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SUMMARY

While our battle with the COVID-19 pandemic continues, a multitude of Omics data
has been generated from patient samples in various studies, which remains to be
translated. We conducted a meta-analysis of published transcriptome and proteome
profiles of nasal swab and bronchioalveolar lavage fluid (BALF) samples of COVID-19
patients, to shortlist high confidence upregulated host factors. Subsequently, mRNA
overexpression of selected genes was validated in nasal swab/BALF samples from a
cohort of COVID-19 positive/negative, symptomatic/asymptomatic individuals.
Analysis of these data revealed S100 family genes (S100A6, S100A8, S100A9, and
S100P) as prognostic markers of COVID-19 disease. Furthermore, Thioredoxin gene
(TXN) was identified as a significant upregulated host factor in our overlap analysis.
An FDA-approved drug Auranofin, which inhibits Thioredoxin reduction, was found to
mitigate SARS-CoV-2 replication in vitro and in vivo in the hamster challenge model.
Overall, this study translates COVID-19 host response Big Data into potential clinical

interventions.

KEYWORDS


https://doi.org/10.1101/2021.02.18.431825
http://creativecommons.org/licenses/by-nc-nd/4.0/

34
35

36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.18.431825; this version posted April 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

COVID-19, Nasal swab/BALF, Transcriptome, Proteome, Meta-analysis, Prognostic

marker, Auranofin

INTRODUCTION
The COVID-19 pandemic has emerged as the biggest global public health crisis of this
century. As of April 11, 2021, more than 136 million infections and 2.9 million

casualties have been reported (https://www.worldometers.info/coronavirus/). The

causative agent SARS-CoV-2 contains a single-stranded positive-sense RNA genome
that encodes ~27 proteins (1). COVID-19 disease is quite heterogeneous, and its
manifestation ranges from asymptomatic, mild, severe to lethal, depending on a
variety of host, virus, and environmental factors (2). Age, sex, ethnicity, and co-
morbidities, all have been implicated in determining disease outcome (2-4). An
effective and timely interferon (IFN) response is critical in resolving viral infections (3),
however, SARS-CoV-2 has multiple strategies to suppress host immune response (4).
Disruption of immune homeostasis and induction of cytokine storm has been
recognized as one of the underlying causes of severe COVID-19 (5), yet the molecular
mechanisms underlying immune dysregulation are yet to be defined.

Several research groups have applied tour de force high throughput methodologies to
profile the host responses upon viral infections (6-13). This has resulted in a wealth of
virus-host interaction Big Data, which hold the key to novel therapeutic strategies and
molecular markers of infection and disease progression. Examination of host response
at the primary site of infection in the upper respiratory tract is crucial to understand
viral pathogenesis. Various studies have utilized BALF and nasopharyngeal swabs to
characterize the changes in transcripts and proteins during infection to understand
COVID-19 pathogenesis (6-12), which have highlighted significantly upregulated
genes and biological pathways altered during infection. While proinflammatory
cytokines, chemokines, enzymes in neutrophil-mediated immunity, and several IFN
stimulated genes (ISGs) have consistently shown up in their analysis, experimental
validation and mechanistic studies are generally lacking (7-12). A detailed
characterization of antiviral responses in the upper respiratory tract of patients, its
variation with age, sex, and association with progression of disease severity remains
to be accomplished. (14-16).
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67 The goal of our study was to identify genes that are consistently upregulated during
68 SARS-CoV-2 infection in the upper respiratory tract of patients and understand their
69 role in viral infection and disease progression. For this, we surveyed the literature for
70  Omics data from COVID-19 positive patient’s nasal swab and BALF samples and
71 selected 4 transcriptomic and 3 proteomic datasets. We performed a hypergeometric
72 distribution-based overlap analysis followed by cumulative fold change score-based
73 prioritization to shortlist genes. This was followed by an examination of selected gene
74  expression levels in nasal swab/ BALF samples from a cohort of COVID positive,
75  negative, symptomatic, and asymptomatic individuals, ranging from 30-60 years in age
76  and of mixed gender. ROC analysis of gene expression data in nasal swabs revealed
77 S100 family genes (S100A6, S100A8, S100A9, S100P) as high confidence markers
78  of disease severity. Among other shortlisted genes, Thioredoxin (TXN) emerged as a
79  significantly upregulated factor supported by multiple datasets. Thioredoxin is a
80 proinflammatory protein that requires to be reduced by Thioredoxin reductase enzyme,
81  which itself can be targeted by an FDA-approved gold drug Auranofin (17, 18). We
82 tested the antiviral efficacy of Auranofin in cell culture and preclinical Syrian hamster
83 challenge model and found that it can reduce SAR-CoV-2 replication over 1 order of
84  magnitude at a well-tolerated non-toxic dosage. This drug is already in clinical use for
85 inflammatory diseases and can be considered for COVID-19 treatment based on our
86 data.
87
88  Through collective global efforts several COVID-19 vaccines have become available
89 in an astonishingly short period, although new virus variants have emerged, some of
90 which can escape vaccine-mediated immunity (19). Progress on the development of
91 the antivirals and disease prognostic markers has been lagging. Repurposing clinically
92 approved drugs for use against SARS-CoV-2 has been an attractive option and has
93  been explored by many research groups through different approaches (20). Our study
94 translates COVID-19 virus-host interaction and response Big Data into potential
95 actionable clinical interventions, including the use of S100 genes as a prognostic
96 marker in the nasal swabs and repurposing clinically approved drug Auranofin for
97 COVID-19 treatment.
98
99

100 RESULTS
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101 Compilation and overlap analysis of published transcriptomics and proteomics
102 data from COVID-19 patient samples revealed 567 upregulated host factors.

103 We started the study by compiling the host factors that are consistently and
104  significantly upregulated in the upper respiratory tract of COVID-19 patients. For this,
105 we decided to use published transcriptomics and proteomics datasets derived from
106  nasal swab or BALF samples of COVID-19 patients. We chose four transcriptomics
107  (T), and three proteomics (P) datasets and further analysis was performed according
108 to a rationally designed workflow (Figure 1A). All datasets included differentially
109 expressed genes in infected patients with healthy individuals as control (Table S1).
110  The selection criteria (described in materials and methods) included at least 1.5-fold
111 (2-fold for one dataset) gene upregulation at both mRNA and protein levels. The
112  filtration of data was carried out to sort only significantly upregulated genes from all
113 the datasets (Table S2). A pairwise overlap analysis was performed on the filtered
114  genes/proteins from each study and significantly overlapping genes (p-value < 0.01
115 calculated using Fisher’s exact test) between T1-T3 (14), T1-T4 (9), T1-P3 (2), T3-T4
116  (504), T3-P1 (10), T3-P2 (8), T3-P3 (17), T4-P1 (8). T4-P3 (15) and P1-P3 (3) were
117  determined (Figure 1B, Supplementary File 1). This method was adapted from similar
118 overlap analysis conducted previously to compare multiple virus-host interaction
119 datasets and obtain the significance of intersections (21). Union of intersections
120 between the T-T and T-P and P-P after the overlap analysis results in 567 genes
121 (Figure 1B). To reiterate the functional characteristics of the differentially expressed
122 genes (DEGs), we examined the biological processes and signaling pathways they
123 are involved in. Pathway enrichment of 567 genes from the union of all intersections
124  from overlap analysis (TT+TP+PP) showed enrichment of biological processes like
125 protein elongation, interferon (IFN) signaling, chemotaxis of granulocytes, and
126  inflammatory pathways (Figure 1C). The antiviral response to respiratory viral
127  infections including SARS-CoV-2 is driven by interferons (IFNs) (16). Hence, we
128 examined the shortlisted set of genes for their potential regulation by different
129  categories of IFNs, using the Interferome tool (22). We found that out of 567 genes,
130 205 were regulated by type | IFN, 170 genes by Type Il IFN, 327 genes were regulated
131 by both type | and type Il IFN, while 16 genes were commonly regulated by all the
132 three classes of IFNs (Figure 1D). These 16 genes are well-characterized interferon-
133  stimulated genes (ISGs), that include direct antiviral effector ISGs (IFITs, MX1, OASS,
134 and OAS1), as well as positive regulators (STAT1) of IFN response (23). This
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135 indicated an active IFN mediated innate antiviral response in the upper respiratory
136 tract cells during SARS-CoV-2 infection and highlighted potential antiviral factors.

137

138 Rank ordering and shortlisting of upregulated host factors highlighted host
139  factors regulating the antiviral and inflammatory immune response in COVID-19
140 patients.

141  Since proteome dictates the outcome inside a cell, soluble factors are key in shaping
142  the antiviral response. We focused on genes supported by orthogonal transcript (T)
143  and protein (P) abundance data. For this, we chose genes from the union of
144  intersections of T-T, T-P, and P-P overlaps, which was reported at least in one of the
145  proteomics studies. This narrowed down the list to a total of 46 genes that were
146 intersecting in T-P (26), P-P (2), TT-TP (16), TP-PP (1), and TT-TP-PP (1) overlaps
147  (Figure 2A and 2B). A cumulative score for the 46 selected significantly upregulated
148 genes was calculated using the sum of their log2 fold-change values in the parent
149  datasets and ranked (Figure 2C). The enrichment of these 46 genes in each of the
150 datasets, where the expression is reported, is shown in Figure 2B. Many of these
151  genes are directly regulated by different classes of interferons. 15 genes are regulated
152 by IFN-I, while 8 genes by IFN-II. 20 genes are regulated by both type-l and type-Ii
153  IFNs, while only 2 genes by all the three types of IFNs (Figure 2D). Most of the IFITs
154  and other ISGs that were earlier determined in our analysis to be regulated by all the
155 three types IFNs are no more in the list since those ISGs were only reported
156  upregulated at transcriptome level (only in T-T overlap) and hence were lost when the
157  genes were filtered for their upregulation at the protein level, leaving behind only MX1
158 and OAS3 (Figure 1C and 2D). The biological functions of the selected 46 genes were
159 also investigated to understand their roles in COVID-19 pathophysiology. The
160 pathways enriched were mainly related to innate immune response and defense
161 against microbes along with inflammatory and immune signaling, neutrophil

162  degranulation, and cellular response to TNF and interferon-gamma (Figure 2E).

163  Further, to understand the potential role of shortlisted genes in COVID-19
164  pathophysiology, their interactions with SARS-CoV-2 proteins were inspected by
165 analyzing the publicly available SARS-CoV-2 cellular interactome data (24). For this,
166  host protein-protein interactions were retrieved from the STRING database (25) and

167  merged with the virus-host protein-protein interactions giving a discrete picture of how
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168 the viral proteins target various cellular processes during infection. Other than NAMPT,
169 UQCRC2, and RABS5C, it was mainly ribosomal proteins that were primary interactors
170  to the SARS-CoV-2 proteins (Figure 2F and 2G). We also examined the intracellular,
171 cellular, tissue, and organ-specific expression for shortlisted genes using publicly
172 available data (26). Many upregulated proteins were predicted to localize in the
173  intracellular organelles like endoplasmic reticulum, mitochondria, Golgi complex, and
174  endosomes (Figure S1A), while 19 genes were predicted to be secretory. A thorough
175 analysis of the list of 46 selected genes using Human Tissue Atlas revealed that they
176  are expressed in the respiratory tract and in immune effector cells known to survey
177  infection sites (Figure S1B). The relative expression levels show that genes associated
178  with protein synthesis (ribosomal proteins and elongation factors) are highly expressed
179 compared to any other genes and are enriched across all the tissues in the map
180  (Figure S1B).

181

182 qRT-PCR based validation in a cohort of COVID-19 positive/negative,
183 symptomatic/asymptomatic individuals reveals differential upregulation of
184  selected genes in a disease-specific manner.

185

186  For validation using gRT-PCR and further analysis, we selected genes with a
187  cumulative score greater than 10 (Figure 2C). Also, we considered genes belonging
188 to the S100 family that came up within 46 shortlisted genes, since they are known
189  regulators of inflammation (27, 28). Furthermore, we also selected the TXN since it
190  was supported by multiple lines of evidence and appeared in the TT-TP-PP overlap in
191  our study (Figure 2A). The COVID-19 patient cohort used for gRT-PCR of genes,
192  included 63 individuals (both males and females, aged 30-60 years), out of which 16
193 each were COVID-19 positive-symptomatic (PS), COVID-19 positive-asymptomatic
194 (PA), COVID-19 negative-symptomatic (NS), and 15 were COVID-19 negative-
195 asymptomatic (NA) healthy category (Table 1). Total mMRNA from the nasal swab was
196 isolated and the upregulation of 14 selected genes was verified by gRT-PCR. The log2
197 fold-change expression with respect to the average of the negative asymptomatic
198 group (Figure S2, Figure 3A) was calculated and plotted on the heatmap (Figure 3A),
199  which depicts the mRNA enrichment of the selected genes in different patient samples
200 and categories. Next, we determined the correlation between the viral RNA load in

201 COVID-19 patients (QRT-PCR of viral envelope (E) gene) and log2 Fold-change of
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202  selected host genes in the patient’'s sample. It was observed that the Ct value for the
203 E gene was negatively correlated with logz Fold-change of genes showing that viral
204 load and disease severity are positively correlated (Figure S3). Furthermore, the
205 upregulation of selected host genes was more pronounced in positive symptomatic
206  patients with a higher viral load than positive asymptomatic individuals (Figure 3A and
207  Figure S3). A comparative heatmap in Figure 3B gives an insight into the genes that
208 can be considered as COVID-19 disease and/or severity marker. While all the
209 upregulated genes indicate infection (Figure 3B; NA-PS), only a few genes showed

210  significant upregulation in a COVID-19 specific manner (Figure 3B; NS-PS).

211 Multiple genes from the S100 family, including S100A8, S100A9, S100A6, and S100P,
212 and few other genes such as ASS1 and SERPINB3 were significantly upregulated in
213 positive symptomatic patients when compared to other three categories (NA, NS, PA),
214  suggesting their potential diagnostic and prognostic value (Figure 3B, NS-PS).
215  Expression of neutrophil defensin alpha 3 (DEFA3) was upregulated in some of the
216 positive symptomatic patients but remained undetermined in many cases.
217  Furthermore, we examined the influence of age and sex on the upregulation of
218 selected gene in patient’s samples by categorizing them based on age groups (30-40,
219  41-50, and 51-60) and gender (male and female) (Figure 3C, Figure 3D, Figure S4
220 and S5). The gRT-PCR data revealed that all the selected genes were induced in
221  positive symptomatic patients, irrespective of age or gender. However, closer
222  examination of the heatmap reveals S100 family genes (S100A8, S100A9, S100P)
223 being upregulated to a higher level in the 30-40 year age group and male individuals
224  (Figure 3C, 3D).

225

226 ROC analysis of mMRNA expression of shortlisted significant genes in the COVID-
227 19 cohort unveils the prognostic potential of the S100 family of genes.

228 The COVID-19 symptomatic group of patients included individuals with breathing
229  difficulty, fever, hospitalization, and SARI (severe acute respiratory infections),
230 whereas asymptomatic patients had none of these features (Tablel). To evaluate the
231  prognostic value of selected genes in differentiating asymptomatic vs symptomatic
232 COVID-19 cases, we conducted a non-parametric Receiver Operating Characteristic
233 (ROC) curve analysis (29) for the 11 genes that were significant after comparison

234  between positive symptomatic and asymptomatic group (Figure 3B). For this, we used
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235 their threshold cycle (Ct) values for COVID-19 positive cases to plot the curve, and the
236 area under the curve (AUC) was computed (Figure 4A). All genes were found to
237  significantly differ (AUC > 0.5) from the line where True positive rate = False positive
238 rate, indicating their potential to differentiate between asymptomatic and symptomatic
239 individuals (Figure 4B). The optimal C: value cut-off was determined for significant
240 genes using the ROCO01 method which finds the point in the ROC curve closest to (0,1)
241  corresponding to 100% specificity and sensitivity. Since the prognostic marker should
242  correctly identify symptomatic patients from asymptomatic ones, we looked at the
243  genes with maximum sensitivity while not compromising on specificity at the optimal
244  cut-off. S100A8 (Cut-off = 9.964663, Sensitivity = 0.938, Specificity = 0.688) had the
245  highest sensitivity at the optimal cut-off. Other S100 family members like S100A9 (Cut-
246  off = 8.533607, Sensitivity = 0.854, Specificity = 0.729), S100A6 (Cut-off =8.472503,
247  Sensitivity = 0.745, Specificity = 0.718) and S100P (Cut-off = 11.23458, Sensitivity =
248  0.812, Specificity = 0.622) also showed good prognostic potential (Figure 4C and 4D).
249  Genes like LCN2 (Cut-off = 11.23362, Sensitivity = 0.744, Specificity = 0.756), AGR2
250 (Cut-off = 11.19266, Sensitivity = 0.775, Specificity = 0.708) and ASS1 (Cut-off =
251  12.70913, Sensitivity = 0.7, Specificity =0.771) were also found to have desired
252 sensitivity and specificity values (Figure S6).

253

254 Thioredoxin reductase inhibitor drug Auranofin significantly mitigates SARS-

255 CoV-2replication in vitro and in vivo in the hamster challenge model.

256  Thioredoxin (TXN) was a single hit that appeared in the TT-TP-PP overlap in our study
257 and remained in the shortlisted gene set at the end of the meta-analysis. Although its
258  expression upregulation or the prognostic value was not the highest, it is part of a
259  druggable pathway. Thioredoxin is known to promote inflammatory cytokine induction,
260 apoptosis, and regulate redox status, for which it switches between oxidized and
261 reduced forms through the action of thioredoxin reductase, which can be inhibited by
262 an FDA approved orphan drug Auranofin (2,3,4,6-tetra-o-acetyl-L-thio-B-D-
263  glycopyranp-sato-S-(triethyl-phosphine)-gold) (30, 31). We sought to check the effect
264  of Auranofin, which will lock Thioredoxin in its oxidized form, on SARS-CoV-2 infection
265 and replication in cell culture and animal models. To begin, cell viability assay
266 performed in HEK-ACEZ2 cells using increasing doses of Auranofin showed minimal

267  cytotoxicity at the lowest concentration (1uM) and had predicted CCso of 9.659uM
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268  (Figure 5 A). The effects of increasing doses of Auranofin up to 1 uM, was then tested
269 on SARS-CoV2 replication in vitro. For this, cells were pretreated with the drug which
270 remained present during the course of infection. Analysis of viral RNA 48hr post
271 infection showed a reduction of more than one order of magnitude, starting at
272 treatment with 0.25 pM Auranofin (Figure 5B). With a calculated ECso = 0.29uM, the
273 selectivity index (CCso/ICs0) of auronafonin was determined to be 33.3. The potent
274  antiviral effect of Auranofin was confirmed by western blot for the full-length viral spike
275  protein (Figure 5 C). Next, we decided to confirm the antiviral activity of Auranofin in
276 Syrian golden hamsters, which are currently considered as the animal model of choice
277  to evaluate vaccines and antivirals (32). Auranofin (PubChem CID 6333901) toxicity
278  and bioavailability in rodents have been described before (33), based on which we first
279  tested its oral toxicity in hamsters at 1mg and 5mg/kg body weight, which showed the
280 drug was well tolerated at the tested doses (Figure S7). For infection studies, the drug
281 was orally administered in prophylactic and therapeutic formats; before and after
282 infection respectively (Figure 5D). The viral titers in lungs of animals at Day 4 revealed
283 that therapeutic administration of Auranofin with a non-toxic concentration of 5mg/kg
284  body weight was more effective at mitigating virus replication (reduction by more than
285 one order of magnitude) in lung tissue, compared to prophylactic dosage (Figure 5E).
286  Bodyweight loss results were also indicative of the same when compared to the virus
287  challenge group (Figure 5F). Also, we found that the TXN gene was upregulated in the
288 lungs of infected animals compared to the mock group, which correlates to our findings
289 from patient sample gene expression data (Figure S8)
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290 DISCUSSION

291  Several studies have analyzed changes in global transcriptome and proteome in
292  COVID-19 patient samples of various kinds (6-12). These studies have given an
293  overview of the biological processes that are modulated during SARS-CoV-2 infection;
294  however, translation of this knowledge into antiviral interventions requires validation
295 and mechanistic studies. Meta-analysis of virus-host interaction Big Data is a useful
296 approach to narrow down key host factors and processes involved in viral replication
297 and pathogenesis (21, 34). In our study, we focussed on transcriptomics and
298 proteomics data from COVID-19 positive nasal swab and BALF samples and
299 performed an integrative analysis to identify host factors involved in SARS-CoV-2
300 infection and disease progression. We reasoned that changes at mRNA levels must
301 also be manifested at the protein level to bring out phenotypic differences in the
302 infected individuals. Hence, we designed our meta-analysis pipeline to shortlist genes
303 that were represented in orthogonal transcriptomics as well as proteomics datasets.
304 Expression of the genes selected through meta-analysis was examined in nasal
305 swab/BALF samples collected for COVID-19 diagnosis from a cohort of individuals
306 that were COVID-19 negative or positive, and within those two categories either
307 symptomatic or asymptomatic. The cohort design was to ensure the identification of
308 genes that are overexpressed in a COVID-19 specific manner and those which
309 indicate disease severity. The initial compilation of upregulated factors had 567
310 genes, of which 46 genes passed through the selection pipeline (Figure 2B). Most of
311 these genes turned out to be IFN regulated and among them, the major category was
312 ribosomal proteins (RPs) including RSP3A, RPL4, RPL5, RPL18, RPL13A, RPS4X,
313 RPL7A, RPS9, and RPS3 (Figure 2B). RPs have been reported to be hijacked by
314  different viruses, including SARS-CoV-2 during infection to shut off host translation
315 and facilitate IRES-mediated translation of viral proteins (35-37). Inspection for
316  reported interactions between shortlisted RPs with the SARS-CoV-2 proteins revealed
317 that nspl, nsp8, nsp9, and nucleocapsid (N) proteins of SARS-CoV-2 are potential
318 interactors (Figure 2F). This suggests extensive targeting of host translational
319  machinery by multiple SARS-CoV-2 proteins in the upper respiratory tract cells. Other
320 shortlisted cellular proteins with reported interactions with viral proteins were NAMPT,
321  UQCRC2, and RAB5C (Figure 2G). These are involved in ATP production, NAD
322 synthesis, and vesicular fusion respectively, all of which have been reported to be
323  modulated during SARS-CoV-2 infection (38, 39).
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324  Subsequent ranking of genes based on cumulative upregulation score across different
325 datasets, with dual support from transcriptomic and proteomic evidence, shortlisted 14
326  high confidence upregulated genes (Fig 2B). To confirm their upregulation during
327 SARS-CoV-2 infection and the effect of patient age, sex, disease severity on the same,
328 their expression was measured in a cohort of patients described earlier (Table 1). The
329 data revealed that 11 genes were upregulated significantly in the PS category when
330 compared to PA and hence had prognostic value. Whereas 8 genes were upregulated
331 when compared to the NS category, hence had diagnostic value (Figure 3B). The data
332 indicated higher levels of selected gene expression in younger male patients, which is
333  consistent with previous reports of age and sex-dependent differences in COVID-19
334 induced gene expression and disease severity (6, 40). Among host factors that
335 appeared at the end of meta-analysis and validation in the COVID-19 cohort, the S100
336 family of genes (S100A6, S100A8, S100A9, S100A12, S100P) emerged as a major
337 group. An upregulation of S100 proteins is reported previously as an indication of viral
338 or bacterial infections (27). The extracellularly secreted S100 proteins include
339 S100A12, S100A8, and S100A9 (Figure S1A), all of which have been shown to serve
340 as a danger signal and in regulating immune response (28). They activate NF-kB
341 signaling through RAGE and TLR4 pathways stimulating the cells to produce
342  proinflammatory cytokines at the site of infection (28). Several studies have explored
343  serum diagnostic and prognostic markers by evaluating transcriptomic and proteomic
344 changes in mild, severe, and fatal cases of COVID-19 (41, 42). An increase in
345  S100A8/A9 (calprotectin) levels in serum have been correlated with severe forms of
346 the disease (43). Transcriptomic studies on lung tissue of fatal COVID-19 cases have
347 also reported which report an upregulation in S100A12, S100A8, S100A9, and S100P
348 in patients (44, 45). In our study, the ROCO1 curve analysis of the PA and PS group
349 gRT-PCR data showed that all shortlisted S100s (except S100A12) had significant
350 sensitivity as a prognostic marker of symptomatic COVID-19 (Figure 4 C, D). Overall,
351 taking our data and published information together, the S100 family of genes can be
352 considered as reliable prognostic markers of COVID-19 infection and disease
353  progression. Another host factor LCN2, which came up in our study was previously
354  shown to be an important biomarker for viral infection (46, 47), and was also reported
355 to be upregulated in transcriptomic and proteomic studies in COVID-19 patients (48,
356  49). Furthermore, Serine protease inhibitors (SERPINSs) family genes SERPINB3 and
357 SERPINB1 were present among the initially selected 46 upregulated genes.
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358 SERPINB3 was at the top of cumulative upregulation ranking (Figure 2C) and in the
359 COVID-19 cohort, it was significantly upregulated in the PS category. It is an inhibitor
360 of papain-like cysteine proteases such as cathepsin, which is required for Spike
361 cleavage during SARS CoV-2 entry (50). Interestingly SERPINA1 deficiencies or
362 mutations in populations were found to be associated with severe forms of COVID-19
363 (46, 47). Taken together this indicates a potential antiviral role for SERPINs against
364 SARS-CoV-2, which needs further exploration.

365

366  Finally, one gene of interest which passed the rigor of meta-analysis was TXN.
367 Although its cumulative upregulation or prognostic values were not very high, we
368 explored its potential as a therapeutic target. Thioredoxin is a small redox protein that
369 plays an active role in keeping the intracellular compartment in a reduced state, which
370 is important to prevent protein aggregation (51, 52). The thioredoxin system consists
371 of three components namely thioredoxin, thioredoxin reductase, and the reducing
372 agent nicotinamide adenine dinucleotide phosphate (NADPH). Thioredoxin reductase
373 is a redox homeostatic enzyme, that can be inhibited by FDA-approved, gold-
374  containing triethyl phosphine drug Auranofin (17, 53). This drug has been shown to
375 have inhibitory activity against rheumatoid arthritis, cancer, HIV/AIDS, parasitic, and
376  bacterial infections (54). A recent study by Rothan et.al showed Auranofin to inhibit
377  SARS CoV-2 in Huh-7 cells at an EC50 of 1.4uM (18). In comparison, our data in HEK-
378  ACEZ2 cells showed improved antiviral activity at much lower concentrations of the drug
379  (selectivity index - 33.3, versus 4.07), as evidenced by a decrease in levels of both
380 viral RNA and spike protein expression (Figure 5B and 5C). We went on to validate
381 the antiviral activity of Auranofin in the preclinical hamster challenge model. Results
382 showed a significant reduction in lung viral load and rescue of animal body weight,
383 when administered therapeutically, which may be attributed to the anti-inflammatory
384  activity of the compound (55). Notably, Auranofin has been shown to decrease pro-
385 inflammatory cytokines IL-6, IL1B, and TNFa mRNA levels during SARS-CoV-2
386 infection in vitro, which are known mediators of disease severity (18). Thioredoxin
387 mMRNA levels were upregulated in hamsters, which is consistent with the observation
388 in COVID-19 patients. Auranofin also has inhibitory effects on the PIBK/AKT/mTOR
389  pathway (56), which is required for SARS-CoV-2 viral protein translation (57, 58). This
390 may also contribute to its mechanism of action, however, that needs to be further

391 investigated.
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392  Overall, this study highlights the value of comprehensive analyses of Omics datasets
393 to gain insight into infection biology and identify avenues for potential therapeutic
394 targeting. The selected gene expression data obtained with the COVID-19 cohort
395 reaffirmed the heterogeneity of individual immune response, the role of age, sex, and
396 effect of viral load, all of which are in coherence with observations made by other
397 research groups. We especially uncover the prognostic value of S100 family genes in
398 nasal swabs, many of which are soluble secretory factors and can be easily tested by
399 RT-PCR or ELISA-based methods in nasal swabs to understand the disease
400 progression. Finally, the identification of Auranofin, a safe drug already in clinical use
401 for other medical conditions, as a COVID-19 treatment option culminates the
402 importance of our study and meta-analysis approach in translating virus-host
403 interaction Big Data into clinical interventions.

404
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447  FIGURE TITLES AND LEGENDS

448  Figure 1: Meta-analysis pipeline for gene prioritization and associated pathway
449 analysis. A) Three proteomics and four transcriptomics datasets were chosen to
450  obtain biomarkers for COVID-19 in humans. Genes/proteins that came up in these
451  studies with a fold change greater than 1.5 and a g-value less than 0.05 (p-value less
452  than 0.01 was taken in cases where q value is not provided) were subjected to pairwise
453  overlap analysis. Genes that fall under significant intersections and represented in at
454  |east one proteomic dataset were sorted using cumulative scores to be experimentally
455  verified. B) Triangular heatmap showing pairwise overlaps between transcriptomic
456  and proteomic datasets. The number within each box denotes the number of genes
457  that showed up between the corresponding intersections. The color of a box denotes
458  the significance of overlap determined by Fisher’s exact test. C) Gene ontology of all
459  genes (567) in the significant intersections obtained during the overlap analysis plotted
460  with the number of genes in each term on the X-axis, proportion of genes enriched
461 compared to the total number of genes in each term as the size of dots and the color
462  representing logio p-adj value (g-value) of enrichment. D) Venn diagram showing the
463 number of genes that are induced by Type |, II, or Ill interferons. The analysis was

464  performed on Interferome v2.01 using the union of significant intersections (567)

465 Figure 2: Cumulative score ranking, pathway, and interactome analysis of
466 selected host factors. A) Venn diagram of genes obtained from significant
467 intersections among proteomic or transcriptomic datasets after pairwise overlap
468 analysis. B) Genes in the Venn diagram that were found in at least one proteomic
469  dataset with their log2FC values in the datasets where they are present. Boxes colored
470 in white denote that the gene is not present in the particular dataset. C) Genes
471  arranged in descending order of cumulative scores obtained as a sum of log2FC values
472 in the datasets where they are present. D) Venn diagram showing the number of
473  interferon-induced genes performed using Interferome v2.01 for 46 selected genes.
474  E) Gene ontology of 46 genes plotted with the number of genes in each term on the
475  X-axis, the proportion of genes enriched compared to the total number of genes in
476  each term as the size of dots and the color representing logio p-adj value (g-value) of
477  enrichment. F, G) Virus-host protein-protein interactions among SARS-CoV2 proteins
478  and significant genes in the overlap analysis that shows up in at least one proteomic

479  dataset modeled using Cytoscape v3.8.0. A STRING interactome for the primary
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480 interactors of SARS-CoV-2 proteins was merged (confidence =20.999 for all the
481  proteins and confidence 20.90 for NAMPT; max number of interactors = 10). Red:
482 SARS-CoV-2 proteins, Green: Host proteins (primary interactor), blue: STRING

483 interactors (other cellular proteins interacting with the primary interactors).

484  Figure 3: qRT-PCR validated expression profile of selected genes in different
485 categories of COVID-19 cohort A) gRT-PCR was performed on RNA isolated from
486 COVID-19 patients for 14 genes and average logz Fold-change values (with respect
487 to Negative Asymptomatic group) of PCR triplicates are shown in a heatmap. Each
488  column represents a patient and clustering was performed for columns and within row
489  slices. The bottom annotation shows the C: value for the viral gene encoding Envelope
490 (E) protein with a corresponding legend on the top. Black boxes denote ‘value
491  unknown/undetermined. B) Differences between groups for each gene were
492 computed using the Kruskal-Wallis test followed by post hoc Dunn’s test with
493  Bonferroni corrections for multiple comparisons. The logio (p-value) of comparisons is
494  shown in the heatmap. The comparisons are Negative asymptomatic vs Positive
495  symptomatic (NA-PS), Negative symptomatic vs Positive symptomatic (NS-PS), and
496  Positive asymptomatic vs Positive symptomatic (PA-PS). *P < 0.05; **P < 0.01; ***P <
497  0.001; ***P < 0.0001; ns — not significant. C) logz Fold-change values are grouped
498 based on age groups 30-40, 41-50, and 51-60. Each row represents the average of
499 log2 Fold-change values for patients falling into the particular age group and respective
500 disease status. D) log2 Fold-change values are grouped according to sex. Each row
501 represents the average of logz Fold-change values for patients falling into the

502  particular sex and respective disease status.

503 Figure 4: ROC analysis of genes in COVID-19 positive patients to identify
504 prognostic markers. A) ROC curve for Ct value of genes in COVID-19 positive
505 patients. The black dashed line corresponds to no prognostic potential where True
506 positive rate (Sensitivity) and False positive rate (1-Specificity) are equal. B) The value
507 of Area Under the Curve (AUC) for each ROC curve along with the p-value.
508 Significance was calculated non-parametrically (DeLong’s estimate) using the Wald
509 test statistic. C) Boxplot of Ct values for significant S100 family of genes in Positive
510 asymptomatic (PA) and Positive symptomatic (PS) patients. The red dashed line
511  shows the optimal C: cut-off determined by the ROC01 method (also shown in the
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512 label in each graph). D) Optimal Ct cut-off, sensitivity, and specificity values for

513  significant S100 family of genes.

514 Figure 5: Auranofin inhibits SARS-CoV-2 replication in cell culture and
515 preclinical hamster challenge model. A) HEK-ACE2 cells were treated with the
516 indicated dose of the drug for 48 hours. Cell viability was measured and plotted on the
517 graph. B) HEK-ACEZ2 cells were pre-treated with the indicated amount of drug for 3
518 hours and then infected with SARS-CoV-2 at 0.1 MOI for 48 hours. Total RNA was
519 isolated from the cells and viral RNA copy number was measured by gRT-PCR. Log1o
520 copy number of VRNA per ug total RNA is plotted on the graph. C) HEK-ACE2 cells
521  were pre-treated with the indicated amount of drug for 3 hours and then infected with
522 SARS-CoV-2 at 0.1 MOI for 48 hours. Cells were harvested with 1x Laemmli buffer
523 and probed for spike and beta-actin. D) 10—-12-week-old hamsters (4 per group) were
524  pre-treated with 5mg/kg bodyweight drug through oral route in 200 ul PBS vehicle. For
525 the prophylactic group, this was done once per day for 3 days before infection, and for
526 the therapeutic group, it was done once per day for 3 days post-infection. SARS-CoV-
527 2 inoculum (10° pfu/100 pl) was administered intranasally. The vehicle control group
528 was administered the corresponding volume of DMSO in PBS same as the
529  prophylactic group. Day 4 post-infection animals were sacrificed to measure viral and
530 cellular RNA quantity in lung tissue. E) Total RNA was isolated from the lung tissue of
531 infected animals and viral RNA copy number was measured by qRT-PCR. Log10 copy
532 number of VRNA per ug total RNA is plotted on the graph (n=4). F) Body weight of
533 hamsters was measured from DO to D4 and plotted on the graph, considering weight
534 on DO as 100% (n=4). Error bars represent mean + standard error. Differences
535 between test groups and control group were computed using the t-test with Bonferroni
536 corrections for multiple comparisons. *P < 0.05; **P < 0.01; ***P < 0.001; ****P <

537 0.0001; ns — not significant.
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TABLES WITH TITLES AND LEGENDS
Number Number Number
Number Number in the | in the [ in the
) Average | Number
Patient Status of of age age age
) age of males
patients females group group group
30-40 41-50 51-60
Negative
) 16 43.9 8 8 5 6 5
Asymptomatic
Negative
_ 16 41.7 12 4 9 4 3
Symptomatic
Positive
) 15 44.3 8 8 6 6 4
Asymptomatic
Positive
] 16 45 8 8 5 5 6
Symptomatic

Table 1. Summary of individual and different categories in the COVID-19 cohort

used for qRT-PCR based validation analysis. All samples were collected from

Bangalore Urban area for diagnostic purposes.
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543 STARXMETHODS
s44 KEY RESOURCES TABLE
REAGENT or RESOURCE | SOURCE | IDENTIFIER
Antibodies
SARS-CoV / SARS-CoV-2 (COVID-19) spike antibody GeneTex GTX632604
Goat Anti-Mouse IgG H&L abcam ab6789
Ms mAb to beta Actin [AC-15] (HRP) abcam ab49900
Bacterial and virus strains
SARS-CoV?2 Isolate Hong Kong/VM20001061/2020 \ BEI Resources \ NR-52282
Biological samples
Nasal swabs from COVID-19 patients and healthy control | COVID-19 Diagnostic | N/A
individuals Facility, Indian
Institute of Science
Chemicals, peptides, and recombinant proteins
PowerUp™ SYBR™ Green Master Mix Applied Biosystems™ | A25778
Dulbecco’s modified Eagle medium Gibco 12100-038
HI-FBS Gibco 16140-071
Penicillin-Streptomycin-Amphotericin B MP Biomedicals ICN1674049
GlutaMAX™ Gibco 35050-061
Poly-L-lysine Sigma Aldrich P9155-5MG
Auranofin Sigma Aldrich A6733
AlamarBlue™ Cell Viability Reagent Thermo Fisher DAL 1025
TRIzol™ Reagent Thermo Fisher 15596018
Phosphate Buffered Saline (10x) MP Biomedicals 162528
4x Laemmli Sample Buffer Bio-Rad 1610747
Skimmed Milk Sigma Aldrich 70166
Tween 20 Sigma Aldrich P1379
Xylazine Injection Indian 21
Immunologicals Ltd.
Ketamine Bharat  Parenterals | N/A
Limited
Clarity Western ECL Substrate Bio-Rad 1705061
Critical commercial assays
Prime Script™ RT Reagent Kit with gDNA Eraser (Perfect | Takara-Bio RRO0O47A
Real Time)
AgPath-ID™ One-Step RT-PCR kit Applied Biosystems AM1005
Experimental models: cell lines
HEK 293T cells expressing human ACE2 BEI resources NR-52511
VeroE®6 cells ATCC® CRL-1586
Experimental models: organisms/strains
Syrian Golden Hamster Biogen laboratory | N/A
animal facility
Oligonucleotides
SARS-CoV2 N1 Primer Merck VC00021N
SARS-CoV2 N1 Probe Merck VCO00023N
Other primers Eurofin N/A
Software and algorithms
Cytoscape v3.8.0 Cytoscape https://cytoscape.org/
Consortium
Biorender Biorender https://biorender.com/
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R Console 4.0.3

The R project for
Statistical Computing

https://cran.r-
project.org/

RStudio v1.3.1093

RStudio

https://www.rstudio.co
m/

GraphPad Prism v8.0.2 GraphPad https://www.graphpad
.com/
easyROC (ver. 1.3.1) (29) http://www.biosoft.hac

ettepe.edu.tr/easyRO
C/

QuantStudio Design and Analysis Software v1.5.1

Applied Biosystems

https://www.thermofis
her.com/in/en/home/g
lobal/forms/life-
science/quantstudio-
3-5-software.html

GeneOverlap R package v1.26.0 (59) https://bioconductor.o
rg/packages/release/
bioc/html/GeneOverla
p.html

Interferome v2.01 (22) http://www.interferom
e.org/

Metascape (60) https://metascape.org
/

Other

PVDF membrane

| Immobilon-P; Merck

IPVH00010

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and

will be fulfilled by the lead contact, Shashank Tripathi (shashankt@iisc.ac.in).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The published article includes all data generated or analyzed during this study. No

new code was developed for this study.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics Statement

This study was conducted in compliance with institutional human ethics and biosafety
guidelines, (IHEC No. 13-11092020; IBSC/IISc/ST/17/2020), following the Indian

Council of Medical Research and Department of Biotechnology recommendations. All

experiments involving animals were reviewed and approved by the Institutional Animal
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561  Ethics Committee (Ref: IAEC/IISc/ST/784/2020) at the Indian Institute of Science and
562  conducted in Viral Biosafety level-3 facility.

563 Human Subjects

564 Nasopharyngeal swabs were collected from COVID-19 patients and healthy
565 individuals for diagnostic purposes by hospitals from Bengaluru Urban city and brought
566 to COVID-19 Diagnostic Facility at the Indian Institute of Science in viral transport
567 media (VTM). RNA from patients was isolated using kits recommended and provided
568 by the Indian Council of Medical Research. Samples were chosen to have an almost
569 equal number of patients falling into categories of age, sex, COVID-19 status, and
570 symptomatic status (Table 1). Demographic information was not used as an inclusion
571  criterion.

572  Animal Models

573  All animal experiments were performed using 10 to 12-week-old male and female
574  Syrian golden hamsters purchased from Biogen Laboratory Animal Facility
575 (Karnataka, India). They were given access to pellet feed and water ad libitum. Males
576  and females were housed separately and maintained on a 12-hour day/night light cycle
577  at the Viral Biosafety level-3 facility at the Indian Institute of Science. Hamsters were
578 euthanized by an overdose of Ketamine (Bharat Parenterals Limited) and Xylazine

579 (21, Indian Immunologicals Ltd).

580 Cells and Viruses

581 HEK293T cells expressing human ACE2 (NR-52511, BEI resources) and VeroE®6 cells
582 (CRL-1586, ATCC®) were cultured in Dulbecco’s modified Eagle medium (12100-038,
583 Gibco) with 10% HI-FBS (16140-071, Gibco), 100 IU/ml Penicillin, 100 pg/ml
584  Streptomycin and 0.25ug/ml Amphotericin-B (Penicillin-Streptomycin-Amphotericin B,
585 ICN1674049, MP Biomedicals) supplemented with GlutaMAX™ (35050-061, Gibco).
586 SARS-CoV2 (Isolate Hong Kong/VM20001061/2020, NR-52282, BEI Resources) was
587 propagated and titered by plaque assay in Vero E6 cells as described before (61).
588

s89 METHOD DETAILS

590 Omics Data collection and Processing:
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591  Transcriptomics and protein abundance data from COVID-19 patient’s naso- and
592  oropharyngeal swab, bronchoalveolar lavage fluid (BALF), and other respiratory
593 specimens were chosen from PubMed, BioRxiv, and MedRxiv using different
594 combinations of keywords like “COVID-19, SARS-CoV-2, Transcriptomics,
595 Proteomics, BALF, swab”. Studies dealing with gene expression profiles of SARS-
596 CoV-2 infected non-human cell lines and tissues were not considered. The SARS-
597 CoV-2 and COVID-19 collections in the EMBL-EBI PRIDE proteomics database (62)
598  were retrieved and used without any modification. In the NCBI GEO database (63) the
599  following combination of terms was used to collect relevant datasets: ((covid-19 OR
600 SARS-COV-2) AND gse [entry type]) AND "Homo sapiens"[porgn: _txid9606].
601 The retrieved datasets were then filtered by their date of publication to collect the
602 studies published between the 15t of January 2020 and the 15" of September 2020.
603  The filtration of datasets was carried out using two parameters, fold-change, and its
604  significance value. Genes and proteins with a fold-change value of =2 1.5 and g-value
605 < 0.05 were chosen for the overlap analysis. The raw p-value was used for filtering in
606 cases where the adjusted p-value was not provided, albeit with a more stringent cut-
607 off of <0.01. The UniProt IDs in filtered protein abundance datasets were converted
608 to their corresponding primary Gene Symbols using UniProt (64).

609

610 Gene set overlap analysis:

611 The GeneOverlap class of R package “GeneOverlap” (59) was used for testing
612  whether two lists of genes are independent, which is represented as a contingency
613 table, and then Fisher’s exact test was used to find the statistical significance. Genes
614  with less than 0.01 overlap p-value were selected for further analysis. The number of
615 background genes for proteome-proteome pairwise study and the transcriptome-
616 proteome pairwise study was 25,000, i.e., the number of protein-coding genes in
617 Hg19. For the transcriptome-transcriptome overlap study, the number of background
618 genes was taken to be the union of expressed genes in both the datasets considered.
619

620 Gene Ontology, Interferome, cellular and tissue localization analysis:

621  Enriched GO terms were obtained by express analysis on Metascape (60) and plotted
622  using ggplot2 (65). The database Interferome v2.01 (22) was queried using gene
623  symbols for identifying interferon regulated genes (IRGs) in normal samples of the

624  respiratory system from both in vitro and in vivo experiments in humans. For cellular
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625 localization, each gene was queried on UniProt annotation (66) and Human Protein
626  Atlas ver20.0 (67, 68) and then manually annotated. The single-cell expression data
627  of transcripts was also obtained from Human Protein Atlas ver20.0 (Available from

628  http://www.proteinatlas.org/). They were further filtered to obtain cells that are

629 associated with the immune system or respiratory tract.

630

631  Virus-Host protein-protein interaction network analysis:

632  The interaction data for the selected 46 genes were retrieved from publicly available
633 interaction datasets (13). The retrieved information was then used to generate a
634 network map. Cytoscape v3.8.0 (69) was used to construct the interaction network for
635 virus-host protein-protein interaction. STRING database within the Cytoscape store
636 was used to query the proteins to elucidate the interactions between the proteins
637  significantly altered during SARS-CoV-2 infection. The resulting STRING interaction
638  network (confidence =20.999 for all the proteins and confidence 20.90 for NAMPT; max
639  number of interactors = 10) was merged with the virus-host PPl on Cytoscape.

640

641 gRT-PCR based measurement of cellular gene expression for patient samples
642  Equal amounts of RNA were converted into cDNA using Prime Script™ RT Reagent
643  Kit with gDNA Eraser (Perfect Real Time) (RR047A, Takara-Bio) and then diluted with
644 80ul nuclease-free water. The gene expression study was conducted using
645 PowerUp™ SYBR™ Green Master Mix (A25778, Applied Biosystems™) with
646  18srRNA as the internal control and appropriate primers for the genes (Supplementary
647 Table 3).

648

649 Cytotoxicity assay

650 HEK-ACE2 cells were seeded in a 96-well cell culture dish pre-coated with 0.1mg/mL
651  poly-L-lysine (P9155-5MG, Sigma-Aldrich) and 24hr later, treated with 0, 1, 2, and 4uM
652  Auranofin (A6733, Sigma-Aldrich) in triplicates. Cells were incubated at 37°C, 5%
653 CO2, and 48hr later, cytotoxicity was measured using AlamarBlue™ Cell Viability
654 Reagent (DAL 1025, Thermo Fisher) as per manufacturer’s instructions.

655

656 Infection in HEK-ACE2 cells

657 Cells were seeded in a 24-well cell culture dish pre-coated with 0.1mg/mL poly-L-lysine

658 and 24hr later, used for infection. Cells were first pre-treated for 3hr with 0, 0.12, 0.25,
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659 0.5, and 1uM Auranofin in quadruplicates washed once with complete DMEM and
660  subsequently incubated with 0.1 MOl SARS CoV-2 in 100 pl inoculum for 1 hour at 37
661 C°. Subsequently complete medium restoring the prior dose of the drug was added to
662 the cells. After 48hr, cells were processed separately for western blot analysis and
663  RNA extraction with TRIzol™ Reagent (15596018, Thermo Fisher).

664

665 Western Blot:

666  Cells were washed with 1x PBS (162528, MP Biomedicals) and lysed with 1X Laemmli
667 buffer (1610747, BIO-RAD). Cell lysates were loaded and resolved using a 10% SDS-
668 PAGE gel and the separated proteins were transferred onto a PVDF membrane
669  (IPVH00010, Immobilon-P; Merck). Blocking was performed using 5% Skimmed milk
670 (70166, Sigma-Aldrich) in 1xPBS containing 0.05% Tween 20 (P1379, Sigma-Aldrich)
671  (1xPBST) for two hours at room temperature with slow rocking. Primary antibody
672 incubation was performed overnight (12hr) at 4°C using SARS-CoV / SARS-CoV-2
673 (COVID-19) spike antibody (GTX632604, GeneTex). Secondary antibody incubation
674 was performed for 2 hours at room temperature with slow rocking using Goat Anti-
675 Mouse IgG H&L (ab6789, Abcam). The blots were developed using Clarity Western
676  ECL Substrate (1705061, BIO-RAD).

677

678 Animal Experiments:

679  Toxicity of 1 and 5 mg/kg bodyweight Auranofin was tested on Syrian golden hamsters
680 by oral administration of the drug in 200 pl PBS. The total bodyweight of hamsters was
681 monitored for up to 7 days (Supplementary Fig 6). Infection experiments were
682 performed by intranasal inoculation of animals with 10° PFU SARS-CoV2 in 100uL
683 PBS. The animals were anesthetized using intraperitoneal injections of Ketamine
684  (150mg/kg) (Bharat Parenterals Limited) and Xylazine (10mg/kg) (21, Indian
685 Immunologicals Ltd) cocktail before infection. Prophylactic treatment involved oral
686 administration of Auranofin (5mg/kg/day) 3-, 2-, and 1-day post-infection (dpi) and
687 followed by virus challenge at day 0. The therapeutic treatment regimen used oral
688 administration of Auranofin (5mg/kg/day) starting at 24-hours post-infection (hpi),
689 followed by 2 and 3 dpi. Total body weight was recorded each day during the entire
690  course of the experiment until the animals were sacrificed at 4 dpi. Virus RNA load in
691 lung tissue specimens was detected by g-RT-PCR.

692
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693 RT PCR for viral copy number calculation:

694 For gRT-PCR, total RNA was isolated using TRIzol™ Reagent (15596018, Thermo
695 Fisher) as per manufacturer’s instruction and equal amounts of RNA was used to
696 determine viral load using AgPath-ID™ One-Step RT-PCR kit (AM1005, Applied
697  Biosystems) using primers and probes targeting the SARS CoV-2 N-1 gene (Forward
698  primer: 5'GACCCCAAAATCAGCGAAATZ and Reverse primer: 5'
699 TCTGGTTACTGCCAGTTGAATCTGSI, Probe: (6-FAM / BHQ-1)
700 ACCCCGCATTACGTTTGGTGGACC). Viral copy number was estimated by
701 generating a standard curve using SARS CoV-2 genomic RNA standard.

702

703  QUANTIFICATION AND STATISTICAL ANALYSIS

704  Statistical analyses and overlaps were performed in the R statistical environment
705  version 4.0.3 via RStudio version 1.3.1093. Plots were made using the ggplot2
706 package in R (65) and GraphPad Prism v8.0.2. In boxplots, the hinges of boxes
707  represent the first and third quartiles. The whiskers of the boxplot extend to the value
708  which is 1.5 times the distance between the first and third quartiles. Each data point in
709  the boxplot represents one of the triplicates in gRT-PCR for a particular gene in a
710 particular patient sample. Heatmaps were generated using the R package
711 ComplexHeatmap (70). Receiver Operating Characteristic (ROC) curve analysis and
712 Optimal cut-off determination were performed using the online tool easyROC (ver.
713 1.3.1) (29).
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