

1 **FRONT MATTER**

2 **Title**

3 A Developmental Reduction of the Excitation:Inhibition Ratio in Association Cortex
4 during Adolescence.

5 **Short Title**

6 Reduced Excitation:Inhibition Ratio during Adolescence

7 **Authors**

8 Bart Larsen^{1,2,3*}, Zaixu Cui^{1,2,3}, Azeez Adebimpe^{1,2,3}, Adam Pines^{1,2,3}, Aaron Alexander-
9 Bloch^{2,3}, Max Bertolero^{1,2,3}, Monica E. Calkins^{2,3}, Raquel E. Gur^{2,3,4}, Ruben C. Gur^{2,3,4},
10 Arun S. Mahadevan⁵, Tyler M. Moore^{2,3}, David R. Roalf^{2,3}, Jakob Seidlitz^{2,3}, Valerie J.
11 Sydnor^{1,2,3}, Daniel H. Wolf^{2,3†}, Theodore D. Satterthwaite^{1,2,3†}

12 **Affiliations**

13 ¹Penn Lifespan Neuroinformatics Center, University of Pennsylvania, Philadelphia, PA
14 19104, USA

15 ²Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA

16 ³Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA
17 19104, USA

18 ⁴ Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA

19 ⁵ Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104,
20 USA

21 [†]Authors contributed equally

22 *Corresponding author: bart.larsen@pennmedicine.upenn.edu

23 **Abstract**

24 Adolescence is hypothesized to be a critical period for the development of association
25 cortex. A reduction of the excitation:inhibition (E:I) ratio is a hallmark of critical period
26 development; however it has been unclear how to assess the development of the E:I ratio using
27 non-invasive neuroimaging techniques. Here, we used pharmacological fMRI with a GABAergic
28 benzodiazepine challenge to empirically generate a model of E:I ratio based on multivariate
29 patterns of functional connectivity. In an independent sample of 879 youth (ages 8-22 years), this
30 model predicted reductions in the E:I ratio during adolescence, which were specific to association
31 cortex and related to psychopathology. These findings support hypothesized shifts in E:I balance
32 of association cortices during a neurodevelopmental critical period in adolescence.

33 **Teaser**

34 Inhibitory maturation of the association cortex reflects an adolescent critical period.

35

36

37

38

39 **MAIN TEXT**

40

41 **Introduction**

42 Adolescent brain development is characterized, in part, by the continued structural and
43 functional maturation of the association cortices (1–8). The specificity of the developmental
44 timing and localization of association cortex maturation as well as the links between association
45 cortex development and long-term psychiatric outcomes have led to the hypothesis that
46 adolescence functions as a critical period of development within association cortex (9, 10).
47 Critical periods are windows of development during which experience powerfully shapes the
48 development of neural circuits through heightened experience-dependent plasticity with long-term
49 impacts on behavior (11). These important neurodevelopmental windows are theorized progress
50 hierarchically throughout development, beginning in primary sensory cortices and sequentially
51 advance to secondary and higher-order cortical areas (11, 12). The neurobiological mechanisms
52 that underlie critical periods are thought to be conserved across the cortex and have been carefully
53 delineated in decades of work on early critical periods in sensory cortex (11–14).

54 One of the hallmark features of critical period development is the maturation of
55 GABAergic inhibitory circuitry, particularly parvalbumin positive interneurons, leading to a
56 reduction in the excitation to inhibition (E:I) ratio (13, 15). The reduction of the E:I ratio leads to
57 an increase in the signal-to-noise ratio of local circuit activity as inhibition suppresses the effect
58 of spontaneous activity on circuit responses in favor of stimulus-evoked activity (16). This
59 essential mechanism has been shown to regulate the timing of critical period development across
60 visual (14), auditory (17), and sensorimotor cortices (18). As such, if the adolescent critical period
61 hypothesis is correct, inhibitory maturation should result in a developmental reduction in the E:I
62 ratio across adolescence within association cortex.

63 Evidence for E:I development in association cortex during adolescence has been largely
64 limited to animal models. This work has suggested prefrontal GABAergic inhibitory circuitry
65 undergoes significant modifications. Specifically, parvalbumin (PV) interneurons, a critical
66 component E:I maturation in sensory system critical periods, have been shown increase in
67 prefrontal cortex during adolescence in the rat (19) and non-human primate (20, 21). At the same
68 time, the expression of GABA_A receptor α 1 subunits, which are primarily expressed on PV cells
69 and support fast synaptic inhibition (22) as well as synaptic plasticity (23), also increase during
70 adolescence in the prefrontal cortex of the non-human primate (24, 25). These neurobiological
71 changes lead to important functional increases in inhibitory signaling, effectively reducing the E:I
72 ratio (26, 27). Together, these findings are suggestive of critical period development and may
73 indicate similar processes are unfolding in the human (28). Translating these findings to human
74 studies of development is crucial as disruptions to the E:I balance are hypothesized to play a
75 significant role in the onset of psychiatric disorders (29–31). However, the extent to which these
76 critical period mechanisms are present in association cortex during adolescence in the human
77 remains largely unexplored. Corroborating evidence has been found in postmortem studies which
78 demonstrate increases in PV (32) and GABA_A α 1 expression (33), but it has been unclear how to
79 measure developmental changes in the E:I ratio *in vivo* in humans using available neuroimaging
80 techniques. This lack of *in vivo* measures has limited our ability to test the adolescent critical
81 period hypothesis.

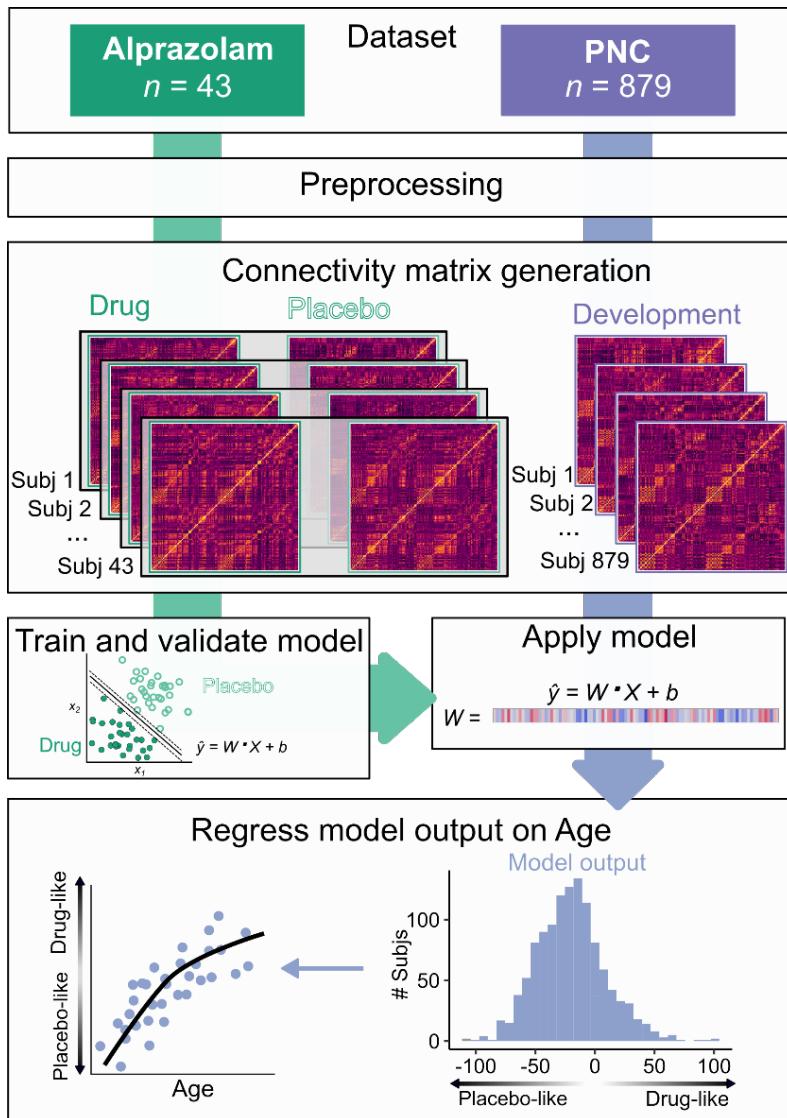
82 Here, we leveraged a pharmacological fMRI (phMRI) experiment using a GABAergic
83 benzodiazepine challenge to empirically generate a model for the effect of inhibitory modulation
84 of the E:I ratio on patterns of fMRI connectivity. Benzodiazepines are positive allosteric
85 modulators of the GABA_A receptor that increase the effectiveness of post-synaptic GABAergic
86 signaling, resulting in an increase in inhibition relative to excitation. Benzodiazepines have been
87 used to pharmacologically manipulate the E:I ratio by enhancing inhibitory signaling in disease

88 models of E:I imbalance (34–36) as well as in studies of critical period development (13, 23, 37).
89 In the current study, we first trained a multivariate model to distinguish benzodiazepine-induced
90 change in the E:I ratio and established the neurobiological relevance of our empirical model by
91 comparing the model features to known aspects of benzodiazepine pharmacology as well as a
92 functional gradient that has been shown to reflect patterns of excitatory and inhibitory interneuron
93 expression (38, 39). We then applied our trained and validated model to a large, independent
94 developmental dataset to investigate E:I changes occurring in association cortex during
95 adolescence. We hypothesized that patterns of functional connectivity would develop to reflect a
96 reduction in the E:I ratio that is specific to association cortex.
97
98

99 Results

00 An empirical model of the E:I ratio

01 Forty-three adult participants completed a double-blind, placebo-controlled phMRI study
02 with the benzodiazepine alprazolam (86 sessions total). Alprazolam is a classical benzodiazepine
03 that enhances the effect of GABA at GABA_A receptors through positive allosteric modulation,
04 increasing inhibition and effectively reducing the E:I ratio (40). Functional connectivity matrices
05 were derived for placebo and drug phMRI sessions using a top performing pipeline that
06 minimized the impact of motion artifact (41). A linear support vector machine (SVM) classifier
07 was trained to distinguish placebo and drug sessions based on the multivariate patterns of
08 functional connectivity (**Figure 1**, green pathway). Cross-validation and permutation testing
09 revealed that the trained SVM identified drug vs. placebo sessions in left-out data far better than
10 chance ($AUC = .716$, $p_{\text{permutation}} = .002$; **Figure 2a**). Sensitivity analyses confirmed that in-scanner
11 head motion was not associated with our pharmacological manipulation or model performance
12 (**Supplemental Figure 1**). The spatial pattern of estimated feature weights from the SVM model
13 highlighted the contributions of subcortical regions, including the thalamus and amygdala, and
14 also contributions throughout the cortex (**Figure 2b**).
15

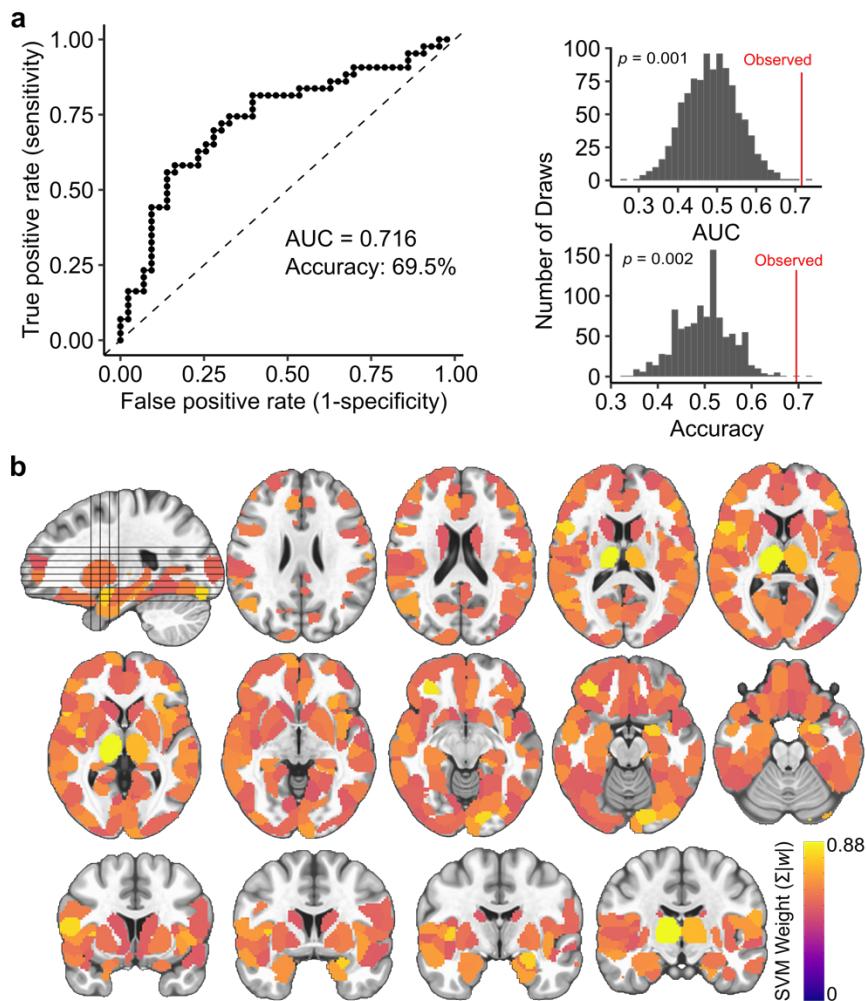


16

17 **Figure 1. Analysis workflow.** *Dataset:* Two datasets were collected on the same scanner using
18 highly similar acquisition parameters: a phMRI dataset using the benzodiazepine alprazolam
19 (green) and a developmental fMRI sample from the Philadelphia Neurodevelopmental Cohort
20 (PNC; purple). *Preprocessing:* Datasets were preprocessed using identical pipelines which
21 included removal of nuisance signal with aCompCor (, global signal regression, and task
22 regression. *Connectivity matrix generation:* Connectivity matrices were generated from standard
23 atlases for placebo and drug sessions from the alprazolam dataset ($n = 43$; 86 sessions total) and
24 for the PNC dataset ($n = 879$). *Train and validate model:* The alprazolam dataset was used to train
25 a linear SVM classifier to distinguish drug and placebo sessions using 10-fold cross-validation.
26 *Apply model:* The validated alprazolam model was applied to the PNC dataset, generating a
27 distance metric that reflected each participant's position on a continuum from "drug-like" (lower
28 E:I) to "placebo-like" (higher E:I). *Regress model output on age:* This metric was then regressed
29 on age using a generalized additive model with penalized splines that included covariates for sex,
30 head motion, and attentiveness.

31

32



33

34 **Figure 2. A multivariate model distinguishes alprazolam and placebo sessions, capturing E:I**
35 **ratio** a) Classifier performance. The binary SVM classifier identified drug and placebo sessions
36 in 10-fold cross-validation with an AUC of .716 and an accuracy = 69.5% (top). The observed
37 AUC and accuracy were significantly greater than a permuted null distribution (bottom). b) Mean
38 absolute feature weights for all nodes from the validated SVM model.

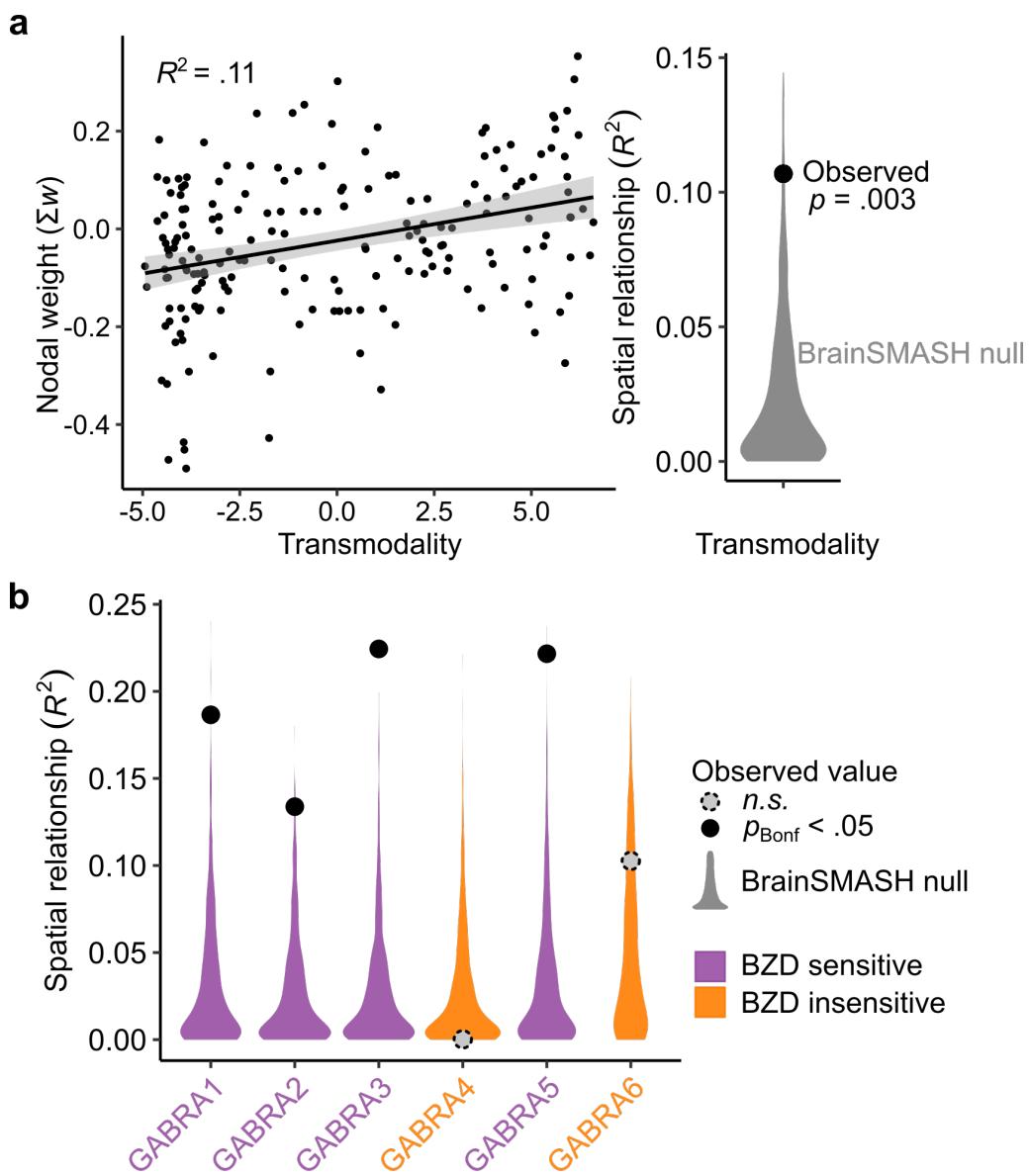
39

40

41 **Biological relevance of the E:I model**

42 Next, we established the biological relevance of the trained E:I model. First, we compared
43 the spatial pattern of cortical feature weights to a widely used functional gradient of macroscale
44 cortical organization that places regions on a continuum from unimodal to transmodal function
45 (42). This continuum has been shown to capture variation in excitatory neuron structure,
46 inhibitory interneuron expression, and E:I balance (38, 39). Using a recently-developed analytic
47 procedure that accounts for spatial autocorrelation structure (43), we observed a significant
48 relationship between our model feature weights and this pattern of macroscale cortical
49 organization ($r = .33$; $p = .003$; **Figure 3a**). This finding suggests that GABAergic modulation of
50 functional connectivity patterns varies along a transmodal-to-unimodal gradient that in part
51 indexes diversity in excitatory and inhibitory neurobiological properties. Next, we investigated
52 whether the estimated model features corresponded to the known pharmacology of
53 benzodiazepines like alprazolam. Of the six GABA_A subunit receptors, GABA_A α 1–6, only α 1,
54 α 2, α 3, and α 5 are sensitive to benzodiazepines due to the presence of an amino acid residue,
55 histidine (44, 45). We used the Allen Human Brain Atlas (46) to evaluate how the feature weights
56 from the classifier model aligned with spatial patterns of gene expression for the six GABA_A
57 subunit receptors, GABRA1-6 (corresponding to GABA_A α 1–6). We found evidence of a clear
58 biological double dissociation: model features were significantly associated with the gene
59 expression patterns of the benzodiazepine-sensitive GABA_A subunits (α 1, α 2, α 3, α 5) and not the
60 benzodiazepine-*insensitive* GABA_A subunits (α 4, α 6; **Figure 3b**) (47, 48).

61



62
63
64 **Figure 3. Model features align with cortical organization and benzodiazepine**
65 **pharmacology** **a)** The cortical pattern of nodal SVM weights from the multivariate E:I ratio
66 model was significantly associated with transmodality using an established measure of
67 macroscale cortical organization(42). **b)** Nodal weights were also specifically correlated with the
68 spatial patterns of benzodiazepine (BZD) sensitive GABA_A receptor subunit expression. Spatial
69 relationships were tested for significance against a spatial-autocorrelation-preserving null
70 distribution (BrainSMASH (43)) and corrected for multiple comparison using the Bonferroni
71 correction (p_{Bonf}).
72

73 **Development of the E:I ratio during adolescence**

74 We next utilized our empirically generated E:I ratio model to test the hypothesis that E:I
75 ratio declines as part of the critical period of association cortex development. An independent
76 sample of 879 youth (aged 8-21.7 years) participated in a highly similar fMRI acquisition on the
77 same scanner; this data was preprocessed using an identical pipeline. We applied our validated E:I
78 model to the developmental dataset without further tuning and obtained the model-estimated
79 distance from the classification hyperplane. This metric reflects a participant's position on the
80 continuum between "drug-like" (lower E:I) and "placebo-like" (higher E:I). To capture both
81 linear and nonlinear effects in a rigorous statistical framework, we then regressed this metric on
82 age using a generalized additive model with penalized splines (**Figure 1**, purple pathway). We
83 found that age was positively associated with patterns of GABA-modulated functional
84 connectivity, reflecting an age-related reduction in E:I ratio. Significant reductions occurred
85 between ages 12.9 and 16.7 years ($F_{s(Age)} = 3.11, p = .037$; **Supplemental Table 1**, "All
86 connections"). The age-related reduction in E:I ratio was robust across multiple alternative
87 parcellation schemes (**Supplemental Table 2**; **Supplemental Figure 2**).

88 **Age-related reductions in the E:I ratio are specific to association cortex**

89 We hypothesized that age-related reductions in E:I ratio during adolescence were specific
90 to association cortices. To test this hypothesis, we trained two additional models that restricted
91 input features to connections to the most transmodal (**Figure 4a**, blue) or unimodal (**Figure 4a**,
92 green) parts of the cortex. Both models significantly distinguished drug from placebo phMRI
93 sessions (**Figure 4a**). However, when applied to the developmental dataset, significant age-
94 related reductions in the E:I ratio were only observed for the model trained on connections with
95 transmodal cortex (transmodal: $F_{s(Age)} = 9.96, p = .0017$; unimodal: $F_{s(Age)} = 3.59, p = .058$;
96 transmodal vs. unimodal: $F_{s(Age)} = 5.96, p = .015$; **Figure 4b**). These results suggest that
97 transmodal association cortices undergo a reduction in E:I ratio during adolescence, consistent
98 with a critical period of development.

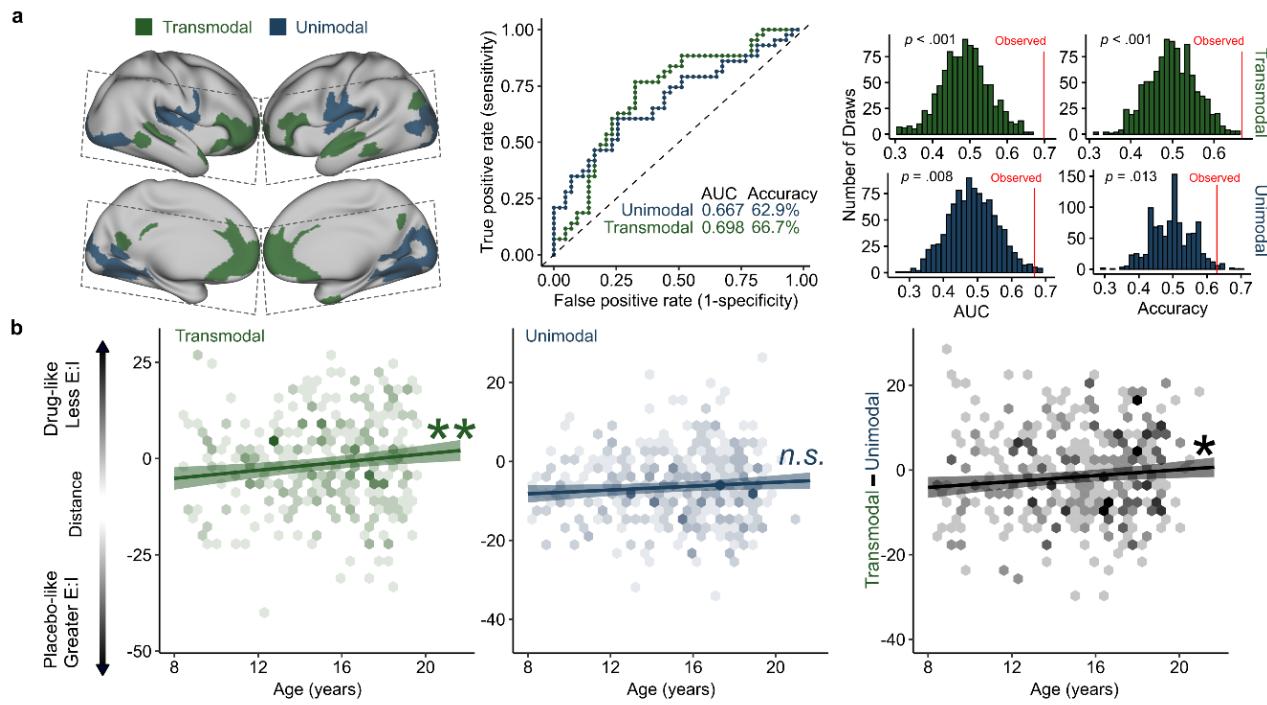


Figure 4. Transmodal areas undergo E:I ratio development during adolescence. a) Model performance for unimodal and transmodal classifiers. SVM classifiers were trained and validated for connections to the most transmodal (green) and most unimodal (blue) areas only. Dashed lines indicate acquisition field of view for the phMRI dataset. Both models performed significantly better than a permuted null distribution (middle: ROC curves for each model; right: null distributions from 1,000 null permutations). **b)** Models trained on transmodal and unimodal data were applied to the developmental dataset, generating a distance metric for each participant where greater values represent patterns of functional connectivity consistent with a lower E:I ratio. Individuals had lower estimated E:I ratio with age in transmodal cortex (left) but not in unimodal cortex (center). This pattern was confirmed by a significant effect of age on within subject change in transmodal vs. unimodal distance scores (right). * $p < .05$, ** $p < .01$, n.s. not significant.

12 Analysis of dimensions of psychopathology

13 Finally, we investigated whether individual differences in dimensions of psychopathology
14 (49) were associated with the E:I ratio of association cortex. We found that mood disorder
15 symptomatology, but not other psychopathology dimensions, moderated age-related differences in
16 estimated transmodal E:I ratio. Specifically, individuals with greater lifetime mood disorder
17 symptoms displayed a relatively stable E:I ratio over development instead of the normative
18 reduction of the E:I ratio (Age*Mood interaction: $F = 7.64, p = .0058$).

19 Discussion

20 We utilized a unique combination of human phMRI and developmental fMRI data to
21 provide novel evidence for an essential component of critical period development: developmental
22 reductions in the E:I ratio. Our approach generated an empirical fMRI model of the E:I ratio that
23 showed a high degree of correspondence to known GABAergic benzodiazepine
24 neuropharmacology and which could be applied to a large, independent sample of youth.
25 Consistent with our hypothesis, this approach revealed that patterns of functional
26 neurodevelopment in adolescence are consistent with developmental reductions in the E:I ratio
27 that are specific to association cortex. Further, we show that individual differences in this process
28 are associated with individual differences in lifetime mood symptom burden, in alignment with
29 models positing that E:I abnormalities underlie the emergence of psychopathology (9, 29, 30, 50–
30 52). Together, these findings support the hypothesis that critical period mechanisms shape
31 association cortices during adolescence.

32 Critical period development has been predominantly associated with early sensory cortex
33 development. Since the first studies of critical period development in the visual cortex almost 60
34 years ago (53), a wealth of prior work has elucidated the mechanisms that shape critical period
35 plasticity in these areas. These studies have identified the maturation of local inhibitory circuitry,
36 particularly PV interneurons, and its resulting impact on the E:I balance as an essential critical
37 period mechanism (13, 16). This phenomenon is necessary for the opening of the critical period
38 window, facilitates critical period plasticity, and is present in critical periods across sensory
39 modalities (16, 17, 23, 37). For example, modulation of the E:I balance using benzodiazepines has
40 been shown to be sufficient to accelerate the timing of critical period plasticity (13, 37). The
41 results of this study suggest that this phenomenon also occurs in association cortex during human
42 adolescence.

43 Our findings align with a growing literature characterizing inhibitory maturation during
44 this developmental stage. Animal models and post mortem human studies have shown maturation
45 of inhibitory neurobiology in the prefrontal cortex during adolescence, including increasing
46 expression of PV interneurons and GABA_A α1 receptor subunits (19, 20, 24, 25). These processes
47 increase functional inhibition, reducing the E:I ratio and increasing the signal-to-noise ratio of
48 circuit activity (16, 27, 54). Computational simulations have suggested that these maturational
49 also facilitate high-frequency oscillatory capability (27). This is consistent with human EEG
50 studies showing increased gamma-band oscillatory power during adolescence (55, 56). Finally,
51 two recent magnetic resonance spectroscopy studies have shown increases in GABA levels
52 relative to glutamate levels in frontal cortex during adolescence (57, 58). Though it is not possible
53 to examine the functional effect of these changes on the E:I ratio using spectroscopy, these
54 findings align with a model of developmental reduction in the E:I ratio during adolescence. This
55 body of prior work coheres with the findings presented here, and are consistent with a critical
56 period model of adolescent association cortex development. Just as sensory critical period
57 plasticity refines neural circuits underlying sensory processing, the critical period for association
58 cortex may facilitate the plasticity of circuits that underlie the higher-order cognitive processes
59 refined during adolescence and are thought to be dependent on association cortex (2, 9, 59).

61 It should be noted that there are two classes of critical period mechanisms: *Facilitating*
62 *factors* which open the critical period window and facilitate plasticity, and *braking factors* which
63 stabilize neural circuits and physically limit future plasticity (11, 13). The maturation of inhibition
64 and the resulting reduction in the E:I ratio are critical period facilitators(11). Using generalized
65 additive models, which can flexibly capture linear and nonlinear effects while penalizing
66 overfitting, we found that the model fit for age-related reductions in the association cortex E:I
67 ratio was linear. It is important to note that this does not necessarily mean that critical period
68 plasticity is linearly increasing or that the critical period window is persistently open over the
69 entire age range reported here. The developmental reduction in the E:I ratio is indicative of
70 critical period opening, but it does not provide information about critical period closure. Closure
71 of the adolescent critical period would be dependent upon the development of braking factors,
72 such as myelination and the formation of perineuronal nets (PNN)(60–62), which may follow
73 distinct developmental trajectories. Consistent with a critical period model, many studies have
74 provided evidence of myelination of association cortex and large white matter pathways linking
75 association cortex to other areas of the brain that continues into adulthood, including histological
76 (63), myelin mapping (64–66), and diffusion imaging (67, 68). At present, studies of PNN
77 formation are limited to postmortem methods and animal models which have demonstrated
78 developmental increases in PNN formation in the prefrontal cortex from adolescence to adulthood
79 (69, 70). Together, these studies indicate that critical period braking factors are forming during
80 the transition from adolescence to adulthood, stabilizing neural circuits and closing the critical
81 period window. However, in order to precisely demarcate the opening and closing of critical
82 period plasticity during adolescence, future work is needed that jointly investigates the
83 developmental timecourse of critical period facilitators, such as the E:I ratio reported here, and
84 critical period braking factors.

85 Mood-related psychopathology typically first emerges during adolescence, with
86 adolescent onset predicting greater illness chronicity and comorbidity (71, 72). Here, we observed
87 that beginning in adolescence, youth with greater burden of mood symptoms exhibit an altered
88 trajectory of E:I development within the association cortex. Specifically, greater lifetime mood
89 symptom burden was associated with reduced development of inhibition in transmodal regions of
90 the brain. Many studies have linked the occurrence of psychopathology with E:I disruption (29,
91 30, 50, 73, 74), and cross-species research has specifically implicated GABA-mediated E:I
92 disruptions in the etiology of mood psychopathology (75, 76). Specifically, animal studies have
93 shown that initial reductions in GABAergic inhibition lead to downstream reductions in
94 glutamatergic transmission, and to alteration of the normal E:I balance (30, 50). Human studies
95 have provided convergent evidence, demonstrating reduced GABA levels in the brain in those
96 with depression(77) as well as reduced glutamate in individuals with more severe anhedonia (78).
97 Conversely, the pharmacologic enhancement of GABAergic signaling within association regions
98 has been shown to have antidepressant effects (30). As such, our study supports the hypothesis
99 that the pathophysiology of depression in part involves altered glutamatergic and GABAergic
00 signaling (30, 50). Moreover, it places this hypothesis within a neurodevelopmental framework—
01 underscoring how E:I disruptions can manifest due to atypical critical period development.

02 Finally, we note that the approach used in this study highlights the potential for phMRI
03 data to generate insights into independent datasets to inform new hypotheses. We combined
04 machine learning and phMRI using a GABAergic alprazolam challenge to generate an empirical
05 model for the effect of GABAergic modulation on patterns of fMRI connectivity. As evidence for
06 the efficacy of this approach, the trained model could not only significantly predict drug versus
07 placebo sessions in unseen data, but the model features demonstrated a significant correspondence
08 with known benzodiazepine neuropharmacology. Notably, the model features were significantly
09 associated with the GABA receptor most strongly implicated in critical period development, the
10 GABA_A α 1 receptor. Though, due to the rarity of phMRI data, we were not able to confirm the

11 generalizability of our model with an independent alprazolam phMRI dataset, the model
12 performance and underlying interpretability of the learned features highlights the biological
13 relevance of this method. Whereas in this study we applied this method to an independent
14 developmental dataset to provide insights into the critical period mechanisms unfolding during
15 adolescence, future work could apply this approach to other datasets to inform new research
16 questions.

17 Together, these findings support the hypothesis that critical period mechanisms, such as
18 the inhibition-induced reduction of the E:I ratio, shape association cortices during adolescence.
19 Studying development from a critical period perspective provides a powerful mechanistic
20 framework for understanding how experience and neurobiology interact to shape long-term
21 cognitive, social, and psychiatric outcomes. Importantly, a critical period model of adolescent
22 development can draw on the history of detailed work on sensory critical periods to generate
23 testable hypotheses for the mechanisms unfolding during adolescence in association cortex.
24 Understanding these mechanisms are a necessary prerequisite to understanding of how
25 experience, environment, and neurobiology contribute to differing neurodevelopmental
26 trajectories in health and mental illness. This work thus lays the groundwork for future studies of
27 the unique impact of experience on neurodevelopment and also suggests the possibility of
28 targeted interventions during this critical window of vulnerability to psychopathology (79).
29

30 Materials and Methods

31 Participants and experimental procedures

32 *Alprazolam sample*

33 The alprazolam sample and study procedures have been described in detail in our earlier
34 work(80). Briefly, forty-seven adults participated in a double-blind, placebo controlled
35 pharmacological imaging study using the benzodiazepine alprazolam. Each participant completed
36 two identical experimental sessions approximately one week apart. In one session, participants
37 were given a 1 mg dose of alprazolam, and in the other they were given an identical appearing
38 placebo. The order of administration was counter-balanced across participants. During both
39 sessions, participants completed an emotion identification task that lasted 10.5 minutes while
40 functional MRI (fMRI) data was collected. Task-related fMRI results have been previously
41 reported(80). Four participants were excluded due to excess head motion in at least one session
42 (see below) for a final sample of 43 participants and 86 sessions total (ages 20.9 - 59.4; $M = 40.3$,
43 $SD = 13.12$, male/female = 24/19). Study procedures were approved by the University of
44 Pennsylvania IRB, and all participants provided written informed consent.
45

46 *Developmental sample*

47 Neuroimaging data were obtained from a community-based sample of 1,476 youth (ages 8
48 – 21.9, $M = 14.63$, $SD = 3.43$; male/female = 698/778) that were part of the Philadelphia
49 Neurodevelopmental Cohort (PNC). Data collection procedures and sample characteristics have
50 been previously described in detail(49, 81, 82). Functional MRI data were collected while
51 participants performed the same emotion identification task as the alprazolam sample; this is also
52 described in previous work(81). From this original sample, 306 participants were excluded based
53 on health criteria, including psychoactive medication use at the time of study, medical problems
54 that could impact brain function, a history of psychiatric hospitalization, and gross structural brain
55 abnormalities. A total of 234 participants were excluded from further analysis due to head motion
56 (see below) and 56 were excluded for poor structural image quality. In sum, following health
57 exclusions and rigorous quality assurance, we retained 879 participants (ages 8.0 - 21.7 at first
58 visit, $M = 14.95$, $SD = 3.24$; male/female = 383/496).
59

60 **Neuroimaging acquisition**

61 *Alprazolam sample*

62 All data were collected on a Siemens Trio 3T as previously reported(80). Whole-brain structural
63 data were obtained with a 5-minute magnetization-prepared, rapid acquisition gradient-echo T1-
64 weighted image (MPRAGE) using the following parameters: TR 1620ms, TE 3.87 ms, field of
65 view (FOV) 180x240 mm, matrix 192x256, effective voxel resolution of 1 x 1 x 1mm. BOLD
66 fMRI data were obtained as a slab single-shot gradient-echo (GE) echoplanar imaging (EPI)
67 sequence using the following parameters: TR = 3000, TE = 32 ms, flip angle = 90°, FOV = 240
68 mm, matrix = 128 X 128, slice thickness/gap = 2/0mm, 30 slices, effective voxel resolution of
69 1.875 x 1.875 x 2mm, 210 volumes. As previously described(80), data were acquired in a FOV
70 that included temporal, inferior frontal, and visual cortices as well as subcortical structures
71 (Figure 3a; gray boxes).

72
73 *Developmental sample*

74 All neuroimaging data were collected on the same Siemens Trio 3T scanner as was used
75 for the alprazolam dataset. The neuroimaging procedures and acquisitions parameters have been
76 previously described in detail(81). Briefly, structural MRI was acquired with a 5-min MPRAGE
77 T1-weighted image (TR = 1810 ms; TE = 3.51 ms; TI = 1100 ms, FOV = 180 × 240 mm²,
78 matrix = 192 × 256, effective voxel resolution = 0.9 × 0.9 × 1 mm³). BOLD fMRI was acquired
79 using similar acquisition parameters to the alprazolam dataset. BOLD fMRI scans were acquired
80 as single-shot, interleaved multi-slice, GE-EPI sequence sensitive to BOLD contrast with the
81 following parameters: TR = 3000 ms, TE = 32 ms, flip angle = 90°, FOV = 192 × 192 mm²
82 ('whole brain acquisition), matrix = 64 × 64; 46 slices, slice thickness/gap = 3/0 mm, effective
83 voxel resolution = 3.0 × 3.0 × 3.0 mm³, 210 volumes.

84
85 **Preprocessing of neuroimaging data**

86 All preprocessing was performed using fMRIprep 20.0.7 (RRID:SCR_016216;(83), which
87 is based on Nipype 1.4.2(84), and XCP Engine (PennBBL/xcpEngine: atlas in MNI2009 Version
88 1.2.3; Zenodo: <http://doi.org/10.5281/zenodo.4010846>; (. The neuroimaging data from the
89 alprazolam and developmental datasets were processed using identical pipelines as described
90 below.

91 *Anatomical data preprocessing*

92 The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU)
93 with N4BiasFieldCorrection(85), distributed with ANTs 2.2.0(86), and used as T1w-reference
94 throughout the workflow. The T1w-reference was then skull-stripped with
95 a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using
96 OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-
97 matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using FAST in
98 FSL 5.0.9(87). Volume-based spatial normalization to MNI2009c standard space was performed
99 through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions
00 of both the T1w reference and the T1w template.

01
02 *Functional data preprocessing*

03 The alprazolam dataset consisted of two BOLD acquisitions per participant (drug and
04 placebo session) which were preprocessed individually. The developmental dataset consisted of
05 one BOLD acquisition per participant. All BOLD acquisitions were processed with the following
06 steps. BOLD runs were first slice-time corrected using 3dTshift from AFNI 20160207(88) and

then motion corrected using mcflirt (FSL 5.0.9;(87). A fieldmap was estimated based on a phase-difference map calculated with a dual-echo GRE sequence, processed with a custom workflow of SDCFlows inspired by the [epidewarp.fsl script](#) and further improvements in HCP Pipelines(89). The fieldmap was then co-registered to the target EPI reference run and converted to a displacement field map with FSL's fugue and other SDCflows tools. Based on the estimated susceptibility distortion, a corrected BOLD reference was calculated for a more accurate co-registration with the anatomical reference. The BOLD reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-based registration(90). Co-registration was configured with nine degrees of freedom to account for distortions remaining in the BOLD reference. Six head-motion parameters (corresponding rotation and translation parameters) were estimated before any spatiotemporal filtering using mcflirt. Finally, the motion correcting transformations, field distortion correcting warp, BOLD-to-T1w transformation and T1w-to-template (MNI) warp were concatenated and applied to the BOLD timeseries in a single step using antsApplyTransforms (ANTs) with Lanczos interpolation.

Confounding time-series were calculated based on the preprocessed BOLD data. The global signal was extracted within the whole-brain mask. Additionally, a set of physiological regressors were extracted to allow for component-based noise correction (CompCor, Behzadi et al. 2007). Anatomical CompCor (aCompCor) principal components were estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off). The aCompCor components were calculated within the intersection of the aforementioned mask and the union of CSF and WM masks calculated in T1w space, after their projection to the native space of each functional run (using the inverse BOLD-to-T1w transformation). Components were also calculated separately within the WM and CSF masks. In this study, for each aCompCor decomposition, the k components with the largest singular values were retained, such that the retained components' time series were sufficient to explain 50 percent of variance across the nuisance mask (CSF and WM). The remaining components were dropped from consideration. The head-motion estimates calculated in the correction step were also placed within the corresponding confounds file. The confound time series derived from head motion estimates and global signals were expanded with the inclusion of temporal derivatives and quadratic terms for each(91).

Subject-level timeseries analysis was carried out in XCP Engine using FILM (FMRIB's Improved General Linear Model)(92). All event conditions from the emotion identification task(80, 81) were modeled in the GLM as 5.5 second boxcars convolved with a canonical hemodynamic response function. Each of the five emotions (fear, sad, angry, happy, neutral) was modeled as a separate regressor. The temporal derivatives and quadratic terms for each task condition as well as the confounding aCompCor, global signal, and motion timeseries described above were included as nuisance regressors. Task regression has been shown to produce patterns of BOLD fMRI connectivity that are highly similar to those present at rest(93), and convergent results from several independent studies that have shown that functional networks are primarily defined by individual-specific rather than task-specific factors (Gratton et al., 2018). The nuisance regression pipeline used here has been shown be a top-performing procedure for mitigating motion artifacts(41). Consistent with our prior work, participants in the alprazolam dataset were excluded from future analyses if mean framewise displacement exceeded 0.5 mm in either session. A more stringent threshold of 0.3 mm was applied to the developmental dataset; head motion was also included as a covariate in all developmental models (see below).

Connectivity matrix generation

Fully preprocessed fMRI data were used to generate mean timeseries within a set of atlas-defined brain regions for each participant. Cortical regions were defined according to the Schaefer

400 parcel cortical atlas(94). To accommodate the restricted FOV of the alprazolam BOLD
56 acquisition, the atlas was masked such that only parcels with greater than 95% coverage were
57 included in connectivity analyses. Subcortical regions were defined using the Automated
58 Anatomical Labeling (AAL) atlas(95). Subcortical areas included the left and right caudate,
59 putamen, accumbens, pallidum, thalamus, amygdala, hippocampus, and parahippocampal area.
60 These cortical and subcortical atlases were combined and used to generate mean timeseries for
61 each region in each dataset. Functional connectivity was calculated as the correlation coefficient
62 of the timeseries for each pair of regions (20,503 unique pairs). As part of sensitivity analyses, we
63 repeated this process after defining cortical areas using Schaefer 200 parcellation(94), the Multi-
64 modal Parcellation atlas(96), the Gordon cortical atlas(97), or the AAL(95).
65

66
67 **Pharmacological classification analysis**

68 We used a linear support vector machine (SVM) to classify drug vs. placebo sessions in
69 the alprazolam dataset based on multivariate patterns of functional connectivity. Linear SVMs
70 find a hyperplane to separate two classes of data by maximizing the margin between the closest
71 points (the support vectors; (. SVMs were implemented in R using the e1071 library(99) and
72 were trained using a linear kernel and the default parameters. Model performance was evaluated
73 using 10-fold cross-validation, iteratively selecting data from 90% of participants as training data
74 and testing the trained model on data from the remaining 10% of participants. Across testing sets,
75 the prediction accuracy and area under the receiver operating curve (AUC) were calculated to
76 evaluate model performance. To ensure our results were not driven by a specific cross-validation
77 split, we repeated the entire 10-fold cross-validation procedure 100 times, drawing the 10-fold
78 subsets at random each time. Performance metrics were finally averaged across the 100 iterations
79 of the cross-validation procedure.

80 To evaluate if model performance (i.e., the accuracy and the AUC) was significantly
81 better than expected by chance, we performed a permutation test(100). Specifically, we re-applied
82 the cross-validation procedure 1,000 times, each time permuting the session labels (drug and
83 placebo) across the training samples without replacement. Significance was determined by
84 ranking the actual prediction accuracy versus the permuted distribution; the *p*-value of the
85 accuracy and AUC was calculated as the proportion of permutations that showed a higher value
86 than the observed value in the real, unpermuted data.
87

88 *Analysis of feature weights*

89 After cross-validation and significance testing, we trained the model on all participants
90 and extracted the feature weights for further analysis. First, we calculated the absolute value of
91 the weights and summed them across all connections (edges) for a given region (node) to compare
92 the overall contribution of each region to the model, irrespective of the sign of the feature
93 weights(100). Next, to evaluate the spatial pattern of the feature weights, we calculated the mean
94 signed feature weight for each node, reflecting the directionality of the effect of the drug
95 manipulation according to the trained model. We then used this feature map to assess the
96 biological relevance of our trained model. Specifically, we calculated the spatial correlation
97 between this pattern of nodal feature weights with two sets of cortical features. The first was the
98 widely used principal gradient of macroscale cortical organization(42), which places each cortical
99 region on a continuum between unimodal (i.e. sensorimotor cortices) to transmodal (i.e.
00 association cortices) function. The second set of cortical features was selected based on the
01 known pharmacology of benzodiazepines like alprazolam. Alprazolam is a positive allosteric
02 modulator of the GABA_A receptor, and of the six GABA_A α subunits (α 1-6), only subunits α 1, α 2,
03 α 3, and α 5 are benzodiazepine sensitive (48, 101). To quantify the spatial distribution of the six
04 GABA_A α subunits, we extracted the microarray gene expression patterns for their corresponding

05 GABA_A receptor genes (GABRA1-6) from the Allen Human Brain Atlas (data available at
06 <https://www.meduniwien.ac.at/neuroimaging/mRNA.html>) (46, 102). For each of the six gene
07 expression maps, we quantified the mean expression value within each cortical parcel and
08 calculated the spatial correlation with the pattern of nodal SVM weights.

09 To test the significance of the spatial correlation between our pattern of cortical feature
10 weights and each of the biological brain maps, we compared the observed correlation value to a
11 null distribution generated with BrainSMASH (Brain Surrogate Maps with Autocorrelated Spatial
12 Heterogeneity; <https://brainsmash.readthedocs.io/>); (. The spatial autocorrelation of brain maps can
13 lead to inflated *p*-values in spatial correlation analyses and must be accounted for in the creation
14 of null models. BrainSMASH addresses this by generating permuted null brain maps that match
15 the spatial autocorrelation properties of the input data. We used BrainSMASH to generate 10,000
16 spatial-autocorrelation-preserving null permutations based on the input data and the pairwise
17 distance matrix for the cortical parcellation, generating a null distribution of spatial correlation
18 coefficients. We calculated two-tailed *p*-values by squaring all correlation values (i.e. spatial R^2)
19 and calculating the proportion of times the null distribution exceeded the observed value.

20 *Transmodal and unimodal classification models*

21 Our primary hypothesis was that E:I ratio reductions would be specific to association
22 cortices during youth. In order to test this hypothesis directly, we trained two additional models
23 after applying an *a priori* feature selection step. Specifically, we thresholded the top and bottom
24 quartiles of cortical parcels based on their position in the principal gradient of functional
25 organization (42), with the top 25% representing transmodal association cortex and the bottom
26 25% representing unimodal sensory cortex. We then created two new feature sets that restricted
27 the input features to connections to these transmodal or unimodal areas only. This selection
28 procedure ensured that the resulting numbers of features were equal between the two feature sets
29 (9,541 features per model). We then trained and validated the transmodal and unimodal models
30 according the procedures described above.

31
32 **Developmental analyses**

33 *Application of the pharmacological model to the developmental dataset*

34 After training and validating the pharmacological benzodiazepine models, we applied the
35 models to the functional connectivity data for each participant in the developmental sample. For
36 each participant, each model yielded the distance from the classification hyperplane that separates
37 the two classes (drug vs. placebo). Observations close to the hyperplane (distance values near
38 zero) are less representative of the class, and those further from the hyperplane are more
39 representative. The distance metric is such that values greater than zero indicate more “drug-like”
40 patterns of functional connectivity and values less than zero indicate more “placebo-like” patterns
41 of connectivity. As the pharmacological effect of alprazolam is to increase GABAergic inhibitory
42 signaling, more “drug-like” patterns reflect greater GABAergic inhibitory modulation of
43 functional connectivity. As such, more “drug-like” patterns were interpreted to reflect a reduced
44 E:I balance relative to more “placebo-like” patterns. These distance metrics were normally
45 distributed and thus provided a continuous measure of E:I balance for use in further analyses. We
46 first applied the model trained on all the input features and then applied the transmodal- and
47 unimodal-specific models, generating three sets of distance values per participant.

48
49 *Developmental regression models*

50 To assess the developmental trajectory of E:I balance, we modeled the classification
51 distance metrics from each model as a function of age using penalized splines within a
52 generalized additive model (GAM). GAMs allow us to flexibly capture linear or nonlinear age

53 effects while penalizing overfitting. To test for windows of significant change across the age
54 range, we calculated the first derivative of the smooth function of age from the GAM model using
55 finite differences and then generated a simultaneous 95% confidence interval of the derivative
56 following the method described by Simpson (and implemented using the *gratia* library(103) in R.
57 Intervals of significant change were identified as areas where the simultaneous confidence
58 interval of the derivative does not include zero. To test if the effect of age on classification
59 distance differed between the transmodal and unimodal SVM models, we calculated the
60 residualized change (104) in transmodal vs. unimodal distance scores by regressing the unimodal
61 distance out of transmodal distance. We then regressed the residualized change score on age using
62 a GAM. All models included sex as a covariate as well as head motion and attentiveness as
63 covariates of no interest. Head motion was quantified as mean framewise displacement during the
64 fMRI acquisition. Attentiveness was quantified as the number of response omissions during the
65 emotion identification task; this covariate was included to control for potential effects of arousal
66 on model performance as alprazolam can cause drowsiness. All GAMs were fit using the mgcv
67 library(105) in R.

68

69 **Analysis of dimensions of psychopathology**

70 As previously described (49, 106, 107), PNC participants underwent a clinical assessment
71 of psychopathology. Multiple domains of psychopathology symptoms were evaluated using a
72 structured screening interview (GOASSESS); we used this data to investigate whether dimensions
73 of psychopathology moderated developmental reductions in E:I balance. As has been detailed in
74 prior work (49, 106, 107), factor scores were derived from the clinical assessments using a
75 bifactor confirmatory factor analysis model that included a general factor for overall
76 psychopathology as well as four specific factors that primarily represent anxious-misery (mood &
77 anxiety) symptoms, psychosis-spectrum symptoms, behavioral symptoms (conduct and ADHD),
78 and fear symptoms (phobias). Importantly, all five factors are orthogonal and can be considered
79 jointly in analysis of imaging data. In order to sample a broad range of factor scores, we expanded
80 our inclusion criteria to include individuals with a history of psychiatric hospitalization ($N =$
81 1018; ages 8 – 21.7; $M = 15.0$, $SD = 3.23$, male/female = 462/556). We analyzed these data in a
82 GAM that included age-by-factor score interactions for each factor from the bifactor model.
83 Interactions were fit as bivariate smooth interactions with penalized splines using tensor
84 interaction smooths ('ti' in mgcv).

85

86 **Data and code availability**

87 The developmental dataset is publicly available in the Database of Genotypes and
88 Phenotypes (dbGaP accession [phs000607.v3.p2](https://dbgap.ncbi.nlm.nih.gov/hts/help/phs000607.v3.p2)). Pharmacological imaging data is available upon
89 reasonable request. All code used for pharmacological classification analyses and developmental
90 analyses are available at https://pennlinc.github.io/Larsen_EI_Development/.

94 References

- 95 1. S.-J. Blakemore, S. Choudhury, Development of the adolescent brain: implications for executive function and
96 social cognition. *Journal of Child Psychology and Psychiatry*. **47**, 296–312 (2006).
- 97 2. B. Luna, S. Marek, B. Larsen, B. Tervo-Clemmens, R. Chahal, An Integrative Model of the Maturation of
98 Cognitive Control. *Annual Review of Neuroscience*. **38**, 151–170 (2015).
- 99 3. S. Shanmugan, T. D. Satterthwaite, Neural Markers of the Development of Executive Function: Relevance for
00 Education. *Curr Opin Behav Sci*. **10**, 7–13 (2016).
- 01 4. Z. Cui, H. Li, C. H. Xia, B. Larsen, A. Adebimpe, G. L. Baum, M. Cieslak, R. E. Gur, R. C. Gur, T. M.
02 Moore, D. J. Oathes, A. F. Alexander-Bloch, A. Raznahan, D. R. Roalf, R. T. Shinohara, D. H. Wolf, C.
03 Davatzikos, D. S. Bassett, D. A. Fair, Y. Fan, T. D. Satterthwaite, Individual Variation in Functional
04 Topography of Association Networks in Youth. *Neuron* (2020), doi:10.1016/j.neuron.2020.01.029.
- 05 5. T. D. Satterthwaite, R. T. Shinohara, D. H. Wolf, R. D. Hopson, M. A. Elliott, S. N. Vandekar, K. Ruparel,
06 M. E. Calkins, D. R. Roalf, E. D. Gennatas, C. Jackson, G. Erus, K. Prabhakaran, C. Davatzikos, J. A. Detre,
07 H. Hakonarson, R. C. Gur, R. E. Gur, Impact of puberty on the evolution of cerebral perfusion during
08 adolescence. *PNAS*. **111**, 8643–8648 (2014).
- 09 6. S. Marek, K. Hwang, W. Foran, M. N. Hallquist, B. Luna, The Contribution of Network Organization and
10 Integration to the Development of Cognitive Control. *PLoS Biol*. **13**, e1002328 (2015).
- 11 7. E. D. Gennatas, B. B. Avants, D. H. Wolf, T. D. Satterthwaite, K. Ruparel, R. Ceric, H. Hakonarson, R. E.
12 Gur, R. C. Gur, Age-Related Effects and Sex Differences in Gray Matter Density, Volume, Mass, and
13 Cortical Thickness from Childhood to Young Adulthood. *J. Neurosci*. **37**, 5065–5073 (2017).
- 14 8. N. Gogtay, P. M. Thompson, Mapping gray matter development: Implications for typical development and
15 vulnerability to psychopathology. *Brain Cogn*. **In Press, Corrected Proof** (2009).
- 16 9. B. Larsen, B. Luna, Adolescence as a neurobiological critical period for the development of higher-order
17 cognition. *Neuroscience & Biobehavioral Reviews*. **94**, 179–195 (2018).
- 18 10. F. Crews, J. He, C. Hodge, Adolescent cortical development: a critical period of vulnerability for addiction.
19 *Pharmacol. Biochem. Behav*. **86**, 189–199 (2007).
- 20 11. A. E. Takesian, T. K. Hensch, Balancing plasticity/stability across brain development. *Prog. Brain Res*. **207**,
21 3–34 (2013).
- 22 12. R. K. Reh, B. G. Dias, C. A. Nelson, D. Kaufer, J. F. Werker, B. Kolb, J. D. Levine, T. K. Hensch, Critical
23 period regulation across multiple timescales. *PNAS*. **117**, 23242–23251 (2020).
- 24 13. T. K. Hensch, Critical period plasticity in local cortical circuits. *Nature Reviews Neuroscience*. **6**, 877–888
25 (2005).
- 26 14. C. N. Levelt, M. Hübener, Critical-period plasticity in the visual cortex. *Annu. Rev. Neurosci*. **35**, 309–330
27 (2012).
- 28 15. T. K. Hensch, M. Fagiolini, Excitatory–inhibitory balance and critical period plasticity in developing visual
29 cortex. *Progress in Brain Research*. **147**, 115–124 (2005).
- 30 16. T. Toyoizumi, H. Miyamoto, Y. Yazaki-Sugiyama, N. Atapour, T. K. Hensch, K. D. Miller, A Theory of the
31 Transition to Critical Period Plasticity: Inhibition Selectively Suppresses Spontaneous Activity. *Neuron*. **80**,
32 51–63 (2013).
- 33 17. A. E. Takesian, L. J. Bogart, J. W. Lichtman, T. K. Hensch, Inhibitory circuit gating of auditory critical-
34 period plasticity. *Nature Neuroscience*. **21**, 218–227 (2018).
- 35 18. R. S. Erzurumlu, P. Gaspar, Development and critical period plasticity of the barrel cortex. *Eur. J. Neurosci*.
36 **35**, 1540–1553 (2012).

37 19. A. Caballero, E. Flores-Barrera, D. K. Cass, K. Y. Tseng, Differential regulation of parvalbumin and
38 calretinin interneurons in the prefrontal cortex during adolescence. *Brain Struct Funct.* **219**, 395–406 (2014).

39 20. G. D. Hoftman, D. W. Volk, H. H. Bazmi, S. Li, A. R. Sampson, D. A. Lewis, Altered cortical expression of
40 GABA-related genes in schizophrenia: illness progression vs developmental disturbance. *Schizophr Bull.* **41**,
41 180–191 (2015).

42 21. G. D. Hoftman, D. A. Lewis, Postnatal Developmental Trajectories of Neural Circuits in the Primate
43 Prefrontal Cortex: Identifying Sensitive Periods for Vulnerability to Schizophrenia. *Schizophr Bull.* **37**, 493–
44 503 (2011).

45 22. L. W. J. Bosman, T. W. Rosahl, A. B. Brussaard, Neonatal development of the rat visual cortex: synaptic
46 function of GABA_A receptor alpha subunits. *J Physiol.* **545**, 169–181 (2002).

47 23. H. Katagiri, M. Fagiolini, T. K. Hensch, Optimization of somatic inhibition at critical period onset in mouse
48 visual cortex. *Neuron.* **53**, 805–812 (2007).

49 24. T. Hashimoto, Q. L. Nguyen, D. Rotaru, T. Keenan, D. Arion, M. Beneyto, G. Gonzalez-Burgos, D. A.
50 Lewis, Protracted Developmental Trajectories of GABA_A Receptor $\alpha 1$ and $\alpha 2$ Subunit Expression in Primate
51 Prefrontal Cortex. *Biol Psychiatry.* **65**, 1015–1023 (2009).

52 25. D. Datta, D. Arion, D. A. Lewis, Developmental Expression Patterns of GABA_A Receptor Subunits in Layer
53 3 and 5 Pyramidal Cells of Monkey Prefrontal Cortex. *Cereb Cortex.* **25**, 2295–2305 (2015).

54 26. D. J. Piekarski, J. R. Boivin, L. Wilbrecht, Ovarian Hormones Organize the Maturation of Inhibitory
55 Neurotransmission in the Frontal Cortex at Puberty Onset in Female Mice. *Curr. Biol.* **27**, 1735–1745.e3
56 (2017).

57 27. G. Gonzalez-Burgos, T. Miyamae, D. E. Pafundo, H. Yoshino, D. C. Rotaru, G. Hoftman, D. Datta, Y.
58 Zhang, M. Hammond, A. R. Sampson, K. N. Fish, G. B. Ermentrout, D. A. Lewis, Functional Maturation of
59 GABA Synapses During Postnatal Development of the Monkey Dorsolateral Prefrontal Cortex. *Cereb.*
60 *Cortex*, bhu122 (2014).

61 28. A. Caballero, K. Y. Tseng, GABAergic function as a limiting factor for prefrontal maturation during
62 adolescence. *Trends Neurosci.* **39**, 441–448 (2016).

63 29. A. Anticevic, J. D. Murray, Rebalancing Altered Computations: Considering the Role of Neural Excitation
64 and Inhibition Balance Across the Psychiatric Spectrum. *Biological Psychiatry.* **81**, 816–817 (2017).

65 30. R. S. Duman, G. Sanacora, J. H. Krystal, Altered Connectivity in Depression: GABA and Glutamate
66 Neurotransmitter Deficits and Reversal by Novel Treatments. *Neuron.* **102**, 75–90 (2019).

67 31. X. Tang, R. Jaenisch, M. Sur, The role of GABAergic signalling in neurodevelopmental disorders. *Nature*
68 *Reviews Neuroscience*, 1–18 (2021).

69 32. S. J. Fung, M. J. Webster, S. Sivagnanasundaram, C. Duncan, M. Elashoff, C. S. Weickert, Expression of
70 interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia.
71 *American Journal of Psychiatry.* **167**, 1479–88 (2010).

72 33. C. E. Duncan, M. J. Webster, D. A. Rothmond, S. Bahn, M. Elashoff, C. Shannon Weickert, Prefrontal
73 GABA(A) receptor alpha-subunit expression in normal postnatal human development and schizophrenia. *J*
74 *Psychiatr Res.* **44**, 673–681 (2010).

75 34. N. Gogolla, A. E. Takesian, G. Feng, M. Fagiolini, T. K. Hensch, Sensory integration in mouse insular cortex
76 reflects GABA circuit maturation. *Neuron.* **83**, 894–905 (2014).

77 35. S. Han, C. Tai, C. J. Jones, T. Scheuer, W. A. Catterall, Enhancement of Inhibitory Neurotransmission by
78 GABA_A Receptors Having $\alpha 2,3$ -Subunits Ameliorates Behavioral Deficits in a Mouse Model of Autism.
79 *Neuron.* **81**, 1282–1289 (2014).

80 36. S. Han, C. Tai, R. E. Westenbroek, F. H. Yu, C. S. Cheah, G. B. Potter, J. L. Rubenstein, T. Scheuer, H. O. de
81 la Iglesia, W. A. Catterall, Autistic behavior in *Scn1a*^{+/−} mice and rescue by enhanced GABAergic
82 transmission. *Nature*. **489**, 385–390 (2012).

83 37. M. Fagiolini, T. K. Hensch, Inhibitory threshold for critical-period activation in primary visual cortex.
84 *Nature*. **404**, 183–186 (2000).

85 38. J. M. Huntenburg, P.-L. Bazin, D. S. Margulies, Large-Scale Gradients in Human Cortical Organization.
86 *Trends Cogn Sci*. **22**, 21–31 (2018).

87 39. A. Goulas, J.-P. Changeux, K. Wagstyl, K. Amunts, N. Palomero-Gallagher, C. C. Hilgetag, The natural axis
88 of transmitter receptor distribution in the human cerebral cortex. *PNAS*. **118** (2021),
89 doi:10.1073/pnas.2020574118.

90 40. U. Rudolph, H. Möhler, Analysis of GABA_A Receptor Function and Dissection of the Pharmacology of
91 Benzodiazepines and General Anesthetics Through Mouse Genetics. *Annual Review of Pharmacology and*
92 *Toxicology*. **44**, 475–498 (2004).

93 41. R. Ceric, A. F. G. Rosen, G. Erus, M. Cieslak, A. Adebimpe, P. A. Cook, D. S. Bassett, C. Davatzikos, D. H.
94 Wolf, T. D. Satterthwaite, Mitigating head motion artifact in functional connectivity MRI. *Nat Protoc*. **13**,
95 2801–2826 (2018).

96 42. D. S. Margulies, S. S. Ghosh, A. Goulas, M. Falkiewicz, J. M. Huntenburg, G. Langs, G. Bezgin, S. B.
97 Eickhoff, F. X. Castellanos, M. Petrides, E. Jefferies, J. Smallwood, Situating the default-mode network along
98 a principal gradient of macroscale cortical organization. *PNAS*. **113**, 12574–12579 (2016).

99 43. J. B. Burt, M. Helmer, M. Shinn, A. Anticevic, J. D. Murray, Generative modeling of brain maps with spatial
'00 autocorrelation. *NeuroImage*. **220**, 117038 (2020).

'01 44. W. Sieghart, Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. *Pharmacol Rev*.
'02 **47**, 181–234 (1995).

'03 45. R. W. Olsen, W. Sieghart, GABA_A Receptors: Subtypes Provide Diversity of Function and Pharmacology.
'04 *Neuropharmacology*. **56**, 141–148 (2009).

'05 46. G. Gryglewski, R. Seiger, G. M. James, G. M. Godbersen, A. Komorowski, J. Unterholzner, P. Michenthaler,
'06 A. Hahn, W. Wadsak, M. Mitterhauser, S. Kasper, R. Lanzenberger, Spatial analysis and high resolution
'07 mapping of the human whole-brain transcriptome for integrative analysis in neuroimaging. *NeuroImage*. **176**,
'08 259–267 (2018).

'09 47. S. Masiulis, R. Desai, T. Uchański, I. Serna Martin, D. Laverty, D. Karia, T. Malinauskas, J. Zivanov, E.
'10 Pardon, A. Kotecha, J. Steyaert, K. W. Miller, A. R. Aricescu, GABA A receptor signalling mechanisms
'11 revealed by structural pharmacology. *Nature*. **565**, 454–459 (2019).

'12 48. J. M. C. Derry, S. M. J. Dunn, M. Davies, Identification of a residue in the γ -aminobutyric acid type A
'13 receptor α subunit that differentially affects diazepam-sensitive and -insensitive benzodiazepine site binding.
'14 *Journal of Neurochemistry*. **88**, 1431–1438 (2004).

'15 49. M. E. Calkins, K. R. Merikangas, T. M. Moore, M. Burstein, M. A. Behr, T. D. Satterthwaite, K. Ruparel, D.
'16 H. Wolf, D. R. Roalf, F. D. Mentch, H. Qiu, R. Chiavacci, J. J. Connolly, P. M. A. Sleiman, R. C. Gur, H.
'17 Hakonarson, R. E. Gur, The Philadelphia Neurodevelopmental Cohort: constructing a deep phenotyping
'18 collaborative. *J Child Psychol Psychiatry*. **56**, 1356–1369 (2015).

'19 50. M. V. Fogaça, R. S. Duman, Cortical GABAergic Dysfunction in Stress and Depression: New Insights for
'20 Therapeutic Interventions. *Front. Cell. Neurosci*. **13** (2019), doi:10.3389/fncel.2019.00087.

'21 51. V. S. Sohal, J. L. R. Rubenstein, Excitation-inhibition balance as a framework for investigating mechanisms
'22 in neuropsychiatric disorders. *Mol Psychiatry*. **24**, 1248–1257 (2019).

'23 52. H. Möhler, The GABA system in anxiety and depression and its therapeutic potential. *Neuropharmacology*. **62**, 42–53 (2012).

'24

'25 53. D. H. Hubel, T. N. Wiesel, Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. *Journal of Neurophysiology*. **26**, 994–1002 (1963).

'26

'27 54. A. Caballero, E. Flores-Barrera, D. R. Thomases, K. Y. Tseng, Downregulation of parvalbumin expression in the prefrontal cortex during adolescence causes enduring prefrontal disinhibition in adulthood. *Neuropsychopharmacology*. **45**, 1527–1535 (2020).

'28

'29

'30 55. P. J. Uhlhaas, F. Roux, W. Singer, C. Haenschel, R. Sireteanu, E. Rodriguez, The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. *Proc.Natl.Acad.Sci.U.S.A.* **106**, 9866–9871 (2009).

'31

'32

'33 56. P. J. Uhlhaas, W. Singer, Abnormal neural oscillations and synchrony in schizophrenia. *Nat. Rev. Neurosci.* **11**, 100–113 (2010).

'34

'35 57. C. Ghisleni, S. Bollmann, S.-S. Poil, D. Brandeis, E. Martin, L. Michels, R. L. O’Gorman, P. Klaver, Subcortical Glutamate Mediates the Reduction of Short-Range Functional Connectivity with Age in a Developmental Cohort. *J. Neurosci.* **35**, 8433–8441 (2015).

'36

'37

'38 58. M. M. Silveri, J. T. Sneider, D. J. Crowley, M. J. Covell, D. Acharya, I. M. Rosso, J. E. Jensen, Frontal Lobe γ -Aminobutyric Acid Levels During Adolescence: Associations with Impulsivity and Response Inhibition. *Biological Psychiatry*. **74**, 296–304 (2013).

'39

'40

'41 59. T. D. Satterthwaite, D. H. Wolf, G. Erus, K. Ruparel, M. A. Elliott, E. D. Gennatas, R. Hopson, C. Jackson, K. Prabhakaran, W. B. Bilker, M. E. Calkins, J. Loughead, A. Smith, D. R. Roalf, H. Hakonarson, R. Verma, C. Davatzikos, R. C. Gur, R. E. Gur, Functional maturation of the executive system during adolescence. *J. Neurosci.* **33**, 16249–16261 (2013).

'42

'43

'44

'45 60. T. S. Balmer, V. M. Carels, J. L. Frisch, T. A. Nick, Modulation of perineuronal nets and parvalbumin with developmental song learning. *J. Neurosci.* **29**, 12878–12885 (2009).

'46

'47 61. P. A. McRae, M. M. Rocco, G. Kelly, J. C. Brumberg, R. T. Matthews, Sensory deprivation alters aggrecan and perineuronal net expression in the mouse barrel cortex. *J. Neurosci.* **27**, 5405–5413 (2007).

'48

'49 62. D. Bavelier, D. M. Levi, R. W. Li, Y. Dan, T. K. Hensch, Removing brakes on adult brain plasticity: from molecular to behavioral interventions. *J. Neurosci.* **30**, 14964–14971 (2010).

'50

'51 63. P. I. Yakovlev, A. R. Lecours, A. Minkowski, in *Regional Development of the Brain in Early Life* (Blackwell Scientific, Oxford, 1967), pp. 3–70.

'52

'53 64. H. Grydeland, K. B. Walhovd, C. K. Tamnes, L. T. Westlye, A. M. Fjell, Intracortical Myelin Links with Performance Variability across the Human Lifespan: Results from T1- and T2-Weighted MRI Myelin Mapping and Diffusion Tensor Imaging. *J. Neurosci.* **33**, 18618–18630 (2013).

'54

'55

'56 65. N. M. Corrigan, V. L. Yarnykh, D. S. Hippe, J. P. Owen, E. Huber, T. C. Zhao, P. K. Kuhl, Myelin development in cerebral gray and white matter during adolescence and late childhood. *NeuroImage*. **227**, 117678 (2021).

'57

'58

'59 66. L. D. Vanes, M. Moutoussis, G. Ziegler, I. M. Goodyer, P. Fonagy, P. B. Jones, E. T. Bullmore, R. J. Dolan, White matter tract myelin maturation and its association with general psychopathology in adolescence and early adulthood. *Human Brain Mapping*. **41**, 827–839 (2020).

'60

'61

'62 67. C. Lebel, C. Beaulieu, Longitudinal Development of Human Brain Wiring Continues from Childhood into Adulthood. *J. Neurosci.* **31**, 10937–10947 (2011).

'63

'64 68. A. R. Pines, M. Cieslak, B. Larsen, G. L. Baum, P. A. Cook, A. Adebimpe, D. G. Dávila, M. A. Elliott, R. Jirsaraie, K. Murtha, D. J. Oathes, K. Piiwaa, A. F. G. Rosen, S. Rush, R. T. Shinohara, D. S. Bassett, D. R.

'65

'66 69. Roalf, T. D. Satterthwaite, Leveraging multi-shell diffusion for studies of brain development in youth and
'67 young adulthood. *Developmental Cognitive Neuroscience*. **43**, 100788 (2020).

'68 69. S. A. Mauney, K. M. Athanas, H. Pantazopoulos, N. Shaskan, E. Passeri, S. Berretta, T.-U. W. Woo,
'69 Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia.
'70 *Biol. Psychiatry*. **74**, 427–435 (2013).

'71 70. C. M. Drzewiecki, J. Willing, J. M. Juraska, Influences of age and pubertal status on number and intensity of
'72 perineuronal nets in the rat medial prefrontal cortex. *Brain Struct Funct* (2020), doi:10.1007/s00429-020-
'73 02137-z.

'74 71. A. Caspi, R. M. Houts, A. Ambler, A. Danese, M. L. Elliott, A. Hariri, H. Harrington, S. Hogan, R. Poulton,
'75 S. Ramrakha, L. J. H. Rasmussen, A. Reuben, L. Richmond-Rakerd, K. Sugden, J. Wertz, B. S. Williams, T.
'76 E. Moffitt, Longitudinal Assessment of Mental Health Disorders and Comorbidities Across 4 Decades
'77 Among Participants in the Dunedin Birth Cohort Study. *JAMA Netw Open*. **3**, e203221 (2020).

'78 72. T. Paus, M. Keshavan, J. N. Giedd, Why do many psychiatric disorders emerge during adolescence? *Nat Rev
'79 Neurosci*. **9**, 947–957 (2008).

'80 73. G. J. Yang, J. D. Murray, X.-J. Wang, D. C. Glahn, G. D. Pearlson, G. Repovs, J. H. Krystal, A. Anticevic,
'81 Functional hierarchy underlies preferential connectivity disturbances in schizophrenia. *PNAS*. **113**, E219–
'82 E228 (2016).

'83 74. T. Sawada, T. E. Chater, Y. Sasagawa, M. Yoshimura, N. Fujimori-Tonou, K. Tanaka, K. J. M. Benjamin, A.
'84 C. M. Paquola, J. A. Erwin, Y. Goda, I. Nikaido, T. Kato, Developmental excitation-inhibition imbalance
'85 underlying psychoses revealed by single-cell analyses of discordant twins-derived cerebral organoids.
'86 *Molecular Psychiatry*. **25**, 2695–2711 (2020).

'87 75. S. Ghosal, C. H. Duman, R.-J. Liu, M. Wu, R. Terwilliger, M. J. Girelli, E. Wohleb, M. V. Fogaca, E. M.
'88 Teichman, B. Hare, R. S. Duman, Ketamine rapidly reverses stress-induced impairments in GABAergic
'89 transmission in the prefrontal cortex in male rodents. *Neurobiology of Disease*. **134**, 104669 (2020).

'90 76. C. Fee, T. D. Prevot, K. Misquitta, D. E. Knutson, G. Li, P. Mondal, J. M. Cook, M. Banasr, E. Sibille,
'91 Behavioral Deficits Induced by Somatostatin-Positive GABA Neuron Silencing Are Rescued by Alpha 5
'92 GABA-A Receptor Potentiation. *International Journal of Neuropsychopharmacology* (2021),
'93 doi:10.1093/ijnp/pyab002.

'94 77. B. Luscher, T. Fuchs, in *Advances in Pharmacology*, U. Rudolph, Ed. (Academic Press, 2015;
'95 <https://www.sciencedirect.com/science/article/pii/S1054358914000477>), vol. 73 of *Diversity and Functions
'96 of GABA Receptors: A Tribute to Hanns Möhler, Part B*, pp. 97–144.

'97 78. V. J. Sydnor, B. Larsen, C. Kohler, A. J. D. Crow, S. L. Rush, M. E. Calkins, R. C. Gur, R. E. Gur, K.
'98 Ruparel, J. W. Kable, J. F. Young, S. Chawla, M. A. Elliott, R. T. Shinohara, R. P. R. Nanga, R. Reddy, D. H.
'99 Wolf, T. D. Satterthwaite, D. R. Roalf, Diminished reward responsiveness is associated with lower reward
'00 network GluCEST: an ultra-high field glutamate imaging study. *Molecular Psychiatry*, 1–11 (2021).

'01 79. T. R. Insel, Mental disorders in childhood: shifting the focus from behavioral symptoms to
'02 neurodevelopmental trajectories. *JAMA*. **311**, 1727–1728 (2014).

'03 80. D. H. Wolf, T. D. Satterthwaite, J. Loughead, A. Pinkham, E. Overton, M. A. Elliott, G. W. Dent, M. A.
'04 Smith, R. C. Gur, R. E. Gur, Amygdala abnormalities in first-degree relatives of individuals with
'05 schizophrenia unmasked by benzodiazepine challenge. *Psychopharmacology (Berl)*. **218**, 503–512 (2011).

'06 81. T. D. Satterthwaite, M. A. Elliott, K. Ruparel, J. Loughead, K. Prabhakaran, M. E. Calkins, R. Hopson, C.
'07 Jackson, J. Keefe, M. Riley, F. D. Mentch, P. Sleiman, R. Verma, C. Davatzikos, H. Hakonarson, R. C. Gur,
'08 R. E. Gur, Neuroimaging of the Philadelphia neurodevelopmental cohort. *Neuroimage*. **86**, 544–553 (2014).

'09 82. T. D. Satterthwaite, J. J. Connolly, K. Ruparel, M. E. Calkins, C. Jackson, M. A. Elliott, D. R. Roalf, R.
'10 Hopson, K. Prabhakaran, M. Behr, H. Qiu, F. D. Mentch, R. Chiavacci, P. M. A. Sleiman, R. C. Gur, H.

:11 Hakonarson, R. E. Gur, The Philadelphia Neurodevelopmental Cohort: A Publicly Available Resource for the
:12 Study of Normal and Abnormal Brain Development in Youth. *Neuroimage*. **124**, 1115–1119 (2016).

:13 83. O. Esteban, C. J. Markiewicz, R. W. Blair, C. A. Moodie, A. I. Isik, A. Erramuzpe, J. D. Kent, M. Goncalves,
:14 E. DuPre, M. Snyder, H. Oya, S. S. Ghosh, J. Wright, J. Durnez, R. A. Poldrack, K. J. Gorgolewski,
:15 fMRIprep: a robust preprocessing pipeline for functional MRI. *Nat Methods*. **16**, 111–116 (2019).

:16 84. K. Gorgolewski, C. D. Burns, C. Madison, D. Clark, Y. O. Halchenko, M. L. Waskom, S. S. Ghosh, Nipype:
:17 A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python. *Front.*
:18 *Neuroinform*. **5** (2011), doi:10.3389/fninf.2011.00013.

:19 85. N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, J. C. Gee, N4ITK: improved
:20 N3 bias correction. *IEEE Trans Med Imaging*. **29**, 1310–1320 (2010).

:21 86. B. B. Avants, C. L. Epstein, M. Grossman, J. C. Gee, Symmetric diffeomorphic image registration with cross-
:22 correlation: evaluating automated labeling of elderly and neurodegenerative brain. *Med Image Anal*. **12**, 26–
:23 41 (2008).

:24 87. M. Jenkinson, P. Bannister, M. Brady, S. Smith, Improved Optimization for the Robust and Accurate Linear
:25 Registration and Motion Correction of Brain Images. *NeuroImage*. **17**, 825–841 (2002).

:26 88. R. W. Cox, AFNI: software for analysis and visualization of functional magnetic resonance neuroimages.
:27 *Comput. Biomed. Res.* **29**, 162–173 (1996).

:28 89. M. F. Glasser, S. N. Sotiroopoulos, J. A. Wilson, T. S. Coalson, B. Fischl, J. L. Andersson, J. Xu, S. Jbabdi, M.
:29 Webster, J. R. Polimeni, D. C. Van Essen, M. Jenkinson, WU-Minn HCP Consortium, The minimal
:30 preprocessing pipelines for the Human Connectome Project. *Neuroimage*. **80**, 105–124 (2013).

:31 90. D. N. Greve, B. Fischl, Accurate and robust brain image alignment using boundary-based registration.
:32 *Neuroimage*. **48**, 63–72 (2009).

:33 91. T. D. Satterthwaite, M. A. Elliott, R. T. Gerraty, K. Ruparel, J. Loughead, M. E. Calkins, S. B. Eickhoff, H.
:34 Hakonarson, R. C. Gur, R. E. Gur, D. H. Wolf, An improved framework for confound regression and filtering
:35 for control of motion artifact in the preprocessing of resting-state functional connectivity data. *NeuroImage*.
:36 **64**, 240–256 (2013).

:37 92. M. W. Woolrich, B. D. Ripley, M. Brady, S. M. Smith, Temporal autocorrelation in univariate linear
:38 modeling of fMRI data. *Neuroimage*. **14**, 1370–1386 (2001).

:39 93. D. A. Fair, B. L. Schlaggar, A. L. Cohen, F. M. Miezin, N. U. F. Dosenbach, K. K. Wenger, M. D. Fox, A. Z.
:40 Snyder, M. E. Raichle, S. E. Petersen, A method for using blocked and event-related fMRI data to study
:41 “resting state” functional connectivity. *NeuroImage*. **35**, 396–405 (2007).

:42 94. A. Schaefer, R. Kong, E. M. Gordon, T. O. Laumann, X.-N. Zuo, A. J. Holmes, S. B. Eickhoff, B. T. T. Yeo,
:43 Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. *Cereb*
:44 *Cortex*. **28**, 3095–3114 (2018).

:45 95. N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, M.
:46 Joliot, Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation
:47 of the MNI MRI Single-Subject Brain. *NeuroImage*. **15**, 273–289 (2002).

:48 96. M. F. Glasser, T. S. Coalson, E. C. Robinson, C. D. Hacker, J. Harwell, E. Yacoub, K. Ugurbil, J. Andersson,
:49 C. F. Beckmann, M. Jenkinson, S. M. Smith, D. C. Van Essen, A multi-modal parcellation of human cerebral
:50 cortex. *Nature*. **536**, 171–178 (2016).

:51 97. E. M. Gordon, T. O. Laumann, B. Adeyemo, J. F. Huckins, W. M. Kelley, S. E. Petersen, Generation and
:52 Evaluation of a Cortical Area Parcellation from Resting-State Correlations. *Cereb. Cortex* (2014),
:53 doi:10.1093/cercor/bhu239.

:54 98. R: The R Project for Statistical Computing, (available at <https://www.r-project.org/>).

155 99. D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, F. Leisch, C.-C. C. (libsvm C++-code), C.-C. L.
156 (libsvm C++-code), *e1071: Misc Functions of the Department of Statistics, Probability Theory Group*
157 (*Formerly: E1071*), TU Wien (2020; <https://CRAN.R-project.org/package=e1071>).

158 100. J. Mourão-Miranda, A. L. W. Bokde, C. Born, H. Hampel, M. Stetter, Classifying brain states and
159 determining the discriminating activation patterns: Support Vector Machine on functional MRI data.
160 *NeuroImage*. **28**, 980–995 (2005).

161 101. U. Rudolph, F. Knoflach, Beyond classical benzodiazepines: novel therapeutic potential of GABA A receptor
162 subtypes. *Nature Reviews Drug Discovery*. **10**, 685–697 (2011).

163 102. M. J. Hawrylycz, E. S. Lein, A. L. Guillozet-Bongaarts, E. H. Shen, L. Ng, J. A. Miller, L. N. van de
164 Lagemaat, K. A. Smith, A. Ebbert, Z. L. Riley, C. Abajian, C. F. Beckmann, A. Bernard, D. Bertagnolli, A. F.
165 Boe, P. M. Cartagena, M. M. Chakravarty, M. Chapin, J. Chong, R. A. Dalley, B. D. Daly, C. Dang, S. Datta,
166 N. Dee, T. A. Dolbeare, V. Faber, D. Feng, D. R. Fowler, J. Goldy, B. W. Gregor, Z. Haradon, D. R. Haynor,
167 J. G. Hohmann, S. Horvath, R. E. Howard, A. Jeromin, J. M. Jochim, M. Kinnunen, C. Lau, E. T. Lazarz, C.
168 Lee, T. A. Lemon, L. Li, Y. Li, J. A. Morris, C. C. Overly, P. D. Parker, S. E. Parry, M. Reding, J. J. Royall,
169 J. Schulkin, P. A. Sequeira, C. R. Slaughterbeck, S. C. Smith, A. J. Sodt, S. M. Sunkin, B. E. Swanson, M. P.
170 Vawter, D. Williams, P. Wohnoutka, H. R. Zielke, D. H. Geschwind, P. R. Hof, S. M. Smith, C. Koch, S. G.
171 N. Grant, A. R. Jones, An anatomically comprehensive atlas of the adult human brain transcriptome. *Nature*.
172 **489**, 391–399 (2012).

173 103. G. L. Simpson, H. Singmann, *gratia: Graceful 'ggplot'-Based Graphics and Other Functions for GAMs*
174 *Fitted Using "mgcv"* (2021; <https://CRAN.R-project.org/package=gratia>).

175 104. L. Castro-Schilo, K. J. Grimm, Using residualized change versus difference scores for longitudinal research.
176 *Journal of Social and Personal Relationships*. **35**, 32–58 (2018).

177 105. S. N. Wood, *Generalized Additive Models : An Introduction with R, Second Edition* (Chapman and Hall/CRC,
178 2017; <https://www.taylorfrancis.com/books/9781315370279>).

179 106. S. Shanmugan, D. H. Wolf, M. E. Calkins, T. M. Moore, K. Ruparel, R. D. Hopson, S. N. Vandekar, D. R.
180 Roalf, M. A. Elliott, C. Jackson, E. D. Gennatas, E. Leibenluft, D. S. Pine, R. T. Shinohara, H. Hakonarson,
181 R. C. Gur, R. E. Gur, T. D. Satterthwaite, Common and Dissociable Mechanisms of Executive System
182 Dysfunction Across Psychiatric Disorders in Youth. *Am J Psychiatry*. **173**, 517–526 (2016).

183 107. A. N. Kaczkurkin, S. S. Park, A. Sotiras, T. M. Moore, M. E. Calkins, M. Cieslak, A. F. G. Rosen, R. Ceric,
184 C. H. Xia, Z. Cui, A. Sharma, D. H. Wolf, K. Ruparel, D. S. Pine, R. T. Shinohara, D. R. Roalf, R. C. Gur, C.
185 Davatzikos, R. E. Gur, T. D. Satterthwaite, Evidence for Dissociable Linkage of Dimensions of
186 Psychopathology to Brain Structure in Youths. *AJP*. **176**, 1000–1009 (2019).

187
188 **Acknowledgments**

189
190 **Funding:** This study was supported by National Institutes of Health grants:
191 T32MH014654 (BL)
192 R01MH112847 (TDS)
193 R01MH113550 (TDS)
194 RF1MH116920 (TDS)
195 R01MH120482 (TDS)
196 R01MH113565 (DHW)
197 R01MH117014 (RCG. and TMM)
198 R01 MH119185 (DRR)
199 R01 MH120174 (DRR)
200 R56 AG066656 (DRR)
201 F31MH123063 (AP)
202 K08MH120564 (AAB); and

03 National Science Foundation Graduate Research Fellowship DGE-1845298 (VJS)
04
05

06 **Author contributions:**

07 B.L. and T.D.S. conceived and designed the analyses. B.L., Z.C., and A.A. analyzed the
08 data. J.S., A.P., M.B., and T.M.M contributed analysis tools. A.A.B., D.R.R., V.J.S.,
09 R.E.G., R.C.G., A.S.M., M.E.C., A.P., and M.B. commented on analyses. B.L. wrote the
paper with contributions from all authors. T.D.S. and D.H.W. supervised the work.
10

11 **Competing interests:** Authors declare that they have no competing interests.
12

13 **Data and materials availability:** The developmental dataset is publicly available in the
14 Database of Genotypes and Phenotypes (dbGaP accession [phs000607.v3.p2](https://www.ncbi.nlm.nih.gov/gap/study/Phs000607.v3.p2)).
15 Pharmacological imaging data is available upon reasonable request. All code used for
16 pharmacological classification analyses and developmental analyses are available at
17 https://pennlinc.github.io/Larsen_EI_Development/.
18
19
20
21

122

Supplemental Data

123

Supplemental Table 1. Regression table for developmental generalized additive models (GAM).

Predictors	All connections			Transmodal connections			Unimodal connections				
	Estimates	SE	p	Estimates	SE	p	Estimates	SE	p		
(Intercept)	-24.01	2.10	<.001	-5.97	1.23	<.001	-9.57	0.94	<.001		
Sex	-0.94	1.27	.459	0.93	0.75	.213	-0.63	0.57	.271		
FD	53.41	15.95	<.001	45.38	9.37	<.001	20.02	7.14	.005		
Omissions	1.24	0.18	<.001	0.47	0.11	<.001	0.55	0.08	<.001		
Smooth predictors	<i>F(edf)</i>		<i>p</i>	<i>Age-range</i>		<i>F(edf)</i>	<i>Age-range</i>		<i>Age-range</i>		
s(Age)	2.45(2.8)		.037	12.9-16.7		9.96(1)	8.2-21.7		3.59(1)	.059	-

Note: *Age-range* is the span of the spline fit in which the derivative is significantly greater than zero (see Methods). *SE*: standard error; *edf*: estimated degrees of freedom for penalized thin plate regression spline.

124

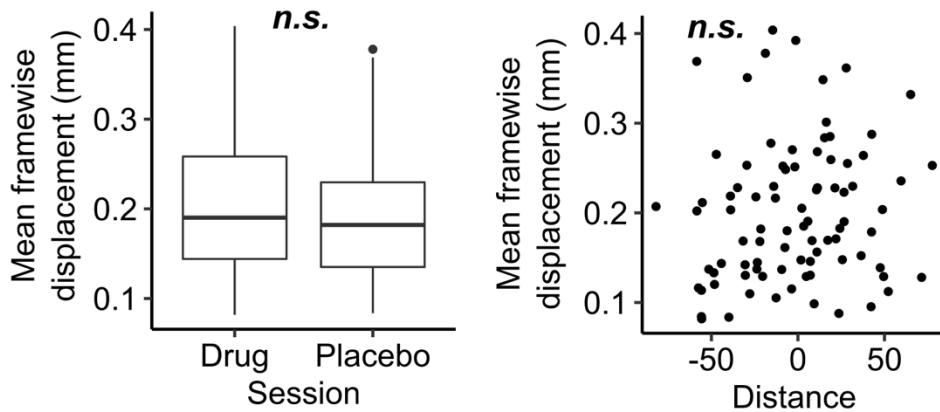
125

Supplemental Table 2. Classification results and age effects for alternative parcellation atlases.

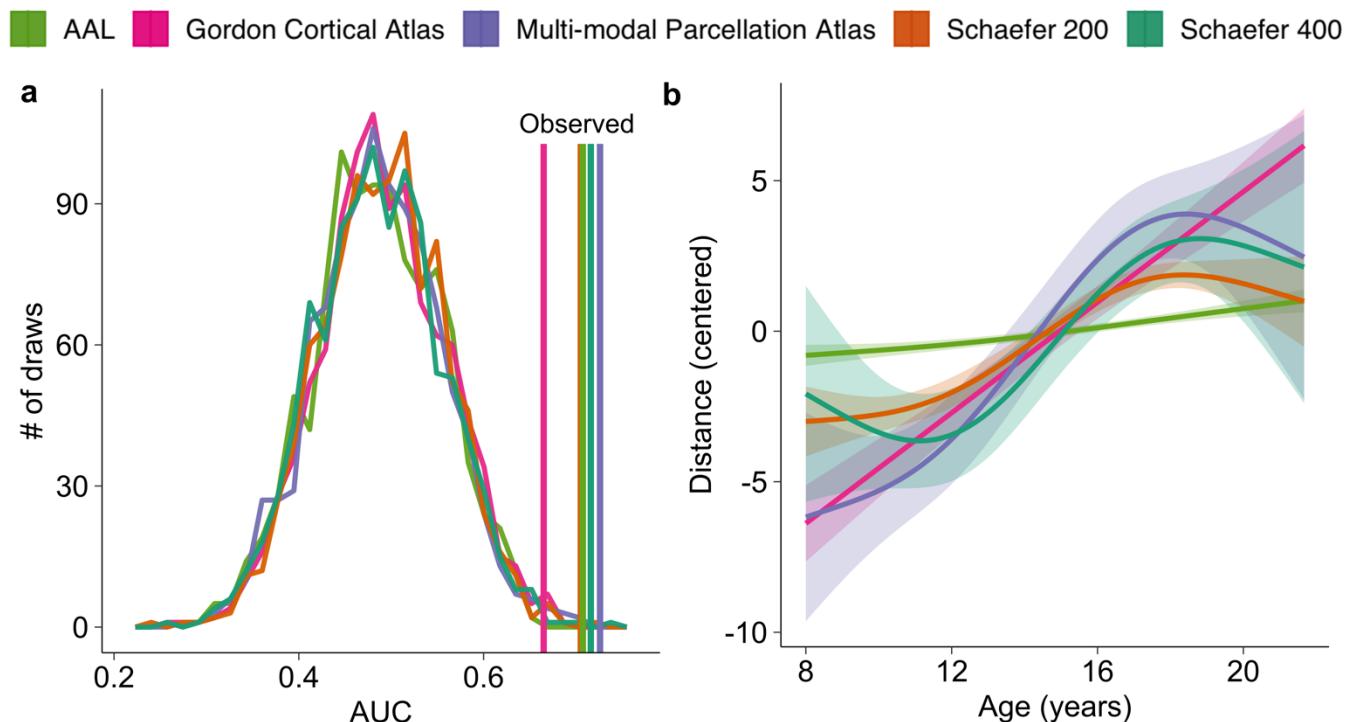
Parcellation	SVM classification				Age effect			
	AUC	<i>p_{permutation}</i>	Accuracy	<i>p_{permutation}</i>	<i>F(edf)</i>	<i>p</i>	<i>Age-range</i>	
Schaefer 200	.707	.001	65.5%	.003	13.13(2.7)	<.001	11.4-17.1	
AAL	.707	<.001	63.5%	.003	8.90(1.4)	.001	11.8-19.5	
Multi-modal Parcellation Atlas	.726	<.001	70.0%	<.001	30.5(1)	<.001	8.0-21.7	
Gordon Cortical Atlas	.665	.005	67.9%	<.001	2.73(2.4)	<.001	11.9-16.5	

Results are also visually depicted in **Supplemental Figure 2**. *Age-range* (years) is the span of the spline fit in which the derivative is significantly greater than zero (see Online Methods). *AUC*: Area under the receiver operating curve; *edf*: estimated degrees of freedom from the penalized thin plate regression spline.

126



27
28 **Supplemental Figure 1. Head motion is not associated with the pharmacological**
29 **manipulation or classifier performance.** Left: A summary of in-scanner head motion (mean
30 framewise displacement) did not differ between drug and placebo sessions ($t_{paired} = 1.44, p =$
31 $.16$). Right: The same metric of head motion was also not associated with model-predicted
32 distance from the classification plane ($r = .13, p = .24$).
33



134
135 **Supplemental Figure 2. Classification and developmental effects are robust to alternative**
136 **cortical parcellation schemes.** a) Classifier performance. All binary SVM classifiers identified
137 drug and placebo sessions in 10-fold cross-validation with an AUC values that exceeded the
138 randomly permuted null AUC distributions (see **Supplemental Table 1**). b) When the models
139 from panel a) were applied to the developmental dataset, models trained on all parcellation
140 schemes produced distance metrics that significantly increased with age during adolescence,
141 indicating age-related reductions in the E:I ratio. Distance metrics are centered to facilitate
142 comparisons between the model predictions. GAM model statistics are reported in
143 **Supplemental Table 1.**
144