

1
2
3 Research Article:
4
5

6 **Sex differences and estradiol effects in MAPK and Akt cell signalling across subregions of the**
7 **hippocampus**

8
9 Paul A. S. Sheppard^{1,2, a}, Tanvi A. Puri^{2,3}, & Liisa A. M. Galea^{1,2,3,*}

10
11
12 1) Department of Psychology, University of British Columbia, Vancouver, BC, Canada
13 2) Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC,
14 Canada
15 3) Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC

16
17 Email addresses: PASS – psheppa5@uwo.ca, TAP – tanvi.puri@psych.ubc.ca, LAMG – liisa.galea@ubc.ca

18
19
20 Short title: Sex and estradiol differences in hippocampal cell signalling

21
22
23 * Address correspondence to:

24 Dr. Liisa Galea
25 Djavad Mowafaghian Centre for Brain Health
26 University of British Columbia
27 2215 Wesbrook Mall
28 Vancouver, BC
29 Canada, V6T 1Z3
30 Tel: +1 (604) 822 6536
31 Email: liisa.galea@ubc.ca

32
33
34 Number of Tables: 2

35 Number of Figures: 5

36 Number of Supplementary Figures: 2

37 Word count: Abstract – 240, Body – 4899

38 Keywords: ovariectomy, dentate gyrus, CA1, Akt, ERK, GSK-3 β , p38, JNK, p70S6K

^a Present address: Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, Canada

39

Abstract

40 **Introduction:** Rapid effects of estrogens within the hippocampus of rodents are dependent upon cell
41 signaling cascades, and activation of these cascades by estrogens varies by sex. Whether these pathways
42 are rapidly activated within the dentate gyrus (DG) and CA1 by estrogens and across the anatomical
43 longitudinal axis has been overlooked.

44 **Methods:** Gonadally-intact female and male rats were given either vehicle or physiological systemic low
45 (1.1 μ g/kg) or high (37.3 μ g/kg) doses of 17 β -estradiol thirty minutes prior to tissue collection. To control
46 for the effects of circulating estrogens, an additional group of female rats was ovariectomized (OVX)
47 and administered 17 β -estradiol. Brains were extracted and tissue punches of the CA1 and DG were taken
48 along the longitudinal hippocampal axis (dorsal and ventral) and analyzed for key MAPK and Akt
49 cascade phosphoproteins.

50 **Results:** Intact females had higher Akt pathway phosphoproteins (pAkt, pGSK-3 β , pp70S6K) than males
51 in the DG (dorsal, ventral) and lower pERK1/2 in the dorsal DG. Most effects of 17 β -estradiol on cell
52 signalling occurred in OVX animals. In OVX animals, 17 β -estradiol increased cell signalling of MAPK
53 and Akt phosphoproteins (pERK1/2, pJNK, pAkt, pGSK-3 β) in the CA1 and pERK1/2 and pJNK DG.

54 **Discussion/Conclusions:** Systemic 17 β -estradiol treatment rapidly alters phosphoprotein levels in the
55 hippocampus dependent on reproductive status and intact females have greater expression of Akt
56 phosphoproteins than intact males across the hippocampus. These findings shed light on underlying
57 mechanisms of sex differences in hippocampal function and response to interventions that affect MAPK
58 or Akt signaling.

59

60 **Introduction**

61

62 Estrogens rapidly affect object and spatial memory consolidation (1–3), short-term social
63 memory (2,4), response learning (5), neurogenesis (6), and spine and synapse formation (7–9). Most of
64 these effects of estrogens occur rapidly and likely via cell signaling pathways after binding with the
65 estrogen receptors (ERs). Estrogens exert both rapid (non-classical) and delayed (classical) actions. The
66 classical actions of estrogens occur when they bind with ERs that dimerize, translocate to the nucleus,
67 and act directly to affect gene expression (10). In contrast, the rapid effects of estrogens initiate a myriad
68 of intracellular processes, including the activation of cell signaling cascades (reviewed in (2–4)). Rapid
69 (within minutes) or delayed (within hours) effects of estrogens on molecular, cellular, and behavior can
70 vary by brain region (reviewed in (2,3,11)). Rapid effects of estrogens on social, object, and spatial
71 location recognition rely on signaling through mitogen-activated protein kinase (MAPK) and Akt
72 (protein kinase B) pathways, whereas the delayed effects are driven predominantly by ER-estrogen
73 response element interactions and effects on gene expression (2,3). There is, however, overlap in these
74 effects, with the less well understood rapid effects occurring concurrently with the more established
75 delayed effects. Thus, understanding the mechanisms, such as cell signaling cascades, through which the
76 rapid effects act is imperative to a comprehensive view of actions by estrogens.

77

78 Two of the most studied cell signaling cascades are the MAPK and Akt pathways. These
79 pathways are involved in a number of processes including cell proliferation, migration, and survival,
80 apoptosis, metabolism, differentiation, immune responses, and development (12–15). There is much
81 crosstalk between MAPK and Akt pathways (16,17), and these pathways often act in parallel to elicit
82 similar downstream mechanisms and outputs in complementary or synergistic manners (16,18,19).
83 However, little work has investigated both pathways in the same animals and those that do typically only
84 measure specific phosphoproteins of interest, despite the intricacy and interconnectedness of these
signaling cascades.

85

86 Sex differences have been noted in the influence of 17 β -estradiol on the hippocampus. In older
87 rats, acute 17 β -estradiol increases spine density in older females but decreases spine density in males
88 (20). Furthermore, whereas gonadectomy reduces spine density in both males and females in the CA1
89 (21–23), estradiol increases spine density in females (24,25) but not in males (22). Few studies have
90 investigated sex differences in the effects of 17 β -estradiol on cell signalling. Female rats have higher
91 baseline levels of phosphorylated extracellular signal-regulate protein kinase 1/2 (pERK1/2; both p44
92 [ERK1] and p42 [ERK2] isoforms), pAkt, and phosphorylated glycogen synthase kinase 3 β (pGSK-3 β
93 in the prefrontal cortex (prelimbic and infralimbic cortices), nucleus accumbens, and rostral caudate
94 putamen of rats than male rats (26). However, to our knowledge, no studies have examined sex
95 differences in expression of both MAPK and Akt phosphoproteins in different subregions of the
96 hippocampus thus far. Few studies have explored sex differences in these cell signalling proteins after
97 exposure to 17 β -estradiol. Intrahippocampal 17 β -estradiol increases dorsal hippocampal pAkt and
98 pERK2 in OVX females, but not in gonadally-intact or castrated males (27). Similarly, 17 β -estradiol
99 increases pERK1/2 in anteroventral periventricular (AVPV) nucleus and the medial preoptic area in
100 females but not in males (28). Thus, there is a dearth of evidence exploring influence of 17 β -estradiol on
cell signalling across the sexes and within subregions across the hippocampus.

101 The hippocampus is a heterogeneous structure with distinct subfields across the longitudinal axis
102 (dorsal, ventral), as well as dentate gyrus (DG), CA3 and CA1 subregions. Based on gene expression,
103 receptor levels, activity, and connectivity, the dorsal hippocampus is thought to be important for learning
104 and memory, whereas the ventral region is more important for regulation of stress and anxiety (29).
105 Estradiol rapidly increases cell proliferation in both the dorsal and ventral DG (6,30). Furthermore, 17 β -
106 estradiol increases apical dendritic spines in the CA1 region but not in the DG (21,31). Given that 17 β -
107 estradiol influences both dorsal and ventral hippocampal plasticity, it is important to examine possible
108 subregional (i.e. DG and CA1) effects across the longitudinal axis that show rapid 17 β -estradiol action
109 in both sexes.

110 Most previous studies have examined the effects of estrogens on cell signaling in either the whole
111 hippocampus (32), dorsal hippocampus (27,33–35), or dorsal CA1 (36) in OVX female rodents.
112 Estrogens rapidly increase phosphorylated (activated) proteins in the MAPK and Akt cascades including
113 the MAPKs pERK and pJNK and Akt pathway proteins pAkt, pGSK-3 β , and p70S6K. Another MAPK
114 protein, p38, has divergent effects from other MAPKs and is minimally affected in the hippocampus by
115 the delayed effects of 17 β -estradiol treatment in OVX female rats (37). However, even in studies
116 investigating the rapid effects of 17 β -estradiol on cell signaling cascades, methodologies (including, for
117 example, timing and/or dose of 17 β -estradiol treatment) vary and make comparison between pathways
118 and proteins difficult.

119 The current study was designed to examine sex differences in cell signaling cascades, with and
120 without 17 β -estradiol, in the dorsal and ventral fields of DG and CA1 of the hippocampus. We
121 hypothesized that sex and 17 β -estradiol would differentially affect MAPK and Akt cell signaling
122 cascades and that these differences would vary by region across the longitudinal axis. Furthermore, we
123 hypothesized that in OVX rats 17 β -estradiol would increase activation of cell signaling cascades in both
124 the CA1 and DG, but that these effects may be more prominent in the dorsal versus ventral axis.
125

126 **Methods**

127 *Animals*

128 Ten- to eleven-week-old, gonadally intact female (n=65) and male (n=19) Sprague-Dawley rats
129 (Charles River, St. Constant, Quebec, Canada) were received at the University of British Columbia and
130 pair-housed (with the exception of one triple-housed cage of males) upon arrival. Rats were housed in
131 transparent polyurethane bins (48×27×20cm) with aspen chip bedding and were given Purina rat chow
132 and tap water *ad libitum*. Rats were maintained under a 12/12h light/dark cycle (lights on 07:00h) in
133 standard housing conditions (21 ± 1°C; 50 ± 10% humidity). Animals were handled for 5 minutes each,
134 every other day prior to the experiment for a minimum of five handling sessions. Animals were 12-13
135 weeks old when administered 17 β -estradiol and brains were collected. The means and standard errors of
136 the means for body mass were as follows: females 295±3.55g and males 477±7.51g. To determine estrous
137 phase during testing, intact females underwent vaginal lavage immediately following tissue collection.
138 Lavage samples were stained with cresyl violet and estrous phase was evaluated (38). One week
139 following arrival, 36 female rats were bilaterally ovariectomized using aseptic techniques under
140 isoflurane anesthesia, with ketamine (30 mg/kg, Bimeda-MTC, Cambridge, ON), xylazine (2 mg/kg,
141 Bayer HealthCare, Toronto, ON), and bupivacaine (applied locally; 4 mg/kg, Hospira Healthcare

142 Corporation, Montreal, QC). Following surgery, rats were single-housed and allowed to recover for at
143 least one week before testing. All experiments were conducted in accordance with the ethical guidelines
144 set by the Canada Council for Animal Care and were approved by the University of British Columbia
145 Animal Care Committee. All efforts were made to reduce the number and the suffering of animals.
146

147 *Treatment*

148 Rats were subcutaneously administered 1.1 μ g/kg 17 β -estradiol in sesame oil (low 17 β -estradiol;
149 Females n=10, Males n=6, OVX n=13), 37.3 μ g/kg 17 β -estradiol in sesame oil (high 17 β -estradiol;
150 Females n=10, Males n=7, OVX n=13), or sesame oil vehicle (Females n=9, Males n=6, OVX n=10) 30
151 minutes prior to tissue extraction. These sample sizes were selected as they have previously produced
152 large effect sizes (Cohen's d>0.8) in similar analyses (6,39). Estradiol doses were chosen because they
153 result in circulating levels of 17 β -estradiol observed on the morning of proestrus (high 17 β -estradiol) or
154 during diestrus (low 17 β -estradiol)(40), and both doses enhance cell proliferation 30 minutes after
155 injection in OVX females (6,30). There were no significant differences in average body mass per
156 treatment group (all ps>0.12). All rats were injected between 09:00h and 11:15h. Rats were sacrificed
157 by decapitation, and brains were excised, hemisected, and flash-frozen on dry ice.
158

159 *Brain tissue processing*

160 Brains were sliced into 300 μ m sections at -10°C using a Leica CM3050 S cryostat (Nußloch,
161 Germany). Punches were taken from the DG and CA1 of both the dorsal and ventral horns of the
162 hippocampus using modified 18G needles with an internal punch diameter of 0.838mm (see Figure 1).
163 Tissue was collected and homogenized using an Omni Bead Ruptor (Omni international, Kennesaw, GA)
164 with 40 μ l of cold lysis buffer. Homogenates were centrifuged at 4°C and 1000 \times g for 15min then stored
165 at -20°C. Total protein concentrations in homogenates were quantified using the Pierce Micro BCA
166 Protein Assay Kit (ThermoFisher Scientific) and used according to manufacturer instructions, with
167 samples run in triplicates.
168

169 *Phosphoprotein quantification*

170 Multiplex electrochemiluminescence immunoassay kits (MAPK Kinase Phosphoprotein and Akt
171 Signaling Panel Assay Whole Cell Lysate Kits) were purchased from Meso Scale Discovery (Rockville,
172 MD) and used according to manufacturer instructions – with the exception of incubating the samples at
173 4°C overnight – to measure phosphoprotein levels. Electrochemiluminescent assays are highly selective
174 and quantitative, produce low background, have a broad dynamic range of detection, and require
175 relatively small volume of sample compared to ELISAs and Western blots (41,42). The antibody
176 precoated plates allowed for the simultaneous quantification of the following phosphoproteins: pERK1/2
177 (combined p42 and p44 isoforms), pJNK, and pp38 (MAPK kit) and pAkt, pGSK-3 β , and pp70S6K (Akt
178 kit). Samples were run in technical replicates and plates were read with a Sector Imager 2400 (Meso
179 Scale Discovery) using the Discovery Workbench 4.0 (Meso Scale Discovery). Phosphoprotein values
180 were averaged across technical replicates and normalized to total protein concentrations for statistical
181 analyses (as in (39,43–45)). Inter- and intra-assay coefficients of variation (CV) were below 10%.
182 Phosphoprotein signal data were excluded when the CV between duplicates exceeded this threshold.
183

184 *Statistical analyses*

185 Statistical analyses were run using Statistica v.8.0 (StatSoft Inc, Tulsa, OK) software. Bartlett's
186 homogeneity of variance tests were performed and, in analyses where homogeneity of variance was
187 violated, data were subjected to a Box-Cox transformation (lambda=-0.5). Two-way ANOVAs were
188 conducted for each analyte and region with treatment (oil, low 17 β -estradiol, high 17 β -estradiol) and sex
189 (female, male) as between groups factors. To determine if there were baseline differences between males
190 and females, vehicle treated rats were used as reference for calculation of percent differences.
191 Phosphoprotein levels in intact vehicle treated female rats were compared across the estrous cycle
192 (proestrus vs non-proestrus, corresponding to high and low 17 β -estradiol phases, respectively) using
193 Welch's t-tests. One-way ANOVAs were conducted for each analyte and region in the OVX animals,
194 with treatment (vehicle, low 17 β -estradiol, high 17 β -estradiol) as the between-subjects factor. *Post hoc*
195 comparisons used Newman-Keuls. When one-way ANOVAs violated homogeneity of variance, Brown-
196 Forsythe ANOVAs were performed with Dunnett's T3 *post hoc*s. *A priori* analyses were subjected to
197 Bonferroni correction. Any statistical outliers (± 2 standard deviations from the group mean) were
198 removed. Statistical significance was set at $p<0.05$. Eta squared (η^2) and Cohen's d effect sizes were
199 calculated where appropriate.

200

201 **Results**

202 First, we analysed the effects of estrous cycle on phosphoproteins across the dorsal/ventral axis
203 and in all regions. There were no significant effects (all $ps>0.245$; Supplementary Figures 1 and 2) and,
204 as such, these were not considered further.

205

206 *Intact males and females*

207

208 *Akt pathway: Females have higher levels of Akt pathway phosphoproteins in the dorsal and ventral*
209 *dentate gyrus but not in the CA1 region.*

210 Female rats had up to 400% higher levels of pAkt, pGSK-3 β , and pp70S6K than males in the
211 dorsal and ventral DG, but not in the CA1 region. Females had greater phosphoprotein signal than males
212 for each analyte in the Akt pathway in both the dorsal (109-400%) and ventral DG (123-262%; main
213 effects of sex: dorsal DG: pAkt – $F_{(1,39)}=58.51$, $p<0.0001$, $\eta^2=0.262$; pGSK-3 β – $F_{(1,36)}=37.21$, $p<0.0001$,
214 $\eta^2=0.488$; pp70S6K – $F_{(1,39)}=22.33$, $p<0.0001$, $\eta^2=0.358$; Figure 2A; ventral DG: pAkt – $F_{(1,36)}=51.22$,
215 $p<0.0001$, $\eta^2=0.581$; pGSK-3 β – $F_{(1,35)}=15.67$, $p=0.0004$, $\eta^2=0.292$; pp70S6K – $F_{(1,37)}=11.96$, $p=0.0014$,
216 $\eta^2=0.205$; Figure 2B). There were no other main or interaction effects in this pathway (all $ps>0.094$).

217 High 17 β -estradiol increased dorsal CA1 pAkt by 36% over vehicle treatment in females ($p=0.05$,
218 Cohen's d=0.929), but there were no other significant pairwise comparisons (interaction: $F_{(2,37)}=3.731$,
219 $p=0.0334$, $\eta^2=0.143$; Figure 2C)). Although there were main effects of sex in the dorsal CA1 in the Akt
220 pathway (pAkt – $F_{(1,37)}=7.725$, $p=0.0085$, $\eta^2=0.148$; pGSK-3 β – $F_{(1,38)}=7.608$, $p=0.0089$, $\eta^2=0.143$;
221 pp70S6K – $F_{(1,39)}=5.796$, $p=0.0209$, $\eta^2=0.117$; Figure 2C), *a priori* comparisons failed to show a sex
222 differences in the vehicle conditions (all $ps>0.05$; Figure 2C). There were no other significant effects in
223 the ventral CA1 (all $ps>0.079$; Figure 2D).

224

225 *MAPK pathway: Males had greater pERK1/2 in the dorsal dentate gyrus than females. 17 β -estradiol
226 reduced pp38 in the ventral DG in intact females but not in intact males.*

227 Male rats had significantly greater pERK1/2 (292%) than females in dorsal DG ($p=0.0004$,
228 Cohen's $d=1.389$; main effect of sex: $F_{(1,37)}=23.87$, $p<0.0001$, $\eta^2=0.372$; Figure 3A). Despite the
229 significant main effects for sex for the other analytes (pJNK – $F_{(1,41)}=5.832$, $p=0.0203$, $\eta^2=0.117$; pp38 –
230 $F_{(1,42)}=38.25$, $p<0.0001$, $\eta^2=0.427$), there were no significant differences in pJNK or pp38 between
231 vehicle treated males and females ($ps>0.05$) or other significant main or interaction effects in the dorsal
232 DG (all $ps>0.257$).

233 Both doses of 17 β -estradiol decreased pp38 in the ventral DG of females (low 17 β -estradiol:
234 $p<0.0001$, Cohen's $d=2.260$; high 17 β -estradiol: $p<0.0001$, Cohen's $d=3.876$; Figure 3B; interaction:
235 $F_{(2,34)}=8.955$, $p=0.0008$, $\eta^2=0.128$). There were also main effects of sex on pp38 ($F_{(1,34)}=45.13$, $p<0.0001$,
236 $\eta^2=0.323$) and 17 β -estradiol ($F_{(2,34)}=18.54$, $p<0.0001$, $\eta^2=0.266$). Although there was main effect of sex
237 for pERK1/2 ($F_{(1,39)}=6.067$, $p=0.0183$, $\eta^2=0.133$; Figure 3B), the vehicle treated males and females did
238 not significantly differ ($p>0.05$). There were no significant effects on pJNK in the ventral DG (all
239 $ps>0.415$).

240 There were no significant sex (all $ps>0.145$) or 17 β -estradiol (all $ps>0.134$) effects observed for
241 any MAPK analyte in either the dorsal or ventral CA1 in intact males or females (Figures 3C-D).

242

243 Ovariectomized females

244

245 *Akt pathway: 17 β -Estradiol increased Akt phosphoproteins in the CA1 region of OVX rats.*

246 In ovariectomized rats, 17 β -estradiol had more significant effects on cell signalling
247 phosphoproteins in the hippocampus than in intact rats but these effects were largely restricted to the
248 CA1 region. There were no significant effects of 17 β -estradiol on Akt pathway phosphoproteins in the
249 DG of OVX rats (all $ps>0.270$, Figures 4A-B). In the dorsal CA1, 17 β -estradiol increased pGSK-3 β by
250 ~34-43%, regardless of dose (43% increase with low 17 β -estradiol: $p=0.024$, Cohen's $d=2.37$; 34%
251 increase with high 17 β -estradiol: $p=0.032$, Cohen's $d=1.32$; main effect of 17 β -estradiol: $F_{(2,13)}=4.889$,
252 $p=0.026$, $\eta^2=0.4293$; Figure 4C). However, in the ventral CA1 only the low dose of 17 β -estradiol
253 increased pAkt by 89% ($p=0.042$, Cohen's $d=1.397$; Figure 4D) and pGSK-3 β by 79% ($p=0.008$,
254 Cohen's $d=1.859$; Figure 4D). There were no other 17 β -estradiol effects in the dorsal or ventral CA1 (all
255 $ps>0.205$).

256

257 *MAPK pathway: 17 β -Estradiol increases MAPK phosphoproteins in the CA1 and DG of OVX rats*

258 17 β -estradiol increased pERK1/2 and pJNK activation in the dorsal DG, (pERK1/2: low 17 β -
259 estradiol – 147% increase, $p=0.031$, Cohen's $d=1.356$; pJNK: low 17 β -estradiol – 57% increase,
260 $p=0.028$, Cohen's $d=1.401$, main effect of 17 β -estradiol: $F^*_{(2, 6.337)}=5.56$, $p=0.0403$; Figure 5A). There
261 were no other significant effects of 17 β -estradiol in the dorsal or ventral DG (all $p>0.303$, Figure 5B).

262 In the dorsal CA1, both 17 β -estradiol doses increased pJNK by 27% (low 17 β -estradiol: $p=0.017$,
263 Cohen's $d=1.56$; high 17 β -estradiol: $p=0.009$, $d=1.89$; main effect of 17 β -estradiol: $F_{(2,15)}=6.288$,
264 $p=0.0104$, $\eta^2=0.456$; Figure 5C). There were no other significant effects on MAPK phosphoproteins in
265 the dorsal CA1.

266 In the ventral CA1, low 17 β -estradiol, but not high 17 β -estradiol, increased pERK1/2 by 114%
267 and pJNK by 58% in OVX rats (pERK1/2 – p=0.003, Cohen's d=2.434, main effect of 17 β -estradiol:
268 $F_{(2,15)}=8.731$, p=0.0031, $\eta^2=0.538$; pJNK – p=0.027, Cohen's d=1.537, main effect of 17 β -estradiol:
269 $F_{(2,14)}=5.64$, p=0.0160, $\eta^2=0.446$; Figure 5D). There were no other significant effects of 17 β -estradiol of
270 any MAPK phosphoproteins in the ventral CA1 (all ps>0.22).

271

272 **Discussion**

273 Past characterization of the rapid effects of estrogens on cell signaling cascades has
274 predominantly focused on the CA1 of the dorsal hippocampus or the dorsal hippocampus as a whole and
275 has rarely investigated sex differences. Here, we found sex differences in phosphoprotein levels in the
276 dorsal and ventral DG and dorsal CA1 in MAPK and Akt cascades. 17 β -estradiol had more dramatic
277 effects in OVX females compared to intact females and males on MAPK and Akt pathways. In intact
278 rats, 17 β -estradiol significantly decreased MAPK phosphoproteins in females but a low dose of 17 β -
279 estradiol increased pp38 in males in the ventral DG. Dose-dependent effects of 17 β -estradiol were
280 observed mainly in the CA1 in OVX female mice in both Akt and MAPK pathways. Collectively, these
281 findings are the first characterization of sex differences in MAPK and Akt phosphoprotein levels across
282 the anatomical longitudinal axis of the hippocampus in the DG and CA1. These findings illustrate that
283 both sex and 17 β -estradiol differentially influence phosphoprotein levels in region-specific ways in the
284 hippocampus.

285

286 *Sex differences in MAPK and Akt cell signalling pathways in the DG.*

287 Consistent with investigations of other brain regions, we observed sex differences in cell
288 signaling pathways in the dorsal and ventral DG, mostly in the Akt pathway (see Table 1 for summary).
289 Females had higher Akt pathway phosphoproteins across the anatomical longitudinal axis and between
290 subregions of the hippocampus than males. On the other hand, males only had higher pERK1/2 than
291 females in the dorsal DG. These findings are partially consistent to past work in other areas of the brain,
292 as female rats had higher baseline levels of pERK1/2, pAkt, and pGSK-3 β in the frontal cortex (prelimbic
293 and infralimbic cortices), nucleus accumbens, and rostral caudate putamen than males (26). Those
294 findings, at least the Akt pathway proteins, mirrors our findings in the hippocampus. In male mice,
295 pERK1/2 expression in the AVPV was higher, irrespective of gonad status, compared to females (28),
296 similar to our findings in the dorsal DG. Regrettably, while much has been made of sex differences in
297 MAPK and Akt pathway proteins in skeletal muscle, heart, and other peripheral tissues (e.g. (46,47)),
298 these are few investigations into sex differences in MAPK or Akt signaling in the brain. Our findings
299 suggest sex differences, favouring females, in the Akt signalling pathways across the dorsal and ventral
300 axis of the DG of the hippocampus and with males showing greater activation of ERK1/2 in the dorsal
301 DG.

302

303 It is intriguing that females had higher levels of Akt phosphoproteins than males in the DG, which
304 adds to the literature showing greater Akt phosphoproteins in the brain (26,48) and periphery (46) of
305 females compared to males. The Akt pathway provides a mechanism through which extrinsic factors
306 such as neurotrophic factors can activate transcription factors to affect the regulation of neural stem cells
and neurogenesis in the DG (49). Recent evidence suggests that Akt pathway activation can enhance

307 ischemia-induced neurogenesis and cell migration in males (50) and inactivation can attenuate the
308 exercise-induced neurogenesis in the DG in male mice (51). The fact that the DG was the region that
309 showed sex differences suggests that this may be involved in sex differences in neurogenesis that exist
310 in maturation timelines (52) but also in neurogenic response to androgens (53) and stress exposure (54).
311 Voluntary running increases neurogenesis in the DG of females more so than in males (55,56), suggesting
312 another possible mechanism for this sex difference in Akt phosphoproteins. Collectively these findings
313 suggest that one function of the increased Akt phosphoproteins may be differences in DG neurogenesis
314 in response to certain neurotropic factors in females compared to males. Clearly more work needs to be
315 done to determine the sex specific roles of Akt in the hippocampus.

316 Understanding the functional significance of these differences is perhaps more important than
317 understanding from whence they arise. Convergent sex differences – those where the underlying cellular
318 mechanisms differ but the behavioural outcome is similar between the sexes – have been observed now
319 in a number of brain regions and behaviours, including spatial tasks, social learning, eye-blink learning,
320 fear behaviors, and synaptic potentiation (57–60). Finally, these data may have implications with regards
321 to latent sex differences; that is, sex differences that only become apparent following environmental or
322 pharmacological interventions and/or aging/disease. For example, females are resistant to the behavioural
323 effects of the neonatal ventral hippocampal lesion model of schizophrenia, potentially resulting from
324 greater MEK-ERK pathway activity in the prefrontal cortex and striatum (26). Perhaps greater Akt
325 pathway phosphoproteins present in the DG of females would make them more resilient to disruptions
326 of this pathway. We suggest that when assessing behaviour and its underlying mechanisms that
327 researchers pay close attention to the potential sex differences in those underlying mechanisms,
328 especially in the case of cell signalling cascades, even when no change in behaviour is present between
329 the sexes.

330

331 *17 β -estradiol on hippocampal cell signalling pathways in OVX rats*

332 We found more dramatic effects of 17 β -estradiol on cell signalling activation in the hippocampus
333 of OVX rats compared to intact rats (see Table 2 for summary). Estradiol rapidly increased MAPK and
334 Akt pathway phosphoproteins dependent on dose and longitudinal axis within the CA1 region of OVX
335 rats. It is perhaps not surprising that the CA1 region was particularly sensitive to activation of cell
336 signalling proteins in response to 17 β -estradiol as others have found that the dorsal CA1 region shows
337 rapid upregulation of spine density and memory consolidation (27,33,34,36,61–64). Our results are
338 consistent with Koss et al. (2018) who found that whole dorsal hippocampi of OVX female mice, but not
339 gonadally-intact males had increased pAkt and pERK2 (p42 isoform) following acute 17 β -estradiol
340 treatment. Although we did not see statistically significant effects in the dorsal CA1 or ventral DG, the
341 direction of the means favours an increase in pERK1/2 with 17 β -estradiol. It is important to note here
342 that Koss and colleagues (27) saw differences in pERK only in pERK2 and not pERK1 whereas our
343 analysis did not discriminate between isoforms. In addition to the hippocampus, estradiol rapidly
344 increases pERK1/2 in the medial preoptic area and AVPV (28). Further, effects of 17 β -estradiol on pAkt
345 were present only in the ventral CA1 and not in the dorsal CA1, which is interesting given the functional
346 implications of these regions. Future research should consider the anatomical longitudinal axis, as
347 findings can differ based on this and may be important for therapeutic outcomes.

348 As alluded to above, 17 β -estradiol treatment increased pERK1/2 in the DG and ventral CA1 of
349 OVX rats but not in gonadally intact male and female rats. Consistent with our findings, Koss et al (27)
350 found that 17 β -estradiol increased pERK2 in OVX female mice, and not in intact males. Much of the
351 previous work on the rapid effects of 17 β -estradiol has focused on comparing to an OVX group.
352 However, except for pAkt in the dorsal CA1 and pp38 in the ventral DG, the effects of 17 β -estradiol
353 treatment in this study were only present in OVX rats and not intact rats. It is possible that more effects
354 would be seen at a different (earlier) timepoint than 30 minutes (discussed below). Another possible
355 reason is that the intracellular response to estrogens is already at ceiling in gonadally-intact female rats.
356 While not directly compared, phosphoprotein levels (e.g. Akt analytes in the dorsal DG) in OVX rats
357 were lower than in gonadally-intact females. Further supporting this is the inverted U-shaped dose
358 response in OVX rats in which low 17 β -estradiol increased phosphoproteins whereas high 17 β -estradiol
359 largely did not. This is frequently seen in sex steroid research (9,65) and likely results from higher doses
360 activating off target effects. As such, treatment of gonadally-intact female mice with 17 β -estradiol may
361 have resulted in fewer effects on MAPK and Akt analytes due to the ongoing presence of gonad-derived
362 hormones. This has substantial implications for the conclusions and translatability of preclinical 17 β -
363 estradiol research. For example, if 17 β -estradiol treatment leads to an improvement in a cognitive task
364 in OVX rodents in a MAPK- or Akt-dependent manner, it should not be assumed that the same
365 improvements would be seen in gonadally-intact rodents.
366

367 *Differences across hippocampal subregions and along the longitudinal axis*

368 Estrogens, in particular 17 β -estradiol, affect neuroplasticity in a subregion-dependant manner in
369 the hippocampus. For example, 17 β -estradiol increases apical dendritic spine density in the dorsal CA1
370 (21,25,31,61–64) but not in the DG (21,31). However, 17 β -estradiol rapidly increases cell proliferation
371 in the dorsal and ventral DG of OVX rats (6,30), with the effects on males or gonadally-intact females
372 to be determined. Inhibition of ERK signaling blocks the increased dendritic spine densities in dorsal
373 CA1 and medial prefrontal cortex following intrahippocampal 17 β -estradiol treatment (64). Given our
374 findings that low 17 β -estradiol increases pERK, pJNK, and pGSK-3 β in dorsal DG, perhaps the rapid
375 effects of 17 β -estradiol on cell proliferation in the DG (6) involves activation of these phosphoproteins.
376 As such, investigations into the intracellular mechanisms driving rapid increases in cell proliferation in
377 the DG are required.

378 It remains possible that the other subregions of the hippocampus drive effects seen in previous
379 studies that were absent in ours. Here, we focused on the CA1 and DG as many of the established rapid
380 effects of estrogens occur within these regions (e.g. (6,30,61–64); for recent reviews, see (3,9)). As many
381 previous studies had less regional specificity, perhaps the effects, such as increases in pERK in the dorsal
382 hippocampus response to 17 β -estradiol, are driven by hippocampal regions other than the CA1 and DG,
383 such as the CA3 region.

384

385 *Estrous cycle*

386 In the present study, we did not observe any statistical effects of estrous cycle, although our study
387 was not designed to specifically examine estrous cycle changes. There is a paucity of research making
388 comparisons across the estrous cycle with regards to cell signaling cascades in the brain. One study found

389 that transcription of MAPK and, potentially, Akt cascade phosphoprotein mRNA in the medial prefrontal
390 cortex of rats was upregulated in proestrus (66). In the ventral hippocampus, chromatin dynamics and
391 resulting MAPK pathway protein gene expression vary across the estrous cycle and between male and
392 female mice (67). In addition to changes in dendritic spine densities in the rat hippocampus across the
393 estrous cycle (68,69), changes in total hippocampal volume across the mouse estrous cycle have been
394 observed, with high estrogen phases associated with greater hippocampal volume (70). Similar changes
395 have been found across the human menstrual cycle (71,72). With so many neuroplastic changes occurring
396 with natural fluctuations of estrogens, further investigations into the effects of the estrous cycle on
397 estrogen-responsive kinase pathways are needed.

398

399 *Limitations and Future Directions*

400 One limitation is that we only examined a 30 min window after 17 β -estradiol exposure. We
401 selected a 30 min delay in the present study as others have noted changes to hippocampal physiology and
402 behaviour have been observed at this timepoint (6,30,64,73) following 17 β -estradiol or shortly thereafter
403 (e.g 40 min (61–63)). However, other studies (using intrahippocampal infusion) have found increases in
404 many MAPK and Akt phosphoproteins in the hippocampus as early as 5-10 min following 17 β -estradiol
405 (33–36). Due to the transient nature of phosphorylation in cell signalling cascades, it remains possible
406 that the effects of treatment occurred at an earlier timepoint than in our study. Furthermore, it is possible
407 that both sex and/or gonadal status may affect the rate at which these rapid effects of 17 β -estradiol occur
408 and should be investigated further.

409 The present data were normalized to total protein in sample (as is done in regularly in the
410 literature: (39,43–45), for example). One possible limitation is that phosphorylated proteins were not
411 normalised to the specific protein under investigation (e.g. pERK1/2 normalized to total ERK1/2). It
412 remains possible that there are sex differences in and estradiol effects on total protein levels that could
413 confound the interpretation of the present results. Genomic synthesis of novel MAPK, Akt, or other
414 proteins triggered by 17 β -estradiol is unlikely due to the time of tissue collection (30 min). It remains
415 possible, however, that 17 β -estradiol could rapidly increase the total protein levels via non-genomic
416 mechanisms, such as the translation of mRNA transcripts already in the cell. Additionally, it is through
417 the phosphorylation of these proteins that functional outcomes occur (e.g. DNA transcription, protein
418 translation, actin polymerization, etc.), thus obtaining the functional unit of these pathways.

419 The electrochemiluminescent assay is highly sensitive and selective, provides quantitative data
420 for analyses, and requires relatively little tissue for analysis compared to similar assays (41,42). Other
421 cell signaling cascades or proteins, such as the eukaryotic translation initiation factor 4E-binding protein
422 1, a translation repressor protein downstream of many Akt and MAPK phosphoproteins including Akt,
423 ERK1/2, and p38 (74) would be important proteins to examine in the future. Estradiol only had significant
424 effects on phosphoprotein level in the ventral DG where pp38 was decreased in female rats only. This
425 reduction could result from inactivation by upstream kinases or as a compensatory mechanism following
426 transient activation (75), which would be important to examine in the future. In addition, in the present
427 study we focussed on the CA1 and DG as they are rapidly affected by estrogens (9). However, the CA3
428 is an additional region of interest, given sex and estradiol differences in morphology and response to
429 stress in this region (20,68,76).

430

431 **Conclusions**

432 Sex differences in MAPK and Akt cell signaling phosphoproteins exist in both the dorsal and
433 ventral DG in rats. Estradiol treatment increased MAPK and Akt signaling in the CA1 and dorsal DG in
434 OVX rats with far fewer effects in intact females or males. These results shed light on the possible
435 underlying mechanisms of sex differences in hippocampal function in response to 17 β -estradiol that
436 affect MAPK and Akt kinase pathways. They further show the heterogeneity of estrogen and sex effects
437 between hippocampal subregions and along the dorsal/ventral axis. With these subregions serving often
438 distinct purposes, and the functional dissociation between the dorsal and ventral hippocampus, the
439 present results provide possible mechanisms through which these differences may arise. Furthermore,
440 with many neurological disorders having profound effects on the hippocampus, these sex, hormonal
441 status, and regional differences provide valuable insights not only into the potential underlying
442 mechanisms, but also into therapeutic possibilities.

443
444

445 **Acknowledgements**

446 The authors would like to thank Stephanie Lieblich for her assistance with surgeries, Dr. Rand Eid for
447 her guidance and assistance with the electrochemiluminescence assays, Muna Ibrahim and Rebecca
448 Rechlin for estrous cycle determination, and the staff at the Centre for Disease Modeling at the University
449 of British Columbia for their ongoing care for and kindness towards the animals in that facility.

450

451 **Statement of Ethics**

452 All experiments were conducted in accordance with the ethical guidelines set by the Canada Council for
453 Animal Care and were approved by the University of British Columbia Animal Care Committee. All
454 efforts were made to reduce the number and the suffering of animals.

455

456 **Conflicts of Interest**

457 The authors have no conflicts of interest to declare.

458

459 **Funding Sources**

460 This research was funded by Natural Sciences and Engineering Research Council of Canada grants to
461 LAMG (RGPIN-2018-04301 and RGPAS-2018-522454).

462

463 **Author Contributions**

464 PASS – conception and design of the work; data acquisition, analysis, and interpretation; writing and
465 revising

466 TAP - conception and design of the work; data acquisition, analysis, and interpretation; writing and
467 revising

468 LAMG - conception and design of the work; data acquisition, analysis, and interpretation; writing and
469 revising

470

471 **Data Availability**

472 All data is available upon request to corresponding author.

473 1. Frick KM. Molecular mechanisms underlying the memory-enhancing effects of estradiol. *Horm*
474 *Behav.* 2015 Aug;74:4–18.

475 2. Sheppard PAS, Koss WA, Frick KM, Choleris E. Rapid actions of oestrogens and their receptors on
476 memory acquisition and consolidation in females. *J Neuroendocrinol.* 2018 Feb;30(2):e12485.

477 3. Taxier LR, Gross KS, Frick KM. Oestradiol as a neuromodulator of learning and memory. *Nat Rev*
478 *Neurosci.* 2020 Oct;21(10):535–50.

479 4. Paletta P, Sheppard PAS, Matta R, Ervin KSJ, Choleris E. Rapid effects of estrogens on short-term
480 memory: Possible mechanisms. *Horm Behav.* 2018 Aug;104:88–99.

481 5. Zurkovsky L, Serio SJ, Korol DL. Intra-striatal estradiol in female rats impairs response learning
482 within two hours of treatment. *Horm Behav.* 2011 Nov;60(5):470–7.

483 6. Barha CK, Lieblich SE, Galea L a. M. Different Forms of Oestrogen Rapidly Upregulate Cell
484 Proliferation in the Dentate Gyrus of Adult Female Rats. *J Neuroendocrinol.* 2009;21(3):155–66.

485 7. Sellers K, Raval P, Srivastava DP. Molecular signature of rapid estrogen regulation of synaptic
486 connectivity and cognition. *Front Neuroendocrinol.* 2015 Jan 1;36:72–89.

487 8. Sellers KJ, Erli F, Raval P, Watson IA, Chen D, Srivastava DP. Rapid modulation of synaptogenesis
488 and spinogenesis by 17 β -estradiol in primary cortical neurons. *Front Cell Neurosci.* 2015;9:137.

489 9. Sheppard PAS, Choleris E, Galea LAM. Structural plasticity of the hippocampus in response to
490 estrogens in female rodents. *Mol Brain.* 2019 Mar 18;12(1):22.

491 10. Nilsson S, Mäkelä S, Treuter E, Tujague M, Thomsen J, Andersson G, et al. Mechanisms of
492 estrogen action. *Physiol Rev.* 2001 Oct;81(4):1535–65.

493 11. Lai Y-J, Yu D, Zhang JH, Chen G-J. Cooperation of genomic and rapid nongenomic actions of
494 estrogens in synaptic plasticity. *Mol Neurobiol.* 2017;54(6):4113–26.

495 12. Marshall CJ. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. *Curr Opin Genet Dev.*
496 1994 Feb;4(1):82–9.

497 13. Seger R, Krebs EG. The MAPK signaling cascade. *FASEB J.* 1995 Jun;9(9):726–35.

498 14. Manning BD, Cantley LC. AKT/PKB signaling: Navigating downstream. *Cell.* 2007 Jun
499 29;129(7):1261–74.

500 15. Dorard C, Vucak G, Baccarini M. Deciphering the RAS/ERK pathway in vivo. *Biochem Soc Trans.*
501 2017 Feb 8;45(1):27–36.

502 16. Cao Z, Liao Q, Su M, Huang K, Jin J, Cao D. AKT and ERK dual inhibitors: The way forward? *Cancer*
503 *Lett.* 2019 Sep 10;459:30–40.

504 17. Titolo D, Mayer CM, Dhillon SS, Cai F, Belsham DD. Estrogen facilitates both phosphatidylinositol
505 3-kinase/Akt and ERK1/2 mitogen-activated protein kinase membrane signaling required for
506 long-term neuropeptide Y transcriptional regulation in clonal, immortalized neurons. *J Neurosci.*
507 2008 Jun 18;28(25):6473–82.

508 18. Winter JN, Jefferson LS, Kimball SR. ERK and Akt signaling pathways function through parallel
509 mechanisms to promote mTORC1 signaling. *Am J Physiol - Cell Physiol.* 2011 May;300(5):C1172–
510 80.

511 19. Zhou J, Du T, Li B, Rong Y, Verkhratsky A, Peng L. Crosstalk between MAPK/ERK and PI3K/AKT
512 signal pathways during brain ischemia/reperfusion. *ASN NEURO.* 2015 Oct 6;7(5):
513 1759091415602463.

514 20. Miranda P, Williams CL, Einstein G. Granule cells in aging rats are sexually dimorphic in their
515 response to estradiol. *J Neurosci.* 1999 May 1;19(9):3316–25.

516 21. Gould E, Woolley CS, Frankfurt M, McEwen BS. Gonadal steroids regulate dendritic spine density
517 in hippocampal pyramidal cells in adulthood. *J Neurosci.* 1990 Apr;10(4):1286–91.

518 22. Leranth C, Petnehazy O, MacLusky NJ. Gonadal hormones affect spine synaptic density in the
519 CA1 hippocampal subfield of male rats. *J Neurosci.* 2003 Mar 1;23(5):1588–92.

520 23. Wallace M, Luine V, Arellanos A, Frankfurt M. Ovariectomized rats show decreased recognition
521 memory and spine density in the hippocampus and prefrontal cortex. *Brain Res.* 2006 Dec
522 18;1126(1):176–82.

523 24. MacLusky NJ, Luine VN, Hajsán T, Leranth C. The 17alpha and 17beta isomers of estradiol both
524 induce rapid spine synapse formation in the CA1 hippocampal subfield of ovariectomized female
525 rats. *Endocrinology.* 2005 Jan;146(1):287–93.

526 25. Woolley CS, McEwen BS. Roles of estradiol and progesterone in regulation of hippocampal
527 dendritic spine density during the estrous cycle in the rat. *J Comp Neurol.* 1993 Oct
528 8;336(2):293–306.

529 26. Bychkov E, Ahmed MR, Gurevich EV. Sex differences in the activity of signalling pathways and
530 expression of G-protein-coupled receptor kinases in the neonatal ventral hippocampal lesion
531 model of schizophrenia. *Int J Neuropsychopharmacol.* 2011 Feb;14(1):1–15.

532 27. Koss WA, Haertel JM, Philippi SM, Frick KM. Sex differences in the rapid cell signaling
533 mechanisms underlying the memory-enhancing effects of 17 β -estradiol. *eNeuro.* 2018 Oct
534 16;5(5):e0267-18.2018.

535 28. Barabás K, Szegő ÉM, Kaszás A, Nagy GM, Juhász GD, Ábrahám IM. Sex Differences in oestrogen-
536 induced p44/42 MAPK phosphorylation in the mouse brain in vivo. *J Neuroendocrinol.* 2006 Aug
537 1;18(8):621–8.

538 29. Fanselow MS, Dong H-W. Are the dorsal and ventral hippocampus functionally distinct
539 structures? *Neuron.* 2010 Jan 14;65(1):7–19.

540 30. Duarte-Guterman P, Lieblich SE, Chow C, Galea LAM. Estradiol and GPER activation differentially
541 affect cell proliferation but not GPER expression in the hippocampus of adult female rats. *PLoS*
542 One. 2015;10(6):e0129880.

543 31. Jacome LF, Barateli K, Buitrago D, Lema F, Frankfurt M, Luine VN. Gonadal hormones rapidly
544 enhance spatial memory and increase hippocampal spine density in male rats. *Endocrinology*.
545 2016 Apr 1;157(4):1357–62.

546 32. Cardona-Gomez P, Perez M, Avila J, Garcia-Segura LM, Wandosell F. Estradiol inhibits GSK3 and
547 regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus. *Mol*
548 *Cell Neurosci*. 2004 Mar 1;25(3):363–73.

549 33. Fan L, Zhao Z, Orr PT, Chambers CH, Lewis MC, Frick KM. Estradiol-induced object memory
550 consolidation in middle-aged female mice requires dorsal hippocampal extracellular signal-
551 regulated kinase and phosphatidylinositol 3-kinase activation. *J Neurosci*. 2010 Mar
552 24;30(12):4390–400.

553 34. Fortress AM, Fan L, Orr PT, Zhao Z, Frick KM. Estradiol-induced object recognition memory
554 consolidation is dependent on activation of mTOR signaling in the dorsal hippocampus. *Learn*
555 *Mem*. 2013 Feb 19;20(3):147–55.

556 35. Kim J, Szinte JS, Boulware MI, Frick KM. 17 β -estradiol and agonism of G-protein-coupled
557 estrogen receptor enhance hippocampal memory via different cell-signaling mechanisms. *J*
558 *Neurosci*. 2016 Mar 16;36(11):3309–21.

559 36. Fernandez SM, Lewis MC, Pechenino AS, Harburger LL, Orr PT, Gresack JE, et al. Estradiol-
560 induced enhancement of object memory consolidation involves hippocampal extracellular
561 signal-regulated kinase activation and membrane-bound estrogen receptors. *J Neurosci*. 2008
562 Aug 27;28(35):8660–7.

563 37. Pinceti E, Shults CL, Rao YS, Pak TR. Differential effects of E2 on MAPK activity in the brain and
564 heart of aged female rats. *PLoS ONE*. 2016 Aug 3;11(8):e0160276.

565 38. Cora MC, Kooistra L, Travlos G. Vaginal cytology of the laboratory rat and mouse: Review and
566 criteria for the staging of the estrous cycle using stained vaginal smears. *Toxicol Pathol*. 2015 Aug
567 1;43(6):776–93.

568 39. Eid RS, Lieblich SE, Wong SJ, Galea LAM. Ovarian status dictates the neuroinflammatory and
569 behavioral consequences of sub-chronic stress exposure in middle-aged female mice. *Neurobiol*
570 *Stress*. 2019 Nov 20;12:100199.

571 40. Viau V, Meaney MJ. Variations in the hypothalamic-pituitary-adrenal response to stress during
572 the estrous cycle in the rat. *Endocrinology*. 1991 Nov;129(5):2503–11.

573 41. Chen M, Ning Z, Chen K, Zhang Y, Shen Y. Recent advances of electrochemiluminescent system in
574 bioassay. *J Anal Test*. 2020 Apr 1;4(2):57–75.

575 42. Zanut A, Fiorani A, Canola S, Saito T, Ziebart N, Rapino S, et al. Insights into the mechanism of
576 coreactant electrochemiluminescence facilitating enhanced bioanalytical performance. *Nat*
577 *Commun.* 2020 May 29;11(1):2668.

578 43. Zaworski P, Herrmann KM von, Taylor S, Sunshine SS, McCarthy K, Risher N, et al. SMN protein
579 can be reliably measured in whole blood with an electrochemiluminescence (ECL) immunoassay:
580 Implications for clinical trials. *PLoS ONE.* 2016 Mar 8;11(3):e0150640.

581 44. Bass V, Gordon CJ, Jarema KA, MacPhail RC, Cascio WE, Phillips PM, et al. Ozone induces glucose
582 intolerance and systemic metabolic effects in young and aged brown Norway rats. *Toxicol Appl*
583 *Pharmacol.* 2013 Dec 15;273(3):551–60.

584 45. Aldridge GM, Podrebarac DM, Greenough WT, Weiler IJ. The use of total protein stains as
585 loading controls: an alternative to high-abundance single protein controls in semi-quantitative
586 immunoblotting. *J Neurosci Methods.* 2008 Jul 30;172(2):250–4.

587 46. Camper-Kirby Dreama, Welch Sara, Walker Angela, Shiraishi Isao, Setchell Kenneth D. R.,
588 Schaefer Erik, et al. Myocardial Akt activation and gender. *Circ Res.* 2001 May 25;88(10):1020–7.

589 47. Nicoll JX, Fry AC, Mosier EM. Sex-based differences in resting MAPK, androgen, and
590 glucocorticoid receptor phosphorylation in human skeletal muscle. *Steroids.* 2019 Jan;141:23–9.

591 48. Wong H, Levenga J, LaPlante L, Keller B, Cooper-Sansone A, Borski C, et al. Isoform-specific roles
592 for AKT in affective behavior, spatial memory, and extinction related to psychiatric disorders.
593 *eLife.* 2020 Dec 16;9:e56630.

594 49. Otaegi G, Yusta-Boyo MJ, Vergaño-Vera E, Méndez-Gómez HR, Carrera AC, Abad JL, et al.
595 Modulation of the PI 3-kinase–Akt signalling pathway by IGF-I and PTEN regulates the
596 differentiation of neural stem/precursor cells. *J Cell Sci.* 2006 Jul 1;119(13):2739–48.

597 50. Shioda N, Han F, Morioka M, Fukunaga K. Bis(1-oxy-2-pyridinethiolato)oxovanadium(IV)
598 enhances neurogenesis via phosphatidylinositol 3-kinase/Akt and extracellular signal regulated
599 kinase activation in the hippocampal subgranular zone after mouse focal cerebral ischemia.
600 *Neuroscience.* 2008 Aug 26;155(3):876–87.

601 51. Sun L, Cui K, Xing F, Liu X. Akt dependent adult hippocampal neurogenesis regulates the
602 behavioral improvement of treadmill running in mice model of post-traumatic stress disorder.
603 *Behav Brain Res.* 2020 Feb 3;379:112375.

604 52. Yagi S, Splinter JEJ, Tai D, Wong S, Wen Y, Galea LAM. Sex differences in maturation and attrition
605 of adult neurogenesis in the hippocampus. *eNeuro.* 2020 Jul-Aug;7(4):e0468-19.2020

606 53. Duarte-Guterman P, Lieblich SE, Wainwright SR, Chow C, Chaiton JA, Watson NV, et al.
607 Androgens enhance adult hippocampal neurogenesis in males but not females in an age-
608 dependent manner. *Endocrinology.* 2019 Sep 1;160(9):2128–36.

609 54. Falconer EM, Galea LAM. Sex differences in cell proliferation, cell death and defensive behavior
610 following acute predator odor stress in adult rats. *Brain Res.* 2003 Jun 13;975(1–2):22–36.

611 55. Cahill SP, Cole JD, Yu RQ, Clemans-Gibbon J, Snyder JS. Differential effects of extended exercise
612 and memantine treatment on adult neurogenesis in male and female rats. *Neuroscience*. 2018
613 Oct 15;390:241–55.

614 56. Ma X, Hamadeh MJ, Christie BR, Foster JA, Tarnopolsky MA. Impact of treadmill running and sex
615 on hippocampal neurogenesis in the mouse model of amyotrophic lateral sclerosis. *PLoS ONE*.
616 2012 Apr 25;7(4):e36048.

617 57. Shors TJ, Chua C, Falduto J. Sex differences and opposite effects of stress on dendritic spine
618 density in the male versus female hippocampus. *J Neurosci*. 2001 Aug 15;21(16):6292–7.

619 58. Choleris E, Galea LAM, Sohrabji F, Frick KM. Sex differences in the brain: Implications for
620 behavioral and biomedical research. *Neurosci Biobehav Rev*. 2018;85:126–45.

621 59. Jain A, Huang GZ, Woolley CS. Latent sex differences in molecular signaling that underlies
622 excitatory synaptic potentiation in the hippocampus. *J Neurosci*. 2019 Feb 27;39(9):1552–65.

623 60. Gruene TM, Roberts E, Thomas V, Ronzio A, Shansky RM. Sex-specific neuroanatomical
624 correlates of fear expression in prefrontal-amamygdala circuits. *Biol Psychiatry*. 2015 Aug
625 1;78(3):186–93.

626 61. Phan A, Suschkov S, Molinaro L, Reynolds K, Lymer JM, Bailey CDC, et al. Rapid increases in
627 immature synapses parallel estrogen-induced hippocampal learning enhancements. *Proc Natl
628 Acad Sci U S A*. 2015 Dec 29;112(52):16018–23.

629 62. Phan A, Gabor CS, Favaro KJ, Kaschack S, Armstrong JN, MacLusky NJ, et al. Low doses of 17 β -
630 estradiol rapidly improve learning and increase hippocampal dendritic spines.
631 *Neuropsychopharmacol*. 2012 Sep;37(10):2299–309.

632 63. Sheppard PAS, Asling HA, Walczyk-Mooradally A, Armstrong SE, Elad VM, Lalonde J, et al. Protein
633 synthesis and actin polymerization in the rapid effects of 17 β -estradiol on short-term social
634 memory and dendritic spine dynamics in female mice. *Psychoneuroendocrinology*. 2021 Apr
635 15;105232.

636 64. Tuscher JJ, Luine V, Frankfurt M, Frick KM. Estradiol-mediated spine changes in the dorsal
637 hippocampus and medial prefrontal cortex of ovariectomized female mice depend on ERK and
638 mTOR activation in the dorsal hippocampus. *J Neurosci*. 2016 Feb 3;36(5):1483–9.

639 65. Luine VN. Estradiol and cognitive function: Past, present and future. *Horm Behav*. 2014 Sep
640 1;66(4):602–18.

641 66. Duclot F, Kabbaj M. The estrous cycle surpasses sex differences in regulating the transcriptome
642 in the rat medial prefrontal cortex and reveals an underlying role of early growth response 1.
643 *Genome Biol*. 2015 Dec 2;16(1):256.

644 67. Jaric I, Rocks D, Greally JM, Suzuki M, Kundakovic M. Chromatin organization in the female
645 mouse brain fluctuates across the oestrous cycle. *Nat Commun*. 2019 Jun 28;10(1):2851.

646 68. Mendell AL, Atwi S, Bailey CDC, McCloskey D, Scharfman HE, MacLusky NJ. Expansion of mossy
647 fibers and CA3 apical dendritic length accompanies the fall in dendritic spine density after
648 gonadectomy in male, but not female, rats. *Brain Struct Funct*. 2017 Jan;222(1):587–601.

649 69. Woolley CS, Gould E, Frankfurt M, McEwen BS. Naturally occurring fluctuation in dendritic spine
650 density on adult hippocampal pyramidal neurons. *J Neurosci*. 1990 Dec;10(12):4035–9.

651 70. Qiu LR, Germann J, Spring S, Alm C, Vousden DA, Palmert MR, et al. Hippocampal volumes differ
652 across the mouse estrous cycle, can change within 24hours, and associate with cognitive
653 strategies. *NeuroImage*. 2013 Dec 1;83:593–8.

654 71. Lisofsky N, Mårtensson J, Eckert A, Lindenberger U, Gallinat J, Kühn S. Hippocampal volume and
655 functional connectivity changes during the female menstrual cycle. *NeuroImage*. 2015 Sep
656 1;118:154–62.

657 72. Pletzer B, Harris T, Hidalgo-Lopez E. Subcortical structural changes along the menstrual cycle:
658 Beyond the hippocampus. *Sci Rep*. 2018 Oct 30;8: 16042.

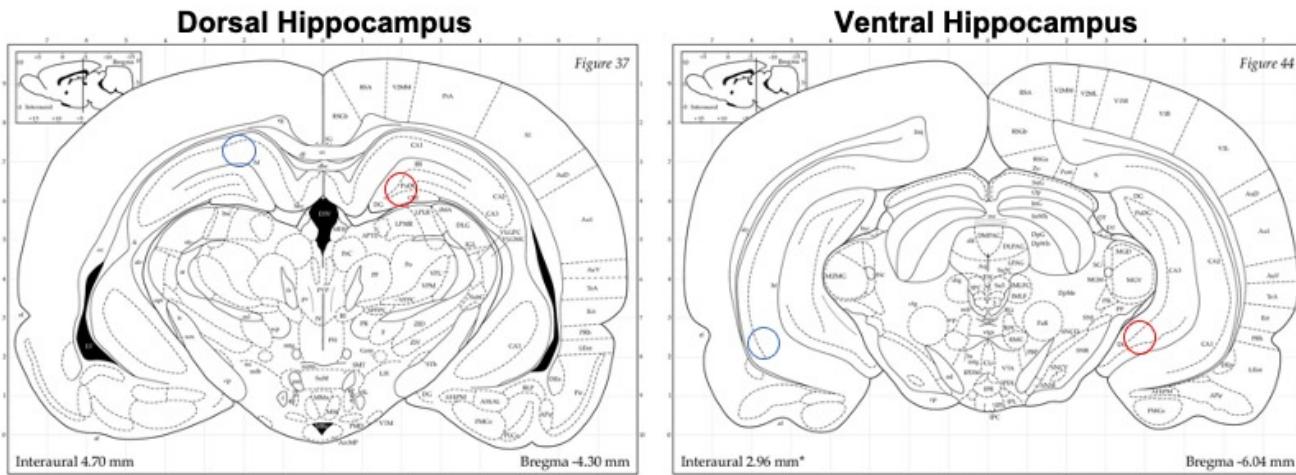
659 73. Barha CK, Galea LAM. Influence of different estrogens on neuroplasticity and cognition in the
660 hippocampus. *Biochim Biophys Acta BBA - Gen Subj*. 2010 Oct 1;1800(10):1056–67.

661 74. Qin X, Jiang B, Zhang Y. 4E-BP1, a multifactor regulated multifunctional protein. *Cell Cycle*. 2016
662 Feb 22;15(6):781–6.

663 75. Cuenda A, Rousseau S. p38 MAP-Kinases pathway regulation, function and role in human
664 diseases. *Biochim Biophys Acta BBA - Mol Cell Res*. 2007 Aug 1;1773(8):1358–75.

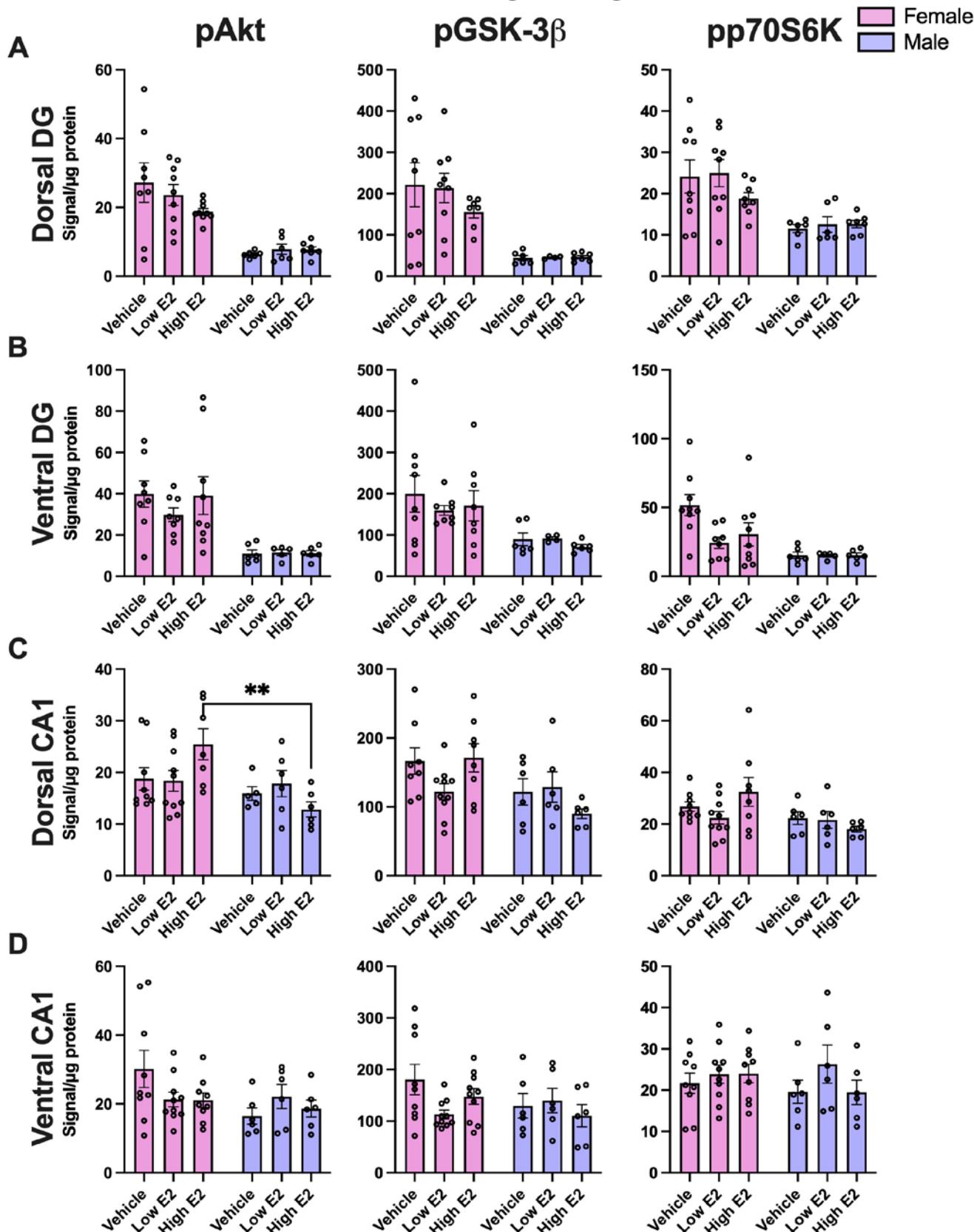
665 76. Galea LA, McEwen BS, Tanapat P, Deak T, Spencer RL, Dhabhar FS. Sex differences in dendritic
666 atrophy of CA3 pyramidal neurons in response to chronic restraint stress. *Neuroscience*. 1997
667 Dec;81(3):689–97.

668

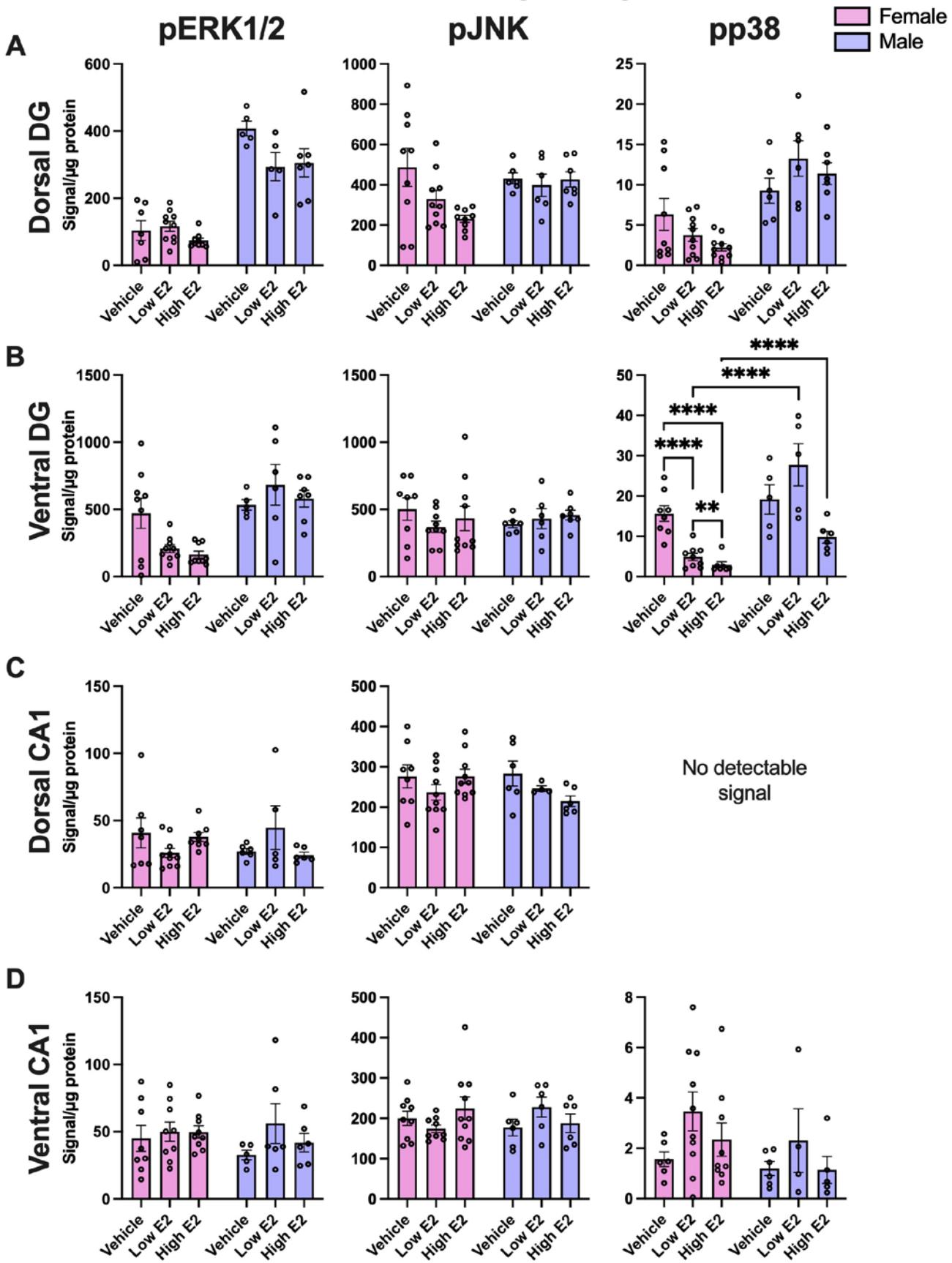

669 **Figure 1: Example of CA1 and dentate gyrus punch location**
670 Blue circles indicate approximate CA1 tissue punch location. Red circles indicate approximate dentate
671 gyrus tissue punch location. Punches were 0.838mm in diameter.
672

673 **Figure 2: Akt phosphoprotein levels in the dentate gyrus (DG) and CA1 of female and male rats**
674 Phosphoprotein signal normalized by amount of total protein in sample. A) Phosphoprotein levels were
675 higher in females in all analytes in the dorsal DG (pAkt, pGSK-3 β , and pp70S6K: p<0.0001). B)
676 Phosphoprotein levels were higher in females in all analytes in the ventral DG (pAkt: p<0.0001; pGSK-3 β :
677 p=0.0004; pp70S6K: p=0.0014). C) High 17 β -estradiol increased dorsal CA1 pAkt in females (p=0.05).
678 There were no effects of sex between vehicle-treated rats. D) There were no effects of sex or treatment on
679 Akt analytes in the ventral CA1. Error bars are \pm standard error of the mean. Main effects of sex: ## p<0.01,
680 ### p<0.001, ##### p<0.0001; effects of 17 β -estradiol: * p=0.05.
681

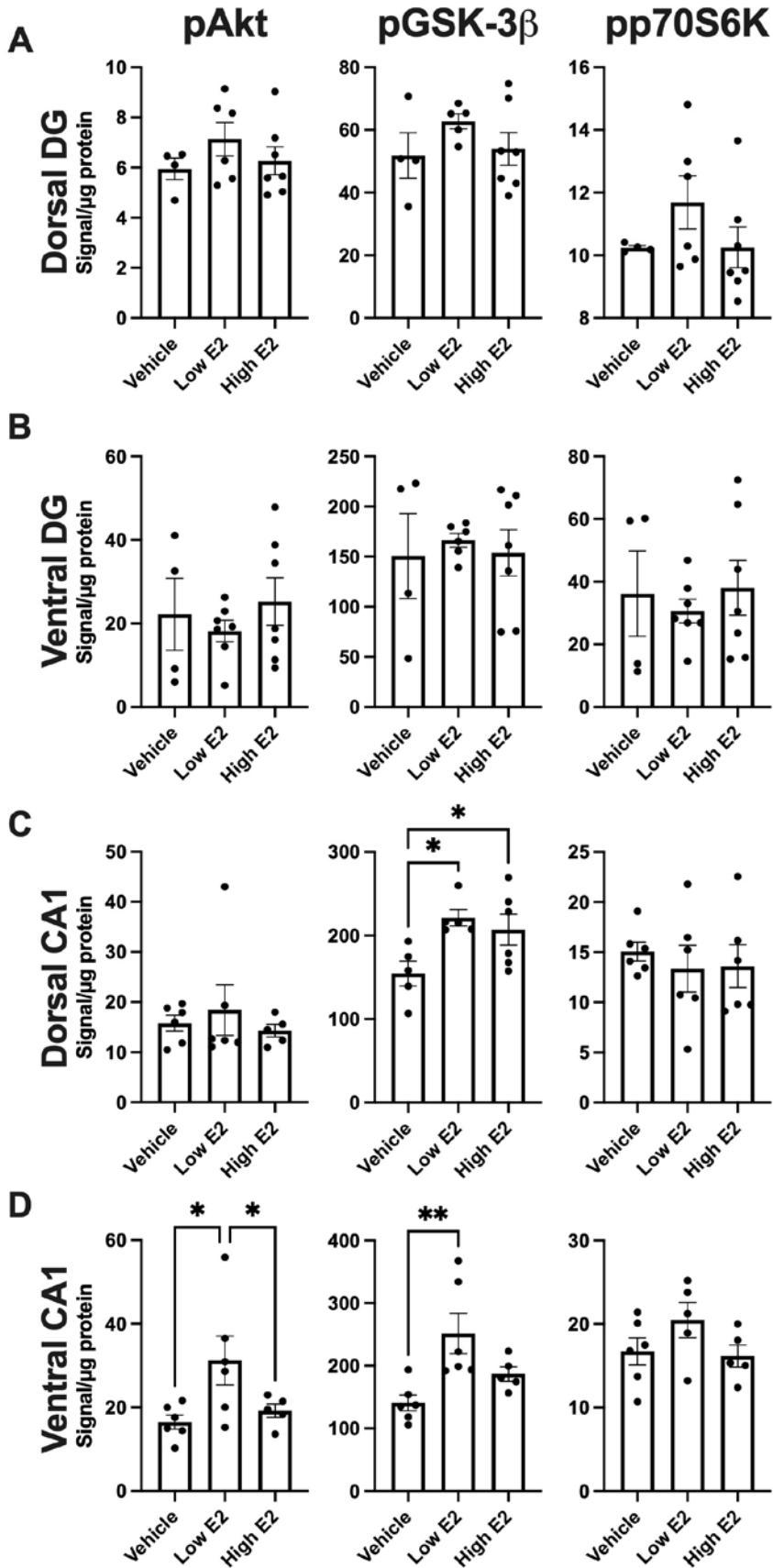
682 **Figure 3: MAPK phosphoprotein levels the dentate gyrus (DG) and CA1 of in female and male rats**
683 Phosphoprotein signal normalized by amount of total protein in sample. A) Males had higher pERK1/2
684 (p<0.0001) in the dorsal DG than females. There were no significant effects of sex among vehicle-treated
685 rats in the dorsal DG for pJNK or pp38. B) In the ventral DG, there were no significant effects of sex
686 among vehicle-treated rats. Low 17 β -estradiol reduced ventral DG pp38 in females (p<0.0001), with high
687 17 β -estradiol reducing pp38 still further (compared to vehicle, p<0.0001; compared to low 17 β -estradiol
688 p<0.01). C-D) There were no significant effects of sex or treatment on MAPK analytes in the dorsal CA1
689 (C) or the ventral CA1 (D). Error bars are \pm standard error of the mean. Main effects of sex: ##### p<0.0001;
690 effects of 17 β -estradiol: ** p<0.01, **** p<0.0001.
691


692 **Figure 4: Akt phosphoprotein levels in the dentate gyrus (DG) and CA1 of ovariectomized female rats**
693 Phosphoprotein signal normalized by amount of total protein in sample. A-B) 17 β -estradiol did not affect
694 Akt pathway phosphoprotein levels in the dorsal DG (A) or ventral DG (B) of OVX rats (ps>0.27) C) Low
695 (p=0.0113) and high (p=0.0306) 17 β -estradiol increased pGSK-3 β in the dorsal CA1. D) In the ventral
696 CA1, low 17 β -estradiol increased pAkt (relative to vehicle [p=0.0142] and high 17 β -estradiol [p=0.0471])
697 and pGSK-3 β (p=0.0025). Error bars are \pm standard error of the mean SEM. Effects of 17 β -estradiol: *
698 p<0.05, ** p<0.01.
699

700 **Figure 5: MAPK phosphoprotein levels in the dentate gyrus (DG) and CA1 of ovariectomized female
701 rats**
702 Phosphoprotein signal normalized by amount of total protein in sample. A) Low 17 β -estradiol increased
703 pERK (p=0.031) and pJNK (p=0.028) in the dorsal DG of OVX rats. B) 17 β -estradiol did not affect MAPK
704 pathway phosphoprotein levels in the ventral DG of OVX rats (ps>0.303). C) Low (p=0.017) and high
705 (p=0.009) 17 β -estradiol increased pJNK in the dorsal CA1 of OVX rats. D) In the ventral CA1, low 17 β -
706 estradiol increased pERK1/2 (relative to vehicle [p<0.01] and high 17 β -estradiol [p<0.05]) and pJNK
707 (relative to vehicle and high 17 β -estradiol, ps<0.05). Error bars are \pm standard error of the mean. Effects of
708 17 β -estradiol: * p<0.05, ** p<0.01.
709



710


Akt Pathway Analytes

MAPK Pathway Analytes

Akt Pathway Analytes

