near-native structures. Upon further investigation of the many native glycans in the
benchmark set with water-mediated hydrogen bonds, we originally hypothesized that
explicit water modeling might help the energy function discriminate near-native models.
However, we found that implicit modeling actually led to better discrimination scores
through the pNear metric. In order to improve the algorithm further, the Rosetta energy
function will need to be optimized to improve glycan-protein interactions, specifically in
terms of hydrogen bonds, solvation, and the introduction of energy terms that better
represent aromatic CH-mt interactions#8. Finally, the algorithm requires more compute time
as the number of glycans to model increases, which can be prohibitive for large, multimeric
glycoproteins such as HIV.

In this work, optimization of both sampling and scoring was necessary to improve
overall accuracy. A key component of the algorithm is the nature-inspired kinematics used
during sampling, which was shown to be an important determinant of the overall accuracy
of the algorithm. The kinematics were rigorously benchmarked here, though kinematics
are not always taken into account or optimized in state-of-the-art classical modeling
algorithms. This benchmarking was made possible by the SimpleMetric framework and a
new RosettaScripts application that were created and used continuously throughout this
work.

SimpleMetrics have now become a critical tool for general analysis in Rosetta and as
a way to export important information for external algorithms, such as the quantum
annealer®?. As core protocols in Rosetta continue to be optimized, and as deep learning
becomes a more integral aspect of modeling and design, SimpleMetrics should allow the
robust analysis of new protocols, results, and Rosetta benchmarks, as it has for this work.

These results show that the GlycanTreeModeler is able to accurately predict glycan
structures de novo, build them into known density, and be used in SugarCoating protein
surfaces. In addition, the modular nature of the components allows them to be further
developed for specific engineering tasks such as immunogenicity reduction or the
optimization of developability characteristics such as half-life, solubility, and aggregation
potential.

Availability and Documentation

The GlycanTreeModeler, GlycanSampler, and all tools used in this work are available
in the Rosetta Software Suite, which is free for non-commercial use. All tools are available
as components for RosettaScripts and PyRosetta. In addition, the use of all components are
covered in publicly accessible tutorials®3 and detailed protocol captures®4. Results of this
study are continuously benchmarked using the Rosetta automated scientific testing
framework®>.


https://doi.org/10.1101/2021.09.27.462000
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462000; this version posted October 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figures

Figures were created using matplotlib®¢. Glycans were visualized in PyMol using the
Azahar plugin®?, which was expanded for this work: https://github.com/BIOS-
IMASL/Azahar/pull/17

Documentation Links:
e RosettaScripts:
o https://www.rosettacommons.org/docs/latest/scripting documentation/RosettaScripts/Ro

settaScripts
e Working with Glycans:

o https://www.rosettacommons.org/docs/latest/application documentation/carbohydrates/
WorkingWithGlycans
e Chapter 13 of the PyRosetta Notebooks:
o https://github.com/RosettaCommons/PyRosetta.notebooks
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