

The Hybrid Drive: a chronic implant device combining tetrode arrays with silicon probes for layer-resolved ensemble electrophysiology in freely moving mice

Matteo Guardamagna^{1,†}, Ronny Eichler¹, Rafael Pedrosa¹, Arno Aarts³,
Arne F. Meyer^{1,2,*} and Francesco P. Battaglia^{1,*,†}

¹Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands

²Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK

³ATLAS Neuroengineering, Leuven, Belgium

* Co-senior author

†Correspondence: matteo.guardamagna@donders.ru.nl (M.G.), f.battaglia@science.ru.nl (F.P.B.)

Summary

1 Understanding the function of brain cortices requires simultaneous investigation at multiple spatial and
2 temporal scales and to link neural activity to an animal's behavior. A major challenge is to measure
3 within- and across-layer information in actively behaving animals, in particular in mice that have become
4 a major species in neuroscience due to an extensive genetic toolkit. Here we describe the Hybrid Drive, a
5 new chronic implant for mice that combines tetrode arrays to record within-layer information with silicon
6 probes to simultaneously measure across-layer information. The design of our device combines up to 14
7 tetrodes and 2 silicon probes, that can be arranged in custom arrays to generate unique areas-specific (and
8 multi-area) layouts. We show that large numbers of neurons and layer-resolved local field potentials can
9 be recorded from the same brain region across weeks without loss in electrophysiological signal quality.
10 The drive's lightweight structure (≈ 3.5 g) leaves animal behavior largely unchanged during a variety of
11 experimental paradigms. We demonstrate how the data collected with the Hybrid Drive allow state-of-
12 the-art analysis in a series of experiments linking the spiking activity of CA1 pyramidal layer neurons to
13 the oscillatory activity across hippocampal layers. Our new device fits a gap in the existing technology
14 and increases the range and precision of questions that can be addressed about neural computations in
15 freely behaving mice.

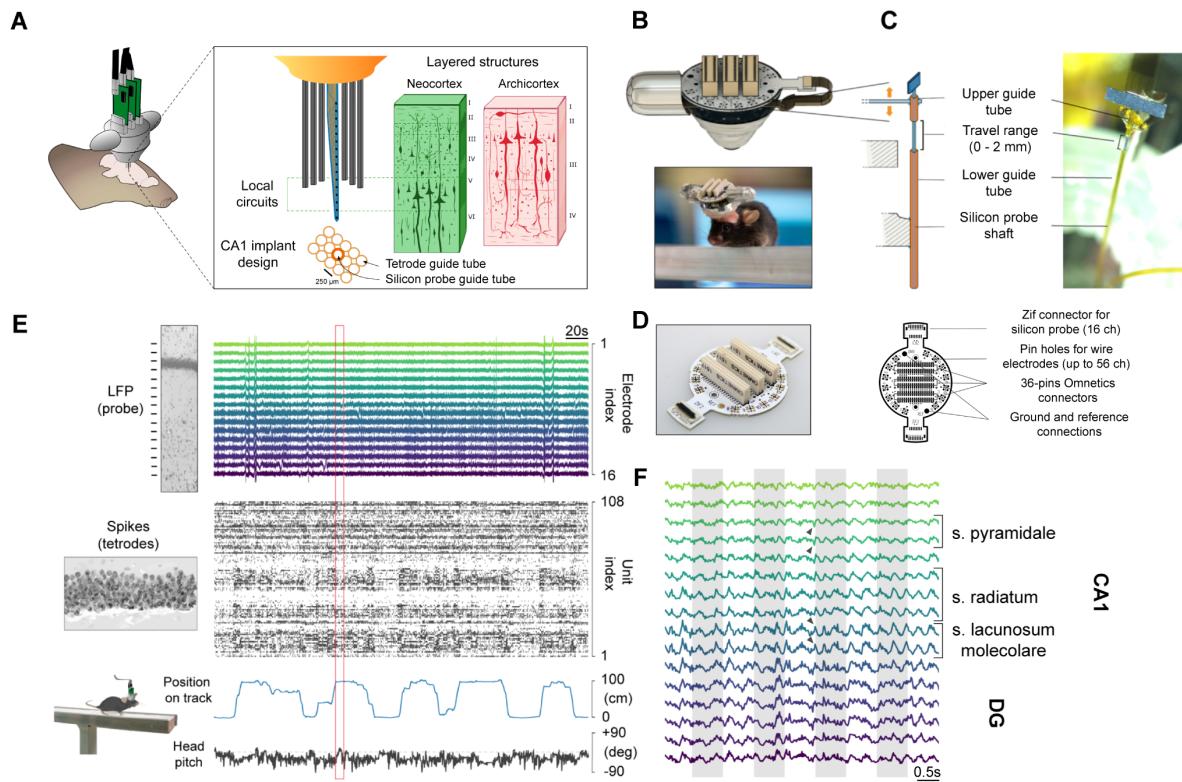
Introduction

16 A major goal in neuroscience is to understand the function of the nervous system at a variety of levels,
17 from single cells to entire networks that mediate complex behaviors such as navigation, foraging, and
18 social interaction in natural settings. The mouse has emerged as an important species in neuroscience
19 due to the availability of genetic tools that can reveal the precise mechanisms at the circuit level and
20 link these to the animal's behavior (Luo et al., 2008). In particular, many brain structures (including the
21 cortex and the hippocampus) are organized in layers with information processing within and also across
22 the layers (Andersen et al., 1971, Amaral and Witter, 1989, Andersen et al., 2006). Simultaneously
23 measuring neural activity at these two dimensions while an animal is interacting with its environment
24 remains a major challenge, especially in the mouse with its relatively small size (body weight of an adult
25 male mouse \approx 25/30 grams). To address this challenge, we developed a chronic implant to measure neural
26 activity within and across layers in freely moving mice.

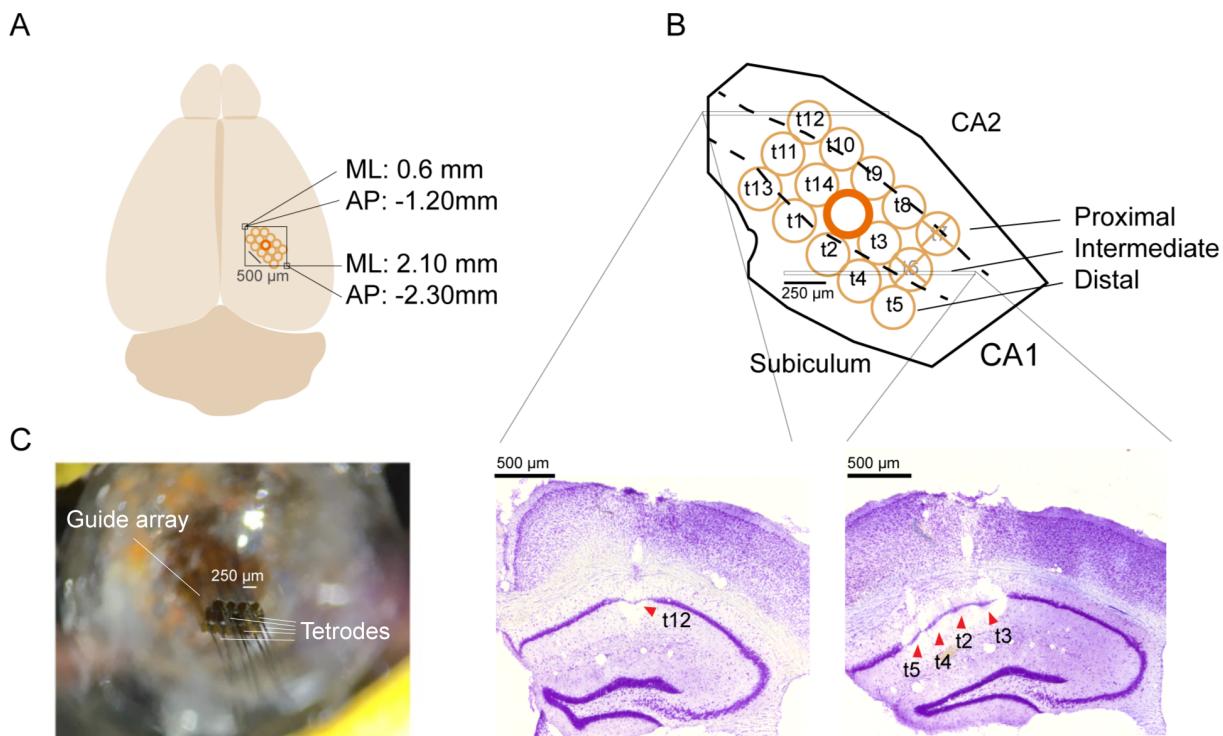
27 Tetrodes are a standard method for neuronal recordings in behaving animals, in particular for chronic
28 recordings of many neurons for extended time periods in freely moving rodents (McNaughton et al., 1983,
29 Wilson and McNaughton, 1993, Gothard et al., 1996). The precision, stability and bio-compatibility of
30 tetrode implants enable recordings for months from the same local circuit (Voigts et al., 2013, 2020).
31 Modern tetrode implants enable highly flexible arrangements of tetrodes that can easily be modified
32 depending on the set of target areas. By performing small and repeated adjustments of individual tetrodes,
33 it is possible to maximize cell yield and to target specific layers (Harris et al., 2000) or structures deep
34 in the brain (Chen et al., 2020) without the need to remove overlying structures as for optical imaging
35 methods. However, a disadvantage of tetrodes is that they do not easily allow for measuring the activity
36 across layers with a well-defined geometrical arrangement of recording sites. High-density silicon probes
37 (Buzsáki et al., 2015), on the other end, offer unparalleled opportunities for populations recordings across
38 several layers or even from multiple brain regions in head-fixed (Steinmetz et al., 2019) or freely moving
39 animals (Steinmetz et al., 2021). Their geometric design – electrodes are typically arranged along one or
40 more shafts – enables superior anatomical localization, given the well-defined distances between recording
41 sites. Yet, silicon probes lack the flexibility of tetrodes arrays which can easily be arranged in unique
42 geometric layouts to sample different locations along a single layer (or adjacent areas). While custom
43 silicon probe designs are possible, they are typically expensive and tailored to a single brain structure.

44 Ideally, one would combine in a single device the flexibility and sampling capability of custom tetrode
45 arrays, to record neural activity within small layers, and silicon probes to record activity across layers
46 and structures. Microdrives combining tetrodes and silicon probes have been developed for rats (Headley
47 et al., 2015, Michon et al., 2016). However, mouse-specific designs are strictly limited by the weight
48 and the available space on the head of the animals. Here we describe the Hybrid Drive, a novel chronic
49 implant that combines the advantages of tetrodes and flexible-shaft silicon probes in a single, lightweight
50 device. A core feature of the Hybrid Drive is its ability to pack up to 14 tetrodes and 2 silicon probes in

51 small arrays. The design of the array can easily be adjusted depending on the anatomical or functional
52 organization of the target area (e.g., the proximo-distal organization of CA1 or the tonotopic organization
53 of sensory cortices). The array can target a single area, two adjacent areas or even be divided into two or
54 more bundles to target distant regions. Similarly, the choice of the contact displacement of the flexible-
55 shaft silicon probe can be adapted to match the three-dimensional organization of the desired brain areas.
56 Importantly, the overall weight of the implant (\approx 3.5 grams) enables studies in freely moving animals,
57 including mice.


58 We show that the ability of the Hybrid Drive to record single cells with tetrodes is not affected by
59 the presence of a silicon probe (and vice versa) and patterns of behavior are largely unchanged with
60 respect to other implant device. We further demonstrate the potential of the Hybrid Drive in a series
61 of experiments in freely moving mice, focusing on recordings from the hippocampal CA1 region. First,
62 we show that the interactions of single cells and layer-specific local field potentials in CA1 strongly vary
63 with the animal's behavior, across slow and fast time scales. Second, we show that single cells in the
64 hippocampal pyramidal layer integrate across-layer information, in addition to spatial variables typically
65 studied in navigation experiments. This integration is layer-specific, is consistent across different animals,
66 and improves the prediction accuracy of the cells' responses. These results already demonstrate that the
67 Hybrid Drive can lead to novel insights into the interactions between neural processes occurring within
68 and across layers and the animal's behavior.

Results

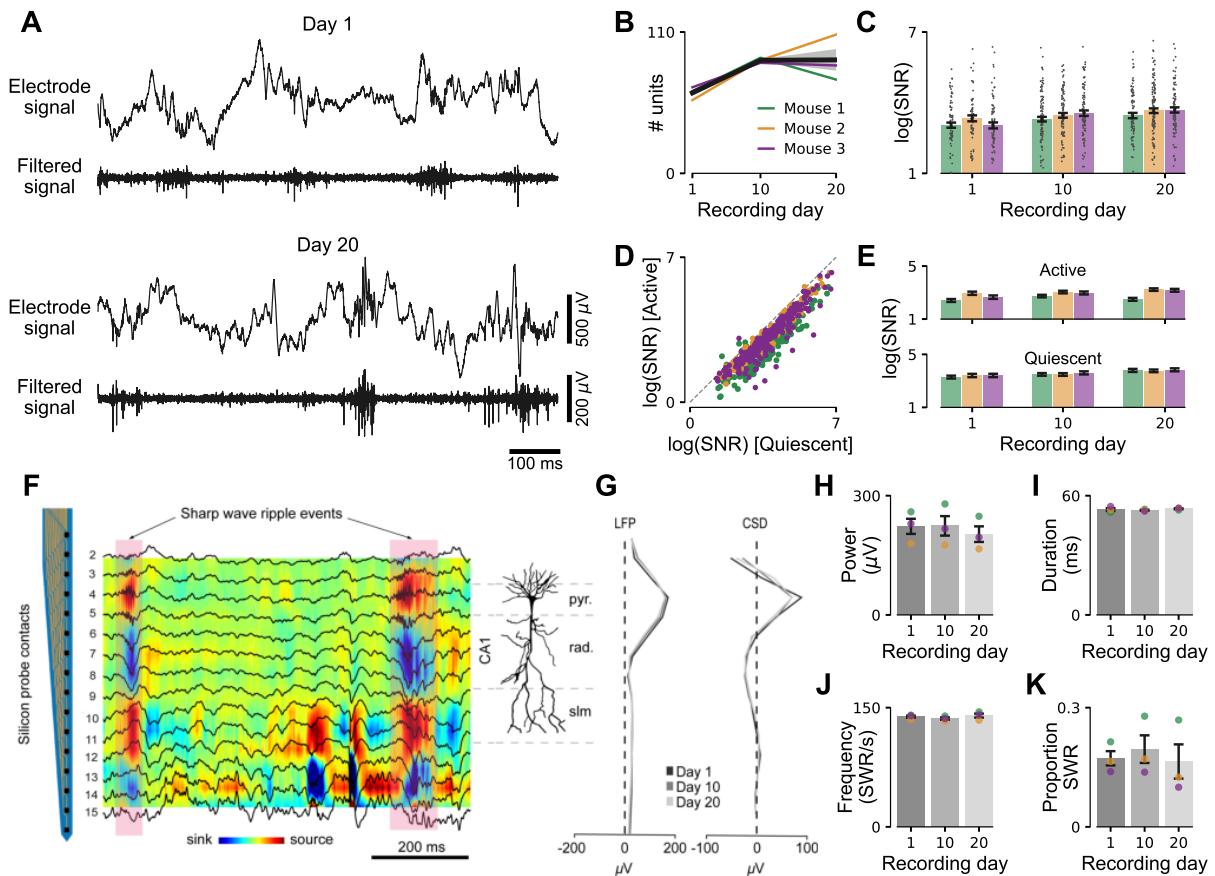

A chronic implant for simultaneous measurements of within-layer and across-layer neural activity in freely moving mice.

69 The Hybrid Drive consists of a custom chronically implantable tetrode drive (based on an existing implant
70 design; Voigts et al. (2013)) which can include up to two silicon probes (Figure 1A). The 14 independently
71 movable tetrodes enable flexible recordings of local activity, e.g., from neurons within the same cortical
72 or hippocampal layer, while the two movable silicon probes provide across-layer information. In order
73 to tightly pack the tetrodes and the silicon probes in a single drive body and polymide tube array we
74 developed a new custom electrode interface board (EIB; Figure 1D) combining two lateral ZIF connectors
75 (16 channels each) and 56 pin holes for wire electrodes - integrated with three 36-pins Omnetics connectors.

76 The use of Omnetics connectors on the EIB ensures compatibility with most modern neural recording
77 systems, including the Open Ephys acquisition system (Siegle et al., 2017). Another unique feature of the
78 implant is the flexible design of the guide array holding the tetrodes and the silicon probes (Figure 1A).
79 When choosing the target area of interest the user should carefully plan the geometrical displacement of
80 the tetrode tube arrays. Briefly, each tube segment should be stacked and glued together to obtain the
81 desired shape (Figure 1A); 5x3 rectangle). Subsequently, the whole guide tube array can be glued at a

Figure 1: Simultaneous measurement of within-layer and across-layer electrophysiological activity in a freely moving mouse. (A) Neural activity is recorded using a chronic implantable “Hybrid Drive” that contains 14 tetrodes and 1–2 silicon probes. The silicon probes record neural activity across layers of a given structure, while tetrodes can record activity of single cells from within a single layer. Example 5 x 3 array design for dorsal CA1 recordings. Mouse brain illustration adapted from SciDraw (doi.org/10.5281/zenodo.3925919). (B) 3D model of a fully-assembled Hybrid Drive. Lateral plastic cone shields protect the flex cables and ZIF connectors of the silicon probes. (C) Left, illustration of the spring-screw mechanism for independently movable silicon probes and tetrodes. Right, example photo of a silicon probe positioned in the Hybrid Drive. Bottom, photo of the Hybrid Drive implanted in a 5 month old C57BL6/J mouse. (D) Left, EIB picture. Right, illustration of the EIB design. The two lateral ZIF connectors for the silicon probes are integrated with the 36-pins Omnetics connectors in a compact design. 56 pin holes for wire electrodes allow to include up to 14 tetrodes. Ground and reference connections are positioned in between the ZIF and Omnetics connectors. (E) Example traces of neural and behavioral variables simultaneously recorded with the Hybrid Drive in an animal traversing a linear track. Top: Local field potential (LFP) recordings from the silicon probe, spanning dorsal CA1. Middle: raster plot of single units recorded with tetrodes in the CA1 pyramidal layer. Bottom: head pitch and the animal’s position on the linear track. (F) Zoomed-in LFP traces for the region marked by the red rectangle in E. LFP traces show typical markers of CA1 layers, including depth-dependent oscillation amplitude and phase reversal in deeper layers (highlighted by dark grey arrows). Shaded gray regions for easier visualization of temporal alignment.

Figure 2: The array design can be adapted to match the shape and the organization of the target brain area. (A) Dorsal CA1 design. 5x3 tube array covering the dorsal CA1 area along its proximo-distal axis. Coordinates for the elliptic craniotomy are: top-left corner at AP: -1.20 mm; ML: 0.6 mm relative to bregma; bottom-right corner at AP: -2.30 mm; ML: 2.10 mm relative to bregma. The guide tube array is represented in orange, with the mapping of individual tetrodes (and silicon probe) over the target structures. The silicon probe (represented by the thicker tube in the image) is designed to cross all CA1 layers, while the tetrodes target the pyramidal layer. Brain illustration adapted from SciDraw (doi.org/10.5281/zenodo.3925941). (B) Organization of the bundle array over the CA1 region of the hippocampus. The bundle has been design to cover and sample as much as possible along CA1 proximo-distal axis. The position of individual tetrodes (and silicon probe) is mapped within the guide array during drive building. Then, individual tetrode positions can be traced back in the target area after histological procedures. Bottom, Nissl-stained coronal section showing recording locations in a more anterior brain slice (where the electrolytic lesion of t12 is visible) and a more posterior one (where the electrolytic lesions of t5,t4,t3,t2 are visible). t6 and t7 never reached the CA1 pyramidal layer. (C) Picture of the bottom array before cutting and plating. All tetrodes are drove out of the guide array, while the silicon probe shaft is retracted to avoid damage during the cutting procedure.


82 specific angle to the drive body. This is possible thanks to the silicon probe shaft flexibility, a key aspect
83 of the Hybrid Drive's design (Herwik et al., 2011). It facilitates the insertion of the probe in the guide
84 array during drive building (Figure S1) and provides additional protection from mechanical shocks, e.g.,
85 in the animal's home cage or during experiments. Thanks to these features the position of the silicon
86 probes relative to the tetrodes, or the angle of the overall assembly, can easily be modified depending on
87 brain areas under investigation (Figure 2). The position of the tetrodes and the silicon probes in the guide
88 tube array can be mapped during drive building and, at the end of the experiments, it can be matched
89 to the final recording location in Nissl-stained brain sections (Figure 2B). In the current design, we
90 used one or two 16-channel probes (E16R_60_S1_L20_NT with 60 μ m pitch between contacts, ATLAS
91 Neuroengineering, Belgium), optimized for long-term recordings in the hippocampus, a brain region that
92 is widely being studied in freely moving rodents. The weight of the whole assembly is \approx 3.5 g. This enables
93 the study of naturalistic behaviors, such as navigation, exploration, and social interactions in unrestrained
94 animals. Mice implanted with a Hybrid Drive targeting the hippocampal CA1 region readily explored the
95 environment while enabling recordings from large numbers cells in the CA1 pyramidal layer together with
96 local field potentials (LFPs) from all CA1 layers (Figures 1E,F) during a variety of behavioral paradigms.

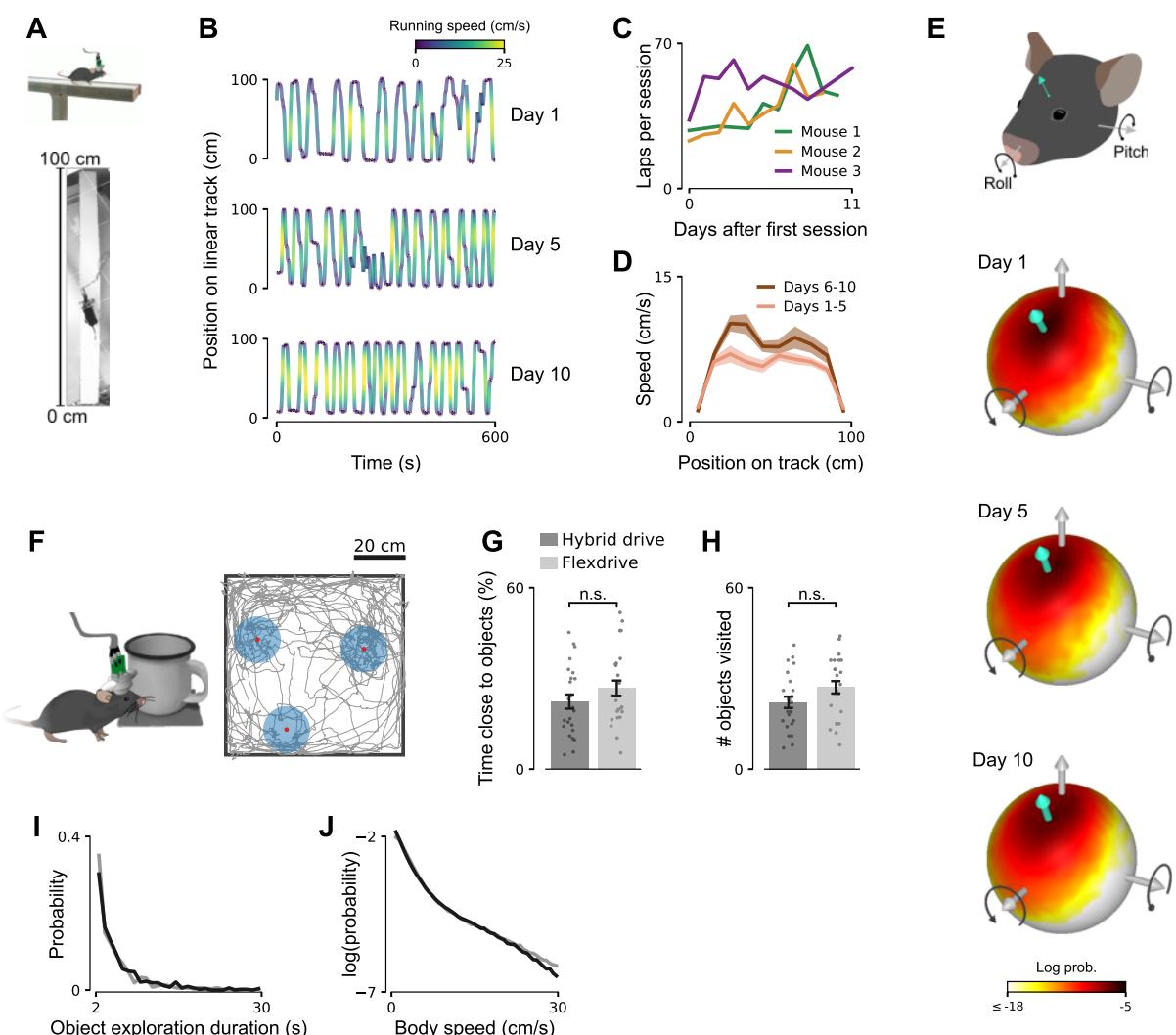
The Hybrid Drive enables stable recordings of neural activity across weeks

97 We first checked that the presence of the silicon probe did not interfere with the quality of concomitant
98 tetrode recordings (and vice versa; Figure 3). To quantify recording quality, the tetrodes of the Hybrid
99 Drive were implanted in the pyramidal layer of dorsal CA1 while the linear silicon probe spanned the
100 entire CA1 region, orthogonal the pyramidal layer (Figure 1E). Recordings were performed in three
101 animals in a variety of tasks across at least 20 days. For each animal, experimental day 1 started when
102 the majority of tetrodes exhibited sharp wave ripple (SWR) complexes during rest sessions in the home
103 cage or clearly discernible theta oscillations during locomotion.

104 Single units could consistently be recorded across weeks (Figure 3B). The number of isolated units
105 was slightly lower on the first recording days, potentially resulting from uncertainty in positioning the
106 tetrode tips in the pyramidal layer. Fine adjustments of the depths of individual tetrodes enabled the
107 precise placement of tetrodes in the pyramidal layer (\approx 80 microns thickness) to maximize the yield of
108 simultaneously recorded cells.

109 To test the quality of detected spikes, we estimated signal-to-noise (SNR) measures (Meyer et al., 2018,
110 Magland et al., 2020) for each tetrode channel for different recording days. Across all three animals, SNR
111 increased across days (Figure 3C). We wondered if these changes in SNR across days can be explained by
112 changes in behavior. To test this, we segmented the data into "Active" and "Quiescent" periods based on
113 signals measured using the head-mounted accelerometer (Meyer et al., 2018) and computed SNR values for
114 each condition. While cells had a lower SNR during the "Quiescent" compared to the "Active" condition
115 (Figure 3D), this difference in SNR could not explain changes in SNR within conditions across days

Figure 3: Neural recording quality is not affected when combining tetrodes with silicon probe recordings. (A) Broadband electrode signal from an example tetrode channel and high-pass filtered signal for the same channel on the first recording day (day 1; top) and 19 days later (day 20, bottom). (B) Number of isolated single units from 13 tetrodes positioned in the CA1 pyramidal layer for different recording days (mean day 1: 62.6 ± 5.1 , mean day 10: 88 ± 2 , mean day 20: 88.3 ± 17.8). Colors indicate different animals. (C) Signal-to-noise ratio (SNR) for different recording days. Gray dots indicate SNR estimates for single units. Same data as in B. Mean \pm SEM. (D) SNR for different behavioral states (Active, Quiescent) pooled across days. Same data as in B. (E) The same as in C but separated into Active and Quiescent states. Increases in SNR in the presence of silicon probes can not be explained by changes in behavior across days. (F) Current-source density (CSD) computed from silicon probe targeting different CA1 layers during a rest session in the animal's homecage. Superimposed LFP signals are aligned with CSD sink and sources. Silicon probe channels shown to the left. Example sharp wave ripple (SWR) events indicated by shaded red areas. (G) High-frequency oscillation (100-250 Hz) power profiles along the silicon probe for LFP (left) and CSD (right) signals. The profiles remain stable across days (Day 1, 10 and 20) with a clear peak in the pyramidal layer electrode. (H-K) SWR power, SWR duration, SWR frequency, and proportion of SWR events across recording days (during quiescent state). One home cage rest session per animal (each approx. 60 min).


116 (Figure 3E). This suggests that the Hybrid Drive can reliably record neural ensembles for an extended
117 period, similar to what is known for standard tetrode implants (Voigts et al., 2013, 2020).

118 Finally, we investigated common electrophysiological markers to assess the recording quality of the
119 chronically implanted silicon probe. We focused on sharp wave ripple (SWR), distinct oscillatory patterns
120 in the LFP often associated with memory-related processes during sleep (Buzsáki, 2015). Figure 3F
121 shows unfiltered LFP signals exhibiting SWR events, together with the Current Sources Density (CSD)
122 estimated from the LFP data. The SWR power depth profile maintained a consistent shape throughout
123 the different weeks (Figure 3G, left). Similar results were found after applying CSD analysis to extract
124 layer-independent oscillatory patterns (Figure 3G, right). The stability of the probe and the quality of
125 the recorded signals were confirmed by multiple SWR measures. We found no significant differences in
126 either SWR power (Figure 3H; One-way ANOVA, $p = 0.82$), SWR duration (Figure 3I; One-way ANOVA,
127 $p = 0.69$), SWR frequency (Figure 3J; One-way ANOVA, $p = 0.55$) and proportion of detected SWR
128 events (Figure 3J; One-way ANOVA, $p = 0.86$) between recording days 1, 10, and 20.

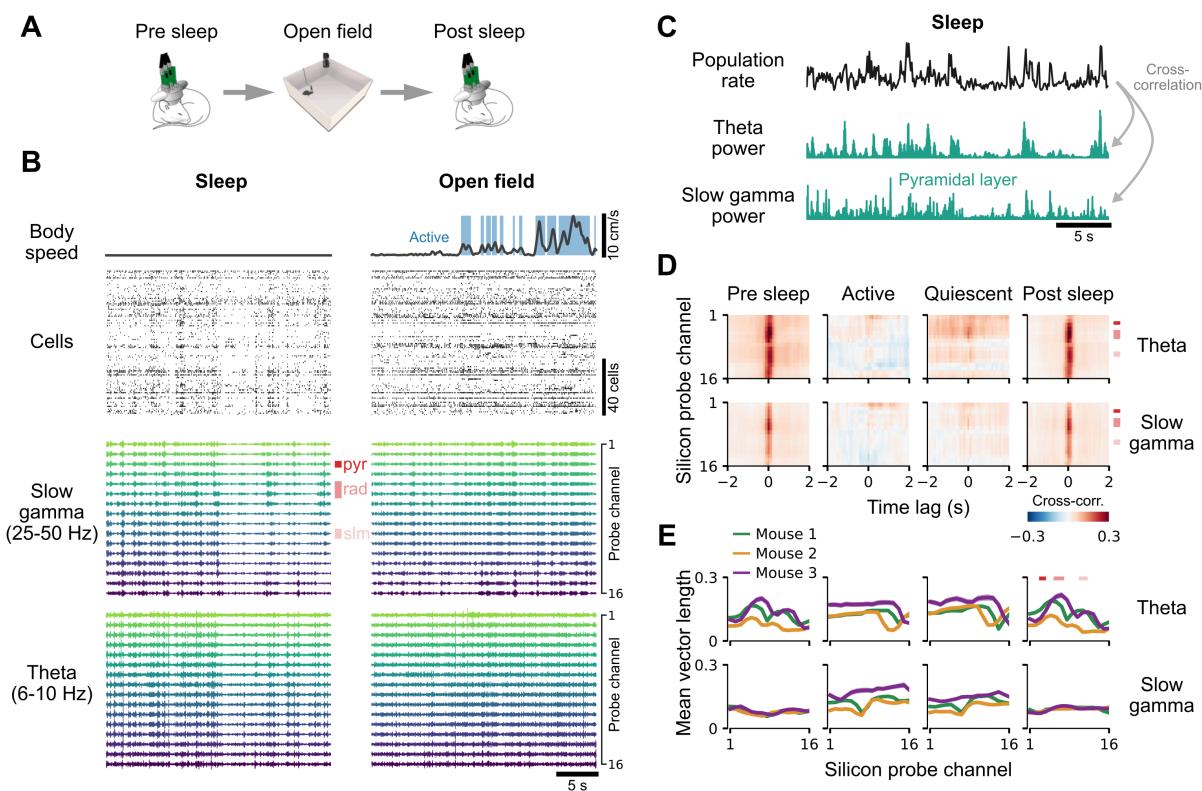
Patterns of behavior are minimally disturbed by the drive implant

129 Next, we investigated the impact of the Hybrid Drive implant on gross locomotor and exploratory animal
130 behavior. Previous work has shown that mice tolerate tetrode implants such as the flexDrive with only
131 minimal changes in natural behavior (Voigts et al., 2013, Meyer et al., 2018, Voigts et al., 2020). To test
132 if this is also true for the Hybrid Drive with the addition of silicon probes, we first analyzed locomotion
133 patterns of mice traversing a linear track (Figure 4A). Animals received a reward at the ends of the track
134 every time they completed a full lap (end-to-end run). Even without food deprivation, animals learned
135 to consistently move from one end to the other to receive a reward; their running behavior became more
136 stereotypical with increasing numbers of laps across days (Figure 4B). This increase was consistent across
137 animals (Figure 4C) and was statistically significant in two of the three animals (Mouse 1, +2.1 laps per
138 day, $p = 0.03$; Mouse 2, +2.6 laps per day, $p = 0.004$; Mouse 3, +1.7 laps per day, $p = 0.48$; Wald Test
139 on slope of the linear fit). Mice were also running faster as indicated by the change in the running speed
140 profile (Figure 4D; permutation test days 1–5 vs days 6–10, $p = 0.029$). We examined more closely the
141 potential effects of the size and weight of the drive on the behavior of an example mouse, paying attention
142 to head movements across days (Figure 4E). Starting from recording day 5 on the linear track, the mouse
143 was holding its head closer to its natural position (typical pitch ≈ -25 deg; Meyer et al. (2018)). On day
144 10, we observed a decrease in variability, potentially resulting from more stereotypical running (day 1,
145 pitch -34.9 ± 14.4 deg, roll 2.2 ± 8.7 deg; day 5, pitch -28.6 ± 15.3 deg, roll 3.1 ± 9.0 deg; day 10, pitch
146 -28.7 ± 11.5 deg, roll 2.7 ± 9.5 deg).

147 Finally, we compared exploratory behaviors in two-dimensional environments that contained a small
148 number of objects. Animals were free to explore a square environment (width: 75 cm) for 10 minutes.
149 This was repeated on the same recording day to yield 5–7 consecutive trials per animal per day. We

Figure 4: Patterns of behavior are minimally disturbed by the drive implant. (A) Mice implanted with a Hybrid Drive learned to traverse a linear track to receive rewards provided at the ends of the track. (B) 10-min example segments from different recording days (1, 5, and 10). Even without food deprivation, mice show increasingly stereotypical running behavior. Color denotes running speed. (C) Number of laps (end-to-end runs) per session. Data from three animals ($n=9, 10, 10$ sessions in mouse 1 (19.25 ± 4.04 minutes), 2 (29.15 ± 5.75 minutes), and 3 (25.17 ± 4.68 minutes), respectively). (D) Average running speed profiles for early (days 1-5, black line) and late (days 6-10, gray line) recordings. Mean \pm SEM. Same data as in B. (E) Log-probability distribution of head tilt for day 1 (top), 5 (middle), and day 10 (bottom) for the data shown in C (mouse 1). Illustration indicates pitch and roll axes. Turquoise arrow indicates mean orientation of vertical (ventral-dorsal) head axis. (F) Object exploration task in which mice are freely exploring three objects in a square arena (width = 75cm). Red dots indicate object centers. Shaded blue circles (radius = 10 cm) show the area around each object that was considered as close to the object. Gray line indicates position of the mouse's head in the arena for a 10-min trial. (G) Time close to objects for animals implanted with a Hybrid Drive (dark gray) or a flexDrive (light gray). Dots show single trials (10 min each). Number of trials: Hybrid Drive, $n=7, 12, 5$ trials in mouse 1, 2, 3, respectively; Flex drive, $n=12, 6, 6$ trials in mouse 4, 5, 6, respectively. Mean \pm SEM. (H) Number of objects visited per trial. Mean \pm SEM. Same data as in G. (I) Distribution of object exploration duration. Same data as in G. (J) Log-scaled distribution of body speed for animals implanted with a Hybrid Drive or flexDrive. Same data as in G.

150 tracked the animal's positions from camera recordings using a convolutional deep neural network trained
151 using transfer learning (Mathis et al., 2018). To obtain baseline measures of animals with a slightly
152 more lightweight neural implant (\approx 2 grams) without silicon probes, we implanted three animals with a
153 flexDrive (Voigts et al., 2013).


154 We found no difference in exploration patterns between animals implanted with a Hybrid Drive or a
155 more lightweight flexDrive. Animals spent similar amounts of time close to objects (Figure 4G; Wilcoxon
156 rank-sum test, $p = 0.17$) and visited a comparable number of objects during a trial (Figure 4H; Wilcoxon
157 rank-sum test, $p = 0.099$). There was also no discernible difference in object exploration duration (Figure
158 4I; permutation tests, $p = 0.17$) and in body speed (Figure 4J; permutation tests, $p = 0.23$).

159 We conclude that learning of goal-directed behaviors and the ability to explore, and interact with,
160 more complex environments were minimally affected by the presence and additional weight of our design.

Interactions of spiking and across-layer neural activity vary with behavioral state in freely moving mice

161 We next explored the capacity of the Hybrid Drive to identify interactions between the spiking activity
162 of single cells and across-layer LFP signals during different behaviors. Animals that can freely interact
163 with their environments show a wide range of behaviors, including active exploration, quiescence, and
164 sleep (Krakauer et al., 2017). To identify neural correlates of these behavioral “states”, mice implanted
165 with a Hybrid Drive in CA1 were free to explore a rectangular open field arena (Figure 5A). Behavioral
166 variables were measured using an external video camera and the head-mounted accelerometer. Before
167 and after the open field recording, mice were allowed to naturally transition to sleep in their home cages
168 while we recorded from the same cells as in the open field condition. Segmenting the open field recording
169 into “Active” (body speed \geq 2 cm/s) and “Quiescent” (body speed $<$ 2cm/s) periods using video data
170 allowed us to compare neural activity across four different conditions: “Pre sleep”, “Active”, “Quiescent”,
171 and “Post sleep”. To exclude movement periods during the home cage sleep condition, we focused on
172 periods during which mice were not moving their heads or bodies.

173 Figure 5B shows 30 s extracts of movement signals, spiking activity, slow gamma (25–50 Hz) and
174 theta (6–10 Hz) band LFP signals for a sleep and subsequent open field recording for an example animal.
175 During sleep, spiking activity and LFP signals across all layers showed strong co-fluctuations, possibly
176 reflecting cortical up and down states (Battaglia et al., 2004). These co-fluctuations extended across all
177 probe layers but were not present in the “Active” or the “Quiescent” open field conditions. To test if
178 this is true for the whole recording, we computed the cross-correlation between the population spike rate
179 (defined as the sum across all cells in 100 ms second bins) and the power in the different LFP channels
180 (Figures 5C,D). Cross correlations extended across all silicon probe electrodes and were strongest close to
181 the pyramidal layer from which the single cells were recorded (Figure 5D). In contrast, cross-correlations
182 were largely absent in the “Active” state and confined to the stratum radiatum in the “Quiescent” state of

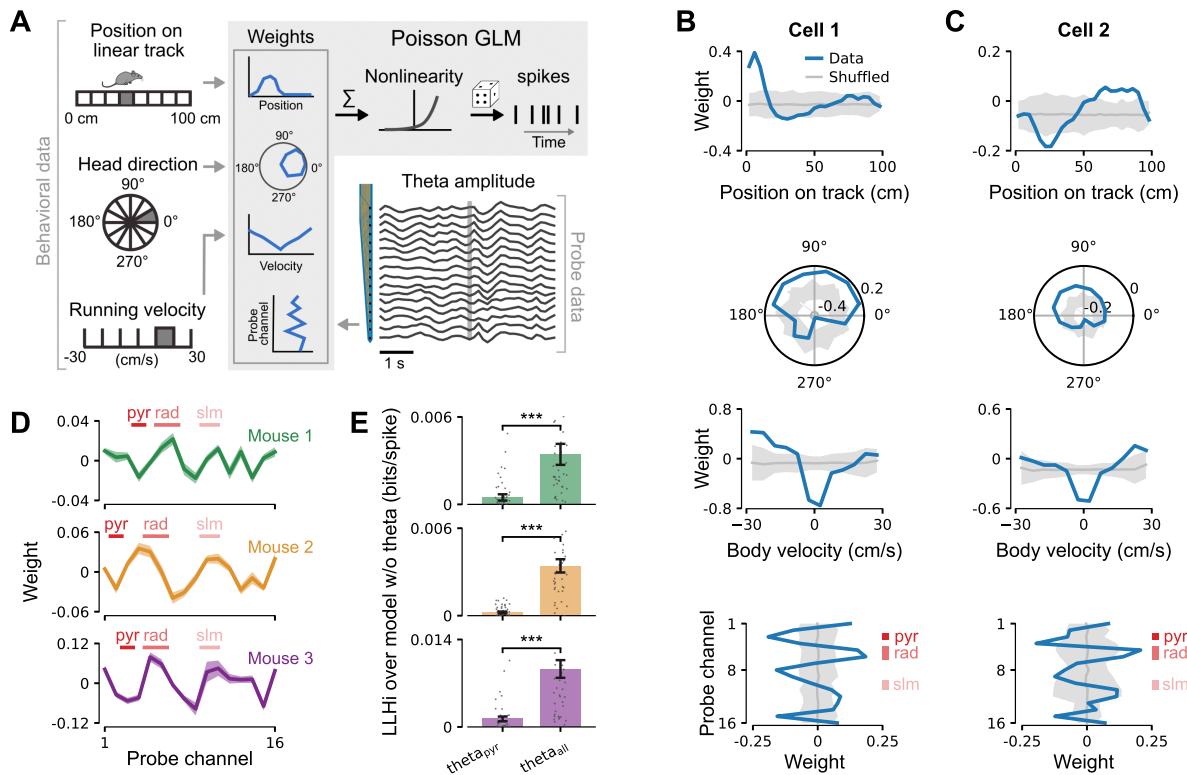
Figure 5: Interactions of spiking and across-layer neural activity vary with behavioral state in freely moving mice. (A) Neural activity and behavioral variables were measured while an animal was either sleeping or freely exploring an open field environment. (B) Example traces of simultaneously measured behavioral and neural variables for sleep (left) and open field exploration (right). Blue shaded regions in body speed trace indicate “Active” periods (body speed ≥ 2 cm/s). All other periods were considered as “Quiescent”. Vertical red bars indicate locations of pyramidal (pyr), radiatum (rad), and slm layers relative to the silicon probe electrodes. (C) Population rate and LFP power in the theta and slow gamma frequency bands for the silicon probe electrode in the pyramidal layer for the sleep data in B. The population rate was computed as the average rate across all cells in 100 ms bins. (D) Cross-correlation between the population rate and silicon probe LFP power for different behavioral states. Top row shows results for theta LFP power and bottom row for slow gamma LFP power. Vertical red bars indicate locations of CA1 layers as in B. Same recording as in B. (E) Mean vector length of phase locking between spike times of single cells and LFP phase. Mean \pm SEM (smaller than line width). Columns show the same conditions as in D. Line colors indicate different animals. Horizontal red bars indicate locations of CA1 layers as in B and D.

183 the open field recording. This effect did not depend on LFP power as this was generally stronger during
 184 open field recordings and firing rates of single cells were also higher during the active state (Figure S4).
 185 Thus, on a population level, spiking activity and LFP power show distinct behavioral state-dependent
 186 patterns across different CA1 layers.

187 We further asked if the association of the firing of single spikes to the phase of LFP oscillations on
 188 a millisecond time scale (phase locking) might exert a similar depth dependence. In contrast to the
 189 population activity, there was discernible phase locking patterns across all layers and conditions (Figure
 190 5E). The dependency on LFP probe channel was largely consistent between pre and post sleep conditions
 191 for the theta band (permutation tests; $p > 0.5$ for all mice), exhibiting a clear peak in the stratum
 192 radiatum, but differed significantly for slow gamma (permutation tests; $p < 0.001$ for all mice). However,
 193 the depth-dependence of theta band phase locking was significantly different between the active and sleep

194 conditions (permutations tests; $p < 0.001$ for all conditions for each mouse; Bonferroni correction).

195 These results demonstrate that the Hybrid Drive enables a detailed characterization of the relationship


196 between layer-specific and across-layer neural activity during different behaviors in freely moving mice.

Across-layer information improves prediction accuracy of CA1 pyramidal layer cell responses

197 We next investigated how multiple behavioral variables and neural activity across different hippocampal
198 layers contribute to the firing of single cells within the CA1 pyramidal layer. CA1 pyramidal cells
199 show selectivity to different behavioral variables, including the animal's position, head direction, and
200 running speed (O'Keefe and Dostrovsky, 1971, McNaughton et al., 1983, Muller et al., 1994, Skaggs and
201 McNaughton, 1998, Knierim, 2002). At the same time, CA1 cells can be coupled to internal network state,
202 in particular by firing in relation to theta oscillations (Skaggs et al., 1996, Csicsvari et al., 1999, Mizuseki
203 et al., 2011). To simultaneously characterize selectivity of single CA1 cells to multiple behavioral variables
204 and theta activity, we adapted a generalized linear model (GLM) with Poisson response distribution
205 (Figure 6A) (Burgess et al., 2005, Acharya et al., 2016, Hardcastle et al., 2017). A major advantage of a
206 GLM-based approach over traditional tuning curves is its robustness to the interdependence of encoded
207 variables which can lead to bias when analyzing the impact of these variables separately (Hardcastle
208 et al., 2017, Stevenson, 2018, Laurens et al., 2019). For each cell, a GLM was trained to predict the cell's
209 firing in 100 ms bins using the animal's position on the linear track, head direction, and running velocity
210 (where positive/negative velocity corresponds to the animal running to the far/near end of the track).
211 Additionally, we included neural variables derived from the chronic silicon probe in the Hybrid Drive:
212 theta (6–10 Hz) LFP amplitude extracted from either the electrode in the pyramidal layer (in which the
213 tetrodes were positioned) or from all CA1 electrodes (Figure 6A, bottom right). The latter allows for
214 integration of across-layer information which cannot be captured by the tetrodes alone.

215 Many CA1 pyramidal layer cells showed tuning to multiple behavioral variables and theta amplitude
216 at different depths (Figures 6B,C). To determine the significant GLM weights for each variable, we also
217 computed weights for the same model (i.e. the same hyperparameters) after shuffling the spike train
218 for each neuron; significant GLM weights were defined as those that exceeded 3 standard deviations of
219 the shuffled weights ($n = 1000$ shuffles). Significant theta amplitude weights were generally large for
220 silicon probe electrodes in the stratum pyramidal, stratum radiatum and stratum lacunosum moleculare
221 ("pyr", "rad", and "slm" in Figures 6B,C). This observation was consistent across animals (Figure 6D).
222 Importantly, inclusion of across-layer theta power significantly improved cross-validated log-likelihood
223 compared to a GLM with only pyramidal layer theta amplitude (Figure 6E; Wilcoxon signed-rank test;
224 mouse 1, $p = 7.5 \cdot 10^{-7}$; mouse 2, $p = 1.1 \cdot 10^{-10}$; mouse 3, $p = 4.5 \cdot 10^{-12}$).

225 We conclude that across-layer LFP signals provide additional information for single cells that is not
226 captured by behavioral variables and the LFP signal within the pyramidal layer alone. Moreover, the

Figure 6: Across-layer information improves prediction accuracy of CA1 pyramidal layer cell responses. (A) Behavioral variables and silicon probe data were used to fit the parameters of a Poisson Generalized Linear Model (GLM) to predict the response of simultaneously recorded pyramidal layer cells. The gray bin indicates the current value. For probe data, the vertical gray line indicates the current theta band (6–10 Hz) LFP amplitudes. Position on track and running velocity bin counts reduced for illustration purposes. (B) Fitted GLM weights for an example CA1 pyramidal layer cell recorded using the tetrodes in the Hybrid Drive. Solid blue lines show weights of model fitted on the measured spike train. Gray line and shaded gray area show mean and 3 SD of shuffled spike train, respectively ($n = 1000$ shuffles). Vertical red bars in bottom plot indicate locations of pyramidal, radiatum, and slm layers relative to the silicon probe electrodes. (C) The same as in B for another example cell. (D) Summary of theta amplitude GLM weights for three animals. Horizontal red bars indicate locations of CA1 layers relative to the silicon probe electrodes as in B and C. Positive (negative) weights correspond to an increase (decrease) in single-cell firing and are consistent for pyramidal layer, radiatum and slm across mice. Mean \pm SEM across cells for each animal (mouse 1: 51 cells, mouse 2: 47 cells, mouse 3: 41 cells). Only cells with a firing rate of at least 2 spikes/s were included in the analysis. (E) Prediction performance of a GLM that includes theta amplitudes from all silicon probe electrodes (theta_{all}) compared to a GLM that only includes theta LFP amplitude for the electrode in the pyramidal layer (theta_{pyr}). Cross-validated log-likelihood increase (LLHi) relative to a model without silicon probe data. Dots indicate single cells for the same data as in D. Wilcoxon signed-rank test on log-likelihood, *** $p < 0.0001$. Mean \pm SEM.

227 consistent structure of theta GLM weights across mice support the idea that theta oscillations in the
228 pyramidal, radiatum, and slm layers provide distinct afferent inputs to pyramidal layer cells (Schomburg
229 et al., 2014, Lasztóczki and Klausberger, 2014).

Discussion

230 Here we present the Hybrid Drive, a chronic implant device combining tetrodes (up to 14) and silicon
231 probes (up to 2) in compact, flexible arrays (Figure 2, Figure S2). The drive is light enough to study a
232 wide range of naturalistic behaviors; this includes standard paradigms such as running on a linear track
233 (Figure 4) and open field exploration (Figure 5) but also interactions with objects in the environment
234 (Figure 4) and, importantly, natural transition to sleep (Figure 5).

Comparison with other extracellular recording devices

235 The Hybrid Drive matches the number of tetrodes of other state-of-the-art chronic implant devices (flex-
236 Dive and shuttleDrive; Figure 7), combining at the same time up to two 16 channels silicon probes (for a
237 total of 88 recording channels). The easy-to-build array allows the user to create a wide range of designs
238 to tackle the target region of interest at best. The tetrodes and silicon probes can be part of the same
239 array (Figure 2) or be divided into different arrays, simultaneously entering the brain at different angles
240 (Figure S2). This greatly expands the amount of possible designs, and it's not possible with simpler
241 single-drive probe drives (Vandecasteele et al., 2012, Chung et al., 2017, van Daal et al., 2021) (but see
242 Vöröslakos et al. (2021) for combining multiple drives).

243

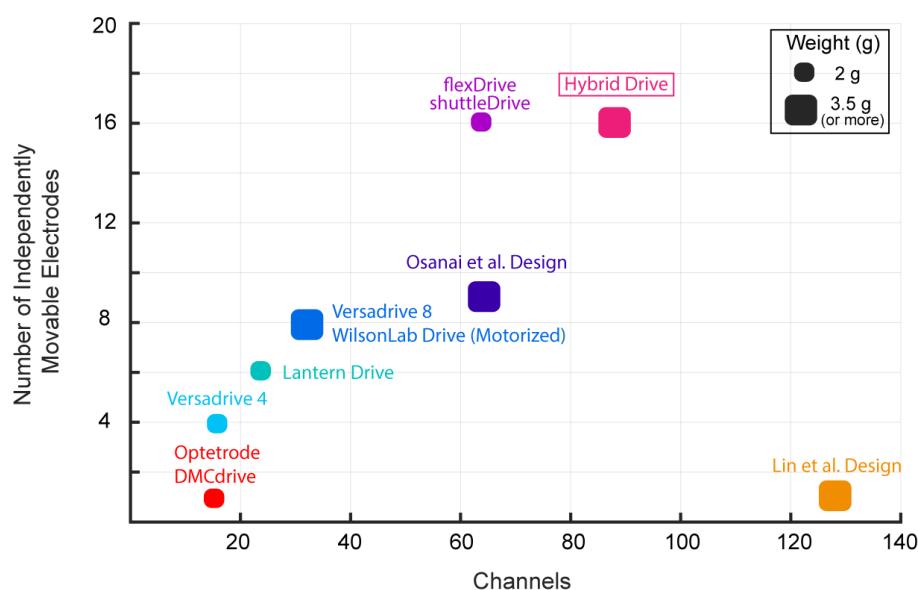


Figure 7: **Comparison between tetrode implant devices for mice.** Our system register the highest number of recording channels, while combining independently movable tetrodes and silicon probes in unique array designs (Lin et al., 2006, Yamamoto and Wilson, 2008, Battaglia et al., 2009, Kloosterman et al., 2009, Anikeeva et al., 2012, Voigts et al., 2013, Osanai et al., 2019, Voigts et al., 2020).

244 Osanai et al. (2019) developed another implant device combining silicon probes with tetrodes. How-
245 ever, our design provides two important advantages. First, their design can combine only nine tetrodes
246 with a single shank 32-ch silicon probe. The two technologies can not be combined in the same array,
247 limiting the range of the achievable designs. Second, the higher weight (5.4g) and larger size (large cone
248 shape) of the their design might interfere with behavioural experiments in which the mouse has to actively
249 interact with the environment (Figure 4) or with other conspecifics.

250 Parallel recordings of single units and LFP have been carried out using high-density silicon probes
251 as well (Vandecasteele et al., 2012, Steinmetz et al., 2019, 2021). However, tetrodes still present some
252 key advantages with respect to other methods for extracellular electrophysiological recordings. First,
253 they provide a great recordings stability over time. Individual neurons can be consistently recorded
254 through weeks and months (Fraser and Schwartz, 2012), or even a year (Voigts et al., 2013). This enables
255 longitudinal experiments that follow learning processes. The same degree of durability of the ensemble
256 recordings is not achievable using silicon probes (Karumbaiah et al., 2013, Kozai et al., 2015). Second,
257 each individual tetrode can be independently lowered in the target area and precisely adjusted until the
258 electrophysiological markers of the target layer are found. This is especially useful when positioning
259 tetrodes in superficial structures (or cortical layers) that can be deformed or damaged by the probe
260 insertion (during surgery). Last, our design allows to measure the LFP with a separate set of recording
261 sites than those used to record single unit activity, even within the same area. This crucially avoids
262 any spillovers of spiking activity into the LFP, a critical problem when using analytical approaches that
263 explore LFP-single spike interactions (Buzsáki et al., 2012).

264 Our novel system offers great latitude in the placement of the tetrodes and the probes, fitting the
265 unique geometry of individual brain areas (Figure 2, Figure S3) or the combinations of multiple areas
266 (Figure S2). We can place a large number of recording sites in a thin layer (Figure 2), yielding large
267 neuronal populations while recording the LFP from the same (or different) regions for an extended period
268 of time (Figure 3). The current EIB is designed to incorporate two 16 channels linear silicon probes,
269 optimized for the CA1/CA3 region of the mouse hippocampus. However, other 16 channels flexible-shaft
270 silicon probes, with unique geometrical organization of the contacts, are readily available. Denser, non-
271 linear organizations can be used to infer the sub-layer origin of the recorded units, e.g. deep vs superficial
272 hippocampal pyramidal cells (E16R+R-20-S1-L20 NT; Mizuseki et al. (2011)), or shaft with electrodes
273 organized in more spaced configuration that can sample LFP across multiple areas (E16+R-250-S1-L8
274 NT). This is not possible with simpler single-drive probe drives (Vandecasteele et al., 2012, Chung et al.,
275 2017, van Daal et al., 2021) (but see Vöröslakos et al. (2021) for combining multiple drives).

276 Last, the current version of the Hybrid Drive requires flexible-shaft silicon probes (Herwik et al.,
277 2011); changes in the drive design or the EIB layout might be required to fit less flexible silicon probes
278 such as multi-shank or “Neuropixels” probes (Jun et al., 2017, Steinmetz et al., 2021). For example, using
279 a steel spring with longer arms to reduce the bending angle or adapting a drive mechanism with straight
280 drives (Voigts et al., 2020) could help to house a wider range of silicon probes.

The Hybrid Drive enables advanced analytical approaches

281 The combined study of local field potentials and neural ensembles is behind many key advances in our
282 mechanistic understanding of neural information processing. Laminar resolved recording (and Current
283 Source Density (CSD) analysis) have been instrumental in dissecting contribution of different microscopic
284 and mesoscopic scale circuits to neural function (Schomburg et al., 2014). On the other hand, recording
285 of large neural ensembles (hundreds of neurons simultaneously) enabled a better understanding of neural
286 processes behind higher cognitive functions (Peyrache et al., 2009). Linking the two analytical approaches
287 can provide unique insights on how different input streams to a cortical module shapes the organization
288 of neural populations. In this paper, we show how our Hybrid Drive may be used to precisely and reliably
289 study the association of neural ensemble firing with layer-resolved oscillatory patterns in small rodents,
290 focusing on the CA1 region of the hippocampus.

291 The hippocampus is one of the brain regions where the functional connectivity and the link to os-
292 cillatory phenomena are best known (Schomburg et al., 2014), but the same analysis approaches have
293 been successfully applied to the neocortex as well (Kerkoerle et al., 2014). For example, in Figure 5 we
294 show how the correlations between population firing and LFP generators at different layers is affected
295 differently by changes in behavioral state, with only the stratum radiatum retaining coherence outside of
296 the sleep state (characterized by low-frequency driven high coherence throughout the layer; Figure 5D).
297 Similarly, the phase locking pattern to theta and slow gamma show layer and behavioral state dependent
298 effects (Figure 5E). For example, a clear peak in the stratum radiatum emerges in the sleep phase, which
299 is absent during wakefulness. Our analytical approach, facilitated by the type of data recorded with the
300 Hybrid Drive, also shows that the availability of the layer-specific LFP enables a better characterization
301 of the coding properties of single hippocampal cells. A Poisson GLM including layer resolved theta power
302 has significantly higher predictive power for cell firing compared to behavioral variables typically used
303 in spatial coding (Hardcastle et al., 2017), with a distinctive pattern of layer contributions emerging
304 (Figure 6). Interestingly, when predicting single-neuron firing, GLM weights for theta power change sign
305 multiple times along the dorsoventral axis, suggesting differential roles of generators in different layers in
306 firing neurons. We believe that this approach and characterization of neural activity may help shedding
307 light on neural coding properties, for example in approaches including “neural” and “external” predictor
308 variables as in our analysis, helping understand and the role of certain inputs in shaping sub-populations
309 of simultaneously recorded cells.

The Hybrid Drive is modular, easy to build and open-source

310 The Hybrid Drive is open source and we provide all required design files along with detailed building
311 instructions. Our innovations add value to the widely-used existing flexDrive design (Voigts et al., 2013),
312 which should further promote its adoption. Just like the flexDrive, the system is modular and could be
313 combined with technologies for optogenetic manipulation of neural activity or miniature head-mounted

314 cameras to capture detailed behavioral variables, such as whisking or eye movements (Meyer et al., 2018).
315 Together with recent advances in marker-less tracking of specific body parts (Mathis et al., 2018) and
316 analytical tools to analyze spike trains of neurons across brain areas (Grossberger et al., 2018, Keeley
317 et al., 2020), the Hybrid Drive helps to increase the precision and range of questions that can be addressed
318 about the neural basis underlying natural behaviors in freely moving mice and other small laboratory
319 animals. Our new design fits a gap in the existing technology and it may become an important tool in
320 the system neuroscientist's toolkit.

Acknowledgments

321 We thank Jakob Voigts, Bruce McNaughton, Oscar Chadney and Jan Klee for their comments on the
322 manuscript and the Battaglia lab for helpful discussions and comments during different stages of this
323 work. This work was supported by the Radboud Excellence Initiative (A.F.M.), the European Union's
324 Horizon 2020 research and innovation program (MGate, grant agreement no. 765549; M.G. and F.P.B.),
325 and the European Research Council (ERC) Advanced Grant "REPLAY-DMN" (grant agreement no.
326 833964; F.P.B.).

Author contributions

327 Conceptualization: M.G., A.F.M., and F.P.B.; Investigation and Data Curation: M.G.; Methodology and
328 Software: M.G, R.E., R.P., and A.F.M; Resources: A.A. and F.P.B.; Formal Analysis and Visualization,
329 M.G., R.P., and A.F.M.; Writing – Original Draft: M.G. and A.F.M; Writing – Review & Editing: M.G.,
330 A.F.M., and F.P.B.; Supervision and Funding Acquisition: A.F.M. and F.P.B.

Declaration of interests

331 A.A. is managing director of ATLAS Neuroengineering, Leuven, Belgium; ATLAS develops the flexible
332 shafts silicon probes which have been used in this study. The remaining authors declare no conflict of
333 interests.

References

334 Acharya, L., Aghajan, Z. M., Vuong, C., Moore, J. J., and Mehta, M. R. (2016). Causal influence of
335 visual cues on hippocampal directional selectivity. *Cell*, 164:197–207.

336 Amaral, D. G. and Witter, M. P. (1989). The three-dimensional organization of the hippocampal forma-
337 tion: A review of anatomical data. *Neuroscience*, 31(3):571–591.

338 Andersen, P., Bliss, T., and Skrede, K. (1971). Lamellar organization of hippocampal excitatory pathways.
339 *Experimental Brain Research*, 13(2).

340 Andersen, P., Morris, R., Amaral, D., Bliss, T., and O'Keefe, J. (2006). *The Hippocampus Book*. Oxford
341 Neuroscience Series. Oxford University Press, New York.

342 Anikeeva, P., Andalman, A. S., Witten, I., Warden, M., Goshen, I., Grosenick, L., Gunaydin, L. A.,
343 Frank, L. M., and Deisseroth, K. (2012). Optetrode: a multichannel readout for optogenetic control in
344 freely moving mice. *Nature Neuroscience*, 15(1):163–170.

345 Battaglia, F. P., Kalenscher, T., Cabral, H., Winkel, J., Bos, J., Manuputy, R., van Lieshout, T., Pinkse,
346 F., Beukers, H., and Pennartz, C. (2009). The Lantern: An ultra-light micro-drive for multi-tetrode
347 recordings in mice and other small animals. *Journal of Neuroscience Methods*, 178(2):291–300.

348 Battaglia, F. P., Sutherland, G. R., and McNaughton, B. L. (2004). Hippocampal sharp wave bursts
349 coincide with neocortical "up-state" transitions. *Learning & Memory*, 11:697–704.

350 Burgess, N., Cacucci, F., Lever, C., and O'keefe, J. (2005). Characterizing multiple independent behav-
351 ioral correlates of cell firing in freely moving animals. *Hippocampus*, 15:149–153.

352 Buzsáki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and
353 planning. *Hippocampus*, 25(10):1073–1188.

354 Buzsáki, G., Anastassiou, C. A., and Koch, C. (2012). The origin of extracellular fields and currents–eeg,
355 ecog, lfp and spikes. *Nature Reviews Neuroscience*, 13(6):407–420.

356 Buzsáki, G., Stark, E., Berenyi, A., Khodagholy, D., Kipke, D. R., Yoon, E., and Wise, K. D. (2015).
357 Tools for probing local circuits: High-density silicon probes combined with optogenetics. *Neuron*,
358 86(1):92 – 105.

359 Chen, S., He, L., Huang, A. J. Y., Boehringer, R., Robert, V., Wintzer, M. E., Polygalov, D., Weitemier,
360 A. Z., Tao, Y., Gu, M., Middleton, S. J., Namiki, K., Hama, H., Therreau, L., Chevaleyre, V., Hioki,
361 H., Miyawaki, A., Piskorowski, R. A., and McHugh, T. J. (2020). A hypothalamic novelty signal
362 modulates hippocampal memory. *Nature*, 586:270–274.

363 Chung, J., Sharif, F., Jung, D., Kim, S., and Royer, S. (2017). Micro-drive and headgear for chronic
364 implant and recovery of optoelectronic probes. *Scientific Reports*, 7(1):2773.

365 Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A., and Buzsáki, G. (1999). Oscillatory Coupling of Hip-
366 pocampal Pyramidal Cells and Interneurons in the Behaving Rat. *Journal of Neuroscience*, 19(1):274–
367 287.

368 Delorme, A. and Makeig, S. (2004). Eeglab: an open source toolbox for analysis of single-trial eeg
369 dynamics including independent component analysis. *Journal of Neuroscience Methods*, 134:9–21.

370 Deshmukh, S. S. and Knierim, J. J. (2011). Representation of non-spatial and spatial information in the
371 lateral entorhinal cortex. *Frontiers in behavioral neuroscience*, 5:69.

372 Fraser, G. W. and Schwartz, A. B. (2012). Recording from the same neurons chronically in motor cortex.
373 *Journal of Neurophysiology*, 107(7):1970–1978. Publisher: American Physiological Society.

374 Gothard, K. M., Skaggs, W. E., and McNaughton, B. L. (1996). Dynamics of mismatch correction in the
375 hippocampal ensemble code for space: interaction between path integration and environmental cues.
376 *The Journal of Neuroscience*, 16:8027–8040.

377 Grossberger, L., Battaglia, F. P., and Vinck, M. (2018). Unsupervised clustering of temporal patterns
378 in high-dimensional neuronal ensembles using a novel dissimilarity measure. *PLOS Computational
379 Biology*, 14(7):e1006283.

380 Hardcastle, K., Maheswaranathan, N., Ganguli, S., and Giocomo, L. M. (2017). A multiplexed, hetero-
381 geneous, and adaptive code for navigation in medial entorhinal cortex. *Neuron*, 94:375–387.e7.

382 Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H., and Buzsáki, G. (2000). Accuracy of tetrode spike
383 separation as determined by simultaneous intracellular and extracellular measurements. *Journal of
384 Neurophysiology*, 84(1):401–414.

385 Head, T., Kumar, M., Nahrstaedt, H., Louppe, G., and Shcherbatyi, I. (2020). scikit-optimize/scikit-
386 optimize.

387 Headley, D. B., DeLucca, M. V., Haufler, D., and Paré, D. (2015). Incorporating 3D-printing technology
388 in the design of head-caps and electrode drives for recording neurons in multiple brain regions. *Journal
389 of Neurophysiology*, 113(7):2721–2732.

390 Herwik, S., Paul, O., and Ruther, P. (2011). Ultrathin silicon chips of arbitrary shape by etching before
391 grinding. *Journal of Microelectromechanical Systems*, 20(4):791–793.

392 Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., Lee, A. K., Anastas-
393 siou, C. A., Andrei, A., Aydin, c., Barbic, M., Blanche, T. J., Bonin, V., Couto, J., Dutta, B., Gratiy,
394 S. L., Gutnisky, D. A., Häusser, M., Karsh, B., Ledochowitsch, P., Lopez, C. M., Mitelut, C., Musa, S.,
395 Okun, M., Pachitariu, M., Putzeys, J., Rich, P. D., Rossant, C., Sun, W.-L., Svoboda, K., Carandini,
396 M., Harris, K. D., Koch, C., O’Keefe, J., and Harris, T. D. (2017). Fully integrated silicon probes for
397 high-density recording of neural activity. *Nature*, 551:232–236.

398 Karumbaiah, L., Saxena, T., Carlson, D., Patil, K., Patkar, R., Gaupp, E. A., Betancur, M., Stanley,
399 G. B., Carin, L., and Bellamkonda, R. V. (2013). Relationship between intracortical electrode design
400 and chronic recording function. *Biomaterials*, 34(33):8061–8074.

401 Keeley, S. L., Zoltowski, D. M., Aoi, M. C., and Pillow, J. W. (2020). Modeling statistical dependencies
402 in multi-region spike train data. *Current Opinion in Neurobiology*, 65:194–202.

403 Kerkooerle, T. v., Self, M. W., Dagnino, B., Gariel-Mathis, M.-A., Poort, J., Togt, C. v. d., and Roelfsema, P. R. (2014). Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. *Proceedings of the National Academy of Sciences*, 111(40):14332–14341.

406 Kloosterman, F., Davidson, T. J., Gomperts, S. N., Layton, S. P., Hale, G., Nguyen, D. P., and Wilson, M. A. (2009). Micro-drive Array for Chronic in vivo Recording: Drive Fabrication. *Journal of Visualized Experiments*, (26):e1094.

409 Knierim, J. J. (2002). Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. *The Journal of Neuroscience*, 22(14):6254–6264.

411 Kozai, T. D. Y., Du, Z., Gugel, Z. V., Smith, M. A., Chase, S. M., Bodily, L. M., Caparosa, E. M., Friedlander, R. M., and Cui, X. T. (2015). Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays. *Journal of Neuroscience Methods*, 242:15–40.

415 Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., and Poeppel, D. (2017). Neuroscience Needs Behavior: Correcting a Reductionist Bias. *Neuron*, 93(3):480–490.

417 Lasztóczki, B. and Klausberger, T. (2014). Layer-Specific GABAergic Control of Distinct Gamma Oscillations in the CA1 Hippocampus. *Neuron*, 81(5):1126–1139.

419 Laurens, J., Abrego, A., Cham, H., Popeney, B., Yu, Y., Rotem, N., Aarse, J., Asprodini, E. K., Dickman, J. D., and Angelaki, D. E. (2019). Multiplexed code of navigation variables in anterior limbic areas. *bioRxiv*.

422 Lin, L., Chen, G., Xie, K., Zaia, K. A., Zhang, S., and Tsien, J. Z. (2006). Large-scale neural ensemble recording in the brains of freely behaving mice. *Journal of Neuroscience Methods*, 155(1):28–38.

424 Luo, L., Callaway, E. M., and Svoboda, K. (2008). Genetic dissection of neural circuits. *Neuron*, 57:634–660.

426 Magland, J., Jun, J. J., Lovero, E., Morley, A. J., Hurwitz, C. L., Buccino, A. P., Garcia, S., and Barnett, A. H. (2020). Spikeforest, reproducible web-facing ground-truth validation of automated neural spike sorters. *eLife*, 9.

429 Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., and Bethge, M. (2018). Deeplabcut: markerless pose estimation of user-defined body parts with deep learning. *Nature Neuroscience*, 21:1281–1289.

432 McNaughton, B. L., O’Keefe, J., and Barnes, C. A. (1983). The stereotrode: A new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. *Journal of Neuroscience Methods*, 8(4):391–397.

435 Meyer, A. F., Poort, J., O'Keefe, J., Sahani, M., and Linden, J. F. (2018). A head-mounted camera
436 system integrates detailed behavioral monitoring with multichannel electrophysiology in freely moving
437 mice. *Neuron*, 100(1):46–60.

438 Michon, F., Aarts, A., Holzhammer, T., Ruther, P., Borghs, G., McNaughton, B., and Kloosterman, F.
439 (2016). Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large
440 populations of neurons in behaving animals. *Journal of Neural Engineering*, 13(4):046018.

441 Mizuseki, K., Diba, K., Pastalkova, E., and Buzsáki, G. (2011). Hippocampal CA1 pyramidal cells form
442 functionally distinct sublayers. *Nature Neuroscience*, 14(9):1174–1181.

443 Muller, R., Bostock, E., Taube, J., and Kubie, J. (1994). On the directional firing properties of hip-
444 pocampal place cells. *The Journal of Neuroscience*, 14(12):7235–7251.

445 O'Keefe, J. and Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from
446 unit activity in the freely-moving rat. *Brain Research*, 34(1):171–175.

447 Oliphant, T. E. (2007). Python for scientific computing. *Computing in Science & Engineering*, 9(3):10–20.

448 Osanai, H., Kitamura, T., and Yamamoto, J. (2019). Hybrid Microdrive System with Recoverable Opto-
449 Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice. *JoVE (Journal
450 of Visualized Experiments)*, (150):e60028.

451 Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S. I., and Battaglia, F. P. (2009). Replay of rule-
452 learning related neural patterns in the prefrontal cortex during sleep. *Nature Neuroscience*, 12(7):919–
453 926.

454 Rossant, C., Kadir, S. N., Goodman, D. F. M., Schulman, J., Hunter, M. L. D., Saleem, A. B., Grosmark,
455 A., Belluscio, M., Denfield, G. H., Ecker, A. S., Tolias, A. S., Solomon, S., Buzsáki, G., Carandini,
456 M., and Harris, K. D. (2016). Spike sorting for large, dense electrode arrays. *Nature Neuroscience*,
457 19:634–641.

458 Schomburg, E. W., Fernández-Ruiz, A., Mizuseki, K., Berényi, A., Anastassiou, C. A., Koch, C.,
459 and Buzsáki, G. (2014). Theta phase segregation of input-specific gamma patterns in entorhinal-
460 hippocampal networks. *Neuron*, 84:470–485.

461 Siegle, J. H., López, A. C., Patel, Y. A., Abramov, K., Ohayon, S., and Voigts, J. (2017). Open Ephys: an
462 open-source, plugin-based platform for multichannel electrophysiology. *Journal of Neural Engineering*,
463 14(4):045003.

464 Skaggs, W. E. and McNaughton, B. L. (1998). Spatial Firing Properties of Hippocampal CA1 Populations
465 in an Environment Containing Two Visually Identical Regions. *Journal of Neuroscience*, 18(20):8455–
466 8466. Publisher: Society for Neuroscience Section: ARTICLE.

467 Skaggs, W. E., McNaughton, B. L., Wilson, M. A., and Barnes, C. A. (1996). Theta phase precession in
468 hippocampal neuronal populations and the compression of temporal sequences. *Hippocampus*, 6(2):149–
469 172.

470 Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza, M., Beau, M., Bhagat, J.,
471 Böhm, C., Broux, M., Chen, S., Colonell, J., Gardner, R. J., Karsh, B., Kloosterman, F., Kostadinov,
472 D., Mora-Lopez, C., O'Callaghan, J., Park, J., Putzeys, J., Sauerbrei, B., van Daal, R. J. J., Vollan,
473 A. Z., Wang, S., Welkenhuysen, M., Ye, Z., Dudman, J. T., Dutta, B., Hantman, A. W., Harris, K. D.,
474 Lee, A. K., Moser, E. I., O'Keefe, J., Renart, A., Svoboda, K., Häusser, M., Haesler, S., Carandini,
475 M., and Harris, T. D. (2021). Neuropixels 2.0: A miniaturized high-density probe for stable, long-term
476 brain recordings. *Science*, 372.

477 Steinmetz, N. A., Zatka-Haas, P., Carandini, M., and Harris, K. D. (2019). Distributed coding of choice,
478 action and engagement across the mouse brain. *Nature*, 576(7786):266–273.

479 Stevenson, I. H. (2018). Omitted variable bias in glms of neural spiking activity. *Neural Computation*,
480 30:3227–3258.

481 van Daal, R. J. J., Aydin, C., Michon, F., Aarts, A. A. A., Kraft, M., Kloosterman, F., and Haesler, S.
482 (2021). Implantation of neuropixels probes for chronic recording of neuronal activity in freely behaving
483 mice and rats. *Nature Protocols*, 16(7):3322–3347.

484 Vandecasteele, M., M., S., Royer, S., Belluscio, M., Berényi, A., Diba, K., Fujisawa, S., Grosmark, A.,
485 Mao, D., Mizuseki, K., Patel, J., Stark, E., Sullivan, D., Watson, B., and Buzsáki, G. (2012). Large-
486 scale Recording of Neurons by Movable Silicon Probes in Behaving Rodents. *Journal of Visualized
487 Experiments*, (61):3568.

488 Voigts, J., Newman, J. P., Wilson, M. A., and Harnett, M. T. (2020). An easy-to-assemble, robust, and
489 lightweight drive implant for chronic tetrode recordings in freely moving animals. *Journal of Neural
490 Engineering*, 17:026044.

491 Voigts, J., Siegle, J. H., Pritchett, D. L., and Moore, C. I. (2013). The flexdrive: an ultra-light implant
492 for optical control and highly parallel chronic recording of neuronal ensembles in freely moving mice.
493 *Frontiers in Systems Neuroscience*, 7:8.

494 Vöröslakos, M., Petersen, P. C., Vöröslakos, B., and Buzsáki, G. (2021). Metal microdrive and head cap
495 system for silicon probe recovery in freely moving rodent. *eLife*, 10:e65859.

496 Wilson, M. A. and McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble code for space.
497 *Science*, 261:1055–1058.

498 Yamamoto, J. and Wilson, M. A. (2008). Large-Scale Chronically Implantable Precision Motorized Mi-
499 crodrive Array for Freely Behaving Animals. *Journal of Neurophysiology*, 100(4):2430–2440. Publisher:
500 American Physiological Society.

Materials and Methods

Ethics statement

501 In compliance with Dutch law and institutional regulations, all animal procedures were approved by the
502 Central Commissie Dierproeven (CCD) and conducted in accordance with the Experiments on Animals
503 Act (project number 2016-014 and protocol numbers 0021 and 0029).

Animals

504 9 male C57BL6/J mice (Charles River) were used in this study. 4 animals were implanted with an Hybrid
505 Drive in the CA1 area. Additionally, as a proof-of-principle, one animal received a dual area Hybrid Drive
506 implant (parietal cortex and visual/para-hippocampal cortex) and another animal a Hybrid Drive implant
507 over the subiculum. 3 animals were implanted with a flexDrive for the object exploration experiment.
508 All animals received the implant between 12 and 16 weeks of age. After surgical implantation, mice were
509 individually housed on a 12-h light-dark cycle and tested during the light period. Water and food were
510 available *ad libitum*.

Probe fabrication

511 The flexibility of the silicon probes is an important feature that makes the current design of the drive
512 possible. The flexible polyimide probes used in this study have been designed and fabricated by ATLAS
513 Neuroengineering BV (Leuven, Belgium) and used in other design for freely behaving rats (Michon
514 et al., 2016). The fabrication is done on 4 inch silicon wafers using standardized fabrication techniques
515 established using micro-electromechanical systems engineering. First, a stress-compensated passivation
516 stack of silicon oxide and silicon nitride is deposited and acts as an electrical insulator between the probe
517 metallization and the underlying bulk silicon substrate. Next, the metallization is sputter deposited
518 and patterned using a lift-off process. A second passivation layer has been deposited which protects the
519 metallization against the cerebral fluids in the brain tissue. The passivation layer stack is patterned by
520 reactive ion etching to expose the electrode contacts along the probe shaft and the bonding pads on
521 the probe base. The electrode metallization layer is deposited and patterned using a lift-off technique,
522 resulting in electrodes with surface area of $225\mu\text{m}^2$ made of iridium oxide. Following the definition of
523 the electrodes, the passivation and insulation layers are patterned using reactive ion etching to define the
524 probe outline and exposing the build silicon substrate. Next, trenches with vertical sidewalls are etched
525 into the bulk silicon substrate using deep reactive ion etching followed by a wafer thinning process to end
526 up with $50\mu\text{m}$ thin silicon probes. Finally, the probes are assembled with the highly flexible PI ribbon
527 cable using a flip-chip bonding process.

Hybrid Drive Assembly

528 All parts and steps required to build a Hybrid Drive are summarized in a separate step-by-step protocol
529 (https://github.com/MatteoGuardamagna/Hybrid_drive). Briefly, the drive mechanism of the Hybrid
530 Drive is based on an existing design (flexDrive, Voigts et al. (2013)). Tetrodes were made from HM-L
531 coated 90% platinum/10% iridium 12.5 μ m diameter wire (California Fine Wire, USA). The guide arrays
532 containing the tetrodes were assembled by building up layers of polyimide tubes, according to the target
533 areas, and fixing them with epoxy resin (Araldite Rapid, Araldite, UK). For the silicon probe used in this
534 study (E16R_60_S1_L20_NT with 60 μ m pitch between contacts, ATLAS Neuroengineering, Belgium),
535 we utilized a 33ga polymide tubing for the entire structure supporting the shaft - instead of a combination
536 of 33ga and 38ga polymide tubing used to build the tetrode slots. Depending of the width of the shaft and
537 the organization of the guide array a larger diameter size of polymide tube (e.g. 26ga) can be chosen for
538 the silicon probe. We opted to keep the same size to be able to fit all 14 tetrodes and the silicon probe in
539 the CA1 region. For the CA1 and CA1/subiculum design we used a 5x3 array design to cover the dorsal
540 CA1 area along its proximo-distal axis (Figure 2A) For the dual area implant design two bundles were
541 used. A 4x3 bundle was positioned over the parietal cortex and a single tube was used to position the
542 probe in the visual/para-hippocampal cortex (Figure S2). The spring-screw mechanism of the flexDrive
543 allowed precise positioning and re-positioning of individual tetrodes (Figures S1B,C). This mechanism
544 has been adapted and implemented in the Hybrid Drive to allow for independently movable silicon probes
545 (Figure S1D). First, the portion of polyimide tubing that will create the upper guide tube must be slid
546 along the silicon probe shaft. The length difference between the upper and lower guide tube determines
547 the total travel distance of the probe (the maximum recommended distance is 2 mm; Figures S1A,D).
548 After positioning each tetrode guide tube in the slots of the drive body, the silicon probes were inserted
549 in the corresponding lower guide tubes. Finally, The EIB was glued to the drive body using epoxy resin
550 and the silicon probes' ZIF plugs were inserted into the ZIF connectors on the EIB. The current version
551 of the EIB (Figure 1D) contains two 16 channel ZIF connectors. The flexible cables of the silicon probes
552 were protected using lightweight cone shields attached to opposite ends of the EIB (Figure 1A,B).

Surgical Procedures

553 All surgeries were performed on experimentally-naive mice. Mice were anaesthetized with 1.25% – 2%
554 isoflurane and injected with analgesia (Carprofen, 5 mg/kg SC). Mice were placed in a stereotaxic frame
555 and antibacterial ophthalmic ointment (Alcon, UK) was applied to the eyes. A circular piece of dorsal
556 scalp was removed and the underlying skull was cleaned and dried. 3 stainless steel M0.8 screws were
557 used to secure the drive (1 ground screw in the frontal plate, 1 screw in the parietal plate opposite to
558 micro-drive, 1 screw in the occipital plate). For the CA1 implant, a craniotomy was made over the right
559 cortex (top-left corner at AP: -1.20 mm; ML: 0.6 mm relative to bregma; bottom-right corner at AP: -2.30
560 mm; ML: 2.10 mm relative to bregma) using a 0.9 burr drill. The dura was removed and the array of the

561 drive was slowly lowered into the brain with the silicon probe shaft already adjusted at the final depth (\approx
562 2.00 mm; Figure 2A). The guide tube array was lowered right above the brain surface and the craniotomy
563 was filled with sterile vaseline to protect the brain and the array from cement flowing in. The drive was
564 cemented onto the skull using dental adhesive (Superbond C&B, Sun Medical, Japan) and tetrodes were
565 individually lowered into the brain (5 turns - $\approx 900\mu\text{m}$) using the screw-spring mechanism. Mice were
566 allowed to recover from surgery for at least seven days before experiments began. The same procedure
567 was carried out for the subiculum and dual area implant. For the subiculum a craniotomy was made over
568 the right cortex (top-left corner at AP: -2.40 mm; ML: 1.32 mm relative to bregma; bottom-right corner
569 at AP: -3.20 mm; ML: 2.20 mm relative to bregma; using a 0.9 burr drill.) Two craniotomies were done
570 over the right cortex for the dual area implant. For the anterior bundle: top-left corner at AP: -1.46
571 mm; ML: 1.00 mm relative to bregma; bottom-right corner at AP: -2.30 mm; ML: 1.50 mm relative to
572 bregma; using a 0.9 burr drill. For the posterior bundle: AP: -4.75 mm; ML: 3.25 mm relative to bregma;
573 using a 0.5 burr drill.

Neural and behavioral data collection

574 From post-surgery day 3 onward, animals were brought to the recording room and electrophysiological
575 signals were investigated during a rest session in the home cage. Each day tetrodes were individually
576 lowered in 45/60 μm steps (1/4 of a screw turn) until common physiological markers for the hippocampus
577 were discernible (SWR complexes during sleep or theta during locomotion). The majority of the tetrodes
578 reached the target location (CA1 pyramidal layer) in 7-10 days. Silicon probe signals were used as ad-
579 ditional depth markers. Electrophysiological data were recorded with an Open Ephys acquisition board
580 (Siegle et al., 2017). Signals were referenced to ground, filtered between 1 and 7500 Hz, multiplexed, and
581 digitized at 30 kHz on the headstages (RHD2132, Intan Technologies, USA). Digital signals were trans-
582 mitted over two custom 12-wire cables (CZ 1187, Cooner Wire, USA) that were counter-balanced with a
583 custom system of pulleys and weights. Waveform extraction and automatic clustering were performed us-
584 ing Dataman (<https://github.com/wonkoderverstaendige/dataman>) and Klustakwik (Rossant et al.,
585 2016), respectively. Putative excitatory pyramidal cells were discriminated using their auto-correlograms,
586 firing rates and waveform information. Specifically, pyramidal cells were classified as such if they had
587 a mean firing rate < 8 Hz and the average first moment of the autocorrelogram (i.e., the mean value)
588 before 8 msec (Csicsvari et al., 1999). Clustered units were verified manually using the MClust toolbox.
589 During all experiments, video data was recorded using a CMOS video camera (Flea3 FL3-U3-13S2C-
590 CS, Point Grey Research, Canada; 30 Hz frame rate) mounted above the arena. Animal position data
591 was extracted offline using a convolutional deep neural network trained using transfer learning (Mathis
592 et al., 2018).

Behavioral paradigms

593 We used three different behavioral paradigms: running on a linear track, open field exploration, and
594 object exploration. In the linear track experiment (Figures 4A–D; Figure 6) mice were positioned at one
595 end of track of a 1-meter long track with the task to run to the other end to collect a reward (a piece of
596 Weetos chocolate cereal). After the animal consumed the reward, another reward was positioned on the
597 opposite end. A lap was defined as an end-to-end run where the animal's body started from the first 10
598 cm of the track and reached the last 10 cm at the other end of the track without returning to its initial
599 position. Recordings typically lasted between 20 and 30 minutes and experiments were performed on 10
600 consecutive days.

601 In the open field experiment (Figure 5), animals were free to explore an unfamiliar square arena (45
602 cm x 45 cm) for about 30 minutes. This was preceded and followed by a rest session in the animal's home
603 cage ("Pre sleep" and "Post sleep") that typically lasted 60 minutes each.

604 The object exploration experiment (Figures 4F–J) was adapted from Deshmukh and Knierim (2011).
605 Briefly, animals were free to explore a 75 cm x 75 cm square arena containing 3 objects for 5–7 consecutive
606 trials (10 minutes each). Between trials, mice were returned to their home cages for 5 minutes. In each
607 animal, the same procedure was performed on at least 3 consecutive days, resulting in 18 trials per animal
608 that were included in the analysis. Object locations were kept constant for each animals throughout all
609 trials.

Histology

610 After the final recording day tetrodes were not moved. Animals were administered an overdose of pento-
611 barbital (300 mg/ml) before being transcardially perfused with 0.9% saline, followed by 4% paraformalde-
612 hyde solution. Brains were extracted and stored in 4% paraformaldehyde for 24 hours. Then, brains were
613 transferred into 30% sucrose solution until sinking. Finally, brains were quickly frozen, cut into coronal
614 sections with a cryostat (30 microns), mounted on glass slides and stained with cresyl violet. The location
615 of the tetrode tips was confirmed from stained sections.

Neural data analysis

616 For each identified spike unit, the signal-to-noise ratio (SNR) was used as a measure of electrophysiological
617 signal quality (Figures 3A–E). The SNR was computed as the ratio between the peak absolute amplitude
618 of the average spike waveform and noise on the tetrode channel on which the peak amplitude occurred
619 (Meyer et al., 2018, Magland et al., 2020). To compute separate SNRs for "Active" and "Quiescent"
620 conditions for each unit (Figures 3D,E), recordings were first segmented using the 3-axis accelerometer
621 signals from one of the recording headstages (sampled at 1000 Hz). Calibration of the accelerometer and
622 extraction of head movement signals followed previous work (Meyer et al., 2018). Time points at which
623 accelerometer-derived head movement signals exceeded 0.02 m/s^2 were assigned to the "Active" condition

624 whereas all other time points were assigned to the “Quiescent” condition.

625 To assess the recording quality of the chronically implanted silicon probe across days, we analyzed the
626 properties of sharp wave ripple (SWR) events (Figures 3G–K). LFP signals were down-sampled to 1 kHz
627 and the analysis was restricted to periods when the animal was in the “Quiescent” state. First, continuous
628 data within these periods were filtered between 100-250 Hz using the “eegfilt” function (Delorme and
629 Makeig, 2004). Then, for each animal, the channel with the highest ripple amplitude was selected and
630 defined as the pyramidal layer channel. All subsequent analysis steps were based on this channel. The
631 envelope of the filtered signal was estimated in 10 ms windows, representing the ripple amplitude of
632 each time series. Ripples were detected using a threshold (mean of the signal + 3 std) on the envelope.
633 Additionally, the duration of the event had to exceed 40 ms. SWR duration was calculated using onset
634 and offset of each event by identifying the points that crossed the mean of the signal + 1 std, before and
635 after the detected peak in the envelope. SWR power was defined as the power at the peak of the envelope
636 for each individual ripple event (Figure 3H). SWR duration was defined as the interval between the onset
637 and the offset of each ripple event (Figure 3I). SWR frequency was calculated as the frequency at the
638 peak value of the spectrogram computed for the SWR event (Figure 3J). The proportion of SWR was
639 defined as the total number of SWRs divided by the duration of the quiescent state (Figure 3K). CA1
640 layers were estimated for each animal by combining the information provided by the depth profile of SWR
641 complexes (Figure 3G), the theta power depth profile (Figure S4A), and the distance and displacement of
642 the silicon probe contacts. Theta and slow gamma oscillation have been extracted filtering the continuous
643 data from the silicon probe using the “eegfilt” function (Delorme and Makeig, 2004) (6-10 Hz and 20-50
644 Hz respectively).

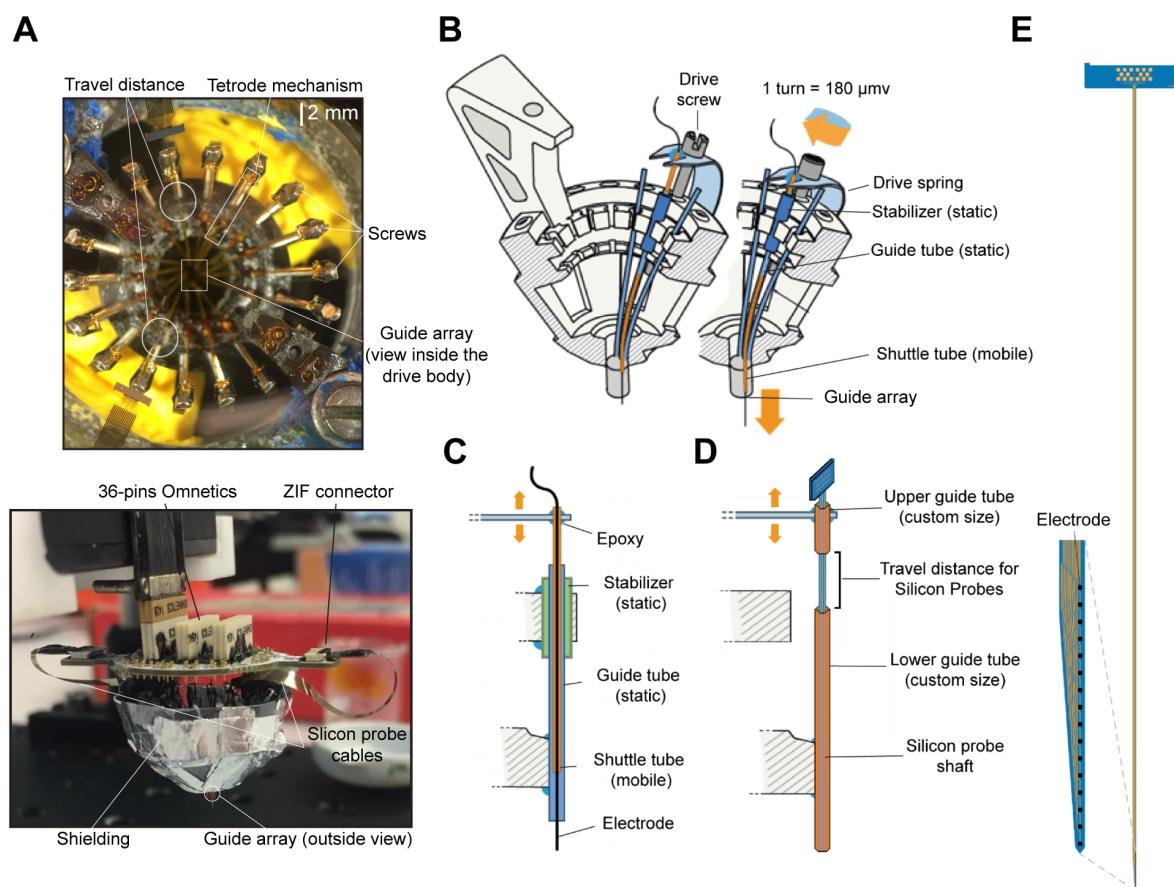
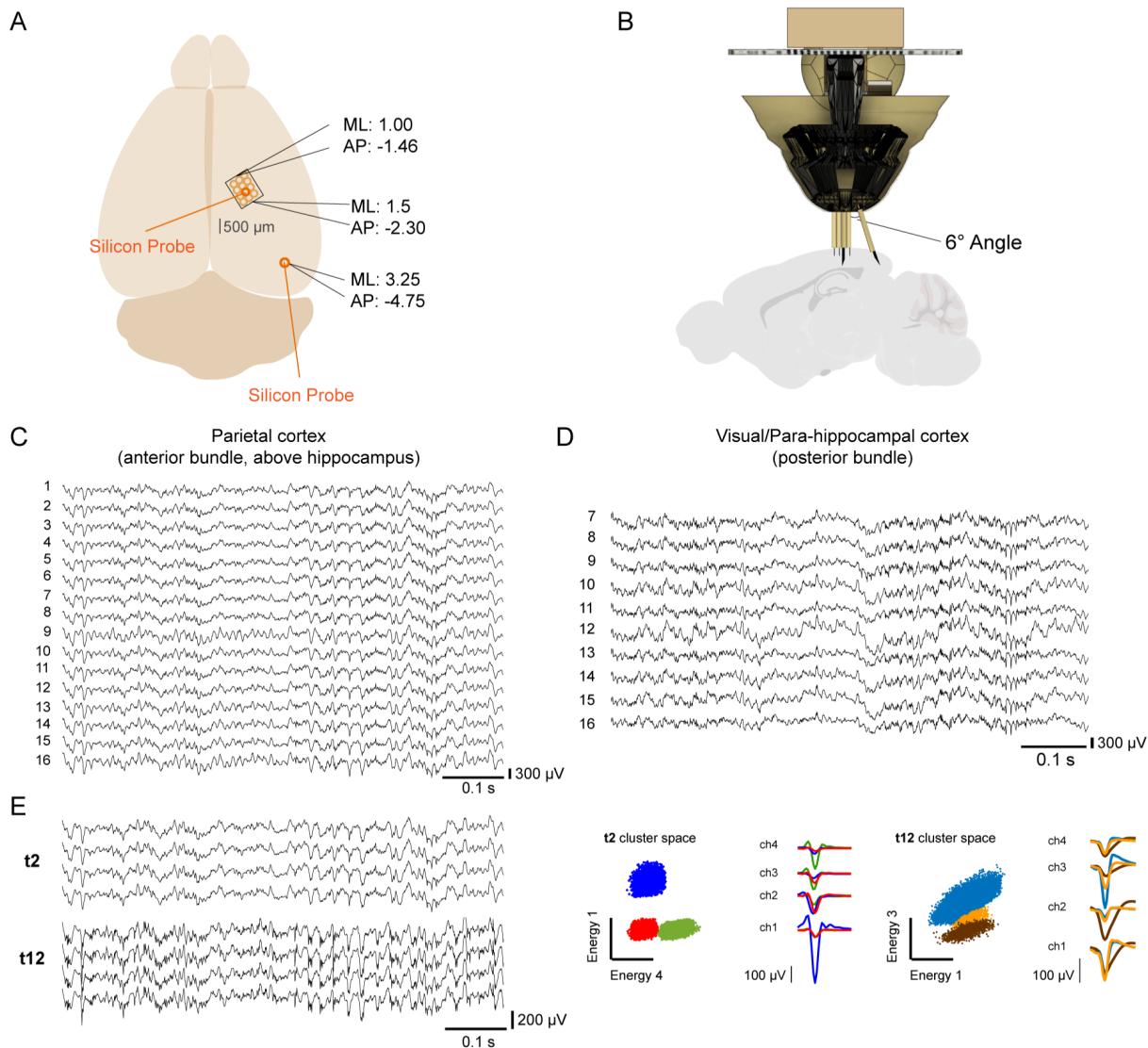
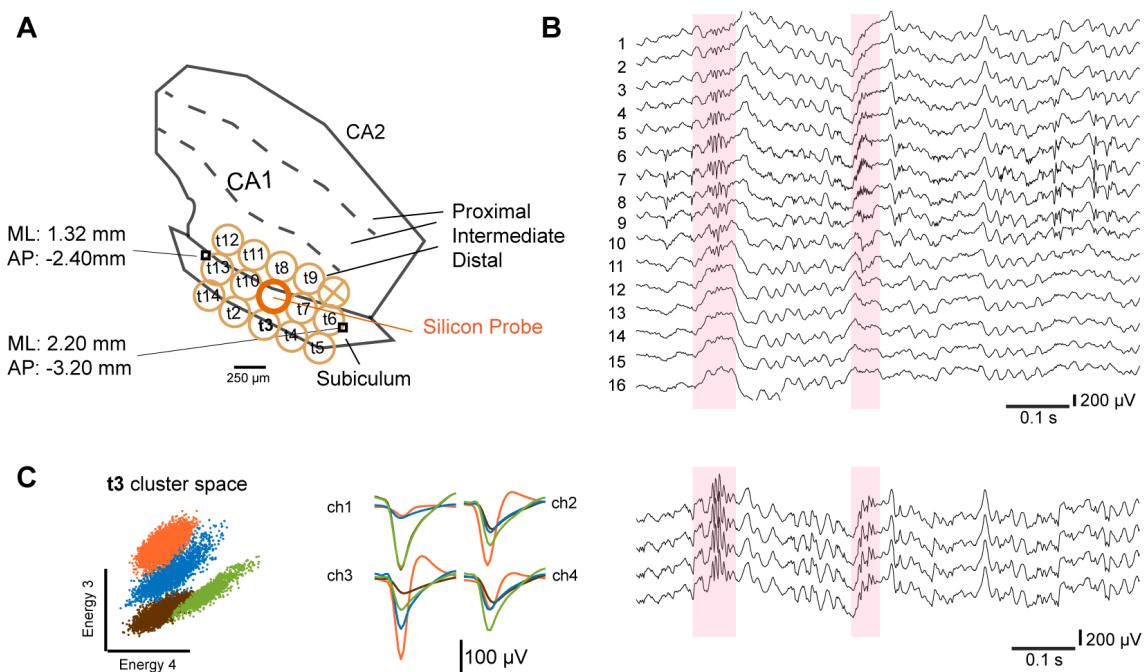
Generalized-Linear Model (GLM) with Poisson observations

645 We adopted a Poisson GLM to investigate how multiple behavioral variables and across-layer LFP signals
646 from the silicon probe contribute to single-cell firing in the linear track experiment. The implementation
647 of the GLM largely followed that of Hardcastle et al. (2017). Briefly, spike trains of single cells were
648 binned at 100 ms. The animal’s head position, head direction, and running speed were extracted from
649 video data using a convolutional neural network (Mathis et al., 2018). Linear interpolation was used to
650 temporally align the extracted behavioral data to the bin centers. For the position data, the linear track
651 was divided into 25 non-overlapping bins (bin width 4 cm) along its major axis. For each time step, the
652 indicator function (either 0 or 1) was used to indicate if a spatial bin is occupied by the animal. The
653 same approach was used for head direction (24 bins of size 15°) and running velocity (12 bins of size 5
654 cm/s). As the firing of place cells can depend on the animal’s running direction on a linear track, we used
655 running velocity rather than running speed (where positive/negative velocity corresponds to the animal
656 running to the far/near end of the track). In addition to the behavioral variables, theta (6–10 Hz) LFP
657 amplitudes were extracted from either the electrode in the pyramidal layer (in which the tetrodes were

658 positioned) or from all CA1 electrodes were included.

659 For each cell, a separate Poisson GLM was fit to the data using gradient descent on the negative log-
660 likelihood (using the “minimize” function in the `scipy` Python package; Oliphant (2007)). Additionally,
661 roughness penalties were introduced to enforce smoothness of the position, head direction, and running
662 velocity GLM weights (Hardcastle et al., 2017); an L2 penalty was used for the theta amplitude weights.
663 The hyperparameters determining the strength of the roughness and L2 penalties were found for each
664 cell using grid search cross-validation ($N = 4$ folds; 10 log-spaced values in the interval $[2^{-3}, 2^{12}]$ for
665 each hyperparameter). As the evaluation of all possible hyperparameter combinations is computationally
666 expensive, we used Bayesian hyperparameter optimization (using “`BayesSearchCV`” in the `scikit-optimize`
667 package with 100 iterations; Head et al. (2020)). For each cell, the prediction accuracy of the different
668 models (`theta_pyr` and `theta_all` in Figure 6E) was assessed using nested cross-validation ($N = 4$ folds). That
669 is, the hyperparameters were determined using cross-validation on the training data and predictions were
670 performed on the validation data. The data in Figure 6E were computed using the Poisson log-likelihood
671 as described in (Hardcastle et al., 2017). Using the Pearson correlation between measured and predicted
672 spike trains yielded qualitatively similar results (Wilcoxon signed-rank test; mouse 1, $p = 2.2 \cdot 10^{-5}$;
673 mouse 2, $p = 2.7 \cdot 10^{-10}$; mouse 3, $p = 2.2 \cdot 10^{-8}$).

Supplementary Figures

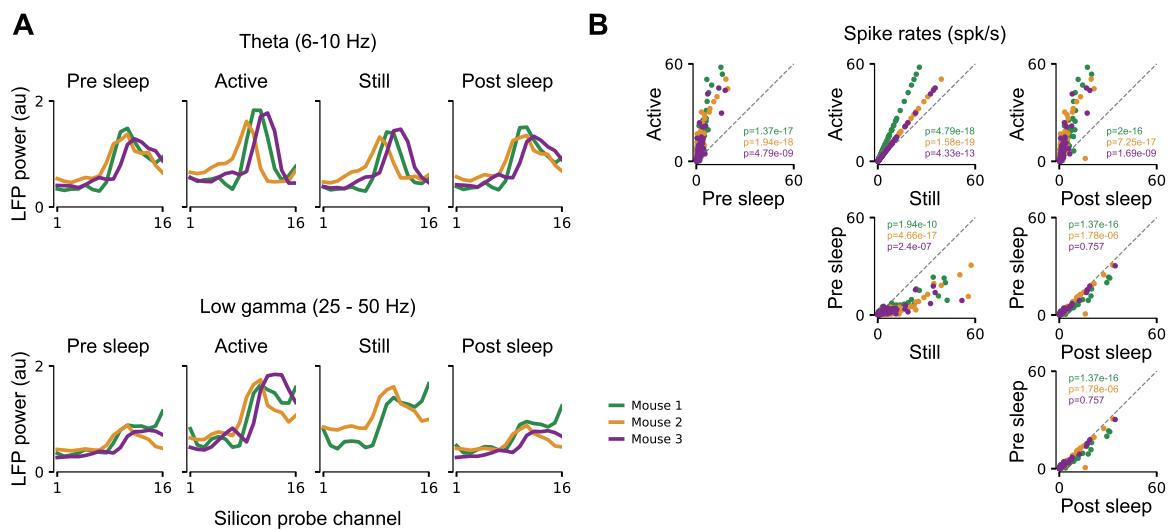

Figure S1: **Silicon probe and tetrode mechanism** (A) The upper picture illustrate a top view of the drive body in which two silicon probes are positioned and the spring-screw mechanisms for tetrodes are assembled as well. The travel distance for the silicon probe is highlighted in the white circle. Lower picture illustrate the assembled drive, before the lateral cone shielding is applied. (B) Illustration of the spring-screw mechanism and the drive body, adapted from Voigts et al. (2013). (C) Detailed illustration of the spring-screw mechanism ensuring the independent movement of the tetrodes, adapted from Voigts et al. (2013). (D) Detailed illustration of the adapted spring-screw mechanism ensuring the independent movement of the silicon probes. (E) Illustration of the silicon probe used for the CA1 design.

Figure S2: Dual area design with the Hybrid Drive. (A) Representative illustration with the coordinates of the two craniotomies. Brain illustration adapted from SciDraw (doi.org/10.5281/zenodo.3925941). (B) Representative illustration of the bundle organization of the dual area implant. The posterior bundle is glued at a 6° angle, with respect to the anterior bundle. Sagittal brain illustration adapted from SciDraw (doi.org/10.5281/zenodo.3925911). (C) Broadband signal (LFP) of the silicon probe in the parietal cortex above the hippocampus (anterior bundle). (D) Broadband signal (LFP) of the silicon probe in the visual/para-hippocampal cortex (posterior bundle). Only 10 contacts are reported because the probe was not fully lowered in the brain. The portion of the shank containing the first 6 contacts was left inside the guide tube array. Same time frame as in (C). (E) Left, broadband signal (LFP) from two example tetrodes (t2,t12 - four channels each), positioned in the parietal cortex over the hippocampus. t2 was left more superficial (2 screw turns, $\approx 360 \mu$ m). t12 was driven deeper (4 screw turns, $\approx 720 \mu$ m). Same timeframe of (C) and (D). Right, representative spike recording from the two tetrodes. 2D cluster projection of the recorded spikes and corresponding average spike waveforms.

Figure S3: Array design and recordings from other hippocampal sub-regions. (A) Coordinates of the craniotomy over the subiculum, with respect to CA1. The guide tube array is represented in orange, with the mapping of individual tetrodes (and silicon probe) over the target structures. (B) Broadband signal (LFP) of the silicon probe. Ripple example highlighted in light pink. Note how the ripple spans over multiple contacts (5 contacts, $\approx 300 \mu$ m - in line with the thickness of the subiculum along those implant coordinates) and it's missing the typical CA1 sharp-wave component (Figure 3F for reference). (C) Left, representative spike recording from tetrode 3 (t3). 2D cluster projection (Energy 3 and 4) of the recorded spikes and corresponding average spike waveforms. Right, broadband signal (LFP) from one example tetrode (t3 - 4 channels). Same timeframe as in (B).

Figure S4: Comparison of across-layer LFP power and spike rates for open field exploration and sleep. Related to Figure 5. (A) LFP power for the different silicon probe electrodes spanning the vertical CA1 axis. Top: Theta band power for the different behavioral conditions in Figure 5. Bottom: The same but for the slow gamma frequency band. Colored lines indicate different animals. For each animal theta or slow gamma power in all conditions was normalized by the mean power in the active condition. (B) Average spike rates for single cells simultaneously recorded in the CA1 pyramidal layer. Same data and color scheme as in A. P-values were computed using a Wilcoxon rank-sum test (Bonferroni correction per animal).