

1 **Genetic basis and dual adaptive role of floral**

2 **pigmentation in sunflowers**

3

4 Marco Todesco^{1*}, Natalia Bercovich¹, Amy Kim¹, Ivana Imerovski¹, Gregory L. Owens^{1,2},
5 Óscar Dorado Ruiz¹, Srinidhi V. Holalu³, Lufiani L. Madilao⁴, Mojtaba Jahani¹, Jean-Sébastien
6 Légaré¹, Benjamin K. Blackman³, Loren H. Rieseberg^{1*}

7

8 ¹*Department of Botany and Biodiversity Research Centre, University of British Columbia,*
9 *Vancouver, British Columbia, Canada.*

10 ²*Department of Biology, University of Victoria, Victoria, British Columbia, Canada.*

11 ³*Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley,*
12 *California, USA.*

13 ⁴*Michael Smith Laboratory and Wine Research Centre, University of British Columbia,*
14 *Vancouver, British Columbia, Canada.*

15

16 *Corresponding authors: *mtodesco@biodiversity.ubc.ca* (M.T.), *lriesebe@mail.ubc.ca* (L.H.R.).

17 **Abstract**

18 Variation in floral displays, both between and within species, has been long known to be shaped
19 by the mutualistic interactions that plants establish with their pollinators. However, increasing
20 evidence suggests that abiotic selection pressures influence floral diversity as well. Here we
21 analyze the genetic and environmental factors that underlie patterns of floral pigmentation in
22 wild sunflowers. While sunflower inflorescences appear invariably yellow to the human eye,
23 they display extreme diversity for patterns of ultraviolet pigmentation, which are visible to most
24 pollinators. We show that this diversity is largely controlled by cis-regulatory variation at a
25 single MYB transcription factor, HaMYB111, through accumulation of UV-absorbing flavonol
26 glycosides. As expected, different patterns of ultraviolet pigments in flowers have a strong effect
27 on pollinator preferences. However, variation for floral ultraviolet patterns is also associated with
28 environmental variables, especially relative humidity, across populations of wild sunflowers.
29 Larger ultraviolet patterns, which are found in drier environments, limit transpiration, therefore
30 reducing water loss. The dual role of floral UV patterns in pollination attraction and abiotic
31 responses reveals the complex adaptive balance underlying the evolution of floral traits.

32 Introduction

33 The diversity in colour and colour patterns found in flowers is one of the most extraordinary
34 examples of adaptive variation in the plant world. As remarkable as the variation that we can
35 observe is, even more of it lays just outside our perception. Many species accumulate pigments
36 that absorb ultraviolet (UV) radiation in their flowers; while these patterns are invisible to the
37 human eye, they can be perceived by pollinators, most of which can see in the near UV (Chittka
38 et al., 1994, Tovée, 1995). UV patterns have been shown to increase floral visibility, and to have
39 a major influence on pollinator visitation and preference (Brock et al., 2016, Horth et al., 2014,
40 Rae and Vamosi, 2013, Sheehan et al., 2016). Besides their role in pollinator attraction, patterns
41 of UV-absorbing pigments in flowers have also been linked, directly or indirectly, to other biotic
42 and abiotic factors (Gronquist et al., 2001, Koski and Ashman, 2015, Koski and Ashman, 2016).

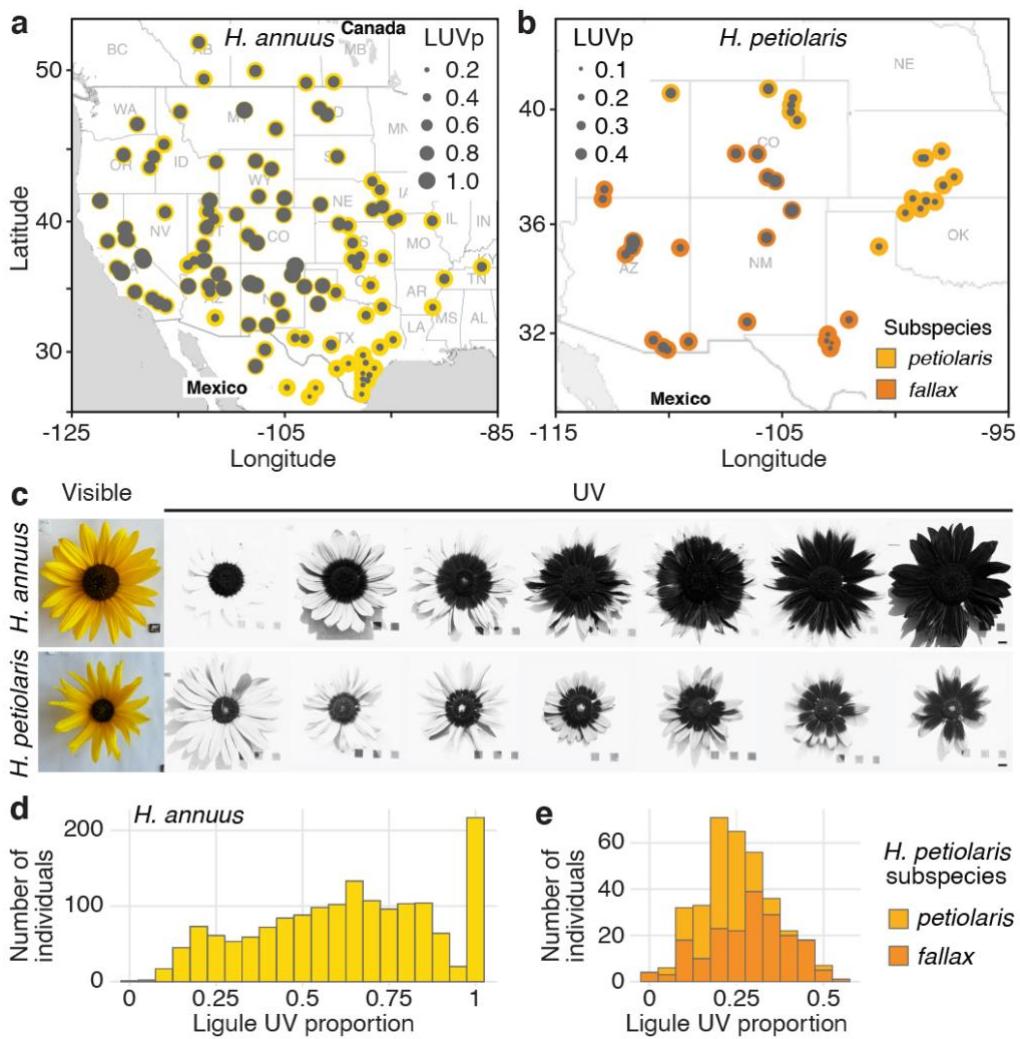
43 Sunflowers have come to enjoy an iconic status in popular culture (as testified by the, arguably
44 dubious, honour of being one of the only five flower species with a dedicated emoji
45 (Unicode.org, 2020)). This is despite being apparently largely immune from the aforementioned
46 diversification for flower colour; all 50 species of wild sunflowers have ligules (the enlarged
47 modified petals of the outermost whorl of florets in the sunflower inflorescences) that appear of
48 the same bright yellow colour to the human eye. However, ligules also accumulate UV-
49 absorbing pigments at their base, while their tip reflects UV radiation (Harborne and Smith,
50 1978, Wojtaszek and Maier, 2014). Across the whole inflorescence, this results in a bullseye
51 pattern with an external UV-reflecting ring and an internal UV-absorbing ring. Besides their
52 well-described role in pollinator attraction, UV bullseyes have been proposed to act as nectar
53 guides, helping pollinators orient towards nectar rewards once they land on the petal, although
54 recent experiments have challenged this hypothesis (Koski and Ashman, 2014). Considerable

55 variation in the size of UV bullseye patterns has been observed between and within plant species
56 (Koski and Ashman, 2013, Koski and Ashman, 2016); however, little is known about the
57 ecological factors that drive this variation, or the genetic determinants that control it.

58

59 **Results and Discussion**

60 **Floral UV patterns in wild sunflowers**


61 A preliminary screening of 15 species of wild sunflowers, as well as cultivated sunflower,
62 suggested that UV bullseye patterns are common across sunflower species (Figure 1 – figure
63 supplement 1). We also observed substantial within-species variation for the size of UV floral
64 patterns. Variation for UV bullseye size was previously reported in the silverleaf sunflower
65 *Helianthus argophyllus*; however, genetic mapping resolution was insufficient to identify
66 individual causal genes (Moyers *et al.*, 2017). To better understand the function and genetic
67 regulation of variation for floral UV pigmentation, we focused on two widespread species of
68 annual sunflowers, *H. annuus* (the progenitor of the domesticated sunflower) and *H. petiolaris*;
69 both have broad distributions across North America, but the latter prefers sandier soils (Heiser
70 and Smith, 1969, Todesco *et al.*, 2020). Over two growing seasons, we measured UV floral
71 patterns (as the proportion of the ligule that absorbs UV radiation, henceforth “Ligule UV
72 proportion” or “LUVp”) in 1589 *H. annuus* individuals derived from 110 distinct natural
73 populations, and 351 *H. petiolaris* individuals from 40 populations, grown in common garden
74 experiments in Vancouver, Canada (Todesco *et al.*, 2020) (Figure 1a,b; Figure 1 – source data 1).
75 While extensive variation was observed within both species, it was particularly striking for *H.*
76 *annuus*, which displayed a phenotypic continuum from ligules with almost no UV pigmentation

Todesco *et al.*

Floral UV patterns in sunflowers

77 to ligules that were entirely UV-absorbing (Figure 1c-e; Figure 1 – source data 2). A relatively
78 high proportion of *H. annuus* individuals (~13%) had completely UV-absorbing ligules and
79 therefore lacked UV “nectar guides”, suggesting that pollinator orientation is not a necessary
80 function of floral UV pigmentation in sunflower.

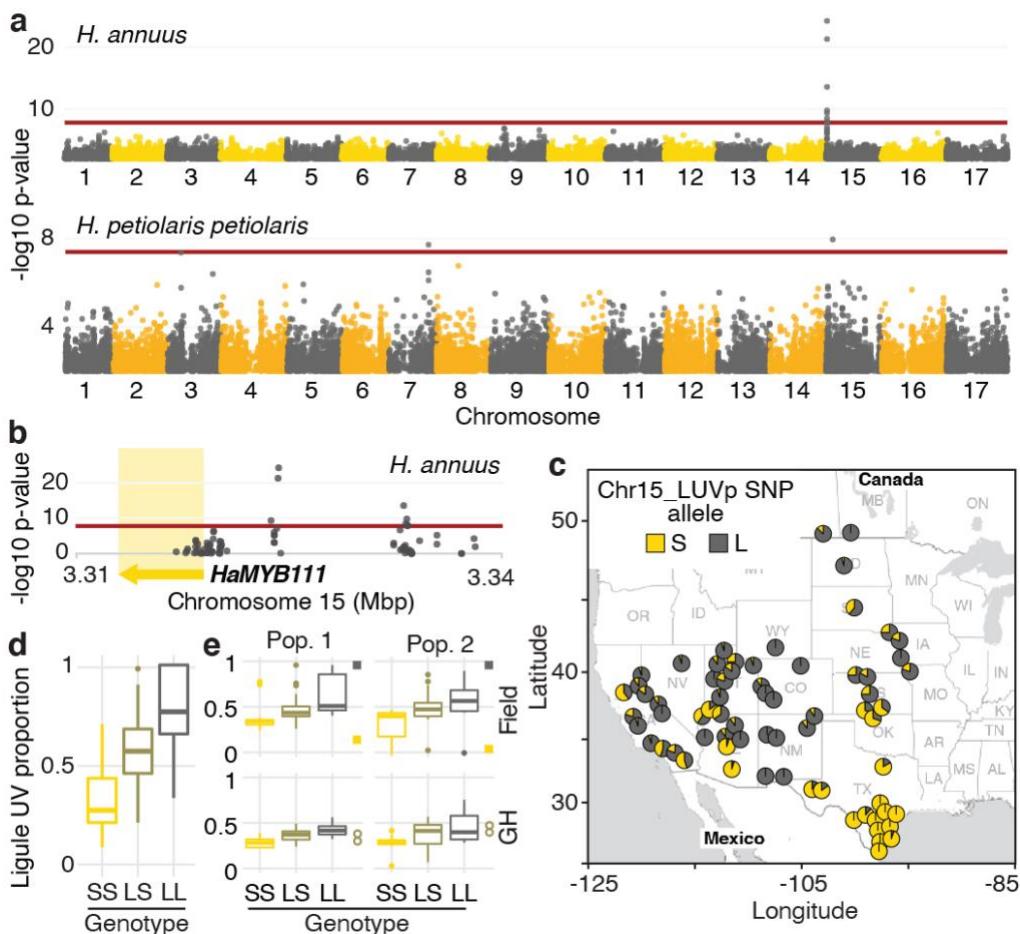
81

82

83 **Figure 1: Diversity for floral UV pigmentation patterns in wild sunflowers.**

84 **a**, Geographic distribution of sampled populations for *H. annuus* and **b**, *H. petiolaris*. Yellow/orange dots represent
85 different populations, overlaid grey dots size is proportional to the population mean LUVp. **c**, Range of variation for

86 floral UV pigmentation patterns in the two species. Scale bar = 1 cm. **d**, LUVp values distribution for *H. annuus* and
87 **e**, *H. petiolaris* subspecies.


88

89 **Genetic control of floral UV patterning**

90 To identify the loci controlling variation for floral UV patterning, we performed a genome-wide
91 association study (GWAS). We used a subset of the phenotyped plants (563 of the *H. annuus* and
92 all 351 *H. petiolaris* individuals) for which we previously generated genotypic data at >4.6M
93 high-quality single-nucleotide polymorphisms (SNPs) (Todesco *et al.*, 2020). Given their
94 relatively high level of genetic differentiation, analyses were performed separately for the
95 *petiolaris* and *fallax* subspecies of *H. petiolaris* (Todesco *et al.*, 2020). We detected several
96 genomic regions significantly associated with UV patterning in *H. petiolaris petiolaris*, and a
97 particularly strong association ($P = 5.81e^{-25}$) on chromosome 15 in *H. annuus* (Figure 2a,b;
98 Figure 2 – figure supplement 1). The chromosome 15 SNP with the strongest association with
99 ligule UV pigmentation patterns in *H. annuus* (henceforth “Chr15_LUVp SNP”) explained 62%
100 of the observed variation, and allelic distributions at this SNP closely matched that of floral UV
101 patterns (Figure 2c, compare to Figure 1a; Figure 1 – source data 2).

102 Genotype at the Chr15_LUVp SNP had a remarkably strong effect on the size of UV bullseyes in
103 inflorescences. Individuals homozygous for the “large” (L) allele had a mean LUVp of 0.78
104 (st.dev ± 0.16), meaning that ~3/4 of the ligule was UV-absorbing, while individuals homozygous
105 for the “small” (S) allele had a mean LUVp of 0.33 (st.dev. ± 0.15), meaning that only the basal
106 ~1/3 of the ligule absorbed UV radiation. Consistent with the trimodal LUVp distribution
107 observed for *H. annuus* (Figure 1d), alleles at this locus showed additive effects, with

108 heterozygous individuals having intermediate phenotypes ($\text{LUVp} = 0.59 \pm 0.18$; Figure 2d). The
109 association between floral UV patterns and the Chr15_LUVp SNP was confirmed in the F_2
110 progeny of crosses between plants homozygous for the L allele (with completely UV-absorbing
111 ligules; $\text{LUVp} = 1$) and for the S allele (with a small UV-absorbing patch at the ligule base;
112 $\text{LUVp} < 0.18$; Figure 2e; Figure 2 – figure supplement 2). Average LUVp values were lower,
113 and their range smaller, when these populations were grown in a greenhouse rather than in a
114 field. Plants in the greenhouse experienced relatively uniform temperatures and humidity, and
115 were shielded from most UV radiation. This suggests that while floral UV patterns have a strong
116 genetic basis (consistent with previous observations (Koski and Ashman, 2013)), their
117 expression is also affected by the environment.

119 **Figure 2: A single locus explains most of the variation in floral UV patterning in *H. annuus*.**

120 **a**, LUVp GWAS. **b**, Zoomed-in Manhattan plot for the chromosome 15 LUVp peak in *H. annuus*. Red lines
121 represent 5% Bonferroni-corrected significance. GWAs were calculated using two-sided mixed models. Number of
122 individuals: $n = 563$ individuals (*H. annuus*); $n = 159$ individuals (*H. petiolaris petiolaris*). Only positions with -
123 \log_{10} p-value > 2 are plotted. **c**, Geographic distribution of Chr15_LUVp SNP allele frequencies in *H. annuus*. L =
124 Large and S = Small allele. **d**, LUVp associated with different genotypes at Chr15_LUVp SNP in natural
125 populations of *H. annuus* grown in a common garden. All pairwise comparisons are significant for $P < 10^{-16}$ (one-
126 way ANOVA with post-hoc Tukey HSD test, $F = 438$, $df = 2$; $n = 563$ individuals). LUVp values and genotype data
127 for Chr15_LUVp SNP are reported in Figure 1 – source data 2. **e**, LUVp associated with different genotypes at
128 Chr15_LUVp SNP in *H. annuus* F_2 populations grown in the field or in a greenhouse (GH). Measurements for the
129 parental generations are shown: squares = grandparents (field-grown); empty circles = F_1 parents (greenhouse-
130 grown; figure 2 – figure supplement 2). Boxplots show the median, box edges represent the 25th and 75th percentiles,
131 whiskers represent the maximum/minimum data points within 1.5x interquartile range outside box edges.
132 Differences between genotypic groups are significant for $P = 0.0057$ (Pop. 1 Field, one-way ANOVA, $F = 5.73$, $df =$
133 2; $n = 54$ individuals); $P = 0.0021$ (Pop. 2 Field, one-way ANOVA, $F = 7.02$, $df = 2$; $n = 50$ individuals); $P =$
134 0.00015 (Pop. 1 GH, one-way ANOVA, $F = 11.13$, $df = 2$; $n = 42$ individuals); $P = 0.054$ (Pop. 2 GH, one-way
135 ANOVA, $F = 3.17$, $df = 2$; $n = 38$ individuals). P-values for pairwise comparisons for panels d and e are reported in
136 the source data for this figure.

137

138 ***HaMYB111* regulates UV pigment production**

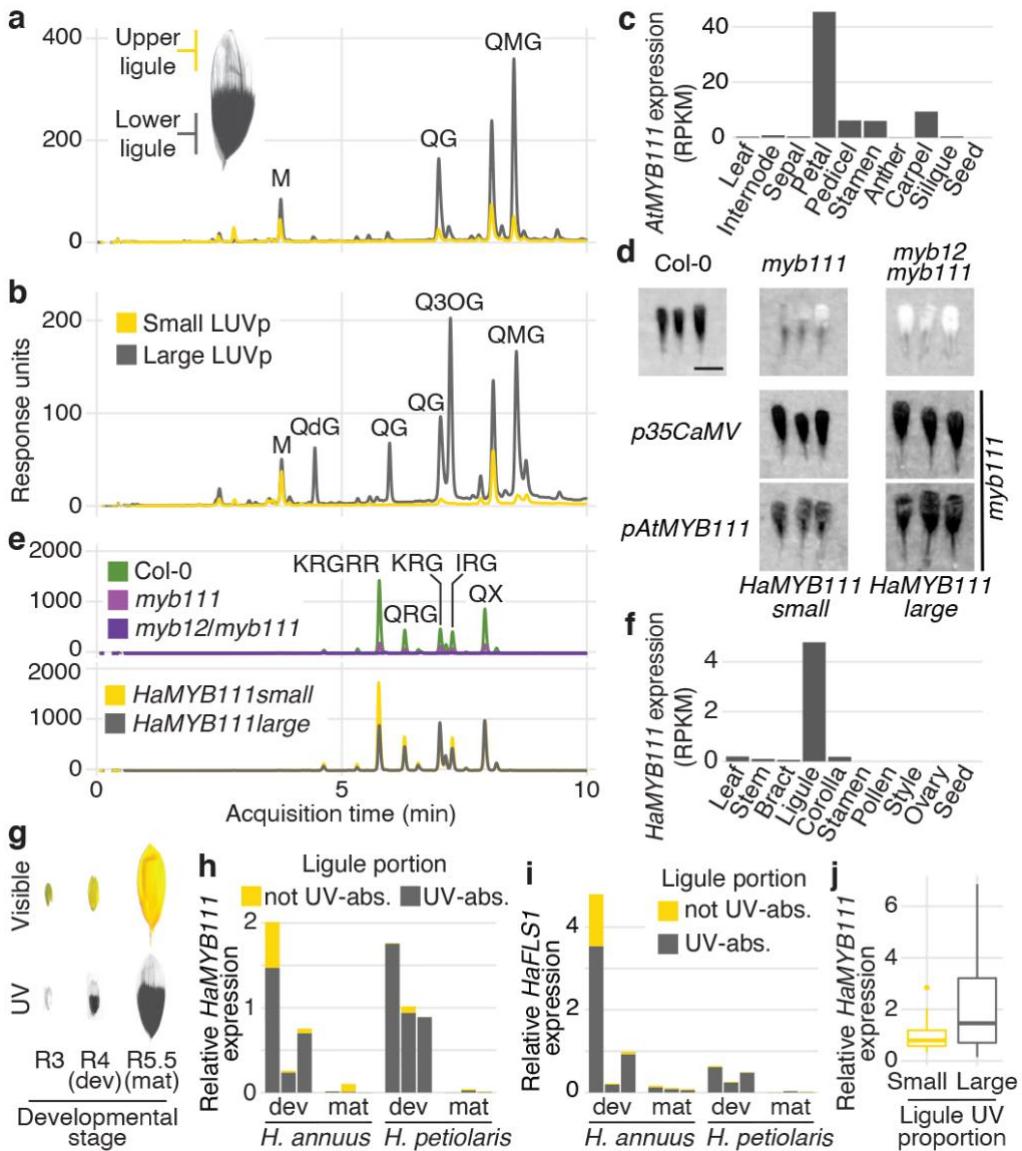
139 While no obvious candidate genes were found for the GWA peaks for floral UV pigmentation in
140 *H. petiolaris petiolaris*, the *H. annuus* chromosome 15 peak is ~5 kbp upstream of *HaMYB111*, a
141 sunflower homolog of the *Arabidopsis thaliana AtMYB111* gene (Figure 2b). Together with
142 AtMYB11 and AtMYB12, AtMYB111 is part of a small family of transcription factors (also
143 called PRODUCTION OF FLAVONOL GLYCOSIDES, PFG) that controls the expression of

144 genes involved in the production of flavonol glycosides in *Arabidopsis* (Stracke et al., 2007).
145 Flavonol glycosides are a subgroup of flavonoids known to fulfill a variety of functions in plants,
146 including protection against abiotic and biotic stresses (e.g. UV radiation, cold, drought,
147 herbivory) (Pollastri and Tattini, 2011). Crucially, they absorb strongly in the near UV range
148 (300–400 nm), and are the pigments responsible for floral UV patterns in several plant species
149 (Brock et al., 2016, Rieseberg and Schilling, 1985, Sheehan et al., 2016, Thompson et al., 1972).
150 For instance, alleles of a homolog of *AtMYB111* are responsible for the evolutionary gain and
151 subsequent loss of flavonol accumulation and UV absorption in flowers of *Petunia* species,
152 associated with two successive switches in pollinator preferences (from bees, to hawkmoths, to
153 hummingbirds (Sheehan et al., 2016)). A homolog of *AtMYB12* has also been associated with
154 variation in floral UV patterns in *Brassica rapa* (Brock et al., 2016). Consistent with this, we
155 found flavonol glycosides to be the main UV-absorbing pigments in sunflower ligules,
156 accumulating at much higher levels at their base, and in ligules of plants with larger LUVp
157 (Figure 3a,b).

158 *AtMYB12* and *AtMYB111* are known to have the strongest effect on flavonol glycoside
159 accumulation in *Arabidopsis* (Stracke et al., 2007, Stracke et al., 2010). We noticed, from
160 existing RNAseq data, that *AtMYB111* expression levels are particularly high in petals
161 (Klepikova et al., 2016) (Figure 3c), and found that *Arabidopsis* petals, while uniformly white in
162 the visible spectrum, absorb strongly in the UV (Figure 3d; Figure 3 – figure supplement 1). To
163 our knowledge, this is the first report of floral UV pigmentation in *Arabidopsis*, a highly selfing
164 species which is seldom insect-pollinated (Hoffmann et al., 2003). Accumulation of flavonol
165 glycosides in petals is strongly reduced, and UV pigmentation is almost completely absent, in
166 petals of mutants for *AtMYB111* (*myb111*; Figure 3d,e). UV absorbance is further reduced in

167 petals of double mutants for *AtMYB12* and *AtMYB111* (*myb12/111*). However, petals of the
168 single mutant for *AtMYB12* (*myb12*), which is expressed at low levels throughout the plant
169 (Klepikova et al., 2016), are indistinguishable from wild-type plants (Figure 2 – figure
170 supplement 1). This shows that flavonol glycosides are responsible for floral UV pigmentation
171 also in Arabidopsis, and that *AtMYB111* plays a fundamental role in controlling their
172 accumulation in petals.

173 To confirm that sunflower *HaMYB111* is functionally equivalent to its Arabidopsis homolog, we
174 introduced it into *myb111* plants. Expression of *HaMYB111*, either under the control of a
175 constitutive promoter or of the endogenous *AtMYB111* promoter, restored petal UV pigmentation
176 and induced accumulation of flavonol glycosides (Figure 3d,e). *HaMYB111* coding sequences
177 obtained from wild sunflowers with large or small LUVp were equally effective at
178 complementing the *myb111* mutant. Together with the observation that the strongest GWAS
179 association with LUVp fell in the promoter region of *HaMYB111*, these results suggest that
180 differences in the effect of the “small” and “large” alleles of this gene on floral UV pigmentation
181 are not due to differences in protein function, but rather to differences in gene expression.


182 Analysis of *HaMYB111* expression in cultivated sunflower revealed that, consistent with a role in
183 floral UV pigmentation and similar to its Arabidopsis counterpart, it is expressed specifically in
184 ligules, and it is almost undetectable in other tissues (Badouin et al., 2017) (Figure 3f). Similar to
185 observations in *Rudbeckia hirta*, another member of the *Heliantheae* tribe (Schlangen et al.,
186 2009), UV pigmentation is established early in ligule development in both *H. annuus* and *H.*
187 *petiolaris*, as their visible colour turns from green to yellow before the inflorescence opens (R4
188 developmental stage (Schneiter and Miller, 1981); Figure 3g; Figure 3 – figure supplement 2).
189 *HaMYB111* is highly expressed in the part of the ligule that accumulates UV-absorbing

190 pigments, and especially in developing ligules, consistent with a role in establishing
191 pigmentation patterns (Figure 3h). We also observed a matching expression pattern for *HaFLS1*,
192 the sunflower homolog of a gene encoding one of the main enzymes controlling flavonol
193 biosynthesis in Arabidopsis (*FLAVONOL SYNTHASE 1*, *AtFLS1*), whose expression is regulated
194 directly by *AtMYB111* (Stracke et al., 2007) (Figure 3i). Finally, we compared *HaMYB111*
195 expression levels in a set of 46 field-grown individuals with contrasting LUVp values,
196 representing 21 different wild populations. *HaMYB111* expression levels differed significantly
197 between the two groups ($P = 0.009$; Figure 3j). Variation in expression levels within phenotypic
198 classes was quite large; this is likely due in part to the strong dependence of *HaMYB111*
199 expression on developmental stage (Figure 3g), and the difficulty of accurately establishing
200 matching ligule developmental stages across diverse wild sunflowers.

201 These expression analyses further point to *cis*-regulatory rather than coding sequence differences
202 between *HaMYB111* alleles being responsible for LUVp variation. Accordingly, direct
203 sequencing of the *HaMYB111* locus from multiple wild *H. annuus* individuals, using a
204 combination of Sanger sequencing and long PacBio HiFi reads, identified no coding sequence
205 variants associated with differences in floral UV patterns, or with alleles at the Chr15_LUVp
206 SNP. However, we observed extensive variation in the promoter region of *HaMYB111*,
207 differentiating wild *H. annuus* alleles from each other and from the reference assembly for
208 cultivated sunflower. Relaxing quality filters to include less well-supported SNPs in our LUVp
209 GWAS did not identify additional variants with stronger associations than Chr15_LUVp SNP
210 (Figure 2 – figure supplement 2). However, many of the polymorphisms we identified by direct
211 sequencing were either larger insertions/deletions (indels) or fell in regions that were too
212 repetitive to allow accurate mapping of short reads, and would not be included even in the

213 expanded SNP dataset. While several of these variants in the promoter region of *HaMYB111*
214 appeared to be associated with the Chr15_LUVp SNP, further studies will be required to confirm
215 this, and to identify their eventual effects on *HaMYB111* activity.

216 Interestingly, when we sequenced the promoter region of *HaMYB111* in several *H. argophyllus*
217 and *H. petiolaris* individuals, we found that they all carried the S allele at the Chr15_LUVp SNP.
218 Similarly, in a set of previously re-sequenced wild sunflowers, we found the S allele to be fixed
219 in several perennial (*H. decapetalus*, *H. divaricatus* and *H. grosseserratus*) and annual sunflower
220 species (*H. argophyllus*, *H. niveus*, *H. debilis*), and to be at >0.98 frequency in *H. petiolaris*,
221 suggesting that the “small” haplotype is ancestral. Conversely, the L allele at Chr15_LUVp SNP
222 was almost fixed (>0.98 frequency) in a set of 285 cultivated sunflower lines (Mandel et al.,
223 2013). Consistent with these patterns, UV bullseyes are considerably smaller in *H. argophyllus*
224 (mean LUVp \pm st.dev. = 0.27 ± 0.09), *H. niveus* (0.15 ± 0.09), and *H. petiolaris* (0.27 ± 0.12 ;
225 Figure 1e) than in cultivated sunflower lines (0.62 ± 0.23). Additionally, while 50 of the
226 cultivated sunflower lines had completely or almost completely UV-absorbing ligules (LUVp >
227 0.8), no such case was observed in the other three species (Figure 1 – figure supplement 2).

228

229 **Figure 3: MYB111 is associated with floral UV pigmentation patterns and flavonol accumulation in sunflower**
 230 **and Arabidopsis.**

231 **a**, UV chromatograms (350 nm) for methanolic extracts of the upper and lower third of ligules with intermediate
 232 UV patterns, and **b**, of ligules with large and small floral UV patterns. Peaks corresponding to flavonols are labelled
 233 (Figure 3 – source data 1). **c**, Expression levels of *AtMYB111* in Arabidopsis. RPKM = Reads Per Kilobase of
 234 transcript per Million mapped reads. **d**, UV pictures of Arabidopsis petals. *HaMYB111* from *H. annuus* plants with
 235 small or large LUVp was introduced into the Arabidopsis *myb111* mutant under the control of a constitutive
 236 promoter (*p35SCaMV*) or of the promoter of the Arabidopsis homolog (*pAtMYB111*). All petals are white in the
 237 visible range (Figure 3 – figure supplement 1). Scale bar = 1mm. **e**, UV chromatograms (350 nm) for methanolic

238 extracts of petals of *Arabidopsis* lines. Upper panel: wild-type Col-0 and mutants. Bottom panel:
239 *p35SCaMV::HaMYB111* lines in *myb111* background. Peaks corresponding to flavonols are labelled (Figure 3 –
240 source data 1). **f**, Expression levels of *HaMYB111* in cultivated sunflower. **g**, Pigmentation patterns in ligules of wild
241 *H. annuus* at different developmental stages: R3 = closed inflorescence bud; R4 = inflorescence bud opening; R5 =
242 inflorescence fully opened. **h**, Expression levels in the UV-absorbing (grey) and UV-reflecting (yellow) portion of
243 mature (mat) and developing (dev) ligules for *HaMYB111* and **i**, *HaFLS1*, one of its putative targets. Each bar
244 represents a biological replicate (different inflorescence from a same individual). **j**, *HaMYB111* expression levels in
245 field-grown wild *H. annuus* with different floral UV pigmentation patterns. The difference between the two groups
246 is significant for $P = 0.009$ (Welch t-test, $t = 2.81$, $df = 27.32$, two-sided; $n = 46$ individuals). Boxplots show the
247 median, box edges represent the 25th and 75th percentiles, whiskers represent the maximum/minimum data points
248 within 1.5x interquartile range outside box edges.

249

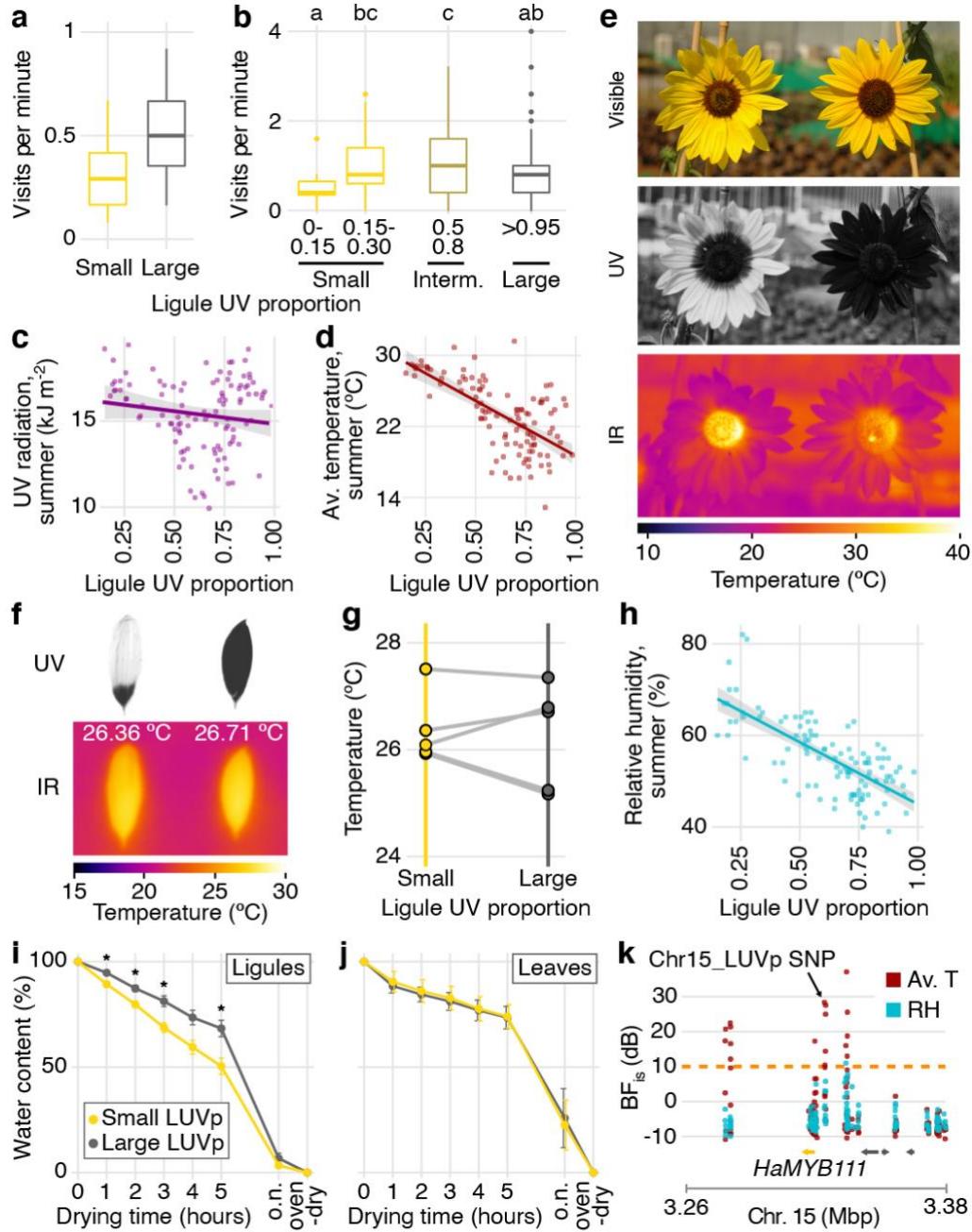
250 **A dual role for floral UV pigmentation**

251 Although our results show that *HaMYB111* explains most of the variation in floral UV
252 pigmentation patterns in wild *H. annuus*, why such variation exists in the first place is less clear.
253 Several hypotheses have been advanced to explain the presence of floral UV patterns and their
254 variability. Like their visible counterparts, UV pigments play a fundamental role in pollinator
255 attraction (Horth et al., 2014, Koski and Ashman, 2014, Rae and Vamosi, 2013, Sheehan et al.,
256 2016). For example, in *Rudbeckia* species, artificially increasing the size of bullseye patterns to
257 up to 90% of the petal surface resulted in rates of pollinator visitation equal to or higher than
258 wild-type flowers (which have on average 40-60% of the petal being UV-absorbing).
259 Conversely, reducing the size of the UV bullseye had a strong negative effect on pollinator
260 visitation (Horth et al., 2014). To test whether the relative size of UV bullseye patterns affected
261 pollination, we compared insect visitation rates for wild *H. annuus* lines with contrasting UV
262 bullseye patterns. An initial experiment, carried out in Vancouver (Canada), found that flowers

263 with large UV patterns received significantly more visits (Figure 4a). Vancouver is outside the
264 natural range of *H. annuus*, suggesting that our results are unlikely to be affected by learned
265 preferences (i.e. pollinators preferring UV patterns they are familiar with in sunflower). While
266 this experiment revealed a clear pattern of pollinator preferences, it involved plants from only
267 two different populations, and effects of other unmeasured factors unrelated to UV pigmentation
268 on visitation patterns cannot be excluded. Therefore, we monitored pollinator visitation in plants
269 grown in a field including 1484 individuals from 106 *H. annuus* populations, spanning the entire
270 range of the species. Within this field, we selected 82 plants, from 49 populations, which
271 flowered at roughly the same time and had comparable numbers of flowers. We divided these
272 plants into three categories, based on the species-wide distribution of LUVp values in *H. annuus*
273 (Figure 1d): small (0-0.3); intermediate (0.5-0.8) and large (>0.95) LUVp. Plants with
274 intermediate UV patterns had the highest visitation rates (Figure 4b; Figure 4 – figure
275 supplement 1). Visitation to plants with small or large UV patterns was less frequent, and
276 particularly low for plants with very small LUVp values (<0.15). A strong reduction in
277 pollination would be expected to result in lower fitness, and to be negatively selected;
278 accordingly, plants with such small LUVp values were rare (~1.5% of the individuals grown).
279 These results confirm that floral UV patterns play a major role in pollinator attraction, as has
280 been already extensively reported (Horth *et al.*, 2014, Koski and Ashman, 2014, Rae and
281 Vamosi, 2013, Sheehan *et al.*, 2016). They also agree with previous findings in other plant
282 species suggesting that intermediate-to-large UV bullseyes are preferred by pollinators, and only
283 very small UV bullseyes are maladaptive (Horth *et al.*, 2014, Koski and Ashman, 2014). While
284 we cannot exclude that smaller UV bullseyes would be preferred by pollinators in some parts of
285 the *H. annuus* range, this does not seem likely; the most common pollinators of sunflower are

286 ubiquitous across the range of *H. annuus*, and many bee species known to pollinate sunflower
287 are found in both regions where *H. annuus* populations have large LUVp and regions where they
288 have small LUVp (Hurd Jr et al., 1980). While acting as visual cues for pollinators is therefore
289 clearly a major function of floral UV bullseyes, it is unlikely to (fully) explain the patterns of
290 variation that we observe for this trait.

291 In recent years, the importance of non-pollinator factors in driving selection for floral traits has
292 been increasingly recognized (Strauss and Whittall, 2006). Additionally, flavonol glycosides, the
293 pigments responsible for floral UV patterns in sunflower, are known to be involved in responses
294 to several abiotic stressors (Korn et al., 2008, Nakabayashi et al., 2014b, Pollastri and Tattini,
295 2011, Schulz et al., 2015). Therefore, we explored whether some of these stressors could drive
296 diversification in floral UV pigmentation. An intuitively strong candidate is UV radiation, which
297 can be harmful to plant cells (Stapleton, 1992). Variation in the size of UV bullseye patterns
298 across the range of *Argentina anserina* (a member of the *Rosaceae* family) has been shown to
299 correlate positively with intensity of UV radiation. Flowers of this species are bowl-shaped, and
300 larger UV-absorbing regions have been proposed to protect pollen from UV damage by
301 absorbing UV radiation that would otherwise be reflected toward the anthers (Koski and
302 Ashman, 2015). However, sunflower inflorescences are much flatter than *A. anserina* flowers,
303 making it unlikely that any significant amount of UV radiation would be reflected from the
304 ligules towards the disk flowers. Studies in another plant with non-bowl-shaped flowers (*Clarkia*
305 *unguiculata*) have found no evidence of an effect of floral UV patterns in protecting pollen from
306 UV damage (Peach et al., 2020). Consistent with this, the associations between the intensity of
307 UV radiation at our collection sites and floral UV patterns in *H. annuus* was weak (*H. annuus*: R^2
308 = 0.01, $P = 0.12$; Figure 4c; Figure 4 – figure supplement 2).


309 Across the *Potentillae* tribe (*Rosaceae*), floral UV bullseye size is also weakly associated with
310 UV radiation, but is more strongly correlated with temperature, with lower temperatures being
311 associated with larger UV bullseyes (Koski and Ashman, 2016). We found a similar, strong
312 correlation with temperature in our dataset, with average summer temperatures explaining a large
313 fraction of the variation in LUVp in *H. annuus* ($R^2 = 0.44$, $P = 2.4 \times 10^{-15}$; Figure 4d; Figure 4 –
314 figure supplement 2). It has been suggested that the radiation absorbed by floral UV pigments
315 could contribute to increasing the temperature of the flower, similar to what has been observed
316 for visible pigments (Koski *et al.*, 2020). This possibility is particularly intriguing for sunflower,
317 in which flower temperature plays an important role in pollinator attraction; inflorescences of
318 cultivated sunflowers consistently face East so that they warm up faster in the morning, making
319 them more attractive to pollinators (Atamian *et al.*, 2016). Larger UV bullseyes could therefore
320 contribute to increasing temperature of the sunflower inflorescences, and their attractiveness of
321 sunflowers to pollinators, in cold climates. However, different levels of UV pigmentation had no
322 effect on the temperature of inflorescences or individual ligules exposed to sunlight (Figure 4e-g;
323 Figure 4 – figure supplement 3). This is perhaps not surprising, given that UV wavelengths
324 represents only a small fraction (3-7%) of the solar radiation reaching the Earth surface
325 (compared to >50% for visible wavelengths), and are therefore unlikely to provide sufficient
326 energy to significantly warm up the ligules (Nunez *et al.*, 1994).

327 While several geoclimatic variables are correlated across the range of wild *H. annuus*, the single
328 variable explaining the largest proportion of the variation in floral UV patterns in this species
329 was summer relative humidity (RH; $R^2 = 0.51$, $P = 1.4 \times 10^{-18}$; Figure 4h; Figure 4 – figure
330 supplement 2), with lower humidity being associated with larger LUVp values. Lower relative
331 humidity is generally associated with higher transpiration rates in plants, leading to increased

332 water loss. Flavonol glycosides are known to play an important role in responses to drought
333 stress (Nakabayashi et al., 2014a); in particular, *Arabidopsis* lines that accumulate higher
334 concentrations of flavonol glycosides due to over-expression of *AtMYB12* lose water and
335 desiccate at slower rates than wild-type plants (Nakabayashi et al., 2014b). Similarly, we found
336 that completely UV-absorbing ligules desiccate significantly slower than largely UV-reflecting
337 ligules (Figure 4i). This difference is not due to general differences in transpiration rates between
338 genotypes, since we observed no comparable trend for rates of leaf desiccation in the same set of
339 sunflower lines (Figure 4j). Transpiration from flowers can be a major source of water loss for
340 plants, and this is known to drive, within species, the evolution of smaller flowers in populations
341 living in dry locations (Galen, 2000, Herrera, 2005, Lambrecht, 2013, Lambrecht and Dawson,
342 2007). Thus, variation in floral UV pigmentation in sunflowers is likely similarly driven by the
343 role of flavonol glycosides in reducing water loss from ligules, with larger floral UV patterns
344 helping prevent drought stress in drier environments.

345 One of the main roles of transpiration in plants is facilitating heat dispersion at higher
346 temperatures through evaporative cooling (Burke and Upchurch, 1989, Drake et al., 2018),
347 which could explain the strong correlation between LUVp and temperature across the range of
348 *H. annuus* (Figure 4d). Consistent with this, summer relative humidity and summer temperatures
349 together explain a considerably larger fraction of the variation for LUVp in *H. annuus* than either
350 variable alone ($R^2 = 0.63$; $P = 0.0017$; Figure 1 – source data 1), with smaller floral UV patterns
351 being associated with higher relative humidity and higher temperatures (Figure 4 – figure
352 supplement 2). Despite a more limited range of variation for LUVp, the same trend is present
353 also in *H. petiolaris* (Figure 4 – figure supplement 4). Consistent with a role of floral UV
354 pigmentation in the plant's response to variation in both humidity and temperature, we found

355 strong associations ($dB > 10$) between SNPs in the *HaMYB111* region and these variables in
356 genotype-environment association (GEA) analyses (Figure 4k; Figure 4 – source data 3).

357

358 **Figure 4: Accumulation of UV pigments in flowers affects pollinator visits and transpiration rates.**

359 **a**, Rates of pollinator visitation measured in Vancouver in 2017 ($P = 0.017$; Mann-Whitney U-tests, $W = 150$, two-
360 sided; $n = 143$ pollinator visits) and **b**, in 2019 (differences between LUVp categories are significant for $P = 0.0058$,

361 Kruskal-Wallis test, $\chi^2 = 14.54$, df = 4; $n = 1390$ pollinator visits. Letters identify groups that are significantly
362 different for $P < 0.05$ in pairwise comparisons, Wilcoxon rank sum test. Exact p-values are reported in the source
363 data for this figure). Boxplots show the median, box edges represent the 25th and 75th percentiles, whiskers represent
364 the maximum/minimum data points within 1.5x interquartile range outside box edges. **c**, Correlation between
365 average LUVp for different populations of *H. annuus* and summer UV radiation ($R^2 = 0.01$, $P = 0.12$) or **d**, summer
366 average temperature ($R^2 = 0.44$, $P = 2.4 \times 10^{-15}$). Grey areas represent 95% confidence intervals. **e**, Sunflower
367 inflorescences pictured in the visible, UV and infrared (IR) range. In the IR picture, a bumblebee is visible in the
368 inflorescence with large LUVp (right). The higher temperature in the centre (disk) of the inflorescence with small
369 LUVp does not depend on ligule UV patterns (Figure 4 – support figure 3). **f**, *H. annuus* ligules after having been
370 exposed to sunlight for 15 minutes. **g**, Pairs of ligules from different sunflower lines were exposed to sunlight for 15
371 minutes, and their average temperature was measured from IR pictures. **h**, Correlation between average LUVp in *H.*
372 *annuus* populations and summer relative humidity ($R^2 = 0.51$, $P = 1.4 \times 10^{-18}$). The grey area represents the 95%
373 confidence interval. **i**, Rate of water loss from ligules and **j**, leaves of wild *H. annuus* plants with large or small
374 LUVp. Values reported are means \pm standard error of the mean. $n = 16$ (ligules) or 15 (leaves). Ligules and leaves
375 were left to air-dry and weighed every hour for five hours, after they were left to air-dry overnight (o.n.), and after
376 they were incubated in an oven to remove any residual humidity (oven-dry). Asterisks denote significant differences
377 ($p < 0.05$, two-sided Welch t-test; exact p-values are reported in the source data for this figure). **k**, GEA for summer
378 average temperature (Av. T) and summer relative humidity (RH) in the *HaMYB111* region. The dashed orange line
379 represents Bayes Factor ($BF_{is} = 10$ decibans (dB)). GEAs were calculated using two-sided XtX statistics. $n = 71$
380 populations.

381

382 Conclusions

383 Connecting adaptive variation to its genetic basis is one of the main goals of evolutionary
384 biology. Here, we show that regulatory variation at a single major gene, the transcription factor
385 *HaMYB111*, underlies most of the variation for floral UV patterns in wild *H. annuus*, and that

386 these UV patterns not only have a strong effect on pollinator visits, but they also co-vary with
387 geoclimatic variables (especially relative humidity and temperature) and affect desiccation rates
388 in ligules. By reducing the amount of transpiration in environments with lower relative humidity,
389 UV-absorbing pigments in the ligule help prevent excessive water loss and maintain ligule
390 turgidity; in humid, hot environments (e.g. Southern Texas), lower accumulation of flavonol
391 glycosides would instead promote transpiration from ligules, keeping them cool and avoiding
392 over-heating. The presence of UV pigmentation in the petals of *Arabidopsis* (also controlled by
393 the *Arabidopsis* homolog of *MYB111*) further points to a more general protective role of these
394 pigments in flowers, since pollinator attraction is likely not critical for fertilization in this largely
395 selfing species. Additionally, a role in reducing water loss from petals is consistent with the
396 overall trend in increased size of floral UV patterns over the past 80 years that has been observed
397 in herbarium specimens (Koski *et al.*, 2020); due to changing climates, relative humidity over
398 land has been decreasing in recent decades, which could result in higher transpiration rates
399 (Byrne and O'Gorman, 2018). Further studies will be required to confirm the existence of this
400 trend and assess its strength.

401 More generally, our study highlights the complex nature of adaptive variation, with selection
402 pressures from both biotic and abiotic factors shaping the patterns of diversity that we observe
403 across natural populations. Floral diversity in particular has long been attributed to the actions of
404 animal pollinators. Our work adds to a growing literature demonstrating the contributions of
405 abiotic factors, most notably drought and heat stress, to this diversity. In sum, it is not all about
406 sex, even for flowers.

407 **Methods**

408 **Plant material and growth conditions**

409 Sunflower lines used in this paper were grown from seeds collected from wild populations
410 (Todesco et al., 2020), or obtained from the North Central Regional Plant Introduction Station in
411 Ames, Iowa, USA. Sunflower seeds were surface sterilized by immersion for 10 minutes in a
412 1.5% sodium hypochlorite solution. Seeds were then rinsed twice in distilled water and treated
413 for at least one hour in a solution of 1% PPM (Plant Cell Technologies, Washington, DC, USA),
414 a broad-spectrum biocide/fungicide, to minimize contamination, and 0.05 mM gibberellic acid
415 (Sigma-Aldrich, St. Louis, MO, USA). They were then scarified, de-hulled, and kept for two
416 weeks at 4 °C in the dark on filter paper moistened with a 1% PPM solution. Following this,
417 seeds were kept in the dark at room temperature until they germinated. For common garden
418 experiments, the seedlings were then transplanted in peat pots, grown in a greenhouse for two
419 weeks, then moved to an open-sided greenhouse for a week for acclimation, and finally
420 transplanted in the field. For all other experiments seedlings were transplanted in 2-gallon pots
421 filled with Sunshine #1 growing mix (Sun Gro Horticulture Canada, Abbotsford, BC, Canada).
422 For the wild sunflower species shown in Figure 1 – figure supplement 1b, following sterilization,
423 seeds were scarified and then dipped in fuscicosin solution (1.45 µM) for 15 minutes, dehulled,
424 germinated in the dark for at least 8-10 days, and then grown in pots for three weeks before
425 transplanting into 2-gallon pots filled with a blend of sandy loam, organic compost and mulch.
426 Those plants were grown at the UC Davis field experiment station (California, USA) from July
427 to October 2017. A complete list of sunflower accessions and their populations of origin is
428 reported in Figure 1 - source data 1 and Figure 1 - source data 2.

429 Seeds from the following *Arabidopsis* lines were obtained from the *Arabidopsis* Biological
430 Resource Center: Col-0 (CS28167), *myb111* (CS9813), *myb12* (CS9602) and *myb12/myb111*
431 (CS9980). Seeds were stratified in 0.1% agar at 4 °C in the dark for four days, and then sown in
432 pots containing Sunshine #1 growing mix. Plants were grown in growth chambers at 23 °C in
433 long-day conditions (16 h light, 8 h dark).

434

435 **Common garden**

436 Two common garden experiments were performed, in 2016 and 2019. After germination and
437 acclimation, plants were transplanted at the Totem Plant Science Field Station of the University
438 of British Columbia (Vancouver, Canada). In the 2016 common garden experiment, each
439 sunflower species was grown in a separate field. Pairs of plants from the same population were
440 randomly distributed within each field. In the 2019 common garden experiment, plants were
441 sown using a completely randomized design.

442 In the summer of 2016, ten plants from each of 151 selected populations of wild *H. annuus*, *H.*
443 *petiolaris*, *H. argophyllus* and *H. niveus* were grown. Plants were transplanted in the field on the
444 25th of May (*H. argophyllus*), 2nd of June (*H. petiolaris* and *H. niveus*) and 7th of June 2016 (*H.*
445 *annuus*). Up to four inflorescences from each plant were collected for visible and UV
446 photography. In the summer of 2019, fourteen plants from each of 106 populations of wild *H.*
447 *annuus* were transplanted in the field on 6th of June. These included 65 of the populations grown
448 in the previous common garden experiment, and 41 additional populations that were selected to
449 complement their geographic distribution. At least two ligules from different inflorescences for
450 each plant were collected for visible and UV photography.

451 Sample size for the common garden experiments was determined by the available growing space
452 and resources. Ten-to-fourteen individuals were grown for each population because this would
453 provide a good representation of the variation present in each population, while maximizing the
454 number of populations that could be surveyed.

455 Researcher were not blinded as to the identity of individual samples. However, information about
456 their populations of origin and/or LUVp phenotypes were not attached to the samples during data
457 acquisition.

458

459 **Ultraviolet and infrared photography**

460 Ultraviolet patterns were imaged in whole flowerheads or detached ligules using a Nikon D70s
461 digital camera, fitted with a Noflexar 35-mm lens and a reverse-mounted 2-inch Baader U-Filter
462 (Baader Planetarium, Mammendorf, Germany), which only allows the transmission of light
463 between 320 and 380 nm. Wild sunflower species shown in Figure 1 – figure supplement 1b
464 were imaged using a Canon DSLR camera in which the internal hot mirror filter had been
465 replaced with a UV bandpass filter (LifePixel, Mukilteo, WA). The length of the whole ligule
466 (L_L) and the length of the UV-absorbing part at the base of the ligule (L_{UV-abs}) were measured
467 using Fiji (Schindelin et al., 2012, Schneider et al., 2012). Ligule UV proportion was measured
468 as the ratio between the two ($LUVp = L_{UV-abs}/L_L$). In some *H. annuus* individuals, the upper,
469 “UV-reflecting” portion of the ligules (L_{UV-ref}) also displayed a lower level of UV-absorption; in
470 those cases, these regions were weighted at 50% of fully UV-absorbing regions, using the
471 formula $LUVp = (L_{UV-abs}/L_L) + \frac{1}{2}(L_{UV-ref}/L_L)$. For pictures of whole inflorescences, LUVp values
472 were averaged from three different ligules. For each individual, LUVp values were averaged
473 between all the inflorescences or detached ligules measurements.

474 Infrared pictures were taken using a Fluke TiX560 thermal imager (Fluke Corporation, Everett,
475 WA, USA) and analyzed using the Fluke Connect software (v1.1.536.0). For time series
476 experiments, plants were germinated as above (see “Common Garden”), grown in 2-gallon pots
477 in a greenhouse until they produced four true leaves, and then moved to the field. On three
478 separate days in August 2017, pairs of inflorescences with opposite floral UV patterns at similar
479 developmental stages were selected and made to face East. Infrared images were taken just
480 before sunrise, ~5 minutes after sunrise, and then at 0.5, 1, 2, 3 and 4 hours after sunrise.
481 For infrared pictures of detached ligules, plants were grown in a greenhouse. Flowerheads were
482 collected and kept overnight in a room with constant temperature of 21 °C, with their stems
483 immersed in a beaker containing distilled water. The following day, pairs of ligules with
484 contrasting LUVp were removed and arranged on a sheet of white paper. Infrared pictures were
485 taken immediately before exposing the ligules to the sun, and again 15 minutes after that.
486

487 **Library preparation, sequencing and SNP calling**

488 Whole-genome shotgun (WGS) sequencing library preparation and sequencing, as well as SNP
489 calling and variant filtering, for the *H. annuus* and *H. petiolaris* individuals used for GWA
490 analyses in this paper were previously described (Todesco *et al.*, 2020). Briefly, DNA was
491 extracted from leaf tissue using a modified CTAB protocol (Murray and Thompson, 1980, Zeng
492 *et al.*, 2002), the DNeasy Plant Mini Kit or a DNeasy 96 Plant Kit (Qiagen, Hilden, Germany).
493 Genomic DNA was sheared to an average fragment size of 400 bp using a Covaris M220
494 ultrasonicator (Covaris, Woburn, MA, USA). Libraries were prepared using a protocol largely
495 based on (Rowan *et al.*, 2015), the TruSeq DNA Sample Preparation Guide from Illumina
496 (Illumina, San Diego, CA, USA) and (Rohland and Reich, 2012), with the addition of an

497 enzymatic repeats depletion step using a Duplex-Specific Nuclease (DSN; Evrogen, Moscow,
498 Russia) (Matvienko *et al.*, 2013, Shagina *et al.*, 2010, Todesco *et al.*, 2020). All libraries were
499 sequenced at the McGill University and Génome Québec Innovation Center on HiSeq2500,
500 HiSeq4000 and HiSeqX instruments (Illumina) to produce paired end, 150 bp reads.
501 Sequences were trimmed for low quality using Trimmomatic (v0.36) (Bolger *et al.*, 2014) and
502 aligned to the *H. annuus* XRQv1 genome (Badouin *et al.*, 2017) using NextGenMap (v0.5.3)
503 (Sedlazeck *et al.*, 2013). We followed the best practices recommendations of The Genome
504 Analysis ToolKit (GATK) (Poplin *et al.*, 2017) and executed steps documented in GATK's
505 germline short variant discovery pipeline (for GATK 4.0.1.2). During genotyping, to reduce
506 computational time and improve variant quality, genomic regions containing transposable
507 elements were excluded (Badouin *et al.*, 2017). We then used GATK's VariantRecalibrator
508 (v4.0.1.2) to select high quality variants. SNP data were then filtered for minor allele frequency
509 (MAF) ≥ 0.01 , genotype rate $\geq 90\%$, and to keep only bi-allelic SNPs.
510 Filtered SNPs were then re-mapped to the improved reference assembly HA412-HOv2 (Staton
511 and Lázaro-Guevara, 2020) using BWA (v0.7.17) (Li, 2013). These re-mapped SNPs were used
512 for all analyses, excluding the GWA for the region surrounding the *HaMYB111* locus that used
513 un-filtered variants based on the XRQv1 assembly (Figure 2 – figure supplement 3).
514 The SNP dataset used to determine the genotype at the Chr15_LUVp SNP in other species (*H.*
515 *argophyllus*, *H. niveus*, *H. debilis*, *H. decapetalus*, *H. divaricatus* and *H. grosseserratus*) was
516 based on WGS data generated for (Todesco *et al.*, 2020) and is described in (Owens *et al.*, 2021).
517 Sequence data for the Sunflower Association Mapping population was reported in (Hubner *et al.*,
518 2019).
519

520 **Genome-wide association mapping**

521 Genome-wide association analyses for LUVp were performed for *H. annuus*, *H. petiolaris*
522 *petiolaris* and *H. petiolaris fallax*, using two-sided mixed models implemented in EMMAX
523 (v07Mar2010) (Kang et al., 2010) or in the EMMAX module in EasyGWAS (Grimm et al.,
524 2017). For all runs, the first three principal components (PCs) were included as covariates, as
525 well as a kinship matrix. Only SNPs with MAF >5% were included in the analyses. Sample size
526 was estimated to be sufficient to provide an 85% probability of detecting loci explaining 5% or
527 more of the phenotypic variance in *H. annuus*, 8% of variance in *H. petiolaris*.

528

529 **F₂ populations and genotyping**

530 Individuals from population ANN_03 from California, USA (large LUVp) and ANN_55 from
531 Texas, USA (small LUVp) were grown in 2-gallon pots in a field. When the plants reached
532 maturity, they were moved to a greenhouse, where several inflorescences were bagged and
533 crossed. The resulting F₁ seeds were germinated and grown in a greenhouse, and pairs of siblings
534 were crossed (wild sunflowers are overwhelmingly self-incompatible). The resulting F₂
535 populations were grown both in a greenhouse in the winter of 2019 (*n* = 42 individuals for
536 population 1, 38 individuals for population 2) and in a field as part of the 2019 common garden
537 experiments (*n* = 54 individuals for population 1, 50 individuals for population 2). DNA was
538 extracted from young leaf tissue as described above. All plants were genotyped for the
539 Chr15_LUVp SNPs using a custom TaqMan SNP genotyping assay (Thermo Fisher Scientific,
540 Waltham, MA, USA) on a Viiia 7 Real-Time PCR system (Thermo Fisher Scientific).

541

542 **Metabolite analyses**

543 Methanolic extractions were performed following (Stracke et al., 2007). Sunflower ligules (or
544 portions of them) and Arabidopsis petals were collected and flash-frozen in liquid nitrogen. The
545 tissue was ground to a fine powder by adding 10-15 zirconia beads (1 mm diameter) and using a
546 TissueLyser (Qiagen) for sunflower ligules, or using a plastic pestle in a 1.5 ml tube for
547 Arabidopsis petals. 0.5 ml of 80% methanol were added, and the samples were further
548 homogenized and incubated at 70 °C for 15 minutes. They were then centrifuged at 15.000g for
549 10 minutes, and the supernatant was dried in a SpeedVac (Thermo Fisher Scientifics) at 60 °C.
550 Samples were then resuspended in 1 µl (sunflower) or 2.5 µl (Arabidopsis) of 80% methanol for
551 every mg of starting tissue.

552 The extracts were analyzed by LC/MS/MS using an Agilent 1290 UHPLC system (Agilent
553 Technologies, Santa Clara, CA, USA) coupled with an Agilent 6530 Quadrupole Time of Flight
554 mass spectrometer. The chromatographic separation was performed on Atlantis T3- C18
555 reversed-phase (50 mm × 2.1 mm, 3 µm) analytical columns (Waters Corp, Milford, MA, USA).
556 The column temperature was set at 40 °C. The elution gradient consisted of mobile phase A
557 (water and 0.2% formic acid) and mobile phase B (acetonitrile and 0.2% formic acid). The
558 gradient program was started with 3% B, increased to 25% B in 10 min, then increased to 40% B
559 in 13 min, increased to 90% B in 17 min, held for 1 min and equilibrated back to 3% B in 20
560 min. The flow rate was set at 0.4 mL/min and injection volume was 1 µl. A PDA (photo diode
561 array) detector was used for detection of UV-absorption in the range of 190-600 nm.

562 MS and MS/MS detection were performed using an Agilent 6530 accurate mass Quadrupole
563 Time of Flight mass spectrometer equipped with an ESI (electrospray) source operating in both
564 positive and negative ionization modes. Accurate positive ESI LC/MS and LC/MS/MS data were
565 processed using the Agilent MassHunter software to identify the analytes. The ESI conditions

566 were as follows: nebulizing gas (nitrogen) pressure and temperature were 30 psi and 325 °C;
567 sheath gas (nitrogen) flow and temperature were 12 L/min, 325 °C; dry gas (nitrogen) was 7
568 l/min. Full scan mass range was 50-1700 m/z. Stepwise fragmentation analysis (MS/MS) was
569 carried out with different collision energies depending on the compound class.

570

571 **Transgenes and expression assays**

572 Total RNA was isolated from mature and developing ligules, or part of ligules, using TRIzol
573 (Thermo Fisher Scientific) and cDNA was synthesized using the RevertAid First Strand cDNA
574 Synthesis kit (Thermo Fisher Scientific). Genomic DNA was extracted from leaves of
575 Arabidopsis using CTAB (Murray and Thompson, 1980). A 1959 bp-long fragment
576 (*pAtMYB111*) from the promoter region of *AtMYB111* (*At5g49330*), including the 5'-UTR of the
577 gene, was amplified using Phusion High-Fidelity DNA polymerase (New England Biolabs,
578 Ipswich, MA, USA) and introduced in pFK206 derived from pGREEN (Hellens et al., 2000).
579 Alleles of *HaMYB111* were amplified from cDNA from ligules, and placed under the control of
580 *pAtMYB111* (in the plasmid describe above) or of the constitutive *CaMV 35S* promoter (in
581 pFK210, derived as well from pGREEN (Hellens et al., 2000)). Constructs were introduced into
582 *A. thaliana* plants by *Agrobacterium tumefaciens*-mediated transformation (strain GV3101)
583 (Weigel and Glazebrook, 2002). At least five independent transgenic lines with levels of UV
584 pigmentation comparable to the ones shown in Figure 3d were recovered for each construct. For
585 expression analyses, qRT-PCRs were performed on cDNA from ligules using the SsoFast
586 EvaGreen Supermix (Bio-Rad, Hercules, CA, USA) on a CFX96 Real-Time PCR Detection
587 System (Bio-Rad). Expression levels were normalized against *HaEF1α*. For the expression
588 analyses shown in Figure 3h,i, portions of ligules were collected at different developmental

589 stages from three separate inflorescences from one individuals for each species (biological
590 replicates). Three qRT-PCRs were run for each sample (technical replicates). For the expression
591 analysis shown in Fig. 3j, samples were collected from wild *H. annuus* individuals grown as part
592 of the 2019 common garden experiment. Ligules were collected from developing inflorescences
593 of 24 individuals with large LUVp (from 10 populations) and 22 individuals with small LUVp
594 (from 11 populations). Three technical replicates were performed for each individual. Sample
595 size for this experiment was determined by the number of available plants with opposite LUVp
596 phenotypes and at the appropriate developmental stage. Primers used for cloning and qRT-PCR
597 are given in Table 1.

598

599 **Sanger and PacBio sequencing**

600 Fragments ranging in size from 1.5 to 5.5 kbp were amplified from genomic DNA of 20
601 individuals that had been previously re-sequenced (Todesco *et al.*, 2020), and whose genotype at
602 the Chr15_LUVp SNP was therefore known, using Phusion High-Fidelity DNA polymerase
603 (New England Biolabs). Fragments were then cloned in either pBluescript or pJET (Thermo
604 Fisher Scientific) and sequenced on a 3730S DNA analyzer using BigDye Terminator v3.1
605 sequencing chemistry (Applied Biosystem, Foster City, CA, USA).

606 For long reads sequencing, seed from wild *H. annuus* populations known to be homozygous for
607 different alleles at the Chr15_LUVp SNP were germinated and grown in a greenhouse. After
608 confirming that they had the expected LUVp phenotype, branches from each plant were covered
609 with dark cloth for several days, and young, etiolated leaves were collected and immediately
610 frozen in liquid nitrogen. High molecular weight (HMW) DNA was extracted using a modified
611 CTAB protocol (Stoffel *et al.*, 2012). All individuals were genotyped for the Chr15_LUVp SNP

612 using a custom TaqMan SNP genotyping assay (Thermo Fisher Scientific, see above) on a
613 CFX96 Real-Time PCR Detection System (Bio-Rad). Two individuals, one with large and one
614 with small LUVp, were selected. HiFi library preparation and sequencing were performed at the
615 McGill University and Génome Québec Innovation Center on a Sequel II instrument (PacBio,
616 Menlo Park, CA, USA). Each individual was sequenced on an individual SMRT cell 8M,
617 resulting in average genome-wide sequencing coverage of 6-8X.

618

619 **Pollinator preferences assays**

620 In September 2017, pollinator visits were recorded in individual inflorescences of pairs of plants
621 with large and small LUVp grown in pots in a field adjacent the Nursery South Campus
622 greenhouses of the University of British Columbia. Pairs of inflorescences were filmed using a
623 Bushnell Trophy Cam HD (Bushnell, Overland Park, KS, USA) in 12-minute intervals.
624 Visitation rates were averaged over 14 such movies (Figure 4 – source data 1).

625 In summer 2019, pollinator visits were scored in a common garden experiment consisting of
626 1484 *H. annuus* plants at the Totem Plant Science Field Station of the University of British
627 Columbia. Over five days, between the 29th of July and the 7th of August, pollinator visits on
628 individual plants were counted over five-minute intervals, for a total of 435 series of
629 measurements on 111 plants from 51 different populations (Figure 4 – source data 1). To
630 generate a more homogenous and comparable dataset, measurements for plants with too few (1)
631 or too many (>10) flowers were excluded from the final analysis.

632

633 **Correlations with environmental variables and genotype-environment association analyses**

634 Twenty topo-climatic factors were extracted from climate data collected over a 30-year period
635 (1961-1990) for the geographic coordinates of the population collection sites, using the software
636 package Climate NA (Wang et al., 2016) (Figure 1 – source data 1). Additionally, UV radiation
637 data were extracted from the glUV dataset (Beckmann et al., 2014) using the R package “raster”
638 (Hijmans, 2020, R Core Team, 2020). Correlations between individual environmental variables
639 and LUVp were calculated using the “lm” function implemented in R; a correlation matrix
640 between all environmental variables and LUVp was calculated using the “cor” function in R and
641 plotted using the “heatmap.2” function in the “gplots” package (Warnes et al., 2009).

642 GEAs were analyzed using BayPass (Gautier, 2015) version 2.1. Population structure was
643 estimated by choosing 10,000 putatively neutral random SNPs under the BayPass core model.
644 The Bayes factor (denoted BF_{is} as in (Gautier, 2015)) was then calculated under the standard
645 covariate mode. For each SNP, BF_{is} was expressed in decibans units [dB , $10 \log_{10} (BF_{is})$].
646 Significance was determined following (Gautier, 2015), and employing Jeffreys’ rule (Jeffreys,
647 1961), quantifying the strength of associations between SNPs and variables as “strong” ($10 \text{ dB} \leq$
648 $BF_{is} < 15 \text{ dB}$), “very strong” ($15 \text{ dB} \leq BF_{is} < 20 \text{ dB}$) and decisive ($BF_{is} \geq 20 \text{ dB}$).

649

650 **Desiccation assays**

651 Inflorescence and leaves were collected from well-watered, greenhouse-grown plants, and
652 brought to an environment kept at 21°C. They were left overnight with their stems or petioles
653 immersed in a beaker containing distilled water. The following morning 1-2 leaves from each
654 plant, and three ligules from each inflorescence were individually weighed and hanged to air dry
655 at room temperature (21 °C). Their weight was measured at one-hour intervals for five hours, and
656 then again the following morning. Leaves and ligules were then incubated for 48 hours at 65 °C

657 in an oven to determine their dry weight. Total water content was measured as the difference
658 between the initial fresh weight (W_0) and dry weight (W_d). Water loss was expressed as a
659 fraction of the total water content of each organ, using the formula $[(W_i - W_d) / (W_0 - W_d)] \times 100$,
660 where W_i is the weight of a sample at a time i . The assay was performed on samples from 16
661 (ligules) or 15 (leaves) individuals belonging to 7 (ligules) or 8 (leaves) different populations of
662 *H. annuus*.

663

664 **Data availability**

665 All raw sequenced data are stored in the Sequence Read Archive (SRA) under BioProjects
666 PRJNA532579, PRJNA398560 and PRJNA736734. Filtered SNP datasets are available at
667 <https://rieseberglab.github.io/ubc-sunflower-genome/>. Raw sequencing data and SNP datasets
668 have been previously described in (Todesco et al., 2020). The sequences of individual alleles at
669 the *HaMYB111* locus and of *HaMYB111* coding sequences have been deposited at GenBank
670 under accession numbers XXX-XXX and MZA410295- MZA410296, respectively. All other
671 data are available in the main text or in the source data provided with the manuscript.

672

673 **Table 1: Oligonucleotides used in this study.**

Target	Forward	Reverse	Product size
HaMYB111 CDS	ATGGGAAGGACCCCGTGT	TTAAGACTGAAACCATGCATCTACC	885 bp
AtMYB111 promoter	CCTGTGCTTAAGGCTGAC	TGCTTCTGGTCTCTCTGT	1959 bp
HaMYB111 qPCR	ATGGGAAGGACCCCGTGT	GCAACTCTTCCGCATCTCA	169 bp
HaFLS1 qPCR	AAACTACTACCCACCATGCC	TCCTTGTTCACTGTTGTTCTGT	243 bp
EF1alpha qPCR	GTGTGTGATGTCGTTCTCCA	ATTCCACCCAAAGCTTGCTC	167 bp

674

675 **Acknowledgments**

676 This research was conducted in the ancestral and unceded territory of the xʷməθkʷəy̓əm
677 (Musqueam) People. We thank Andrea Todesco, Daniela Rodeghiero, Emma Borger, Quinn
678 Anderson, Jennifer Lipka, Jasmine Lai, Hafsa Ahmed, Dominique Skonieczny, Ana Parra,
679 Cassandra Koneczny, Kelsie Morioka and Daniel Yang for assistance with field work and data
680 acquisition, Melina Byron and Glen Healy at UBC and the UC Davis Plant Sciences Field
681 Station personnel for assistance with greenhouse and field experiments, Elizabeth Elle and Tyler
682 Kelly for help planning the pollinator preferences experiments, Laura Marek and the USDA-
683 ARS in Ames, IA, USA, for providing sunflower seeds, and Chase Mason for providing cuttings
684 for *Phoebanthus tenuifolius*. Maps were realized using tiles from Stamen Design
685 (<https://stamen.com>), under CC BY 3.0, from data by OpenStreetMaps contributors
686 (<https://openstreetmap.org>), under ODbL. Funding was provided by Genome Canada and
687 Genome BC (LSARP2014-223SUN), the NSF Plant Genome Program (DBI-1444522 and DBI-
688 1817628), the University of California, Berkeley, and an HFSP long-term postdoctoral
689 fellowship to M.T. (LT000780/2013).

690

691 **Competing interests**

692 The authors declare no competing interests.

693 **References**

694 ATAMIAN, H. S., CREUX, N. M., BROWN, E. A., GARNER, A. G., BLACKMAN, B. K. &
695 HARMER, S. L. 2016. Circadian regulation of sunflower heliotropism, floral orientation,
696 and pollinator visits. *Science*, 353, 587-90.

697 BADOUIN, H., GOUZY, J., GRASSA, C. J., MURAT, F., STATON, S. E., COTTRET, L.,
698 CRESPI, M., MANGIN, B., BURKE, J. M., SALSE, J., MUNOS, S., VINCOURT, P.,
699 RIESEBERG, L. H. & LANGLADE, N. B. 2017. The sunflower genome provides insights
700 into oil metabolism, flowering and Asterid evolution. *Nature*, 546, 148-152.

701 BECKMANN, M., VÁCLAVÍK, T., MANCEUR, A. M., ŠPRTOVÁ, L., VON WEHRDEN, H.,
702 WELK, E. & CORD, A. F. 2014. gl UV: a global UV-B radiation data set for
703 macroecological studies. *Methods in Ecology and Evolution*, 5, 372-383.

704 BOLGER, A. M., LOHSE, M. & USADEL, B. 2014. Trimmomatic: a flexible trimmer for
705 Illumina sequence data. *Bioinformatics*, 30, 2114-20.

706 BROCK, M. T., LUCAS, L. K., ANDERSON, N. A., RUBIN, M. J., CODY MARKELZ, R.,
707 COVINGTON, M. F., DEVISETTY, U. K., CHAPPLE, C., MALOOF, J. N. & WEINIG, C.
708 2016. Genetic architecture, biochemical underpinnings and ecological impact of floral UV
709 patterning. *Molecular ecology*, 25, 1122-1140.

710 BURKE, J. J. & UPCHURCH, D. R. 1989. Leaf temperature and transpirational control in
711 cotton. *Environmental and experimental botany*, 29, 487-492.

712 BYRNE, M. P. & O'GORMAN, P. A. 2018. Trends in continental temperature and humidity
713 directly linked to ocean warming. *Proc Natl Acad Sci U S A*, 115, 4863-4868.

714 CHITTKA, L., SHMIDA, A., TROJE, N. & MENZEL, R. 1994. Ultraviolet as a component of
715 flower reflections, and the colour perception of Hymenoptera. *Vision research*, 34, 1489-
716 1508.

717 DRAKE, J. E., TJOELKER, M. G., VÅRHAMMAR, A., MEDLYN, B. E., REICH, P. B.,
718 LEIGH, A., PFAUTSCH, S., BLACKMAN, C. J., LÓPEZ, R. & ASPINWALL, M. J. 2018.
719 Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf
720 thermal tolerance. *Global change biology*, 24, 2390-2402.

721 GALEN, C. 2000. High and dry: drought stress, sex-allocation trade-offs, and selection on
722 flower size in the alpine wildflower *Polemonium viscosum* (Polemoniaceae). *Am Nat*, 156,
723 72-83.

724 GAUTIER, M. 2015. Genome-wide scan for adaptive divergence and association with
725 population-specific covariates. *Genetics*, 201, 1555-79.

726 GRIMM, D. G., ROQUEIRO, D., SALOME, P. A., KLEEGER, S., GRESHAKE, B., ZHU,
727 W., LIU, C., LIPPERT, C., STEGLE, O., SCHOLKOPF, B., WEIGEL, D. &
728 BORGWARDT, K. M. 2017. easyGWAS: a cloud-based platform for comparing the results
729 of genome-wide association studies. *Plant Cell*, 29, 5-19.

730 GRONQUIST, M., BEZZERIDES, A., ATTYGALLE, A., MEINWALD, J., EISNER, M. &
731 EISNER, T. 2001. Attractive and defensive functions of the ultraviolet pigments of a flower
732 (*Hypericum calycinum*). *Proceedings of the National Academy of Sciences*, 98, 13745-
733 13750.

734 HARBORNE, J. B. & SMITH, D. M. 1978. Anthochlors and other flavonoids as honey guides in
735 the Compositae. *Biochemical Systematics and Ecology*, 6, 287-291.

736 HEISER, C. B. & SMITH, D. M. 1969. *The North American sunflowers (Helianthus)*, Durham,
737 N.C., Published for the Club by the Seeman Printery, Durham, N.C., USA.

738 HELLENS, R. P., EDWARDS, E. A., LEYLAND, N. R., BEAN, S. & MULLINEAUX, P. M.
739 2000. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant
740 transformation. *Plant Mol. Biol.*, 42, 819-32.

741 HERRERA, J. 2005. Flower size variation in *Rosmarinus officinalis*: individuals, populations
742 and habitats. *Annals of Botany*, 95, 431-437.

743 HIJMANS, R. J. 2020. Geographic data analysis and modeling. Available:
744 <https://r-spatial.org/raster/index.html>

745 HOFFMANN, M., BREMER, M., SCHNEIDER, K., BURGER, F., STOLLE, E. & MORITZ,
746 G. 2003. Flower visitors in a natural population of *Arabidopsis thaliana*. *Plant Biology*, 5,
747 491-494.

748 HORTH, L., CAMPBELL, L. & BRAY, R. 2014. Wild bees preferentially visit *Rudbeckia*
749 flower heads with exaggerated ultraviolet absorbing floral guides. *Biology open*, 3, 221-230.

750 HUBNER, S., BERCOVICH, N., TODESCO, M., MANDEL, J. R., ODENHEIMER, J.,
751 ZIEGLER, E., LEE, J. S., BAUTE, G. J., OWENS, G. L., GRASSA, C. J., EBERT, D. P.,
752 OSTEVIK, K. L., MOYERS, B. T., YAKIMOWSKI, S., MASALIA, R. R., GAO, L.,
753 CALIC, I., BOWERS, J. E., KANE, N. C., SWANEVELDER, D. Z. H., KUBACH, T.,
754 MUNOS, S., LANGLADE, N. B., BURKE, J. M. & RIESEBERG, L. H. 2019. Sunflower
755 pan-genome analysis shows that hybridization altered gene content and disease resistance.
756 *Nat. Plants*, 5, 54-62.

757 HURD JR, P. D., LEBERGE, W. E. & LINSLEY, E. G. 1980. Principal sunflower bees of North
758 America with emphasis on the southwestern United States (Hymenoptera, Apoidea).
759 *Smithsonian contributions to zoology*.
760 JEFFREYS, H. 1961. *Theory of Probability*, Oxford, Clarendon Press.
761 KANG, H. M., SUL, J. H., SERVICE, S. K., ZAITLEN, N. A., KONG, S. Y., FREIMER, N. B.,
762 SABATTI, C. & ESKIN, E. 2010. Variance component model to account for sample
763 structure in genome-wide association studies. *Nat. Genet.*, 42, 348-54.
764 KLEPIKOVA, A. V., KASIANOV, A. S., GERASIMOV, E. S., LOGACHEVA, M. D. &
765 PENIN, A. A. 2016. A high resolution map of the *Arabidopsis thaliana* developmental
766 transcriptome based on RNA-seq profiling. *The Plant Journal*, 88, 1058-1070.
767 KORN, M., PETEREK, S., MOCK, H. P., HEYER, A. G. & HINCHA, D. K. 2008. Heterosis in
768 the freezing tolerance, and sugar and flavonoid contents of crosses between *Arabidopsis*
769 *thaliana* accessions of widely varying freezing tolerance. *Plant, cell & environment*, 31,
770 813-827.
771 KOSKI, M. H. & ASHMAN, T.-L. 2013. Quantitative variation, heritability, and trait
772 correlations for ultraviolet floral traits in *Argentina anserina* (Rosaceae): Implications for
773 floral evolution. *International Journal of Plant Sciences*, 174, 1109-1120.
774 KOSKI, M. H. & ASHMAN, T.-L. 2015. Floral pigmentation patterns provide an example of
775 Gloger's rule in plants. *Nature Plants*, 1, 1-5.
776 KOSKI, M. H. & ASHMAN, T. L. 2014. Dissecting pollinator responses to a ubiquitous
777 ultraviolet floral pattern in the wild. *Functional Ecology*, 28, 868-877.

778 KOSKI, M. H. & ASHMAN, T. L. 2016. Macroevolutionary patterns of ultraviolet floral
779 pigmentation explained by geography and associated bioclimatic factors. *New Phytologist*,
780 211, 708-718.

781 KOSKI, M. H., MACQUEEN, D. & ASHMAN, T. L. 2020. Floral pigmentation has responded
782 rapidly to global change in ozone and temperature. *Curr Biol*, 30, 4425-4431 e3.

783 LAMBRECHT, S. C. 2013. Floral water costs and size variation in the highly selfing
784 *Leptosiphon bicolor* (Polemoniaceae). *International Journal of Plant Sciences*, 174, 74-84.

785 LAMBRECHT, S. C. & DAWSON, T. E. 2007. Correlated variation of floral and leaf traits
786 along a moisture availability gradient. *Oecologia*, 151, 574-583.

787 LI, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
788 *ArXiv*, arXiv:1303.3997v2.

789 MANDEL, J. R., NAMBEESAN, S., BOWERS, J. E., MAREK, L. F., EBERT, D.,
790 RIESEBERG, L. H., KNAPP, S. J. & BURKE, J. M. 2013. Association mapping and the
791 genomic consequences of selection in sunflower. *PLoS Genet*, 9, e1003378.

792 MATVIENKO, M., KOZIK, A., FROENICKE, L., LAVELLE, D., MARTINEAU, B.,
793 PERROUD, B. & MICHELMORE, R. 2013. Consequences of normalizing transcriptomic
794 and genomic libraries of plant genomes using a duplex-specific nuclease and
795 tetramethylammonium chloride. *PLoS One*, 8, e55913.

796 MOYERS, B. T., OWENS, G. L., BAUTE, G. J. & RIESEBERG, L. H. 2017. The genetic
797 architecture of UV floral patterning in sunflower. *Annals of Botany*, 120, 39-50.

798 MURRAY, M. G. & THOMPSON, W. F. 1980. Rapid isolation of high molecular weight plant
799 DNA. *Nucleic Acids Res.*, 8, 4321-5.

800 NAKABAYASHI, R., MORI, T. & SAITO, K. 2014a. Alternation of flavonoid accumulation
801 under drought stress in *Arabidopsis thaliana*. *Plant Signal Behav*, 9, e29518.

802 NAKABAYASHI, R., YONEKURA-SAKAKIBARA, K., URANO, K., SUZUKI, M.,
803 YAMADA, Y., NISHIZAWA, T., MATSUDA, F., KOJIMA, M., SAKAKIBARA, H.,
804 SHINOZAKI, K., MICHAEL, A. J., TOHGE, T., YAMAZAKI, M. & SAITO, K. 2014b.
805 Enhancement of oxidative and drought tolerance in *Arabidopsis* by overaccumulation of
806 antioxidant flavonoids. *Plant J*, 77, 367-79.

807 NUNEZ, M., FORGAN, B. & ROY, C. 1994. Estimating ultraviolet radiation at the earth's
808 surface. *International Journal of Biometeorology*, 38, 5-17.

809 OWENS, G. L., TODESCO, M., BERCOVICH, N., LÉGARÉ, J. S., MITCHELL, N.,
810 WHITNEY, K. D. & RIESEBERG, L. H. 2021. Standing variation rather than recent
811 adaptive introgression likely underlies differentiation of the *texanus* subspecies of
812 *Helianthus annuus*. *Molecular Ecology*.

813 PEACH, K., LIU, J. W. & MAZER, S. J. 2020. Climate predicts UV floral pattern size,
814 anthocyanin concentration, and pollen performance in *Clarkia unguiculata*. *Front Plant Sci*,
815 11, 847.

816 POLLASTRI, S. & TATTINI, M. 2011. Flavonols: old compounds for old roles. *Annals of
817 Botany*, 108, 1225-1233.

818 POPLIN, R., RUANO-RUBIO, V., DEPRISTO, M. A., FENNELL, T. J., CARNEIRO, M. O.,
819 VAN DER AUWERA, G. A., KLING, D. E., GAUTHIER, L. D., LEVY-MOONSHINE,
820 A., ROAZEN, D., SHAKIR, K., THIBAULT, J., CHANDRAN, S., WHELAN, C., LEK,
821 M., GABRIEL, S., DALY, M. J., NEALE, B., MACARTHUR, D. G. & BANKS, E. 2017.
822 Scaling accurate genetic variant discovery to tens of thousands of samples. *BioRxiv*.

823 R CORE TEAM. 2020. R: a language and environment for statistical computing. Available:
824 <https://www.r-project.org/>.

825 RAE, J. M. & VAMOSI, J. C. 2013. Ultraviolet reflectance mediates pollinator visitation in
826 *Mimulus guttatus*. *Plant Species Biology*, 28, 177-184.

827 RIESEBERG, L. H. & SCHILLING, E. E. 1985. Floral flavonoids and ultraviolet patterns in
828 *Viguiera* (Compositae). *American journal of botany*, 72, 999-1004.

829 ROHLAND, N. & REICH, D. 2012. Cost-effective, high-throughput DNA sequencing libraries
830 for multiplexed target capture. *Genome Res.*, 22, 939-46.

831 ROWAN, B. A., PATEL, V., WEIGEL, D. & SCHNEEBERGER, K. 2015. Rapid and
832 inexpensive whole-genome genotyping-by-sequencing for crossover localization and fine-
833 scale genetic mapping. *G3 (Bethesda)*, 5, 385-98.

834 SCHINDELIN, J., ARGANDA-CARRERAS, I., FRISE, E., KAYNIG, V., LONGAIR, M.,
835 PIETZSCH, T., PREIBISCH, S., RUEDEN, C., SAALFELD, S. & SCHMID, B. 2012. Fiji:
836 an open-source platform for biological-image analysis. *Nat. Methods*, 9, 676.

837 SCHLANGEN, K., MIOSIC, S., CASTRO, A., FREUDMANN, K., LUCZKIEWICZ, M.,
838 VITZTHUM, F., SCHWAB, W., GAMSJÄGER, S., MUSSO, M. & HALBWIRTH, H.
839 2009. Formation of UV-honey guides in *Rudbeckia hirta*. *Phytochemistry*, 70, 889-898.

840 SCHNEIDER, C. A., RASBAND, W. S. & ELICEIRI, K. W. 2012. NIH Image to ImageJ: 25
841 years of image analysis. *Nat. Methods*, 9, 671.

842 SCHNEITER, A. & MILLER, J. 1981. Description of sunflower growth stages. *Crop Science*,
843 21, 901-903.

844 SCHULZ, E., TOHGE, T., ZUTHER, E., FERNIE, A. R. & HINCHA, D. K. 2015. Natural
845 variation in flavonol and anthocyanin metabolism during cold acclimation in *Arabidopsis*
846 *thaliana* accessions. *Plant, cell & environment*, 38, 1658-1672.

847 SEDLAZECK, F. J., RESCHENEDER, P. & VON HAESELER, A. 2013. NextGenMap: fast
848 and accurate read mapping in highly polymorphic genomes. *Bioinformatics*, 29, 2790-1.

849 SHAGINA, I., BOGDANOVA, E., MAMEDOV, I. Z., LEBEDEV, Y., LUKYANOV, S. &
850 SHAGIN, D. 2010. Normalization of genomic DNA using duplex-specific nuclease.
851 *Biotechniques*, 48, 455-459.

852 SHEEHAN, H., MOSER, M., KLAHRE, U., ESFELD, K., DELL'OLIVO, A., MANDEL, T.,
853 METZGER, S., VANDENBUSSCHE, M., FREITAS, L. & KUHLEMEIER, C. 2016.
854 MYB-FL controls gain and loss of floral UV absorbance, a key trait affecting pollinator
855 preference and reproductive isolation. *Nature genetics*, 48, 159.

856 STAPLETON, A. E. 1992. Ultraviolet radiation and plants: burning questions. *The Plant Cell*, 4,
857 1353.

858 STATON, S. E. & LÁZARO-GUEVARA, J. M. 2020. *Sunflower genome database* [Online].
859 Available: <https://sunflowergenome.org/annotations/> [Accessed].

860 STEPHENS, J. D., ROGERS, W. L., MASON, C. M., DONOVAN, L. A. & MALMBERG, R.
861 L. 2015. Species tree estimation of diploid *Helianthus* (Asteraceae) using target enrichment.
862 *American Journal of Botany*, 102, 910-920.

863 STOFFEL, K., VAN LEEUWEN, H., KOZIK, A., CALDWELL, D., ASHRAFI, H., CUI, X.,
864 TAN, X., HILL, T., REYES-CHIN-WO, S. & TRUCO, M.-J. 2012. Development and
865 application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery
866 of single position polymorphisms in lettuce (*Lactuca* spp.). *BMC genomics*, 13, 1-17.

867 STRACKE, R., ISHIHARA, H., HUEP, G., BARSCH, A., MEHRTENS, F., NIEHAUS, K. &
868 WEISSHAAR, B. 2007. Differential regulation of closely related R2R3-MYB transcription
869 factors controls flavonol accumulation in different parts of the *Arabidopsis thaliana*
870 seedling. *Plant J.* 50, 660-77.

871 STRACKE, R., JAHNS, O., KECK, M., TOHGE, T., NIEHAUS, K., FERNIE, A. R. &
872 WEISSHAAR, B. 2010. Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-
873 dependent flavonol glycoside accumulation in *Arabidopsis thaliana* plants reveals MYB11-,
874 MYB12- and MYB111-independent flavonol glycoside accumulation. *New Phytol.* 188,
875 985-1000.

876 STRAUSS, S. Y. & WHITTALL, J. B. 2006. Non-pollinator agents of selection on floral traits.
877 *Ecology and evolution of flowers*, 120-138.

878 THOMPSON, W., MEINWALD, J., ANESHANSLEY, D. & EISNER, T. 1972. Flavonols:
879 pigments responsible for ultraviolet absorption in nectar guide of flower. *Science*, 177, 528-
880 530.

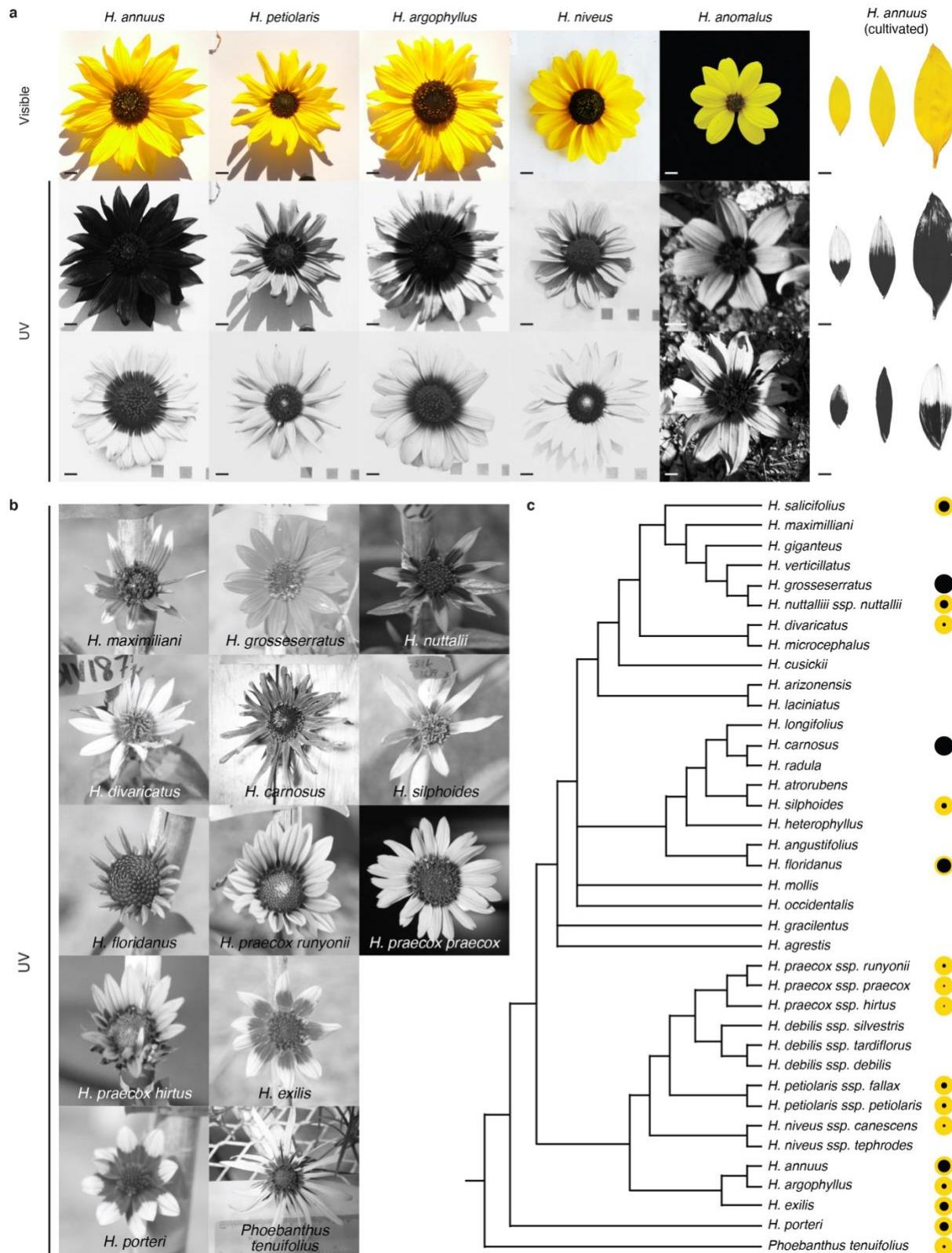
881 TODESCO, M., OWENS, G. L., BERCOVICH, N., LEGARE, J. S., SOUDI, S., BURGE, D. O.,
882 HUANG, K., OSTEVIK, K. L., DRUMMOND, E. B. M., IMEROVSKI, I., LANDE, K.,
883 PASCUAL-ROBLES, M. A., NANAVATI, M., JAHANI, M., CHEUNG, W., STATON, S.
884 E., MUNOS, S., NIELSEN, R., DONOVAN, L. A., BURKE, J. M., YEAMAN, S. &
885 RIESEBERG, L. H. 2020. Massive haplotypes underlie ecotypic differentiation in
886 sunflowers. *Nature*, 584, 602-607.

887 TOVÉE, M. J. 1995. Ultra-violet photoreceptors in the animal kingdom: their distribution and
888 function. *Trends in ecology & evolution*, 10, 455-460.

889 UNICODE.ORG. 2020. *Full emoji list, v13.0* [Online]. Available:
890 <https://unicode.org/emoji/charts/full-emoji-list.html> [Accessed].

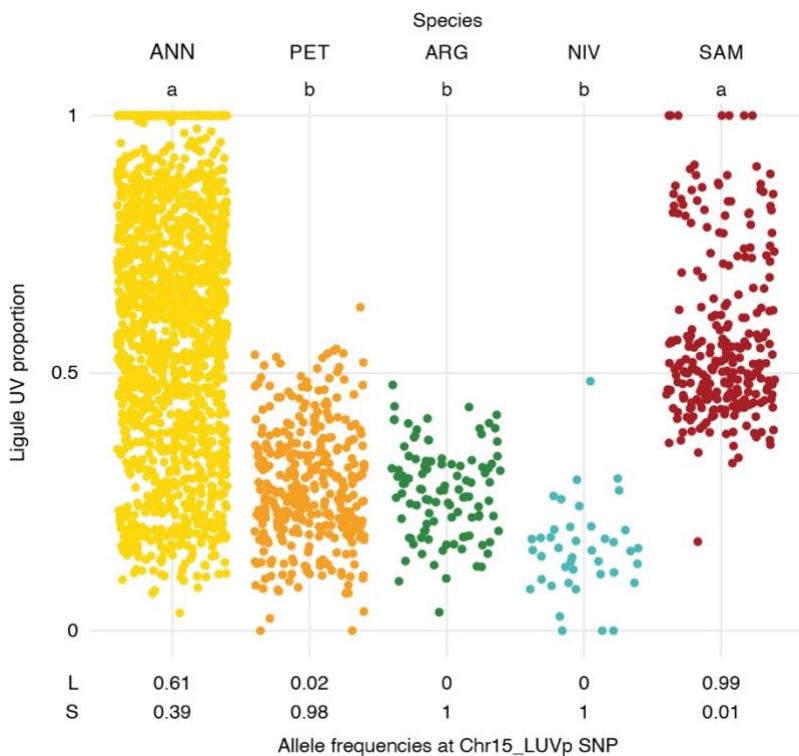
891 WANG, T., HAMANN, A., SPITTLEHOUSE, D. & CARROLL, C. 2016. Locally downscaled
892 and spatially customizable climate data for historical and future periods for North America.
893 *PloS one*, 11, e0156720.

894 WARNES, G. R., BOLKER, B., BONEBAKKER, L., GENTLEMAN, R., HUBER, W., LIAW,
895 A., LUMLEY, T., MAECHLER, M., MAGNUSSON, A. & MOELLER, S. 2009. gplots:
896 various R programming tools for plotting data. Available: <https://CRAN.R-project.org/package=gplots>

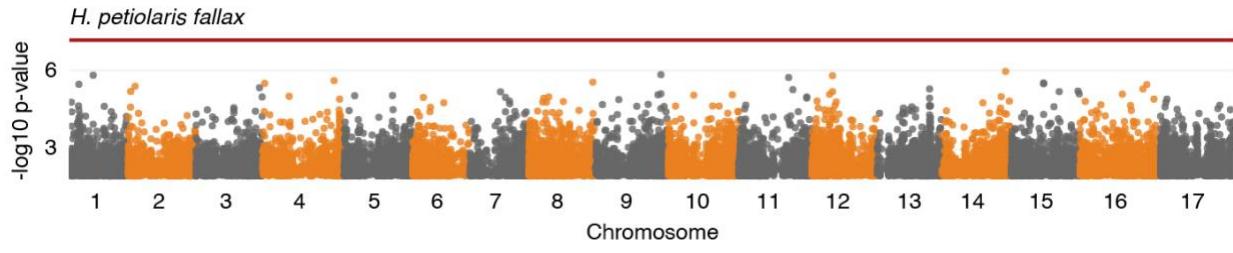

897

898 WEIGEL, D. & GLAZEBROOK, J. 2002. *Arabidopsis: A laboratory manual*, Cold Spring
899 Harbor, N.Y., USA, CSHL Press.

900 WOJTASZEK, J. & MAIER, C. 2014. A microscopic review of the sunflower and honeybee
901 mutualistic relationship. *Int. J. AgriSci*, 4, 272-282.


902 ZENG, J., ZOU, Y., BAI, J. & ZHENG, H. 2002. Preparation of total DNA from recalcitrant
903 plant taxa. *Acta Bot. Sin.*, 44, 694-697.

904 **Figure supplements**


906 **Figure 1 – figure supplement 1: Floral UV patterns in wild sunflower species and cultivated**
907 **sunflower.**

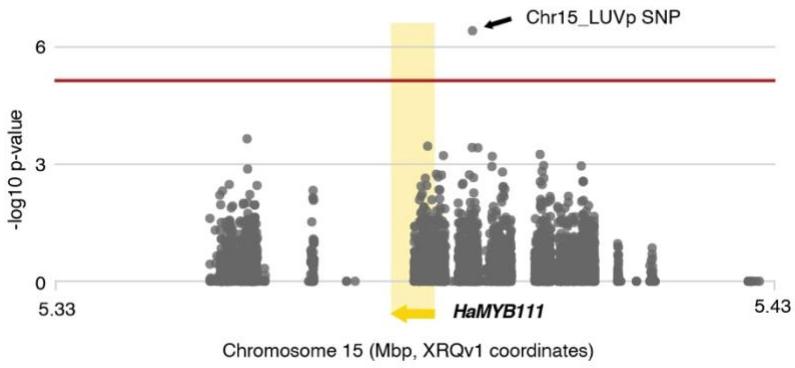
908 **a**, Visible and UV images of inflorescences from five wild sunflower species, and ligules of six
909 cultivated sunflower lines. Variation in floral UV patterns was found within all these species.
910 Scale bar = 1 cm. **b**, UV images of inflorescences from twelve wild sunflower species and for the
911 outgroup *Phoebanthus tenuifolius*. Images are not to scale. **c**, Species tree for 31 sunflower
912 species and *P. tenuifolius*, modified from (Stephens *et al.*, 2015). The size of the black dots to the
913 right of each species name is proportional to the average size of bullseye patterns measured for
914 that species or subspecies (Figure 1 – source data 1). For the species in **a**, bullseye values are
915 averages for ≥ 42 individuals (see also Figure 1 – figure supplement 2). For the species in **b**,
916 bullseye values are for single individuals or averages for up to three individuals. Two taxa in the
917 original species tree, *H. petiolaris* and *H. neglectus*, were renamed to *H. petiolaris* ssp. *petiolaris*
918 and *H. petiolaris* ssp. *fallax* to reflect the current understanding of their identities.

920 **Figure 1 – figure supplement 2: LUVp variation in wild sunflower species and cultivated**
921 **sunflower.**

922 LUVp values for individuals of four wild sunflower species and of the cultivated sunflower
923 association mapping (SAM) population, and allele frequencies at the Chr15_LUVp SNP. ANN =
924 wild *H. annuus* ($n = 1589$ from 110 populations), PET = *H. petiolaris* ($n = 351$ individuals from
925 40 populations), ARG = *H. argophyllus* ($n = 105$ individuals from 27 populations), NIV = *H.*
926 *niveus* ($n = 42$ individuals from 9 populations), SAM = cultivated *H. annuus* ($n = 275$
927 individuals). Letters identify groups that are significantly different for $p < 0.001$ (one-way
928 ANOVA with post-hoc Tukey HSD test, $F = 247$, $df = 4$). Exact p-values for pairwise
929 comparisons are reported in Figure 1 – source data 2.

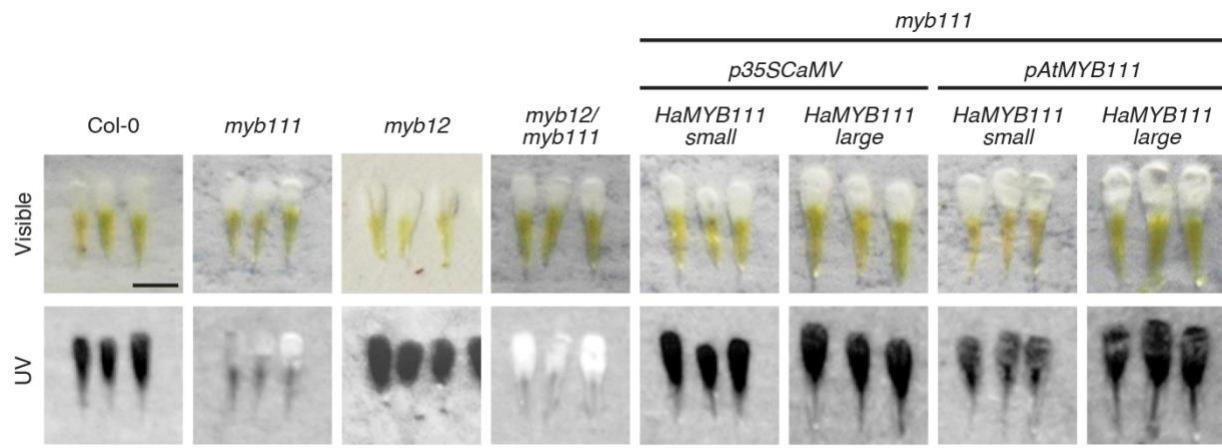
930

931 **Figure 2 – figure supplement 1: LUVp GWAS in *H. petiolaris fallax*.**

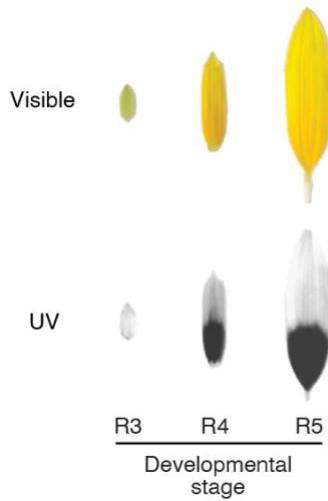

932 LUVp GWAS in *H. petiolaris fallax* ($n = 193$ individuals). The red line represents 5%
933 Bonferroni-corrected significance. GWAs were calculated using two-sided mixed models. Only
934 positions with $-\log_{10}$ p-value > 2 are plotted.

935

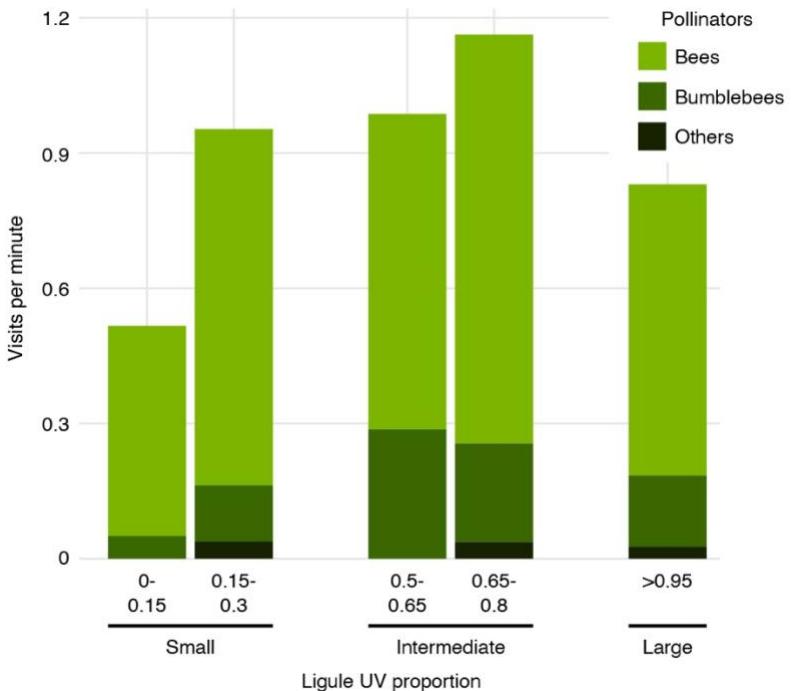
936 **Figure 2 – figure supplement 2: Floral UV patterns in the parental lines of F₂ populations.**


937 UV images of ligules of the parental lines for the F₂ populations shown in Figure 2e, and their F₁
938 progeny. A pair of F₁ plants was selected and crossed for each population to generate the F₂
939 progeny.

940

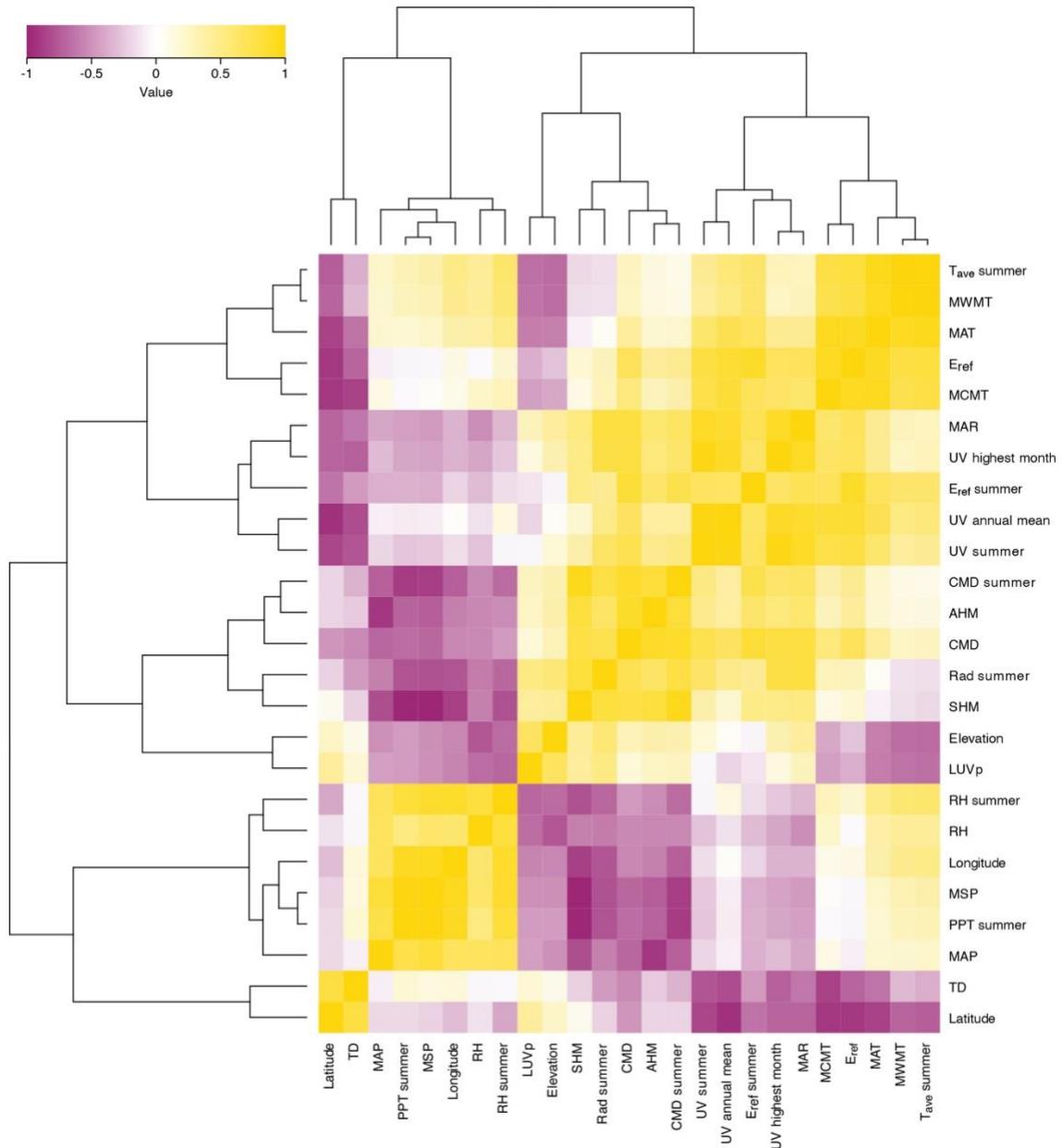

941 **Figure 2 – figure supplement 3: LUVp GWAS in unfiltered *H. annuus* datasets.**

942 LUVp GWAS *H. annuus* using an un-filtered variants dataset in a 100 kbp region surrounding
943 *HaMYB111* ($n = 563$ individuals). Relaxing variant filtering parameters, to capture more of the
944 polymorphisms at the *HaMYB111* locus, resulted in an almost 50-fold increase in the number of
945 variants in this region, from 142 to 6949. Regions in which no SNPs are reported contain highly
946 repetitive sequences, and were masked before reads mapping. As re-mapping to the improved
947 HA412v2 reference assembly of the complete *H annuus* set of $>222M$ unfiltered variants would
948 have been computationally intensive, positions are shown based on the original XRQv1
949 reference assembly. The red line represents 5% Bonferroni-corrected significance. GWAs were
950 calculated using two-sided mixed models.


952 **Figure 3 – figure supplement 1: Floral UV patterns in *Arabidopsis* lines.**

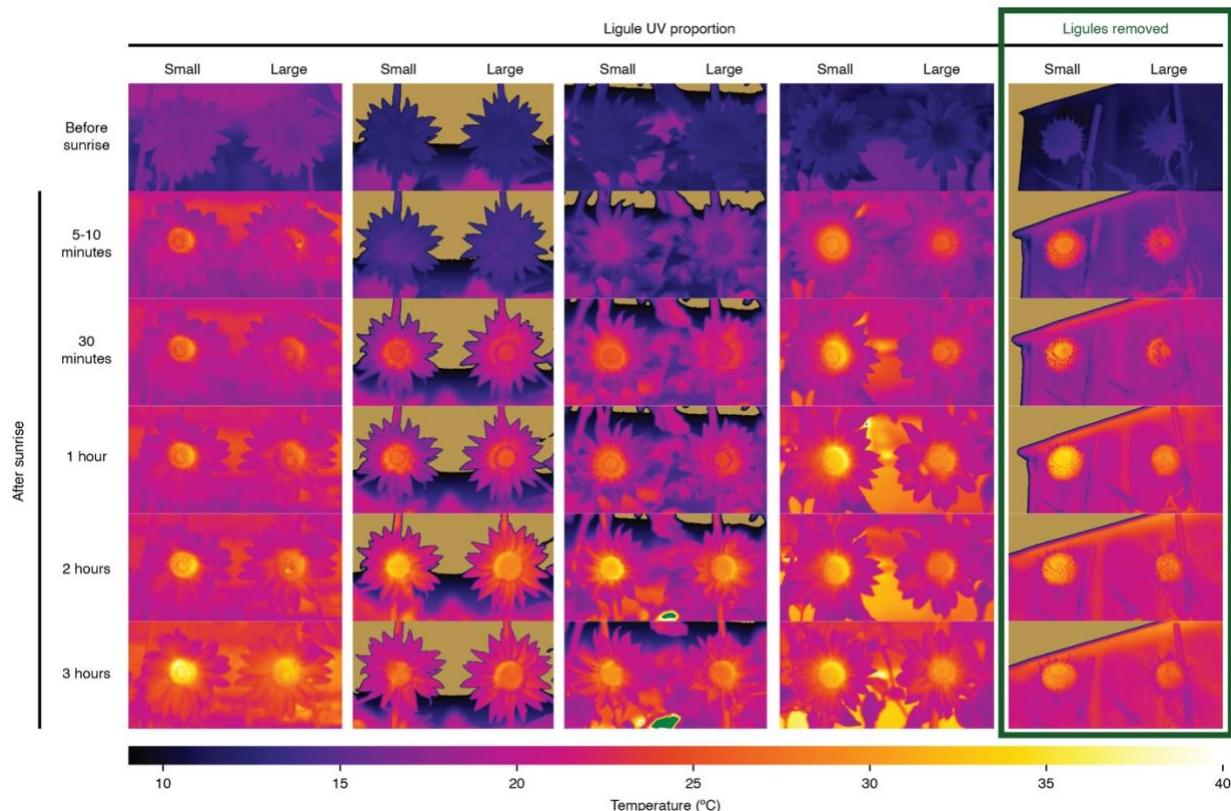
953 Visible and UV images of *Arabidopsis* petals. Col-0 = wild type *Arabidopsis*. Scale bar = 1 mm.

954


955 **Figure 3 – figure supplement 2: Stages of ligule development in *H. petiolaris*.**

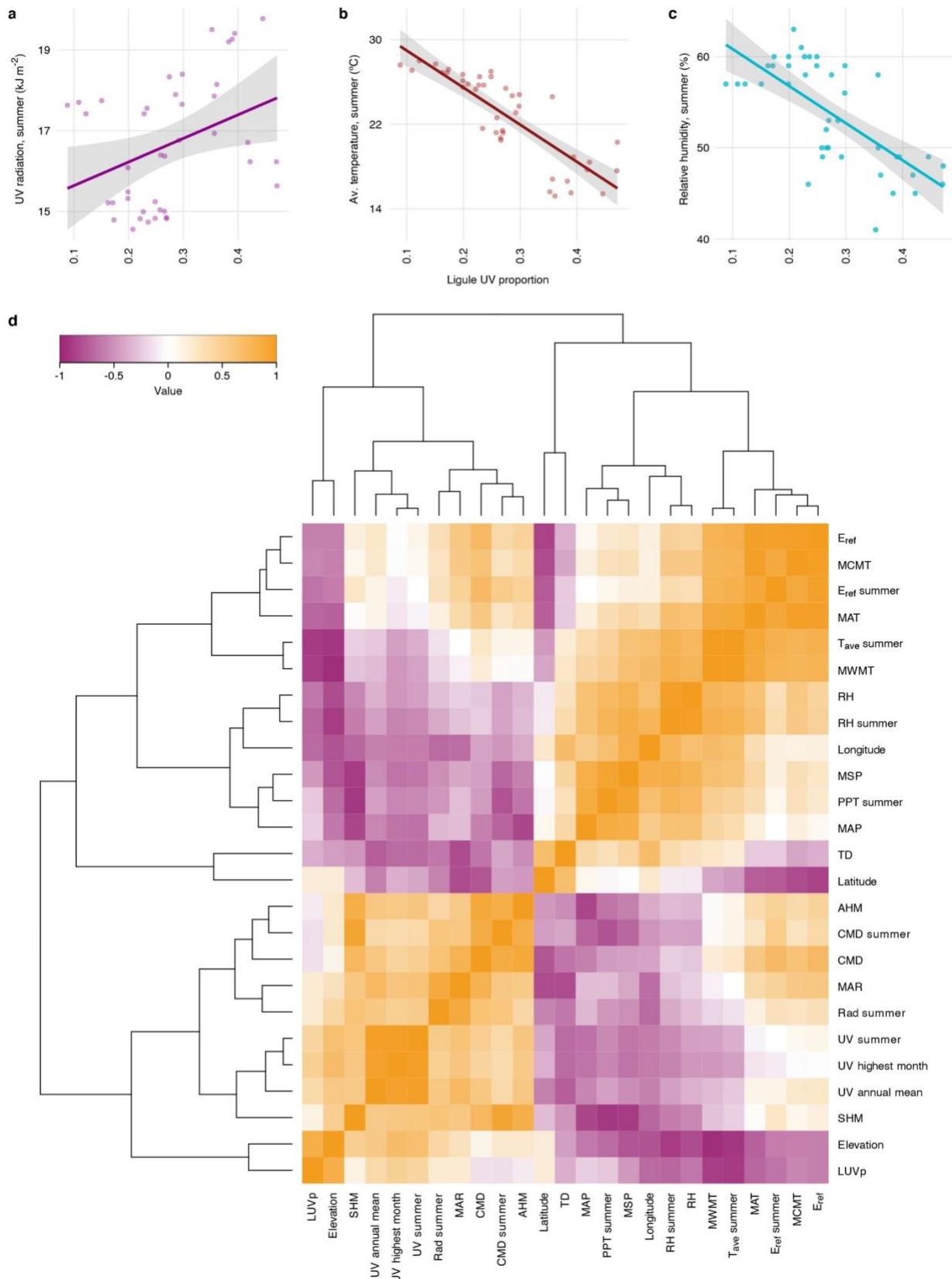
956

957 **Figure 4 – figure supplement 1: Mean pollinator visits in the 2019 field experiment divided
958 by category of pollinators.**


959 “Bees” were exclusively honey bees; “Bumblebees” included several *Bombus* species; “Others”
960 were mostly *Megachile* bees ($n = 1390$ pollinator visits). Pollinators were overwhelmingly
961 bumblebees in the 2017 field experiment.

962

963 **Figure 4 – figure supplement 2: Spearman correlation heatmap for LUVp and**
964 **environmental variables in wild *H. annuus* populations.**


965 Source data for this figure are reported in Figure 1 – source data 1.

966

967 **Figure 4 – figure supplement 3: Inflorescence temperature time series.**

968 Infrared images of East-facing inflorescences of sunflowers with large ($LUVp = 1$) or small
969 ($LUVp < 0.15$) floral UV patterns taken in the summer of 2017. No additional difference was
970 observed in pictures taken more than three hours after sunrise. While no difference in
971 temperature was observed in ligules, the centre (disk) of the inflorescence was consistently
972 warmer in plants with small $LUVp$. However, this effect is independent of ligule UV patterns,
973 since it persists in inflorescences in which ligules were removed (right-most column). Pollinator
974 visits were severely reduced for inflorescences with ligules removed. Bumblebees can be seen on
975 the disk of inflorescences with large $LUVp$ in the leftmost column of pictures, at 5-10 minutes
976 and 2 hours. Temperatures values outside of the 10-40 °C interval are shown in beige (<10 °C) or
977 green (>40 °C).

979 **Figure 4 – figure supplement 4: Correlations between LUVp and environmental variables**

980 **in *H. petiolaris*.**

981 **a**, Correlation between average LUVp for different populations of *H. petiolaris* and summer UV

982 radiation ($R^2 = 0.11, P = 0.02$), **b**, summer average temperature ($R^2 = 0.69, P = 10^{-11}$), or **c**,

983 summer relative humidity ($R^2 = 0.47, P = 4.4 \times 10^{-7}$). Grey areas represent the 95% confidence

984 interval. **d**, Spearman correlation heatmap for LUVp and environmental variables. Source data

985 for this figure are reported in Figure 1 – source data 1.

986 **Source data**

987 **Figure 1 - source data 1 (Figure 1 - source data 1.xlsx):** Population used in this study, average
988 LUVp values and environmental variables.

989

990 **Figure 1 - source data 2 (Figure 1 - source data 2.xlsx):** Individuals used in this study, LUVp
991 values and Chr15_LUVp SNP genotypes.

992

993 **Figure 2 - source data 1 (Figure 2 - source data 1.xlsx):** LUVp values and Chr15_LUVp SNP
994 genotypes for F₂.

995

996 **Figure 3 - source data 1 (Figure 3 - source data 1.xlsx):** Flavonols in methanolic extractions of
997 sunflower ligules and Arabidopsis petals.

998

999 **Figure 4 - source data 1 (Figure 4 - source data 1.xlsx):** Pollinator experiment data.

1000

1001 **Figure 4 - source data 2 (Figure 4 - source data 2.xlsx):** Ligules and leaves desiccation
1002 experiment data.

1003

1004 **Figure 4 - source data 3 (Figure 4 - source data 3.xlsx):** GEA results for the HaMYB111
1005 region.