

1 **Identification and comparative analysis of long non-coding RNAs in the
2 brain of fire ant queens in two different reproductive states**

3

4 Cheng-Hung Tsai¹, Tzu-Chieh Lin¹, Yi-Hsien Chang¹, Huai-Kuang Tsai^{1*}, Jia-Hsin Huang^{2,3*}

5

6 ¹Institute of Information Science, Academia Sinica, Taipei, Taiwan

7 ²National Institute for Basic Biology, Okazaki, Aichi, Japan

8 ³Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for
9 Advanced Studies), Okazaki, Aichi, Japan

10

11 *Correspondence: hktsai@iis.sinica.edu, jhuang@nibb.ac.jp

12

13 **Abstract**

14 **Background**

15 Many long non-coding RNAs (lncRNAs) have been extensively identified in many higher
16 eukaryotic species. The function of lncRNAs has been reported to play important roles in
17 diverse biological processes, including developmental regulation and behavioral plasticity.
18 However, there are no reports of systematic characterization of long non-coding RNAs in the
19 fire ant *Solenopsis invicta*.

20 **Results**

21 In this study, we performed a genome-wide analysis of lncRNAs in the brains of *S. invicta*
22 from RNA-seq. In total, 1,393 novel lncRNA transcripts were identified in the fire ant. In
23 contrast to the annotated lncRNA transcripts having at least two exons, novel lncRNAs are
24 monoexonic transcripts with a shorter length. Besides, the transcriptome from virgin alate and
25 dealate mated queens were analyzed and compared. The results showed 295 differentially
26 expressed mRNA genes (DEGs) and 65 differentially expressed lncRNA genes (DELs)
27 between virgin and mated queens, of which 17 lncRNAs were highly expressed in the virgin
28 alates and 47 lncRNAs were highly expressed in the mated dealates. By identifying the
29 DEL:DEG pairs with high association in their expression (Spearman's $|\rho| > 0.8$ and p -value

30 < 0.01), many DELs were co-regulated with DEGs after mating. Furthermore, several
31 remarkable lncRNAs (*MSTRG.6523*, *MSTRG.588*, and *nc909*) that were found to associate
32 with particular coding genes may play important roles in the regulation of brain gene
33 expression in reproductive transition in fire ants.

34 **Conclusion**

35 This study provides the first genome-wide identification of *S. invicta* lncRNAs in the brains
36 in different reproductive states and will contribute to a fuller understanding of the
37 transcriptional regulation underpinning reproductive changes.

38

39 **Keywords**

40 lncRNA, RNA-seq, differential expression, brain

41

42

43 **Background**

44 The red imported fire ant (*Solenopsis invicta* Buren) is one of the notorious invasive species
45 globally [1]. The introduction of *S. invicta* has been reported in several countries, including
46 the USA, New Zealand, Taiwan, and Japan. The fire ant invasion has caused not only
47 substantial economic losses but also a drastic impact on the agricultural systems and
48 ecological environments.

49 *S. invicta* is a eusocial insect with large colonies containing interdependent divisions of
50 individuals of all different developmental stages and multiple castes [2]. This ant species
51 could form a polygynous colony, in which multiple queens live together, within the
52 subterranean nests. In a mature polygynous nest, dealate mated queens and virgin alate
53 queens perform distinct reproductive statuses associated with different physiology and
54 behaviors [3]. Recently, Calkins et al. [4] reported that the differential expression of some
55 protein-coding genes between virgin and mated queens are linked to nutritional and immune
56 processes occurring in queens' behavioral transitions. However, this previous study focused
57 on protein-coding genes while many regulated transcripts including long non-coding RNAs
58 (lncRNAs) were uncharacterized yet. Long noncoding RNAs (lncRNAs) refer to a group of
59 noncoding RNAs that are arbitrarily characterized as a transcript of more than 200
60 nucleotides in length and lack coding potential in the eukaryotic cells [5]. LncRNAs possess

61 distinguishing features, including shorter length, fewer exon numbers, and lower expression
62 levels compared to protein-coding genes [6, 7]. In recent years, many lncRNAs have been
63 identified in Hymenoptera insects [8–10]. It is noteworthy that some lncRNAs were found to
64 play a potential regulatory relationship with protein-coding genes in the adult caste transition
65 between worker and gamergates in *Harpegnathos saltator* [10] and in the behavioral
66 transition from nurses to foragers of *Apis mellifera* [9]. So far, there are no reports about the
67 identification of lncRNAs in the fire ant *S. invicta*.

68 Here, we report the utilization of RNA-seq data to identify and characterize lncRNAs in the
69 brains of *S. invicta*. In this study, we identified a high-confident set of 1,393 novel lncRNA
70 transcripts and further characterized the basic features of lncRNA transcripts in the fire ant
71 brain. In conjugation with annotated lncRNAs, a total of 65 lncRNAs were significantly
72 differentially expressed in the fire ant brains during the virgin to mated status transition.
73 Collectively, genome-wide annotation and characterization of *S. invicta* brain lncRNAs pave
74 the way for further studies to identify genetic and molecular mechanisms of phenotypic and
75 behavioral plasticity in the fire ants.

76

77 **Results**

78 **Identification of novel lncRNAs in fire ant brains**

79 The *S. invicta* genome is not yet completely annotated based on the updated chromosome
80 assembly. However, larger scaffolds were recently assembled and obtained more predicted
81 genes, including 1,211 lncRNAs, than the previous assembly [11]. In order to
82 comprehensively understand the relationship between lncRNA and dealation in *S. invicta*, we
83 developed a pipeline to identify putative, unannotated lncRNAs and further examine the
84 expression differences of all lncRNAs between virgin alate and mated dealate. The flowchart
85 of processing steps in our pipeline is shown in Figure 1.

86 The first part of our pipeline was to identify novel transcripts from RNA-seq data. We used a
87 total of 32 RNA-seq libraries collected from virgin alate and mated dealate queen brains of *S.*
88 *invicta*. Approximately 100 million clean reads were obtained after removing the
89 contaminated and low-quality reads; the mapping rate of RNA-seq libraries ranged from
90 97.78% to 99.22% by STAR [12]. The alignment files were then followed by a *de novo*
91 assembly using Stringtie [13]. Filtering through the class codes (i.e., i, y, p, and u) defined by
92 Gffcompare [14], we further identified 1,829 novel transcripts.

93 Next, multiple filtering steps were performed to identify putative lncRNAs from our novel
94 transcripts collection. First, the novel transcripts having over 200 nt in length were selected
95 for coding potential or open-reading frame (ORF) evaluations. Second, we employed the
96 Coding Potential Assessment Tool (CPAT) [15] to estimate the coding probability according
97 to the transcript sequence features. Two ant species, *Camponotus floridanus* and
98 *Harpegnathos saltator*, having well-curated lncRNA genes, were used to determine the
99 optimal coding probability cutoff as 0.224 for identifying non-coding transcripts (Figure 2A).
100 Then, TransDecoder [16] determines potential coding regions by identifying the ORF from
101 transcripts. Candidate transcripts were then fed to homology search via BLASTP. The
102 transcripts which were denoted as candidate coding sequences by TransDecoder and
103 BLASTP were then discarded. Using this pipeline, we finally identified a set of 1,393 novel
104 lncRNA transcripts derived from 1,393 loci in the fire ant genome (See Additional file 1).

105 We further examined the general characteristics of our newly identified lncRNA transcripts.
106 First, we compared the coding potential among reference coding genes, reference lncRNAs
107 and novel lncRNAs. As expected, novel lncRNAs are significantly lower in coding potential
108 than reference coding genes, but no differences in contrast to reference lncRNAs. The
109 average coding probability of coding gene, reference lncRNAs and novel lncRNA transcripts
110 are 0.086, 0.036 and 0.018, respectively (Figure 2B). For the length of transcripts, novel
111 lncRNAs show a similar distribution compared to reference lncRNAs and are relatively
112 shorter than coding genes (Figure 2C). The average length of novel lncRNAs is 1,025
113 nucleotides while the longest lncRNA transcript contains 8,436 nucleotides. Next, we
114 examined the number of exons contained in each lncRNA transcript. Note that all of the
115 reference lncRNAs are spliced and constitute at least two exons (Figure 2D). In contrast, all
116 of our newly identified lncRNA transcripts have a single exon. In addition, GC content of fire
117 ant lncRNAs is significantly lower than that of coding genes while newly identified lncRNAs
118 have lowest GC content (Figure 2E). Of the lncRNA characteristics, lower GC content in
119 lncRNAs is linked to some biological functions [17].

120 Based on the expression quantification using salmon [18], we profiled the protein coding
121 genes, reference lncRNAs, and novel lncRNAs predicted by this study for virgin alate and
122 mated dealate queens in Figure 2F. Overall, the expression levels (TPM) of the protein
123 coding genes were significantly higher than those of lncRNAs in the fire ant brain. However,
124 the overall expression of novel lncRNAs were significantly higher than that of reference
125 lncRNAs. About half of the newly identified lncRNAs were highly-expressed (TPM \geq 10) in

126 the fire ant queen brain. These results suggested that some of lncRNAs would play important
127 roles in the brain function of *S. invicta*.

128

129 **Gene expression analysis and DE genes identification**

130 To investigate the transcriptional changes between virgin alate to dealate mated queen brains,
131 we identified the differentially expressed (DE) genes based on the criteria with $\log_2(\text{fold}$
132 $\text{change}) \geq 1$ and $\text{FDR} < 0.01$ by DESeq2 [19] (see Additional file 2). Of those protein coding
133 genes (mRNAs), 155 were found to be upregulated and 140 were found to be downregulated
134 during the transition from virgin alate to dealate mated states (Fig. 3A). Next, we conducted a
135 hierarchical clustering analysis using average TPM values of these 395 DEGs, which
136 classified the eight queen brain samples into two groups: virgin alate and mated deleted, as
137 expected (Fig. 3B).

138 Of the DE lncRNAs (DEls), a total of 65 lncRNAs were considered to be differentially
139 expressed between the virgin alate and dealate mated queen brains ($\log_2\text{FC} \geq 1$ and $\text{FDR} <$
140 0.01) by DESeq2. In total, 28 lncRNAs were annotated in the reference genome while 37
141 lncRNAs were newly identified in the current study. Among these DELs, 18 were found
142 upregulated in the virgin alate group while 47 were found upregulated in the dealate mated
143 group (Fig. 3C). Furthermore, top three most upregulated lncRNAs showed larger increase
144 (at least 16-fold) in the dealate mated queen brains in contrast to those in the virgin alate
145 queen brains. Hierarchical clustering of virgin alate and dealate mated queen brain samples
146 based on 65 DELs revealed a clear separation of the two reproductive states (Fig. 3D).

147

148 **Co-regulation of DE lncRNAs and mRNAs**

149 In the previous study, the adult reproductive transition between virgin and mated queen
150 brains is accompanied by major changes in particular protein-coding gene expression with
151 transcriptome verification and validation [4]. In order to explore the potential function of
152 these DELs, we employed the correlation analysis of expression profiles between DEGs and
153 DELs in the virgin alate and dealate mated queen brain samples, respectively (Fig. 4A). The
154 common principle in such correlation analysis is that two transcripts display consistently
155 correlated across many samples (here are 16 samples in virgin and mated groups respectively)
156 of their expression levels, and thereby, are determined to be co-regulated. Such co-regulation
157 may suggest that either the two transcripts are regulated by common factors or one may

158 regulate another's expression. According to the most notable theme of lncRNA function
159 appears to act as the *cis* or *trans* regulation on the mRNA gene expression in the eukaryotic
160 cells [20, 21], we exploited the highly correlated DEL:DEG pairs to infer the potential
161 regulation of genes during reproductive status transition.

162 We calculated the Spearman correlation coefficient between DELs and DEGs, and obtained
163 the genes with a Spearman's $|\rho| > 0.8$ and $p\text{-value} < 0.01$ as the co-regulated mRNAs of
164 lncRNAs. In the virgin group, a total of 242 DEL:DEG pairs were highly correlated (Fig. 4B).
165 While in the mated group, a total of 739 DEL:DEG pairs were highly correlated. In the
166 following sections, we delved into the functional significance of the several highly enriched
167 lncRNAs in the mated dealate queen brains identified in this study.

168

169 **Functional assessment of differentially expressed lncRNAs**

170 First, we examined the top one DEL, MSTRG.6523, which is a new annotated lncRNA in
171 this study, and found that 7 DEGs were highly associated (Fig. 5A). In particular, the protein
172 coding gene *LOC105192919* (encoded *hexamerin 1*) caught our attention because its
173 expression was the only mRNA showed strongly negative correlation with MSTRG.6523 in
174 the mated dealated samples (Spearman's $\rho = -0.818$, $p\text{-value} = 1.083 \times 10^{-8}$, Fig. 5B). One of
175 the notable mechanisms of lncRNA molecules in the transcriptional regulation is through
176 RNA-DNA interactions, and thereby inhibiting the expression of target genes [22].
177 Consequently, we applied conducted the Triplexator program [23] to conduct the
178 RNA:DNA:DNA triplex prediction by using MSTRG.6523 and the genomic sequences
179 nearby the *LOC105192919* locus. Notably, a cluster of triplex target sites (TTSSs) of
180 *MSTRG.6523* lies within the first intron region of *hexamerin 1* (scaffold NW_020521759.1:
181 281973-282016, Fig. 5C). It is noteworthy that this region of triplex clusters occurred at a
182 high frequency of 15 positions with GA-rich DNA sequences (Fig. 5D).

183 Next, we examined the top 2 of DELs, *MSTRG.558*, which is up-regulated in the mated
184 dealate and found that its expression was strongly correlated with the expression of two
185 chymotrypsin-inhibitor (CI) like genes, *LOC105200276* and *LOC105200273* (Fig. 6A and
186 6B). After looking for other co-exregulated DEL:DEG pairs, we noted that these two CI
187 genes were significantly correlated with several DELs (Fig. 6C). Interestingly, the up-
188 regulated DELs in the mated dealate were positively correlated with these two CI genes while
189 the down-regulated DELs were all negatively correlated. For example, a down-regulated

190 DELs, *LOC1052639*, in the mated dealate showed significantly negative correlations with
191 both CI-like genes, *LOC105200276* and *LOC105200273* (Fig. 6D and 6E). Such reversed
192 relationships suggest a good co-regulated relationship between lncRNAs and CI genes during
193 the mating transition.

194 In addition, a significant elevation of *LOC105199067* lncRNA (designated *nc909* in the
195 previous study) expression in the mated dealate queens has been validated independently
196 from field-collected samples by quantitative real-time PCR [4]. Here, we also examined the
197 probable functions of *nc909* lncRNA by analyzing its co-regulated DEGs. It is noteworthy
198 that the co-regulated networks of *nc909* and associated DEGs showed distinct patterns
199 between virgin alate and mated dealate groups (Fig. 7A). Also, the co-regulated DEGs were
200 almost not overlapped between two reproductive states, except for *LOC105200275*. A highly
201 positive correlation in the expression profiles between *nc909* and *LOC105200275*, which is
202 encoded as a CI gene, across both alate and dealate samples was observed (Spearman's $\rho =$
203 0.946, p -value = 2.88×10^{-16} , Fig. 7B). This implies that expression of *nc909* is coordinately
204 regulated with DEGs during the reproductive transition from virgin to mated states. As a
205 large amount of *nc909* transcripts was existed in the mated dealates compared to virgin alate
206 queen brains, it caught our attention to further investigate its regulatory role in the mated
207 dealate queen brains. Particularly in the mated dealates, the expression of *nc909* transcripts
208 had negative correlations with most of the co-regulated DEGs, either the down-regulated-in-
209 mated DEGs such as *LOC1052019089* (Fig. 7C) or the up-regulated-in-mated DEGs such as
210 *LOC106195192* and *LOC105197201* (Fig. 7D and 7E, respectively). With the notable
211 mechanism of lncRNA function to suppress gene expression via recruitment of chromatin
212 modulators such as polycomb repressive complex 2 (PRC2) [22, 24], we hypothesized that
213 *nc909* acts as an attenuator to control the gene expression in the queen brains after mating.

214 In order to test this hypothesis, we used the computational approaches to examine the
215 likelihood of RNA-protein interaction using RNA-Protein Interaction Prediction (RPISeq)
216 web service [25] for *nc909* lncRNA and the core proteins of PRC2 in *S. invicta*. We have
217 identified two annotated *S. invicta* gene products, XP_011168125.1 with SUZ domain and
218 XP_025997287.1 with EZH domain, which were reported to be the core proteins of PRC2
219 [26]. The interaction probabilities predicted by RPISeq for *nc909* lncRNA and two PRC2
220 core proteins were summarized in Fig. 7F. Since the RPISeq prediction with probabilities
221 greater than 0.5 were considered positive interacting [25], *nc909* is most likely to interact
222 with these two *S. invicta* PRC2 proteins based on their high probability scores from both

223 classifiers. Besides, we employed the catRAPID, an algorithm to predict the potential RNA-
224 protein interacting sites [27, 28] from catRAPID interactions with larger RNAs, the
225 interaction of nc909/PRC2 interactions are further supported with the discriminative power of
226 0.92 and 0.67 were identified to interact with XP_011168125.1 and XP_025997287.1,
227 respectively (Fig. 7G).

228

229 **Discussion**

230 In this paper, publicly available RNAs-eq data from fire ant queen brains were collected and
231 re-analyzed to excavate brain related transcripts. We have built a pipeline to *de novo*
232 assemble and predict 1,829 novel transcripts, specifically for non-coding lncRNAs. Of note,
233 all of the reference lncRNAs are annotated with at least two exons (Figure 2D). In fact,
234 single-exon lncRNAs have been identified in almost all the eukaryotic genomes. All of our
235 newly identified lncRNA transcripts having a single exon indeed complement the previous
236 studies in the annotation of lncRNAs in *S. invicta* genome. Besides, pseudoalignment
237 methods such as salmon [18] have been reported to show a better performance in lncRNA
238 quantification with full transcriptome annotation [19]. Thus, we followed the recommended
239 strategy and quantified the gene expression of each RNA-seq run by salmon, instead of using
240 the expression profiles from StringTie in our lncRNA discovery pipeline. Since the
241 expression level of novel lncRNAs were significantly higher than reference lncRNAs (Fig.
242 2F), we assumed that newly lncRNAs play a major role in the regulation of the fire ant brain.

243 Previously, the authors had identified only 19 DE coding genes (DEGs) between virgin alate
244 and mated dealate queen brains [4]. By contrast, we identified 295 DEGs in total (Fig. 3A)
245 and 16 out of the 19 DEGs were found in our results. Nevertheless, the comparison of
246 expression changes in the 16 DEGs confirms a consistent trend between previous and our
247 methods (Pearson's $r = 0.965$, p -value < 0.0001 in terms of fold-change similarity). The
248 reason for having different numbers of DEGs identified in our results could be accounted for
249 by the newer version of genome assembly (GCF_000188075.2) and gene annotation file as
250 well as up-to-date transcript quantification tools used for the RNA-seq analysis in this study.

251 In the co-expression analysis between DEGs and DELs (Fig. 4), larger amounts of highly
252 correlated DEL:DEG pairs in the mated dealate samples could be partly due to the larger
253 number of DELs in the mating condition than those in the virgin condition. However, the
254 highest proportion of DEL:DEG pairs in the mated group was the differentially expressed

255 lncRNAs and mRNAs in the mated dealate (Fig. 4B). This is an interesting observation,
256 which indicates the lncRNAs and mRNAs were co-regulated during the transition of mating
257 states and worth investigating further.

258 A key contribution of this study is to provide functional inferences of several important
259 lncRNAs in the fire ant queen brains. Nowadays increasing evidences point to the presence of
260 lncRNAs acting as a transcriptional regulator in the nucleus by different mechanisms,
261 including interaction with chromatin and RNA-binding proteins [24, 29]. Experiments on
262 the chromatin-binding maps of lncRNAs have revealed that GA-rich sequences are the
263 preferred binding motifs to help these RNAs to target the chromatin [25, 30]. A recent study
264 has demonstrated that the high frequency of triplex loci in the human *WWOX* gene is
265 important for *PARTICLE* lncRNA binding to regulate its expression [31]. It is noteworthy that
266 expression of *hexamerin 1* was significantly reduced in the mated dealate queen brains of *S.*
267 *invicta* with experimentally validations [4, 32]. We therefore inferred that *MSTRG.6523*
268 lncRNA is upregulated in the queen brains during the reproductive transition after mating and
269 potentially binds to the *hexamerin 1* intron to suppress its expression (Fig. 5). The probable
270 mechanism of *MSTRG.6523* lncRNA interacting with *hexamerin 1* intron DNA via
271 RNA:DNA:DNA triplex formation is worthy to be taken into account for future study.

272 In addition, a fluctuation of *nc909* lncRNA expression in the fire ant queen brains was
273 experimentally validated to link to the mating and social context in the previous study [4], but
274 its function remained unexplored. Here we applied *in silico* analyses to provide novel insights
275 into *nc909* lncRNA functions. In contrast to virgin alate queen brains, the expression level of
276 *nc909* lncRNA was increased drastically in the dealate mated queen brains (Fig. 7B).
277 Surprisingly, a negative correlation between *nc909* lncRNA and most co-expressed DEGs
278 could be only observed during the elevation of *nc909* lncRNA expression levels (Fig. 7A).
279 This scenario suggests that a potential mechanism of *nc909* lncRNA to regulate gene
280 expression may be due to its high abundance. One well-known human lncRNA MALAT1
281 (metastasis-associated lung adenocarcinoma transcript 1) is highly abundant in the nucleus
282 and suppresses targeting genes via interacting with the PRC2 complex [33]. Following this
283 idea, we here proposed that a plausible role of *nc909* lncRNA serves as a negative regulator
284 in gene expression by interacting with the transcriptional repressors such as PRC2 core
285 proteins (Fig. 7F) in the mated dealate queen brains (Fig. 7H). Further experiments are
286 needed to be performed to explore the specific regulatory mechanisms of *nc909* lncRNAs in
287 the queen brains of *S. invicta*.

288 Besides, the CI genes are tightly regulated to inactivate the serine proteases to avoid the
289 hazard of excessive peptidase activities in the living cells. Correspondingly, we found a
290 coding gene *LOC105200925* as the most enriched chymotrypsin 2 like proteases with 64-fold
291 increased expression in the mated dealates without any of correlated lncRNAs. However, our
292 correlation study suggests a fine regulation between CI genes and several lncRNAs during
293 mating transition (Fig. 6). Taken together, we suspect that lncRNAs and CI genes are co-
294 regulated to maintain cellular homeostasis since several protease genes were also up-
295 regulated in the mated dealate brains.

296 The major limitation of current study on the inference of lncRNA function is the lack of high
297 quality assembly of the *S. invicta* genome when analyzing the RNA-seq data. Although we
298 employed analysis using the updated version of *S. invicta* genome (Si_gnH version
299 GCF_000188075.2) than that in the original paper, the number of scaffolds in the current
300 assembly version remains 66,904. In fact, most genes including annotated genes and novel
301 lncRNAs are located in the short scaffolds, and thereby, cause difficulties to infer the putative
302 function of those lncRNAs using the physical genomic distance to study their *cis*-regulatory
303 function. In addition, many of protein-coding genes, which were highly associated with DEL
304 in their expression levels, were annotated as uncharacterized proteins. Despite the challenges
305 remaining in the functional study of lncRNAs in the fire ant, we conducted *in silico*
306 prediction for potential roles of lncRNAs with investigation of the co-regulated
307 lncRNA:mRNA networks thoroughly.

308

309 Conclusion

310 In this report, we have presented the first genome-wide identification of novel lncRNAs in
311 the fire ant *S. invicta*. Firstly, we identified 1,393 novel lncRNAs in the *S. invicta* with a
312 custom bioinformatics pipeline. In addition, 18 and 47 lncRNAs were significantly enriched
313 in virgin alate and mated dealate queen brains, respectively. Lastly, we elucidated several
314 remarkable lncRNAs (*MSTRG.6523*, *MSTRG.588*, and *nc909*) and their roles to associate
315 with specific coding genes, which play important biological functions in the mated queen
316 brains. To sum up, this study provides novel insights of lncRNAs for further studies to obtain
317 a deeper understanding of *S. invicta* brain function during reproductive maturation.

318

319 **Methods**

320 **RNA-seq data acquisition**

321 The raw reads of a total 32 RNA-seq dataset were downloaded from NCBI Sequence Reads
322 Archive (SRA) with accession number SRP126736 [4]. The RNA-seq datasets include fire
323 ant alate virgin and dealate mated queen transcriptomes. All libraries were prepared with
324 single-end protocol and on average contains 4 million reads.

325

326 **RNA-seq processing and lncRNA identification**

327 High-quality clean reads were obtained by clipping adapters and low-quality reads with
328 Trimmomatic [34] version 0.38. Each library was individually mapped to the *S. invicta*
329 genome (NCBI Si_gnH version GCF_000188075.2) using STAR [12] version 2.7 with the
330 default parameters. The resulting alignment files were used as input for transcript assembly
331 using StringTie [13] version 2.1.1 with *S. invicta* reference annotation of NCBI Release 103.
332 All Stringtie output files were merged into a single unified transcriptome assembly using
333 Stringtie merge option. Gffcompare [14] was employed to compare the resulting unified
334 transcriptome assembly (GTF format) to the reference annotation, and transcripts with class
335 code *i* , *y* , *p* , *u* were obtained for lncRNA prediction analysis. To identify the lncRNA, the
336 assembled transcripts with a minimum length of 200 nt were subjected to the coding potential
337 assessment tool (CPAT) [15] to determine their coding probability. We used the lncRNAs
338 identified from other two ant species *Camponotus floridanus* and *Harpegnathos saltator* [10]
339 for benchmark tests on CPAT and set the cutoff threshold as 0.224. Then, we discarded the
340 remaining transcripts with any open-reading frame and potential homologs to other species
341 predicted by TransDecoder [16] and BLASTP to annotate novel lncRNA transcripts.

342

343 **Gene expression and differentially expressed genes**

344 We used Salmon [18] version 1.2.0 to quantify the gene expression with default parameters.
345 Read count for each transcript was subjected for differential analysis using DESeq2 [19] in R
346 environment. Any gene with zero read counts in less than 3 samples of mated or virgin
347 groups was filtered out for comparison. The differentially expressed genes (DEGs) were
348 identified at least two fold differences with 0.01 false discovery rate (FDR). The TPM of all

349 replicates in each sample were averaged, followed by a z-transform to normalize the
350 expression differences among all DEGs. Hierarchical clustering analysis of the averaged
351 TPM was done in a python environment by seaborn API.

352

353 **LncRNA-mRNA Correlation test**

354 The TPM values of all genes from Salmon were used to analyze their association relationship
355 between lncRNA and coding genes using Spearman's correlation test. The cutoff of
356 Spearman's correlation coefficient $|\rho| > 0.8$ and $p\text{-values} < 0.01$ was applied to define co-
357 regulated DEL:DEG pairs.

358

359 **Prediction of lncRNA:DNA triplexes**

360 Triplexator [23] is a computational framework for the *in silico* prediction of triplex structures
361 by forming Hoogsteen base-pairing rules [35]. To predict lncRNA:DNA triplex sites, we
362 employed the Triplexator program with parameters to constrain the maximal error less than
363 20%, minimal guanine content of triplex target sites as 20%, at most 3 constitutive errors, and
364 limited the length of TTS-TFO pair as 15.

365

366 **Abbreviations**

367 lncRNA: long non-coding RNA

368 DEG: differentially expressed mRNA gene

369 DEL: differentially expressed lncRNA gene

370 ORF: open-reading frame

371 CPAT: Coding Potential Assessment Tool

372 TPM: Transcripts per million

373 FDR: False discovery rate

374 FC: Fold change

375 CI: Chymotrypsin-inhibitor

376 RPISeq: RNA-Protein Interaction Prediction

377 PRC2: Polycomb repressive complex 2

378 EZH: Enhancer of zeste homolog

379 SRA: Sequence Reads Archive

380 TFO: Triplex-forming oligo

381 TTS: Triplex target site

382 nt: nucleotide

383

384 **Declarations**

385 **Authors' information**

386 Affiliations

387 **Institute of Information Science, Academia Sinica, Taipei, Taiwan**

388 Cheng-Hung Tsai, Tzu-Chieh Lin, Yi-Hsien Chang, Huai-Kuang Tsai

389

390 **National Institute for Basic Biology, Okazaki, Aichi, Japan**

391 Jia-Hsin Huang

392

393 **Corresponding authors**

394 Correspondence to Jia-Hsin Huang (jhuang@nibb.ac.jp) or Huai-Kuang Tsai
395 (hktsai@iis.sinica.edu.tw).

396

397 **Authors' contributions**

398 CHT conceived the study, implemented the bioinformatics pipelines and prepared the initial
399 draft of the manuscript. TCL curated the data and carried out the bioinformatics analysis.
400 YHC assisted the data curation and conducted preliminary experiments. HKT contributed to
401 the experimental design and edited the manuscript. JHH conceived and designed the research,
402 carried out the bioinformatics analysis, interpreted the results, prepared the initial draft and

403 edited the manuscript. All authors read and approved the final manuscript.

404

405 **Funding**

406 This research and this article's publication costs supported partially by the National Institute
407 for Basic Biology and Japan Society for the Promotion of Science (JSPS) (grant: 21K06128)
408 to JHH; Academia Sinica and the Ministry of Science and Technology of Taiwan
409 [MOST108-2221-E-001-014-MY3] to HKT. The funders did not play any role in the design
410 of the study, the collection, analysis, and interpretation of data, or in writing of the
411 manuscript.

412

413 **Acknowledgements**

414 Not applicable.

415

416 **Availability of data and materials**

417 The raw reads of a total 32 RNA-seq dataset were downloaded from NCBI Sequence Reads
418 Archive (SRA) with accession number SRP126736
419 (<https://www.ncbi.nlm.nih.gov/sra?term=SRP126736>).

420

421 **Competing interests**

422 The authors declare that they have no conflict of interests.

423

424 **Ethics approval and consent to participate**

425 Not applicable.

426

427 **Consent for publication**

428 Not applicable.

429

430 **References**

- 431 1. Ascunce MS, Yang C-C, Oakey J, Calcaterra L, Wu W-J, Shih C-J, et al. Global invasion
432 history of the fire ant *Solenopsis invicta*. *Science*. 2011;331:1066–8.
- 433 2. Lofgren CS, Banks WA, Glancey BM. Biology and control of imported fire ants. *Annu
434 Rev Entomol*. 1975;20:1–30.
- 435 3. Ross KG. Differential reproduction in multiple-queen colonies of the fire ant *Solenopsis
436 invicta* (Hymenoptera: Formicidae). *Behav Ecol Sociobiol*. 1988;23:341–55.
- 437 4. Calkins TL, Chen M-E, Arora AK, Hawkings C, Tamborineguy C, Pietrantonio PV.
438 Brain gene expression analyses in virgin and mated queens of fire ants reveal mating-
439 independent and socially regulated changes. *Ecol Evol*. 2018;8:4312–27.
- 440 5. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. *Nat
441 Rev Genet*. 2009;10:155–9.
- 442 6. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function.
443 *Nat Rev Genet*. 2016;17:47–62.
- 444 7. Lopez-Ezquerro A, Harrison MC, Bornberg-Bauer E. Comparative analysis of lincRNA in
445 insect species. *BMC Evol Biol*. 2017;17:155.
- 446 8. Jayakodi M, Jung JW, Park D, Ahn Y-J, Lee S-C, Shin S-Y, et al. Genome-wide
447 characterization of long intergenic non-coding RNAs (lincRNAs) provides new insight
448 into viral diseases in honey bees *Apis cerana* and *Apis mellifera*. *BMC Genomics*.
449 2015;16:680.
- 450 9. Liu F, Shi T, Qi L, Su X, Wang D, Dong J, et al. lncRNA profile of *Apis mellifera* and its
451 possible role in behavioural transition from nurses to foragers. *BMC Genomics*.
452 2019;20:393.
- 453 10. Shields EJ, Sheng L, Weiner AK, Garcia BA, Bonasio R. High-Quality Genome
454 Assemblies Reveal Long Non-coding RNAs Expressed in Ant Brains. *Cell Rep*.
455 2018;23:3078–90.
- 456 11. Privman E, Cohen P, Cohanim AB, Riba-Grognuz O, Shoemaker D, Keller L. Positive
457 selection on sociobiological traits in invasive fire ants. *Mol Ecol*. 2018;27:3116–30.
- 458 12. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
459 universal RNA-seq aligner. *Bioinformatics*. 2013;29:15–21.
- 460 13. Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome
461 assembly from long-read RNA-seq alignments with StringTie2. *Genome Biol*.
462 2019;20:278.
- 463 14. Pertea G, Pertea M. GFF Utilities: GffRead and GffCompare. *F1000Res*. 2020;9:ISCB
464 Comm J-304.

465 15. Wang L, Park HJ, Dasari S, Wang S, Kocher J-P, Li W. CPAT: Coding-Potential
466 Assessment Tool using an alignment-free logistic regression model. *Nucleic Acids Res.*
467 2013;41:e74.

468 16. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo
469 transcript sequence reconstruction from RNA-seq using the Trinity platform for reference
470 generation and analysis. *Nat Protoc.* 2013;8:1494–512.

471 17. Niazi F, Valadkhan S. Computational analysis of functional long noncoding RNAs
472 reveals lack of peptide-coding capacity and parallels with 3' UTRs. *RNA.* 2012;18:825–
473 43.

474 18. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-
475 aware quantification of transcript expression. *Nat Methods.* 2017;14:417–9.

476 19. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
477 RNA-seq data with DESeq2. *Genome Biol.* 2014;15:550.

478 20. Yan P, Luo S, Lu JY, Shen X. Cis- and trans-acting lncRNAs in pluripotency and
479 reprogramming. *Curr Opin Genet Dev.* 2017;46:170–8.

480 21. Gil N, Ulitsky I. Regulation of gene expression by cis-acting long non-coding RNAs. *Nat
481 Rev Genet.* 2020;21:102–17.

482 22. Li Y, Syed J, Sugiyama H. RNA-DNA Triplex Formation by Long Noncoding RNAs.
483 *Cell Chemical Biology.* 2016;23:1325–33.

484 23. Buske FA, Bauer DC, Mattick JS, Bailey TL. Triplexator: detecting nucleic acid triple
485 helices in genomic and transcriptomic data. *Genome Res.* 2012;22:1372–81.

486 24. Engreitz JM, Ollikainen N, Guttman M. Long non-coding RNAs: spatial amplifiers that
487 control nuclear structure and gene expression. *Nat Rev Mol Cell Biol.* 2016;17:756–70.

488 25. Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. Genomic maps of long noncoding RNA
489 occupancy reveal principles of RNA-chromatin interactions. *Mol Cell.* 2011;44:667–78.

490 26. Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, et al. Histone
491 methyltransferase activity of a Drosophila Polycomb group repressor complex. *Cell.*
492 2002;111:197–208.

493 27. Livi CM, Klus P, Delli Ponti R, Tartaglia GG. catRAPID signature: identification of
494 ribonucleoproteins and RNA-binding regions. *Bioinformatics.* 2016;32:773–5.

495 28. Bellucci M, Agostini F, Masin M, Tartaglia GG. Predicting protein associations with long
496 noncoding RNAs. *Nat Methods.* 2011;8:444–5.

497 29. Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic
498 non-coding RNA. *Nat Rev Mol Cell Biol.* 2018;19:143–57.

499 30. Mondal T, Subhash S, Vaid R, Enroth S, Uday S, Reinius B, et al. MEG3 long noncoding
500 RNA regulates the TGF- β pathway genes through formation of RNA–DNA triplex
501 structures. *Nature Communications.* 2015;6:7743.

502 31. O'Leary VB, Smida J, Buske FA, Carrascosa LG, Azimzadeh O, Maugg D, et al.
503 PARTICLE triplexes cluster in the tumor suppressor WWOX and may extend throughout
504 the human genome. *Sci Rep.* 2017;7:7163.

505 32. Hawkings C, Calkins TL, Pietranonio PV, Tamborineguy C. Caste-based differential
506 transcriptional expression of hexamerins in response to a juvenile hormone analog in the
507 red imported fire ant (*Solenopsis invicta*). *PLoS One.* 2019;14:e0216800.

508 33. Amodio N, Raimondi L, Juli G, Stamato MA, Caracciolo D, Tagliaferri P, et al.
509 MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches.
510 *Journal of Hematology & Oncology.* 2018;11:63.

511 34. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
512 data. *Bioinformatics.* 2014;30:2114–20.

513 35. Sun JS, Garestier T, Hélène C. Oligonucleotide directed triple helix formation. *Curr Opin
514 Struct Biol.* 1996;6:327–33.

515

516 **Figure legends**

517

518 **Figure 1. Flowchart of the pipeline used to identify novel lncRNAs and differential gene**
519 **analysis from the RNA-seq in *S. invicta*.**

520

521 **Figure 2. Sequence features and expression analysis of different transcript types.** (A)
522 Two ROC curves for determination of CPAT threshold of coding probability using annotated
523 lncRNAs and mRNAs of *S. invicta*. The accuracy of model performance was 0.977 as the
524 coding probability at 0.237. (B) Coding probability distribution of known protein coding and
525 lncRNA, and novel lncRNA transcripts. (C) Length distribution of known protein coding and
526 lncRNA, and novel lncRNA transcripts. (D) Distribution of the number of exons in the
527 coding and lncRNA transcripts. (E) Distribution of the GC content in the coding and lncRNA
528 transcripts. (F) Expression level distribution of known coding and lncRNA, and novel
529 lncRNA transcripts. Expression level is indicated by $\log_{10}(\text{TPM}+1)$. The *p*-values were
530 calculated using Mann-Whitney test and following post hoc HSD test, *** *p*-value < 0.0001.

531

532 **Figure 3. Coding gene (mRNA) expression profiles of virgin alate and mated dealate**
533 **queen brains.** (A) Volcano plot analysis of coding gene expression variation. Blue and red
534 points correspond to the significantly enriched mRNA (DEGs) in the virgin and mated
535 queens respectively with the $|\log_2(\text{fold-changes})| \geq 1$ and $\text{FDR} < 0.01$. (B) Hierarchical
536 clustering of the 295 DEGs in the 8 independent biological replicates. For each biological
537 replicate, the values were calculated by averaging four technical runs of RNA-seq libraries.
538 Red represents the high expression levels and Green represents the low expression levels. (C)
539 Volcano plot analysis of lncRNA expression variation. Blue and red points correspond to the
540 significantly enriched lncRNA (DELs) in the virgin and mated queens respectively with the
541 $|\log_2(\text{fold-changes})| \geq 1$ and $\text{FDR} < 0.01$. (D) Hierarchical clustering of the 65 DELs in the 8
542 independent biological replicates. For each biological replicate, the values were calculated by
543 averaging four technical runs of RNA-seq libraries. Red represents the high expression levels
544 and Green represents the low expression levels.

545

546 **Figure 4. Correlation of expression of lncRNAs and protein-coding genes.** (A) Density

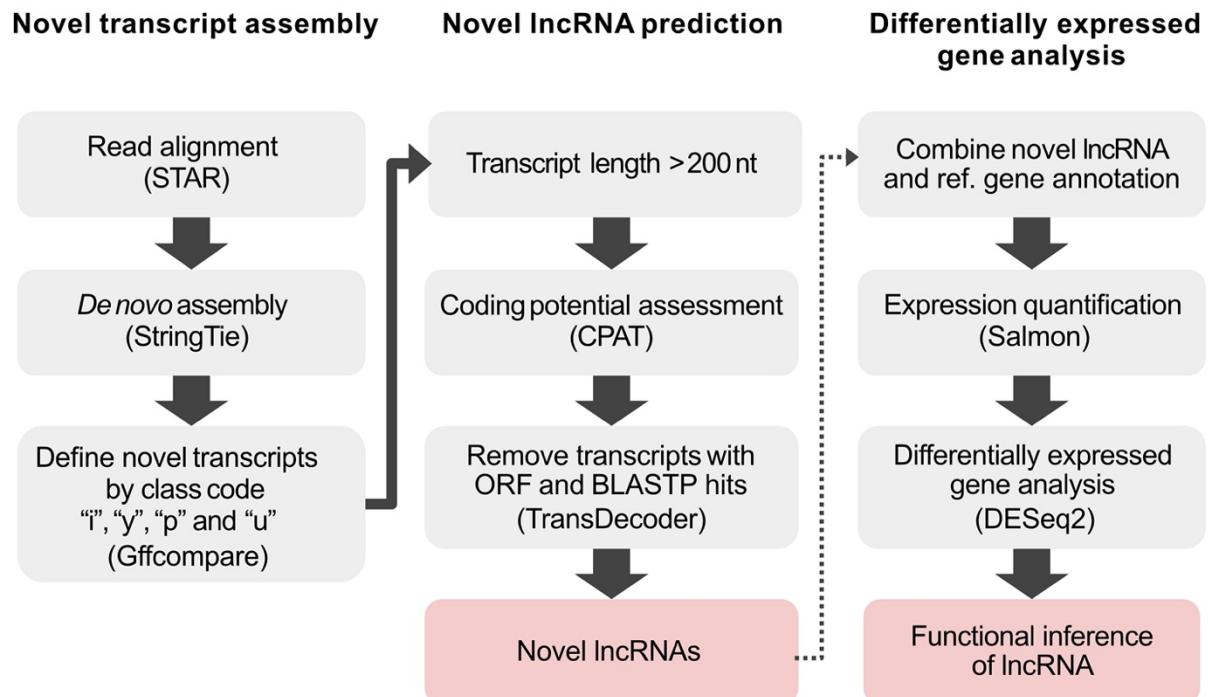
547 plot of correlations of expression for differentially expressed lncRNAs (DEls) and
548 differentially expressed mRNAs (DEGs) in the virgin alate and mated dealate samples
549 respectively. The co-regulated DEL:DEG pairs have a highly correlated profile of expression
550 (Spearman's $\rho > 0.8$, p -value < 0.01). (B) Proportions of different pairs of the co-regulated
551 DEL:DEG in the virgin and mated groups.

552

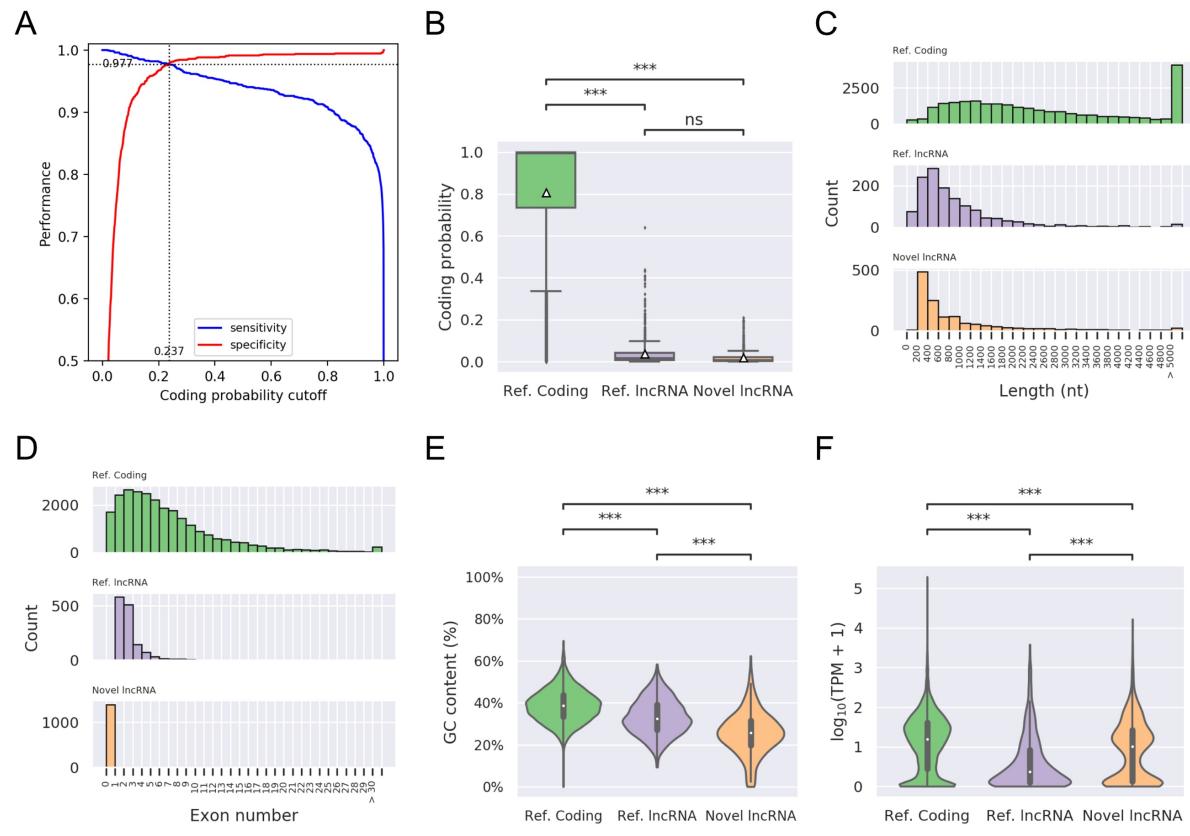
553 **Figure 5. Relationships between *MSTRG.6523* lncRNA and protein-coding gene**
554 **expression.** (A) The co-regulation network of *MSTRG.6523* lncRNA and other DEGs in the
555 mated dealate samples. Solid lines and red color in DEGs denote the positive correlation and
556 dash lines and blue color in DEGs denote negative correlation. (B) The expression levels of
557 *MSTRG.6523* lncRNA (x axis) and the protein-coding gene LOC105192919 encoded as
558 *hexamerin 1* (y axis) correlate in mated dealate queen brains. Each dot represents one
559 biological sample (virgin, $n = 16$; mated, $n = 16$). Correlation coefficient (ρ) and p -value
560 from Spearman correlation of mated samples is indicated. (C) Triplex-forming
561 oligonucleotide (TFO) motif within *MSTRG.6523* lncRNA (green) identified using
562 Triplexator software to target triplex sites (TTSSs) in *hexamerin 1* locus (blue and red) to form
563 a RNA:DNA:DNA triplex. (D) Predicted triplex binding sites of *hexamerin 1* locus (purple
564 box) with *MSTRG.6523* lncRNA and the AG-rich sequences are presented in the first intron
565 of *hexamerin 1* gene.

566

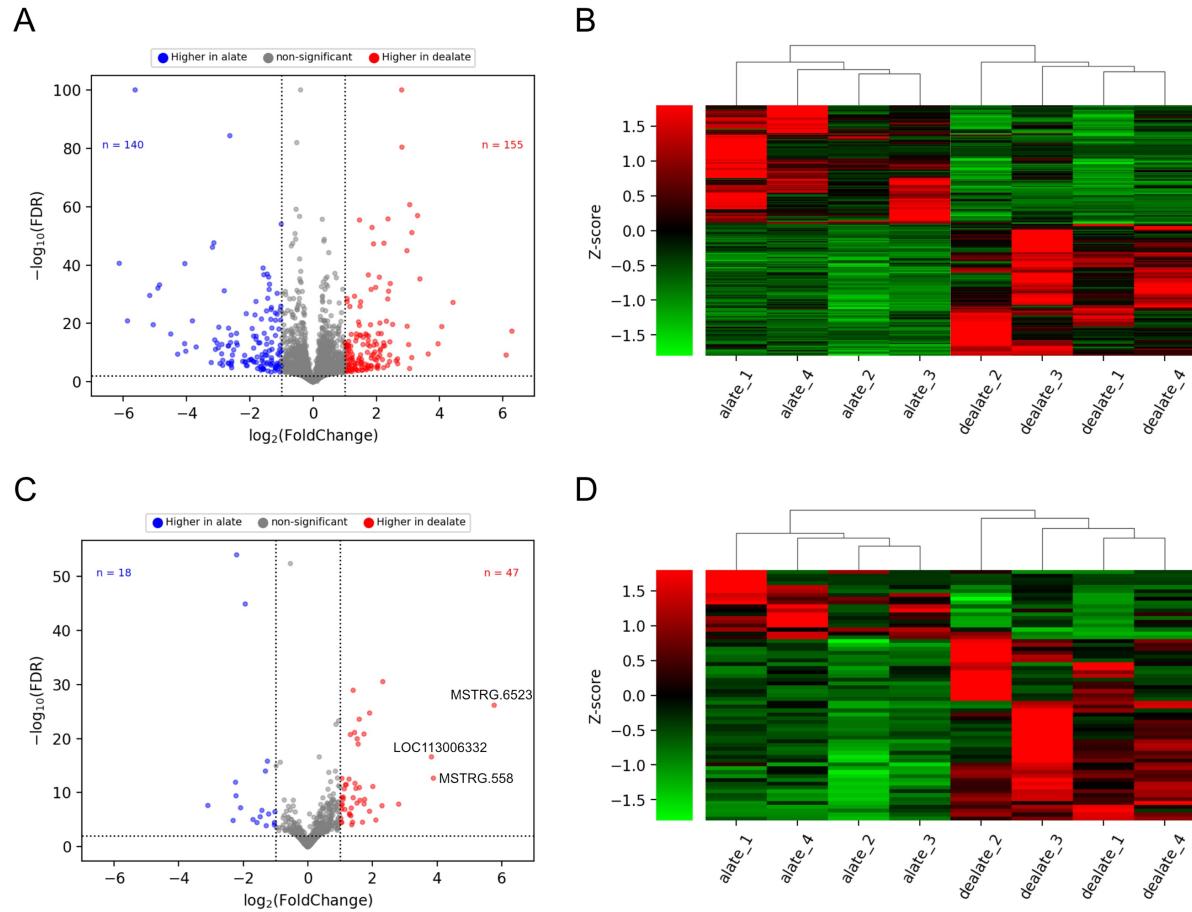
567

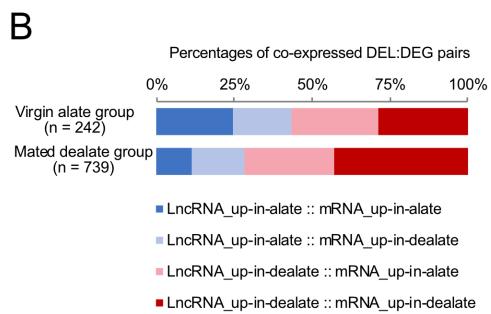
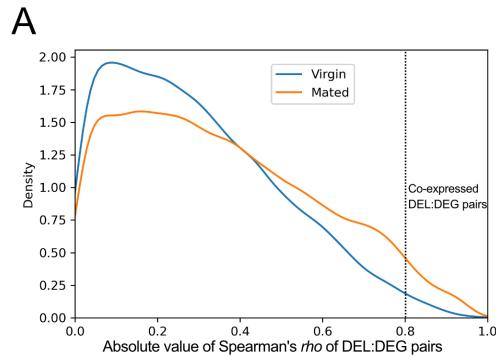

568 **Figure 6. Co-regulatory module between lncRNAs and chymotrypsin-inhibitor (CI)**
569 **genes.** Scatter plots of *MSTRG.558* lncRNA expression across all fire ant queen brains with
570 two enriched-in-mated-dealate CI genes, *LOC105200276* (A) and *LOC105200273* (B).
571 Correlation coefficient (ρ) and p -value from Spearman correlation of mated samples is
572 indicated respectively. (C) A co-regulation network of DELs and two CI genes. Solid lines
573 and red color in DEGs denote the positive correlation and dash lines and blue color in DEGs
574 denote negative correlation. Plotting the expression of *LOC105200276* (D) and
575 *LOC105200273* (E) against that of *LOC105202639* lncRNA across all virgin and mated
576 samples showed negative correlations significantly.

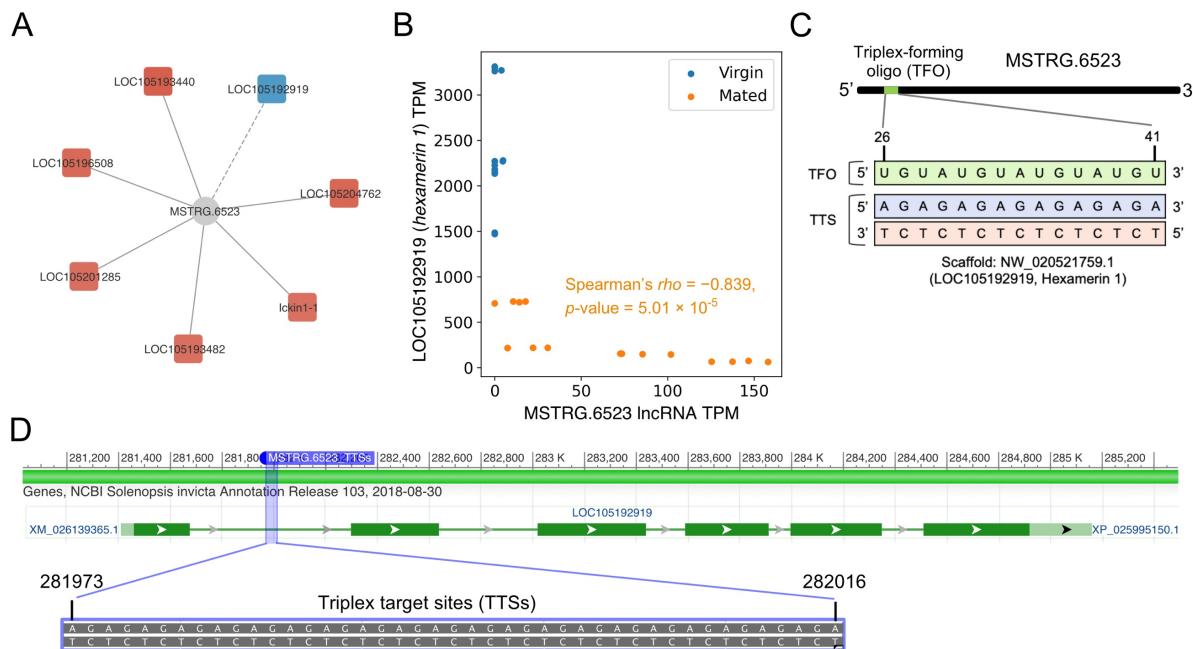
577

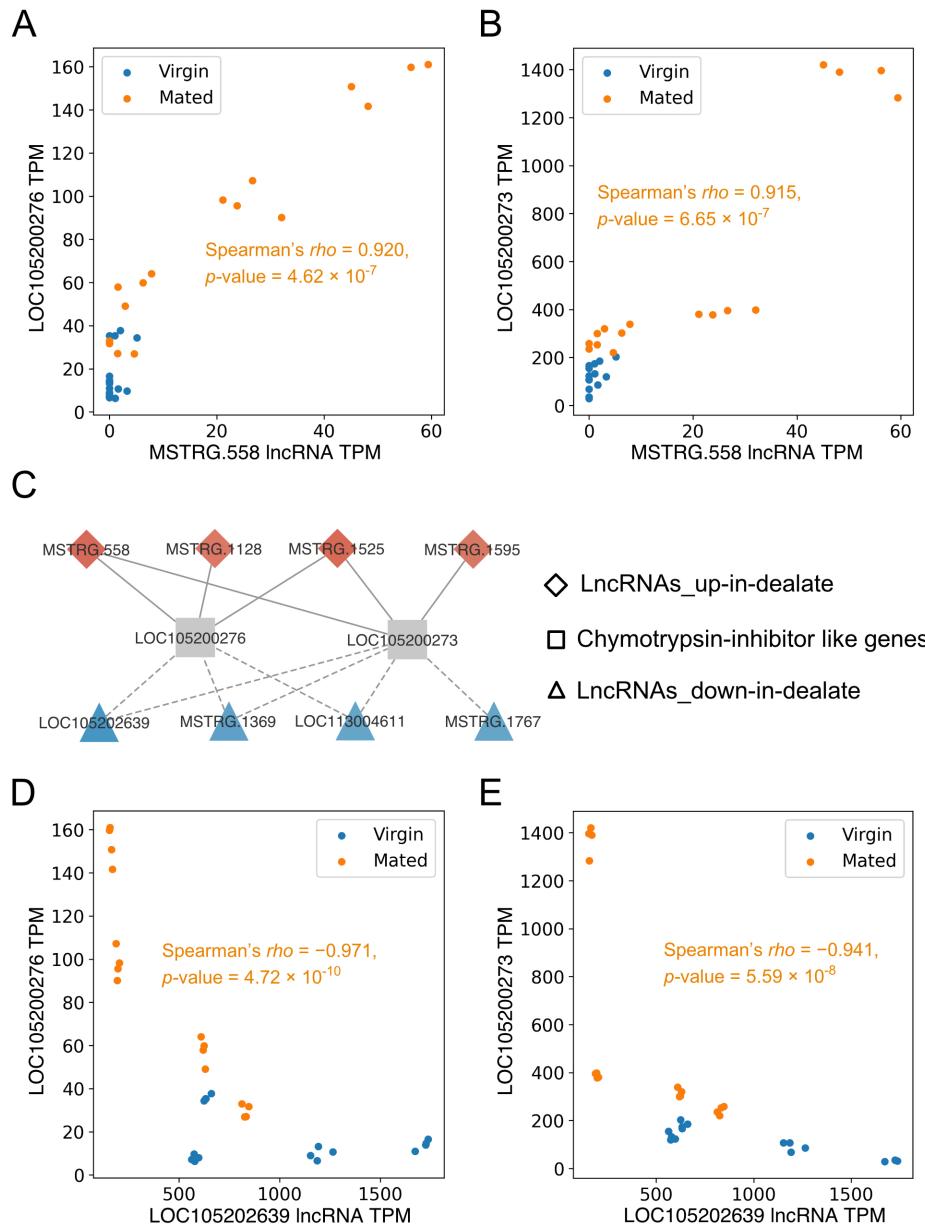

578 **Figure 7. Nc909 lncRNA expression associated with DEGs.** (A) A co-regulation network

579 of *nc909* lncRNA with DEGs in the virgin and mated groups, respectively. Solid lines and
580 red color in DEGs denote the positive correlation and dash lines and blue color in DEGs
581 denote negative correlation. (B) The expression profile of *nc909* and *LOC105200275*
582 (chymotrypsin inhibitor gene) shows a significantly positive correlation across both virgin
583 and mated samples. *Nc909* lncRNA expression has significantly negative correlations with
584 *LOC105201089* (C), *LOC105195192* (D), and *LOC105197201* (E) across the mated samples
585 (orange) but no correlation across virgin samples (blue). (F) RPISeq predictions on the *nc909*
586 lncRNA and two annotated proteins of PRC2 core components in *S. invicta*. (G) The
587 catRAPID outputs for the signal localization of *nc909* lncRNA and two PRC2 core proteins
588 binding propensity prediction with Global Score value, signal localization plot which denotes
589 the localization of the signal along the RNA sequence colored according to the Global Score
590 value, and a table with the information of the binding loci with a Z-score representing the
591 interaction propensity in contrast to benchmark value of a pool of RNA-binding proteins. (H)
592 Proposed model of the up-regulated *nc909* lncRNA transcripts interacting with PRC2 to
593 inhibit gene expression in the mated dealate queens brains.


Figure 1



Figure 2


Figure 3


Figure 4

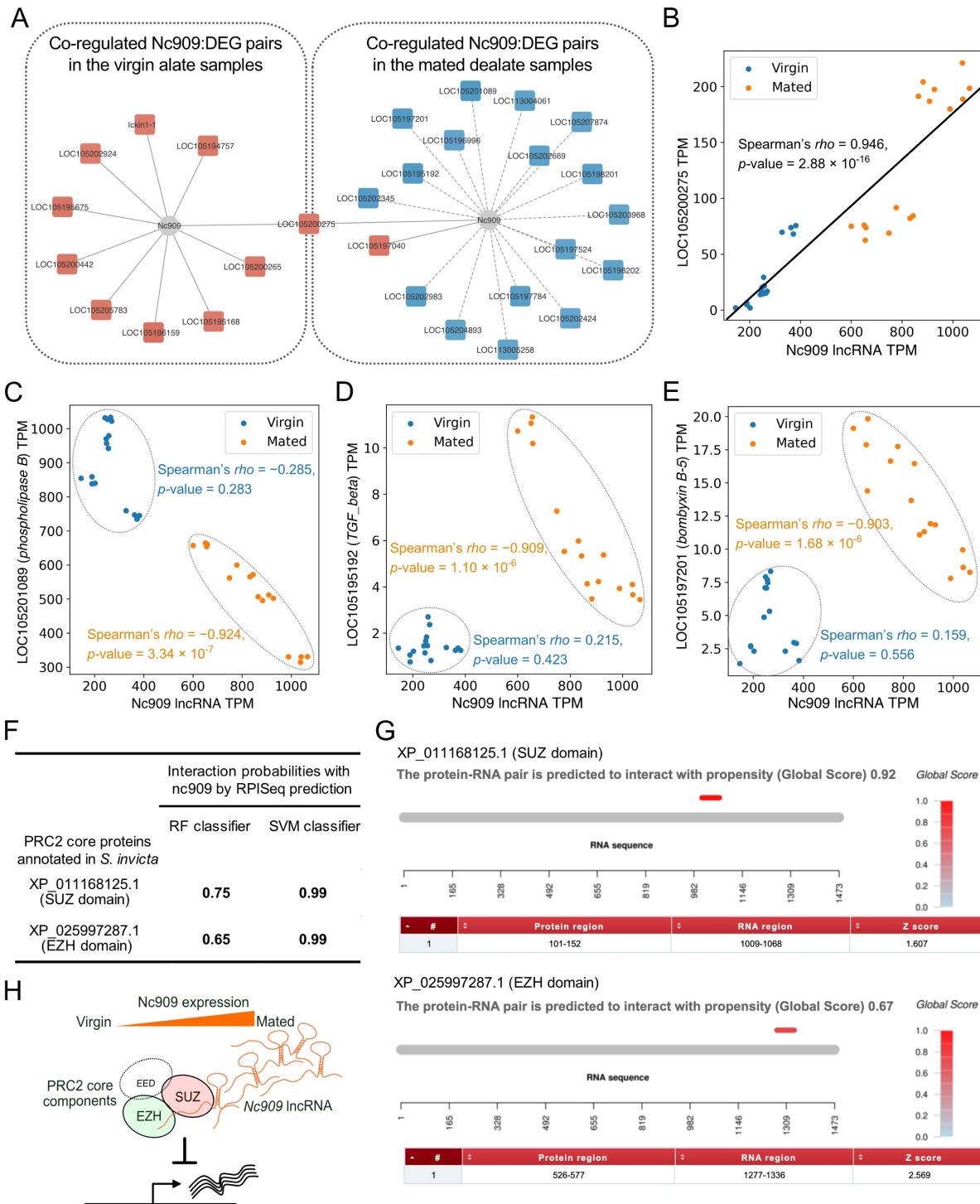

Figure 5

Figure 6

Figure 7

