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ABSTRACT 1 

Identification of peptides in mass spectrometry-based proteomics typically relies on spectra matches. 2 

As MS/MS spectra record presence and intensity of fragment ions, the match should take both 3 

fragment presence similarity and intensity similarity into consideration. Fragment presence similarity 4 

can be calculated with the help of fragment presence prediction such as theoretical enumeration of all 5 

possible fragment ions or selecting non-zero intensity ions from the result of fragment intensity 6 

prediction, but neither of these two methods is accurate enough. In this work, we developed a deep 7 

neural network based model, Alpha-Frag, to predict precisely the fragment ions that should be 8 

present for a given peptide. Alpha-Frag modelled fragment presence prediction as a multi-label 9 

classification task and trained with ProteomeTools dataset. In terms of intersection over union (IoU), 10 

Alpha-Frag achieved an average of >0.7 and outperformed the benchmarks across the validation 11 

datasets. Furthermore, fragment presence similarity was calculated based on presence prediction and 12 

incorporated into the peptide statistical validation tools as an additional score to improve peptide 13 

identifications. Our preliminary experiments show that this score led to a maximum increase of 14 

26.8% (FDR 0.1%) and 21.6% (FDR 1%) for the DDA and the DIA identification, respectively. 15 
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Significance Statement 1 

A better prediction of fragmentation for peptides in mass spectrometry (MS) is beneficial to the 2 

peptide identification. As the MS/MS spectra record two-dimensional information of fragment ions 3 

derived from precursors, mass-to-charge ratio (m/z) and their corresponding intensities, besides the 4 

fragment intensity prediction, it is necessary to study the presence prediction. Although the presence 5 

prediction can be realized by enumerating all the possible fragmentation patterns of a peptide with 6 

equal probability or by selecting non-zero intensity fragment ions from the result of fragment 7 

intensity prediction, neither of these two methods is accurate enough. In this study, deep learning is 8 

leveraged to precisely predict the fragment ions of a given peptide. Based on the fragment presence 9 

prediction, fragment presence similarity between experimental spectra and predicted spectra can be 10 

calculated which is proved to promote the peptide detections both for DDA and for DIA data. 11 
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1 Introduction  1 

Tandem mass spectrometry (MS/MS)-based technologies have been widely used in bottom-up 2 

proteomics for peptide identification and quantification [1]. The MS/MS spectra record two-3 

dimensional information of fragment ions derived from precursors, mass-to-charge ratio (m/z) and 4 

their corresponding intensities. Data-dependent acquisition (DDA) and data-independent acquisition 5 

(DIA) are the two most prevalent MS/MS strategies. Identification of peptides in DDA mainly relies 6 

on the match between the experimental spectrum and the theoretical spectrum. The ratio of the 7 

number of observed ions to the number of all theoretically possible fragment ions is an import 8 

evidence to the peptide-to-spectrum match (PSM) [2,3]. For DIA, identification of peptides is 9 

heavily based on fragment intensity match between the extracted ion chromatograms (XIC) and the 10 

reference spectral library which contains a certain number of most intensive fragment ions produced 11 

by DDA [4,5]. As MS/MS spectra record the presence and intensity of fragment ions simultaneously, 12 

the match should take both fragment presence similarity and intensity similarity into consideration 13 

both for DDA and for DIA identification (Similar to the term fragment intensity, which describes the 14 

intensities of fragment ions, the term fragment presence means the collection of fragment ions 15 

regardless of their intensities. Further, fragment presence similarity represents the ratio of the 16 

number of the matched-predicted ions to the number of the predicted fragment ions). When more 17 

realistic set of fragment ions rather than theoretical possible fragment ions is provided to calculate 18 

fragment presence similarity, the evidences of DDA and DIA identification will be more accurate 19 

and more comprehensive, respectively.  20 

The presence and absence of fragment ions observed in an MS/MS spectrum depend on factors 21 

including peptide primary sequence, charge state of the peptide, and how the collision energy is 22 

introduced [6]. To achieve fragment presence prediction, enumerating all the possible fragmentation 23 

patterns of a peptide with equal probability is possible theoretically but leads to produce a lot of 24 

redundant fragment ions. Alternatively, selecting non-zero intensity fragment ions from the result of 25 
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fragment intensity prediction is another implementation of fragment presence prediction. Currently, 1 

with the advances in deep learning based modeling [7], fragment intensity predictors modeled by 2 

neutral network, such as pDeep [8], DeepMass [9] and Prosit [10], are making increasingly accurate 3 

fragment intensity prediction. Among these, pDeep and DeepMass followed the framework of 4 

bidirectional LSTM [11] combined with fully connected layers to predict intensities of fragment ion. 5 

Innovatively, Prosit took advantage of the recent advances in neural machine translation [12,13] with 6 

an encoder to code the amino acids sequence and a decoder to output the fragment ion intensity step 7 

by step and had become the state-of-art of intensity predictor. For fragment presence prediction 8 

based on intensity predictors, the above-mentioned intensity prediction models aim to spectrum 9 

similarities [14] which dominated by high-intensity ions, potentially limiting existence prediction of 10 

low-intensity ions. Some low-intensity fragment ions that non-existing but predicting present or 11 

present but predicting missing may lead to inaccurate calculation of presence similarity and reduce 12 

subsequent statistical power for peptide identification.  13 

The purpose of this study is to develop a deep neural network-based model, Alpha-Frag, for 14 

fragment presence prediction. Our study design, including model training, evaluation and 15 

applications, is shown in Fig. 1. Peptide sequence and charge are taken as the input for Alpha-Frag to 16 

predict the presence of fragments ions. Unlike intensity prediction, which is a regression problem in 17 

most cases, Alpha-Frag models fragment presence prediction as a multi-label classification problem. 18 

Taking advantage of the ProteomeTools [15] dataset for model training, Alpha-Frag can output the 19 

most likely set of fragment ions. The result of prediction was evaluated by intersection over union 20 

(IoU) between experimental and predicted fragment ions. To illustrate the possible applications of 21 

Alpha-Frag, we calculated the ratio of the number of matched-predicted ions versus the number of 22 

predicted ions by Alpha-Frag as an additional score to improve DDA and DIA identification. The 23 

preliminary results showed that Alpha-Frag is able to predict the presence of fragment ions 24 

accurately and is beneficial to both DDA and DIA identifications.  25 
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2 Materials and methods 1 

2.1 Data preparation 2 

In this paper, multiple datasets were used to model training & test, evaluation and applications 3 

(shown in Fig. 1). Like Prosit, training and test datasets (the table in top panel of Fig. 1) were 4 

sourced from ProteomeTools (PXD004732 and PXD010595 in PRIDE) of which the raw data were 5 

searched by MaxQuant [16] (v.1.5.3.30) at 1% peptide false discovery rate (FDR). To select a high 6 

confident dataset for training and test, only PSMs met these criteria were considered: Andromeda 7 

score is >50, charge is <5, peptide length is restricted to 7-30 amino acids. Alpha-Frag used MS/MS 8 

data with normalized collision energy (NCE) 35 suggested by [17]. Meanwhile, y/b fragment ions 9 

with charges up to 2 were extracted and annotated from the corresponding MS/MS for each 10 

identified peptide by MaxQuant, and these y/b ions were used as the ground truth of present 11 

fragment ions for training and test. In total, 452,558 precursors (1,252,829 PSMs) were kept and split 12 

into a training set and a test set randomly by a ratio at 4:1. 13 

To ensure the generality of model evaluation, we relied on three diverse DDA datasets. Details 14 

were summarized in the table in the middle panel of Fig. 1. Among these, Ammar’s dataset [18] was 15 

acquired by TripleTOF 6600 with CID fragmentation. After searched by MaxQuant (v.1.5.3.12) at 16 

1% FDR and filtration (Andromeda score is >50, precursor charge is <5, peptide length is restricted 17 

to 7-30 amino acids), Ammar’s dataset has 18,700 PSMs. Huang’s dataset [19] was obtained from Q 18 

Exactive HF (Thermo Scientific) with HCD fragmentation (NCE=27) and has 270,125 PSMs after 19 

the same filtration (MaxQuant v.1.6.0.1). Bekker-Jensen’s dataset [20] searched by MaxQuant 20 

(v.1.5.3.6) was conducted in Q Exactive HF with HCD fragmentation (NCE=28) and has 450,144 21 

PSMs after merged search results. Each of the PSMs for these three datasets had a corresponding set 22 

of present fragment ions determined by MaxQuant. For training & test and evaluation datasets, the 23 

search result of MaxQuant were available on their corresponding PRIDE. 24 
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For the model application in DDA identification, Hartman’s dataset [21] and Coscia’s dataset 1 

[22] both without fractionation were adopted to retain sample complexity (the table in button panel 2 

of Fig. 1). These two datasets were acquired by Q Exactive HF with NCE 27 and 25, respectively. In 3 

order to facilitate the integration of fragment presence prediction to DDA identification, search 4 

software Crux [3] and Percolator [23] were selected. The acquired RAW data were analyzed with 5 

Crux (v.3.2) and Percolator (v.3.02.0) against the rat UniProt fasta database (state 08.24.2020, 6 

29,940 entries) and the human SwissProt fasta database (state 09.03.2020, 20,379 entries) for 7 

Hartman’s and Coscia’s dataset, respectively. The options of Crux included: ‘--min-length 7  --max-8 

length 30 --mods-spec C+57.02146,1M+15.994915 –max-mods 3 –missed-cleavages 1 --max-9 

precursor-charge 4 --top-match 1 --concat T --compute-sp T’. Percolator used the default parameters. 10 

For the application of Alpha-frag in DIA identification, Bruderer’s dataset [24] and Muntel’s 11 

dataset [25] were adopted to represent the cell line (HeLa) and the complex clinical tissue sample 12 

(testis of human), respectively. Bruderer’s dataset was collected on a Q Exactive HF with 37 13 

isolation windows and Muntel’s dataset was acquired on a Q Exactive HF-X (Thermo Scientific) 14 

with 45 isolation windows. Both Bruderer’s and Muntel’s dataset had an NCE of 27.5. Software 15 

OpenSWATH [5] and PyProphet [26] were selected to identify the DIA files as they are convenient 16 

to add custom function. Meanwhile, the PHL public spectral library [27] which contains target and 17 

decoy peptides and the CiRT peptides [28] were used to aid the identification. The following options 18 

were employed for OpenSWATH (v.2.4.0) : ‘-batchSize 1000 -readOptions cacheWorkingInMemory 19 

-mz_extraction_window 20 -ppm -mz_correction_function quadratic_regression_delta_ppm  -20 

min_rsq 0.8’. PyProphet (v.0.24.1) used the default parameters. 21 

For all dataset in this study, only peptides with fixed modification of carbamidomethylation on 22 

cysteine and variable modification of oxidation on methionine were considered. 23 

2.2 Model 24 
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For fragment presence prediction based on peptide sequence, the predictor should be able to 1 

capture the effects of all amino acids on the fragment result and be able to handle sequential input 2 

with a variable length. Similar to Prosit, Alpha-Frag also uses bi-directional gated recurrent memory 3 

units (Bi-GRU) [29] to address these requirements. Fig. 2a is the architecture overview of Alpha-4 

Frag. A detailed description of the model is presented below.  5 

Inputs: Including peptide sequence and precursor charge. Each amino acid of peptide and 6 

precursor charge will be embedded to a vector of dimension 32. Alpha-Frag supports precursor 7 

charge with no more than 4, as well as 20 natural amino acids and variable modification of oxidation 8 

on methionine. Each cysteine is treated as fixed modification of carbamidomethylation on itself. 9 

Model: Alpha-Frag connects embedding layer to two layers of Bi-GRU. Dropout [30] is set to 10 

0.5 between the two Bi-GRU layers. A self-attention layer [31] is used to merge the Bi-GRU outputs 11 

to a vector of dimension 64. Concatenating this vector with charge embedding vector, Alpha-Frag 12 

represents the precursor as a vector of dimension 96 in latent space. Afterwards, the 96-dimensional 13 

vector is converted to dimension of 116  (Alpha-Frag considers peptide length maximum to 30 and 14 

only y/b fragment ions with no more than 2 charges. The maximum number of fragment ions is: 2 * 15 

2 * 29 = 116) by a fully connected layer and a sigmoid layer. 16 

Outputs: The output 116-dimensional vector  is ordered as follows: y1+, y1++, b1+, b1++, 17 

y2+ and so on. Each value represents the occurrence probability of the corresponding fragment ion. 18 

Alpha-Frag adopts 0.5 as the existence threshold. Only fragment ion with a predicted probability 19 

greater than 0.5 will be considered as presence. Fragment ions at impossible dimensions (such as y17 20 

for an 8-mer peptide) are set to zero directly. 21 

Of note, we experimented with different dropout and dimension of each layer. However, this 22 

did not result in any significant gains on the performance. Therefore, we used the common parameter 23 
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values described above. The source code of Alpha-Frag is available at 1 

https://github.com/YuAirLab/Alpha-Frag. 2 

2.3 Training and test 3 

PyTorch (v.1.1.0, https://pytorch.org) was used to implement and train Alpha-Frag. We used 4 

the Adam optimizer with an initial learning rate of 0.001 and 1024 samples per batch. The loss 5 

function in training was binary cross entropy loss (BCE loss): 6 

0

1 [ log (1 )log(1 )]
N

BCE i i i i
i

y x y x
N =

= + − −∑Loss
                                  (1) 7 

where ix means the true label of the corresponding fragment ion either 0 or 1, iy is the predicted 8 

probability, and N is the length of the output vector. It should be noted that the fragment ions out-of-9 

range or out-of-charge were masked and not involved in the calculation of loss. For the test dataset, 10 

we calculated the intersection over union (IoU, Fig. 2b) to evaluate the accuracy of prediction. Given 11 

a set of real present fragment ions A and a set of predicted present fragment ions B, the IoU is 12 

defined as follows: 13 

 
IoU

∩
=

∪
( , )

A B
A B

A B                                                                 (2) 14 

For example, the real fragment ions is ‘y2+, y3+, y4+, y5++, b2+, b3+’, the predicted fragment ions 15 

is ‘y1+, y2+, y4+, y5+, b3+’, then the intersection between them is ‘y2+, y4+, b3+’ and the union is 16 

‘y1+, y2+, y3+, y4+, y5+, y5++, b2+, b3+’. Hence, the IoU value is equal to 3/8. The larger the IoU, 17 

the more consistent the predicted fragment ions with the real fragment ions are.  18 
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3 Results 1 

3.1 Bi-GRU based deep learning model 2 

We trained Alpha-Frag on one Nvidia 1060 GPU. For each epoch, we calculated the averaged 3 

BCE loss and the averaged IoU in the training and test dataset, respectively. As the epoch increased, 4 

the averaged BCE loss decreased and the averaged IoU increased shown in Fig. 2c. After 20 epochs, 5 

the model converged and the training was terminated to balance the learning and the potential 6 

overfitting. At last, the averaged IoU reached 0.815, indicating that Alpha-Frag predict the present 7 

fragment ions well for the test dataset. 8 

3.2 Performance Evaluation of fragment presence prediction  9 

In order to illustrate fragment presence prediction based on intensity prediction is not accurate 10 

enough, we plotted the difference of a representative precursor EPPLLLGVLHPNTK(3+) between 11 

its experimental spectrum, the predicted spectrum by Prosit (unless otherwise specified, Prosit works 12 

with the optimal NCE 35 in this study) and its predicted fragment ions by Alpha-Frag in Fig. 3a. 13 

Although the Pearson correlation coefficient (PCC) between the experimental spectrum and the 14 

predicted spectrum by Prosit reached as high as 0.90, the predicted spectrum contained 3.06 (46 vs. 15 

15) times as many fragment ions as the number of matched y/b ions in the experimental spectrum. In 16 

other words, ~67.3% of predicted fragment ions by Prosit are not present. As a contrast, Alpha-Frag 17 

predicted 14 fragment ions and 13 of which are matched to experimental spectrum and one of which 18 

is mismatch. Therefore, the IoU between the real present fragment ions and the predicted present 19 

fragment ions by Alpha-Frag reached 0.81, illustrating the strong agreement between prediction and 20 

observation for fragment presence in this case. 21 

To evaluate the performance of fragment presence prediction of Alpha-Frag comprehensively, 22 

we benchmarked it against theoretical enumeration model (hereinafter referred to as Enumeration 23 

model) and Prosit model using three public DDA datasets: Ammar’s, Huang’s and Bekker-Jensen’s 24 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 20, 2021. ; https://doi.org/10.1101/2021.04.07.438629doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438629
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

dataset. For Enumeration model, the predicted fragment ions include all possible y/b ions with less 1 

length and no more charges than precursors. First, we took a rough look at the difference between the 2 

predicted number of fragment ions and the real number of fragment ions both normalized by peptide 3 

length in Fig. 3b. In all three datasets, the result of Enumeration model and Prosit model 4 

overestimated the number of fragment ions and Alpha-Frag was the most closest model compared to 5 

the real number. This comparison showed that Alpha-Frag is able to predict precisely the number of 6 

fragment ions. 7 

Besides the above comparison, IoU can be calculated to check the consistence between the real 8 

fragment ions and the predicted fragment ions. Fig. 3c plotted the IoU distribution by violin plot. It is 9 

apparent that Alpha-Frag outperformed markedly Enumeration model and Prosit model across the 10 

datasets. In terms of median IoU, Alpha-Frag achieved an average of ~207% and ~52% 11 

improvements than Enumeration model and Prosit model, respectively, indicating that Alpha-Frag 12 

works very well for fragment presence prediction.  13 

Last but not least, in our device of CPU Intel i7-7700K 4 cores, Win10, 64 bit, 64 GB memory 14 

and GPU Nvidia GTX 1060, Enumerator model, Prosit and Alpha-Frag spent ~0s, ~32.5s and ~5.2s 15 

to predict fragment presence of 450,144 precursors from Berken-Jensen’s dataset, respectively. 16 

3.3 Presence prediction improves peptide identification for both DDA and DIA 17 

To test if the presence prediction is beneficial to peptide identification, we constructed an 18 

additional score, termed score_frag, and integrated it into the corresponding pipeline (default 20 ppm 19 

tolerance for matching): 20 

 #  -  _
#  

Matched predicted ionsscore frag
Predicted ions

=                                                                 (3) 21 

For DDA identification (Fig. 4a), Crux and Percolator were employed to scored (such as Sp 22 

and XCorr) each candidate PSM. Then, fragment presence predictor was used to generate the 23 
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predicted fragment ions based on the peptide sequence and precursor charge. Subsequently, the 1 

score_frag was calculated based on the real spectrum and the predicted fragment ions and was fed 2 

into Percolator with the other scores (as shown by blue lines in Fig. 4a). At last, Percolator merged 3 

all scores and calculated the FDR. We carried out this DDA score_frag strategy with Enumeration 4 

model, Prosit model and Alpha-Frag to two DDA datasets: Hartmann’s dataset  and Coscia’s dataset. 5 

Raw identification without score_frag was used as a control. The number of identified PSMs against 6 

FDR was shown in Fig. 4b as well as the bar plot of scores’ weight (the Alpha-Frag case). Overall, 7 

we found that including score_frag increases the number of identified PSMs compared to raw 8 

identification. In terms of the identification number, Alpha-Frag outperformed Enumeration model 9 

and Prosit model at the stringent FDR range (< 0.5%). While along FDR to 5%, no significant 10 

differences were found between Alpha-Frag and Prosit (data not shown). At 0.1% FDR, raw 11 

identification reached only an average of 80.3% and 79.6% compared to Alpha-Frag for Hartmann’s 12 

and Coscia’s dataset, respectively. Meanwhile, the weight of score_frag was ranked number one 13 

across the datasets, illustrating that score_frag based on fragment presence prediction is an important 14 

evidence for DDA identification. 15 

Application of score_frag to DIA identification is different from that to DDA identification. As 16 

shown in Fig. 5a, after OpenSWATH determined and scored the peak groups based on the spectra 17 

library, fragment presence predictor was performed to predict the fragment presence ions based on 18 

the peptide sequence and precursor charge. Then, depending on the apex retention time of the peak 19 

group, the single MS/MS spectrum was picked out whose retention time was closest to the apex. 20 

Afterward, the score_frag was calculated based to the picked spectrum and the predicted fragment 21 

ions and was fed into PyProphet with the other scores (blue lines in Fig. 5a). At last, PyProphet 22 

merged the scores and reported the identification result. Similarly, we implemented this DIA 23 

score_frag strategy with Enumeration model, Prosit model and Alpha-Frag model to two DIA 24 

datasets: Bruderer’s and Muntel’s dataset. As a control, we also analyzed data without score_frag. 25 
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The number of identified precursors against the FDR was plotted in Fig. 5b as well as the scores’ 1 

weight (the Alpha-Frag case). In terms of the number of identified precursors, we found that 2 

Enumeration model did not always lead to improvement. This may be due to the fact that the MS/MS 3 

in DIA is multiplexed. Besides, in all datasets, Alpha-Frag outperformed Prosit model, both of which 4 

increased the identification. At 1% FDR, Alpha-Frag brought about an average of 21.6% and 7.9% 5 

improvement over the raw identification for Bruderer’s and Muntel’s dataset, respectively. 6 

Dissimilar in DDA, the weight of score_frag in DIA was not ranked number one but had a same 7 

order of magnitude compared to the most important score. These results demonstrated the feasibility 8 

of the additional score_frag to DIA identification and the accuracy of fragment presence prediction 9 

by Alpha-Frag.  10 

  11 
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4 Concluding remarks 1 

In this study, we proposed Alpha-Frag, a deep neural network used to predict fragment 2 

presence ions and that surpass substantially the other benchmarks. In the validation datasets, Alpha-3 

Frag achieved an average of ~207% and ~52% improvements in terms of median IoU than 4 

Enumeration model and Prosit model, respectively. This highlights that the model is an effective 5 

complement to fragment intensity prediction. In the accompanying applications of Alpha-Frag, 6 

fragment presence similarity was performed to improve the identification and achieved a maximum 7 

increase of 26.8% (FDR 0.1%) and 21.6% (FDR 1%) for the DDA dataset and the DIA dataset, 8 

respectively. The weight of fragment presence similarity also indicates that it is an import evidence 9 

for peptide identification. So far, only tryptic peptides and peptides with no modifications except for 10 

methionine oxidation were considered. Next as more data for non-tryptic and modified peptides and 11 

chemical labels become available, we will update our model to improve predictions for more 12 

peptides. Further, we plan to divide the spectrum prediction into two phases: fragment presence 13 

prediction followed by corresponding intensity prediction to approximate the fragmentation better. 14 

We believe this will make the predicted spectrum more accurate and peptide identification more 15 

confident both for DDA and for DIA. 16 
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 1 

Fig. 1. Study design. From top to bottom, the three panels indicate model training, model evaluation 2 

and model applications, respectively. The tables in each panel are the corresponding datasets.  3 
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 1 

 2 

Fig. 2. The model of Alpha-Frag and its training and test. a)  Bi-GRU based Alpha-Frag model. 3 

b) Illustration of intersection over union (IoU) which is used to compare the consistence between 4 

two sets. c) The averaged loss curve in training dataset and the averaged IoU curve in test dataset. 5 
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 2 

Fig. 3. Performance evaluation. a) Comparison between experimental spectrum, predicted 3 

spectrum by Prosit (NCE=35), predicted fragment ions by Alpha-Frag of precursor 4 

EPPLLLGVLHPNTK(3+). The matched y/b ions in experimental spectrum contains 15 y/b ions 5 

marked in jet black lines (scan 53773, 01974C_BA1-TUM_missing_first_1_01_01-DDA-1h-R4.raw, 6 

PXD010595. The matched y/b ions are determined by MaxQuant at 1% FDR). The predicted 7 

spectrum by Prosit contains 46 y/b ions with non-zero intensities marked in light black. The blue 8 

lines mean the match between the predicted spectrum and the experimental spectrum. We observed 9 

that 67.3% of predicted fragment ions are not present in the experimental spectrum while the Pearson 10 

correlation coefficient (PCC) between them reaches 0.90. In the other hand, the IoU between 11 

experimental spectrum and predicted fragment ions by Alpha-Frag reaches 0.81. b) Box plot to 12 

compare the predicted number of fragment ions and the real number of fragment ions both 13 

normalized by peptide length. The box indicates the interquartile range (IQR), its whiskers 1.5× IQR 14 

values, and the black line the median. c) Violin plot of IoU in three evaluation datasets.  15 
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Fig. 4. Application of fragment presence prediction to DDA identification. a) Workflow. The 1 

non-colored lines represent the workflow of DDA identification by Crux combined with Percolator. 2 

The blue lines represent the process of integrating the score_frag into Crux-Percolator. b) 3 

Comparison of identification performance and weight of scores. In Hartmann’s dataset, ‘01’ refers to 4 

20160809_EXQ00_DaHo_SA_Eddie_15mioPCN_fullproteome_2016_06_07_GFP_01.raw, ‘02’ 5 

refers to 20160809_EXQ00_DaHo_SA_Eddie_15mioPCN_fullproteome_2016_06_07_GFP_02.raw. 6 

In Coscia’s dataset, ‘A’ refers to 20130312_EXQ4_FaCo_SA_CL_DOV13_A.raw, ‘B’ refers to 7 

20130312_EXQ4_FaCo_SA_CL_DOV13_B.raw. Right side is the bar plot of  Percolator weights 8 

for the ‘Percolator + Alpha-Frag’ case.  9 
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Fig. 5. Application  of fragment presence prediction to DIA identification. a) Workflow. The non-1 

colored lines represent the workflow of DIA identification by OpenSWATH combined with PyProphet. 2 

The blue lines represent the process of integrating the score_frag into OpenSWATH-PyProphet. b) 3 

Comparison of identification performance and weight of scores. In Bruderer’s dataset, ‘1h’ refers to 4 

Fig2 HeLa-1h_MHRM_R01_T0.raw, ‘2h’ refers to Fig2 HeLa-2h_MHRM_R01_T0.raw. In Muntel’s  5 

dataset, ‘TC1’ refers to G_D190415_S553-TestisCancerSet-2h-2ug-TC1_MHRM_R01_T0.raw, 6 

‘TC2’ refers to G_D190415_S553-TestisCancerSet-2h-2ug-TC2_MHRM_R01_T0.raw. Right side is 7 

the bar plot of  PyProphet weights for the ‘PyProphet + Alpha-Frag’ case. 8 
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