

1 **New adaptive peaks for crops – an example from improvement of drought-resilience of**
2 **sorghum in Ethiopia**

3 Techale Birhan^{1,*}, Hongxu Dong^{2,4,*}, Nezif Abajebel¹, Misganu Wakjira¹, Cornelia Lemke²,
4 Vincent Vadez³, Andrew H. Paterson², Kassahun Bantte¹

5 ¹Department of Horticulture and Plant Science, Jimma University, Ethiopia

6 ²Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA

7 ³ICRISAT, Patancheru 502324, Andhra Pradesh, India

8 ⁴Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, USA

9 ^{*}These authors contributed equally to this study

10 Correspondence: Kassahun Bantte, College of Agriculture and Veterinary Medicine, Department
11 of Horticulture and Plant Science, Jimma University, Ethiopia: Email: kassahunb@gmail.com

12

13 Word count: 6489 (from Summary to Acknowledgements)

14 Number of figures: 7

15 Number of tables: 3

16 Supporting information: 5 supplemental datasets, 3 supplemental tables, 2 supplemental figures

17

18 **Summary**

- 19 • As the center of diversity for sorghum [*Sorghum bicolor* (L.) Moench], elite cultivars
20 selected in Ethiopia are of central importance to sub-Saharan food security. Despite being
21 presumably well adapted to their center of diversity, elite Ethiopian sorghums
22 nonetheless experience constraints to productivity, for example associated with shifting
23 rainfall patterns associated with climate change.
- 24 • A sorghum backcross nested association mapping (BC-NAM) population developed by
25 crossing thirteen diverse lines pre-identified to have various drought resilience
26 mechanisms, with an Ethiopian elite cultivar, Teshale, was tested under three rain-fed
27 environments in Ethiopia.
- 28 • 27, 15, and 15 QTLs with predominantly small additive effects were identified for days to
29 flowering, days to maturity, and plant height, respectively. Many associations detected in

30 this study corresponded closely to known or candidate genes or previously mapped
31 QTLs, supporting their validity. Field tests show drought resilience to be improved by
32 incorporation of adaptations from the diverse donor lines.

33 • The expectation that genotypes such as Teshale from near the center of diversity tend to
34 have a history of strong balancing selection, with novel variations more likely to persist
35 in small marginal populations, was strongly supported in that for these three traits, nearly
36 equal numbers of alleles from the donor lines conferred increases and decreases in
37 phenotype relative to the Teshale allele. Such rich variation provides a foundation for
38 selection to traverse a ‘valley’ of reduced yield and arrive at a new ‘adaptive peak’,
39 exemplifying the nature of efforts that may be necessary to adapt many crops to new
40 climate extremes.

41
42 **Keywords:** adaptive traits; food security; genome-wide association studies; joint linkage analysis;
43 sorghum; sub-Saharan

44

45 **Societal Impact Statement**

46 In Ethiopia, agriculture is the largest economic sector and contributes 48% of the nation’s GDP,
47 and sorghum provides more than one third of the cereal diet and is widely grown for food, feed,
48 brewing, and construction purposes. With a worldwide water crisis looming, developing drought
49 tolerant sorghum is vital in rain-fed environments, particularly in sub-Saharan Africa.
50 Addressing such issues often requires a far-reaching approach to identify and incorporate new
51 traits into a gene pool, followed by a period of selection to re-establish an overall adaptive
52 phenotype. This study revealed that with the enormous altitudinal variation of a country such as
53 Ethiopia, somewhat different lines may be needed for different locales.

54

55 **Introduction**

56 Sorghum [*Sorghum bicolor* (L.) Moench], a short day C₄ tropical grass native to Africa, is
57 exceptional in its wide range of adaptation. Since its primary domestication near present-day
58 Sudan approximately 5,000 years ago (Winchell *et al.* 2017), sorghum has been introduced to
59 diverse climates across Africa, Asia, and the Americas (De Wet and Harlan 1971). Flowering

60 time plays a central role in plant adaptation to local environmental conditions, with local
61 ideotypes ranging from short-day forms for the tropics to day-neutral rapidly flowering forms for
62 high temperate latitudes with short growing seasons. Genetic improvement of sorghum and other
63 cereal crops has also adjusted plant stature to meet needs ranging from provision of extensive
64 biomass forage and thatch for building (Blümmel & Rao 2006; Mathur *et al.* 2017; Murray *et al.*
65 2008; Tesso *et al.* 2008), to dwarf forms ideal for mechanical harvesting and to avoid lodging
66 and other natural hazards. Indeed, the latter is exemplified by the success of the Green
67 Revolution, in which grain yield increased substantially in rice (*Oryza sativa* L.) and wheat
68 (*Triticum aestivum* L.) by the introduction of semi-dwarf traits (Hedden 2003; Peng *et al.* 1999).
69 Similarly, a Sorghum Conversion Program backcrossed genomic regions conferring early
70 flowering and dwarfing from an elite donor into approximately 800 exotic sorghum accessions,
71 advancing adaptation to grain and biomass production in temperate regions (Stephens *et al.*
72 1967).

73 Flowering time and plant height are quantitative in nature. Cultivated grain sorghum
74 varieties typically flower between 45 and 120 days after planting under various day lengths, and
75 could range from 2 to 18 feet in height depending on the dwarfing genes they contain. Classical
76 studies suggested that sorghum flowering and plant height are each controlled by at least four
77 major loci (*Ma1-4* and *Dw1-4*, respectively) (Quinby 1974). Additional maturity loci (*Ma5-6*)
78 with large effects were reported by Rooney and Aydin (1999). Among the six major maturity
79 genes, Cuevas *et al.* (2016) revealed a phosphatidylethanolamine-binding (PEBP) protein,
80 Sb06g012260, to be the *Ma1* gene, as supported by independent lines of evidence including fine
81 mapping, association genetics, mutant complementation, and evolutionary analysis. Others have
82 suggested positional candidates (not confirmed by transformation) for sorghum flowering genes
83 including a pseudo-response regulator protein (PRR37) for *Ma1* (Murphy *et al.* 2011); a SET and
84 MYND (SYMD) domain lysine methyltransferase for *Ma2* (Casto *et al.* 2019); phytochrome B
85 and phytochrome C for *Ma3* and *Ma5*, respectively (Yang *et al.* 2014); and *SbGHD7*, a repressor
86 of flowering in long days, for *Ma6* (Murphy *et al.* 2014). Among the four ‘major’ sorghum
87 dwarfing genes, *Dw3* encodes an auxin efflux carrier, PGP19 (Multani *et al.* 2003), while
88 candidate genes unconfirmed by complementation include a putative membrane protein that
89 possibly involve in brassinosteroid signaling for *Dw1* (Hirano *et al.* 2017; Yamaguchi *et al.* 2016)
90 and a protein kinase for *Dw2* (Hilley *et al.* 2017).

91 The control of flowering and height are much more complex than suggested by classical
92 genetics, as genetic linkage analyses have revealed numerous additional loci (Zhang *et al.* 2015),
93 among which some show major effects under various genetic backgrounds. A new recessive
94 dwarf mutation, *dw5*, was recently isolated from a mutagenized BTx623 mutant library, but its
95 molecular function is yet to be studied (Chen *et al.* 2019).

96 In natural populations, genotypes at the center of diversity tend to be under strong
97 balancing selection, with novel variations more likely to persist in small marginal populations
98 conducive to intense selection and/or fixation by drift. Here, a genotype selected in and
99 presumably well adapted to its center of diversity is crossed to each of thirteen diverse lines from
100 across the natural and introduced range of sorghum, chosen for their increased capacity to extract
101 water from the soil or for their exceptional transpiration efficiency (Vadez *et al.* 2011), but also
102 with diverse morphology and growth habit. A backcross nested association mapping (BC-NAM)
103 population such as was produced here, consisting of multiple families crossed to a common
104 tester, allows one to catalogue allelic variants at numerous QTLs and determine their
105 contribution to phenotype and distribution across diverse germplasm (Yu *et al.* 2008). We
106 evaluated this BC-NAM population under three natural environments that are prone to drought in
107 Ethiopia, which afforded the opportunity to study adaptive traits under rain-fed environments.
108 Joint-linkage and GWAS approaches were applied to map the genetic basis of flowering time,
109 maturity, and plant height.

110

111 **Materials and Methods**

112 ***Plant materials and population development***

113 The 13 founder lines used for the population development were obtained from ICRISAT (Table
114 1). These 13 diverse founder lines were selected based on their diverse spectrum of drought
115 responsiveness traits, especially in their water extraction ability and transpiration efficiency
116 (Vadez *et al.* 2011). IS2205, IS14446, and IS23988 were characterized by excellent water
117 extraction ability; IS3583, IS14556, IS16044, IS16173, IS22325, IS10876, and IS15428 showed
118 good transpiration efficiency; IS9911, IS14298, and IS32234 showed good harvest index (Vadez
119 *et al.* 2011). The recurrent common parent, Teshale, is an Ethiopian variety of caudatum origin
120 which is highly preferred by the Ethiopian farmer for its grain quality and high yield. Seeds of

121 Teshale were sourced from Melkassa Agricultural Research Center in Ethiopia. The sorghum
122 BC-NAM population was developed using a nested design, crossing the common parent, Teshale,
123 with the selected founder line and backcrossing the resulting F₁ to Teshale to produce BC₁F₁
124 families. Crossing was done by hand emasculation of normal bisexual florets (approximately 50
125 per panicle) of Teshale, transferring pollen from the founder lines to the stigma of the
126 emasculated florets 3-5 days later. Following the BC₁F₁ generation, genotypes were continuously
127 selfed to BC₁F₄ via single seed descent. Finally, the BC₁F₄ generation was used for genotyping
128 and phenotyping. The populations were developed between 2013/14 to 2016/17. Below, when
129 referring to an individual BC₁F₄ population, we will use the name of the alternate parent (*e.g.*,
130 the IS9911 population; Table 1).

131 ***Experimental design and trial management***

132 Parental lines and BC₁F₄ lines were initially evaluated in 2017 at two environments in Ethiopia:
133 Kobo (12°09'N, 39°38'E) and Meiso (09°14'N, 40°45'E). Due to strong moisture stress during
134 the sowing season (July 2017), large numbers of seeds failed to germinate at Kobo and Meiso
135 fields, resulting in uneven planting density at these two locations. Therefore, a third field trial
136 was arranged at Sheraro (14°23'N, 37°46'E) in 2018. These three locations represent major
137 sorghum production regions in Ethiopia and were selected for their natural drought conditions
138 (Figure 1). Irrigation was not available at these three locations and thus this BC-NAM population
139 was challenged with rain-fed condition. An alpha lattice design with two replications was used at
140 each location. Seeds of each line were sown into one-row plots, with 75 cm between rows for a
141 net plot size of 0.75 m × 4 m. Inorganic fertilizers DAP and Urea were added at the rates of 100
142 and 50 kg ha⁻¹ as side dressing during sowing and three weeks after sowing, respectively.
143 Thinning of seedlings was done three weeks after sowing, to 20 cm spacing between individual
144 plants. Therefore, individual plots without plant loss would consist of 20 plants. Weeding and
145 other cultural practices were carried out as needed.

146 Flowering and plant height traits were evaluated in this BC-NAM population. Days to
147 flowering (DF) was defined as the number of days until 50% of plants per plot were in anthesis.
148 Days to maturity (DM) was the number of days until 50% of plants per plot reached
149 physiological maturity. Plant height (PH) was the mean of five representative plants per row,
150 measured from the base to the tip of panicle after physiological maturity in centimeters.

151 ***Phenotypic data analysis***

152 Analysis of variance (ANOVA) was first conducted across all three environments to test
153 significance of environment, family, genotype nested within family, family by environment
154 interaction, and genotype nested within family by environment interaction. We compiled weather
155 data including daily precipitation, minimum and maximum temperature from nearby weather
156 stations during the calendar years of field trials (Figure 1). The cumulative precipitation before
157 sowing (Jan-June) were 194.4 mm and 313.6 mm at Kobo and Meiso, respectively, whereas it
158 was 401.2 mm at Sheraro. The lower soil moisture at Kobo and Meiso likely explained why
159 many seeds failed to germinate compared to Sheraro. Given the distinct conditions across these
160 three environments (Figure 1), trait best linear unbiased predictions (BLUPs) were estimated for
161 each line within each environment using a mixed linear model implemented in the lme4 package
162 (Bates *et al.* 2015). All model terms were treated as random effects except for grand mean in the
163 following model:

$$Y_{ijk} = \mu + F_i + G(F)_{ij} + R_k + \varepsilon_{ijk}$$

164 where Y represents raw phenotypic data, μ is grand mean, F is the individual BC-NAM family,
165 $G(F)$ is genotype nested within family, R is replication, and ε is random error. Pearson
166 correlation coefficients between traits were calculated using line BLUPs. Broad-sense
167 heritability was determined as the proportion of total phenotypic variance explained by the
168 combined family and line terms using the equation:

$$H^2 = \frac{\sigma_F^2 + \sigma_{G(F)}^2}{\sigma_F^2 + \sigma_{G(F)}^2 + \sigma_\varepsilon^2/2}$$

169 where σ_F^2 is the variance explained by family term, $\sigma_{G(F)}^2$ is the variance explained by individual
170 lines, and σ_ε^2 is the random error variance.

171

172 ***Marker development and genomic analyses***

173 Genomic DNA was extracted from freeze-dried leaves using a CTAB (cetyltrimethylammonium
174 bromide) protocol (Doyle & Doyle 1987). Twelve randomly selected DNA samples from each
175 population were checked for genomic integrity on 2% agarose gels before library construction.
176 DNA concentration of each sample was quantified using a Qubit Fluorometer dsDNA system
177 (Invitrogen, Carlsbad, CA) and diluted to 20 ng/ μ l. Libraries were constructed using a *Pst*I-*Msp*I

178 enzyme system (Poland *et al.* 2012) with modifications based on Clark *et al.* (2014). DNA
179 samples were digested with the rare-cutting enzyme *Pst*I-HF (High-Fidelity; New England
180 Biolabs Inc., Ipswich, MA, USA) and the common-cutting enzyme *Msp*I (New England Biolabs
181 Inc., Ipswich, MA, USA), then ligated to a unique barcode adapter and a common adapter. A
182 total of 192 samples (*i.e.* corresponding to 192 unique barcodes) were pooled in one library, and
183 200-500 bp fragments were extracted from a 2% agarose gel after electrophoresis and purified
184 using a Qiagen Gel Extraction Kit (Qiagen, Hilden, Germany). The purified DNA was PCR
185 amplified using 2× GoTaq Colorless Master Mix (Promega, Madison, WI, USA), and PCR
186 product was extracted as above to eliminate primer-dimers. All GBS libraries were sequenced on
187 a NextSeq500 (Illumina, San Diego, CA, USA) with 150 bp single-end reads at the University of
188 Georgia Genomics and Bioinformatics Core. The 14 parents were replicated at least twice in
189 order to improve coverage and to correctly call SNPs in progeny. SNP calling was performed
190 with GBS v2 pipeline in TASSEL (Bradbury *et al.* 2007) using version 2.1 of the *Sorghum*
191 *bicolor* genome (Paterson *et al.* 2009). To remove low-quality genotypic data, raw genotypes
192 were filtered for tag coverage (tag found in >5% of taxa), minor allele frequency (MAF>0.03),
193 and single marker missing data (<0.8). Trimming SNPs with 5% missing data and trimming
194 nearby (<100 bp) SNPs with identical genotypes yielded 4395 SNPs for further analysis.

195

196 ***Genomic analyses***

197 Principal component analysis (PCA) was first performed within each of these 13 BC-NAM
198 populations to identify putative contaminants. One to seven individuals within each population
199 exhibited high levels of errant genotypes and could not cluster with their respective population;
200 IS32234 was of very small size (N = 25) and grouped into two clusters (Figure S1), probably
201 because of contamination, mistaken parental identity, or incorrect pollination. Therefore, 54
202 individuals (25 individuals of IS32234 and 29 putative contaminants from the other 12
203 populations) were excluded and 1171 BC₁F₄ lines were retained for all analyses. A composite
204 PCA of the retained 1171 BC₁F₄ lines was then conducted. Recurrent parent allele frequencies,
205 genome-wide heterozygosity, and SNP monomorphism rates were calculated in R with
206 customized scripts. Linkage disequilibrium (LD) was calculated as squared allele frequency
207 correlations (r^2) in VCFtools (Danecek *et al.* 2011). Decay of LD with distance in base pairs
208 between sites was modeled using the nonlinear regression model of Hill and Weir (1988).

209 Polymorphic markers within each population were used to estimate the percentage of common
210 parent genome present in each of the derived BC₁F₄ lines. Whole genome mean, maximum, and
211 minimum percentages of the common parent genotype were estimated for each population.

212 ***Marker-trait association***

213 To map QTL in the BC-NAM population, we used a joint-linkage (JL) model (Buckler *et al.*
214 2009) and GWAS approach. In JL analysis, we only included eight large populations (N > 80,
215 Table 1), removing IS14556, IS16044, IS2205, and IS23988 due to their small size. This
216 decision was supported by the consideration that small population size would lead to reduced
217 power in QTL detection, underestimation of QTL number, and overestimation of QTL effect
218 (Vales *et al.* 2005; Yu *et al.* 2008). For JL mapping across the eight populations, a new SNP
219 dataset was created to track parent-of-origin within each population. The common parent Teshale
220 genotypes were set to 0, alternative parent genotypes were set to 1, and heterozygous genotypes
221 were set to 0.5. Monomorphic SNPs within each family were set to missing, and missing data
222 were imputed as the mean of the nearest flanking markers weighted by physical distance (Tian *et*
223 *al.* 2011). Therefore, the result can be interpreted as the probability that a SNP comes from the
224 donor parent, and adjacent SNPs are always in high linkage disequilibrium with each other in
225 this dataset because it reflects only the meiosis that occurred during the creation of each BC₁F₄
226 population. Joint-linkage analyses were performed using the Stepwise Plugin of TASSEL 5
227 (Bradbury *et al.* 2007). SNP effects were nested within populations to reflect the potential for
228 unique QTL allele effects within each population. Although it is unlikely that there is a unique
229 allele for each population at every QTL, this nested model provides a statistical framework for
230 modeling multiple alleles at any given QTL. Therefore, based on this model, multiple allelic
231 effects, as opposed to only two, are reported for each QTL. Multi-parental mapping using the
232 GWAS approach used the unmodified genotypic dataset of all 12 populations. In each approach,
233 the population term was included as a fixed effect to account for the inherent structure in the BC-
234 NAM lines. The critical difference between joint-linkage mapping and GWAS is that joint-
235 linkage mapping relies on parent-of-origin information while GWAS only uses allele state
236 information of markers.

237 All JL QTLs identified in this study were compared to the Sorghum QTL Atlas database
238 described in Mace *et al.* (2019), which collated the projected locations of *c.* 6000 QTL or GWAS
239 loci from 150 publications in sorghum from 1995 to present. QTL comparison was conducted

240 based on their projected physical locations on version 2.1 of the *S. bicolor* genome. QTLs for the
241 same trait were declared as common QTLs if they showed overlapping confidence intervals.
242 Some QTLs from maps of low resolution occasionally span whole chromosomes and were not
243 considered for comparison. In addition, sorghum genes containing or directly adjacent to SNP
244 associations were searched using BEDOPS (Neph *et al.* 2012) and standard UNIX scripts.

245

246 ***Data availability***

247 Sequencing data are available in the NCBI Sequence Read Archive under BioProject ID
248 PRJNA687679. Data analysis scripts have been deposited to GitHub (<https://github.com/hxdong-genetics/Ethiopian-Sorghum-BC-NAM>). Please contact the corresponding author for other data.

250

251 **Results**

252 ***Genetic diversity and structure of the BC-NAM population***

253 To evaluate the genetic diversity and structure of the BC-NAM population, we characterized the
254 1171 BC₁F₄ lines at 4395 high-quality GBS SNPs, which corresponds to an average density of
255 one SNP per 1.5 Mb. Among these 4395 SNPs, 3029 (68.9%) were located within genic regions
256 (Dataset S2). Principal component analysis showed individuals of each population to be clearly
257 clustered (Figure 2A). The first three principal components explained 7.7%, 5.3%, and 3.9% of
258 the variance, respectively. The IS22325-derived population exhibited the most genetic difference
259 with the other populations based on PC2, followed by IS14298 based on PC3 (Figure 2A).
260 Genetic similarity between the common parent and each alternate parent was lowest with
261 IS10876 (0.610) and highest with IS14556 (0.896), which led to variation in monomorphism
262 across the genome within each population (Table 1).

263 The overall mean percentage of recurrent parent genome (PRPG) was about 76.3% for all
264 the populations but varied considerably between populations, from 68.9% in IS22325 to 88.5%
265 in IS14556 (Figure 2B, Table 1). Three populations including IS22325 (68.9%), IS14298
266 (70.7%), and IS14446 (72.5%) showed lower mean PRPG than the theoretical 75% (Figure 2B,
267 Table 1). The highest PRPG in IS14556 echoes its highest genetic similarity with the common
268 parent (0.896, Table 1). Although we did not impose artificial selections during population
269 development, the natural drought conditions in Ethiopia could have selected plants with local

270 adaptation because some seedlings failed to germinate (K. Bantte, personal communications),
271 and thereby explained higher than expected PRPG in the other ten populations (Figure 2B).
272 Indeed, a common set of 58 BC-NAM lines lost one of two replicates at both Kobo and Sheraro
273 (Table S1; i.e., presumably due to poor germination associated with moisture stress). The
274 average PRPG in these 58 lines was 74%, compared to 76% in the remaining lines without
275 severe plant loss (Dataset S3). This indicated that BC-NAM lines with poor germination
276 enriched for exotic parent alleles. The minimum percentage of recurrent parent genome also
277 varied between the populations from as low as 38.44% for one line from the IS22325 population
278 to 70.33% for a line from the IS14556 population (Dataset S3). The theoretical range of PRPG
279 after one generation of backcross without selection is 50-100%. Few individuals with PRPG
280 lower than 50% were likely derived from F_1 seeds rather than BC_1 s. These few individuals were
281 expected to have minimal impact on association analyses given their overall consistent clustering
282 within respective population (Figure 2A). The maximum percentages of recurrent parent genome
283 varied from a high of 98.71% for a line from the IS22325 population to as low as 83.21% for a
284 line from the IS22325 population (Figure 2B, Dataset S3).

285 Linkage disequilibrium (LD) decayed to 0.2 at *c.* 260 kb in this BC-NAM population
286 (Figure 3A), larger than the 100-150 kb in sorghum diversity panels (Hamblin *et al.* 2005;
287 Morris *et al.* 2013) due to the backcross breeding scheme. One generation of backcross recovers
288 75% of the recurrent parent genome, resulting in long haplotypes of the recurrent parent being
289 maintained across the genome in these BC_1F_4 lines. LD is of great importance for the design of
290 association studies to identify the genetic basis of complex traits. Given that the genome length
291 of sorghum is *c.* 730 Mb (Paterson *et al.* 2009), a minimum of *c.* 2800 markers (730/0.26) would
292 provide an average of one marker per LD block in the present study. Therefore, the 4395 SNP
293 markers here are expected to sample most genetic variation in this BC-NAM population, with
294 high power to detect marker-trait associations.

295 The genetic structure and diversity of the BC-NAM population might have been affected
296 by natural selection during population development, which can lead to decreased residual
297 heterozygosity and segregation distortion. Heterozygosity rate in the BC-NAM population was
298 0.0606 (Figure 3B), slightly lower than the expected value for the BC_1F_4 generation (0.0625).
299 The decreased heterozygosity also echoes the slightly higher percentage of recurrent parent
300 genome (76% vs. 75%, Figure 2B). Across the genome 85.67% of markers exhibited

301 heterozygosity ≤ 0.1 (Dataset S2), suggesting that natural selection had little effect overall. The
302 frequency of alleles from the common parent, Teshale, was close to the neutral expectation (75%:
303 Figure 3C), suggesting no overall selection for or against common parent alleles. Still, a small
304 proportion of markers showed skewed segregation, for either the common parent (e.g. IS14556),
305 or alternate parent (IS22325) allele (Figure 3C), suggesting selection at some loci. No clear
306 difference was observed among families in terms of proportion of distorted markers, and skewed
307 chromosome regions were generally specific to one or a few families.

308

309 ***Phenotypic variation within and between families***

310 We evaluated the BC-NAM population over three environments (Kobo, Meiso, and Sheraro)
311 representing major sorghum cultivation zones in Ethiopia for days to flowering, days to maturity,
312 and plant height (Figure 4). As shown in Figure 1, these three locations had similar temperature
313 profiles, but different daily precipitation distributions. The cumulative precipitation before
314 sowing (Jan-June) were 194.4 mm and 313.6 mm at Kobo and Meiso, respectively, whereas it
315 was 401.2 mm at Sheraro. In particular, from May to June, Kobo only received 32.6 mm
316 precipitation, while Meiso and Sheraro received 250.2 mm and 167.2 mm, respectively (Figure
317 1). As a result, severe plant losses occurred at Kobo and Meiso, with 362 and 195 individuals
318 lost in one of the two replicates, respectively (Table S1). In Sheraro, virtually all plants survived
319 -- only two individuals lost one replicate (Table S1). Given the precipitation data, plant losses at
320 Kobo and Meiso were presumably caused by poor germination due to moisture stress (K. Bantte,
321 personal communications). Multi-environment ANOVA confirmed strong environmental effect
322 and G×E interactions ($P < 2.2\text{E-}16$; Table S2). Between G and G×E, mean squares of G were
323 generally twice the magnitude of G×E for the three traits (Table S2). Thus, trait BLUPs were
324 estimated within each environment and trait-marker association analyses were performed
325 separately for each environment.

326 Plants in the least drought-stressed location, Sheraro, flowered and matured earliest while
327 also being nearly twice the height of those at the other locations. Average flowering of the BC-
328 NAM population occurred in Sheraro at 65 d after sowing, followed by Kobo at 78 d and Meiso
329 at 85 d (Figure 4, Table S3), reaching maturity in Sheraro at 90 d, followed by Meiso at 123 d,
330 and Kobo at 127 d. The BC-NAM populations were of similar average plant height at Kobo and
331 Meiso, at 175.7 cm and 177.7 cm, respectively; but significantly taller at Sheraro with 279.6 cm.

332 Trait distributions within each of the 12 populations at the three environments were similar, in
333 terms of population mean and standard deviation (Figure 4, Dataset S1). Among the 12 donor
334 parents and the recurrent parent Teshale, days to flowering ranged from 75.9 to 80.1 and 83.5 to
335 87.1 in Kobo and Meiso, respectively; and days to maturity ranged from 125.3 to 129.7 and
336 121.0 to 124.2 in Kobo and Meiso, respectively (Dataset S1). In contrast, plant height was more
337 variable, parental lines ranging from 149.3 cm to 201.8 cm in Kobo and 156.5 cm to 202.6 cm in
338 Meiso (Dataset S1). Due to the backcross breeding scheme, individual population means were
339 generally close to those of the recurrent parent Teshale (Figure 4).

340 Broad-sense heritabilities of these three adaptive traits were generally higher in the least
341 drought-stressed location, Sheraro (Table 2). Days to flowering heritability was high in Sheraro
342 (0.71) but low in Kobo (0.33) and Meiso (0.30). Days to maturity heritabilities were consistently
343 low across all three environments (0.25-0.34), which was probably due to the very limited
344 phenotypic variance (Figure 4). Heritability of plant height followed a similar pattern as days to
345 flowering, with the highest value observed in Sheraro (0.75), medium in Kobo (0.55), and
346 relatively low in Meiso (0.39). Stress responses may have masked genetic potential, and/or
347 invoked different and more complex genetic controls than in favorable environments (Paterson *et*
348 *al.* 2003). Moreover, medium to high positive correlations were observed between days to
349 flowering and days to maturity (Kobo: 0.69; Meiso: 0.59; Sheraro: 0.33), whereas negligible or
350 negative correlations were found between plant height and days to flowering (Kobo: 0.12; Meiso:
351 -0.28; Sheraro: -0.03) and between plant height and days to maturity (Kobo: 0.06; Meiso: -0.19;
352 Sheraro: 0.01).

353

354 ***Genetic dissection of adaptive traits***

355 Association analyses for the three measured traits revealed 27, 15, and 15 QTLs across the three
356 environments using the joint-linkage (JL) model for days to flowering, days to maturity, and
357 plant height, respectively (Tables 2, 3). Among the 27 JL QTLs for days to flowering, 25 (92.6%)
358 showed overlapping confidence interval with previous QTLs detected for the same trait from
359 multiple studies in the Sorghum QTL Atlas database [Mace *et al.* (2019)] (Dataset S4). Similarly,
360 12 of the 15 JL QTLs for days to maturity (80.0%) and 13 of the 15 JL QTLs (86.7%) for plant
361 height overlapped with those found in previous studies (Dataset S4). Despite this validation of
362 most QTLs, the total phenotypic variance explained by the final JL model was generally low,

363 ranging from 0.20 for plant height to 0.26 for days to flowering in Kobo, from 0.12 for days to
364 maturity to 0.15 for plant height in Meiso, and from 0.13 for days to flowering to 0.20 for days to
365 maturity in Sheraro (Table 2). Heritability imposes an approximate upper limit to the R^2 of a
366 QTL model (Yu *et al.* 2008). Therefore, this is not unexpected given the low to moderate
367 heritabilities of these adaptive traits under the natural drought conditions in Ethiopia. By taking
368 the broad-sense heritability into account, proportions of genetic variance explained by the final
369 joint-linkage models of each trait ranged from 28% to 83% in Kobo, 35%-60% in Meiso, and 21-
370 51% in Sheraro (Table 2).

371 In order to leverage the investment in their analysis, we incorporated the four small
372 populations (IS2205, IS14556, IS16044, and IS32234) into GWAS analyses. The GWAS model
373 included the same fixed effect of family term as the JL model, but marker effects were not nested
374 within family. A total of 43, 6, and 35 SNPs exceeded the 10E-3 threshold for days to flowering,
375 days to maturity, and plant height across three environments, respectively, which corresponded
376 to 19, 4, and 15 likelihood peaks (Figures 5, 6, S2, Dataset S5). Despite the different statistical
377 frameworks, there was generally high correspondence between JL QTLs and GWAS signals
378 (Figures 5, 6, S2). Exact overlap of linkage mapping and GWAS is not expected, as linkage
379 mapping tests markers within an individual population whereas GWAS tests marker effects
380 across populations, with different strengths and weaknesses of each approach (Tian *et al.* 2011).
381 Joint-linkage analysis produces many more small effects than GWAS analysis as an artifact of
382 the model fitting process, which assigns a separate effect to all populations at each QTL.
383 Moreover, the addition of four small populations in GWAS analyses may also confer
384 discrepancies between these two methods.

385 Flowering time is one of the most important adaptive traits in grasses. The JL model
386 detected 10, 10, and 7 JL QTLs for days to flowering at Kobo, Meiso, and Sheraro, respectively
387 (Tables 2, 3, Figure 5), explaining 79%, 83%, and 28% of genetic variance (Table 2). Several
388 QTLs were consistently detected across three environments near known sorghum maturity genes
389 (Figure 5). The most significant QTL for days to flowering was detected at the putative *Ma6*
390 gene (*CONSTANS*-like 4; Sobic.006G004400) on chromosome 6. In the JL analysis, the QTL
391 peaks for days to flowering were 96 kb (S06_769807), 339 kb (S06_1013548), and 1.7 Mb
392 (S06_2410807) from a candidate *Ma6* gene [*SbGHD7*, (Murphy *et al.* 2014)] in Meiso, Kobo,
393 and Sheraro, respectively (Table 3, Figure 5). The GWAS model also consistently detected

394 associations adjacent to *Ma6* in Kobo (S06_1015768), Meiso (S06_769807), and Sheraro
395 (S06_769807) at 342 kb, 96 kb, and 96 kb away from *SbGHD7*, respectively (Figure 5, Dataset
396 S5). One JL QTL peak (S09_55566776) in Meiso was detected about 588 kb downstream of the
397 *SbCN8* gene (Sobic.009G199900), which encodes phosphatidylethanolamine-binding protein
398 (PEBP) and is an ortholog of maize *ZCN8* and rice *OsFTL10*. A marginally significant GWAS
399 association (S09_52569648) was also detected near *SbCN8* (Figure 5B, Dataset S4). In Meiso,
400 the GWAS model also detected an association peak (S03_58246694) near *SbCN12* but the JL
401 model did not detect signals near this region (Figure 5B). The *LHY* gene (LATE ELONGATED
402 HYPOCOTYL; Sobic.007G047400) is 97 kb from a JL QTL (S07_4611519) in Sheraro on
403 chromosome 7 (Figure 5C, Dataset S4) and 1.9 Mb from a JL QTL in Kobo (S07_2790815) that
404 was (Figure 5A, Table 3). Strong associations with flowering were also detected on sorghum
405 chromosome 1 at Kobo and Sheraro, which were relatively distant (more than 3 Mb) from the
406 *Ma5* gene (Sobic.001G087100). Associations on chromosomes 2, 3, and 4 (Figure 5, Table 3,
407 Files S4, S5) may represent novel genes.

408 For days to maturity, the JL model detected 4, 5, and 6 QTLs at Kobo, Meiso, and
409 Sheraro, respectively, explaining 35%, 44%, and 60% of genetic variation (Table 2); while the
410 GWAS model detected 2, 1, and 1 weak peaks (Figure S2). Days to flowering QTLs were mostly
411 not near canonical maturity genes, except for one GWAS hit (S06_1015768) in Meiso near *Ma6*
412 (Figure S2, Dataset S5). The majority of GWAS hits for days to maturity were only marginally
413 significant (Figure S2, Dataset S5), perhaps due to the very limited phenotypic variation for this
414 trait (Figure 4).

415 For plant height, the JL model detected 1, 8, and 6 QTLs at Kobo, Meiso, and Sheraro,
416 respectively, explaining 24%, 51%, and 21% genetic variation (Figure 6, Tables 2, 3). The
417 GWAS model detected 2, 8, and 5 peaks at these three environments (Figure 6, Dataset S5).
418 Several JL QTLs and GWAS hits were adjacent to known sorghum dwarfing candidate genes.
419 One GWAS hit (S06_48457872) from Kobo was approximately 6 Mb from the *Dw2* candidate
420 gene (Sobic.006G067700) (Dataset S5), which is suggested to encode a protein kinase (Hilley *et*
421 *al.* 2017). One JL QTL (S04_63248157) and GWAS hit (S04_63653942) at Sheraro were
422 detected in the vicinity of the *Dw4* candidate gene, thought to be near 66.7 Mb on chromosome 4
423 (Li *et al.*, 2015). An additional GWAS hit (S09_49635018) was among the most significant

424 associations for plant height in Sheraro but was far from the *Dw1* candidate gene
425 (Sobic.009G229800).

426 QTL allele effects that deviate from the prediction of parental phenotypic values indicate
427 opportunities for selecting ‘transgressive’ progeny with values that exceed those of the more
428 extreme parent. For days to flowering, 27 JL QTLs detected in the eight large populations
429 (Tables 2, 3), permit estimation of a total of 216 (*i.e.* 27 × 8) QTL allelic effects – among these,
430 102 were negative (*i.e.* with the donor allele conferring earlier flowering than Teshale) and 114
431 were positive (*i.e.* with the donor allele conferring later flowering than Teshale) (Figure 7,
432 Dataset S4). QTL allelic effects ranged from -7.4 to 5.1 days. At 26 of these 27 QTLs, both
433 positive and negative alleles from donor parents were observed (Figure 5, Dataset S4), except for
434 one QTL (S07_59174992) detected in Meiso at which all donor parents contributed positive
435 effect alleles (Figure 5B, Dataset S4). On the other hand, across the 27 days to flowering QTLs,
436 each donor parent contributed at least one positive and one negative allele(s). For days to
437 maturity, the 120 QTL allelic effects of 15 JL QTLs (Tables 2, 3) included 61 negative (*i.e.* early
438 maturity) and 59 positive effects (*i.e.* late maturity), ranging from -2.3 to 2.5 days, again with
439 both positive and negative allelic effects at each QTL and from each donor (Figure S2, Dataset
440 S4). For 120 QTL allelic effects estimated for the 15 JL plant height QTLs with a range from -
441 23.8 cm to 18.1 cm (Figure 6, Dataset S4), fifty were positive (*i.e.* tall stature) and 70 negative
442 (*i.e.* short stature). Similar to the other two traits, all plant height QTLs contained both positive
443 and negative effects except for one QTL (S10_53361382) in Meiso, where all donor parents
444 contributed negative effect alleles.

445

446 **Discussion**

447 A backcross nested association mapping population made by crossing thirteen diverse sorghum
448 lines to an elite cultivar (Teshale) bred for the center of diversity (Ethiopia) provides insight into
449 the biogeography of trait variation. The backcross nested breeding design combines practical
450 breeding efforts for introgression of new alleles into adapted germplasm with statistical power to
451 dissect quantitative traits (Buckler *et al.* 2009; Jordan *et al.* 2011; Yu *et al.* 2008). Employing
452 donor lines chosen for divergent drought defense responses, this BC-NAM population also
453 increases the genetic diversity available in Ethiopian elite adapted sorghum germplasm,

454 providing new scope to improve food security of societies dependent upon this crop in a region
455 known for periodic devastating droughts.

456 Multiple genomic properties attest to the usefulness of this sorghum BC-NAM population
457 (Figures 2, 3, Table 1). Principal component analysis displayed clear population structure,
458 indicating minimal cross contamination among families (Figure 2A). Indeed, most individual
459 populations clustered together except for IS22325 and IS14298. This was likely due to the
460 backcross breeding scheme used in this study. Molecular marker analysis indicated retention of
461 an average of 76.3% of the recurrent parent genome in this BC-NAM population, close to the
462 expected 75% (Figure 2B).

463 This BC-NAM population was effective in dissecting quantitative traits. Our study
464 identified 27, 15, and 15 QTLs for days to flowering, days to maturity, and plant height,
465 respectively (Tables 2, 3). Both the present study and another of different germplasm [Mace *et al.*
466 (2013)] found that genetic control of flowering time in sorghum is substantially more complex
467 than classical genetics was able to resolve (Quinby 1974), involving a relatively large number of
468 loci with small effects, as we have suggested (Zhang *et al.* 2015). A degree of validation is
469 provided by the observation that many of the detected QTLs in these two BC-NAM populations
470 overlapped with those detected by multiple bi-parental mapping studies (Dataset S4).

471 The ability to resolve many QTLs together with the ability to sample more allelic
472 diversity than bi-parental populations reveals the spectrum of allele effects in the study
473 population, in comparison to those of the common parent. In this case, the common parent,
474 Teshale, is strategically chosen in that it was bred in and selected for a target environment near
475 the species center of diversity – while the other parents were selected from a broad sampling of
476 germplasm based on their diverse spectrum of drought responsiveness traits (Vadez *et al.* 2011).
477 The finding that for all three measured traits, nearly equal numbers of alleles conferred increases
478 and decreases in phenotype relative to the Teshale allele, is consistent with the notion that
479 Teshale is well adapted to the center of diversity for this particular gene pool, presumably with a
480 history of balancing selection, while the 13 exotic sorghum lines from locales widely-distributed
481 across the natural and introduced range sample smaller marginal populations in which novel
482 alleles may be more likely to persist due to the effects of selection and genetic drift.

483 This work exemplifies the nature of efforts that may be necessary to adapt many crops to
484 new climate extremes, with the introduction of novel or extreme traits from exotic germplasm
485 necessitating a new epoch of selection to re-establish an adaptive peak or reach a new one. With
486 a worldwide water crisis looming, developing drought tolerant sorghum is vital in rain-fed
487 environments, particularly in sub-Saharan Africa. In Ethiopia, agriculture is the largest economic
488 sector and contributes 48% of the nation's GDP, and sorghum provides more than one third of
489 the cereal diet and is widely grown for food, feed, brewing, and construction purposes (Ethiopian
490 Institute of Agricultural Research 2014). However, sorghum yield in Ethiopia could decrease by
491 40% as intense climate change events become more common and droughts are likely to become
492 more prevalent early in the growing season when crops are vulnerable (Eggen *et al.* 2019).
493 Genetic diversity within breeding programs decreases due to selection, small population size,
494 genetic drift and other factors (Fu 2015; Reif *et al.* 2005) and reaching outside of local breeding
495 programs will be necessary to adapt many crops to new climate extremes.

496 In a companion paper (Dong *et al.* unpublished), phenotypic performance of this BC-
497 NAM population under drought environments showed that the drought resilience of Teshale can
498 be improved by incorporation of different adaptations from the diverse donor lines, however
499 none of the resulting populations produced higher population mean yield than Teshale – meaning
500 that to arrive at a new ‘adaptive peak’ (Dong *et al.* unpublished), selection to traverse a ‘valley’
501 of reduced yield is necessary. Selection response for quantitative traits is determined by genetic
502 variance, heritability, and selection intensity (Falconer & Mackay 1996). Rich variation reflected
503 by mixtures of ‘positive’ and ‘negative’ QTL alleles for all traits provides a foundation for
504 selection, with new diversity from the diverse donor lines complementing the adaptive
505 phenotype of Teshale. The finding in our companion paper (Dong *et al.* unpublished) of
506 correlations of plot-based grain yield with days to flowering (-0.20 to -0.42); and plant height
507 (0.14-0.39) exemplify scope for the sorts of adjustments that may be needed to re-establish
508 locally adaptive phenotypes. Indeed, with the enormous altitudinal variation of a country such as
509 Ethiopia, somewhat different lines may be needed for different locales.

510

511 **Acknowledgments**

512 This study was supported by United States Agency for International Development (USAID)
513 awarded to AHP (grant no.: AID-OAA-A-13-00044). The authors thank Jimma University,

514 Ethiopian Institute of Agricultural Research, Amhara Region Agricultural Research Institute and
515 Tigray Region Agricultural Research Institute for providing land and technical support for the
516 field trials. The authors also thank the members of the Paterson Lab for valuable help and
517 discussions. We also thank Georgia Genomics and Bioinformatics Core for sequencing service.
518

519 **Author Contribution**

520 AHP and KB jointly developed and led this project. TB and KB developed the populations, TB,
521 A, MW, and KB conducted field trials, and phenotypic data collection. HD and CL made GBS
522 libraries. HD performed data analysis and wrote the draft manuscript. All authors commented
523 and reviewed the manuscript.
524

525 **References**

526 Bates, D., Mächler, M., Bolker, B., & Walker, S. C. (2015). Fitting linear mixed-effects models
527 using lme4. *Journal of Statistical Software*, **67**(1), 1–48.

528 Blümmel, M., & Rao, P. P. (2006). Economic value of sorghum stover traded as fodder for urban
529 and peri-urban dairy production in Hyderabad, India. *International Sorghum and Millets
530 Newsletter*, **47**, 97–100.

531 Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S.
532 (2007). TASSEL: Software for association mapping of complex traits in diverse samples.
533 *Bioinformatics*, **23**(19), 2633–2635.

534 Buckler, E. S., Holland, J. B., Bradbury, P. J., ... McMullen, M. D. (2009). The genetic
535 architecture of maize flowering time. *Science*, **325**(5941), 714–718.

536 Casto, A. L., Mattison, A. J., Olson, S. N., Thakran, M., Rooney, W. L., & Mullet, J. E. (2019).
537 Maturity2, a novel regulator of flowering time in Sorghum bicolor, increases expression of
538 SbPRR37 and SbCO in long days delaying flowering. *PLoS ONE*, **14**(4), e0212154.

539 Chen, J., Xin, Z., & Laza, H. (2019). Registration of BTx623 dw5, a new sorghum dwarf mutant.
540 *Journal of Plant Registrations*, **13**(2), 254–257.

541 Clark, L. V., Brummer, J. E., Głowacka, K., ... Sacks, E. J. (2014). A footprint of past climate
542 change on the diversity and population structure of *Miscanthus sinensis*. *Annals of Botany*,
543 **114**(1), 97–107.

544 Cuevas, H. E., Zhou, C., Tang, H., ... Paterson, A. H. (2016). The evolution of photoperiod-

545 insensitive flowering in sorghum, a genomic model for panicoid grasses. *Molecular Biology*
546 and *Evolution*, **33**(9), 2417–2428.

547 Danecek, P., Auton, A., Abecasis, G., ... Durbin, R. (2011). The variant call format and
548 VCFtools. *Bioinformatics*, **27**(15), 2156–2158.

549 De Wet, J. M. ., & Harlan, J. R. (1971). The origin and domestication of Sorghum bicolor.
550 *Economic Botany*, **25**(2), 128–135.

551 Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh
552 leaf tissue. *Phytochemical Bulletin*, **19**(1), 11–15.

553 Eggen, M., Ozdogan, M., Zaitchik, B., Ademe, D., Foltz, J., & Simane, B. (2019). Vulnerability
554 of sorghum production to extreme, sub-seasonal weather under climate change.
555 *Environmental Research Letters*, **14**(4), 045005.

556 Ethiopian Institute of Agricultural Research. (2014). Ethiopian strategy for sorghum (2014-2024).
557 Retrieved from https://www.k-state.edu/smil/docs/country_resources/Ethiopian%20Strategy%20for%20Sorghum.pdf

559 Falconer, D. S., & Mackay, T. F. C. (1996). *Introduction to Quantitative Genetics (Fourth
560 Edition)*, 4th edn, Pearson.

561 Fu, Y. B. (2015). Understanding crop genetic diversity under modern plant breeding. *Theoretical
562 and Applied Genetics*, **128**(11), 2131–2142.

563 Goodstein, D. M., Shu, S., Howson, R., ... Rokhsar, D. S. (2012). Phytozome: A comparative
564 platform for green plant genomics. *Nucleic Acids Research*, **40**(D1), 1178–1186.

565 Hamblin, M. T., Salas Fernandez, M. G., Casa, A. M., Mitchell, S. E., Paterson, A. H., &
566 Kresovich, S. (2005). Equilibrium processes cannot explain high levels of short- and
567 medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. *Genetics*,
568 **171**(3), 1247–1256.

569 Hedden, P. (2003). The genes of the Green Revolution. *Trends in Genetics*, **19**(1), 5–9.

570 Hill, W. G., & Weir, B. S. (1988). Variances and covariances of squared linkage disequilibria in
571 finite populations. *Theoretical Population Biology*, **33**(1), 54–78.

572 Hilley, J. L., Weers, B. D., Truong, S. K., ... Mullet, J. E. (2017). Sorghum *Dw2* encodes a
573 protein kinase regulator of stem internode length. *Scientific Reports*, **7**(1), 1–13.

574 Hirano, K., Kawamura, M., Araki-Nakamura, S., ... Sazuka, T. (2017). Sorghum DW1
575 positively regulates brassinosteroid signaling by inhibiting the nuclear localization of

576 BRASSINOSTEROID INSENSITIVE 2. *Scientific Reports*, **7**(1), 1–10.

577 Jordan, D. R., Mace, E. S., Cruickshank, A. W., Hunt, C. H., & Henzell, R. G. (2011). Exploring
578 and exploiting genetic variation from unadapted sorghum germplasm in a breeding program.
579 *Crop Science*, **51**, 1444–1457.

580 Mace, E., Innes, D., Hunt, C., ... Jordan, D. (2019). The Sorghum QTL Atlas: a powerful tool
581 for trait dissection, comparative genomics and crop improvement. *Theoretical and Applied
582 Genetics*, **132**(3), 751–766.

583 Mace, E. S., Hunt, C. H., & Jordan, D. R. (2013). Supermodels: Sorghum and maize provide
584 mutual insight into the genetics of flowering time. *Theoretical and Applied Genetics*, **126**(5),
585 1377–1395.

586 Mathur, S., Umakanth, A. V., Tonapi, V. A., Sharma, R., & Sharma, M. K. (2017). Sweet
587 sorghum as biofuel feedstock: Recent advances and available resources. *Biotechnology for
588 Biofuels*, p. 146.

589 Morris, G. P., Ramu, P., Deshpande, S. P., ... Kresovich, S. (2013). Population genomic and
590 genome-wide association studies of agroclimatic traits in sorghum. *Proceedings of the
591 National Academy of Sciences*, **110**(2), 453–458.

592 Multani, D. S., Briggs, S. P., Chamberlin, M. A., Blakeslee, J. J., Murphy, A. S., & Johal, G. S.
593 (2003). Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3
594 mutants. *Science*, **302**(5642), 81–84.

595 Murphy, R. L., Klein, R. R., Morishige, D. T., ... Mullet, J. E. (2011). Coincident light and clock
596 regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic
597 flowering in sorghum. *Proceedings of the National Academy of Sciences*, **108**(39), 16469–
598 16474.

599 Murphy, R. L., Morishige, D. T., Brady, J. A., ... Mullet, J. E. (2014). Ghd7 (Ma6) represses
600 sorghum flowering in long days: Ghd7 alleles enhance biomass accumulation and grain
601 production. *The Plant Genome*, **7**(2), 1–10.

602 Murray, S. C., Sharma, A., Rooney, W. L., ... Kresovich, S. (2008). Genetic improvement of
603 sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural
604 carbohydrates. *Crop Science*, **48**(6), 2165–2179.

605 Neph, S., Kuehn, M. S., Reynolds, A. P., ... Stamatoyannopoulos, J. A. (2012). BEDOPS: High-
606 performance genomic feature operations. *Bioinformatics*, **28**(14), 1919–1920.

607 Paterson, A. H., Bowers, J. E., Bruggmann, R., ... Rokhsar, D. S. (2009). The *Sorghum bicolor*
608 genome and the diversification of grasses. *Nature*, **457**(7229), 551–556.

609 Paterson, A. H., Saranga, Y., Menz, M., Jiang, C. X., & Wright, R. J. (2003). QTL analysis of
610 genotype x environment interactions affecting cotton fiber quality. *Theoretical and Applied
611 Genetics*, **106**(3), 384–396.

612 Peng, J., Richards, D. E., Hartley, N. M., ... Harberd, N. P. (1999). “Green revolution” genes
613 encode mutant gibberellin response modulators. *Nature*, **400**(6741), 256–261.

614 Poland, J. A., Brown, P. J., Sorrells, M. E., & Jannink, J. L. (2012). Development of high-density
615 genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing
616 approach. *PLoS ONE*, **7**(2), e32253.

617 Quinby, J. R. (1974). The genetic control of flowering and growth in sorghum. *Advances in
618 Agronomy*, **25**(C), 125–162.

619 Reif, J. C., Zhang, P., Dreisigacker, S., ... Melchinger, A. E. (2005). Wheat genetic diversity
620 trends during domestication and breeding. *Theoretical and Applied Genetics*, **110**(5), 859–
621 864.

622 Rooney, W. L., & Aydin, S. (1999). Genetic control of a photoperiod-sensitive response in
623 *Sorghum bicolor* (L.) Moench. *Crop Science*, **39**(2), 397–400.

624 Smith, O., Nicholson, W. V., Kistler, L., ... Allaby, R. G. (2019). A domestication history of
625 dynamic adaptation and genomic deterioration in sorghum. *Nature Plants*, **5**, 369–379.

626 Stephens, J. C., Miller, F. R., & Rosenow, D. T. (1967). Conversion of alien sorghums to early
627 combine genotypes. *Crop Science*, **7**(4), 396–396.

628 Tesso, T., Kapran, I., Grenier, C., ... Ejeta, G. (2008). The potential for crop-to-wild gene flow
629 in sorghum in Ethiopia and Niger: A geographic survey. *Crop Science*, **48**(4), 1425–1431.

630 Tian, F., Bradbury, P. J., Brown, P. J., ... Buckler, E. S. (2011). Genome-wide association study
631 of leaf architecture in the maize nested association mapping population. *Nature Genetics*,
632 **43**(2), 159–162.

633 Vadez, V., Krishnamurthy, L., Hash, C. T., Upadhyaya, H. D., & Borrell, A. K. (2011). Yield,
634 transpiration efficiency, and water-use variations and their interrelationships in the sorghum
635 reference collection. *Crop and Pasture Science*, **62**(8), 645–655.

636 Vales, M. I., Schön, C. C., Capettini, F., ... Hayes, P. M. (2005). Effect of population size on the
637 estimation of QTL: A test using resistance to barley stripe rust. *Theoretical and Applied*

638 *Genetics*, **111**(7), 1260–1270.

639 Winchell, F., Stevens, C. J., Murphy, C., Champion, L., & Fuller, D. Q. (2017). Evidence for
640 sorghum domestication in fourth millennium BC Eastern Sudan: Spikelet morphology from
641 ceramic impressions of the Butan group. *Current Anthropology*, **58**(5), 673–683.

642 Yamaguchi, M., Fujimoto, H., Hirano, K., ... Sazuka, T. (2016). Sorghum Dw1, an
643 agronomically important gene for lodging resistance, encodes a novel protein involved in
644 cell proliferation. *Scientific Reports*, **6**(June), 1–11.

645 Yang, S., Murphy, R. L., Morishige, D. T., Klein, P. E., Rooney, W. L., & Mullet, J. E. (2014).
646 Sorghum phytochrome B inhibits flowering in long days by activating expression of
647 SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12. *PLoS ONE*, **9**(8),
648 e105352.

649 Yu, J., Holland, J. B., McMullen, M. D., & Buckler, E. S. (2008). Genetic design and statistical
650 power of nested association mapping in maize. *Genetics*, **178**(1), 539–551.

651 Zhang, D., Kong, W., Robertson, J., ... Paterson, A. H. (2015). Genetic analysis of inflorescence
652 and plant height components in sorghum (Panicoidae) and comparative genetics with rice
653 (Oryzoidae). *BMC Plant Biology*, **15**(1), 1–15.

654

655 **Figure Legends**

656 **Figure 1** Geographic location and environmental condition of the three field trials in Ethiopia.

657 Red lines and orange lines represent daily maximum and minimum temperatures, respectively.

658 Vertical solid blue bars represent daily precipitation, and vertical dashed lines represent the

659 sowing time in July.

660 **Figure 2** Genomic diversity of the BC-NAM population. (A) Principal component analysis
661 across 1171 BC₁F₄ lines at 4395 SNPs. Variance explained by each PC was shown in parenthesis;
662 (B) Boxplot distribution of the percentage of recurrent parent genome present in each population.
663 The theoretical 75% value was indicated with a vertical dashed line. Dot inside each boxplot is
664 mean, and the vertical line is median.

665 **Figure 3** Genomic properties of the BC-NAM population. (A) Linkage disequilibrium (LD)
666 decay plot, using non-linear model described in Hill and Weir (1988). Each dot represents
667 pairwise r^2 between SNPs within chromosome. (B) The percentages of BC-NAM lines with
668 heterozygous genotypes (“Hetero rate”) across the 4395 SNPs. (C) Segregation of recurrent
669 parent alleles. Each dot represents the recurrent parent allele frequency within a certain
670 population, colored as shown in the legend. Horizontal dashed lines stand for 0.60 and 0.90
671 thresholds for significant segregation distortion.

672 **Figure 4** Phenotypic variation within each individual population at three environments (Kobo,
673 Meiso, Sheraro). Phenotypes were shown for DF: days to 50% flowering, DM: days to maturity,
674 PH: plant height. Inside each plot, the horizontal dashed lines represent trait mean of the
675 common parent Teshale.

676 **Figure 5** Marker-trait associations for days to flowering in (A) Kobo, (B) Meiso, and (C)
677 Sheraro. Each panel shows associations detected in joint-linkage (top) and GWAS (bottom)
678 models. Candidate genes were shown in green vertical lines and annotated with gene names.

679 **Figure 6** Marker-trait associations for plant height in (A) Kobo, (B) Meiso, and (C) Sheraro.
680 Each panel shows associations detected in joint-linkage (top) and GWAS (bottom) models.

681 Candidate genes were shown in green vertical lines and annotated with gene names.

682 **Figure 7** Distributions of allelic effects of joint-linkage QTLs detected in a sorghum BC-NAM
683 population. Inside each plot, x-axis represents allelic effects and y-axis represents frequency. DF:
684 days to 50% flowering, DM: days to maturity, PH: plant height.

685

686 **Table 1** Description of the sorghum BC-NAM population

Donor Name [□]	Country of origin [§]	Genetic similarity with Teshale		No. of SNPs	percentage of Teshale genome	Pop. size in Kobo	Pop. size in Meiso	Pop. size in Sheraro [□]
		Teshale	No. of SNPs					
IS10876	Nigeria	0.610	2592	75.0%	135	151	153	
IS14298	South Africa	0.752	2809	70.7%	121	132	131	
IS14446	Sudan	0.776	2425	72.5%	134	145	149	
IS14556	Ethiopia	0.896	1888	88.5%	32	34		
IS15428	Cameroon	0.811	2963	79.9%	124	142	144	
IS16044	Cameroon	0.723	1597	78.5%	36	37		
IS16173	Cameroon	0.706	1541	76.5%	98	111	112	
IS2205	India	0.884	2283	75.5%	36	40		
IS22325	Botswana	0.753	2494	68.9%	101	120	120	
IS23988	Yemen	0.770	2019	83.6%	34	42	36	
IS32234	Yemen	0.854						
IS3583	Sudan	0.796	2285	83.8%	104	119	119	
IS9911	Sudan	0.645	1932	78.3%	76	82	82	

687 [□] Founder lines used in the BC-NAM population. Note that population IS32234 was discarded
688 due to severe contamination.

689 [§] Source information is obtained from <http://genebank.icrisat.org/IND/Passport?Crop=Sorghum>.
690 [□] Populations IS2205, IS14556, IS16044, IS32234 were not included in Sheraro due to space
691 constraint.

692

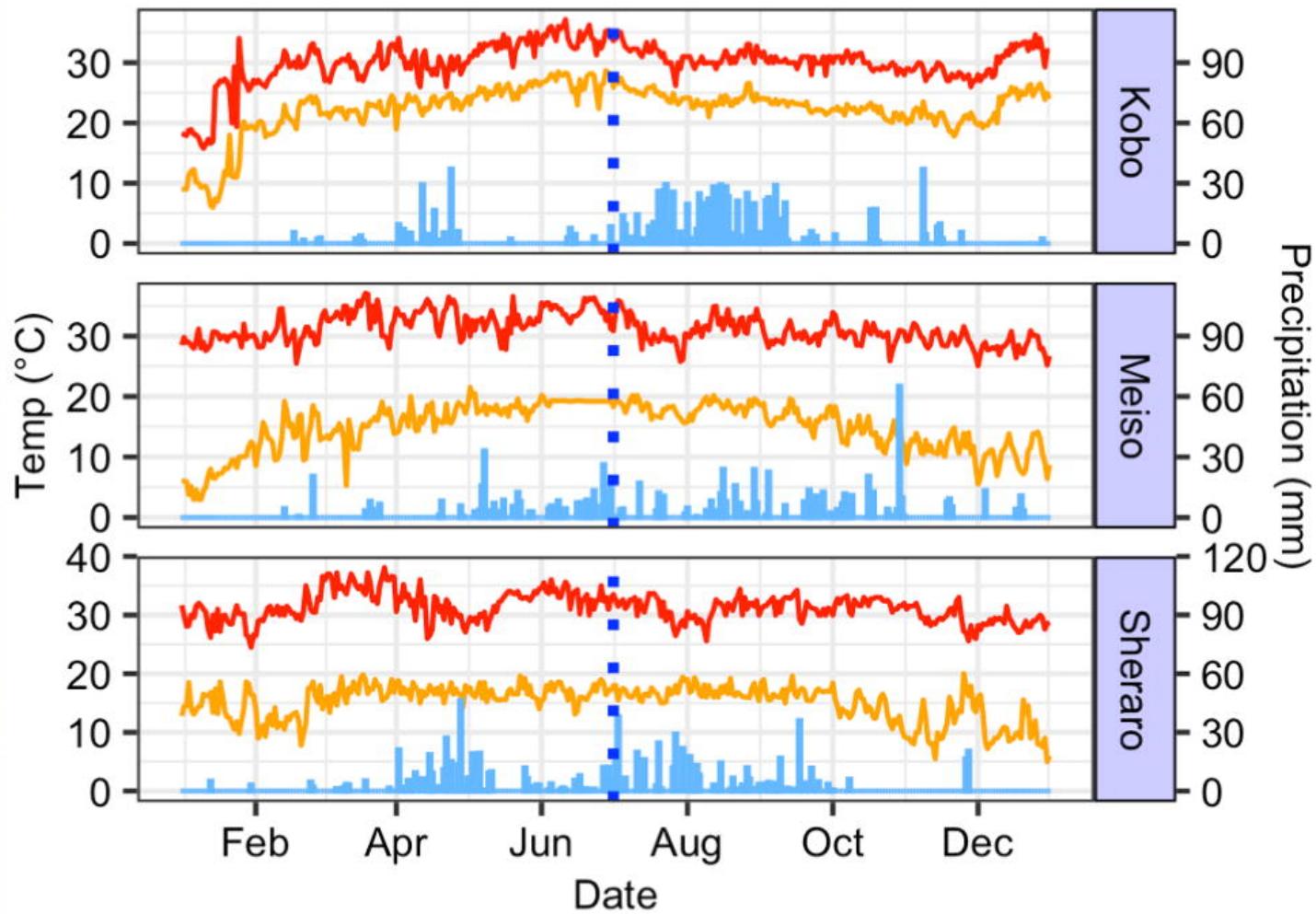
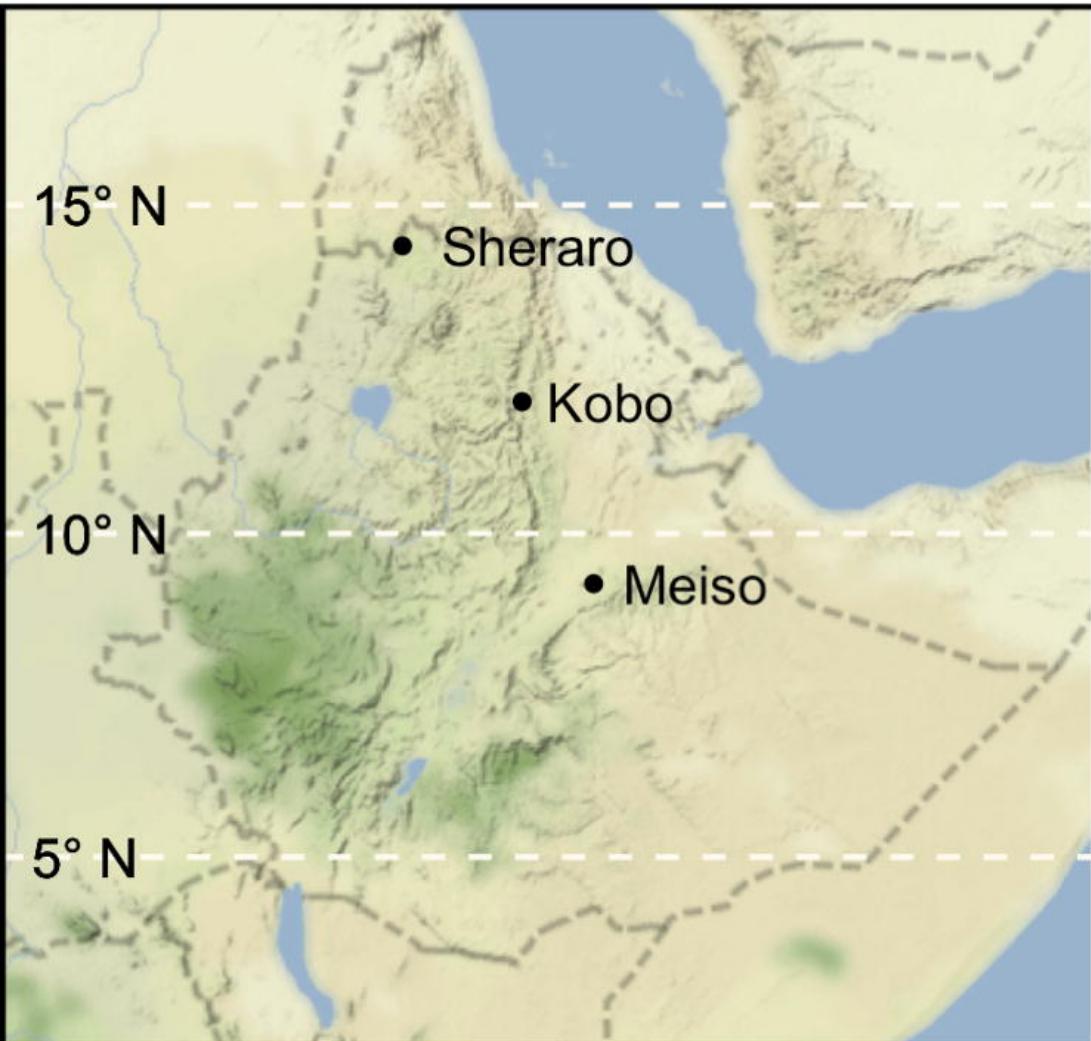
693 **Table 2** Heritability and joint-linkage model power for each trait in the sorghum BC-NAM
694 population

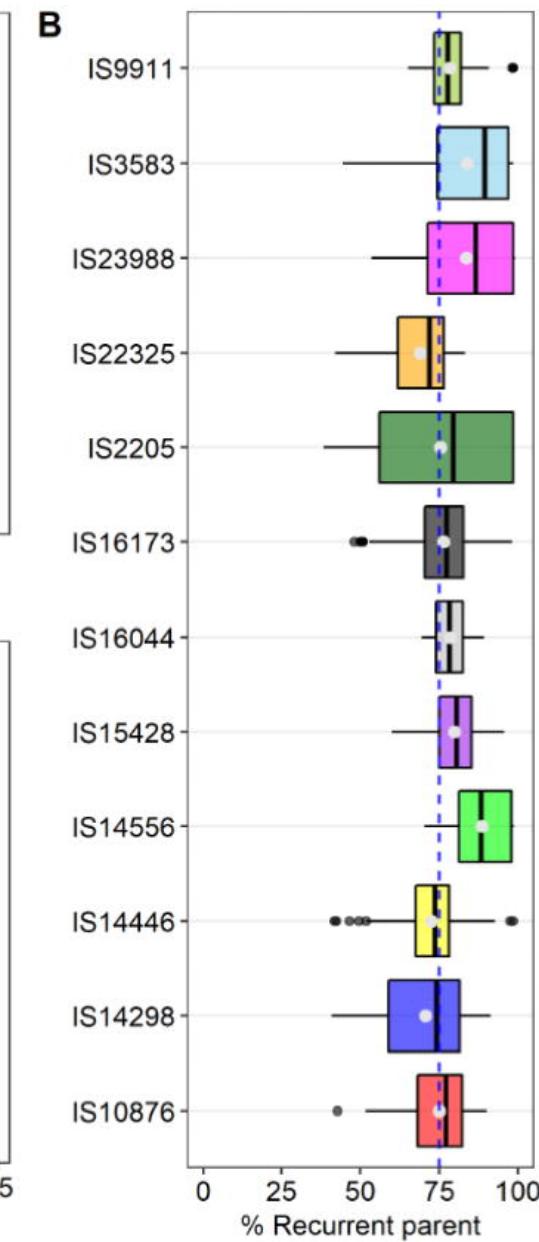
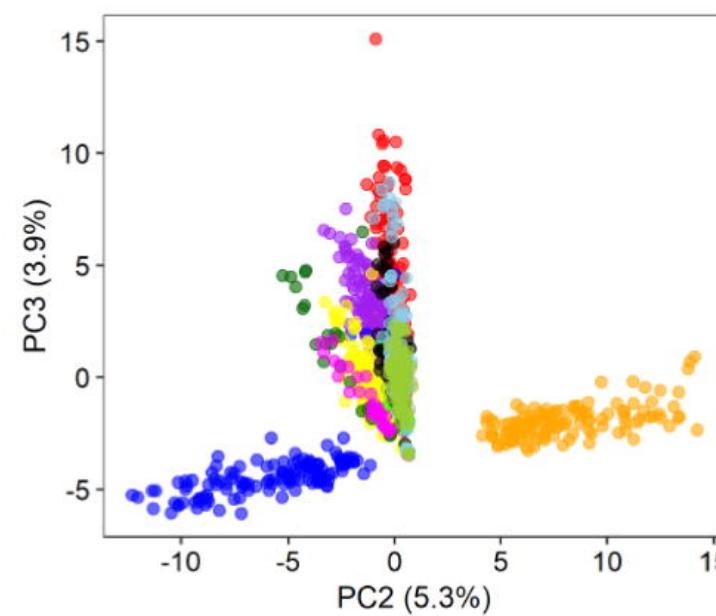
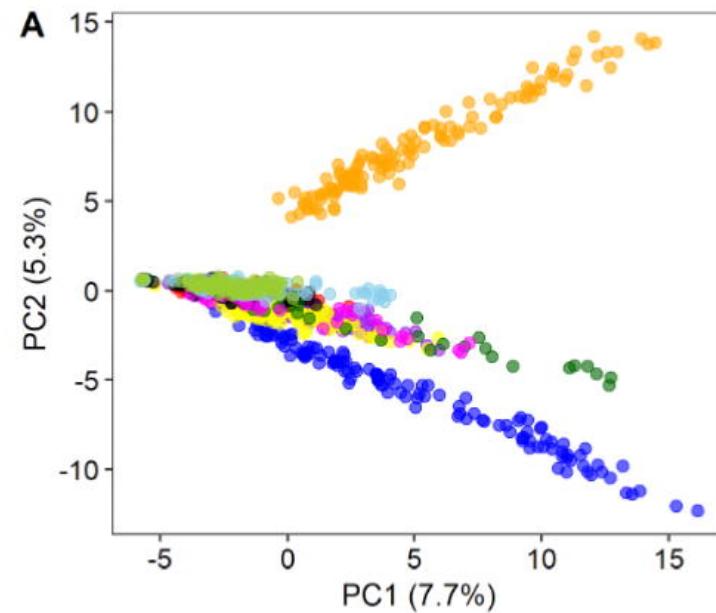
Trait§	Kobo			Meiso			Sheraro		
	$H^2¶$	No.	Model $R^2\square$	H^2	QTL	Model R^2	H^2	QTL	Model R^2
DF	0.33	10	0.26 (79%)	0.30	10	0.25 (83%)	0.71	7	0.20 (28%)
DM	0.34	4	0.12 (35%)	0.27	5	0.12 (44%)	0.25	6	0.15 (60%)
PH	0.55	1	0.13 (24%)	0.39	8	0.20 (51%)	0.75	6	0.16 (21%)

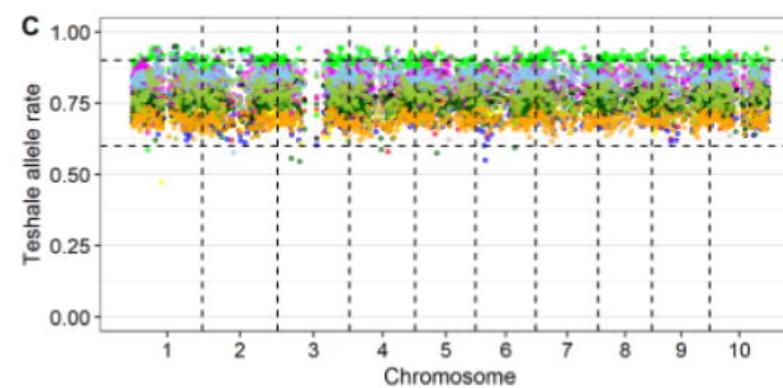
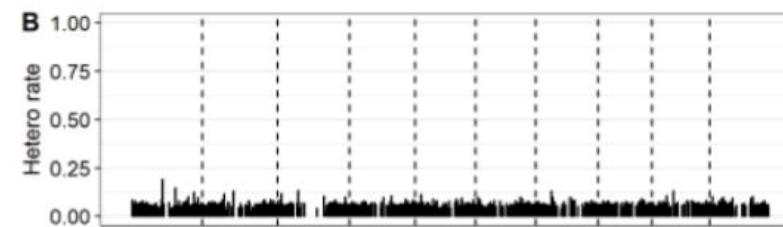
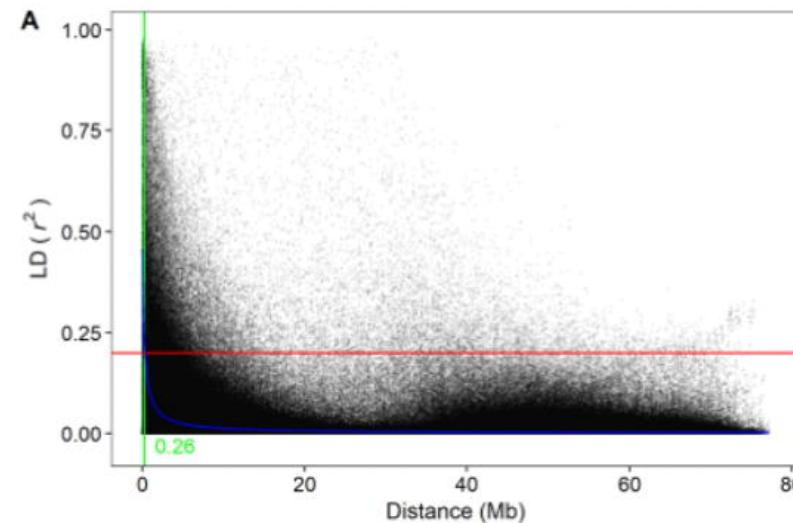
695 §DF: days to first flowering; DM: days to maturity; PH: plant height.

696 ¶Broad-sense heritability of BC-NAM population.

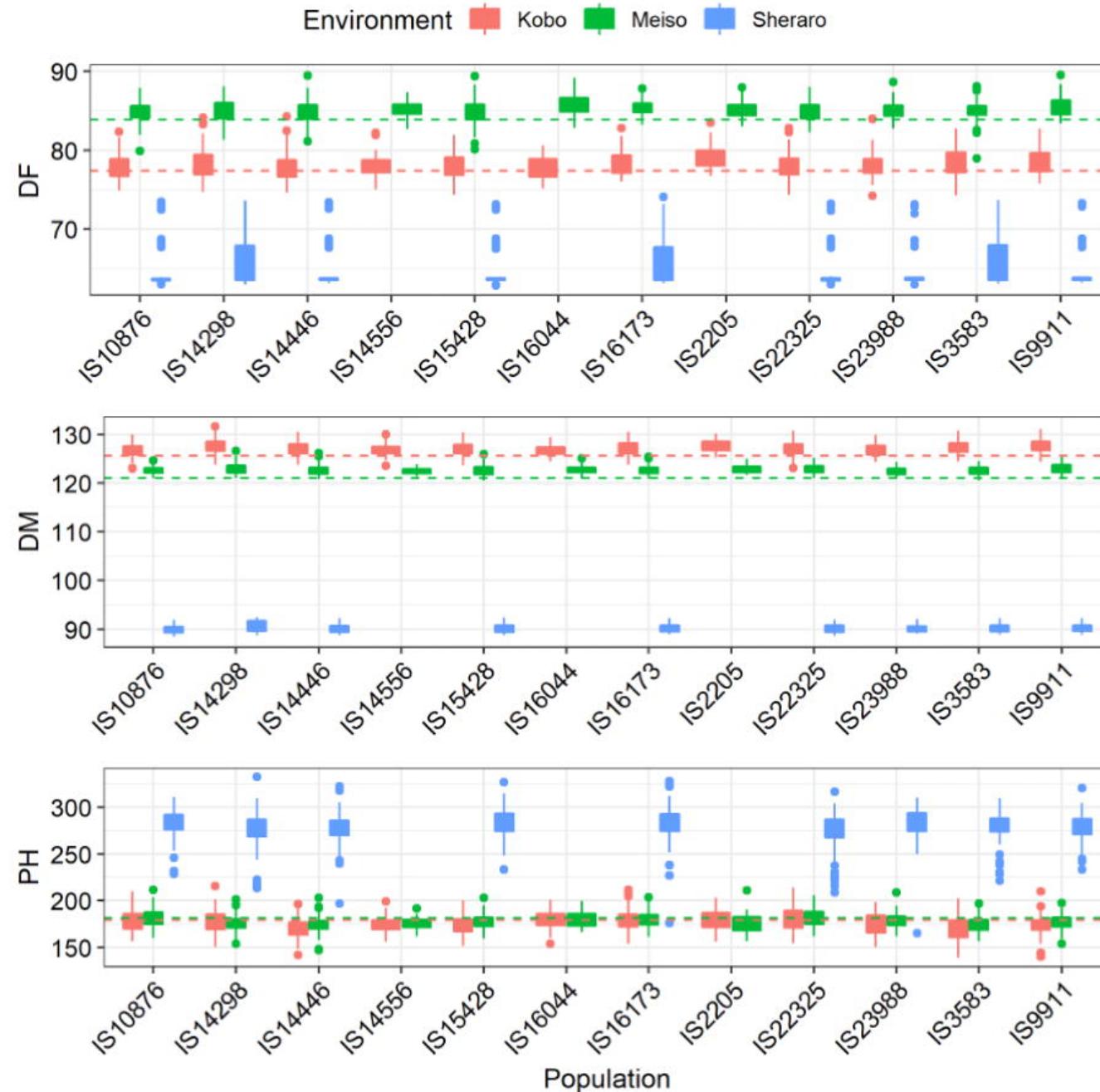
697 □Variance explained by joint-linkage model after fitting family term and detected QTL.

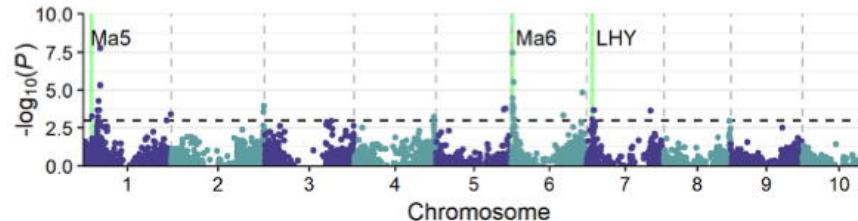
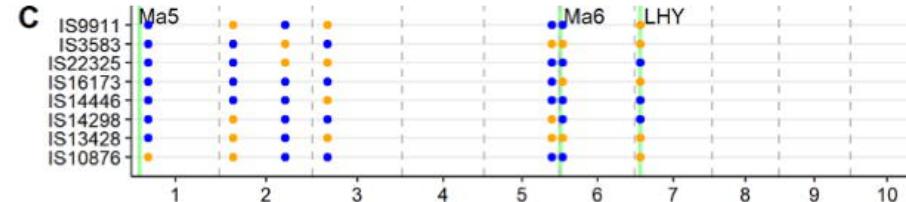


698 Numbers in parentheses represent proportion of genetic variance explained by the joint-linkage
699 model, which was calculated by dividing model R^2 by H^2 .

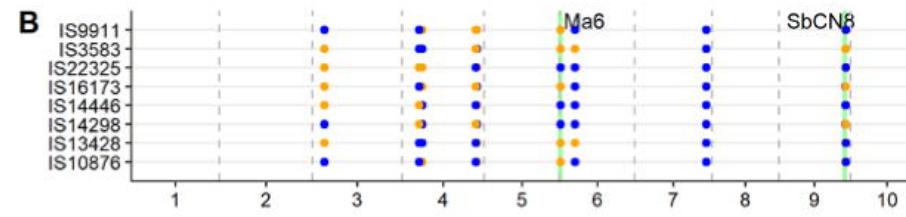
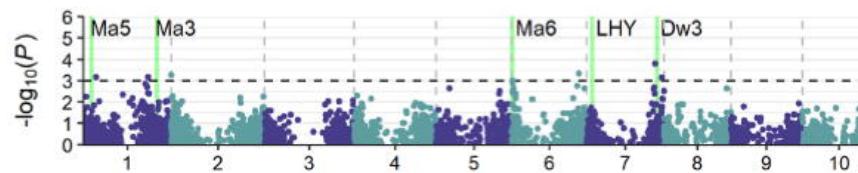
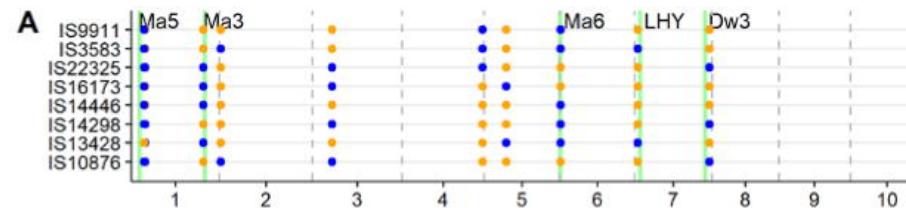



700 **Table 3** Summary of joint-linkage QTLs for days to flowering, days to maturity, and plant height in the sorghum BC-NAM population
 701 within three environments in Ethiopia.

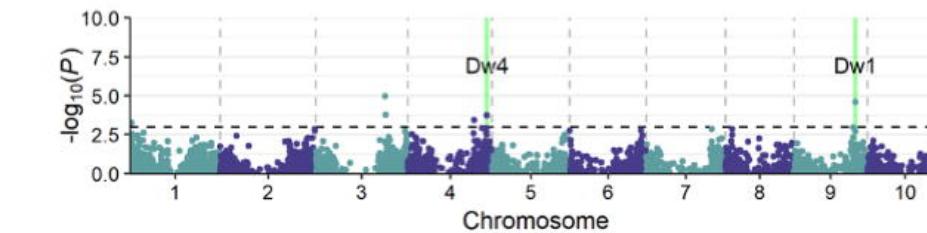
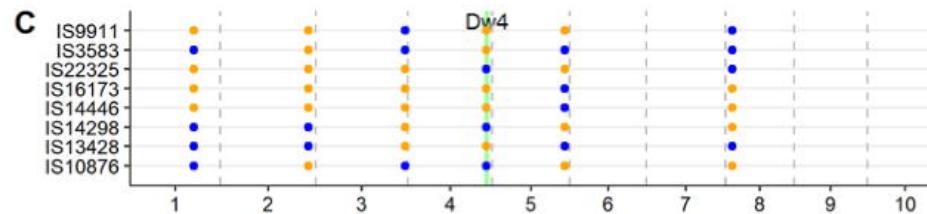
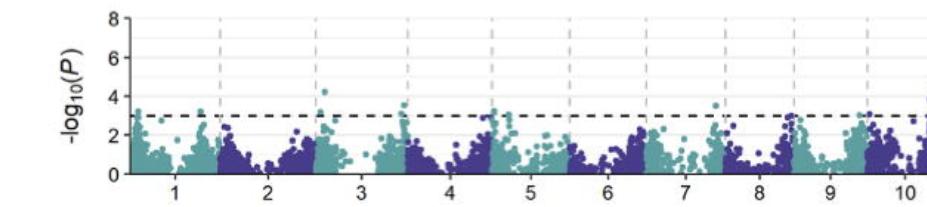
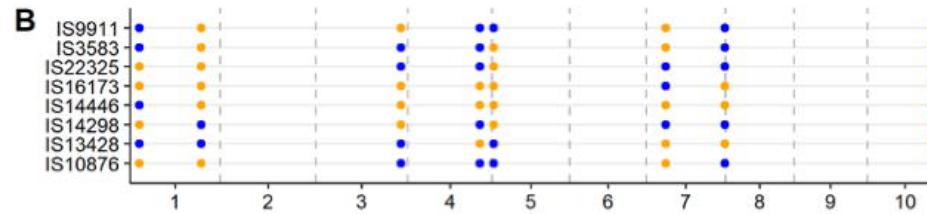
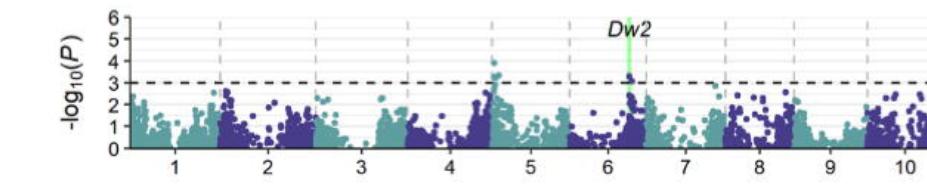
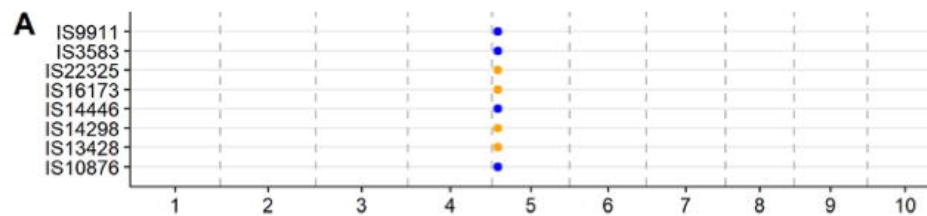



Environment	Trait	Peak marker	Chr.	df	F	pr > F	SuppLeft	SuppRight	Putative		
									Gene symbol	Nearest gene locus (v2.1)	Distance to gene (bp)
Kobo	DF	S06_1013548	6	8	6.47	3.47E-08	S06_839246	S06_1015768	<i>Ma6</i>	Sobic.006G004400	339868
Kobo	DF	S04_66709806	4	8	4.18	6.50E-05	S04_66440177	S04_66769090		Sobic.004G344400	60961
Kobo	DF	S02_1473275	2	8	6.42	4.16E-08	S02_661484	S02_1928202		Sobic.002G020600	468271
Kobo	DF	S07_61787113	7	8	6.44	3.91E-08	S07_61685379	S07_61830028	<i>DREB1A</i>	Sobic.007G181500	1585087
Kobo	DF	S07_2790815	7	8	4.83	7.99E-06	S07_2409627	S07_3325569	<i>LHY</i>	Sobic.007G047400	1917837
Kobo	DF	S01_59597244	1	8	3.59	4.18E-04	S01_59338324	S01_59883588	<i>Ma3</i>	Sobic.001G394400	1247006
Kobo	DF	S05_18138589	5	8	3.13	0.001691	S05_14366853	S05_20163692		Sobic.005G087700	5609678
Kobo	DF	S01_11607591	1	8	3.78	2.32E-04	S01_11386683	S01_11886441		Sobic.001G144300	49293
Kobo	DF	S01_10555018	1	8	2.94	0.003001	S01_10247997	S01_10593495	<i>Ma5</i>	Sobic.001G087100	3809949
Kobo	DF	S03_16142624	3	8	2.98	0.002689	S03_15942049	S03_16218825			
Kobo	DM	S09_11156756	9	8	4.09	8.43E-05	S09_10596506	S09_12672409		Sobic.009G075500	1337600
Kobo	DM	S02_2589901	2	8	4.06	9.34E-05	S02_2102626	S02_2640396		Sobic.002G020600	643604
Kobo	DM	S04_67157823	4	8	3.54	4.88E-04	S04_67072151	S04_67198307		Sobic.004G344400	383676
Kobo	DM	S07_2397109	7	8	3.33	9.12E-04	S07_2151109	S07_2490680	<i>LHY</i>	Sobic.007G047400	2311543
Kobo	PH	S05_4727529	5	8	3.60	4.00E-04	S05_4145747	S05_4937971		Sobic.005G047300	224067
Meiso	DF	S09_55253639	9	8	5.98	1.70E-07	S09_54896499	S09_55434757		Sobic.009G203700	1998
Meiso	DF	S06_769807	6	8	3.31	9.82E-04	S06_655269	S06_1403191	<i>Ma6</i>	Sobic.006G004400	96127
Meiso	DF	S04_16522520	4	8	4.99	4.53E-06	S04_16069905	S04_16556835		Sobic.004G116500	4267838
Meiso	DF	S09_55566776	9	8	5.14	2.73E-06	S09_55532054	S09_55938912	<i>SbCN8</i>	Sobic.009G199900	588776
Meiso	DF	S04_13855981	4	8	5.12	2.98E-06	S04_13853632	S04_13917045		Sobic.004G116500	1601299
Meiso	DF	S06_12653709	6	8	3.26	0.001143	S06_9646715	S06_14381529			

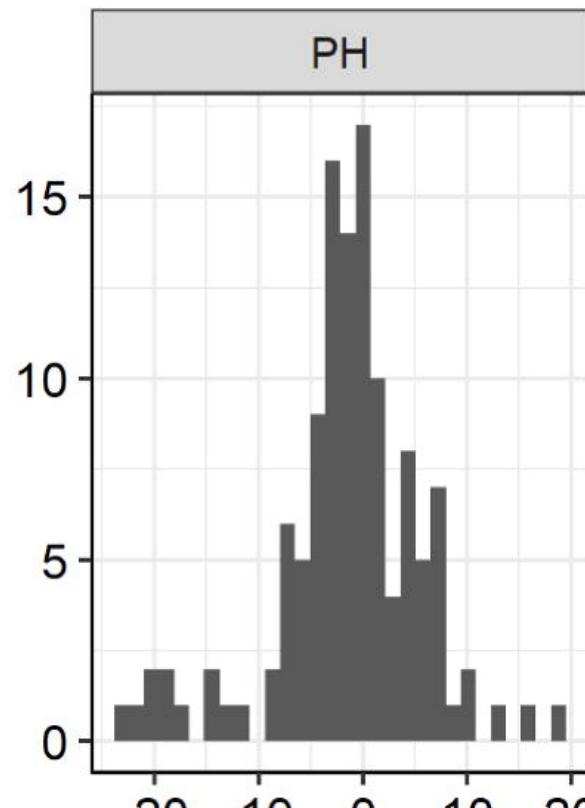
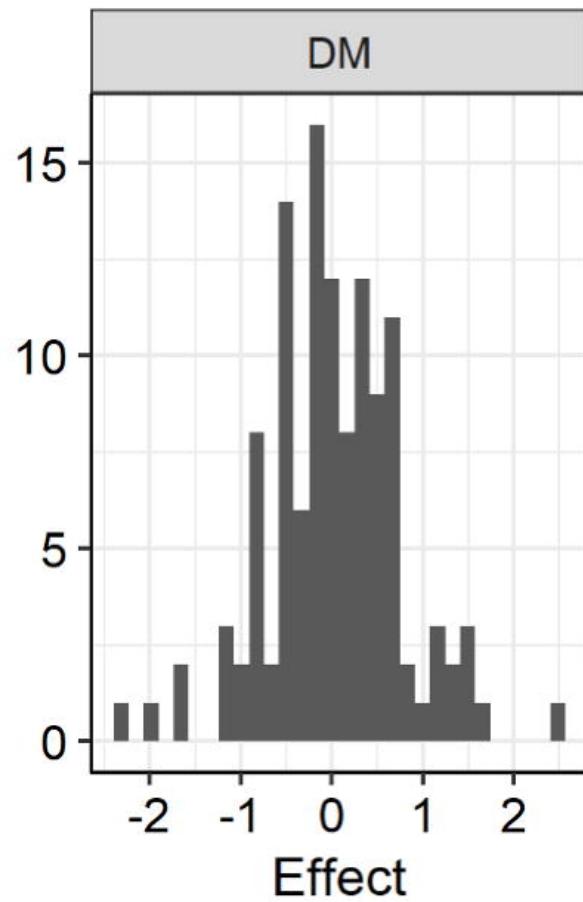
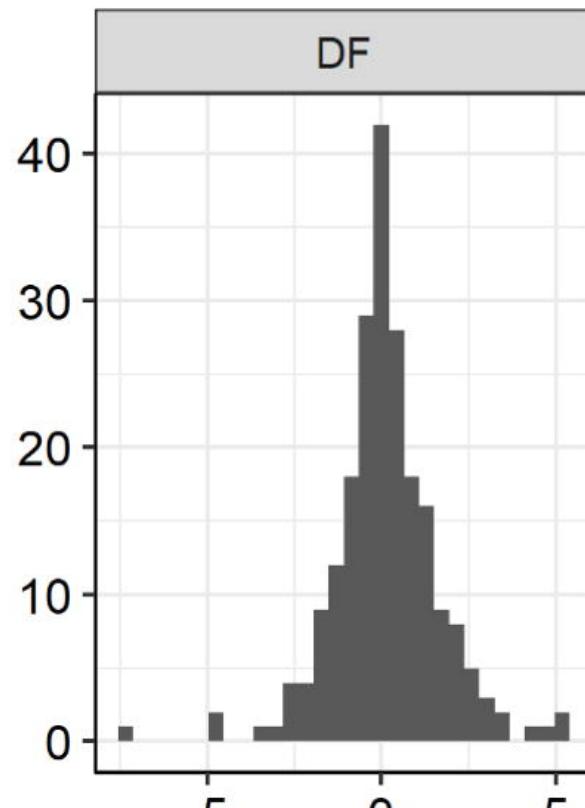
Environment	Trait	Peak marker	Chr.	df	F	pr > F	SuppLeft	SuppRight	Putative		
									Gene symbol	Nearest gene locus (v2.1)	Distance to gene (bp)
Meiso	DF	S03_9562056	3	8	3.76	2.38E-04	S03_9351521	S03_9933265		Sobic.003G047500	5233463
Meiso	DF	S07_59174992	7	8	4.21	5.67E-05	S07_59045609	S07_59175122		Sobic.007G181500	1025636
Meiso	DF	S04_61703667	4	8	5.65	5.12E-07	S04_61666027	S04_61799507		Sobic.004G278000	285170
Meiso	DF	S04_61189804	4	8	3.66	3.30E-04	S04_61086309	S04_61351509		Sobic.004G278000	226189
Meiso	DM	S03_4296563	3	8	3.58	4.25E-04	S03_3143857	S03_4692087		Sobic.003G047500	29211
Meiso	DM	S07_63812357	7	8	3.16	0.001514	S07_63735244	S07_63841786		Sobic.007G223300	32481
Meiso	DM	S01_60775739	1	8	3.16	0.001541	S01_60756434	S01_61130542	<i>Ma3</i>	Sobic.001G394400	68511
Meiso	DM	S03_66315339	3	8	3.33	9.26E-04	S03_65401842	S03_66982156			
Meiso	DM	S07_39002977	7	8	3.07	0.002034	S07_28384450	S07_43367002		Sobic.007G047400	356036
Meiso	PH	S05_1347591	5	8	4.63	1.48E-05	S05_1249109	S05_1369633		Sobic.005G016800	156917
Meiso	PH	S01_7441746	1	8	4.39	3.19E-05	S01_7404178	S01_7816131		Sobic.001G093900	231461
Meiso	PH	S10_53361382	10	8	3.51	5.19E-04	S10_52253640	S10_53425481		Sobic.010G190700	402603
Meiso	PH	S07_15802358	7	8	4.23	5.36E-05	S07_14400532	S07_15848206		Sobic.007G073400	7720772
Meiso	PH	S07_63735244	7	8	3.23	0.001226	S07_63729440	S07_63812357		Sobic.007G223300	109594
Meiso	PH	S01_57492765	1	8	3.39	7.54E-04	S01_56872993	S01_58353388		Sobic.001G355400	161049
Meiso	PH	S03_68719462	3	8	3.23	0.00126	S03_68194592	S03_69105211		Sobic.003G366200	453237
Meiso	PH	S04_57961133	4	8	2.98	0.002658	S04_57891339	S04_58054962		Sobic.004G239500	73776
Sheraro	DF	S01_14173191	1	8	5.93	1.93E-07	S01_13802194	S01_14204863	<i>Ma5</i>	Sobic.001G087100	7428122
Sheraro	DF	S02_54808960	2	8	5.66	4.88E-07	S02_52762398	S02_55045235		Sobic.002G189500	2719331
Sheraro	DF	S06_2410807	6	8	3.97	1.23E-04	S06_2309640	S06_2527301	<i>Ma6</i>	Sobic.006G004400	1737127
Sheraro	DF	S02_11721204	2	8	4.44	2.71E-05	S02_11565230	S02_12060606		Sobic.002G083600	2779915
Sheraro	DF	S07_4611519	7	8	3.59	4.05E-04	S07_4387063	S07_4845051	<i>LHY</i>	Sobic.007G047400	97133
Sheraro	DF	S03_12112173	3	8	2.93	0.003119	S03_11983569	S03_12249241		Sobic.003G161500	7158693
Sheraro	DF	S05_55955575	5	8	2.79	0.004703	S05_55623734	S05_55982630		Sobic.005G212500	4294506


Environment	Trait	Peak marker	Chr.	df	F	pr > F	SuppLeft	SuppRight	Putative		
									Gene symbol	Nearest gene locus (v2.1)	Distance to gene (bp)
Sheraro	DM	S01_60486891	1	8	4.55	1.90E-05	S01_60324085	S01_60709065	Sobic.001G390700	30740	
Sheraro	DM	S03_67536370	3	8	3.06	0.002074	S03_67517025	S03_67586338	Sobic.003G356000	88673	
Sheraro	DM	S04_55907819	4	8	3.28	0.001067	S04_55850577	S04_55966959	Sobic.004G216700	304	
Sheraro	DM	S01_63862755	1	8	3.91	1.50E-04	S01_63492203	S01_64311801	Sobic.001G416200	1274755	
Sheraro	DM	S08_53841495	8	8	3.58	4.19E-04	S08_53238378	S08_53948033	Sobic.008G185400	803711	
Sheraro	DM	S01_53124883	1	8	2.87	0.0037	S01_52987408	S01_53286427	Sobic.001G329600	1405787	
Sheraro	PH	S04_63248157	4	8	5.70	4.20E-07	S04_62881165	S04_63584799	Sobic.004G299900	47292	
Sheraro	PH	S01_51683526	1	8	5.36	1.32E-06	S01_51120942	S01_52535122	Sobic.001G298500	908638	
Sheraro	PH	S03_72144334	3	8	4.43	2.75E-05	S03_71627378	S03_72580893	Sobic.003G409000	461143	
Sheraro	PH	S08_5618725	8	8	4.31	4.16E-05	S08_5128741	S08_5688922	Sobic.008G057500	349019	
Sheraro	PH	S02_71623380	2	8	3.23	0.001231	S02_71459904	S02_72094650	Sobic.002G370800	1314618	
Sheraro	PH	S05_58548344	5	8	2.92	0.003168	S05_58190543	S05_58827862	Sobic.005G212500	1701737	

Population	Marker
	IS10876
	IS14298
	IS14446
	IS14556
	IS15428
	IS16044
	IS16173
	IS2205
	IS22325
	IS23988
	IS3583
	IS9911

Effect