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ABSTRACT

Identification of peptides in mass spectrometry-based proteomics typically relies on spectra matches.
As MS/MS spectra record presence and intensity of fragment ions, the match should take both
fragment presence similarity and intensity similarity into consideration. Fragment presence similarity
can be calculated with the help of fragment presence prediction such as theoretical enumeration of all
possible fragment ions or selecting non-zero intensity ions from the result of fragment intensity
prediction, but neither of these two methods is accurate enough. In this work, we developed a deep
neural network based model, Alpha-Frag, to predict precisely the fragment ions that should be
present for a given peptide. Alpha-Frag modelled fragment presence prediction as a multi-label
classification task and trained with ProteomeTools dataset. In terms of intersection over union (IoU),
Alpha-Frag achieved an average of >0.7 and outperformed the benchmarks across the validation
datasets. Furthermore, fragment presence similarity was calculated based on presence prediction and
incorporated into the peptide statistical validation tools as an additional score to improve peptide
identifications. Our preliminary experiments show that this score led to a maximum increase of

26.8% (FDR 0.1%) and 21.6% (FDR 1%) for the DDA and the DIA identification, respectively.
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Significance Statement

A better prediction of fragmentation for peptides in mass spectrometry (MS) is beneficial to the
peptide identification. As the MS/MS spectra record two-dimensional information of fragment ions
derived from precursors, mass-to-charge ratio (m/z) and their corresponding intensities, besides the
fragment intensity prediction, it is necessary to study the presence prediction. Although the presence
prediction can be realized by enumerating all the possible fragmentation patterns of a peptide with
equal probability or by selecting non-zero intensity fragment ions from the result of fragment
intensity prediction, neither of these two methods is accurate enough. In this study, deep learning is
leveraged to precisely predict the fragment ions of a given peptide. Based on the fragment presence
prediction, fragment presence similarity between experimental spectra and predicted spectra can be

calculated which is proved to promote the peptide detections both for DDA and for DIA data.
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1 Introduction

Tandem mass spectrometry (MS/MS)-based technologies have been widely used in bottom-up
proteomics for peptide identification and quantification [1]. The MS/MS spectra record two-
dimensional information of fragment ions derived from precursors, mass-to-charge ratio (m/z) and
their corresponding intensities. Data-dependent acquisition (DDA) and data-independent acquisition
(DIA) are the two most prevalent MS/MS strategies. Identification of peptides in DDA mainly relies
on the match between the experimental spectrum and the theoretical spectrum. The ratio of the
number of observed ions to the number of all theoretically possible fragment ions is an import
evidence to the peptide-to-spectrum match (PSM) [2,3]. For DIA, identification of peptides is
heavily based on fragment intensity match between the extracted ion chromatograms (XIC) and the
reference spectral library which contains a certain number of most intensive fragment ions produced
by DDA [4,5]. As MS/MS spectra record the presence and intensity of fragment ions simultaneously,
the match should take both fragment presence similarity and intensity similarity into consideration
both for DDA and for DIA identification (Similar to the term fragment intensity, which describes the
intensities of fragment ions, the term fragment presence means the collection of fragment ions
regardless of their intensities. Further, fragment presence similarity represents the ratio of the
number of the matched-predicted ions to the number of the predicted fragment ions). When more
realistic set of fragment ions rather than theoretical possible fragment ions is provided to calculate
fragment presence similarity, the evidences of DDA and DIA identification will be more accurate

and more comprehensive, respectively.

The presence and absence of fragment ions observed in an MS/MS spectrum depend on factors
including peptide primary sequence, charge state of the peptide, and how the collision energy is
introduced [6]. To achieve fragment presence prediction, enumerating all the possible fragmentation
patterns of a peptide with equal probability is possible theoretically but leads to produce a lot of

redundant fragment ions. Alternatively, selecting non-zero intensity fragment ions from the result of
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fragment intensity prediction is another implementation of fragment presence prediction. Currently,
with the advances in deep learning based modeling [7], fragment intensity predictors modeled by
neutral network, such as pDeep [8], DeepMass [9] and Prosit [10], are making increasingly accurate
fragment intensity prediction. Among these, pDeep and DeepMass followed the framework of
bidirectional LSTM [11] combined with fully connected layers to predict intensities of fragment ion.
Innovatively, Prosit took advantage of the recent advances in neural machine translation [12,13] with
an encoder to code the amino acids sequence and a decoder to output the fragment ion intensity step
by step and had become the state-of-art of intensity predictor. For fragment presence prediction
based on intensity predictors, the above-mentioned intensity prediction models aim to spectrum
similarities [ 14] which dominated by high-intensity ions, potentially limiting existence prediction of
low-intensity ions. Some low-intensity fragment ions that non-existing but predicting present or
present but predicting missing may lead to inaccurate calculation of presence similarity and reduce

subsequent statistical power for peptide identification.

The purpose of this study is to develop a deep neural network-based model, Alpha-Frag, for
fragment presence prediction. Our study design, including model training, evaluation and
applications, is shown in Fig. 1. Peptide sequence and charge are taken as the input for Alpha-Frag to
predict the presence of fragments ions. Unlike intensity prediction, which is a regression problem in
most cases, Alpha-Frag models fragment presence prediction as a multi-label classification problem.
Taking advantage of the ProteomeTools [15] dataset for model training, Alpha-Frag can output the
most likely set of fragment ions. The result of prediction was evaluated by intersection over union
(IoU) between experimental and predicted fragment ions. To illustrate the possible applications of
Alpha-Frag, we calculated the ratio of the number of matched-predicted ions versus the number of
predicted ions by Alpha-Frag as an additional score to improve DDA and DIA identification. The
preliminary results showed that Alpha-Frag is able to predict the presence of fragment ions

accurately and is beneficial to both DDA and DIA identifications.
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2 Materials and methods

2.1 Data preparation

In this paper, multiple datasets were used to model training & test, evaluation and applications
(shown in Fig. 1). Like Prosit, training and test datasets (the table in top panel of Fig. 1) were
sourced from ProteomeTools (PXD004732 and PXD010595 in PRIDE) of which the raw data were
searched by MaxQuant [16] (v.1.5.3.30) at 1% peptide false discovery rate (FDR). To select a high
confident dataset for training and test, only PSMs met these criteria were considered: Andromeda
score is >50, charge is <5, peptide length is restricted to 7-30 amino acids. Alpha-Frag used MS/MS
data with normalized collision energy (NCE) 35 suggested by [17]. Meanwhile, y/b fragment ions
with charges up to 2 were extracted and annotated from the corresponding MS/MS for each
identified peptide by MaxQuant, and these y/b ions were used as the ground truth of present
fragment ions for training and test. In total, 452,558 precursors (1,252,829 PSMs) were kept and split

into a training set and a test set randomly by a ratio at 4:1.

To ensure the generality of model evaluation, we relied on three diverse DDA datasets. Details
were summarized in the table in the middle panel of Fig. 1. Among these, Ammar’s dataset [18] was
acquired by TripleTOF 6600 with CID fragmentation. After searched by MaxQuant (v.1.5.3.12) at
1% FDR and filtration (Andromeda score is >50, precursor charge is <5, peptide length is restricted
to 7-30 amino acids), Ammar’s dataset has 18,700 PSMs. Huang’s dataset [19] was obtained from Q
Exactive HF (Thermo Scientific) with HCD fragmentation (NCE=27) and has 270,125 PSMs after
the same filtration (MaxQuant v.1.6.0.1). Bekker-Jensen’s dataset [20] searched by MaxQuant
(v.1.5.3.6) was conducted in Q Exactive HF with HCD fragmentation (NCE=28) and has 450,144
PSMs after merged search results. Each of the PSMs for these three datasets had a corresponding set
of present fragment ions determined by MaxQuant. For training & test and evaluation datasets, the

search result of MaxQuant were available on their corresponding PRIDE.


https://doi.org/10.1101/2021.04.07.438629
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.07.438629; this version posted August 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

For the model application in DDA identification, Hartman’s dataset [21] and Coscia’s dataset
[22] both without fractionation were adopted to retain sample complexity (the table in button panel
of Fig. 1). These two datasets were acquired by Q Exactive HF with NCE 27 and 25, respectively. In
order to facilitate the integration of fragment presence prediction to DDA identification, search
software Crux [3] and Percolator [23] were selected. The acquired RAW data were analyzed with
Crux (v.3.2) and Percolator (v.3.02.0) against the rat UniProt fasta database (state 08.24.2020,
29,940 entries) and the human SwissProt fasta database (state 09.03.2020, 20,379 entries) for
Hartman’s and Coscia’s dataset, respectively. The options of Crux included: ‘--min-length 7 --max-
length 30 --mods-spec C+57.02146,1M+15.994915 —max-mods 3 —missed-cleavages 1 --max-

precursor-charge 4 --top-match 1 --concat T --compute-sp T’. Percolator used the default parameters.

For the application of Alpha-frag in DIA identification, Bruderer’s dataset [24] and Muntel’s
dataset [25] were adopted to represent the cell line (HeLa) and the complex clinical tissue sample
(testis of human), respectively. Bruderer’s dataset was collected on a Q Exactive HF with 37
isolation windows and Muntel’s dataset was acquired on a Q Exactive HF-X (Thermo Scientific)
with 45 isolation windows. Both Bruderer’s and Muntel’s dataset had an NCE of 27.5. Software
OpenSWATH [5] and PyProphet [26] were selected to identify the DIA files as they are convenient
to add custom function. Meanwhile, the PHL public spectral library [27] which contains target and
decoy peptides and the CiRT peptides [28] were used to aid the identification. The following options
were employed for OpenSWATH (v.2.4.0) : ‘-batchSize 1000 -readOptions cacheWorkingInMemory
-mz_extraction_window 20 -ppm -mz_correction_function quadratic_regression delta ppm -

min_rsq 0.8”. PyProphet (v.0.24.1) used the default parameters.

For all dataset in this study, only peptides with fixed modification of carbamidomethylation on

cysteine and variable modification of oxidation on methionine were considered.

2.2 Model
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For fragment presence prediction based on peptide sequence, the predictor should be able to
capture the effects of all amino acids on the fragment result and be able to handle sequential input
with a variable length. Similar to Prosit, Alpha-Frag also uses bi-directional gated recurrent memory
units (Bi-GRU) [29] to address these requirements. Fig. 2a is the architecture overview of Alpha-

Frag. A detailed description of the model is presented below.

Inputs: Including peptide sequence and precursor charge. Each amino acid of peptide and
precursor charge will be embedded to a vector of dimension 32. Alpha-Frag supports precursor
charge with no more than 4, as well as 20 natural amino acids and variable modification of oxidation
on methionine. Each cysteine is treated as fixed modification of carbamidomethylation on itself.

Model: Alpha-Frag connects embedding layer to two layers of Bi-GRU. Dropout [30] is set to
0.5 between the two Bi-GRU layers. A self-attention layer [31] is used to merge the Bi-GRU outputs
to a vector of dimension 64. Concatenating this vector with charge embedding vector, Alpha-Frag
represents the precursor as a vector of dimension 96 in latent space. Afterwards, the 96-dimensional
vector is converted to dimension of 116 (Alpha-Frag considers peptide length maximum to 30 and
only y/b fragment ions with no more than 2 charges. The maximum number of fragment ions is: 2 *
2 * 29 =116) by a fully connected layer and a sigmoid layer.

Outputs: The output 116-dimensional vector is ordered as follows: yl+, yl++, b1+, bl++,
y2+ and so on. Each value represents the occurrence probability of the corresponding fragment ion.
Alpha-Frag adopts 0.5 as the existence threshold. Only fragment ion with a predicted probability
greater than 0.5 will be considered as presence. Fragment ions at impossible dimensions (such as y17

for an 8-mer peptide) are set to zero directly.

Of note, we experimented with different dropout and dimension of each layer. However, this

did not result in any significant gains on the performance. Therefore, we used the common parameter
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values described above. The source code of Alpha-Frag is available at

https://github.com/YuAirLab/Alpha-Frag.

2.3 Training and test

PyTorch (v.1.1.0, https://pytorch.org) was used to implement and train Alpha-Frag. We used
the Adam optimizer with an initial learning rate of 0.001 and 1024 samples per batch. The loss

function in training was binary cross entropy loss (BCE loss):

1 N
Lossyep = 2Ly log, +(1-y,)log(1 =) o

where x, means the true label of the corresponding fragment ion either 0 or 1, y, is the predicted

probability, and N is the length of the output vector. It should be noted that the fragment ions out-of-
range or out-of-charge were masked and not involved in the calculation of loss. For the test dataset,
we calculated the intersection over union (IoU, Fig. 2b) to evaluate the accuracy of prediction. Given
a set of real present fragment ions A and a set of predicted present fragment ions B, the IoU is
defined as follows:

|ANB|

UAB)= 1203 )

For example, the real fragment ions is ‘y2+, y3+, y4+, y5++, b2+, b3+’, the predicted fragment ions
is ‘yl+, y2+, y4+, y5+, b3+’, then the intersection between them is ‘y2+, y4+, b3+’ and the union is
‘yl+, y2+, y3+, y4+, y5+, y5++, b2+, b3+’. Hence, the ToU value is equal to 3/8. The larger the IoU,

the more consistent the predicted fragment ions with the real fragment ions are.
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3 Results

3.1 Bi-GRU based deep learning model

We trained Alpha-Frag on one Nvidia 1060 GPU. For each epoch, we calculated the averaged
BCE loss and the averaged IoU in the training and test dataset, respectively. As the epoch increased,
the averaged BCE loss decreased and the averaged IoU increased shown in Fig. 2¢. After 20 epochs,
the model converged and the training was terminated to balance the learning and the potential
overfitting. At last, the averaged IoU reached 0.815, indicating that Alpha-Frag predict the present

fragment ions well for the test dataset.

3.2 Performance Evaluation of fragment presence prediction

In order to illustrate fragment presence prediction based on intensity prediction is not accurate
enough, we plotted the difference of a representative precursor EPPLLLGVLHPNTK(3+) between
its experimental spectrum, the predicted spectrum by Prosit (unless otherwise specified, Prosit works
with the optimal NCE 35 in this study) and its predicted fragment ions by Alpha-Frag in Fig. 3a.
Although the Pearson correlation coefficient (PCC) between the experimental spectrum and the
predicted spectrum by Prosit reached as high as 0.90, the predicted spectrum contained 3.06 (46 vs.
15) times as many fragment ions as the number of matched y/b ions in the experimental spectrum. In
other words, ~67.3% of predicted fragment ions by Prosit are not present. As a contrast, Alpha-Frag
predicted 14 fragment ions and 13 of which are matched to experimental spectrum and one of which
is mismatch. Therefore, the IoU between the real present fragment ions and the predicted present
fragment ions by Alpha-Frag reached 0.81, illustrating the strong agreement between prediction and

observation for fragment presence in this case.

To evaluate the performance of fragment presence prediction of Alpha-Frag comprehensively,
we benchmarked it against theoretical enumeration model (hereinafter referred to as Enumeration

model) and Prosit model using three public DDA datasets: Ammar’s, Huang’s and Bekker-Jensen’s

10
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dataset. For Enumeration model, the predicted fragment ions include all possible y/b ions with less
length and no more charges than precursors. First, we took a rough look at the difference between the
predicted number of fragment ions and the real number of fragment ions both normalized by peptide
length in Fig. 3b. In all three datasets, the result of Enumeration model and Prosit model
overestimated the number of fragment ions and Alpha-Frag was the most closest model compared to
the real number. This comparison showed that Alpha-Frag is able to predict precisely the number of

fragment ions.

Besides the above comparison, IoU can be calculated to check the consistence between the real
fragment ions and the predicted fragment ions. Fig. 3c plotted the IoU distribution by violin plot. It is
apparent that Alpha-Frag outperformed markedly Enumeration model and Prosit model across the
datasets. In terms of median IoU, Alpha-Frag achieved an average of ~207% and ~52%
improvements than Enumeration model and Prosit model, respectively, indicating that Alpha-Frag

works very well for fragment presence prediction.

Last but not least, in our device of CPU Intel 17-7700K 4 cores, Win10, 64 bit, 64 GB memory
and GPU Nvidia GTX 1060, Enumerator model, Prosit and Alpha-Frag spent ~0s, ~32.5s and ~5.2s

to predict fragment presence of 450,144 precursors from Berken-Jensen’s dataset, respectively.

3.3 Presence prediction improves peptide identification for both DDA and DIA
To test if the presence prediction is beneficial to peptide identification, we constructed an
additional score, termed score frag, and integrated it into the corresponding pipeline (default 20 ppm

tolerance for matching):

# Matched-predicted ions 3)

score frag =
- Jrag # Predicted ions

For DDA identification (Fig. 4a), Crux and Percolator were employed to scored (such as Sp

and XCorr) each candidate PSM. Then, fragment presence predictor was used to generate the

11
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predicted fragment ions based on the peptide sequence and precursor charge. Subsequently, the
score_frag was calculated based on the real spectrum and the predicted fragment ions and was fed
into Percolator with the other scores (as shown by blue lines in Fig. 4a). At last, Percolator merged
all scores and calculated the FDR. We carried out this DDA score_frag strategy with Enumeration
model, Prosit model and Alpha-Frag to two DDA datasets: Hartmann’s dataset and Coscia’s dataset.
Raw identification without score frag was used as a control. The number of identified PSMs against
FDR was shown in Fig. 4b as well as the bar plot of scores’ weight (the Alpha-Frag case). Overall,
we found that including score_frag increases the number of identified PSMs compared to raw
identification. In terms of the identification number, Alpha-Frag outperformed Enumeration model
and Prosit model at the stringent FDR range (< 0.5%). While along FDR to 5%, no significant
differences were found between Alpha-Frag and Prosit (data not shown). At 0.1% FDR, raw
identification reached only an average of 80.3% and 79.6% compared to Alpha-Frag for Hartmann’s
and Coscia’s dataset, respectively. Meanwhile, the weight of score frag was ranked number one
across the datasets, illustrating that score frag based on fragment presence prediction is an important

evidence for DDA identification.

Application of score frag to DIA identification is different from that to DDA identification. As
shown in Fig. 5a, after OpenSWATH determined and scored the peak groups based on the spectra
library, fragment presence predictor was performed to predict the fragment presence ions based on
the peptide sequence and precursor charge. Then, depending on the apex retention time of the peak
group, the single MS/MS spectrum was picked out whose retention time was closest to the apex.
Afterward, the score frag was calculated based to the picked spectrum and the predicted fragment
ions and was fed into PyProphet with the other scores (blue lines in Fig. 5a). At last, PyProphet
merged the scores and reported the identification result. Similarly, we implemented this DIA
score_frag strategy with Enumeration model, Prosit model and Alpha-Frag model to two DIA
datasets: Bruderer’s and Muntel’s dataset. As a control, we also analyzed data without score frag.

12
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The number of identified precursors against the FDR was plotted in Fig. 5b as well as the scores’
weight (the Alpha-Frag case). In terms of the number of identified precursors, we found that
Enumeration model did not always lead to improvement. This may be due to the fact that the MS/MS
in DIA is multiplexed. Besides, in all datasets, Alpha-Frag outperformed Prosit model, both of which
increased the identification. At 1% FDR, Alpha-Frag brought about an average of 21.6% and 7.9%
improvement over the raw identification for Bruderer’s and Muntel’s dataset, respectively.
Dissimilar in DDA, the weight of score frag in DIA was not ranked number one but had a same
order of magnitude compared to the most important score. These results demonstrated the feasibility

of the additional score_frag to DIA identification and the accuracy of fragment presence prediction

by Alpha-Frag.
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4 Concluding remarks

In this study, we proposed Alpha-Frag, a deep neural network used to predict fragment
presence ions and that surpass substantially the other benchmarks. In the validation datasets, Alpha-
Frag achieved an average of ~207% and ~52% improvements in terms of median IoU than
Enumeration model and Prosit model, respectively. This highlights that the model is an effective
complement to fragment intensity prediction. In the accompanying applications of Alpha-Frag,
fragment presence similarity was performed to improve the identification and achieved a maximum
increase of 26.8% (FDR 0.1%) and 21.6% (FDR 1%) for the DDA dataset and the DIA dataset,
respectively. The weight of fragment presence similarity also indicates that it is an import evidence
for peptide identification. So far, only tryptic peptides and peptides with no modifications except for
methionine oxidation were considered. Next as more data for non-tryptic and modified peptides and
chemical labels become available, we will update our model to improve predictions for more
peptides. Further, we plan to divide the spectrum prediction into two phases: fragment presence
prediction followed by corresponding intensity prediction to approximate the fragmentation better.
We believe this will make the predicted spectrum more accurate and peptide identification more

confident both for DDA and for DIA.
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Fig. 1. Study design. From top to bottom, the three panels indicate model training, model evaluation

and model applications, respectively. The tables in each panel are the corresponding datasets.
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Fig. 2. The model of Alpha-Frag and its training and test. a) Bi-GRU based Alpha-Frag model.
b) Illustration of intersection over union (IoU) which is used to compare the consistence between

two sets. ¢) The averaged loss curve in training dataset and the averaged IoU curve in test dataset.
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Fig. 3. Performance evaluation. a) Comparison between experimental spectrum, predicted
spectrum by Prosit (NCE=35), predicted fragment ions by Alpha-Frag of precursor
EPPLLLGVLHPNTK(3+). The matched y/b ions in experimental spectrum contains 15 y/b ions
marked in jet black lines (scan 53773, 01974C_BAI1-TUM_ missing_first 1 01 01-DDA-1h-R4.raw,
PXDO010595. The matched y/b ions are determined by MaxQuant at 1% FDR). The predicted
spectrum by Prosit contains 46 y/b ions with non-zero intensities marked in light black. The blue
lines mean the match between the predicted spectrum and the experimental spectrum. We observed
that 67.3% of predicted fragment ions are not present in the experimental spectrum while the Pearson
correlation coefficient (PCC) between them reaches 0.90. In the other hand, the IoU between
experimental spectrum and predicted fragment ions by Alpha-Frag reaches 0.81. b) Box plot to
compare the predicted number of fragment ions and the real number of fragment ions both
normalized by peptide length. The box indicates the interquartile range (IQR), its whiskers 1.5x IQR

values, and the black line the median. ¢) Violin plot of IoU in three evaluation datasets.
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Fig. 4. Application of fragment presence prediction to DDA identification. a) Workflow. The
non-colored lines represent the workflow of DDA identification by Crux combined with Percolator.
The blue lines represent the process of integrating the score frag into Crux-Percolator. b)
Comparison of identification performance and weight of scores. In Hartmann’s dataset, ‘01’ refers to
20160809 EXQO00 DaHo SA Eddie 15mioPCN_fullproteome 2016 06 07 GFP Ol.raw, ‘02’
refers to 20160809 EXQO00 DaHo SA Eddie 15mioPCN_fullproteome 2016 06 07 GFP_02.raw.
In Coscia’s dataset, ‘A’ refers to 20130312 EXQ4 FaCo SA CL DOVI13 A.raw, ‘B’ refers to
20130312 EXQ4 FaCo SA CL DOV13 B.raw. Right side is the bar plot of Percolator weights

for the ‘Percolator + Alpha-Frag’ case.
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Fig. 5. Application of fragment presence prediction to DIA identification. a) Workflow. The non-
colored lines represent the workflow of DIA identification by OpenSWATH combined with PyProphet.
The blue lines represent the process of integrating the score frag into OpenSWATH-PyProphet. b)
Comparison of identification performance and weight of scores. In Bruderer’s dataset, ‘1h’ refers to
Fig2 HeLa-1h. MHRM RO1 TO.raw, ‘2h’ refers to Fig2 HeLa-2h MHRM_RO1 TO0.raw. In Muntel’s
dataset, ‘TCI1’ refers to G D190415 S553-TestisCancerSet-2h-2ug-TC1_ MHRM RO1 TO.raw,
‘TC2’ refers to G_D190415 S553-TestisCancerSet-2h-2ug-TC2 MHRM RO1 TO.raw. Right side is

the bar plot of PyProphet weights for the ‘PyProphet + Alpha-Frag’ case.
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