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 24 
Abstract 25 

Adolescence is hypothesized to be a critical period for the development of association 26 
cortex. A reduction of the excitation:inhibition (E:I) ratio is a hallmark of critical period 27 
development; however it has been unclear how to assess the development of the E:I ratio using 28 
non-invasive neuroimaging techniques. Here, we used pharmacological fMRI with a GABAergic 29 
benzodiazepine challenge to empirically generate a model of E:I ratio based on multivariate 30 
patterns of functional connectivity. In an independent sample of 879 youth (ages 8-22 years), this 31 
model predicted reductions in the E:I ratio during adolescence, which were specific to association 32 
cortex and related to psychopathology. These findings support hypothesized shifts in E:I balance 33 
of association cortices during a neurodevelopmental critical period in adolescence. 34 
Teaser 35 

Inhibitory maturation of the association cortex reflects an adolescent critical period. 36 
 37 
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MAIN TEXT 39 
 40 
Introduction 41 

Adolescent brain development is characterized, in part, by the continued structural and 42 
functional maturation of the association cortices (1–8). The specificity of the developmental 43 
timing and localization of association cortex maturation as well as the links between association 44 
cortex development and long-term psychiatric outcomes have led to the hypothesis that 45 
adolescence functions as a critical period of development within association cortex (9, 10). 46 
Critical periods are windows of development during which experience powerfully shapes the 47 
development of neural circuits through heightened experience-dependent plasticity with long-term 48 
impacts on behavior (11). These important neurodevelopmental windows are theorized progress 49 
hierarchically throughout development, beginning in primary sensory cortices and sequentially 50 
advance to secondary and higher-order cortical areas (11, 12). The neurobiological mechanisms 51 
that underlie critical periods are thought to be conserved across the cortex and have been carefully 52 
delineated in decades of work on early critical periods in sensory cortex (11–14).  53 

One of the hallmark features of critical period development is the maturation of 54 
GABAergic inhibitory circuitry, particularly parvalbumin positive interneurons, leading to a 55 
reduction in the excitation to inhibition (E:I) ratio (13, 15). The reduction of the E:I ratio leads to 56 
an increase in the signal-to-noise ratio of local circuit activity as inhibition suppresses the effect 57 
of spontaneous activity on circuit responses in favor of stimulus-evoked activity (16). This 58 
essential mechanism has been shown to regulate the timing of critical period development across 59 
visual (14), auditory (17), and sensorimotor cortices (18). As such, if the adolescent critical period 60 
hypothesis is correct, inhibitory maturation should result in a developmental reduction in the E:I 61 
ratio across adolescence within association cortex. 62 

Evidence for E:I development in association cortex during adolescence has been largely 63 
limited to animal models. This work has suggested prefrontal GABAergic inhibitory circuitry 64 
undergoes significant modifications. Specifically, parvalbumin (PV) interneurons, a critical 65 
component E:I maturation in sensory system critical periods, have been shown increase in 66 
prefrontal cortex during adolescence in the rat (19) and non-human primate (20, 21). At the same 67 
time, the expression of GABAA receptor α1 subunits, which are primarily expressed on PV cells 68 
and support fast synaptic inhibition (22) as well as synaptic plasticity (23), also increase during 69 
adolescence in the prefrontal cortex of the non-human primate (24, 25). These neurobiological 70 
changes lead to important functional increases in inhibitory signaling, effectively reducing the E:I 71 
ratio(26, 27). Together, these findings are suggestive of critical period development and may 72 
indicate similar processes are unfolding in the human (28). Translating these findings to human 73 
studies of development is crucial as disruptions to the E:I balance are hypothesized to play a 74 
significant role in the onset of psychiatric disorders (29–31). However, the extent to which these 75 
critical period mechanisms are present in association cortex during adolescence in the human 76 
remains largely unexplored. Corroborating evidence has been found in postmortem studies which 77 
demonstrate increases in PV (32) and GABAA α1 expression (33), but it has been unclear how to 78 
measure developmental changes in the E:I ratio in vivo in humans using available neuroimaging 79 
techniques. This lack of in vivo measures has limited our ability to test the adolescent critical 80 
period hypothesis.  81 

Here, we leveraged a pharmacological fMRI (phMRI) experiment using a GABAergic 82 
benzodiazepine challenge to empirically generate a model for the effect of inhibitory modulation 83 
of the E:I ratio on patterns of fMRI connectivity. Benzodiazepines are positive allosteric 84 
modulators of the GABAA receptor that increase the effectiveness of post-synaptic GABAergic 85 
signaling, resulting in an increase in inhibition relative to excitation. Benzodiazepines have been 86 
used to pharmacologically manipulate the E:I ratio by enhancing inhibitory signaling in disease 87 
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models of E:I imbalance (34–36) as well as in studies of critical period development (13, 23, 37). 88 
In the current study, we first trained a multivariate model to distinguish benzodiazepine-induced 89 
change in the E:I ratio and established the neurobiological relevance of our empirical model by 90 
comparing the model features to known aspects of benzodiazepine pharmacology as well as a 91 
functional gradient that has been shown to reflect patterns of excitatory and inhibitory interneuron 92 
expression (38, 39). We then applied our trained and validated model to a large, independent 93 
developmental dataset to investigate E:I changes occurring in association cortex during 94 
adolescence. We hypothesized that patterns of functional connectivity would develop to reflect a 95 
reduction in the E:I ratio that is specific to association cortex. 96 
 97 
 98 
Results  99 

An empirical model of the E:I ratio 100 
Forty-three adult participants completed a double-blind, placebo-controlled phMRI study 101 

with the benzodiazepine alprazolam (86 sessions total). Alprazolam is a classical benzodiazepine 102 
that enhances the effect of GABA at GABAA receptors through positive allosteric modulation, 103 
increasing inhibition and effectively reducing the E:I ratio (40). Functional connectivity matrices 104 
were derived for placebo and drug phMRI sessions using a top performing pipeline that 105 
minimized the impact of motion artifact (41). A linear support vector machine (SVM) classifier 106 
was trained to distinguish placebo and drug sessions based on the multivariate patterns of 107 
functional connectivity (Figure 1, green pathway). Cross-validation and permutation testing 108 
revealed that the trained SVM identified drug vs. placebo sessions in left-out data far better than 109 
chance (AUC = .716, ppermutation = .002; Figure 2a). Sensitivity analyses confirmed that in-scanner 110 
head motion was not associated with our pharmacological manipulation or model performance 111 
(Supplemental Figure 1). The spatial pattern of estimated feature weights from the SVM model 112 
highlighted the contributions of subcortical regions, including the thalamus and amygdala, and 113 
also contributions throughout the cortex (Figure 2b).  114 

 115 
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 116 
Figure 1. Analysis workflow. Dataset: Two datasets were collected on the same scanner using 117 
highly similar acquisition parameters: a phMRI dataset using the benzodiazepine alprazolam 118 
(green) and a developmental fMRI sample from the Philadelphia Neurodevelopmental Cohort 119 
(PNC; purple). Preprocessing: Datasets were preprocessed using identical pipelines which 120 
included removal of nuisance signal with aCompCor (, global signal regression, and task 121 
regression. Connectivity matrix generation: Connectivity matrices were generated from standard 122 
atlases for placebo and drug sessions from the alprazolam dataset (n = 43; 86 sessions total) and 123 
for the PNC dataset (n = 879). Train and validate model: The alprazolam dataset was used to train 124 
a linear SVM classifier to distinguish drug and placebo sessions using 10-fold cross-validation. 125 
Apply model: The validated alprazolam model was applied to the PNC dataset, generating a 126 
distance metric that reflected each participant’s position on a continuum from “drug-like” (lower 127 
E:I) to “placebo-like” (higher E:I). Regress model output on age: This metric was then regressed 128 
on age using a generalized additive model with penalized splines that included covariates for sex, 129 
head motion, and attentiveness. 130 

131 
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  132 

 133 
Figure 2. A multivariate model distinguishes alprazolam and placebo sessions, capturing E:I 134 
ratio a) Classifier performance. The binary SVM classifier identified drug and placebo sessions 135 
in 10-fold cross-validation with an AUC of .716 and an accuracy = 69.5% (top). The observed 136 
AUC and accuracy were significantly greater than a permuted null distribution (bottom). b) Mean 137 
absolute feature weights for all nodes from the validated SVM model.  138 
 139 
  140 
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Biological relevance of the E:I model 141 
Next, we established the biological relevance of the trained E:I model. First, we compared 142 

the spatial pattern of cortical feature weights to a widely used functional gradient of macroscale 143 
cortical organization that places regions on a continuum from unimodal to transmodal function 144 
(42). This continuum has been shown to capture variation in excitatory neuron structure, 145 
inhibitory interneuron expression, and E:I balance (38, 39). Using a recently-developed analytic 146 
procedure that accounts for spatial autocorrelation structure (43), we observed a significant 147 
relationship between our model feature weights and this pattern of macroscale cortical 148 
organization (r = .33; p = .003; Figure 3a). This finding suggests that GABAergic modulation of 149 
functional connectivity patterns varies along a transmodal-to-unimodal gradient that in part 150 
indexes diversity in excitatory and inhibitory neurobiological properties. Next, we investigated 151 
whether the estimated model features corresponded to the known pharmacology of 152 
benzodiazepines like alprazolam. Of the six GABAA subunit receptors, GABAA α1–6, only α1, 153 
α2, α3, and α5 are sensitive to benzodiazepines due to the presence of an amino acid residue, 154 
histidine (44, 45). We used the Allen Human Brain Atlas (46) to evaluate how the feature weights 155 
from the classifier model aligned with spatial patterns of gene expression for the six GABAA 156 
subunit receptors, GABRA1-6 (corresponding to GABAA α1–6). We found evidence of a clear 157 
biological double dissociation: model features were significantly associated with the gene 158 
expression patterns of the benzodiazepine-sensitive GABAA subunits (α1,α2,α3,α5) and not the 159 
benzodiazepine-insensitive GABAA subunits (α4, α6; Figure 3b)(47, 48).  160 
  161 
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 162 
 163 
Figure 3. Model features align with cortical organization and benzodiazepine  164 
pharmacology a) The cortical pattern of nodal SVM weights from the multivariate E:I ratio 165 
model was significantly associated with transmodality using an established measure of 166 
macroscale cortical organization(42). b) Nodal weights were also specifically correlated with the 167 
spatial patterns of benzodiazepine (BZD) sensitive GABAA receptor subunit expression. Spatial 168 
relationships were tested for significance against a spatial-autocorrelation-preserving null 169 
distribution (BrainSMASH (43)) and corrected for multiple comparison using the Bonferroni 170 
correction (pBonf). 171 
  172 
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Development of the E:I ratio during adolescence 173 
We next utilized our empirically generated E:I ratio model to test the hypothesis that E:I 174 

ratio declines as part of the critical period of association cortex development. An independent 175 
sample of 879 youth (aged 8-21.7 years) participated in a highly similar fMRI acquisition on the 176 
same scanner; this data was preprocessed using an identical pipeline. We applied our validated E:I 177 
model to the developmental dataset without further tuning and obtained the model-estimated 178 
distance from the classification hyperplane. This metric reflects a participant’s position on the 179 
continuum between “drug-like” (lower E:I) and “placebo-like” (higher E:I). To capture both 180 
linear and nonlinear effects in a rigorous statistical framework, we then regressed this metric on 181 
age using a generalized additive model with penalized splines (Figure 1, purple pathway). We 182 
found that age was positively associated with patterns of GABA-modulated functional 183 
connectivity, reflecting an age-related reduction in E:I ratio. Significant reductions occurred 184 
between ages 12.9 and 16.7 years (Fs (Age) = 3.11, p = .037; Supplemental Table 1, “All 185 
connections”). The age-related reduction in E:I ratio was robust across multiple alternative 186 
parcellation schemes (Supplemental Table 2; Supplemental Figure 2).  187 

Age-related reductions in the E:I ratio are specific to association cortex 188 
We hypothesized that age-related reductions in E:I ratio during adolescence were specific 189 

to association cortices. To test this hypothesis, we trained two additional models that restricted 190 
input features to connections to the most transmodal (Figure 4a, blue) or unimodal (Figure 4a, 191 
green) parts of the cortex. Both models significantly distinguished drug from placebo phMRI 192 
sessions (Figure 4a). However, when applied to the developmental dataset, significant age-193 
related reductions in the E:I ratio were only observed for the model trained on connections with 194 
transmodal cortex (transmodal: Fs (Age) = 9.96, p = .0017; unimodal: Fs (Age) = 3.59, p = .058; 195 
transmodal vs. unimodal: F s (Age) = 5.96, p = .015; Figure 4b). These results suggest that 196 
transmodal association cortices undergo a reduction in E:I ratio during adolescence, consistent 197 
with a critical period of development. 198 
  199 
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Figure 4. Transmodal areas undergo E:I ratio development during adolescence. a) Model 200 
performance for unimodal and transmodal classifiers. SVM classifiers were trained and validated 201 
for connections to the most transmodal (green) and most unimodal (blue) areas only. Dashed lines 202 
indicate acquisition field of view for the phMRI dataset. Both models performed significantly 203 
better than a permuted null distribution (middle: ROC curves for each model; right: null 204 
distributions from 1,000 null permutations). b) Models trained on transmodal and unimodal data 205 
were applied to the developmental dataset, generating a distance metric for each participant where 206 
greater values represent patterns of functional connectivity consistent with a lower E:I ratio. 207 
Individuals had lower estimated E:I ratio with age in transmodal cortex (left) but not in unimodal 208 
cortex (center). This pattern was confirmed by a significant effect of age on within subject change 209 
in transmodal vs. unimodal distance scores (right). *p<.05, **p<.01, n.s. not significant. 210 
  211 
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Analysis of dimensions of psychopathology 212 
Finally, we investigated whether individual differences in dimensions of psychopathology 213 

(49) were associated with the E:I ratio of association cortex. We found that mood disorder 214 
symptomatology, but not other psychopathology dimensions, moderated age-related differences in 215 
estimated transmodal E:I ratio. Specifically, individuals with greater lifetime mood disorder 216 
symptoms displayed a relatively stable E:I ratio over development instead of the normative 217 
reduction of the E:I ratio (Age*Mood interaction: F = 7.64, p = .0058).  218 
 219 
Discussion  220 

We utilized a unique combination of human phMRI and developmental fMRI data to 221 
provide novel evidence for an essential component of critical period development: developmental 222 
reductions in the E:I ratio. Our approach generated an empirical fMRI model of the E:I ratio that 223 
showed a high degree of correspondence to known GABAergic benzodiazepine 224 
neuropharmacology and which could be applied to a large, independent sample of youth. 225 
Consistent with our hypothesis, this approach revealed that patterns of functional 226 
neurodevelopment in adolescence are consistent with developmental reductions in the E:I ratio 227 
that are specific to association cortex. Further, we show that individual differences in this process 228 
are associated with individual differences in lifetime mood symptom burden, in alignment with 229 
models positing that E:I abnormalities underlie the emergence of psychopathology (9, 29, 30, 50–230 
52). Together, these findings support the hypothesis that critical period mechanisms shape 231 
association cortices during adolescence. 232 

Critical period development has been predominantly associated with early sensory cortex 233 
development. Since the first studies of critical period development in the visual cortex almost 60 234 
years ago (53), a wealth of prior work has elucidated the mechanisms that shape critical period 235 
plasticity in these areas. These studies have identified the maturation of local inhibitory circuitry, 236 
particularly PV interneurons, and its resulting impact on the E:I balance as an essential critical 237 
period mechanism (13, 16). This phenomenon is necessary for the opening of the critical period 238 
window, facilitates critical period plasticity, and is present in critical periods across sensory 239 
modalities (16, 17, 23, 37). For example, modulation if the E:I balance using benzodiazepines has 240 
been shown to be sufficient to accelerate the timing of critical period plasticity (13, 37). The 241 
results of this study suggest that this phenomenon also occurs in association cortex during human 242 
adolescence.  243 

Our findings align with a growing literature characterizing inhibitory maturation during 244 
this developmental stage. Animal models and post mortem human studies have shown maturation 245 
of inhibitory neurobiology in the prefrontal cortex during adolescence, including increasing 246 
expression of PV interneurons and GABAA α1 receptor subunits (19, 20, 24, 25). These processes 247 
increase functional inhibition, reducing the E:I ratio and increasing the signal-to-noise ratio of 248 
circuit activity (16, 27, 54). Computational simulations have suggested that these maturational 249 
also facilitate high-frequency oscillatory capability (27). This is consistent with human EEG 250 
studies showing increased gamma-band oscillatory power during adolescence (55, 56). Finally, 251 
two recent magnetic resonance spectroscopy studies have showed increases in GABA levels 252 
relative to glutamate levels in frontal cortex during adolescence (57, 58). Though it is not possible 253 
to examine the functional effect of these changes on the E:I ratio using spectroscopy, these 254 
findings align with a model of developmental reduction in the E:I ratio during adolescence. This 255 
body of prior work cohere with the findings presented here, and are consistent with a critical 256 
period model of adolescent association cortex development. Just as sensory critical period 257 
plasticity refines neural circuits underlying sensory processing, the critical period for association 258 
cortex may facilitate the plasticity of circuits that underlie the higher-order cognitive processes 259 
refined during adolescence and are thought to be dependent on association cortex (2, 9, 59).  260 
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It should be noted that there are two classes of critical period mechanisms: Facilitating 261 
factors which open the critical period window and facilitate plasticity, and braking factors which 262 
stabilize neural circuits and physically limit future plasticity (11, 13). The maturation of inhibition 263 
and the resulting reduction in the E:I ratio are critical period facilitators(11). Using generalized 264 
additive models, which can flexibly capture linear and nonlinear effects while penalizing 265 
overfitting, we found that the model fit for age-related reductions in the association cortex E:I 266 
ratio was linear. It is important to note that this does not necessarily mean that critical period 267 
plasticity is linearly increasing or that the critical period window is persistently open over the 268 
entire age range reported here. The developmental reduction in the E:I ratio is indicative of 269 
critical period opening, but it does not provide information about critical period closure. Closure 270 
of the adolescent critical period would be dependent upon the development of braking factors, 271 
such as myelination and the formation of perineuronal nets (PNN)(60–62), which may follow 272 
distinct developmental trajectories. Consistent with a critical period model, many studies have 273 
provided evidence of myelination of association cortex and large white matter pathways linking 274 
association cortex to other areas of the brain that continues into adulthood, including histological 275 
(63), myelin mapping (64–66), and diffusion imaging (67, 68). At present, studies of PNN 276 
formation are limited to postmortem methods and animal models which have demonstrated 277 
developmental increases in PNN formation in the prefrontal cortex from adolescence to adulthood 278 
(69, 70). Together, these studies indicate that critical period braking factors are forming during 279 
the transition from adolescence to adulthood, stabilizing neural circuits and closing the critical 280 
period window. However, in order to precisely demarcate the opening and closing of critical 281 
period plasticity during adolescence, future work is needed that jointly investigates the 282 
developmental timecourse of critical period facilitators, such as the E:I ratio reported here, and 283 
critical period braking factors. 284 

Mood-related psychopathology typically first emerges during adolescence, with 285 
adolescent onset predicting greater illness chronicity and comorbidity (71, 72). Here, we observed 286 
that beginning in adolescence, youth with greater burden of mood symptoms exhibit an altered 287 
trajectory of E:I development within the association cortex. Specifically, greater lifetime mood 288 
symptom burden was associated with reduced development of inhibition in transmodal regions of 289 
the brain. Many studies have linked the occurrence of psychopathology with E:I disruption (29, 290 
30, 50, 73, 74), and cross-species research has specifically implicated GABA-mediated E:I 291 
disruptions in the etiology of mood psychopathology (75, 76). Specifically, animal studies have 292 
shown that initial reductions in GABAergic inhibition lead to downstream reductions in 293 
glutamatergic transmission, and to alteration of the normal E:I balance (30, 50). Human studies 294 
have provided convergent evidence, demonstrating reduced GABA levels in the brain in those 295 
with depression(77) as well as reduced glutamate in individuals with more severe anhedonia (78). 296 
Conversely, the pharmacologic enhancement of GABAergic signaling within association regions 297 
has been shown to have antidepressant effects (30). As such, our study supports the hypothesis 298 
that the pathophysiology of depression in part involves altered glutamatergic and GABAergic 299 
signaling (30, 50). Moreover, it places this hypothesis within a neurodevelopmental framework—300 
underscoring how E:I disruptions can manifest due to atypical critical period development.  301 
 Finally, we note that the approach used in this study highlights the potential for phMRI 302 
data to generate insights into independent datasets to inform new hypotheses. We combined 303 
machine learning and phMRI using a GABAergic alprazolam challenge to generate an empirical 304 
model for the effect of GABAergic modulation on patterns of fMRI connectivity. As evidence for 305 
the efficacy of this approach, the trained model could not only significantly predict drug versus 306 
placebo sessions in unseen data, but the model features demonstrated a significant correspondence 307 
with known benzodiazepine neuropharmacology. Notably, the model features were significantly 308 
associated with the GABA receptor most strongly implicated in critical period development, the 309 
GABAA α1 receptor. Though, due to the rarity of phMRI data, we were not able to confirm the 310 
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generalizability of our model with an independent alprazolam phMRI dataset, the model 311 
performance and underlying interpretability of the learned features highlights the biological 312 
relevance of this method. Whereas in this study we applied this method to an independent 313 
developmental dataset to provide insights into the critical period mechanisms unfolding during 314 
adolescence, future work could apply this approach to other datasets to inform new research 315 
questions.  316 

Together, these findings support the hypothesis that critical period mechanisms, such as 317 
the inhibition-induced reduction of the E:I ratio, shape association cortices during adolescence. 318 
Studying development from a critical period perspective provides a powerful mechanistic 319 
framework for understanding how experience and neurobiology interact to shape long-term 320 
cognitive, social, and psychiatric outcomes. Importantly, a critical period model of adolescent 321 
development can draw on the history of detailed work on sensory critical periods to generate 322 
testable hypotheses for the mechanisms unfolding during adolescence in association cortex. 323 
Understanding these mechanisms are a necessary prerequisite to understanding of how 324 
experience, environment, and neurobiology contribute to differing neurodevelopmental 325 
trajectories in health and mental illness. This work thus lays the groundwork for future studies of 326 
the unique impact of experience on neurodevelopment and also suggests the possibility of 327 
targeted interventions during this critical window of vulnerability to psychopathology (79). 328 
 329 
Materials and Methods 330 
Participants and experimental procedures 331 

Alprazolam sample 332 

The alprazolam sample and study procedures have been described in detail in our earlier 333 
work(80). Briefly, forty-seven adults participated in a double-blind, placebo controlled 334 
pharmacological imaging study using the benzodiazepine alprazolam. Each participant completed 335 
two identical experimental sessions approximately one week apart. In one session, participants 336 
were given a 1 mg dose of alprazolam, and in the other they were given an identical appearing 337 
placebo. The order of administration was counter-balanced across participants. During both 338 
sessions, participants completed an emotion identification task that lasted 10.5 minutes while 339 
functional MRI (fMRI) data was collected. Task-related fMRI results have been previously 340 
reported(80). Four participants were excluded due to excess head motion in at least one session 341 
(see below) for a final sample of 43 participants and 86 sessions total (ages 20.9 - 59.4; M = 40.3, 342 
SD = 13.12, male/female = 24/19). Study procedures were approved by the University of 343 
Pennsylvania IRB, and all participants provided written informed consent. 344 

 345 
Developmental sample 346 

Neuroimaging data were obtained from a community-based sample of 1,476 youth (ages 8 347 
– 21.9, M = 14.63, SD = 3.43; male/female = 698/778) that were part of the Philadelphia 348 
Neurodevelopmental Cohort (PNC). Data collection procedures and sample characteristics have 349 
been previously described in detail(49, 81, 82). Functional MRI data were collected while 350 
participants performed the same emotion identification task as the alprazolam sample; this is also 351 
described in previous work(81). From this original sample, 306 participants were excluded based 352 
on health criteria, including psychoactive medication use at the time of study, medical problems 353 
that could impact brain function, a history of psychiatric hospitalization, and gross structural brain 354 
abnormalities. A total of 234 participants were excluded from further analysis due to head motion 355 
(see below) and 56 were excluded for poor structural image quality. In sum, following health 356 
exclusions and rigorous quality assurance, we retained 879 participants (ages 8.0 - 21.7 at first 357 
visit, M = 14.95, SD = 3.24; male/female = 383/496).  358 

 359 
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Neuroimaging acquisition 360 

Alprazolam sample 361 

All data were collected on a Siemens Trio 3T as previously reported(80). Whole-brain structural 362 
data were obtained with a 5-minute magnetization-prepared, rapid acquisition gradient-echo T1-363 
weighted image (MPRAGE) using the following parameters: TR 1620ms, TE 3.87 ms, field of 364 
view (FOV) 180x240 mm, matrix 192x256, effective voxel resolution of 1 x 1 x 1mm. BOLD 365 
fMRI data were obtained as a slab single-shot gradient-echo (GE) echoplanar imaging (EPI) 366 
sequence using the following parameters: TR = 3000, TE = 32 ms, flip angle = 90°, FOV = 240 367 
mm, matrix = 128 X 128, slice thickness/gap = 2/0mm, 30 slices, effective voxel resolution of 368 
1.875 x 1.875 x 2mm, 210 volumes. As previously described(80), data were acquired in a FOV 369 
that included temporal, inferior frontal, and visual cortices as well as subcortical structures 370 
(Figure 3a; gray boxes).  371 

 372 
Developmental sample 373 

All neuroimaging data were collected on the same Siemens Trio 3T scanner as was used 374 
for the alprazolam dataset. The neuroimaging procedures and acquisitions parameters have been 375 
previously described in detail(81). Briefly, structural MRI was acquired with a 5-min MPRAGE 376 
T1-weighted image (TR = 1810 ms; TE = 3.51 ms; TI = 1100 ms, FOV = 180 × 240 mm2, 377 
matrix = 192 × 256, effective voxel resolution = 0.9 × 0.9 × 1 mm3). BOLD fMRI was acquired 378 
using similar acquisition parameters to the alprazolam dataset. BOLD fMRI scans were acquired 379 
as single-shot, interleaved multi-slice, GE-EPI sequence sensitive to BOLD contrast with the 380 
following parameters: TR = 3000 ms, TE = 32 ms, flip angle = 90°, FOV = 192 × 192 mm2 381 
(whole brain acquisition), matrix = 64 × 64; 46 slices, slice thickness/gap = 3/0 mm, effective 382 
voxel resolution = 3.0 × 3.0 × 3.0 mm3, 210 volumes.  383 
 384 
Preprocessing of neuroimaging data 385 

All preprocessing was performed using fMRIPrep 20.0.7 (RRID:SCR_016216;(83), which 386 
is based on Nipype 1.4.2(84), and XCP Engine (PennBBL/xcpEngine: atlas in MNI2009 Version 387 
1.2.3; Zenodo: http://doi.org/10.5281/zenodo.4010846; (. The neuroimaging data from the 388 
alprazolam and developmental datasets were processed using identical pipelines as described 389 
below. 390 

Anatomical data preprocessing 391 

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) 392 
with N4BiasFieldCorrection(85), distributed with ANTs 2.2.0(86), and used as T1w-reference 393 
throughout the workflow. The T1w-reference was then skull-stripped with 394 
a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 395 
OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-396 
matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using FAST in 397 
FSL 5.0.9(87). Volume-based spatial normalization to MNI2009c standard space was performed 398 
through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions 399 
of both the T1w reference and the T1w template.  400 

 401 
Functional data preprocessing  402 

The alprazolam dataset consisted of two BOLD acquisitions per participant (drug and 403 
placebo session) which were preprocessed individually. The developmental dataset consisted of 404 
one BOLD acquisition per participant. All BOLD acquisitions were processed with the following 405 
steps. BOLD runs were first slice-time corrected using 3dTshift from AFNI 20160207(88) and 406 
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then motion corrected using mcflirt (FSL 5.0.9;(87). A fieldmap was estimated based on a phase-407 
difference map calculated with a dual-echo GRE sequence, processed with a custom workflow 408 
of SDCFlows inspired by the epidewarp.fsl script and further improvements in HCP 409 
Pipelines(89). The fieldmap was then co-registered to the target EPI reference run and converted 410 
to a displacement field map with FSL’s fugue and other SDCflows tools. Based on the estimated 411 
susceptibility distortion, a corrected BOLD reference was calculated for a more accurate co-412 
registration with the anatomical reference. The BOLD reference was then co-registered to the 413 
T1w reference using bbregister (FreeSurfer) which implements boundary-based registration(90). 414 
Co-registration was configured with nine degrees of freedom to account for distortions remaining 415 
in the BOLD reference. Six head-motion parameters (corresponding rotation and translation 416 
parameters) were estimated before any spatiotemporal filtering using mcflirt. Finally, the motion 417 
correcting transformations, field distortion correcting warp, BOLD-to-T1w transformation and 418 
T1w-to-template (MNI) warp were concatenated and applied to the BOLD timeseries in a single 419 
step using antsApplyTransforms (ANTs) with Lanczos interpolation. 420 

Confounding time-series were calculated based on the preprocessed BOLD data. The 421 
global signal was extracted within the whole-brain mask. Additionally, a set of physiological 422 
regressors were extracted to allow for component-based noise correction (CompCor, Behzadi et 423 
al. 2007). Anatomical CompCor (aCompCor) principal components were estimated after high-424 
pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off). 425 
The aCompCor components were calculated within the intersection of the aforementioned mask 426 
and the union of CSF and WM masks calculated in T1w space, after their projection to the native 427 
space of each functional run (using the inverse BOLD-to-T1w transformation). Components were 428 
also calculated separately within the WM and CSF masks. In this study, for each aCompCor 429 
decomposition, the k components with the largest singular values were retained, such that the 430 
retained components' time series were sufficient to explain 50 percent of variance across the 431 
nuisance mask (CSF and WM). The remaining components were dropped from consideration. 432 
The head-motion estimates calculated in the correction step were also placed within the 433 
corresponding confounds file. The confound time series derived from head motion estimates and 434 
global signals were expanded with the inclusion of temporal derivatives and quadratic terms for 435 
each(91).  436 

Subject-level timeseries analysis was carried out in XCP Engine using FILM (FMRIB's 437 
Improved General Linear Model)(92). All event conditions from the emotion identification 438 
task(80, 81) were modeled in the GLM as 5.5 second boxcars convolved with a canonical 439 
hemodynamic response function. Each of the five emotions (fear, sad, angry, happy, neutral) was 440 
modeled as a separate regressor. The temporal derivatives and quadratic terms for each task 441 
condition as well as the confounding aCompCor, global signal, and motion timeseries described 442 
above were included as nuisance regressors. Task regression has been shown to produce patterns 443 
of BOLD fMRI connectivity that are highly similar to those present at rest(93), and convergent 444 
results from several independent studies that have shown that functional networks are primarily 445 
defined by individual-specific rather than task-specific factors (Gratton et al., 2018). The nuisance 446 
regression pipeline used here has been shown be a top-performing procedure for mitigating 447 
motion artifacts(41). Consistent with our prior work, participants in the alprazolam dataset were 448 
excluded from future analyses if mean framewise displacement exceeded 0.5 mm in either 449 
session. A more stringent threshold of 0.3 mm was applied to the developmental dataset; head 450 
motion was also included as a covariate in all developmental models (see below). 451 

 452 
Connectivity matrix generation 453 

Fully preprocessed fMRI data were used to generate mean timeseries within a set of atlas-454 
defined brain regions for each participant. Cortical regions were defined according to the Schaefer 455 
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400 parcel cortical atlas(94). To accommodate the restricted FOV of the alprazolam BOLD 456 
acquisition, the atlas was masked such that only parcels with greater than 95% coverage were 457 
included in connectivity analyses. Subcortical regions were defined using the Automated 458 
Anatomical Labeling (AAL) atlas(95). Subcortical areas included the left and right caudate, 459 
putamen, accumbens, pallidum, thalamus, amygdala, hippocampus, and parahippocampal area. 460 
These cortical and subcortical atlases were combined and used to generate mean timeseries for 461 
each region in each dataset. Functional connectivity was calculated as the correlation coefficient 462 
of the timeseries for each pair of regions (20,503 unique pairs). As part of sensitivity analyses, we 463 
repeated this process after defining cortical areas using Schaefer 200 parcellation(94), the Multi-464 
modal Parcellation atlas(96), the Gordon cortical atlas(97), or the AAL(95). 465 

 466 
Pharmacological classification analysis 467 

We used a linear support vector machine (SVM) to classify drug vs. placebo sessions in 468 
the alprazolam dataset based on multivariate patterns of functional connectivity. Linear SVMs 469 
find a hyperplane to separate two classes of data by maximizing the margin between the closest 470 
points (the support vectors; (. SVMs were implemented in R          using the e1071 library(99) and 471 
were trained using a linear kernel and the default parameters. Model performance was evaluated 472 
using 10-fold cross-validation, iteratively selecting data from 90% of participants as training data 473 
and testing the trained model on data from the remaining 10% of participants. Across testing sets, 474 
the prediction accuracy and area under the receiver operating curve (AUC) were calculated to 475 
evaluate model performance. To ensure our results were not driven by a specific cross-validation 476 
split, we repeated the entire 10-fold cross-validation procedure 100 times, drawing the 10-fold 477 
subsets at random each time. Performance metrics were finally averaged across the 100 iterations 478 
of the cross-validation procedure. 479 

To evaluate if model performance (i.e., the accuracy and the AUC) was significantly 480 
better than expected by chance, we performed a permutation test(100). Specifically, we re-applied 481 
the cross-validation procedure 1,000 times, each time permuting the session labels (drug and 482 
placebo) across the training samples without replacement. Significance was determined by 483 
ranking the actual prediction accuracy versus the permuted distribution; the p-value of the 484 
accuracy and AUC was calculated as the proportion of permutations that showed a higher value 485 
than the observed value in the real, unpermuted data.  486 

 487 
Analysis of feature weights 488 

After cross-validation and significance testing, we trained the model on all participants 489 
and extracted the feature weights for further analysis. First, we calculated the absolute value of 490 
the weights and summed them across all connections (edges) for a given region (node) to compare 491 
the overall contribution of each region to the model, irrespective of the sign of the feature 492 
weights(100). Next, to evaluate the spatial pattern of the feature weights, we calculated the mean 493 
signed feature weight for each node, reflecting the directionality of the effect of the drug 494 
manipulation according to the trained model. We then used this feature map to assess the 495 
biological relevance of our trained model. Specifically, we calculated the spatial correlation 496 
between this pattern of nodal feature weights with two sets of cortical features. The first was the 497 
widely used principal gradient of macroscale cortical organization(42), which places each cortical 498 
region on a continuum between unimodal (i.e. sensorimotor cortices) to transmodal (i.e. 499 
association cortices) function. The second set of cortical features was selected based on the 500 
known pharmacology of benzodiazepines like alprazolam. Alprazolam is a positive allosteric 501 
modulator of the GABAA receptor, and of the six GABAA α subunits (α1-6), only subunits α1, α2, 502 
α3, and α5 are benzodiazepine sensitive (48, 101). To quantify the spatial distribution of the six 503 
GABAA α subunits, we extracted the microarray gene expression patterns for their corresponding 504 
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GABAA receptor genes (GABRA1-6) from the Allen Human Brain Atlas (data available at 505 
https://www.meduniwien.ac.at/neuroimaging/mRNA.html) (46, 102). For each of the six gene 506 
expression maps, we quantified the mean expression value within each cortical parcel and 507 
calculated the spatial correlation with the pattern of nodal SVM weights. 508 

To test the significance of the spatial correlation between our pattern of cortical feature 509 
weights and each of the biological brain maps, we compared the observed correlation value to a 510 
null distribution generated with BrainSMASH (Brain Surrogate Maps with Autocorrelated Spatial 511 
Heterogeneity; https://brainsmash.readthedocs.io/; (. The spatial autocorrelation of brain maps can 512 
lead to inflated p-values in spatial correlation analyses and must be accounted for in the creation 513 
of null models. BrainSMASH addresses this by generating permuted null brain maps that match 514 
the spatial autocorrelation properties of the input data. We used BrainSMASH to generate 10,000 515 
spatial-autocorrelation-preserving null permutations based on the input data and the pairwise 516 
distance matrix for the cortical parcellation, generating a null distribution of spatial correlation 517 
coefficients. We calculated two-tailed p-values by squaring all correlation values (i.e. spatial R2) 518 
and calculating the proportion of times the null distribution exceeded the observed value.  519 

Transmodal and unimodal classification models 520 

Our primary hypothesis was that E:I ratio reductions would be specific to association 521 
cortices during youth. In order to test this hypothesis directly, we trained two additional models 522 
after applying an a priori feature selection step. Specifically, we thresholded the top and bottom 523 
quartiles of cortical parcels based on their position in the principal gradient of functional 524 
organization (42), with the top 25% representing transmodal association cortex and the bottom 525 
25% representing unimodal sensory cortex. We then created two new feature sets that restricted 526 
the input features to connections to these transmodal or unimodal areas only. This selection 527 
procedure ensured that the resulting numbers of features were equal between the two feature sets 528 
(9,541 features per model). We then trained and validated the transmodal and unimodal models 529 
according the procedures described above. 530 

 531 
Developmental analyses 532 

Application of the pharmacological model to the developmental dataset 533 

After training and validating the pharmacological benzodiazepine models, we applied the 534 
models to the functional connectivity data for each participant in the developmental sample. For 535 
each participant, each model yielded the distance from the classification hyperplane that separates 536 
the two classes (drug vs. placebo). Observations close to the hyperplane (distance values near 537 
zero) are less representative of the class, and those further from the hyperplane are more 538 
representative. The distance metric is such that values greater than zero indicate more “drug-like” 539 
patterns of functional connectivity and values less than zero indicate more “placebo-like” patterns 540 
of connectivity. As the pharmacological effect of alprazolam is to increase GABAergic inhibitory 541 
signaling, more “drug-like” patterns reflect greater GABA-ergic inhibitory modulation of 542 
functional connectivity. As such, more “drug-like” patterns were interpreted to reflect a reduced 543 
E:I balance relative to more “placebo-like” patterns. These distance metrics were normally 544 
distributed and thus provided a continuous measure of E:I balance for use in further analyses. We 545 
first applied the model trained on all the input features and then applied the transmodal- and 546 
unimodal-specific models, generating three sets of distance values per participant. 547 

 548 
Developmental regression models 549 

To assess the developmental trajectory of E:I balance, we modeled the classification 550 
distance metrics from each model as a function of age using penalized splines within a 551 
generalized additive model (GAM). GAMs allow us to flexibly capture linear or nonlinear age 552 
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effects while penalizing overfitting. To test for windows of significant change across the age 553 
range, we calculated the first derivative of the smooth function of age from the GAM model using 554 
finite differences and then generated a simultaneous 95% confidence interval of the derivative 555 
following the method described by Simpson ( and implemented using the gratia library(103) in R. 556 
Intervals of significant change were identified as areas where the simultaneous confidence 557 
interval of the derivative does not include zero. To test if the effect of age on classification 558 
distance differed between the transmodal and unimodal SVM models, we calculated the 559 
residualized change (104) in transmodal vs. unimodal distance scores by regressing the unimodal 560 
distance out of transmodal distance. We then regressed the residualized change score on age using 561 
a GAM. All models included sex as a covariate as well as head motion and attentiveness as 562 
covariates of no interest. Head motion was quantified as mean framewise displacement during the 563 
fMRI acquisition. Attentiveness was quantified as the number of response omissions during the 564 
emotion identification task; this covariate was included to control for potential effects of arousal 565 
on model performance as alprazolam can cause drowsiness. All GAMs were fit using the mgcv 566 
library(105) in R.  567 
 568 
Analysis of dimensions of psychopathology 569 

As previously described (49, 106, 107), PNC participants underwent a clinical assessment 570 
of psychopathology. Multiple domains of psychopathology symptoms were evaluated using a 571 
structured screening interview (GOASSESS); we used this data to investigate whether dimensions 572 
of psychopathology moderated developmental reductions in E:I balance. As has been detailed in 573 
prior work (49, 106, 107), factor scores were derived from the clinical assessments using a 574 
bifactor confirmatory factor analysis model that included a general factor for overall 575 
psychopathology as well as four specific factors that primarily represent anxious-misery (mood & 576 
anxiety) symptoms, psychosis-spectrum symptoms, behavioral symptoms (conduct and ADHD), 577 
and fear symptoms (phobias). Importantly, all five factors are orthogonal and can be considered 578 
jointly in analysis of imaging data. In order to sample a broad range of factor scores, we expanded 579 
our inclusion criteria to include individuals with a history of psychiatric hospitalization (N = 580 
1018; ages 8 – 21.7; M = 15.0, SD = 3.23, male/female = 462/556). We analyzed these data in a 581 
GAM that included age-by-factor score interactions for each factor from the bifactor model. 582 
Interactions were fit as bivariate smooth interactions with penalized splines using tensor 583 
interaction smooths (`ti` in mgcv).  584 
 585 
Data and code availability 586 

The developmental dataset is publicly available in the Database of Genotypes and 587 
Phenotypes (dbGaP accession phs000607.v3.p2). Pharmacological imaging data is available upon 588 
reasonable request. All code used for pharmacological classification analyses and developmental 589 
analyses are available at https://pennlinc.github.io/Larsen_EI_Development/. 590 
 591 
 592 
  593 
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Supplemental Data 922 
 923 
Supplemental Table 1. Regression table for developmental generalized additive models (GAM). 

 All connections Transmodal connections Unimodal connections 
Predictors Estimates SE p Estimates SE p Estimates SE p 
(Intercept) -24.01 2.10 <.001 -5.97 1.23 <.001 -9.57 0.94 <.001 
Sex -0.94 1.27 .459 0.93 0.75 .213 -0.63 0.57 .271 
FD 53.41 15.95 <.001 45.38 9.37 <.001 20.02 7.14 .005 
Omissions 1.24 0.18 <.001 0.47 0.11 <.001 0.55 0.08 <.001 

Smooth 
predictors F(edf) p 

Age-
range F(edf) p 

Age-
range F(edf) p 

Age-
range 

s(Age) 2.45(2.8) .037 12.9-
16.7 9.96(1) .0017 8.2-

21.7  3.59(1) .059 - 

Note: Age-range is the span of the spline fit in which the derivative is significantly greater than zero 
(see Methods). SE: standard error; edf: estimated degrees of freedom for penalized thin plate 
regression spline. 

 924 
 925 
Supplemental Table 2. Classification results and age effects for alternative 
parcellation atlases. 

 

 SVM classification Age effect 
Parcellation AUC ppermutation Accuracy ppermutation F(edf) p Age-range 

Schaefer 200 .707 .001 65.5% .003 13.13(2.7) <.001 11.4-17.1 
AAL .707 <.001 63.5% .003 8.90(1.4) .001 11.8-19.5 
Multi-modal 
Parcellation Atlas .726 <.001 70.0% <.001 30.5(1) <.001 8.0-21.7 

Gordon Cortical 
Atlas .665 .005 67.9% <.001 2.73(2.4) <.001 11.9-16.5 

Results are also visually depicted in Supplemental Figure 2. Age-range (years) 
is the span of the spline fit in which the derivative is significantly greater than 
zero (see Online Methods). AUC: Area under the receiver operating curve; edf: 
estimated degrees of freedom from the penalized thin plate regression spline. 
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 927 
Supplemental Figure 1. Head motion is not associated with the pharmacological 928 
manipulation or classifier performance. Left: A summary of in-scanner head motion (mean 929 
framewise displacement) did not differ between drug and placebo sessions (tpaired = 1.44, p = 930 
.16). Right: The same metric of head motion was also not associated with model-predicted 931 
distance from the classification plane (r = .13, p = .24). 932 
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 934 
Supplemental Figure 2. Classification and developmental effects are robust to alternative 935 
cortical parcellation schemes. a) Classifier performance. All binary SVM classifiers identified 936 
drug and placebo sessions in 10-fold cross-validation with an AUC values that exceeded the 937 
randomly permuted null AUC distributions (see Supplemental Table 1). b) When the models 938 
from panel a) were applied to the developmental dataset, models trained on all parcellation 939 
schemes produced distance metrics that significantly increased with age during adolescence, 940 
indicating age-related reductions in the E:I ratio. Distance metrics are centered to facilitate 941 
comparisons between the model predictions. GAM model statistics are reported in 942 
Supplemental Table 1. 943 
 944 
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