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Abstract

Adolescence is hypothesized to be a critical period for the development of association
cortex. A reduction of the excitation:inhibition (E:I) ratio is a hallmark of critical period
development; however it has been unclear how to assess the development of the E:I ratio using
non-invasive neuroimaging techniques. Here, we used pharmacological fMRI with a GABAergic
benzodiazepine challenge to empirically generate a model of E:I ratio based on multivariate
patterns of functional connectivity. In an independent sample of 879 youth (ages 8-22 years), this
model predicted reductions in the E:I ratio during adolescence, which were specific to association
cortex and related to psychopathology. These findings support hypothesized shifts in E:I balance
of association cortices during a neurodevelopmental critical period in adolescence.
Teaser

Inhibitory maturation of the association cortex reflects an adolescent critical period.
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MAIN TEXT

Introduction

Adolescent brain development is characterized, in part, by the continued structural and
functional maturation of the association cortices (/—8). The specificity of the developmental
timing and localization of association cortex maturation as well as the links between association
cortex development and long-term psychiatric outcomes have led to the hypothesis that
adolescence functions as a critical period of development within association cortex (9, 10).
Critical periods are windows of development during which experience powerfully shapes the
development of neural circuits through heightened experience-dependent plasticity with long-term
impacts on behavior (/7). These important neurodevelopmental windows are theorized progress
hierarchically throughout development, beginning in primary sensory cortices and sequentially
advance to secondary and higher-order cortical areas (//, 12). The neurobiological mechanisms
that underlie critical periods are thought to be conserved across the cortex and have been carefully
delineated in decades of work on early critical periods in sensory cortex (//—14).

One of the hallmark features of critical period development is the maturation of
GABAergic inhibitory circuitry, particularly parvalbumin positive interneurons, leading to a
reduction in the excitation to inhibition (E:I) ratio (/3, 715). The reduction of the E:I ratio leads to
an increase in the signal-to-noise ratio of local circuit activity as inhibition suppresses the effect
of spontaneous activity on circuit responses in favor of stimulus-evoked activity (/6). This
essential mechanism has been shown to regulate the timing of critical period development across
visual (/4), auditory (/7), and sensorimotor cortices (/8). As such, if the adolescent critical period
hypothesis is correct, inhibitory maturation should result in a developmental reduction in the E:I
ratio across adolescence within association cortex.

Evidence for E:I development in association cortex during adolescence has been largely
limited to animal models. This work has suggested prefrontal GABAergic inhibitory circuitry
undergoes significant modifications. Specifically, parvalbumin (PV) interneurons, a critical
component E:I maturation in sensory system critical periods, have been shown increase in
prefrontal cortex during adolescence in the rat (/9) and non-human primate (20, 217). At the same
time, the expression of GABAA receptor al subunits, which are primarily expressed on PV cells
and support fast synaptic inhibition (22) as well as synaptic plasticity (23), also increase during
adolescence in the prefrontal cortex of the non-human primate (24, 25). These neurobiological
changes lead to important functional increases in inhibitory signaling, effectively reducing the E:I
ratio(26, 27). Together, these findings are suggestive of critical period development and may
indicate similar processes are unfolding in the human (28). Translating these findings to human
studies of development is crucial as disruptions to the E:I balance are hypothesized to play a
significant role in the onset of psychiatric disorders (29—31). However, the extent to which these
critical period mechanisms are present in association cortex during adolescence in the human
remains largely unexplored. Corroborating evidence has been found in postmortem studies which
demonstrate increases in PV (32) and GABAAa al expression (33), but it has been unclear how to
measure developmental changes in the E:I ratio in vivo in humans using available neuroimaging
techniques. This lack of in vivo measures has limited our ability to test the adolescent critical
period hypothesis.

Here, we leveraged a pharmacological fMRI (phMRI) experiment using a GABAergic
benzodiazepine challenge to empirically generate a model for the effect of inhibitory modulation
of the E:I ratio on patterns of fMRI connectivity. Benzodiazepines are positive allosteric
modulators of the GABAA receptor that increase the effectiveness of post-synaptic GABAergic
signaling, resulting in an increase in inhibition relative to excitation. Benzodiazepines have been
used to pharmacologically manipulate the E:I ratio by enhancing inhibitory signaling in disease
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models of E:I imbalance (34—36) as well as in studies of critical period development (73, 23, 37).
In the current study, we first trained a multivariate model to distinguish benzodiazepine-induced
change in the E:I ratio and established the neurobiological relevance of our empirical model by
comparing the model features to known aspects of benzodiazepine pharmacology as well as a
functional gradient that has been shown to reflect patterns of excitatory and inhibitory interneuron
expression (38, 39). We then applied our trained and validated model to a large, independent
developmental dataset to investigate E:I changes occurring in association cortex during
adolescence. We hypothesized that patterns of functional connectivity would develop to reflect a
reduction in the E:I ratio that is specific to association cortex.

Results

An empirical model of the E:I ratio

Forty-three adult participants completed a double-blind, placebo-controlled phMRI study
with the benzodiazepine alprazolam (86 sessions total). Alprazolam is a classical benzodiazepine
that enhances the effect of GABA at GABAA receptors through positive allosteric modulation,
increasing inhibition and effectively reducing the E:I ratio (40). Functional connectivity matrices
were derived for placebo and drug phMRI sessions using a top performing pipeline that
minimized the impact of motion artifact (4/). A linear support vector machine (SVM) classifier
was trained to distinguish placebo and drug sessions based on the multivariate patterns of
functional connectivity (Figure 1, green pathway). Cross-validation and permutation testing
revealed that the trained SVM identified drug vs. placebo sessions in left-out data far better than
chance (AUC = .716, ppermutaiion = .002; Figure 2a). Sensitivity analyses confirmed that in-scanner
head motion was not associated with our pharmacological manipulation or model performance
(Supplemental Figure 1). The spatial pattern of estimated feature weights from the SVM model
highlighted the contributions of subcortical regions, including the thalamus and amygdala, and
also contributions throughout the cortex (Figure 2b).
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Figure 1. Analysis workflow. Dataset: Two datasets were collected on the same scanner using
highly similar acquisition parameters: a phMRI dataset using the benzodiazepine alprazolam
(green) and a developmental fMRI sample from the Philadelphia Neurodevelopmental Cohort
(PNC; purple). Preprocessing: Datasets were preprocessed using identical pipelines which
included removal of nuisance signal with aCompCor (, global signal regression, and task
regression. Connectivity matrix generation: Connectivity matrices were generated from standard
atlases for placebo and drug sessions from the alprazolam dataset (n = 43; 86 sessions total) and
for the PNC dataset (n = 879). Train and validate model: The alprazolam dataset was used to train
a linear SVM classifier to distinguish drug and placebo sessions using 10-fold cross-validation.
Apply model: The validated alprazolam model was applied to the PNC dataset, generating a
distance metric that reflected each participant’s position on a continuum from “drug-like” (lower
E:I) to “placebo-like” (higher E:I). Regress model output on age: This metric was then regressed
on age using a generalized additive model with penalized splines that included covariates for sex,
head motion, and attentiveness.

Science Advances Manuscript Template Page 4 of 28


https://doi.org/10.1101/2021.05.19.444703
http://creativecommons.org/licenses/by-nd/4.0/

32

33
34
35
36
37
38
39
40

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.19.444703; this version posted October 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

~1.001 ’ -
2 100 p=0.001 Observed
E 751
2 0.751 50
g o5
o s oL )
S 0.50 & —
o a 0.3040.50.60.7
= .7 AUC=0.716 S AUC
8 0.251 L’ Accuracy: 69.5% g 1501 p=0.002 Observed
o 2 E 100-
E z zZ
F0.00{%" 501

000 025 050 075 1.00 - _____ul

False positive rate (1-specificity) 0.3 04 0.5 0.6 0.7

Accuracy

0

Figure 2. A multivariate model distinguishes alprazolam and placebo sessions, capturing E:I
ratio a) Classifier performance. The binary SVM classifier identified drug and placebo sessions
in 10-fold cross-validation with an AUC of .716 and an accuracy = 69.5% (top). The observed
AUC and accuracy were significantly greater than a permuted null distribution (bottom). b) Mean
absolute feature weights for all nodes from the validated SVM model.
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Biological relevance of the E:1 model

Next, we established the biological relevance of the trained E:I model. First, we compared
the spatial pattern of cortical feature weights to a widely used functional gradient of macroscale
cortical organization that places regions on a continuum from unimodal to transmodal function
(42). This continuum has been shown to capture variation in excitatory neuron structure,
inhibitory interneuron expression, and E:I balance (38, 39). Using a recently-developed analytic
procedure that accounts for spatial autocorrelation structure (43), we observed a significant
relationship between our model feature weights and this pattern of macroscale cortical
organization (»=.33; p = .003; Figure 3a). This finding suggests that GABAergic modulation of
functional connectivity patterns varies along a transmodal-to-unimodal gradient that in part
indexes diversity in excitatory and inhibitory neurobiological properties. Next, we investigated
whether the estimated model features corresponded to the known pharmacology of
benzodiazepines like alprazolam. Of the six GABAA subunit receptors, GABA4 al—6, only al,
a2, a3, and a5 are sensitive to benzodiazepines due to the presence of an amino acid residue,
histidine (44, 45). We used the Allen Human Brain Atlas (46) to evaluate how the feature weights
from the classifier model aligned with spatial patterns of gene expression for the six GABAa
subunit receptors, GABRA1-6 (corresponding to GABAA a1-6). We found evidence of a clear
biological double dissociation: model features were significantly associated with the gene
expression patterns of the benzodiazepine-sensitive GABA subunits (al,02,03,05) and not the
benzodiazepine-insensitive GABAA subunits (04, a6; Figure 3b)(47, 48).
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Figure 3. Model features align with cortical organization and benzodiazepine
pharmacology a) The cortical pattern of nodal SVM weights from the multivariate E:I ratio
model was significantly associated with transmodality using an established measure of
macroscale cortical organization(42). b) Nodal weights were also specifically correlated with the
spatial patterns of benzodiazepine (BZD) sensitive GABAA receptor subunit expression. Spatial
relationships were tested for significance against a spatial-autocorrelation-preserving null
distribution (BrainSMASH (43)) and corrected for multiple comparison using the Bonferroni
correction (pgony)-
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Development of the E:I ratio during adolescence

We next utilized our empirically generated E:I ratio model to test the hypothesis that E:I
ratio declines as part of the critical period of association cortex development. An independent
sample of 879 youth (aged 8-21.7 years) participated in a highly similar fMRI acquisition on the
same scanner; this data was preprocessed using an identical pipeline. We applied our validated E:I
model to the developmental dataset without further tuning and obtained the model-estimated
distance from the classification hyperplane. This metric reflects a participant’s position on the
continuum between “drug-like” (lower E:I) and “placebo-like” (higher E:I). To capture both
linear and nonlinear effects in a rigorous statistical framework, we then regressed this metric on
age using a generalized additive model with penalized splines (Figure 1, purple pathway). We
found that age was positively associated with patterns of GABA-modulated functional
connectivity, reflecting an age-related reduction in E:I ratio. Significant reductions occurred
between ages 12.9 and 16.7 years (F§ (4ge)= 3.11, p = .037; Supplemental Table 1, “All
connections”). The age-related reduction in E:I ratio was robust across multiple alternative
parcellation schemes (Supplemental Table 2; Supplemental Figure 2).

Age-related reductions in the E:I ratio are specific to association cortex

We hypothesized that age-related reductions in E:I ratio during adolescence were specific
to association cortices. To test this hypothesis, we trained two additional models that restricted
input features to connections to the most transmodal (Figure 4a, blue) or unimodal (Figure 4a,
green) parts of the cortex. Both models significantly distinguished drug from placebo phMRI
sessions (Figure 4a). However, when applied to the developmental dataset, significant age-
related reductions in the E:I ratio were only observed for the model trained on connections with
transmodal cortex (transmodal: Fi (4ge) = 9.96, p = .0017; unimodal: F (4¢¢) = 3.59, p = .058;
transmodal vs. unimodal: F's (4ee) = 5.96, p = .015; Figure 4b). These results suggest that
transmodal association cortices undergo a reduction in E:I ratio during adolescence, consistent
with a critical period of development.

Science Advances Manuscript Template Page 8 of 28


https://doi.org/10.1101/2021.05.19.444703
http://creativecommons.org/licenses/by-nd/4.0/

.00
01
.02
.03
.04
.05
.06
.07
.08
.09
.10
11

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.19.444703; this version posted October 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

a

Hl Transmodal [l Unimodal

available under aCC-BY-ND 4.0 International license.

-~ 1.00

> p<.001 Observed p <.001 Observed
= 751 75 3
‘® d =
é 0.75 2 50 50 g
K & 251 s}
o & - Sy
© 0.50 = O 0 =
o © 03 04 05 06 07 03 04 05 06
% , g p=.008 Observed 1504 p=.013 Observed
20.25 e AUC Accuracy £75 S
a’r .7 Unimodal 0.667 62.9% 2 50 £l
4 “ Transmodal 0.698 66.7% 3
F 0.00 %5 B
0 0
000 025 050 075 1.00
False positive rate (1-specificity) 03 0'4A8.g 06 0.7 03 Ozcc(:)dfac?y.e 0.7
b Unimodal
25
=t 20 __ 201
(<37} ©
=9 s kS
a ¢ oo * % n.s g
0 M 0 S5
- c .
g Vel ‘% my————= |
5} - L (] * ©
-20
-25 %—20-
© °
25 = o
& n
2 % -40
g9 -40
8 = -50 1~ - - - - - - - - - - .
a0 8 12 16 20 8 12 16 20 8 12 16 20
Age (years) Age (years) Age (years)

Figure 4. Transmodal areas undergo E:I ratio development during adolescence. a) Model
performance for unimodal and transmodal classifiers. SVM classifiers were trained and validated
for connections to the most transmodal (green) and most unimodal (blue) areas only. Dashed lines
indicate acquisition field of view for the phMRI dataset. Both models performed significantly
better than a permuted null distribution (middle: ROC curves for each model; right: null
distributions from 1,000 null permutations). b) Models trained on transmodal and unimodal data
were applied to the developmental dataset, generating a distance metric for each participant where
greater values represent patterns of functional connectivity consistent with a lower E:I ratio.
Individuals had lower estimated E:I ratio with age in transmodal cortex (left) but not in unimodal
cortex (center). This pattern was confirmed by a significant effect of age on within subject change
in transmodal vs. unimodal distance scores (right). *p<.05, **p<.01, n.s. not significant.
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Analysis of dimensions of psychopathology

Finally, we investigated whether individual differences in dimensions of psychopathology
(49) were associated with the E:I ratio of association cortex. We found that mood disorder
symptomatology, but not other psychopathology dimensions, moderated age-related differences in
estimated transmodal E:I ratio. Specifically, individuals with greater lifetime mood disorder
symptoms displayed a relatively stable E:I ratio over development instead of the normative
reduction of the E:I ratio (Age*Mood interaction: F' = 7.64, p = .0058).

Discussion

We utilized a unique combination of human phMRI and developmental fMRI data to
provide novel evidence for an essential component of critical period development: developmental
reductions in the E:I ratio. Our approach generated an empirical fMRI model of the E:I ratio that
showed a high degree of correspondence to known GABAergic benzodiazepine
neuropharmacology and which could be applied to a large, independent sample of youth.
Consistent with our hypothesis, this approach revealed that patterns of functional
neurodevelopment in adolescence are consistent with developmental reductions in the E:I ratio
that are specific to association cortex. Further, we show that individual differences in this process
are associated with individual differences in lifetime mood symptom burden, in alignment with
models positing that E:I abnormalities underlie the emergence of psychopathology (9, 29, 30, 50—
52). Together, these findings support the hypothesis that critical period mechanisms shape
association cortices during adolescence.

Critical period development has been predominantly associated with early sensory cortex
development. Since the first studies of critical period development in the visual cortex almost 60
years ago (53), a wealth of prior work has elucidated the mechanisms that shape critical period
plasticity in these areas. These studies have identified the maturation of local inhibitory circuitry,
particularly PV interneurons, and its resulting impact on the E:I balance as an essential critical
period mechanism (73, 16). This phenomenon is necessary for the opening of the critical period
window, facilitates critical period plasticity, and is present in critical periods across sensory
modalities (16, 17, 23, 37). For example, modulation if the E:I balance using benzodiazepines has
been shown to be sufficient to accelerate the timing of critical period plasticity (/3, 37). The
results of this study suggest that this phenomenon also occurs in association cortex during human
adolescence.

Our findings align with a growing literature characterizing inhibitory maturation during
this developmental stage. Animal models and post mortem human studies have shown maturation
of inhibitory neurobiology in the prefrontal cortex during adolescence, including increasing
expression of PV interneurons and GABAA al receptor subunits (19, 20, 24, 25). These processes
increase functional inhibition, reducing the E:I ratio and increasing the signal-to-noise ratio of
circuit activity (16, 27, 54). Computational simulations have suggested that these maturational
also facilitate high-frequency oscillatory capability (27). This is consistent with human EEG
studies showing increased gamma-band oscillatory power during adolescence (53, 56). Finally,
two recent magnetic resonance spectroscopy studies have showed increases in GABA levels
relative to glutamate levels in frontal cortex during adolescence (57, 58). Though it is not possible
to examine the functional effect of these changes on the E:I ratio using spectroscopy, these
findings align with a model of developmental reduction in the E:I ratio during adolescence. This
body of prior work cohere with the findings presented here, and are consistent with a critical
period model of adolescent association cortex development. Just as sensory critical period
plasticity refines neural circuits underlying sensory processing, the critical period for association
cortex may facilitate the plasticity of circuits that underlie the higher-order cognitive processes
refined during adolescence and are thought to be dependent on association cortex (2, 9, 59).
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It should be noted that there are two classes of critical period mechanisms: Facilitating
factors which open the critical period window and facilitate plasticity, and braking factors which
stabilize neural circuits and physically limit future plasticity (//, /3). The maturation of inhibition
and the resulting reduction in the E:I ratio are critical period facilitators(/ /). Using generalized
additive models, which can flexibly capture linear and nonlinear effects while penalizing
overfitting, we found that the model fit for age-related reductions in the association cortex E:I
ratio was linear. It is important to note that this does not necessarily mean that critical period
plasticity is linearly increasing or that the critical period window is persistently open over the
entire age range reported here. The developmental reduction in the E:I ratio is indicative of
critical period opening, but it does not provide information about critical period closure. Closure
of the adolescent critical period would be dependent upon the development of braking factors,
such as myelination and the formation of perineuronal nets (PNN)(60—62), which may follow
distinct developmental trajectories. Consistent with a critical period model, many studies have
provided evidence of myelination of association cortex and large white matter pathways linking
association cortex to other areas of the brain that continues into adulthood, including histological
(63), myelin mapping (64—66), and diffusion imaging (67, 68). At present, studies of PNN
formation are limited to postmortem methods and animal models which have demonstrated
developmental increases in PNN formation in the prefrontal cortex from adolescence to adulthood
(69, 70). Together, these studies indicate that critical period braking factors are forming during
the transition from adolescence to adulthood, stabilizing neural circuits and closing the critical
period window. However, in order to precisely demarcate the opening and closing of critical
period plasticity during adolescence, future work is needed that jointly investigates the
developmental timecourse of critical period facilitators, such as the E:I ratio reported here, and
critical period braking factors.

Mood-related psychopathology typically first emerges during adolescence, with
adolescent onset predicting greater illness chronicity and comorbidity (717, 72). Here, we observed
that beginning in adolescence, youth with greater burden of mood symptoms exhibit an altered
trajectory of E:I development within the association cortex. Specifically, greater lifetime mood
symptom burden was associated with reduced development of inhibition in transmodal regions of
the brain. Many studies have linked the occurrence of psychopathology with E:I disruption (29,
30, 50, 73, 74), and cross-species research has specifically implicated GABA-mediated E:I
disruptions in the etiology of mood psychopathology (75, 76). Specifically, animal studies have
shown that initial reductions in GABAergic inhibition lead to downstream reductions in
glutamatergic transmission, and to alteration of the normal E:I balance (30, 50). Human studies
have provided convergent evidence, demonstrating reduced GABA levels in the brain in those
with depression(77) as well as reduced glutamate in individuals with more severe anhedonia (78).
Conversely, the pharmacologic enhancement of GABAergic signaling within association regions
has been shown to have antidepressant effects (30). As such, our study supports the hypothesis
that the pathophysiology of depression in part involves altered glutamatergic and GABAergic
signaling (30, 50). Moreover, it places this hypothesis within a neurodevelopmental framework—
underscoring how E:I disruptions can manifest due to atypical critical period development.

Finally, we note that the approach used in this study highlights the potential for phMRI
data to generate insights into independent datasets to inform new hypotheses. We combined
machine learning and phMRI using a GABAergic alprazolam challenge to generate an empirical
model for the effect of GABAergic modulation on patterns of fMRI connectivity. As evidence for
the efficacy of this approach, the trained model could not only significantly predict drug versus
placebo sessions in unseen data, but the model features demonstrated a significant correspondence
with known benzodiazepine neuropharmacology. Notably, the model features were significantly
associated with the GABA receptor most strongly implicated in critical period development, the
GABAA al receptor. Though, due to the rarity of phMRI data, we were not able to confirm the
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generalizability of our model with an independent alprazolam phMRI dataset, the model
performance and underlying interpretability of the learned features highlights the biological
relevance of this method. Whereas in this study we applied this method to an independent
developmental dataset to provide insights into the critical period mechanisms unfolding during
adolescence, future work could apply this approach to other datasets to inform new research
questions.

Together, these findings support the hypothesis that critical period mechanisms, such as
the inhibition-induced reduction of the E:I ratio, shape association cortices during adolescence.
Studying development from a critical period perspective provides a powerful mechanistic
framework for understanding how experience and neurobiology interact to shape long-term
cognitive, social, and psychiatric outcomes. Importantly, a critical period model of adolescent
development can draw on the history of detailed work on sensory critical periods to generate
testable hypotheses for the mechanisms unfolding during adolescence in association cortex.
Understanding these mechanisms are a necessary prerequisite to understanding of how
experience, environment, and neurobiology contribute to differing neurodevelopmental
trajectories in health and mental illness. This work thus lays the groundwork for future studies of
the unique impact of experience on neurodevelopment and also suggests the possibility of
targeted interventions during this critical window of vulnerability to psychopathology (79).

Materials and Methods
Participants and experimental procedures
Alprazolam sample

The alprazolam sample and study procedures have been described in detail in our earlier
work(80). Briefly, forty-seven adults participated in a double-blind, placebo controlled
pharmacological imaging study using the benzodiazepine alprazolam. Each participant completed
two identical experimental sessions approximately one week apart. In one session, participants
were given a 1 mg dose of alprazolam, and in the other they were given an identical appearing
placebo. The order of administration was counter-balanced across participants. During both
sessions, participants completed an emotion identification task that lasted 10.5 minutes while
functional MRI (fMRI) data was collected. Task-related fMRI results have been previously
reported(80). Four participants were excluded due to excess head motion in at least one session
(see below) for a final sample of 43 participants and 86 sessions total (ages 20.9 - 59.4; M = 40.3,
SD = 13.12, male/female = 24/19). Study procedures were approved by the University of
Pennsylvania IRB, and all participants provided written informed consent.

Developmental sample

Neuroimaging data were obtained from a community-based sample of 1,476 youth (ages 8
—21.9, M = 14.63, SD = 3.43; male/female = 698/778) that were part of the Philadelphia
Neurodevelopmental Cohort (PNC). Data collection procedures and sample characteristics have
been previously described in detail(49, 81, 82). Functional MRI data were collected while
participants performed the same emotion identification task as the alprazolam sample; this is also
described in previous work(87). From this original sample, 306 participants were excluded based
on health criteria, including psychoactive medication use at the time of study, medical problems
that could impact brain function, a history of psychiatric hospitalization, and gross structural brain
abnormalities. A total of 234 participants were excluded from further analysis due to head motion
(see below) and 56 were excluded for poor structural image quality. In sum, following health

exclusions and rigorous quality assurance, we retained 879 participants (ages 8.0 - 21.7 at first
visit, M = 14.95, SD = 3.24; male/female = 383/496).
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Neuroimaging acquisition

Alprazolam sample

All data were collected on a Siemens Trio 3T as previously reported(80). Whole-brain structural
data were obtained with a 5-minute magnetization-prepared, rapid acquisition gradient-echo T1-
weighted image (MPRAGE) using the following parameters: TR 1620ms, TE 3.87 ms, field of
view (FOV) 180x240 mm, matrix 192x256, effective voxel resolution of 1 x 1 x Imm. BOLD
fMRI data were obtained as a slab single-shot gradient-echo (GE) echoplanar imaging (EPI)
sequence using the following parameters: TR = 3000, TE = 32 ms, flip angle = 90°, FOV = 240
mm, matrix = 128 X 128, slice thickness/gap = 2/0mm, 30 slices, effective voxel resolution of
1.875 x 1.875 x 2mm, 210 volumes. As previously described(80), data were acquired in a FOV
that included temporal, inferior frontal, and visual cortices as well as subcortical structures
(Figure 3a; gray boxes).

Developmental sample

All neuroimaging data were collected on the same Siemens Trio 3T scanner as was used
for the alprazolam dataset. The neuroimaging procedures and acquisitions parameters have been
previously described in detail(87). Briefly, structural MRI was acquired with a 5-min MPRAGE
T1-weighted image (TR = 1810 ms; TE = 3.51 ms; TI = 1100 ms, FOV = 180 x 240 mm?,
matrix = 192 x 256, effective voxel resolution = 0.9 x 0.9 x 1 mm?). BOLD fMRI was acquired
using similar acquisition parameters to the alprazolam dataset. BOLD fMRI scans were acquired
as single-shot, interleaved multi-slice, GE-EPI sequence sensitive to BOLD contrast with the
following parameters: TR = 3000 ms, TE = 32 ms, flip angle = 90°, FOV = 192 x 192 mm?
(whole brain acquisition), matrix = 64 x 64; 46 slices, slice thickness/gap = 3/0 mm, effective
voxel resolution = 3.0 x 3.0 x 3.0 mm?, 210 volumes.

Preprocessing of neuroimaging data

All preprocessing was performed using fMRIPrep 20.0.7 (RRID:SCR _016216;(83), which
is based on Nipype 1.4.2(84), and XCP Engine (PennBBL/xcpEngine: atlas in MNI2009 Version
1.2.3; Zenodo: http://doi.org/10.5281/zenodo.4010846; (. The neuroimaging data from the
alprazolam and developmental datasets were processed using identical pipelines as described
below.

Anatomical data preprocessing

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU)
with N4BiasFieldCorrection(85), distributed with ANTs 2.2.0(86), and used as T 1w-reference
throughout the workflow. The T1w-reference was then skull-stripped with
a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTSs), using
OASIS30ANTS as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-
matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using FAST in
FSL 5.0.9(87). Volume-based spatial normalization to MNI2009¢ standard space was performed
through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions
of both the T1w reference and the T1w template.

Functional data preprocessing

The alprazolam dataset consisted of two BOLD acquisitions per participant (drug and
placebo session) which were preprocessed individually. The developmental dataset consisted of
one BOLD acquisition per participant. All BOLD acquisitions were processed with the following
steps. BOLD runs were first slice-time corrected using 3dTshift from AFNI 20160207(88) and
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then motion corrected using mcflirt (FSL 5.0.9;(87). A fieldmap was estimated based on a phase-
difference map calculated with a dual-echo GRE sequence, processed with a custom workflow
of SDCFlows inspired by the epidewarp.fsl script and further improvements in HCP
Pipelines(89). The fieldmap was then co-registered to the target EPI reference run and converted
to a displacement field map with FSL’s fugue and other SDCflows tools. Based on the estimated
susceptibility distortion, a corrected BOLD reference was calculated for a more accurate co-
registration with the anatomical reference. The BOLD reference was then co-registered to the
T1w reference using bbregister (FreeSurfer) which implements boundary-based registration(90).
Co-registration was configured with nine degrees of freedom to account for distortions remaining
in the BOLD reference. Six head-motion parameters (corresponding rotation and translation
parameters) were estimated before any spatiotemporal filtering using mcflirt. Finally, the motion
correcting transformations, field distortion correcting warp, BOLD-to-T 1w transformation and
T1w-to-template (MNI) warp were concatenated and applied to the BOLD timeseries in a single
step using antsApplyTransforms (ANTs) with Lanczos interpolation.

Confounding time-series were calculated based on the preprocessed BOLD data. The
global signal was extracted within the whole-brain mask. Additionally, a set of physiological
regressors were extracted to allow for component-based noise correction (CompCor, Behzadi et
al. 2007). Anatomical CompCor (aCompCor) principal components were estimated after high-
pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-ofY).
The aCompCor components were calculated within the intersection of the aforementioned mask
and the union of CSF and WM masks calculated in T1w space, after their projection to the native
space of each functional run (using the inverse BOLD-to-T 1w transformation). Components were
also calculated separately within the WM and CSF masks. In this study, for each aCompCor
decomposition, the k components with the largest singular values were retained, such that the
retained components' time series were sufficient to explain 50 percent of variance across the
nuisance mask (CSF and WM). The remaining components were dropped from consideration.
The head-motion estimates calculated in the correction step were also placed within the
corresponding confounds file. The confound time series derived from head motion estimates and

global signals were expanded with the inclusion of temporal derivatives and quadratic terms for
each(91).

Subject-level timeseries analysis was carried out in XCP Engine using FILM (FMRIB's
Improved General Linear Model)(92). All event conditions from the emotion identification
task(80, 81) were modeled in the GLM as 5.5 second boxcars convolved with a canonical
hemodynamic response function. Each of the five emotions (fear, sad, angry, happy, neutral) was
modeled as a separate regressor. The temporal derivatives and quadratic terms for each task
condition as well as the confounding aCompCor, global signal, and motion timeseries described
above were included as nuisance regressors. Task regression has been shown to produce patterns
of BOLD fMRI connectivity that are highly similar to those present at rest(93), and convergent
results from several independent studies that have shown that functional networks are primarily
defined by individual-specific rather than task-specific factors (Gratton et al., 2018). The nuisance
regression pipeline used here has been shown be a top-performing procedure for mitigating
motion artifacts(4/). Consistent with our prior work, participants in the alprazolam dataset were
excluded from future analyses if mean framewise displacement exceeded 0.5 mm in either
session. A more stringent threshold of 0.3 mm was applied to the developmental dataset; head
motion was also included as a covariate in all developmental models (see below).

Connectivity matrix generation

Fully preprocessed fMRI data were used to generate mean timeseries within a set of atlas-
defined brain regions for each participant. Cortical regions were defined according to the Schaefer
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400 parcel cortical atlas(94). To accommodate the restricted FOV of the alprazolam BOLD
acquisition, the atlas was masked such that only parcels with greater than 95% coverage were
included in connectivity analyses. Subcortical regions were defined using the Automated
Anatomical Labeling (AAL) atlas(95). Subcortical areas included the left and right caudate,
putamen, accumbens, pallidum, thalamus, amygdala, hippocampus, and parahippocampal area.
These cortical and subcortical atlases were combined and used to generate mean timeseries for
each region in each dataset. Functional connectivity was calculated as the correlation coefficient
of the timeseries for each pair of regions (20,503 unique pairs). As part of sensitivity analyses, we
repeated this process after defining cortical areas using Schaefer 200 parcellation(94), the Multi-
modal Parcellation atlas(96), the Gordon cortical atlas(97), or the AAL(95).

Pharmacological classification analysis

We used a linear support vector machine (SVM) to classify drug vs. placebo sessions in
the alprazolam dataset based on multivariate patterns of functional connectivity. Linear SVMs
find a hyperplane to separate two classes of data by maximizing the margin between the closest
points (the support vectors; (. SVMs were implemented in R using the e1071 library(99) and
were trained using a linear kernel and the default parameters. Model performance was evaluated
using 10-fold cross-validation, iteratively selecting data from 90% of participants as training data
and testing the trained model on data from the remaining 10% of participants. Across testing sets,
the prediction accuracy and area under the receiver operating curve (AUC) were calculated to
evaluate model performance. To ensure our results were not driven by a specific cross-validation
split, we repeated the entire 10-fold cross-validation procedure 100 times, drawing the 10-fold
subsets at random each time. Performance metrics were finally averaged across the 100 iterations
of the cross-validation procedure.

To evaluate if model performance (i.e., the accuracy and the AUC) was significantly
better than expected by chance, we performed a permutation test(/00). Specifically, we re-applied
the cross-validation procedure 1,000 times, each time permuting the session labels (drug and
placebo) across the training samples without replacement. Significance was determined by
ranking the actual prediction accuracy versus the permuted distribution; the p-value of the
accuracy and AUC was calculated as the proportion of permutations that showed a higher value
than the observed value in the real, unpermuted data.

Analysis of feature weights

After cross-validation and significance testing, we trained the model on all participants
and extracted the feature weights for further analysis. First, we calculated the absolute value of
the weights and summed them across all connections (edges) for a given region (node) to compare
the overall contribution of each region to the model, irrespective of the sign of the feature
weights(/00). Next, to evaluate the spatial pattern of the feature weights, we calculated the mean
signed feature weight for each node, reflecting the directionality of the effect of the drug
manipulation according to the trained model. We then used this feature map to assess the
biological relevance of our trained model. Specifically, we calculated the spatial correlation
between this pattern of nodal feature weights with two sets of cortical features. The first was the
widely used principal gradient of macroscale cortical organization(42), which places each cortical
region on a continuum between unimodal (i.e. sensorimotor cortices) to transmodal (i.e.
association cortices) function. The second set of cortical features was selected based on the
known pharmacology of benzodiazepines like alprazolam. Alprazolam is a positive allosteric
modulator of the GABAA receptor, and of the six GABAA o subunits (a1-6), only subunits al, a2,
a3, and a5 are benzodiazepine sensitive (48, 101). To quantify the spatial distribution of the six
GABAA o subunits, we extracted the microarray gene expression patterns for their corresponding
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GABAA receptor genes (GABRA1-6) from the Allen Human Brain Atlas (data available at
https://www.meduniwien.ac.at/neuroimaging/mRNA.html) (46, 102). For each of the six gene
expression maps, we quantified the mean expression value within each cortical parcel and
calculated the spatial correlation with the pattern of nodal SVM weights.

To test the significance of the spatial correlation between our pattern of cortical feature
weights and each of the biological brain maps, we compared the observed correlation value to a
null distribution generated with BrainSMASH (Brain Surrogate Maps with Autocorrelated Spatial
Heterogeneity; https://brainsmash.readthedocs.io/; (. The spatial autocorrelation of brain maps can
lead to inflated p-values in spatial correlation analyses and must be accounted for in the creation
of null models. BrainSMASH addresses this by generating permuted null brain maps that match
the spatial autocorrelation properties of the input data. We used BrainSMASH to generate 10,000
spatial-autocorrelation-preserving null permutations based on the input data and the pairwise
distance matrix for the cortical parcellation, generating a null distribution of spatial correlation
coefficients. We calculated two-tailed p-values by squaring all correlation values (i.e. spatial R?)
and calculating the proportion of times the null distribution exceeded the observed value.

Transmodal and unimodal classification models

Our primary hypothesis was that E:I ratio reductions would be specific to association
cortices during youth. In order to test this hypothesis directly, we trained two additional models
after applying an a priori feature selection step. Specifically, we thresholded the top and bottom
quartiles of cortical parcels based on their position in the principal gradient of functional
organization (42), with the top 25% representing transmodal association cortex and the bottom
25% representing unimodal sensory cortex. We then created two new feature sets that restricted
the input features to connections to these transmodal or unimodal areas only. This selection
procedure ensured that the resulting numbers of features were equal between the two feature sets
(9,541 features per model). We then trained and validated the transmodal and unimodal models
according the procedures described above.

Developmental analyses
Application of the pharmacological model to the developmental dataset

After training and validating the pharmacological benzodiazepine models, we applied the
models to the functional connectivity data for each participant in the developmental sample. For
each participant, each model yielded the distance from the classification hyperplane that separates
the two classes (drug vs. placebo). Observations close to the hyperplane (distance values near
zero) are less representative of the class, and those further from the hyperplane are more
representative. The distance metric is such that values greater than zero indicate more “drug-like”
patterns of functional connectivity and values less than zero indicate more “placebo-like” patterns
of connectivity. As the pharmacological effect of alprazolam is to increase GABAergic inhibitory
signaling, more “drug-like” patterns reflect greater GABA-ergic inhibitory modulation of
functional connectivity. As such, more “drug-like” patterns were interpreted to reflect a reduced
E:I balance relative to more “placebo-like” patterns. These distance metrics were normally
distributed and thus provided a continuous measure of E:I balance for use in further analyses. We
first applied the model trained on all the input features and then applied the transmodal- and
unimodal-specific models, generating three sets of distance values per participant.

Developmental regression models

To assess the developmental trajectory of E:I balance, we modeled the classification
distance metrics from each model as a function of age using penalized splines within a
generalized additive model (GAM). GAMs allow us to flexibly capture linear or nonlinear age
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effects while penalizing overfitting. To test for windows of significant change across the age
range, we calculated the first derivative of the smooth function of age from the GAM model using
finite differences and then generated a simultaneous 95% confidence interval of the derivative
following the method described by Simpson ( and implemented using the gratia library(/03) in R.
Intervals of significant change were identified as areas where the simultaneous confidence
interval of the derivative does not include zero. To test if the effect of age on classification
distance differed between the transmodal and unimodal SVM models, we calculated the
residualized change (/04) in transmodal vs. unimodal distance scores by regressing the unimodal
distance out of transmodal distance. We then regressed the residualized change score on age using
a GAM. All models included sex as a covariate as well as head motion and attentiveness as
covariates of no interest. Head motion was quantified as mean framewise displacement during the
fMRI acquisition. Attentiveness was quantified as the number of response omissions during the
emotion identification task; this covariate was included to control for potential effects of arousal
on model performance as alprazolam can cause drowsiness. All GAMs were fit using the mgcv
library(7/05) in R.

Analysis of dimensions of psychopathology

As previously described (49, 106, 107), PNC participants underwent a clinical assessment
of psychopathology. Multiple domains of psychopathology symptoms were evaluated using a
structured screening interview (GOASSESS); we used this data to investigate whether dimensions
of psychopathology moderated developmental reductions in E:I balance. As has been detailed in
prior work (49, 106, 107), factor scores were derived from the clinical assessments using a
bifactor confirmatory factor analysis model that included a general factor for overall
psychopathology as well as four specific factors that primarily represent anxious-misery (mood &
anxiety) symptoms, psychosis-spectrum symptoms, behavioral symptoms (conduct and ADHD),
and fear symptoms (phobias). Importantly, all five factors are orthogonal and can be considered
jointly in analysis of imaging data. In order to sample a broad range of factor scores, we expanded
our inclusion criteria to include individuals with a history of psychiatric hospitalization (N =
1018; ages 8 —21.7; M =15.0, SD = 3.23, male/female = 462/556). We analyzed these data in a
GAM that included age-by-factor score interactions for each factor from the bifactor model.
Interactions were fit as bivariate smooth interactions with penalized splines using tensor
interaction smooths (‘ti’ in mgcv).

Data and code availability

The developmental dataset is publicly available in the Database of Genotypes and
Phenotypes (dbGaP accession phs000607.v3.p2). Pharmacological imaging data is available upon
reasonable request. All code used for pharmacological classification analyses and developmental
analyses are available at https://pennlinc.github.io/Larsen_EI Development/.
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Supplemental Data

Supplemental Table 1. Regression table for developmental generalized additive models (GAM).

All connections Transmodal connections Unimodal connections
Predictors Estimates SE p Estimates SE p Estimates SE p
(Intercept)  -24.01 210 <.001 -5.97 1.23 <.001 -9.57 0.94 <.001
Sex -0.94 1.27 459 0.93 0.75 213 -0.63 0.57 .27
FD 53.41 1595 <.001 45.38 9.37 <.001 20.02 714  .005
Omissions 1.24 0.18 <.001 0.47 0.1 <.001 0.55 0.08 <.001
Smooth Age- Age- Age-
predictors F(edf) p range F(edf) p range F(edf) p range
s(Age)  245(28) 037 2% 096(1) .0017 57 359(1) 059 -

Note: Age-range is the span of the spline fit in which the derivative is significantly greater than zero
(see Methods). SE: standard error; edf: estimated degrees of freedom for penalized thin plate
regression spline.

Supplemental Table 2. Classification results and age effects for alternative
parcellation atlases.

SVM classification Age effect
Parcellation AUC  Ppormutation  ACCUrAcy  Ppermutaion  F(€df) p  Age-range
Schaefer 200 .707 .001 65.5% .003 13.13(2.7) <.001 11.4-17.1
AAL .707 <.001 63.5% .003 8.90(1.4) .001 11.8-19.5

Multi-modal
Parcellation Atlas
Sordon Cortical 665 005 67.9% <001 273(24) <001 11.9-165
Results are also visually depicted in Supplemental Figure 2. Age-range (years)

is the span of the spline fit in which the derivative is significantly greater than

zero (see Online Methods). AUC: Area under the receiver operating curve; edf:

estimated degrees of freedom from the penalized thin plate regression spline.

726 <.001 70.0% <.001 30.5(1) <.001 8.0-21.7
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Supplemental Figure 1. Head motion is not associated with the pharmacological
manipulation or classifier performance. Left: A summary of in-scanner head motion (mean
framewise displacement) did not differ between drug and placebo sessions (fpaired = 1.44, p =
.16). Right: The same metric of head motion was also not associated with model-predicted
distance from the classification plane (r= .13, p = .24).
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Supplemental Figure 2. Classification and developmental effects are robust to alternative
cortical parcellation schemes. a) Classifier performance. All binary SVM classifiers identified
drug and placebo sessions in 10-fold cross-validation with an AUC values that exceeded the
randomly permuted null AUC distributions (see Supplemental Table 1). b) When the models
from panel a) were applied to the developmental dataset, models trained on all parcellation
schemes produced distance metrics that significantly increased with age during adolescence,
indicating age-related reductions in the E:l ratio. Distance metrics are centered to facilitate
comparisons between the model predictions. GAM model statistics are reported in
Supplemental Table 1.
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