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SUMMARY 18 

While our battle with the COVID-19 pandemic continues, a multitude of Omics data 19 

has been generated from patient samples in various studies, which remains to be 20 

translated. We conducted a meta-analysis of published transcriptome and proteome 21 

profiles of nasal swab and bronchioalveolar lavage fluid (BALF) samples of COVID-19 22 

patients, to shortlist high confidence upregulated host factors. Subsequently, mRNA 23 

overexpression of selected genes was validated in nasal swab/BALF samples from a 24 

cohort of COVID-19 positive/negative, symptomatic/asymptomatic individuals. 25 

Analysis of these data revealed S100 family genes (S100A6, S100A8, S100A9, and 26 

S100P) as prognostic markers of COVID-19 disease. Furthermore, Thioredoxin gene 27 

(TXN) was identified as a significant upregulated host factor in our overlap analysis. 28 

An FDA-approved drug Auranofin, which inhibits Thioredoxin reduction, was found to 29 

mitigate SARS-CoV-2 replication in vitro and in vivo in the hamster challenge model. 30 

Overall, this study translates COVID-19 host response Big Data into potential clinical 31 

interventions. 32 
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INTRODUCTION  36 

The COVID-19 pandemic has emerged as the biggest global public health crisis of this 37 

century. As of April 11, 2021, more than 136 million infections and 2.9 million 38 

casualties have been reported (https://www.worldometers.info/coronavirus/).  The 39 

causative agent SARS-CoV-2 contains a single-stranded positive-sense RNA genome 40 

that encodes ~27 proteins (1). COVID-19 disease is quite heterogeneous, and its 41 

manifestation ranges from asymptomatic, mild, severe to lethal, depending on a 42 

variety of host, virus, and environmental factors (2). Age, sex, ethnicity, and co-43 

morbidities, all have been implicated in determining disease outcome (2-4). An 44 

effective and timely interferon (IFN) response is critical in resolving viral infections (3), 45 

however, SARS-CoV-2 has multiple strategies to suppress host immune response (4). 46 

Disruption of immune homeostasis and induction of cytokine storm has been 47 

recognized as one of the underlying causes of severe COVID-19 (5), yet the molecular 48 

mechanisms underlying immune dysregulation are yet to be defined.  49 

 50 

Several research groups have applied tour de force high throughput methodologies to 51 

profile the host responses upon viral infections (6-13). This has resulted in a wealth of 52 

virus-host interaction Big Data, which hold the key to novel therapeutic strategies and 53 

molecular markers of infection and disease progression. Examination of host response 54 

at the primary site of infection in the upper respiratory tract is crucial to understand 55 

viral pathogenesis. Various studies have utilized BALF and nasopharyngeal swabs to 56 

characterize the changes in transcripts and proteins during infection to understand 57 

COVID-19 pathogenesis (6-12), which have highlighted significantly upregulated 58 

genes and biological pathways altered during infection. While proinflammatory 59 

cytokines, chemokines, enzymes in neutrophil-mediated immunity, and several IFN 60 

stimulated genes (ISGs) have consistently shown up in their analysis, experimental 61 

validation and mechanistic studies are generally lacking (7-12). A detailed 62 

characterization of antiviral responses in the upper respiratory tract of patients, its 63 

variation with age, sex, and association with progression of disease severity remains 64 

to be accomplished. (14-16).  65 

 66 
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The goal of our study was to identify genes that are consistently upregulated during 67 

SARS-CoV-2 infection in the upper respiratory tract of patients and understand their 68 

role in viral infection and disease progression. For this, we surveyed the literature for 69 

Omics data from COVID-19 positive patient’s nasal swab and BALF samples and 70 

selected 4 transcriptomic and 3 proteomic datasets. We performed a hypergeometric 71 

distribution-based overlap analysis followed by cumulative fold change score-based 72 

prioritization to shortlist genes. This was followed by an examination of selected gene 73 

expression levels in nasal swab/ BALF samples from a cohort of COVID positive, 74 

negative, symptomatic, and asymptomatic individuals, ranging from 30-60 years in age 75 

and of mixed gender. ROC analysis of gene expression data in nasal swabs revealed 76 

S100 family genes (S100A6, S100A8, S100A9, S100P) as high confidence markers 77 

of disease severity. Among other shortlisted genes, Thioredoxin (TXN) emerged as a 78 

significantly upregulated factor supported by multiple datasets. Thioredoxin is a 79 

proinflammatory protein that requires to be reduced by Thioredoxin reductase enzyme, 80 

which itself can be targeted by an FDA-approved gold drug Auranofin (17, 18). We 81 

tested the antiviral efficacy of Auranofin in cell culture and preclinical Syrian hamster 82 

challenge model and found that it can reduce SAR-CoV-2 replication over 1 order of 83 

magnitude at a well-tolerated non-toxic dosage. This drug is already in clinical use for 84 

inflammatory diseases and can be considered for COVID-19 treatment based on our 85 

data.   86 

 87 

Through collective global efforts several COVID-19 vaccines have become available 88 

in an astonishingly short period, although new virus variants have emerged, some of 89 

which can escape vaccine-mediated immunity (19). Progress on the development of 90 

the antivirals and disease prognostic markers has been lagging. Repurposing clinically 91 

approved drugs for use against SARS-CoV-2 has been an attractive option and has 92 

been explored by many research groups through different approaches (20). Our study 93 

translates COVID-19 virus-host interaction and response Big Data into potential 94 

actionable clinical interventions, including the use of S100 genes as a prognostic 95 

marker in the nasal swabs and repurposing clinically approved drug Auranofin for 96 

COVID-19 treatment.  97 

 98 

 99 

RESULTS  100 
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Compilation and overlap analysis of published transcriptomics and proteomics 101 

data from COVID-19 patient samples revealed 567 upregulated host factors. 102 

We started the study by compiling the host factors that are consistently and 103 

significantly upregulated in the upper respiratory tract of COVID-19 patients. For this, 104 

we decided to use published transcriptomics and proteomics datasets derived from 105 

nasal swab or BALF samples of COVID-19 patients. We chose four transcriptomics 106 

(T), and three proteomics (P) datasets and further analysis was performed according 107 

to a rationally designed workflow (Figure 1A). All datasets included differentially 108 

expressed genes in infected patients with healthy individuals as control (Table S1). 109 

The selection criteria (described in materials and methods) included at least 1.5-fold 110 

(2-fold for one dataset) gene upregulation at both mRNA and protein levels.  The 111 

filtration of data was carried out to sort only significantly upregulated genes from all 112 

the datasets (Table S2). A pairwise overlap analysis was performed on the filtered 113 

genes/proteins from each study and significantly overlapping genes (p-value < 0.01 114 

calculated using Fisher’s exact test) between T1-T3 (14), T1-T4 (9), T1-P3 (2), T3-T4 115 

(504), T3-P1 (10), T3-P2 (8), T3-P3 (17), T4-P1 (8). T4-P3 (15) and P1-P3 (3) were 116 

determined (Figure 1B, Supplementary File 1). This method was adapted from similar 117 

overlap analysis conducted previously to compare multiple virus-host interaction 118 

datasets and obtain the significance of intersections (21). Union of intersections 119 

between the T-T and T-P and P-P after the overlap analysis results in 567 genes 120 

(Figure 1B). To reiterate the functional characteristics of the differentially expressed 121 

genes (DEGs), we examined the biological processes and signaling pathways they 122 

are involved in. Pathway enrichment of 567 genes from the union of all intersections 123 

from overlap analysis (TT+TP+PP) showed enrichment of biological processes like 124 

protein elongation, interferon (IFN) signaling, chemotaxis of granulocytes, and 125 

inflammatory pathways (Figure 1C). The antiviral response to respiratory viral 126 

infections including SARS-CoV-2 is driven by interferons (IFNs) (16). Hence, we 127 

examined the shortlisted set of genes for their potential regulation by different 128 

categories of IFNs, using the Interferome tool (22). We found that out of 567 genes, 129 

205 were regulated by type I IFN, 170 genes by Type II IFN, 327 genes were regulated 130 

by both type I and type II IFN, while 16 genes were commonly regulated by all the 131 

three classes of IFNs (Figure 1D). These 16 genes are well-characterized interferon-132 

stimulated genes (ISGs), that include direct antiviral effector ISGs (IFITs, MX1, OAS3, 133 

and OAS1), as well as positive regulators (STAT1) of IFN response (23). This 134 
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indicated an active IFN mediated innate antiviral response in the upper respiratory 135 

tract cells during SARS-CoV-2 infection and highlighted potential antiviral factors. 136 

 137 

Rank ordering and shortlisting of upregulated host factors highlighted host 138 

factors regulating the antiviral and inflammatory immune response in COVID-19 139 

patients. 140 

Since proteome dictates the outcome inside a cell, soluble factors are key in shaping 141 

the antiviral response. We focused on genes supported by orthogonal transcript (T) 142 

and protein (P) abundance data. For this, we chose genes from the union of 143 

intersections of T-T, T-P, and P-P overlaps, which was reported at least in one of the 144 

proteomics studies. This narrowed down the list to a total of 46 genes that were 145 

intersecting in T-P (26), P-P (2), TT-TP (16), TP-PP (1), and TT-TP-PP (1) overlaps 146 

(Figure 2A and 2B). A cumulative score for the 46 selected significantly upregulated 147 

genes was calculated using the sum of their log2 fold-change values in the parent 148 

datasets and ranked (Figure 2C). The enrichment of these 46 genes in each of the 149 

datasets, where the expression is reported, is shown in Figure 2B. Many of these 150 

genes are directly regulated by different classes of interferons. 15 genes are regulated 151 

by IFN-I, while 8 genes by IFN-II. 20 genes are regulated by both type-I and type-II 152 

IFNs, while only 2 genes by all the three types of IFNs (Figure 2D). Most of the IFITs 153 

and other ISGs that were earlier determined in our analysis to be regulated by all the 154 

three types IFNs are no more in the list since those ISGs were only reported 155 

upregulated at transcriptome level (only in T-T overlap) and hence were lost when the 156 

genes were filtered for their upregulation at the protein level, leaving behind only MX1 157 

and OAS3 (Figure 1C and 2D). The biological functions of the selected 46 genes were 158 

also investigated to understand their roles in COVID-19 pathophysiology. The 159 

pathways enriched were mainly related to innate immune response and defense 160 

against microbes along with inflammatory and immune signaling, neutrophil 161 

degranulation, and cellular response to TNF and interferon-gamma (Figure 2E).  162 

Further, to understand the potential role of shortlisted genes in COVID-19 163 

pathophysiology, their interactions with SARS-CoV-2 proteins were inspected by 164 

analyzing the publicly available SARS-CoV-2 cellular interactome data (24). For this, 165 

host protein-protein interactions were retrieved from the STRING database (25) and 166 

merged with the virus-host protein-protein interactions giving a discrete picture of how 167 
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the viral proteins target various cellular processes during infection. Other than NAMPT, 168 

UQCRC2, and RAB5C, it was mainly ribosomal proteins that were primary interactors 169 

to the SARS-CoV-2 proteins (Figure 2F and 2G). We also examined the intracellular, 170 

cellular, tissue, and organ-specific expression for shortlisted genes using publicly 171 

available data (26). Many upregulated proteins were predicted to localize in the 172 

intracellular organelles like endoplasmic reticulum, mitochondria, Golgi complex, and 173 

endosomes (Figure S1A), while 19 genes were predicted to be secretory. A thorough 174 

analysis of the list of 46 selected genes using Human Tissue Atlas revealed that they 175 

are expressed in the respiratory tract and in immune effector cells known to survey 176 

infection sites (Figure S1B). The relative expression levels show that genes associated 177 

with protein synthesis (ribosomal proteins and elongation factors) are highly expressed 178 

compared to any other genes and are enriched across all the tissues in the map 179 

(Figure S1B).  180 

 181 

qRT-PCR based validation in a cohort of COVID-19 positive/negative, 182 

symptomatic/asymptomatic individuals reveals differential upregulation of 183 

selected genes in a disease-specific manner.  184 

 185 

For validation using qRT-PCR and further analysis, we selected genes with a 186 

cumulative score greater than 10 (Figure 2C). Also, we considered genes belonging 187 

to the S100 family that came up within 46 shortlisted genes, since they are known 188 

regulators of inflammation (27, 28). Furthermore, we also selected the TXN since it 189 

was supported by multiple lines of evidence and appeared in the TT-TP-PP overlap in 190 

our study (Figure 2A). The COVID-19 patient cohort used for qRT-PCR of genes, 191 

included 63 individuals (both males and females, aged 30-60 years), out of which 16 192 

each were COVID-19 positive-symptomatic (PS), COVID-19 positive-asymptomatic 193 

(PA), COVID-19 negative-symptomatic (NS), and 15 were COVID-19 negative-194 

asymptomatic (NA) healthy category (Table 1). Total mRNA from the nasal swab was 195 

isolated and the upregulation of 14 selected genes was verified by qRT-PCR. The log2 196 

fold-change expression with respect to the average of the negative asymptomatic 197 

group (Figure S2, Figure 3A) was calculated and plotted on the heatmap (Figure 3A), 198 

which depicts the mRNA enrichment of the selected genes in different patient samples 199 

and categories. Next, we determined the correlation between the viral RNA load in 200 

COVID-19 patients (qRT-PCR of viral envelope (E) gene) and log2 Fold-change of 201 
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selected host genes in the patient’s sample. It was observed that the Ct value for the 202 

E gene was negatively correlated with log2 Fold-change of genes showing that viral 203 

load and disease severity are positively correlated (Figure S3). Furthermore, the 204 

upregulation of selected host genes was more pronounced in positive symptomatic 205 

patients with a higher viral load than positive asymptomatic individuals (Figure 3A and 206 

Figure S3). A comparative heatmap in Figure 3B gives an insight into the genes that 207 

can be considered as COVID-19 disease and/or severity marker. While all the 208 

upregulated genes indicate infection (Figure 3B; NA-PS), only a few genes showed 209 

significant upregulation in a COVID-19 specific manner (Figure 3B; NS-PS).  210 

Multiple genes from the S100 family, including S100A8, S100A9, S100A6, and S100P, 211 

and few other genes such as ASS1 and SERPINB3 were significantly upregulated in 212 

positive symptomatic patients when compared to other three categories (NA, NS, PA), 213 

suggesting their potential diagnostic and prognostic value (Figure 3B, NS-PS). 214 

Expression of neutrophil defensin alpha 3 (DEFA3) was upregulated in some of the 215 

positive symptomatic patients but remained undetermined in many cases. 216 

Furthermore, we examined the influence of age and sex on the upregulation of 217 

selected gene in patient’s samples by categorizing them based on age groups (30-40, 218 

41-50, and 51-60) and gender (male and female) (Figure 3C, Figure 3D, Figure S4 219 

and S5). The qRT-PCR data revealed that all the selected genes were induced in 220 

positive symptomatic patients, irrespective of age or gender. However, closer 221 

examination of the heatmap reveals S100 family genes (S100A8, S100A9, S100P) 222 

being upregulated to a higher level in the 30-40 year age group and male individuals 223 

(Figure 3C, 3D). 224 

 225 

ROC analysis of mRNA expression of shortlisted significant genes in the COVID-226 

19 cohort unveils the prognostic potential of the S100 family of genes. 227 

The COVID-19 symptomatic group of patients included individuals with breathing 228 

difficulty, fever, hospitalization, and SARI (severe acute respiratory infections), 229 

whereas asymptomatic patients had none of these features (Table1). To evaluate the 230 

prognostic value of selected genes in differentiating asymptomatic vs symptomatic 231 

COVID-19 cases, we conducted a non-parametric Receiver Operating Characteristic 232 

(ROC) curve analysis (29) for the 11 genes that were significant after comparison 233 

between positive symptomatic and asymptomatic group (Figure 3B). For this, we used 234 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.02.18.431825doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431825
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

their threshold cycle (Ct) values for COVID-19 positive cases to plot the curve, and the 235 

area under the curve (AUC) was computed (Figure 4A). All genes were found to 236 

significantly differ (AUC > 0.5) from the line where True positive rate = False positive 237 

rate, indicating their potential to differentiate between asymptomatic and symptomatic 238 

individuals (Figure 4B). The optimal Ct value cut-off was determined for significant 239 

genes using the ROC01 method which finds the point in the ROC curve closest to (0,1) 240 

corresponding to 100% specificity and sensitivity. Since the prognostic marker should 241 

correctly identify symptomatic patients from asymptomatic ones, we looked at the 242 

genes with maximum sensitivity while not compromising on specificity at the optimal 243 

cut-off. S100A8 (Cut-off = 9.964663, Sensitivity = 0.938, Specificity = 0.688) had the 244 

highest sensitivity at the optimal cut-off. Other S100 family members like S100A9 (Cut-245 

off = 8.533607, Sensitivity = 0.854, Specificity = 0.729), S100A6 (Cut-off =8.472503, 246 

Sensitivity = 0.745, Specificity = 0.718) and S100P (Cut-off = 11.23458, Sensitivity = 247 

0.812, Specificity = 0.622) also showed good prognostic potential (Figure 4C and 4D). 248 

Genes like LCN2 (Cut-off = 11.23362, Sensitivity = 0.744, Specificity = 0.756), AGR2 249 

(Cut-off = 11.19266, Sensitivity = 0.775, Specificity = 0.708) and ASS1 (Cut-off = 250 

12.70913, Sensitivity = 0.7, Specificity =0.771) were also found to have desired 251 

sensitivity and specificity values (Figure S6). 252 

 253 

Thioredoxin reductase inhibitor drug Auranofin significantly mitigates SARS-254 

CoV-2 replication in vitro and in vivo in the hamster challenge model. 255 

Thioredoxin (TXN) was a single hit that appeared in the TT-TP-PP overlap in our study 256 

and remained in the shortlisted gene set at the end of the meta-analysis. Although its 257 

expression upregulation or the prognostic value was not the highest, it is part of a 258 

druggable pathway. Thioredoxin is known to promote inflammatory cytokine induction, 259 

apoptosis, and regulate redox status, for which it switches between oxidized and 260 

reduced forms through the action of thioredoxin reductase, which can be inhibited by 261 

an FDA approved orphan drug Auranofin (2,3,4,6-tetra-o-acetyl-L-thio-β-D-262 

glycopyranp-sato-S-(triethyl-phosphine)-gold) (30, 31). We sought to check the effect 263 

of Auranofin, which will lock Thioredoxin in its oxidized form, on SARS-CoV-2 infection 264 

and replication in cell culture and animal models. To begin, cell viability assay 265 

performed in HEK-ACE2 cells using increasing doses of Auranofin showed minimal 266 

cytotoxicity at the lowest concentration (1µM) and had predicted CC50 of 9.659µM 267 
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(Figure 5 A). The effects of increasing doses of Auranofin up to 1 µM, was then tested 268 

on SARS-CoV2 replication in vitro. For this, cells were pretreated with the drug which 269 

remained present during the course of infection. Analysis of viral RNA 48hr post 270 

infection showed a reduction of more than one order of magnitude, starting at 271 

treatment with 0.25 µM Auranofin (Figure 5B). With a calculated EC50 = 0.29µM, the 272 

selectivity index (CC50/IC50) of auronafonin was determined to be 33.3. The potent 273 

antiviral effect of Auranofin was confirmed by western blot for the full-length viral spike 274 

protein (Figure 5 C). Next, we decided to confirm the antiviral activity of Auranofin in 275 

Syrian golden hamsters, which are currently considered as the animal model of choice 276 

to evaluate vaccines and antivirals (32).  Auranofin (PubChem CID 6333901) toxicity 277 

and bioavailability in rodents have been described before (33), based on which we first 278 

tested its oral toxicity in hamsters at 1mg and 5mg/kg body weight, which showed the 279 

drug was well tolerated at the tested doses (Figure S7). For infection studies, the drug 280 

was orally administered in prophylactic and therapeutic formats; before and after 281 

infection respectively (Figure 5D). The viral titers in lungs of animals at Day 4 revealed 282 

that therapeutic administration of Auranofin with a non-toxic concentration of 5mg/kg 283 

body weight was more effective at mitigating virus replication (reduction by more than 284 

one order of magnitude) in lung tissue, compared to prophylactic dosage (Figure 5E). 285 

Bodyweight loss results were also indicative of the same when compared to the virus 286 

challenge group (Figure 5F). Also, we found that the TXN gene was upregulated in the 287 

lungs of infected animals compared to the mock group, which correlates to our findings 288 

from patient sample gene expression data (Figure S8)  289 
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DISCUSSION  290 

Several studies have analyzed changes in global transcriptome and proteome in 291 

COVID-19 patient samples of various kinds (6-12). These studies have given an 292 

overview of the biological processes that are modulated during SARS-CoV-2 infection; 293 

however, translation of this knowledge into antiviral interventions requires validation 294 

and mechanistic studies. Meta-analysis of virus-host interaction Big Data is a useful 295 

approach to narrow down key host factors and processes involved in viral replication 296 

and pathogenesis (21, 34). In our study, we focussed on transcriptomics and 297 

proteomics data from COVID-19 positive nasal swab and BALF samples and 298 

performed an integrative analysis to identify host factors involved in SARS-CoV-2 299 

infection and disease progression. We reasoned that changes at mRNA levels must 300 

also be manifested at the protein level to bring out phenotypic differences in the 301 

infected individuals. Hence, we designed our meta-analysis pipeline to shortlist genes 302 

that were represented in orthogonal transcriptomics as well as proteomics datasets. 303 

Expression of the genes selected through meta-analysis was examined in nasal 304 

swab/BALF samples collected for COVID-19 diagnosis from a cohort of individuals 305 

that were COVID-19 negative or positive, and within those two categories either 306 

symptomatic or asymptomatic. The cohort design was to ensure the identification of 307 

genes that are overexpressed in a COVID-19 specific manner and those which 308 

indicate disease severity.  The initial compilation of upregulated factors had 567 309 

genes, of which 46 genes passed through the selection pipeline (Figure 2B). Most of 310 

these genes turned out to be IFN regulated and among them, the major category was 311 

ribosomal proteins (RPs) including RSP3A, RPL4, RPL5, RPL18, RPL13A, RPS4X, 312 

RPL7A, RPS9, and RPS3 (Figure 2B). RPs have been reported to be hijacked by 313 

different viruses, including SARS-CoV-2 during infection to shut off host translation 314 

and facilitate IRES-mediated translation of viral proteins (35-37). Inspection for 315 

reported interactions between shortlisted RPs with the SARS-CoV-2 proteins revealed 316 

that nsp1, nsp8, nsp9, and nucleocapsid (N) proteins of SARS-CoV-2 are potential 317 

interactors (Figure 2F). This suggests extensive targeting of host translational 318 

machinery by multiple SARS-CoV-2 proteins in the upper respiratory tract cells. Other 319 

shortlisted cellular proteins with reported interactions with viral proteins were NAMPT, 320 

UQCRC2, and RAB5C (Figure 2G). These are involved in ATP production, NAD 321 

synthesis, and vesicular fusion respectively, all of which have been reported to be 322 

modulated during SARS-CoV-2 infection (38, 39).  323 
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Subsequent ranking of genes based on cumulative upregulation score across different 324 

datasets, with dual support from transcriptomic and proteomic evidence, shortlisted 14 325 

high confidence upregulated genes (Fig 2B). To confirm their upregulation during 326 

SARS-CoV-2 infection and the effect of patient age, sex, disease severity on the same, 327 

their expression was measured in a cohort of patients described earlier (Table 1). The 328 

data revealed that 11 genes were upregulated significantly in the PS category when 329 

compared to PA and hence had prognostic value. Whereas 8 genes were upregulated 330 

when compared to the NS category, hence had diagnostic value (Figure 3B). The data 331 

indicated higher levels of selected gene expression in younger male patients, which is 332 

consistent with previous reports of age and sex-dependent differences in COVID-19 333 

induced gene expression and disease severity (6, 40). Among host factors that 334 

appeared at the end of meta-analysis and validation in the COVID-19 cohort, the S100 335 

family of genes (S100A6, S100A8, S100A9, S100A12, S100P) emerged as a major 336 

group. An upregulation of S100 proteins is reported previously as an indication of viral 337 

or bacterial infections (27). The extracellularly secreted S100 proteins include 338 

S100A12, S100A8, and S100A9 (Figure S1A), all of which have been shown to serve 339 

as a danger signal and in regulating immune response (28). They activate NF-kB 340 

signaling through RAGE and TLR4 pathways stimulating the cells to produce 341 

proinflammatory cytokines at the site of infection (28). Several studies have explored 342 

serum diagnostic and prognostic markers by evaluating transcriptomic and proteomic 343 

changes in mild, severe, and fatal cases of COVID-19 (41, 42). An increase in 344 

S100A8/A9 (calprotectin) levels in serum have been correlated with severe forms of 345 

the disease (43). Transcriptomic studies on lung tissue of fatal COVID-19 cases have 346 

also reported which report an upregulation in S100A12, S100A8, S100A9, and S100P 347 

in patients (44, 45). In our study, the ROC01 curve analysis of the PA and PS group 348 

qRT-PCR data showed that all shortlisted S100s (except S100A12) had significant 349 

sensitivity as a prognostic marker of symptomatic COVID-19 (Figure 4 C, D). Overall, 350 

taking our data and published information together, the S100 family of genes can be 351 

considered as reliable prognostic markers of COVID-19 infection and disease 352 

progression. Another host factor LCN2, which came up in our study was previously 353 

shown to be an important biomarker for viral infection (46, 47), and was also reported 354 

to be upregulated in transcriptomic and proteomic studies in COVID-19 patients (48, 355 

49). Furthermore, Serine protease inhibitors (SERPINs) family genes SERPINB3 and 356 

SERPINB1 were present among the initially selected 46 upregulated genes. 357 
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SERPINB3 was at the top of cumulative upregulation ranking (Figure 2C) and in the 358 

COVID-19 cohort, it was significantly upregulated in the PS category. It is an inhibitor 359 

of papain-like cysteine proteases such as cathepsin, which is required for Spike 360 

cleavage during SARS CoV-2 entry (50). Interestingly SERPINA1 deficiencies or 361 

mutations in populations were found to be associated with severe forms of COVID-19 362 

(46, 47). Taken together this indicates a potential antiviral role for SERPINs against 363 

SARS-CoV-2, which needs further exploration. 364 

 365 

Finally, one gene of interest which passed the rigor of meta-analysis was TXN. 366 

Although its cumulative upregulation or prognostic values were not very high, we 367 

explored its potential as a therapeutic target. Thioredoxin is a small redox protein that 368 

plays an active role in keeping the intracellular compartment in a reduced state, which 369 

is important to prevent protein aggregation (51, 52). The thioredoxin system consists 370 

of three components namely thioredoxin, thioredoxin reductase, and the reducing 371 

agent nicotinamide adenine dinucleotide phosphate (NADPH). Thioredoxin reductase 372 

is a redox homeostatic enzyme, that can be inhibited by FDA-approved, gold-373 

containing triethyl phosphine drug Auranofin (17, 53). This drug has been shown to 374 

have inhibitory activity against rheumatoid arthritis, cancer, HIV/AIDS, parasitic, and 375 

bacterial infections (54). A recent study by Rothan et.al showed Auranofin to inhibit 376 

SARS CoV-2 in Huh-7 cells at an EC50 of 1.4µM (18). In comparison, our data in HEK-377 

ACE2 cells showed improved antiviral activity at much lower concentrations of the drug 378 

(selectivity index - 33.3, versus 4.07), as evidenced by a decrease in levels of both 379 

viral RNA and spike protein expression (Figure 5B and 5C). We went on to validate 380 

the antiviral activity of Auranofin in the preclinical hamster challenge model. Results 381 

showed a significant reduction in lung viral load and rescue of animal body weight, 382 

when administered therapeutically, which may be attributed to the anti-inflammatory 383 

activity of the compound (55). Notably, Auranofin has been shown to decrease pro-384 

inflammatory cytokines IL-6, IL1β, and TNFα mRNA levels during SARS-CoV-2 385 

infection in vitro, which are known mediators of disease severity (18). Thioredoxin 386 

mRNA levels were upregulated in hamsters, which is consistent with the observation 387 

in COVID-19 patients. Auranofin also has inhibitory effects on the PI3K/AKT/mTOR 388 

pathway (56), which is required for SARS-CoV-2 viral protein translation (57, 58). This 389 

may also contribute to its mechanism of action, however, that needs to be further 390 

investigated. 391 
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Overall, this study highlights the value of comprehensive analyses of Omics datasets 392 

to gain insight into infection biology and identify avenues for potential therapeutic 393 

targeting. The selected gene expression data obtained with the COVID-19 cohort 394 

reaffirmed the heterogeneity of individual immune response, the role of age, sex, and 395 

effect of viral load, all of which are in coherence with observations made by other 396 

research groups. We especially uncover the prognostic value of S100 family genes in 397 

nasal swabs, many of which are soluble secretory factors and can be easily tested by 398 

RT-PCR or ELISA-based methods in nasal swabs to understand the disease 399 

progression.  Finally, the identification of Auranofin, a safe drug already in clinical use 400 

for other medical conditions, as a COVID-19 treatment option culminates the 401 

importance of our study and meta-analysis approach in translating virus-host 402 

interaction Big Data into clinical interventions. 403 

404 
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FIGURE TITLES AND LEGENDS 447 

Figure 1: Meta-analysis pipeline for gene prioritization and associated pathway 448 

analysis. A) Three proteomics and four transcriptomics datasets were chosen to 449 

obtain biomarkers for COVID-19 in humans. Genes/proteins that came up in these 450 

studies with a fold change greater than 1.5 and a q-value less than 0.05 (p-value less 451 

than 0.01 was taken in cases where q value is not provided) were subjected to pairwise 452 

overlap analysis. Genes that fall under significant intersections and represented in at 453 

least one proteomic dataset were sorted using cumulative scores to be experimentally 454 

verified. B) Triangular heatmap showing pairwise overlaps between transcriptomic 455 

and proteomic datasets. The number within each box denotes the number of genes 456 

that showed up between the corresponding intersections. The color of a box denotes 457 

the significance of overlap determined by Fisher’s exact test. C) Gene ontology of all 458 

genes (567) in the significant intersections obtained during the overlap analysis plotted 459 

with the number of genes in each term on the X-axis, proportion of genes enriched 460 

compared to the total number of genes in each term as the size of dots and the color 461 

representing log10 p-adj value (q-value) of enrichment. D) Venn diagram showing the 462 

number of genes that are induced by Type I, II, or III interferons. The analysis was 463 

performed on Interferome v2.01 using the union of significant intersections (567) 464 

Figure 2: Cumulative score ranking, pathway, and interactome analysis of 465 

selected host factors. A) Venn diagram of genes obtained from significant 466 

intersections among proteomic or transcriptomic datasets after pairwise overlap 467 

analysis. B) Genes in the Venn diagram that were found in at least one proteomic 468 

dataset with their log2FC values in the datasets where they are present. Boxes colored 469 

in white denote that the gene is not present in the particular dataset. C) Genes 470 

arranged in descending order of cumulative scores obtained as a sum of log2FC values 471 

in the datasets where they are present. D) Venn diagram showing the number of 472 

interferon-induced genes performed using Interferome v2.01 for 46 selected genes. 473 

E) Gene ontology of 46 genes plotted with the number of genes in each term on the 474 

X-axis, the proportion of genes enriched compared to the total number of genes in 475 

each term as the size of dots and the color representing log10 p-adj value (q-value) of 476 

enrichment. F, G) Virus-host protein-protein interactions among SARS-CoV2 proteins 477 

and significant genes in the overlap analysis that shows up in at least one proteomic 478 

dataset modeled using Cytoscape v3.8.0. A STRING interactome for the primary 479 
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interactors of SARS-CoV-2 proteins was merged (confidence ≥0.999 for all the 480 

proteins and confidence ≥0.90 for NAMPT; max number of interactors = 10). Red: 481 

SARS-CoV-2 proteins, Green: Host proteins (primary interactor), blue: STRING 482 

interactors (other cellular proteins interacting with the primary interactors). 483 

Figure 3: qRT-PCR validated expression profile of selected genes in different 484 

categories of COVID-19 cohort A) qRT-PCR was performed on RNA isolated from 485 

COVID-19 patients for 14 genes and average log2 Fold-change values (with respect 486 

to Negative Asymptomatic group) of PCR triplicates are shown in a heatmap. Each 487 

column represents a patient and clustering was performed for columns and within row 488 

slices. The bottom annotation shows the Ct value for the viral gene encoding Envelope 489 

(E) protein with a corresponding legend on the top. Black boxes denote ‘value 490 

unknown/undetermined. B) Differences between groups for each gene were 491 

computed using the Kruskal-Wallis test followed by post hoc Dunn’s test with 492 

Bonferroni corrections for multiple comparisons. The log10 (p-value) of comparisons is 493 

shown in the heatmap. The comparisons are Negative asymptomatic vs Positive 494 

symptomatic (NA-PS), Negative symptomatic vs Positive symptomatic (NS-PS), and 495 

Positive asymptomatic vs Positive symptomatic (PA-PS). *P < 0.05; **P < 0.01; ***P < 496 

0.001; ****P < 0.0001; ns – not significant. C) log2 Fold-change values are grouped 497 

based on age groups 30-40, 41-50, and 51-60. Each row represents the average of 498 

log2 Fold-change values for patients falling into the particular age group and respective 499 

disease status. D) log2 Fold-change values are grouped according to sex. Each row 500 

represents the average of log2 Fold-change values for patients falling into the 501 

particular sex and respective disease status. 502 

Figure 4: ROC analysis of genes in COVID-19 positive patients to identify 503 

prognostic markers. A) ROC curve for Ct value of genes in COVID-19 positive 504 

patients. The black dashed line corresponds to no prognostic potential where True 505 

positive rate (Sensitivity) and False positive rate (1-Specificity) are equal. B) The value 506 

of Area Under the Curve (AUC) for each ROC curve along with the p-value. 507 

Significance was calculated non-parametrically (DeLong’s estimate) using the Wald 508 

test statistic. C) Boxplot of Ct values for significant S100 family of genes in Positive 509 

asymptomatic (PA) and Positive symptomatic (PS) patients. The red dashed line 510 

shows the optimal Ct cut-off determined by the ROC01 method (also shown in the 511 
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label in each graph). D) Optimal Ct cut-off, sensitivity, and specificity values for 512 

significant S100 family of genes. 513 

Figure 5: Auranofin inhibits SARS-CoV-2 replication in cell culture and 514 

preclinical hamster challenge model. A) HEK-ACE2 cells were treated with the 515 

indicated dose of the drug for 48 hours. Cell viability was measured and plotted on the 516 

graph. B) HEK-ACE2 cells were pre-treated with the indicated amount of drug for 3 517 

hours and then infected with SARS-CoV-2 at 0.1 MOI for 48 hours. Total RNA was 518 

isolated from the cells and viral RNA copy number was measured by qRT-PCR. Log10 519 

copy number of vRNA per µg total RNA is plotted on the graph. C) HEK-ACE2 cells 520 

were pre-treated with the indicated amount of drug for 3 hours and then infected with 521 

SARS-CoV-2 at 0.1 MOI for 48 hours. Cells were harvested with 1x Laemmli buffer 522 

and probed for spike and beta-actin. D) 10–12-week-old hamsters (4 per group) were 523 

pre-treated with 5mg/kg bodyweight drug through oral route in 200 µl PBS vehicle. For 524 

the prophylactic group, this was done once per day for 3 days before infection, and for 525 

the therapeutic group, it was done once per day for 3 days post-infection. SARS-CoV-526 

2 inoculum (105 pfu/100 µl) was administered intranasally. The vehicle control group 527 

was administered the corresponding volume of DMSO in PBS same as the 528 

prophylactic group. Day 4 post-infection animals were sacrificed to measure viral and 529 

cellular RNA quantity in lung tissue. E) Total RNA was isolated from the lung tissue of 530 

infected animals and viral RNA copy number was measured by qRT-PCR. Log10 copy 531 

number of vRNA per µg total RNA is plotted on the graph (n=4). F) Body weight of 532 

hamsters was measured from D0 to D4 and plotted on the graph, considering weight 533 

on D0 as 100% (n=4). Error bars represent mean + standard error. Differences 534 

between test groups and control group were computed using the t-test with Bonferroni 535 

corrections for multiple comparisons. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 536 

0.0001; ns – not significant.   537 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.02.18.431825doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431825
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

TABLES WITH TITLES AND LEGENDS  538 

Patient Status 

Number 

of 

patients 

Average 

age 

Number 

of males 

Number 

of 

females 

Number 

in the 

age 

group 

30-40 

Number 

in the 

age 

group 

41-50 

Number 

in the 

age 

group 

51-60 

Negative 

Asymptomatic 
16 43.9 8 8 5 6 5 

Negative 

Symptomatic 
16 41.7 12 4 9 4 3 

Positive 

Asymptomatic 
15 44.3 8 8 6 6 4 

Positive 

Symptomatic 
16 45 8 8 5 5 6 

 539 

Table 1: Summary of individual and different categories in the COVID-19 cohort 540 

used for qRT-PCR based validation analysis. All samples were collected from 541 

Bangalore Urban area for diagnostic purposes.  542 
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STARMETHODS 543 

KEY RESOURCES TABLE 544 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

SARS-CoV / SARS-CoV-2 (COVID-19) spike antibody GeneTex GTX632604 

Goat Anti-Mouse IgG H&L abcam ab6789 

Ms mAb to beta Actin [AC-15] (HRP) abcam ab49900 

Bacterial and virus strains  

SARS-CoV2 Isolate Hong Kong/VM20001061/2020 BEI Resources NR-52282 

Biological samples 

Nasal swabs from COVID-19 patients and healthy control 
individuals 

COVID-19 Diagnostic 
Facility, Indian 
Institute of Science 

N/A 

Chemicals, peptides, and recombinant proteins 

PowerUp™ SYBR™ Green Master Mix Applied Biosystems™ A25778 

Dulbecco’s modified Eagle medium Gibco 12100-038 

HI-FBS Gibco 16140-071 

Penicillin-Streptomycin-Amphotericin B MP Biomedicals ICN1674049 

GlutaMAX™ Gibco 35050-061 

Poly-L-lysine Sigma Aldrich P9155-5MG 

Auranofin Sigma Aldrich A6733 

AlamarBlue™ Cell Viability Reagent Thermo Fisher DAL 1025 

TRIzol™ Reagent Thermo Fisher 15596018 

Phosphate Buffered Saline (10x) MP Biomedicals 162528 

4x Laemmli Sample Buffer Bio-Rad 1610747 

Skimmed Milk Sigma Aldrich 70166 

Tween 20 Sigma Aldrich P1379 

Xylazine Injection Indian 
Immunologicals Ltd. 

21 

Ketamine Bharat Parenterals 
Limited 

N/A 

Clarity Western ECL Substrate Bio-Rad 1705061 

Critical commercial assays 

Prime Script™ RT Reagent Kit with gDNA Eraser (Perfect 
Real Time) 

Takara-Bio RR047A 

AgPath-ID™ One-Step RT-PCR kit Applied Biosystems AM1005 

Experimental models: cell lines 

HEK 293T cells expressing human ACE2 BEI resources NR-52511 

VeroE6 cells  ATCC® CRL-1586 

Experimental models: organisms/strains 

Syrian Golden Hamster Biogen laboratory 
animal facility  

N/A 

Oligonucleotides 

SARS-CoV2 N1 Primer Merck VC00021N 

SARS-CoV2 N1 Probe Merck VC00023N 

Other primers Eurofin N/A 

Software and algorithms 

Cytoscape v3.8.0 Cytoscape 
Consortium 

https://cytoscape.org/ 

Biorender Biorender https://biorender.com/ 
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R Console 4.0.3 The R project for 
Statistical Computing 

https://cran.r-
project.org/ 

RStudio v1.3.1093 RStudio https://www.rstudio.co
m/ 

GraphPad Prism v8.0.2 GraphPad https://www.graphpad
.com/ 

easyROC (ver. 1.3.1) (29) http://www.biosoft.hac
ettepe.edu.tr/easyRO
C/ 

QuantStudio Design and Analysis Software v1.5.1 Applied Biosystems https://www.thermofis
her.com/in/en/home/g
lobal/forms/life-
science/quantstudio-
3-5-software.html 

GeneOverlap R package v1.26.0 (59) https://bioconductor.o
rg/packages/release/
bioc/html/GeneOverla
p.html 

Interferome v2.01 (22) http://www.interferom
e.org/ 

Metascape (60) https://metascape.org
/ 

Other 

PVDF membrane Immobilon-P; Merck IPVH00010 

 545 

RESOURCE AVAILABILITY 546 

Lead contact 547 

Further information and requests for resources and reagents should be directed to and 548 

will be fulfilled by the lead contact, Shashank Tripathi (shashankt@iisc.ac.in). 549 

Materials Availability 550 

This study did not generate new unique reagents. 551 

Data and Code Availability 552 

The published article includes all data generated or analyzed during this study. No 553 

new code was developed for this study. 554 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 555 

Ethics Statement 556 

This study was conducted in compliance with institutional human ethics and biosafety 557 

guidelines, (IHEC No. 13-11092020; IBSC/IISc/ST/17/2020), following the Indian 558 

Council of Medical Research and Department of Biotechnology recommendations. All 559 

experiments involving animals were reviewed and approved by the Institutional Animal 560 
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Ethics Committee (Ref: IAEC/IISc/ST/784/2020) at the Indian Institute of Science and 561 

conducted in Viral Biosafety level-3 facility. 562 

Human Subjects 563 

Nasopharyngeal swabs were collected from COVID-19 patients and healthy 564 

individuals for diagnostic purposes by hospitals from Bengaluru Urban city and brought 565 

to COVID-19 Diagnostic Facility at the Indian Institute of Science in viral transport 566 

media (VTM). RNA from patients was isolated using kits recommended and provided 567 

by the Indian Council of Medical Research. Samples were chosen to have an almost 568 

equal number of patients falling into categories of age, sex, COVID-19 status, and 569 

symptomatic status (Table 1). Demographic information was not used as an inclusion 570 

criterion. 571 

Animal Models 572 

All animal experiments were performed using 10 to 12-week-old male and female 573 

Syrian golden hamsters purchased from Biogen Laboratory Animal Facility 574 

(Karnataka, India). They were given access to pellet feed and water ad libitum. Males 575 

and females were housed separately and maintained on a 12-hour day/night light cycle 576 

at the Viral Biosafety level-3 facility at the Indian Institute of Science. Hamsters were 577 

euthanized by an overdose of Ketamine (Bharat Parenterals Limited) and Xylazine 578 

(21, Indian Immunologicals Ltd). 579 

Cells and Viruses 580 

HEK 293T cells expressing human ACE2 (NR-52511, BEI resources) and VeroE6 cells 581 

(CRL-1586, ATCC®) were cultured in Dulbecco’s modified Eagle medium (12100-038, 582 

Gibco) with 10% HI-FBS (16140-071, Gibco), 100 IU/ml Penicillin, 100 μg/ml 583 

Streptomycin and 0.25μg/ml Amphotericin-B (Penicillin-Streptomycin-Amphotericin B, 584 

ICN1674049, MP Biomedicals) supplemented with GlutaMAX™ (35050-061, Gibco). 585 

SARS-CoV2 (Isolate Hong Kong/VM20001061/2020, NR-52282, BEI Resources) was 586 

propagated and titered by plaque assay in Vero E6 cells as described before (61).  587 

 588 

METHOD DETAILS 589 

Omics Data collection and Processing: 590 
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Transcriptomics and protein abundance data from COVID-19 patient’s naso- and 591 

oropharyngeal swab, bronchoalveolar lavage fluid (BALF), and other respiratory 592 

specimens were chosen from PubMed, BioRxiv, and MedRxiv using different 593 

combinations of keywords like “COVID-19, SARS-CoV-2, Transcriptomics, 594 

Proteomics, BALF, swab”. Studies dealing with gene expression profiles of SARS-595 

CoV-2 infected non-human cell lines and tissues were not considered. The SARS-596 

CoV-2 and COVID-19 collections in the EMBL-EBI PRIDE proteomics database (62) 597 

were retrieved and used without any modification. In the NCBI GEO database (63) the 598 

following combination of terms was used to collect relevant datasets: ((covid-19 OR 599 

SARS-COV-2) AND gse [entry type]) AND "Homo sapiens"[porgn: _txid9606]. 600 

The retrieved datasets were then filtered by their date of publication to collect the 601 

studies published between the 1st of January 2020 and the 15th of September 2020.  602 

The filtration of datasets was carried out using two parameters, fold-change, and its 603 

significance value. Genes and proteins with a fold-change value of ≥ 1.5 and q-value 604 

≤ 0.05 were chosen for the overlap analysis. The raw p-value was used for filtering in 605 

cases where the adjusted p-value was not provided, albeit with a more stringent cut-606 

off of ≤ 0.01. The UniProt IDs in filtered protein abundance datasets were converted 607 

to their corresponding primary Gene Symbols using UniProt (64). 608 

 609 

Gene set overlap analysis: 610 

The GeneOverlap class of R package “GeneOverlap” (59) was used for testing 611 

whether two lists of genes are independent, which is represented as a contingency 612 

table, and then Fisher’s exact test was used to find the statistical significance. Genes 613 

with less than 0.01 overlap p-value were selected for further analysis. The number of 614 

background genes for proteome-proteome pairwise study and the transcriptome-615 

proteome pairwise study was 25,000, i.e., the number of protein-coding genes in 616 

Hg19. For the transcriptome-transcriptome overlap study, the number of background 617 

genes was taken to be the union of expressed genes in both the datasets considered. 618 

 619 

Gene Ontology, Interferome, cellular and tissue localization analysis:  620 

Enriched GO terms were obtained by express analysis on Metascape (60) and plotted 621 

using ggplot2 (65). The database Interferome v2.01 (22) was queried using gene 622 

symbols for identifying interferon regulated genes (IRGs) in normal samples of the 623 

respiratory system from both in vitro and in vivo experiments in humans. For cellular 624 
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localization, each gene was queried on UniProt annotation (66) and Human Protein 625 

Atlas ver20.0 (67, 68) and then manually annotated. The single-cell expression data 626 

of transcripts was also obtained from Human Protein Atlas ver20.0 (Available from 627 

http://www.proteinatlas.org/). They were further filtered to obtain cells that are 628 

associated with the immune system or respiratory tract. 629 

 630 

Virus-Host protein-protein interaction network analysis: 631 

The interaction data for the selected 46 genes were retrieved from publicly available 632 

interaction datasets (13). The retrieved information was then used to generate a 633 

network map. Cytoscape v3.8.0 (69) was used to construct the interaction network for 634 

virus-host protein-protein interaction. STRING database within the Cytoscape store 635 

was used to query the proteins to elucidate the interactions between the proteins 636 

significantly altered during SARS-CoV-2 infection. The resulting STRING interaction 637 

network (confidence ≥0.999 for all the proteins and confidence ≥0.90 for NAMPT; max 638 

number of interactors = 10) was merged with the virus-host PPI on Cytoscape. 639 

 640 

qRT-PCR based measurement of cellular gene expression for patient samples 641 

Equal amounts of RNA were converted into cDNA using Prime Script™ RT Reagent 642 

Kit with gDNA Eraser (Perfect Real Time) (RR047A, Takara-Bio) and then diluted with 643 

80μl nuclease-free water. The gene expression study was conducted using 644 

PowerUp™ SYBR™ Green Master Mix (A25778, Applied Biosystems™) with 645 

18srRNA as the internal control and appropriate primers for the genes (Supplementary 646 

Table 3). 647 

 648 

Cytotoxicity assay  649 

HEK-ACE2 cells were seeded in a 96-well cell culture dish pre-coated with 0.1mg/mL 650 

poly-L-lysine (P9155-5MG, Sigma-Aldrich) and 24hr later, treated with 0, 1, 2, and 4µM 651 

Auranofin (A6733, Sigma-Aldrich) in triplicates. Cells were incubated at 37°C, 5% 652 

CO2, and 48hr later, cytotoxicity was measured using AlamarBlue™ Cell Viability 653 

Reagent (DAL 1025, Thermo Fisher) as per manufacturer’s instructions.  654 

 655 

Infection in HEK-ACE2 cells 656 

Cells were seeded in a 24-well cell culture dish pre-coated with 0.1mg/mL poly-L-lysine 657 

and 24hr later, used for infection. Cells were first pre-treated for 3hr with 0, 0.12, 0.25, 658 
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0.5, and 1µM Auranofin in quadruplicates washed once with complete DMEM and 659 

subsequently incubated with 0.1 MOI SARS CoV-2 in 100 µl inoculum for 1 hour at 37 660 

C°. Subsequently complete medium restoring the prior dose of the drug was added to 661 

the cells. After 48hr, cells were processed separately for western blot analysis and 662 

RNA extraction with TRIzol™ Reagent (15596018, Thermo Fisher).  663 

 664 

Western Blot: 665 

Cells were washed with 1x PBS (162528, MP Biomedicals) and lysed with 1X Laemmli 666 

buffer (1610747, BIO-RAD). Cell lysates were loaded and resolved using a 10% SDS-667 

PAGE gel and the separated proteins were transferred onto a PVDF membrane 668 

(IPVH00010, Immobilon-P; Merck). Blocking was performed using 5% Skimmed milk 669 

(70166, Sigma-Aldrich) in 1xPBS containing 0.05% Tween 20 (P1379, Sigma-Aldrich) 670 

(1xPBST) for two hours at room temperature with slow rocking. Primary antibody 671 

incubation was performed overnight (12hr) at 4oC using SARS-CoV / SARS-CoV-2 672 

(COVID-19) spike antibody (GTX632604, GeneTex). Secondary antibody incubation 673 

was performed for 2 hours at room temperature with slow rocking using Goat Anti-674 

Mouse IgG H&L (ab6789, Abcam). The blots were developed using Clarity Western 675 

ECL Substrate (1705061, BIO-RAD). 676 

 677 

Animal Experiments: 678 

Toxicity of 1 and 5 mg/kg bodyweight Auranofin was tested on Syrian golden hamsters 679 

by oral administration of the drug in 200 µl PBS. The total bodyweight of hamsters was 680 

monitored for up to 7 days (Supplementary Fig 6). Infection experiments were 681 

performed by intranasal inoculation of animals with 105 PFU SARS-CoV2 in 100µL 682 

PBS. The animals were anesthetized using intraperitoneal injections of Ketamine 683 

(150mg/kg) (Bharat Parenterals Limited) and Xylazine (10mg/kg) (21, Indian 684 

Immunologicals Ltd) cocktail before infection. Prophylactic treatment involved oral 685 

administration of Auranofin (5mg/kg/day) 3-, 2-, and 1-day post-infection (dpi) and 686 

followed by virus challenge at day 0. The therapeutic treatment regimen used oral 687 

administration of Auranofin (5mg/kg/day) starting at 24-hours post-infection (hpi), 688 

followed by 2 and 3 dpi. Total body weight was recorded each day during the entire 689 

course of the experiment until the animals were sacrificed at 4 dpi. Virus RNA load in 690 

lung tissue specimens was detected by q-RT-PCR.  691 

 692 
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RT PCR for viral copy number calculation:  693 

For qRT-PCR, total RNA was isolated using TRIzol™ Reagent (15596018, Thermo 694 

Fisher) as per manufacturer’s instruction and equal amounts of RNA was used to 695 

determine viral load using AgPath-ID™ One-Step RT-PCR kit (AM1005, Applied 696 

Biosystems) using primers and probes targeting the SARS CoV-2 N-1 gene (Forward 697 

primer: 5'GACCCCAAAATCAGCGAAAT3' and Reverse primer: 5' 698 

TCTGGTTACTGCCAGTTGAATCTG3', Probe: (6-FAM / BHQ-1) 699 

ACCCCGCATTACGTTTGGTGGACC). Viral copy number was estimated by 700 

generating a standard curve using SARS CoV-2 genomic RNA standard.  701 

 702 

QUANTIFICATION AND STATISTICAL ANALYSIS 703 

Statistical analyses and overlaps were performed in the R statistical environment 704 

version 4.0.3 via RStudio version 1.3.1093. Plots were made using the ggplot2 705 

package in R (65) and GraphPad Prism v8.0.2. In boxplots, the hinges of boxes 706 

represent the first and third quartiles. The whiskers of the boxplot extend to the value 707 

which is 1.5 times the distance between the first and third quartiles. Each data point in 708 

the boxplot represents one of the triplicates in qRT-PCR for a particular gene in a 709 

particular patient sample. Heatmaps were generated using the R package 710 

ComplexHeatmap (70). Receiver Operating Characteristic (ROC) curve analysis and 711 

Optimal cut-off determination were performed using the online tool easyROC (ver. 712 

1.3.1) (29).  713 
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