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ABSTRACT

Identifying the genetic determinants of inter-individual variation in lipid species (lipidome) may
provide deeper understanding and new insight into the mechanistic effect of complex lipidomic
pathways in CVD risk and progression beyond simple traditional lipids. Previous studies have
been largely population based and thus only powered to discover associations with common
genetic variants. Founder populations represent a powerful resource to accelerate discovery of
novel biology associated with rare population alleles that have risen to higher frequency due to
genetic drift. We performed a GWAS of 355 lipid species in 650 individuals from the Old Order
Amish founder population including 127 lipid species not previously tested. We report for the
first time the lipid species associated with two rare-population but Amish-enriched lipid variants:
APOB_rs5742904 and APOC3_rs76353203. We also identified novel associations for 3 rare-
population Amish-enriched loci with several sphingolipids and with proposed potential
functional/causal variant in each locus including GLPTDZ2_rs536055318, CERS5_rs771033566,
and AKNA_rs531892793. We replicated 7 previously known common loci including novel
associations with two sterols: androstenediol with UGT locus on chromosome 2 and estriol with
SLC22A8/A24 locus on chromosome 11. Our results show the power of founder populations to
discover novel biology due to genetic drift that can increase the frequency of an allele from only
few copies in large sample cohorts such as the UK Biobank to dozens of copies in sample size
as small as 650.
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INTRODUCTION

Identifying the genetic determinants of inter-individual variation in molecular lipid species
(lipidome) may provide deeper understanding beyond traditional lipids (total [TC], low-density
lipoprotein [LDL], and high-density lipoprotein [HDL] cholesterol and triglycerides [TG]), and may
lead to new insight into the mechanistic effect of lipid variants and their role in CVD risk and
progression’. Previous studies tested lipidome genetic determinants either as a small part of
large metabolite studies or in a small number of candidate lipid species (full list of studies
available in Hagenbeek?), with the exception of a published study that performed a focused
lipidome genome-wide association scan (GWAS) for 141 lipid species in 2,181 Finnish
individuals. Here, we performed a GWAS in 650 individuals from the Old Order Amish founder
population (Supp Table 1) using an expanded number of 355 lipid species from 14 classes that
included 127 not previously tested for genetic association (Supp Table 2). The population-based
Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study*® was used for replication
and fine mapping, and publicly available association results databases from several large
biobanks were used to look up the top results (Supp Table 6). We identified five rare-population
but Amish-enriched loci, three of which are novel, and replicated 7 previously known common
loci including two loci with novel trait associations. These results demonstrate the power of
detailed lipidome profiling in a founder population to identify novel rare variants enriched
through genetic drift to accelerate lipid loci discovery and significantly advance our
understanding of the genetic role in lipid biology.

RESULTS

Additive and dominant heritability

The narrow sense heritability, defined as the ratio of additive variance to phenotypic variance,
was estimated for each lipid species and traditional lipid using a mixed model with pedigree
kinship covariance matrix. We also tested if dominance variance contributes to lipidome genetic
architecture by comparing the additive model to a model that included a dominance and additive
effect using a likelihood ratio test. No lipid species or traditional lipid showed significant
dominant variance after Bonferroni correction, indicating that the lipidomic genetic architecture
is primarily additive.

The full list of heritability estimates of the 355 lipid species with and without adjustment for 4
Amish-enriched large effect lipid variants (APOB_rs57429047, APOC3 rs763532038,
B4GALT1_rs551564683°, TIMD4_rs898956003'°) (4 variants) is provided in Supp Table 2.
Figure 1a shows that the heritabilities range between 0 and 0.7, with significant attenuation
when adjusting for the 4 variants as they account for a significant proportion of the phenotypic
variance. The (near-) zero estimates reflect potential lack of genetic contribution to the lipid
species. The histogram suggests a bi-modal distribution with second mode near 0.55 driven
mainly by sphingolipids including ceramides (Cer), sphingomyelins (SM) and glycosphingolipids
(GlcCer). Figure 1b shows heritability estimates for each lipidome class with and without 4
variants adjustment. Each class has non-zero median heritability, and most classes show
considerable variability. The highest heritability was reported for GlcCer (0.35 — 0.69) while
acylcarnitines (ACT) was the lowest (0.01 - 0.22). Consistent with previous reports'"'3, we
found sphingolipids to have higher heritability than glycerolipids. The contribution of the 4
variants varied across class. The classes with the biggest difference were cholesteryl ester
(CE), Cer, GlcCer, SM and phosphatidylethanolamine (PE) primarily driven by the LDL-
increasing APOB_rs5742904 variant. Many classes showed little change in median or variation,
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including triacylglycerides (TAG), where the overall impact of APOC3_rs76353203 null variant
on heritability was small. The difference between the two variants can be explained by their
different impact on traditional lipids: APOC3_rs76353203 accounts for ~3% of the TG variance
(h2=0.398 vs 0.368 adjusted) whereas APOB_rs5742904 accounts for ~18% of LDL-C variance
(h2=0.68 vs 0.5 adjusted).

Genetic contribution of traditional lipids to lipidome

To estimate the genetic contribution of previously identified traditional lipid GWAS variants to
lipidome variance, a SNP genetic relationship matrix (SNP GRM) was constructed using the
variants and included with the kinship matrix in the mixed model for joint variance estimation.
The impact of SNP GRM on the heritability estimates in the joint model compared to baseline
heritability with no SNP GRM is shown in Figure 2. In general, known lipid GWAS variants had a
small contribution to the genetic variation which vary between classes and by lipid SNP GRM
within class. The greater the contribution of the SNP GRM to lipidome class variance, the lower
the residual heritability estimates. For example, between lipid SNP GRM variability is small
within sterols but significant within Lysophosphatidylcholines (LPC) and within
Lysophosphatidylethanolamines (LPE). HDL and TG associated variants almost explain no
variance of SM while LDL and TC associated variants explain over 15% of SM, which agrees
with the role of SM and cholesterol in the structure of plasma membranes. TG associated
variants explain a larger proportion of TAG than other lipid associated variants, as expected.

Genetic and phenotype correlation

Pairwise genetic and phenotype correlation for 355 lipid species and 4 traditional lipids
combined are shown in Supp Table 3 and Supp Figure 1 (heatmap). In general, genetic and
phenotypic correlation were lower between classes than within classes. SMs, TAGs, and
diglycerides (DAGs) exhibited the strongest within class correlation, and as expected the
strongest between class correlation was found for TAGs with DAGs. While TAGs exhibited the
strongest within class correlation, we found that the correlation between TAG pairs where both
species have >= 54 carbons and >= 4 double bonds were significantly stronger and less
variable (p< 2.2E-16) than correlation between pairs where one or both species have < 54
carbons and < 4 double bonds (Supp Figure 2). The phenotypic correlations have both smaller
median values and less variance than genetic correlations even with larger number of pairs due
to phenotypic correlations having greater precision since there is no maximum likelihood
estimation required.

The correlation with traditional lipids were also generally limited, with the exception of TAGs and
DAGs that had the strongest positive genetic correlations with traditional TG, and the strongest
negative correlation with HDL. These results are in line with a previous finding'' and explain the
limited contribution of traditional lipid genetics to the lipid species (Figure 1b). This limited
overlap highlights the value that lipid species would contribute to understanding CVD risk
factors beyond traditional lipids™.

Lipidome contribution to traditional lipids

The estimated proportion of each traditional lipid variance explained by kinship and each
lipidome class are shown in Supp Figure 3. The lipidome class was included in the mixed model
by constructing covariance matrix between the species in the class (see Methods). All classes
explained a significant proportion of lipid variation with different magnitudes (Supp Table 4). For
example, while PC was the most statistically significant class for HDL and LDL, it was the 2nd
for TC and the 3rd for TG. Not surprisingly, the most significant class across all lipids is TAG
with TG. The least significant class on average was acylcarnitines (ACT).
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We also performed a sequential analysis to determine which lipidome classes jointly with the
kinship explain the greatest amount of variance of each traditional lipid. Supp Table 5 shows the
decomposition with the class, remaining unexplained heritability, and residual error variance
estimates. HDL maxed out at 3 classes, LDL and TC at 5 classes and TG at 4 classes.
Compared to the single class model in Supp Table 4 the magnitude and precision of the
estimates in the multi-class models may differ due to potential correlation between classes. The
heritability estimates in the multi-class are reduced to less than 0.16 as more of the additive
variance is accounted for by additional lipidome classes. The decomposition differs by lipid. TG
is primarily composed of TAG (34%) with DAG and PC, accounting for ~ 5%, while the 3 other
lipids have at least two classes with high proportions. LDL has the lowest residual variance at
20% indicating the phenotypic architecture of LDL may be more influenced by lipidome than
other lipids. Overall, the variance component analyses show that lipidome classes contribute a
significant portion of the variance of traditional lipids but there remains 10-15% heritability
unexplained by lipidome, which again indicate the differences in genetic architecture.

GWAS results

We performed a GWAS for 355 lipid species with ~8 million genetic variants in 639 Amish
individuals with both phenotype and genotype information. We identified 12 significantly
associated signals (p <4.5E-10, using 5E-08/110, based on the first 110 principal components
explaining >95% of the variance in the 355 lipid species), five were Amish-enriched rare-
population variants, three of which have not been previously reported, and seven were common
variants that were previously associated with lipid species (Table 1, Figures 3,4).

The genetic architecture of the Amish is characterized by long runs of homozygosity as a result
of founder effects'®, so the Amish-enriched associated loci are usually long haplotypes with
many variants with strong LD, making it difficult to statistically separate variants to identify the
potential causal variant. All results with p < 5E-08 are listed in Supp Table 6.

a. Rare-general population but Amish-enriched loci

The most interesting finding among the five Amish-enriched loci is a rare population missense
variant rs536055318 (A263T) (MAF=0.07 vs 0.001 in the general European population) in an
active transcription start site (aTSS) within the promoter region of the glycolipid transfer protein
domain containing 2 (GLTPDZ2) gene on chromosome 17 that was strongly associated with
lower level of SM(d40:0) (p =1.1E-12) and suggestively associated with SM(d36:0, d38:0). To
the best of our knowledge, these 3 SMs have never been previously interrogated for genetic
association. Another independent African enriched variant (rs73339979) downstream of
GLTPD2 was previously associated with lower total and LDL cholesterol'®. Also, a Finnish-
enriched GLTPDZ2 intronic variant (rs79202680) was recently associated with lower level of
several SMs and reduced atherosclerosis'’.

The second interesting Amish-enriched but rare-population finding (MAF=0.04 vs 0.01) was on
a 5Mb long haplotype on the short arm of chromosome 12 that was significantly and
suggestively associated with lower levels of SM(d32:2) and SM(d30:1), respectively. Other
independent variants in this region were previously associated with alanine, 1,5-anhydroglucitol
(1,5-AG), and creatine, but not with any lipid species. One of the top variants is a splice donor
missense variant (rs771033566, Val344Leu, p = 2.2E-14) in the ceramide synthase 5 (CERSS)
gene and classified as disease-causing by the Mutation Taster software'’. Another common
coding variant in this gene was previously associated with increased systolic/diastolic blood
pressure and hypertension' '°. The sphingolipid metabolic pathway has been previously linked
to blood pressure regulation and response to thiazide diuretics?>??, suggesting that CERS5 may
affect blood pressure level through alteration of sphingolipids.
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Another Amish-enriched 8Mb long haplotype (MAF=0.04 vs 0.01 for the top variant) on the long
arm of chromosome 9 was strongly associated with lower levels of all tested glucosylceramide
species (GlcCer(d38:1), (d40:1), (d41:1), (d42:1), (d42:2)) except the one with the shortest acyl
chain (GlcCer(d34:1)), which reflect the strong phenotypic correlation between the first 5 (r= 0.6
—1.0) compared to their much lower correlation with GlcCer(d34:1) (r <0.2). Other independent
variants in this region were previously associated with total cholesterol?®, urate, p-
acetamidophenylglucuronide, and LPC(28:0)A2. Based on the pattern of the association results
(Figure 4b), we expect the functional variant to be one of the top 27 variants with p-values <
8.5E-16 and r? > 0.75 with the top variant (Supp Table 7). These 27 variants are located within 9
genes (LINC00474, ATP6V1G1, C90rf91, LOC100505478, DFNB31, LOC101928775, DEC1,
AKNA, and COL27A1), none of which are obvious candidate genes. Formal fine mapping
analysis using PAINTOR?* with different parameters and functional information consistently
identified the top associated variant (rs7863920, p=6.2E-18) to have the highest posterior
probability of causality at 0.87. Functional annotation highlighted one intronic variant
(rs531892793, p=3.9E-17) as a strong potentially functional variant. This variant is highly
enriched in the Amish (MAF=0.04 vs 0.0001) and located in a promoter flanking region in the
AT-hook transcription factor (AKNA) gene; it has the top ENCODE DNase score of 1000
indicating very strong evidence of a DNase | hypersensitivity site?®, an eigenPC score of 3.5 (top
1%) indicating a strong functional prediction based on conservation and allele frequency?®®, and
is predicted to affect transcriptional factor binding with a 2a RegulomeDB classification?’. The
variant is located in a weak transcription site in the islet and skeletal muscle, in a genic
enhancer region in liver tissue, and in an active enhancer region in adipose tissue®.

We also have two well established Amish-enriched variants that we previously reported their
strong association with traditional lipids, but have never been interrogated for association with
lipid species. The first is the missense variant R19X (rs76353203) in the APOC3 gene
(MAF=0.02 vs 0.0008) that we first reported its association with lower TG, higher HDL, and
cardioprotection®. In this analysis, we also report for the first time the significant association of
this variant with lower levels of 3 phosphatidylethanolamines (PE(36:2), (38:6), (34:2)) and the
suggestive association with lower level of another PE, one di- and three triglyceride species.
The second is the well-established Amish-enriched familial hypercholesterolemia (FH) causing
variant R3527Q (rs5742904) in the APOB gene (MAF=0.06 vs 0.0004) that was previously
linked to LDL and TC by our group and others” ?°. As expected, this variant was significantly
associated with increased levels of several cholesterol esters, sphingolipids and phospholipids
while there was no association with acylcarnitine, fatty acids, sterols, and glycerolipids.

b. Common known loci

We also replicated 7 previously well-known lipid signals including UGT1A/3/10 genes on
chromosome 2, ELOVL2 gene on chromosome 6, SLC22A8/A24genes and FADS genes on
chromosome 11, LIPC region on chromosome 15, and 2 independent signals in the SPTLC3
region on chromosome 20.

A ~500kb haplotype at the end of chromosome 2 in a region with a cluster of several uridine
diphosphate glucuronosyltransferase (UGT) genes was strongly associated with higher levels of
androstenediol. UGT transforms small lipophilic molecules, such as steroids, bilirubin,
hormones, and drugs, into water-soluble, excretable metabolites. Our top variant (rs887829)
was previously associated with lower LDL? and higher bilirubin®, however the association with
androstenediol is novel.
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We also identified a novel strong association for a 300Kb haplotype on chromosome 11 with
increased estriol level. The top associated variant (rs184061227, p=1.0E-15) located in a
previously known region encompassing SLC22A8/A24, which are expressed only in kidney.
This region was previously associated with etiocholanolone glucuronide (ETIO-G), which is an
endogenous, naturally occurring metabolite of testosterone®”.

The nearby FADS region on chromosome 11 was the most significant (p=6.3E-36) and
associated with 29 different lipid species including many phosphatidylcholines and cholesterol
esters consistent with previous reports® '".

We also replicated 2 additional known common loci. The first within the fatty acid elongase 2
(ELOVL2) gene on chromosome 6 was associated with PC(42:5) consistent with the previous
association of the same variant with DHA_DPAN3 (docosahexaenoic acid, or DHA(22:5)), and
(docosapentaenoic acid (DPA)(22:6) omega3)?. The second was the well-known lipid loci lipase
C, hepatic type (LIPC) gene region on chromosome 15, associated with several
phosphatidylethanolamines (PEs), similar to previous reports® "'

Finally, we replicated two overlapping but independent signals on chromosome 20 within the
serine palmitoyltransferase long chain base subunit 3 (SPTLC3) gene that encodes a subunit of
the SPTLC complex which catalyzes the rate-limiting step in sphingolipid biosynthesis.
Consistent with previous reports® '", both signals were associated with several ceramides and
sphingomyelins, the first signal is very common (MAF=0.47) and associated with decreased
levels, while the second was less common (MAF=0.07) and associated with increased levels of
lipid species.

Replication/fine mapping in GOLDN

Replicating Amish-enriched rare population loci can be a challenge due to the rarity or absence
of variants in outbred populations. However, outbred populations can provide evidence of
exclusion even when only a few copies are present as the LD between the causal and non-
causal variants that confounds the Amish signal is absent or reduced. If the causal variant is
present, it will generally show strong validation with few copies depending on effect size, but
non-causal variants will not replicate even if expected replication power is extremely high. The
familial hypercholesterolemia causing APOB variant rs5742904_R3527Q" ?° which is enriched
in the Amish provides an extreme example. The variant increases LDL by ~50 mg/dl and has a
p-value=7.8E-25 in our 639 Amish, and through LD generates genome-wide significant signals
at 441 surrounding variants in a 10MB region. Those associations disappear when the Amish
LD is accounted for in a conditional analysis with rs5742904 (Supp Table 7). Fifty out of the 441
variants were absent in GOLDN, including rs5742904. The remaining 391 variants (MAF: 0.001-
0.48) were non-significant in GOLDN, providing confidence they are non-causal. We also
performed the same analysis with the APOC3 TG lowering causal variant rs76353203_R19X on
chromosome 11, which was also absent in GOLDN, and all R19X LD-driven significant Amish
variants were not significant in GOLDN. These two examples support applying this approach to
the other 3 Amish-enriched loci that we identified, where the causal variant is unknown and
most likely not in GOLDN. Power calculations using the observed Amish effect size (or half to
adjust for winner’s curse) can quantify exclusion thresholds for given variants found in outbred
samples. The fine-mapping approach provides a reduced set of potential variants for future
follow up.

For common variants, look up in GOLDN provides direct replication. The basic demographic
and clinical characteristics of the GOLDN replication cohort are presented in Supp Table 1. All
GOLDN association results for our top results are listed in Supp Table 6. We had two novel trait
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associations for androstenediol and estriol. These two sterol lipids did not replicate, however,
these two variants had p-values of 1.9E-04 and 2.9E-04 with PC(36:4)A, and PC(38:4),
respectively in GOLDN. The other five known significant common loci in the Amish had p-values
between 7.5E-03 and 1.4E-35 in GOLDN.

Full data for the 5 Amish-enriched loci with the GOLDN results are shown in Supp Table 7. The
table and the locus zoom plots in Figure 4 show that each of these 5 loci is a long haplotype
ranging from 4 Mb to 10 Mb.

The GLTPDZ2 locus on chromosome 17 has 13 variants with P < 5.0E-08 (3 significant), 12 of
which were not significant in GOLDN, despite all being common (MAF >0.07) and some with
more carriers than Amish (MAC 110-389), while the missense top variant rs536055318 was
absent. More importantly this top variant was the only one out of the 13 variants that was
suggestively associated with lower level of TG in UKBB (p =6.9E-08), further supporting our
hypothesis that it is the most probable functional variant in this region, pending experimental
validation.

The chromosome 12 locus haplotype extends ~5Mb with 38 significant variants, 15 of which
have similar p-values ~E-14 due to the strong LD. The top variant was among 30 variants that
did not replicate in GOLDN and hence can be excluded as potential functional/causal variants
(in particular 18 variants with MAF >0.015 and power between 0.79 and 0.99 for significant
replication). The splice donor missense variant (rs771033566, p=2.2E-14, Val344Leu) in the
ceramide synthase 5 (CERS5) gene which is our best candidate for causal variant is absent in
GOLDN.

The chromosome 9 locus is an 8 Mb long haplotype with 202 significant variants, 27 of which
were prioritized based on p-value and LD with the top variant. Only 4 of these 27 variants were
present in GOLDN and none was significant including the top variant. Our best candidate causal
variant AKNA rs531892793 based on functional annotation was absent in GOLDN.

Suggestive associations

The GWAS yielded 246 suggestive associations (4.5E-10<p<5E-08) within 31 loci, 30 of which
were previously reported. Among the top suggestive results, we identified an association
between ACT(10.0) (p=3.5E-08) and common variants in the ACADM gene which encodes the
medium-chain specific acyl-Coenzyme A dehydrogenase that plays a role in the fatty acid beta-
oxidation pathway and was previously associated with several carnitines (Supp Table 6). We
also identified an association (p=1.3E-08) between GlcCer(d40:1) and common variants in the
ATPase phospholipid transporting 10D (ATP10D) gene. Another independent signal in ATP10D
was previously associated with several glycosphingolipids®2. These 2 signals were also
replicated in GOLDN (p=8.4E-07 and p=2.1E-05, respectively). These results provide added
confidence that other signals in our suggestive interval may be true associations but require
larger sample size to achieve significance. The only locus that may be considered novel, if
replicated, was an association between Cer(d42:2)B and a rare variant (rs79384120, MAF
=0.018, p = 8.3E-09) in the synuclein alpha interacting protein (SNCAIP) gene on chromosome
5, that is linked with Parkinson’s disease® 34, but no known link in this locus to any lipid trait.
Ceramides play a role in the physiology and pathophysiology of the central nervous system®,
this role may be genetically determined, at least partially, by SNCAIP. This variant did not
replicate in GOLDN, indicating that it is either a false positive or the functional variant is another
linked variant.
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Lookup of previously identified loci in our results

While there are many published GWAS for metabolomics, Tabassum'' is the only published
large GWAS that focused on lipidomics and has the most overlap with our study. Thus, we
report our results for their top associated variant in Supp Table 8. In their Supp Data 2,
Tabassum et. al."" reported 3,754 lipidomic-variant pair associations with p<5.0x10-8
comprising 820 variants and 80 lipid species. For 702 variants present in our data, the top
associated traits had p-values ranging from 0.051 to 6.3E-36, of which 219 (31%) met the
Bonferroni replication significance threshold (0.05/702 =7.1E-05). We also report our
association results for the same trait and variant for 1476 trait-variant pairs, of which 359 (24%)
have p-value less than the Bonferroni replication threshold of 3.3E-05, and 1,082 (73%) with
p<0.05. These Bonferroni thresholds are conservative as they do not account for the correlation
between lipid species and the LD between variants. This high level of consistency with
previously reported loci highlights the quality of our data and confirms the generalizability of
findings in a founder population to outbred populations.

Association testing using lipidome compared to traditional lipids

To assess the power of the lipidome to identify genetic signals compared to traditional lipids we
tested the association of 226 known lipid associated variants available in Amish with both
lipidome and traditional lipids using the same 639 Amish subjects. As previously reported’, the
lipidome showed higher power in identifying the association signals compared to traditional
lipids where only APOB had stronger association with LDL using the same sample size (Supp
Figure 4). Similarly, when we tested the association between 1,602 variants with p < 5.0 E-08 in
any lipid species with traditional lipids in the same sample size, we found strong signals only for
APOB and APOC3 (Suppl Table 9) and only APOB had stronger association with LDL.

DISCUSSION

Here we report the GWAS results for 355 lipid species, the largest number tested in a single
study to date.

We identified three novel rare-population variants that are enriched in the Amish on
chromosomes 9,12 and 17 that have not been previously associated with any lipid species or
traditional lipids. Leveraging results from the GOLDN study we were able to finemap large
numbers of variants present on long Amish-enriched haplotypes to identify a potentially
functional variant in a biologically plausible gene for each of the three loci.

The first is a missense variant in the promoter of the GLTPDZ2 gene that is mainly expressed in
liver and kidney and plays a role in the intermembrane transfer of glycolipids but not neutral or
phospholipid®, consistent with its association only with SM(d40:0) in this study. While 2
independent studies previously pointed to this gene'" '®, neither identified variant had an
obvious functional mechanism. The position of this rare missense variant rs536055318 (A263T)
in an aTSS within the promoter region of GLTPDZ2 can alter its expression leading to lower
levels of SM and reduced atherosclerosis''. Moreover, rs536055318 was recently associated
with lower levels of TG in UKBB with a suggestive p-value of 6.9E-08. This finding is consistent
with previously observed changes in cellular lipid metabolism as a result of up and down
regulating GLT protein®’. Several SM species were previously associated with CVD3°
Collectively, these findings suggest GLTPDZ2 as a potential therapeutic target for CVD
protection. Future Mendelian Randomization studies may help to disentangle the direction of
causality. This strong association (p=1.1E-12) with a lower level of SM(d40:0) was identified
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using only 650 Amish subjects, while it required 461,140 UKBB subjects to find a suggestive
association with TG.

The second is a potentially disease-causing splice donor missense variant (rs771033566,
Val344Leu) in the CERSS gene, associated with lower SM(32:2). Another common coding
variant in this gene was previously associated with increased systolic/diastolic blood pressure
and hypertension® '°. The sphingolipid metabolic pathway was previously linked to blood
pressure regulation and response to thiazide diuretics?*??, suggesting that CERS5 may affect
blood pressure level and drug response through alteration of sphingolipids, which may have
personalized medicine implications. CERSS is one of the six members of the ceramide synthase
gene family which plays a major role in the sphingolipid metabolic salvage pathway', and while
many genetic variants in CERS4 have been previously associated with several SMs", this is the
first association of a SM species with a CERSS genetic variant.

The third is an intronic variant (rs531892793) that was associated with lower levels of five
glucosylceramide species with acyl chains of 38 or more carbons, but not with the species with
34 carbons. This result is consistent with a recent study that found significantly increased serum
levels of only glucosylceramide species with acyl chains of 38 or more carbons among CAD
cases compared to controls™, but not with 2 shorter carbon species. This variant has very
strong regulatory function prediction and is located in the widely expressed AKNA gene that
encodes AT-hook transcription factor. This transcription factor is essential for normal
development and immune function, as indicated by the gene name that means ‘mother’ in Inuit
and Mayan language*'. AKNA knock out mice were weak, short lived and suffered from
systemic inflamation*?. Other common variants in AKNA were previously associated with TC,
HDL, ApoA1, ALT, AST, and testosterone'® ***°, Collectively these data support our hypothesis
that AKNA_rs531892793 is the best potential functional gene and variant in this locus, however
more work is needed to confirm this result.

Two well-known rare-population lipid variants that are Amish-enriched and previously reported
by our group are the FH variant APOB_R3527Q and the cardioprotective APOC3_R19X. Given
the rarity of these variants in the general population they have never been interrogated for
association with lipid species. While this is the first report for the associations of these variants
with lipidomics as detailed herein, these associations are not unexpected based on the structure
and function of associated traditional lipids. The association of the missense rare population
variant APOC3_R19X with lower TG, higher HDL, and cardioprotection® was first reported by us
and was later replicated in other studies*®*° and led to the development of APOC3 antisense
molecules that are currently in phase IlI clinical trials for the treatment of hypertriglyceridemia®”
%1 Similarly, the three novel variants reported here may lead to novel treatment and/or
personalized medicine once there is a large enough general population study for replication and
functional study to prove causation. Replicating the association of these three novel variants
would require larger sample sizes with similar lipid species measured and whole genome
sequence data, which currently does not exist but may soon be available through large
consortia like TOPMed®2.

We also replicated seven previously well-known lipid signals including UGT, ELOVL2,
SLC22A8/A24, FADS, LIPC, and two independent signals in the SPTLC3 gene, among these
seven, we have two cases of novel trait associations in UGT and SLC22A8/A24. First, in
addition to previous associations of UGT_rs887829 with lower LDL?® and higher bilirubin®, we
also found an association with higher androstenediol. This pleiotropic effect may explain the
inverse association of bilirubin with LDL®® and CVD protection®* *°. However, androstenediol
taken as a dietary supplement was associated with increased LDL and unfavorable CHD risk in
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men participating in a high-intensity resistance training program®®, pointing to the potential
difference between beneficial endogenous effects of a genetic variant that both decreases LDL
and increases androstenediol compared to the potential deleterious opposite exogenous effects
of androstenediol as a dietary supplement. Second, we found the SLC22A8/A24 locus that was
previously associated with ETIO-G to be associated with higher estriol. Estriol is a weaker form
of estrogen, and interestingly, in UKBB, this region was associated with cholecystitis without
cholelithiasis (inflamed gallbladder without gallstones). This association may be the underlying
inflammatory first step in the process that leads to two-fold increase gallstone formation in
women of reproductive age or on birth control medication that have estrogen compared to
males®’, and may be informative in personalized medicine. This association is independent of
the nearby FADS gene region that has been associated with gallstones®® and assumed to work
through its effect on lipids. However, given the lack of replication in GOLDN, further
investigation is warranted.

The phenotype and genotype correlation pattern as well as the heritability estimates in our study
were generally in line with other general population studies. This study also replicated many of
previously identified common variants which highlight the generalizability of the Amish results to
the general population, besides its added value in identifying rare population variants enriched
by drift. While traditional lipids explained a small proportion of the variance of the lipidome, and
the lipidome explained a significant proportion of the genetic variance in traditional lipids, the
overlap was incomplete leaving a significant proportion in both sides remained to be explained.
This limited overlap highlights the difference in the genetic architecture and the complimentary
value in using both traditional lipids and lipidome in understanding lipid genetic architecture.

While this study may be limited by a relatively small sample size, we were still able to identify
three novel rare-population variants. Larger sample size in Amish and other founder population
will undoubtedly identify more rare variants which would be challenging to identify in the general
population and can inform biological mechanisms and therapeutic targets relevant to all
humans. While this GWAS included 355 lipid species, the largest to date, we excluded lipid
species with low quality data, so more complete profiling is warranted for comprehensive
interrogation.

In conclusion, we identified novel associations for three rare-population Amish-enriched loci with
several sphingolipids and were able to suggest a potential functional/causal variant in each
locus including GLPTDZ2_rs536055318, CERS5_rs771033566, and AKNA_rs531892793. We
report for the first time the association of several lipid species with two well-known lipid rare
variants: APOB_rs5742904 and APOC3 rs76353203. We also report novel association for two
sterols with well-known common loci: androstenediol with the UGT locus on chromosome 2 and
estriol with the SLC22A8/A24 locus on chromosome 11. These results strongly demonstrate the
combined power of detailed lipidome profiling and founder populations to identify novel variants
enriched through genetic drift that due to their general larger effect size can accelerate lipid loci
discovery to significantly advance our understanding of genetic contribution to lipid biology.

MATERIALS AND METHODS

Study populations

The OId Order Amish (OOA) population of Lancaster County, PA immigrated to the Colonies
from Central Europe in the early 1700’s. There are currently around 40,000 OOA individuals in
the Lancaster area, nearly all of whom can trace their ancestry back about 15 generations to
approximately 750 founders. Investigators at the University of Maryland Baltimore have been
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studying the genetic determinants of cardiometabolic health in this population since 1993. To
date, over 7,000 Amish adults have participated in one or more of our studies as part of the
Amish Complex Disease Research Program®®. The samples used in this study were participants
of Heredity and Phenotype Intervention (HAPI) Heart Study®®. Briefly, HAPI was initiated in 2002
to identify the genetic and environmental determinants of responses (blood pressure,
triglyceride excursion and platelet aggregation) to four short-term interventions including a cold
pressor stress test, a high salt diet, a high fat challenge, and an aspirin therapy in a four-week
time period. HAPI recruited 1,003 OOA, and the interventions were carried out in 868 relatively
healthy OOA adults (>= 20 years of age). Participants were asked to discontinue the use of all
medications, vitamins and supplements for at least 7 days prior to the first visit and during the
interventions, to fast at least 12 hours prior to their visit, and to restrain themselves from doing
excessive physical activity on the morning of their appointment. Baseline blood drawn from 650
participants was used for the lipidomic profiling in this study. The study protocol was approved
by the institutional review board at the University of Maryland. Informed consent was obtained
from each of the study participants.

GOLDN (Genetics of Lipid Lowering Drugs and Diet Network), the largest study of postprandial
dyslipidemia that offers NMR, clinical lipid, and lipidomic measures, was initiated to assess the
interaction of genetic factors with environmental interventions (intake of a high-fat meal and/or
fenofibrate treatment)®'. Briefly, the study recruited European American families with at least
two siblings from two field centers (Minneapolis, MN and Salt Lake City, UT) of the Family Heart
Study (FHS). Participants were excluded if they 1) had fasting triglycerides (TGs) = 1500 mg/dL,
2) had a history of kidney, liver, pancreas, or gallbladder disease, recent myocardial infarction or
revascularization, or nutrient malabsorption, 3) reported a current use of insulin, and 4) were
pregnant or lactating. Of the 1327 participants who were initially screened, 1048 (including 546
women) met the eligibility criteria and were included in the study. A written consent form was
provided for each participant and the protocol of the study was reviewed and approved by the
institutional review boards at the University of Utah, University of Minnesota, and Tufts
University/New England Medical Center.

Lipidomic profiling
The technical details of the laboratory protocols and methods of the lipodomics experiments are
described in our previous paper® and reproduced here for completeness.

Baseline HAPI and GOLDN lipidomics data includes neutral lipids and phospholipids that were
collected using UPLC—QTOFMS at the West Coast Metabolomics Center at University of
California Davis. The protocol for this measurement was described in detail elsewhere®? 3,
Briefly, the whole process was divided into three steps: lipid extraction and separation, data
acquisition and lipid identification. Methyl tert-butyl ether (MTBE), methanol, and water were
used to extract plasma lipids. The quality control (QC) samples were method blanks and pooled
human plasma (BioreclamationlVT). The separated non-polar phase was injected into a Waters
Acquity UPLC CSH C18 (100 mm length x 2.1 mm id; 1.7 pm particle size) with an additional
Waters Acquity VanGuard CSH C18 pre-column (5 mm x 2.1 mm id; 1.7 ym particle size)
maintained at 65°C was coupled to an Agilent 1290 Infinity UHPLC (Agilent Technologies) for
ESI positive and negative modes. Mobile phase modifiers included ammonium formate and
formic acid for positive mode and ammonium acetate (Sigma—Aldrich) for negative mode. The
same mobile phase composition of (A) 60:40 v/v acetonitrile:water (LC-MS grade) and (B) 90:10
v/v isopropanol:acetonitrile was used for both positive and negative modes. An Agilent 6550
QTOF with a jet stream electrospray source was employed for acquiring full scan data in the
mass range m/z 65—-1700 in positive and negative modes with scan rate of 2 spectra/second.
Instrument parameters were as follows for the ESI (+) mode — gas temperature 325 °C, gas flow
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81/min, nebulizer 35 psig, sheath gas temperature 350 °C, sheath gas flow 11, capillary voltage
3500V, nozzle voltage 1000 V, fragmentor voltage 120 V and skimmer 65 V. In negative ion
mode, gas temperature 200°C, gas flow 14 I/min, fragmentor 175V, with the other parameters
identical to positive ion mode. Data are collected in centroid mode at a rate of 2 scans per
second. Injection volume was 1.7 uL for the positive mode and 5 pL for the negative mode. The
gradient started at 15% B, ramped to 30% at 2 min, 48% at 2.5 min, 82% at 11 min, 99% at
11.5 min and kept at 99% B until 12 min before ramping down to 15% B at 12.1 min which was
kept isocratic until 15 min to equilibrate the column. The total run time was 15 min and the flow
rate was 0.6 ml/min. Data were acquired in nine batches and every ten samples, one quality
control sample was analyzed. MS1 data were acquired for all samples, and MS/MS data were
acquired for a set of pooled samples. Data were processed with the Agilent Quant 7.0 software.
Lipids levels were reported as chromatographic peak heights and the data were normalized
using the SERRF method®. After normalization, the relative standard deviation of quality control
samples is 4.7% and 3.4% for negative and positive mode respectively. Lipid identification was
performed by converting the acquired MS/MS spectra to the mascot generic format (MGF) and
then a library search using the in-silico MS/MS library LipidBlast. After quality control, 355 lipid
compounds were included in the HAPI lipidomic GWAS and 328 in the GOLDN replication
study.

HAPI chip genotyping and imputation

Genomic DNA was extracted from whole blood from 1856 individuals of the OOA and
quantitated using PicoGreen. Genome-wide genotyping was performed with Affymetrix 500K
(n=1252, including all HAPI participants) and Affymetrix 6.0 (n=604) arrays at the University of
Maryland Biopolymer Core Facility. The BRLMM algorithm was used for genotype calling. Prior
to imputation, the two chips were merged into a single file. Samples with call rate <0.93, high
level of Mendelian error, or gender mismatch were excluded. Variants with >2% missing data,
Hardy-Weinberg expectation (HWE) p-value < 1E-10, Mendelian errors >1% or with MAF < 0.01
(N=366,169) were excluded. We also excluded variants on the Y chromosome and
mitochondrial genome, palindromic variants with frequency >0.4, and variants that were not in
the TOPMed Freeze 5b reference panel. These QC procedures left 1,833 participants and
307,238 variants in the genotype file for imputation. The genotype data were uploaded to the
Michigan Imputation Server® where the pre-phasing was performed using Eagle v2.4%, and
then imputation to the TOPMed Freeze 5b reference panel was performed using Minimac4*®.
Following imputation, we excluded variants with imputation quality/INFO <0.9, MAF <0.0001 or
deviation from HWE at p<1.0E-09. These processes left 7,917,357 variants for the association
analysis with 639 samples with both phenotypes and genotypes.

Whole-genome sequencing for GOLDN

Whole-genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed)
program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for
“‘NHLBI TOPMed: Genetics of Lipid Lowering Drugs and Diet Network” (phs001359) was
performed at the North West Genomics Center, University of Washington. Centralized read
mapping and genotype calling, along with variant quality metrics and filtering were provided by
the TOPMed Informatics Research Center. Data management, sample-identity QC, and general
study coordination were provided by the TOPMed Data Coordinating Center. Library preparation
and whole-genome sequencing were performed on 967 GOLDN samples by North West
Genomics Center, University of Washington. The NHLBI Informatics Resource Core at the
University of Michigan performed alignment, base calling, and sequence quality scoring and
variant calling of all TOPMed samples using the GotCloud pipeline®’. Variant calling used a
support vector machine (SVM) trained using known variants. Variants passing all quality filters
with read depth at least 10 were delivered in BCF format and used for association analysis.
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Further variant QC included removing all sites in low-complexity regions®, and on the X
chromosome. There were 835 GOLDN samples with both lipidome and WGS data and used for
the GWAS.

Phenotype preparation

In HAPI, to adjust for potential technical artifacts and non-normality of raw lipidomic values,
each lipidomic was first regressed in a linear model adjusting for age, age squared, sex, and
experimental technical artifacts including batch, box, row, position and plate, then the regression
residuals were inverse normalized. No adjustment for medication was included as none of the
HAPI subjects were on lipid lowering medication. These transformed lipidomic values were used
in all Amish analyses. The identical procedure was applied to lipid phenotypes, excluding
technical artifacts from the linear regression, to standardize analyses combining both lipid and
lipidome.

In GOLDN the exact same lipid panel was completed and an inverse rank normal transformation
was used on each lipid class phenotypes.

Variance decomposition

Mixed model variance component analysis was used to partition observed phenotypic variance
o?p into causal components % and residual error 6%, that is, 6% = 6% + 6%+...+ 6%+ 6%. The
variance components o correspond to random effects bx assumed to follow multivariate
Gaussian distribution bx ~N(0,6% ), with mean zero, covariance matrix Zx. The matrix X«
contains pairwise covariance values between subjects and the variance components c% are
estimated using mixed model maximum likelihood methods incorporating corresponding
covariance matrices. For interpretability the estimated variances c% are converted to the
proportion of phenotypic variance explained, called Ik, by dividing by the phenotypic variance
o°p, that is, M= o?/c%. Likelihood ratio test (LRT) p-values can be used to compare nested
models of different random effects to determine if the model with more components provides
significantly better fit of the data. The LRT is applied using standard sequential procedures to
build the most parsimonious causal component decomposition of the phenotypic variance using
a predefined p-value threshold of 0.05. At each step LRT p-values are computed comparing the
current best model with that model plus one of the remaining random effects. The current model
is then updated with the remaining random effect with the smallest p-value. The procedure is
repeated until no LRT p-value is less than 0.05.

Additive and dominant heritability

The pedigree kinship coefficient measures the expected probability that two subjects share an
allele identical by descent given the pedigree structure. An Amish kinship covariance matrix was
constructed using a single 14-generation pedigree that connects all 650 subjects back to their
18" century founders. The Amish population structure provides unique opportunities to separate
genetic and environmental effects important in lipidome as many distant relative pairs, such as
cousins, share genes from the same founder but not common environments such as diet and
lifestyle. A dominance covariance matrix was also constructed using the pedigree structure that
measures the probability that two subjects share a genotype identical by descent.

Data-derived covariance matrices

In multivariate statistics the sample covariance matrix can be constructed using any set of
variables measured across subjects. First consider the design or data matrix X that contains
measured variables such as lipidome on subjects that is used in regression to estimate the
effect of the variables as fixed effects. To construct the covariance matrix the variables in X are
first mean centered and normalized to remove potential scale differences between them. Then
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the subject-by-subject sample covariance matrix S is defined as S=XX', where X is the
transpose of X. We describe details of how covariance matrices were constructed using genetic
markers, lipidomics and lipids.

Lipidome variance explained by known lipid variants

To measure the proportion of lipidomic and traditional lipid variance due to genetic markers
associated with HDL, LDL, TC and TG lipid levels, genetic relatedness matrices (GRM) were
constructed using SNPs identified from the literature as being genome-wide significant for each
lipid plus known Amish-specific variants (APOB_rs5742904", APOC3 rs763532038,
B4GALT1_rs551564683°, TIMD4_rs898956003'%) (4 variants). The number of literature SNPs
used were 99 for HDL, 77 for LDL, 97 for TC, and 73 for TG. APOB, B4GALT1 and TIMD4
variants were included in the LDL and TC GRMs and the APOCS3 variant in the TG and HDL
GRMs. SNP genotyping was available on the 639 subjects with lipidomics. To estimate the
genetic contribution of GWAS SNPs associated with lipidomic and traditional lipids as
phenotypes a mixed model analysis was performed including kinship and lipid SNP GRM as
random effects.

Genetic and phenotypic correlation

The software biMM®® was used to calculate additive genetic correlations between 359 variables
(355 lipidomics and 4 traditional lipids (HDL, LDL, TC, TG)) on data from 639 subjects using the
Amish kinship matrix. biMM returns bivariate mixed model maximum likelihood estimates of
genetic and environmental correlation that includes estimates of heritability of each trait genetic
correlation between them allowing for residual errors between traits. biMM does not constrain
genetic correlation estimates to be in the range [-1,1], thus out-of-range correlations, which were
common when one or both traits have low heritability, were set to missing as estimates were not
deemed reliable. There were 7428 with values <-1.0 and 9020 with values >1.0. Out-of-range
estimates are represented by white squares in the heatmap, and only 64,621 correlation are
included in Supp Table 3. R’ was used to calculate the pairwise phenotypic Pearson
correlations for lipid species and traditional lipids.

Traditional lipid variance explained by lipidome classes

Covariance matrices were constructed for each of the 13 lipid classes (ACT, CE, Cer, DAG, FA,
GlcCer, LPC, LPE, PC, PE, PI, SM, TAG) using mean centered and normalized raw lipidomic
values from each class in the data matrix X. These covariance matrices were used in a mixed
model with traditional lipid (HDL, LDL, TG and TC) as the trait and kinship and lipidomic class
as random effects. We estimated the marginal contribution of each lipid class separately and
also performed a sequential analysis as described above to determine the best multi-class
model fit for each lipid which estimates the joint proportion of traditional lipid variance accounted
for by the lipidomic class.

Association analyses

In HAPI, genetic association analysis of inverse normalized lipid species was performed using
linear mixed models to account for familial correlation using the genetic relationship matrix
(GRM)™". For 180 lipid species that showed nominal association (p<1.0E-03) with any of the 4
Amish enriched lipid variants (APOB_rs5742904, APOC3_rs76353203,
B4GALT1_rs551564683, TIMD4_rs898956003), we reran the association analyses adjusting for
the variant(s) as detailed in Supp Table 2. The effect size for all traits is reported in standard
deviation units for comparability. Multiple testing adjusted significance threshold of 4.5E-10 was
determined by dividing the standard GWAS level of 5E-08 by the number of principle
components (110) that explained >95% of the variance in the 355 metabolomic variables. All
associations between 5E-08 and 4.5E-10 were considered suggestive. The number of
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independent signals at each locus was determined using sequential conditional analysis. The
novel loci were determined by conditioning on preidentified variants within 1Mb from the top
associated variant.

In GOLDN we performed a parallel linear mixed model analysis on the inverse normally
transformed lipid phenotypes in Saige-0.29 pipeline deployed in Encore analytics framework
(i.e. Fast linear mixed model with kinship adjustment (saige-qt)). Pre-derived top 10 PCs from
TOPMed WGS cohort was adjusted as covariates along with age, sex and center.

Bonferroni corrected p-value of 1.3E-05 was used for GOLDN replication accounting for 3631
trait-variant pairs of GOLDN association results included in Supp Table 6

Annotation and biobank lookups

Look ups of top results in publicly available Phe WAS databases including UK Biobank’?7®,
FinnGen’® and BioBank Japan’’ was performed using the “Omics Analysis, Search and
Information System” (OASIS)"®, a web-based application for mining and visualizing GWAS
results via integration with a broad spectrum of available data bases for functional annotation
such as dbSNP’®, gnomAD®, GTEx?', Open Targets Genetics®?, and the UCSC Genome
Browser®? to visualize their proximity to functional regions (e.g. binding sites, Dnase
hypersensitivity sites, enhancer/promoter regions).
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FIGURES

Fig 1: Heritability of the lipid species. a, Histogram showing the heritability distribution for all
lipid species. b, box plot for the heritability by class. Heritabilities presented as unadjusted and
adjusted for 4 Amish-enriched lipid variants (APOB_rs5742904, APOC3_rs76353203,
B4GALT1_rs551564683, TIMD4_rs898956003). Abbreviations: ACT acylcarnitine, CE
cholesteryl ester, Cer ceramide, DAG diglycerides, FA fatty acids, GlcCer glycosphingolipids,
LPC lysophosphatidylcholines, LPE lysophosphatidylethanolamines, PC phosphatidylcholines,
PE phosphatidylethanolamine, PI phosphatidylinositol, SM sphingomyelin, TAG triglycerides, ST
sterols, TRAD traditional lipids.
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Fig 2: Contribution of previously identified lipid GWAS variants to Ipidomics variance.
Heritabilty estimates using kinship separately and then jointly with a SNP GRM for each
traditional lipid. Outliers are suppressed from the plot for readability. Abbreviations: ACT
acylcarnitine, CE cholesteryl ester, Cer ceramide, DAG diglycerides, FA fatty acids, GlcCer
glycosphingolipids, LPC lysophosphatidylcholines, LPE lysophosphatidylethanolamines, PC
phosphatidylcholines, PE phosphatidylethanolamine, PI phosphatidylinositol, SM
sphingomyelin, TAG triglycerides, ST sterols.
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Fig3: Lipidomic association results. a, Manhattan plot for the association results of all 355
lipid species. Amish-enriched loci denoted in red, previously known signals denoted in blue and
previously known signals with novel trait association and/or novel variant in known loci in green.
Blue line marks a genome-wide suggestive threshold (5.0E-08) and red line marks a genome-
wide significant threshold (4.5E-10). b, GWAS results for all significantly associated lipid
species in Amish-enriched loci. ¢, GWAS results for all significantly associated lipid species
in previously known loci. Abbreviations: CE cholesteryl ester, Cer ceramide, GlcCer
glycosphingolipids, PC phosphatidylcholines, PE phosphatidylethanolamine, SM sphingomyelin.
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Fig4: Rare-population but Amish-enriched loci. Locus zoom for 5 loci in a, chromosome 2
with SM(d34:1) b, chromosome 9 with GlcCer(d42:2) ¢, chromosome 11 with PE(36:2) d,
chromosome 12 with SM(d32:2) and e, chromosome 17 with SM(d40:0). Abbreviations: GlcCer

glycosphingolipids, PE phosphatidylethanolamine, SM sphingomyelin.
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Table 1: Genomic loci significantly associated with lipid species

GOLDN results

SNP position A1/A2 A2_Freq_Amish A2_Freq_Eur Top associated trait Effect® P value gene type effect P value
Rare-population Amish-enriched loci
rs5742904 2:21006288 /T 0.0634 0.0004 SM(d34:1) 1.22  7.89E-25 APOB missense
rs7863920 9:115987317 G/A 0.0433 0.0169 GlcCer(d42:2) -1.14 6.22E-18 LINC00474 intergenic
rs76353203 11:116830637 /T 0.0219 0.0008 PE(36:2) -1.45 6.29E-13 APOC3 nonsense
rs147698408 12:50001009 T/C 0.0447 0.0159 SM(d32:2) -1.06 1.79E-14 RACGAP1 intronic -
rs536055318 17:4790207 G/A 0.0762 0.0014 SM(d40:0) -0.76 1.14E-12 GLTPD2 missense
Common known loci
rs887829 2:233759924 /T 0.4194 0.3272 androstenediol 0.44 1.23E-15 UGT1A,3,10 intronic -0.02 7.25E-01
rs3778167 6:11033235 T/C 0.2771 0.4233 PC(42:5) -0.40 3.65E-10 ELOVL2 intronic -0.24 3.78E-06
rs174578 11:61838027 T/A 0.2515 0.3552 PC(37:4) -0.78 6.33E-36 FADS2 intronic -0.43  2.32E-14
rs184061227 11:63073643 A/G 0.0555 0.0714 estriol 0.98 1.05E-15 SLC22A24 intergenic  -0.22  2.70E-02
rs10468017 15:58386313 /T 0.2621 0.2869 PE(36:4) 0.48 7.32E-15 LIPC intergenic  0.28  2.76E-07
rs1321940 20:12979237 A/G 0.5239 0.6014 Cer(d43:1) -0.69 3.37E-32 LOC101929486 intergenic -0.45 2.95E-19
rs360525 20:13020644 G/A 0.0728 0.1240 Cer(d43:1) 0.86 5.34E-15 SPTLC3 intronic 0.19 7.58E-03

A1: Non-coded allele
A2: Effect allele

A2_freq: Effect allele frequency

a: Effect size in standard deviation units

Position: Variant position according to hg38

In bold: novel locus, or novel trait in a known locus

Cer: ceramide
GlcCer: glycosphingolipids
PC: phosphatidylcholines

PE: phosphatidylethanolamine

SM: sphingomyelin


https://doi.org/10.1101/2021.05.21.445208
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.21.445208; this version posted August 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplementary Tables (in Excel file)

Supplementary Table 1: Demographic and clinical characteristics (mean (sd)) of the HAPI
discovery cohort and the GOLDN replication cohort.

Supplementary Table 2: Heritability estimates and genomic inflation factor of the 355 lipidomic
species tested in the discovery GWAS.

Supplementary Table 3: Pairwise phenotype (upper triangle) and genetic (lower triangle)
correlation between lipid species and traditional lipids. Blank genetic correlations indicate the
maximum likelihood estimates were outside valid correlation bounds.

Supplementary Table 4: Single lipidome contribution to traditional lipids.
Results from joint estimate of heritability and lipidomic class variance for each traditional lipid.

Supplementary Table 5: Cumulative lipidome contribution to traditional lipids.

Results from forward sequential variance component model was run starting with heritability,
then at each step the LRT p-value of the current model vs. the current model with a remaining
lipid class was computed. The lipid class with lowest p-value was then added to the current
model. The process continued until the best LRT p-value > 0.95.

Supplementary Table 6: All GWAS results with p-value <5.0E-08 in the Amish and GOLDN
replication association results.

Supplementary Table 7: Results of the significant (p<4.5E-10) 5 Amish enriched loci in the top
associated trait and GOLDN replication association results for the same trait and variant.

Supplementary Table 8: Amish association results for Tabassum results

Supplementary Table 9: Association results of the 1602 top lipidomic associated variants with
four traditional lipids HDL, LDL, TC and TG.
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Supplementary Figures

Supplementary Figure 1: (in a separate pdf for readability) heatmap for pairwise phenotype
(upper triangle) and genetic (lower triangle) correlation between lipid species and traditional
lipids. White squares in the heatmap represent genetic correlation estimates outside the interval
[-1,1] that were set to missing. Such estimates are due to one or both traits having low
heritability, thus, reducing power to estimate genetic correlation robustly.

Supplementary Figure 2: Box plot comparing genetic and phenotypic correlations of all
triacyclglycerol (TAG) species stratified by number of species (0,1 or 2) in the correlation
containing 54 or more carbons and 4 or more double bonds. N is the number of pairs in the

group.
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Supplementary Figure 3: Lipidome contribution to traditional lipids. The heritability (h?) and the
proportion of lipid class variance (Lipidomic class) estimated from a variance component model
including lipid class species as a random effect. The exact estimates are in Supplementary
Table 4. Abbreviations: ACT acylcarnitine, CE cholesteryl ester, Cer ceramide, DAG
diglycerides, FA fatty acid, GlcCer glycosphingolipid, LPC lysophosphatidylcholine, LPE
lysophosphatidylethanolamine, PC phosphatidylcholine, PE phosphatidylethanolamine, Pl
phosphatidylinositol, SM sphingomyelin, TAG triglyceride.
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Supplementary Figure 4: The association of known lipid variants with lipid species (The top
Manhattan plot ) and traditional lipids (the bottom Manhattan plot )

Both the number and statistical significance is greater in the lipidomic plot, showing the higher
power of lipidomics compared to traditional lipids to identify genetic associations. Abbreviations:
ACT acylcarnitine, CE cholesteryl ester, Cer ceramide, DG diglycerides, FA fatty acid, GlcCer
glycosphingolipid, LPC lysophosphatidylcholine, LPE lysophosphatidylethanolamine, PC
phosphatidylcholine, PE phosphatidylethanolamine, Pl phosphatidylinositol, SM sphingomyelin,
TAG triglyceride.
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