

1 Structural basis for the therapeutic advantage of dual and triple agonists

2 at the human GIP, GLP-1 or GCG receptors

3 Fenghui Zhao^{1,2†}, Qingtong Zhou^{3†}, Zhaotong Cong³, Kaini Hang^{4†}, Xinyu Zou^{5†}, Chao Zhang⁴, Yan Chen³, Antao
4 Dai⁶, Anyi Liang⁵, Qianqian Ming⁷, Mu Wang⁴, Linan Chen⁷, Peiyu Xu², Rulue Chang¹, Wenbo Feng³, Tian Xia⁵, Yan
5 Zhang⁷, Beili Wu^{2,4,8}, Dehua Yang^{2,6,8*}, Lihua Zhao^{2,8*}, H. Eric Xu^{2,8*}, Ming-Wei Wang^{1,2,3,4,6,8*}

6 ¹School of Pharmacy, Fudan University, Shanghai 201203, China

7 ²The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of
8 Sciences, Shanghai 201203, China

9 ³Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China

10 ⁴School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.

11 ⁵School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074,
12 China.

13 ⁶The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences,
14 Shanghai 201203, China.

15 ⁷Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School
16 of Medicine, Hangzhou 310058, China.

17 ⁸University of Chinese Academy of Sciences, Beijing 100049, China.

18 [†]These authors contributed equally: Fenghui Zhao, Qingtong Zhou, Zhaotong Cong, Kaini Hang, Xinyu Zou.

19 ^{*}e-mail: dhyang@simm.ac.cn (D.H.Y.); zhaoliuhawendy@simm.ac.cn (L.H.Z.); eric.xu@simm.ac.cn (H.E.X.);
20 mwwang@simm.ac.cn (M.-W.W)

21 Key words

22 Cryo-electron microscopy; G protein-coupled receptor; ligand recognition; receptor activation; unimolecular agonist

23 Summary

24 Glucose homeostasis, regulated by glucose-dependent insulinotropic polypeptide (GIP), glucagon-like
25 peptide-1 (GLP-1) and glucagon (GCG) is critical to human health. Several multi-targeting agonists at GIPR,
26 GLP-1R or GCGR, developed to maximize metabolic benefits with reduced side-effects, are in clinical trials
27 to treat type 2 diabetes and obesity. To elucidate the molecular mechanisms by which tirzepatide, a
28 GIPR/GLP-1R dualagonist, and peptide 20, a GIPR/GLP-1R/GCGR triagonist, manifest their superior
29 efficacies over monoagonist such as semaglutide, we determined cryo-electron microscopy structures of

30 **tirzepatide-bound GIPR and GLP-1R as well as peptide 20-bound GIPR, GLP-1R and GCGR** The structures
31 reveal both common and unique features for the dual and triple agonism by illustrating key interactions of
32 clinical relevance at the atomic level. Retention of glucagon function is required to achieve such an advantage
33 over GLP-1 monotherapy. Our findings provide valuable insights into the structural basis of functional
34 versatility and therapeutic supremacy of tirzepatide and peptide 20.

35 **Introduction**

36 Glucose-dependent insulinotropic polypeptide (also known as gastric inhibitory peptide, GIP), glucagon-like
37 peptide-1 (GLP-1) and glucagon (GCG) are peptide hormones responsible for glucose homeostasis^{1,2}. Their cognate
38 receptors, GIPR, GLP-1R and GCGR, belong to class B1 G protein-coupled receptor (GPCR) family. Successful
39 application of various GLP-1 mimetics to treat type 2 diabetes mellitus (T2DM) and obesity highlights the clinical
40 value of this group of drug targets³. However, development of GIPR- and GCGR-based therapeutics has encountered
41 drawbacks due to the complexity of physiology associated with GIP and GCG⁴⁻⁶. For example, GIP stimulates
42 insulin secretion but also increases GCG levels^{7,8}, while the latter has a parallel role in elevating energy expenditure
43 and blood glucose⁹.

44 It was reported that the weight loss property (5-10%) of GLP-1 analogs is hampered by dose-dependent
45 side-effects¹⁰. Chimeric peptides consisting of amino acids from GIP and GLP-1 were then designed to maximize
46 their metabolic benefits¹¹. Additional consideration was given to GCG for its role in energy expenditure¹². Therefore,
47 multi-targeting or unimolecular peptides possessing combinatorial agonism at GIPR, GLP-1R and GCGR have been
48 extensively explored and more than a dozen peptides including two GIPR/GLP-1R dualagonists, ten GLP-1R/GCGR
49 dualagonists and five GIPR/GLP-1R/GCGR triagonists have entered into clinical development (Fig. S1a,
50 Supplementary Table 1)¹³. Of them, two pioneered unimolecular agonists, tirzepatide (LY3298176) and peptide 20
51 (MAR423) have attracted significant attention from both academic and industrial communities (Fig. 1a). Tirzepatide
52 is an investigational once-weekly GIPR/GLP-1R dualagonist¹⁴ with a profound therapeutic superiority in reducing
53 blood glucose and body weight beyond several approved drugs such as semaglutide¹⁵ and dulaglutide¹⁶ in multiple
54 head-to-head clinical trials. Peptide 20, a GIPR/GLP-1R/GCGR triagonist (currently in phase 1 clinical trial)¹⁷ with
55 balanced potency at the three receptors, is evolved from a GLP-1R/GCGR dualagonist¹⁸ through iterative sequence
56 refinement and modification (Fig. S1b)¹⁴. It reversed glucose dysregulation without detrimental effects on
57 metabolically healthy animals and reduced body weight, lowered fasting blood glucose, decreased glycosylated
58 hemoglobin (HbA1C), improved glucose tolerance, and protected pancreatic islet architecture in diabetic fatty
59 Zucker rats^{14,19,20}.

60 To understand molecular mechanisms of the dual and triple agonism conferred by tirzepatide and peptide 20,
61 we determined five cryo-electron microscopy (cryo-EM) structures, including GIPR and GLP-1R bound with
62 tirzepatide and GIPR, GLP-1R and GCGR bound with peptide 20, all in complex with G_s proteins at global
63 resolutions of 3.4 Å, 3.4 Å, 3.1 Å, 3.0 Å and 3.5 Å, respectively. Integrated with pharmacological and clinical data,
64 this work reveal the structural basis of peptide recognition by each receptor and provide important insights into
65 therapeutic benefits resulted from combinatorial agonism.

66 **Results**

67 *Overall structure*

68 The tirzepatide–GIPR–G_s, tirzepatide–GLP-1R–G_s, peptide 20–GIPR–G_s, peptide 20–GLP-1R–G_s and peptide
69 20–GCGR–G_s structures were determined by the single-particle cryo-EM approach with overall resolutions of 3.4 Å,
70 3.4 Å, 3.1 Å, 3.0 Å, and 3.5 Å, respectively (Fig. 1b,c, Figs. S2-6, Table S1, Supplementary Figure 1,
71 Supplementary Table 2). Apart from the α -helical domain of G α _s, the presence of bound tirzepatide and peptide 20,
72 individual receptor and heterotrimeric G_s in respective complex was clearly visible in all five EM maps, thereby
73 allowing unambiguous modeling of the secondary structure and side chain orientation of all major components of
74 the complexes (Fig. S6).

75 Tirzepatide has two non-coded amino acid residues at positions 2 and 13 (Aib, α -aminoisobutyric acid), and is
76 acylated on K20^P (P indicates that the residue belongs to the peptide) with a γ Glu-2×OEG linker and C18 fatty
77 diacid moiety. The first 30 and 29 amino acids of tirzepatide were modelled for the tirzepatide–GIPR–G_s and
78 tirzepatide–GLP-1R–G_s complexes, respectively.

79 Peptide 20 contains two modifications: A2^P with Aib and K10^P that is covalently attached by a 16-carbon acyl
80 chain (palmitoyl; 16:0) via a gamma carboxylate (γ E spacer)¹⁴. The γ E spacer and palmitic acid (C16:0) were well
81 resolved in the final models of peptide 20–GCGR–G_s and peptide 20–GLP-1R–G_s, while only the γ E spacer was
82 modelled for peptide 20–GIPR–G_s with high-resolution features. The first 30, 29, and 28 amino acids of peptide 20
83 were modelled for the peptide 20–GIPR–G_s, peptide 20–GLP-1R–G_s and peptide 20–GCGR–G_s complexes,
84 respectively.

85 As shown in Fig. 2a, the tirzepatide–GIPR–G_s and peptide 20–GIPR–G_s complex structures closely resembled
86 that of the GIP–GIPR–G_s complex²¹ with C α root mean square deviation (RMSD) values of 0.5 and 0.4 Å,
87 respectively. Notable conformational differences were observed in the positions of peptide C-terminal half and the
88 surrounding ECL1 and ECD, indicative of GIPR-associated ligand specificity. Through two mutations (M14^PL and
89 H18^PA), the dense contacts between ECL1 (residues 194 to 211) and GIP were disrupted by peptide 20, as seen from

90 the buried surface area that decreased from 406 Å² for GIP to 278 Å² for peptide 20. Consequently, ECL1 adopted a
91 more relaxed conformation, making peptide 20 straighter by shifting its tip toward the TMD core by 4.2 Å
92 (measured by the C α of L27^P). Similar movement was also seen for the C-terminal half of tirzepatide (2.1 Å
93 measured by the C α of I27^P). As far as the N terminus is concerned, GIP and tirzepatide were stabilized by massive
94 contacts with TMD core through a common N terminus (Y1^P-A/Aib2^P-E3^P), while that of peptide 20
95 (H1^P-Aib2^P-Q3^P) formed weaker interactions with TMD core by abolishing the hydrogen bond with Q224^{3,37b} (class
96 B GPCR numbering in superscript)²², salt bridge with R183^{2,60b} and hydrophobic contacts with V227^{3,40b} (Fig. 2b).
97 Such deficiency of peptide 20 was rescued by the introduction of T7^P (hydrogen bond with R190^{2,67b}), lipidated
98 K10^P and Y13^P that contributed additional contacts with GIPR not observed in GIP²¹. The hydrogen bond between
99 T7^P and R190^{2,67b} was also found in the tirzepatide–GIPR–G_s complex.

100 The structures of tirzepatide- and peptide 20-bound GLP-1R are highly similar to that bound by GLP-1²³, with
101 C α RMSD of 0.8 Å and 0.7 Å, respectively (Fig. 2c). The bound peptides (GLP-1, tirzepatide and peptide 20)
102 overlapped well and penetrated into the receptor TMD core by an identical angle and orientation, thereby exploiting
103 a similar ligand recognition pattern for most residues except for a few positions that have distinct amino acids (Fig.
104 2c, Supplementary Tables 3, 4). The substitution (Y10^P in tirzepatide) and modification (lipidated K10^P in peptide 20)
105 stabilized the binding of dual and triple agonists by newly-formed interactions with residues surrounding the
106 TM1-TM2 cleft, a phenomenon unseen in the case of GLP-1²³. Meanwhile, some favorable interactions in GLP-1
107 recognition were absent for both tirzepatide (Y13^PA decreased the hydrophobic interactions with TM1, E21^PA broke
108 the hydrogen bond with Q210^{ECL1}) and peptide 20 (E3^PQ eliminated the salt bridge with R190^{2,60b}) (Fig. 2d).
109 Interestingly, the residues at multiple positions (12, 16, 17, 20, 21, 24 and 28) of the unimolecular agonists are
110 highly solvent-accessible and of limited contact with GLP-1R, allowing them to employ distinct amino acids from
111 GLP-1 without altering GLP-1R signaling profiles. As a comparison, superimposing either GIP or GCG with GLP-1
112 analogs suggest that they have potential steric clashes with ECL1 of GLP-1R via H18^P of GIP and R18^P of GCG.
113 Two residues with shorter side-chains (I7^P and A13^P) in GIP further weakened its binding to GLP-1R, consistent
114 with the distinct cross-reactivity features of GIP and GCG with GLP-1R^{5,6}.

115 Superimposing the structures of GCGR–G_s bound by GCG⁴, peptide 15 (GLP-1R and GCGR dual agonist)²⁴
116 and peptide 20 reveals that these three peptides adopt a similar binding pose: a single continuous helix that
117 penetrates into the TMD core through their N-terminal halves (residues 1 to 15), while the C-terminal halves
118 (residues 16 to 30) are recognized by the ECD, ECL1 and TM1 (Fig. 2e). Given that both peptide 15 and peptide 20
119 are modified forms of GCG (differed by 7 residues), ligand recognition patterns are highly conserved across the

120 three peptides except for a few positions. For example, by choosing alanine at position 18 instead of arginine in
121 GCG, peptide 20 lost the cation-pi stacking with W215^{ECL1} and hydrogen bond with Q204^{ECL1}, thereby allowing its
122 outward movement toward ECL1 and leading to the formation of another hydrogen bond (D21^P-I206^{ECL1}) (Fig. 2f).
123 Probably due to the lack of complementary interacting residues, aligning GIP or GLP-1 to GCG significantly
124 loosened the dense compact between GCG and GCGR by removing one hydrogen bond
125 (Y10^P(GCG)/Y10^P(GIP)/V16^P(GLP-1)-Q142^{1.40b}(GCGR)) and pi-pi stacking
126 (Y13^P(GCG)/A13^P(GIP)/Y19^P(GLP-1)-Y138^{1.36b}(GCGR)) and by repulsing the interaction between Y1^P(GIP) and
127 I235^{3.40b}(GCGR). These observations receive the support of our current and previous functional data showing that
128 both GIP and GLP-1 were unable to activate GCGR (Supplementary Table 5)^{5,6}.

129 Collectively, the binding mode comparison of the three peptides bound by the same receptor demonstrate
130 common structural features in ligand recognition and distinct conformational adaptability of GIPR, GLP-1R and
131 GCGR in response to different agonist stimulation.

132 *Recognition of tirzepatide*

133 The tirzepatide–GIPR–G_s and tirzepatide–GLP-1R–G_s exhibit a similar peptide-receptor binding interface, where
134 distinct structural features were observed at ECL1, ECL3 and the extracellular tips of TM1 and TM3 (Fig. 3a).
135 GIPR-bound tirzepatide is rotated by 8.3° compared to that in complex with GLP-1R, such a movement shifted its C
136 terminus toward TMD core by 5.2 Å (measured by the C α of I27^P). The N-terminal region of tirzepatide (residues 1
137 to 10) in GIPR and GLP-1R overlapped well with the formation of a network of extensive interactions with multiple
138 conserved residues (Y^{1.43b}, Y^{1.47b}, R190/K197^{2.67b}, Q^{3.37b}, V^{3.40b}, N290/N300^{ECL2}, R^{7.35b} and I378/L388^{7.43b}) (Fig.
139 3b-e, Supplementary Tables 3, 6). Notably, the inward movement of GIPR R300^{5.40b} contributed one hydrogen bond
140 with T5^P (Fig. 3b, f). The middle region of tirzepatide in GLP-1R was stabilized by the peptide-ECD-ECL1-ECL2
141 interface through both a polar network (T298^{45.52}-S11^P-Y205^{ECL1}-R299^{ECL1}-D15^P-L32^{ECD}-S31^{ECD}-Q19^P) and a
142 complementary nonpolar network with ECD (L32, V36, W39 and Y88) and ECL1 (W214) via F22^P, W25^P, L26^P
143 (Fig. 3c). As a comparison, the ECL1 of GIPR partially unwound with the presence of three proline residues
144 (P195^{ECL1}, P197^{ECL1} and P199^{ECL1}), resulting in reduced interactions between ECL1 and tirzepatide compared to that
145 in GLP-1R (Fig. 3b). However, the α -helical extension in TM1 of GIPR provides additional residues for tirzepatide
146 recognition including one hydrogen bond (Y10^P and Q138^{1.40b}) and a stacking interaction (K16^P and F127^{1.29b}). The
147 acylation on K20^P by γ Glu-2×OEG linker and C18 fatty diacid moiety that enables enhanced binding to plasma
148 albumin and extended the peptide half-life *in vivo*²⁵ were not resolved in both structures, indicating a high
149 conformational flexibility, in line with the recently published cryo-EM structure of semaglutide-bound GLP-1R²⁶

150 and our molecular dynamics (MD) simulation results (Fig. S7a-c). Consistently, the non-acylated tirzepatide
151 maintained high affinity and potency to both GLP-1R and GIPR as tirzepatide (Fig. S2f, g).

152 *Peptide 20 recognition*

153 Superimposition of the TMDs of GIPR, GLP-1R and GCGR bound by peptide 20 shows that the three receptors
154 employed conserved residues in the lower half of the TMD pocket to recognize the well-overlapped peptide
155 N-terminal region (residues 1 to 11), while the peptide C terminus engaged by ECL1, the N-terminal α -helix of ECD
156 and the extracellular tip of TM1 display receptor-specific positions and orientations (Fig. 4, Fig. S8). Accompanying
157 the inward movement of GIPR ECL1 by 6.4 Å relative to that of GCGR (measured by $\text{C}\alpha$ of $\text{G}202^{\text{ECL1}}$ in GIPR and
158 $\text{G}207^{\text{ECL1}}$ in GCGR), the C terminus of peptide 20 bound by GIPR shifted toward TMD core by 8.1 Å (measured by
159 $\text{C}\alpha$ of $\text{L}27^{\text{P}}$) and consequently pushed the extracellular tip of TM1 moving toward TM7 by 2.8 Å (measured by $\text{C}\alpha$ of
160 the residues at 1.29b). ECL1 and ECD of the three receptors coincidentally constructed a complementary binding
161 groove for the entrance of the C terminus of peptide 20 through multiple hydrophobic residues ($\text{A}19^{\text{P}}$, $\text{F}22^{\text{P}}$, $\text{V}23^{\text{P}}$,
162 $\text{W}25^{\text{P}}$, $\text{L}26^{\text{P}}$ and $\text{L}27^{\text{P}}$). However, several additional interactions were observed in GLP-1R ($\text{S}11^{\text{P}}$ - $\text{Y}205^{\text{ECL1}}$ and
163 $\text{D}21^{\text{P}}$ - $\text{Q}210^{\text{ECL1}}$) and GCGR ($\text{D}15^{\text{P}}$ - $\text{Y}202^{\text{ECL1}}$ and $\text{D}21^{\text{P}}$ - $\text{I}206^{\text{ECL1}}$), but not in GIPR (Fig. 4b-h, Supplementary Tables
164 4, 7, 8).

165 Notably, strong cryo-EM densities were observed in the crevices between TM1 and TM2 of the three
166 complexes (Fig. 5a-c). They were connected to the side-chain end of $\text{K}10^{\text{P}}$ of peptide 20, allowing unambiguous
167 assignment of the binding sites of lipidated $\text{K}10^{\text{P}}$ with a 16-carbon palmitic acid through a γ -carboxylate spacer (Fig.
168 5d-f). Such a modification on $\text{K}10^{\text{P}}$ greatly stabilized the peptide binding through extensive contacts with both
169 receptors and lipid membrane. For GCGR, the lipidated $\text{K}10^{\text{P}}$ contributed three hydrogen bonds (with $\text{S}139^{1.37\text{b}}$,
170 $\text{Q}142^{1.40\text{b}}$ and $\text{R}199^{2.72\text{b}}$), extensive hydrophobic contacts (with $\text{V}143^{1.41\text{b}}$, $\text{T}146^{1.44\text{b}}$, $\text{L}192^{2.65\text{b}}$ and $\text{V}193^{2.66\text{b}}$) and
171 lipid membrane where the 16-carbon palmitic chain implanted (Fig. 5d-f). Removal of these contacts by GCGR
172 triple mutant (Q142A+D195A+R199A) markedly reduced peptide 20 potency by 93-fold (Fig. 5g). For GLP-1R, the
173 γ -carboxylate spacer formed two hydrogen bonds (with $\text{Y}145^{1.40\text{b}}$ and $\text{D}198^{2.68\text{b}}$), and the 16-carbon palmitic chain
174 terminus dropped down along TM1 with the formation of massive hydrophobic interactions with $\text{I}146^{1.41\text{b}}$, $\text{T}149^{1.44\text{b}}$,
175 $\text{V}150^{1.45\text{b}}$, $\text{A}153^{1.48\text{b}}$ and $\text{L}154^{1.49\text{b}}$. Similar phenomenon was also observed in GIPR. Consistently, our MD
176 simulations found that the γ -carboxylate spacer stably inserted into the TM1-TM2 cleft and the 16-carbon palmitic
177 chain is deeply buried in the receptor-lipid interface, contributing massive contacts to stabilize the complexes (Fig.
178 S7d, e). The importance of $\text{K}10^{\text{P}}$ lipidation receives the support of our structure-activity relationship study where
179 peptide 20 without $\text{K}10^{\text{P}}$ lipidation reduced the receptor-mediated cAMP accumulation by 8,709-fold and 660-fold

180 for GIPR and GCGR, respectively, but inappreciably influenced that of GLP-1R (Fig. 5h). These results suggest that
181 specific modification of peptide is equally significant to sequence optimization in term of demonstration of a desired
182 polypharmacology of a unimolecular dual or triple agonist.

183 *Receptor activation*

184 Despite the existence of unique structural features among the ligand-binding pockets of GIPR, GLP-1R and GCGR,
185 both tirzepatide and peptide 20 triggered receptor conformational changes similar to that induced by GLP-1 or
186 GCG^{4,23} and distinct from the inactive or *apo* GLP-1R and GCGR structures (Fig. S9)^{27,28}. Compared to the inactive
187 GCGR, the extracellular tip of TM7 in peptide 20-bound GCGR moved outward by 5.1 Å (measured by C α atom of
188 L377^{7,34b}) and the α -helical structure of the extracellular half of TM6 was partially unwound. In the intracellular
189 side, a sharp kink located in the conserved Pro^{6,47b}-X-X-Gly^{6,50b} motif pivoted the intracellular tip of TM6 to move
190 outwards by 19.3 Å (measured by C α atom of K344^{6,35b}), slightly higher than that seen with the GCG–GCGR–G_s
191 (17.7 Å)⁴. This, in conjunction with the movement of TM5 towards TM6, opened up the cytoplasmic face of GCGR
192 to accommodate G protein coupling. Similar conformational change was also observed in the tirzepatide–GIPR–G_s,
193 tirzepatide–GLP-1R–G_s, peptide 20–GIPR–G_s and peptide 20–GLP-1R–G_s complexes, compared to peptide-free
194 *apo* GLP-1R structure²⁷. At the residue level, signaling initiation by either peptide 20, tirzepatide or endogenous
195 peptide hormones rendered a common arrangement of residue contacts for the three receptors^{29,30}, including the
196 reorganization of the central polar network that located just below the peptide binding site, opening of the
197 hydrophobic packing to favor the formation of TM6 kink at the PXXG motif and the rearrangement of two polar
198 networks (HETX motif and TM2-6-7-helix 8) at the cytoplasmic face.

199 *G protein coupling*

200 Comparison of the two tirzepatide- and three peptide 20-bound GPCR–G_s complex structures with that of other class
201 B1 GPCR family members reveals a high similarity in the G protein binding interface, suggesting a common
202 mechanism for G_s engagement^{4,29,31-34} (Fig. 6a). These complexes are anchored by the α 5 helix of G α _s, which fits to
203 the cytoplasmic cavity formed by TMs 2, 3, 5, 6, 7 and intracellular loop 1 (ICL1). Besides, H8 contributes several
204 polar interactions with the G β subunit. There are some receptor- and ligand-specific structural features displayed by
205 ICL2. For peptide 20-bound GCGR, its ICL2 moved downward and made extensive polar and nonpolar contacts
206 with the binding groove formed by the α N helix, β 1 strand and α 5 helix of G α _s, resulting in an ICL2–G α _s interface
207 area of 799 Å², significantly larger than that of GLP-1R (396 Å²) or GIPR (416 Å²) (Fig. 6b). Different from the
208 dipped down side-chain conformation observed in GLP-1-bound GLP-1R²³, F257^{3,60b} in the peptide 20–GLP-1R–G_s
209 complex rotated its side-chain upwards (Fig. 6c). Furthermore, E262^{ICL2} was reoriented ~90° from an outside facing

210 position to a position pointing to $\text{G}\alpha_s$, thus introducing a hydrogen bond with $\text{Q}35^{\text{G}\alpha\text{HN}}$ (Fig. 6d). Similar G protein
211 interface was also observed in the tirzepatide-bound GLP-1R except for the orientation of $\text{E}262^{\text{ICL}2}$ that is closer to
212 that of GLP-1. In the case of peptide 20- and tirzepatide-bound GIPR complexes, the side-chain of $\text{E}253^{\text{ICL}2}$
213 contributed one salt bridge with $\text{K}34^{\text{G}\alpha\text{HN}}$, not observed in the peptide 20-bound GLP-1R and GCGR complexes (Fig.
214 6e).

215 *Efficacy superiority*

216 The superior therapeutic efficacy of tirzepatide over approved selective GLP-1 analogs were reported recently^{16,35},
217 whereas the outcome of clinical trials on peptide 20 is not available in the literature. The five high-resolution
218 cryo-EM structures reported here, together with abundant structural and pharmacological data of monospecific
219 peptides documented previously^{4,21,23,26,36}, provide us an excellent opportunity to analyze the molecular basis of the
220 superior clinical efficacy presented by unimolecular agonists.

221 Semaglutide and tirzepatide share two common substitutions (Aib^{8P} and acylated K^{26P} by C18 diacids via a
222 γ Glu-2 \times OEG linker, numbered according to GLP-1 and semaglutide whose first N-terminal residues are at position
223 7 while that of tirzepatide is at position 1) introduced to reduce degradation by dipeptidyl peptidase-4 (DPP-4) and
224 to prolong their half-lives by enhanced binding to plasma albumin (Fig. 7a)³⁷. Besides, there is only one residue in
225 semaglutide (R^{34P}) that is different from GLP-1 but does neither form any interaction with GLP-1R²⁶ nor affect
226 receptor binding and signaling²⁵. However, tirzepatide has 14 unique amino acids (engineered from the GIP
227 sequence) and an amidated exenatide-like C terminus as opposed to GLP-1 which allow the peptide to possess a
228 GIPR binding ability equivalent to GIP(1–42) and to steadily interact with GLP-1R with a reduced potency
229 compared to GLP-1²³ (Fig. 2a-d). Like GLP-1, semaglutide is not able to bind or activate GIPR. These findings were
230 confirmed by GIPR or GLP-1R mediated cAMP accumulation assays (Fig. 7b-c)³⁵. Of note is that tirzepatide was
231 reported to cause biased signaling at GLP-1R in favor of cAMP response over β -arrestin recruitment³⁵. The
232 combined activation of GIPR and GLP-1R by tirzepatide not only improved both glucose-dependent insulin
233 secretion and glucose tolerance in mice³⁸, but also showed significantly better efficacy than semaglutide and
234 dulaglutide with regard to glucose control and weight loss^{15,16}.

235 It is known that peptide 20 potently reversed metabolic disorders in rodent models of obesity and diabetes,
236 characteristic of increased energy expenditure and elevated circulating FGF21 levels as a result of GCGR
237 agonism^{14,19}. Peptide 20 utilizes a N terminus (the first 11 residues) that is highly conserved across GIP, GLP-1 and
238 GCG to interact with the lower half of the TMD pocket of the three receptors consisting of conserved residues such
239 as L/Y^{1,36b} (hydrophobic with K^{10P}), Q/Y^{1,40b} (hydrogen bond with K^{10P}), Y^{1,43b} (stacking with F^{6P}), Y^{1,47b}

240 (hydrogen bond with Q3^P), Q^{3,37b} (hydrogen bond with H1^P), ECL2 (hydrogen bond with S8^P), R^{7,35b} (salt bridge
241 with D9^P), I/L^{7,43b} (hydrophobic with Aib2^P) and L^{7,43b} (hydrophobic with F6^P) (Figs. 2, 4b-d, 7a). A similar
242 approach was applied to the design of peptide 20's C terminus that occupies the hydrophobic binding groove of ECD,
243 with residues (A19^P, F22^P, V23^P, W25^P, L26^P and L27^P) adopted from GIP, GLP-1 and GCG (Figs. 4e-g, 7a)^{39,40}. To
244 accommodate the upper half of the TMD pocket formed by ECL1 and the extracellular tips of TM1 and TM2 that
245 diversified in both sequence and conformation across the three receptors, peptide 20 employs distinct "barcodes"
246 (patterns of amino acids) to recognize specific region of a given receptor (Fig. 4h). For GIPR whose ECL1 was
247 loosely compacted by peptide 20, three residues (Y13^P-L14^P-D15^P) strengthened the peptide-binding interface by
248 forming a hydrogen bond with F127^{1,29b} and a salt bridge with R289^{ECL2}, significantly stronger than that observed in
249 GLP-1R and GCGR. Alternatively, another three residues (D21^P-F22^P-W25^P) compacted well with the ordered
250 ECL1 of GLP-1R via a hydrogen bond with Q210^{ECL1} and packing with W214^{ECL1}. Two hydrogen bonds
251 (D15^P-Y202^{2,75b} and R17^P-Y202^{2,75b}) were only seen in GCGR.

252 The most impressive structural feature of peptide 20 is the lipidated K10^P by a 16-carbon palmitic acid through
253 a γ -carboxylate spacer, which perfectly inserted into TM1-TM2 crevice and made extensive contacts with both
254 receptors and lipid membrane to stabilize the binding poses (Fig. 5). These observations disclose a combined
255 mechanism that uses conserved residues for ligand recognition and specific "barcodes" to accommodate
256 conformations unique to each receptor, leading to a highly potent and balanced unimolecular triple agonist for GIPR,
257 GLP-1R and GCGR¹⁴ with a cAMP signaling potency similar to that of GIP, GLP-1 and GCG (Fig. 7b).

258 **Discussion**

259 Due to the central roles exerted by the three metabolically related peptide hormone receptors (GIPR, GLP-1R and
260 GCGR) in the management of T2DM and obesity, the concept of combinatorial agonism or polypharmacology to
261 synergize metabolic actions and maximize therapeutic benefits has been explored in the past decade with remarkable
262 preclinical and clinical achievements. The 3-dimensional structures of GCGR, GLP-1R and GIPR solved previously
263 helped us better understand the molecular basis of ligand recognition and receptor activation of these important class
264 B1 GPCRs^{21,28,41-43}. In this paper, we report five cryo-EM structures of two well-recognized unimolecular agonists
265 (tirzepatide and peptide 20) in complex with individual receptors and G_s proteins. The structural basis of their
266 superior clinical efficacies relative to monospecific agonists such as semaglutide is elucidated. Our results provide
267 an atomic level visualization of the molecular action of unimolecular agonists on three cognate receptors and offer
268 valuable information for the design of better drugs to combat metabolic disease.

269 Superimpositions of the two tirzepatide- and three peptide 20-bound structures to the three receptors bound by

270 the endogenous ligands (GIP, GLP-1 and GCG) showed that the five peptides all adopt a single continuous helix,
271 with the well-overlapped N terminus penetrating to the TMD core stabilized by conserved interactions, while the C
272 terminus anchors the ECD, ECL1 and ECL2 in a receptor- and ligand-specific manner. With the presence of three
273 proline residues (P195^{ECL1}, P197^{ECL1} and P199^{ECL1}), the ECL1 of GIPR presents a notable conformational
274 adaptability in recognition of different agonists, a phenomenon that was not seen with that of GLP-1R and GCGR as
275 their binding pockets exhibit less flexibility when recognizing the peptides through a combination of common
276 segment that contributes to conserved interactions and distinct sequences that govern receptor selectivity. The
277 distinct sequences that tirzepatide and peptide 20 employed, respectively, to recognize GIPR or GLP-1R are
278 obviously different: the former was primarily based on the GIP sequence with engineered GLP-1 activity³⁸, whereas
279 the latter was derived from a GLP-1R/GCGR dualagonist in conjunction with GIP agonism¹⁴. Such a sequence and
280 receptor binding divergence may consequently alter pharmacological and clinical outcomes. Clearly, distinct
281 sequence and structural features of tirzepatide and peptide 20 allow them to exert combinatorial agonism at two or
282 more receptors at the same time thereby maximize the benefit of polypharmacology and minimize the limitation of
283 mono-targeting.

284 Both GIP and GLP-1 are released upon nutrient ingestion to promote insulin secretion by pancreatic β -cells.
285 However, they have opposed effects on circulating GCG levels^{7,15}. GIPR activation also has different roles in lipid
286 metabolism from that of GLP-1⁴⁴. Maintenance of GCG action might be a key to the superior therapeutic efficacy of
287 tirzepatide^{15,16,45}. Structurally, the binding of tirzepatide to GIPR reshaped the ECL1 conformation relative to that of
288 GIP, but made no change in the GLP-1R structure. As far as peptide 20 is concerned, the peptide binding pocket of
289 both GLP-1R and GCGR closely resembled that of GLP-1 and GCG bound structures, where notable conformational
290 change was only observed in the ECL1 of GIPR. These differences in structural plasticity or rigidity among the three
291 receptors give clues to further optimize unimolecular agonists using complementary amino acids to target common
292 regions of individual receptors and distinct sequences to confer receptor selectivity.

293 Unlike tirzepatide that retains GCG function via counteracting with that of GLP-1 through activation of GIPR,
294 peptide 20 is capable of activating GCGR directly. Consistent with the effects of GCGR in increasing lipolysis and
295 thermogenesis besides elevating blood glucose levels, preclinical studies have found that peptide 20 improved
296 energy metabolism and hepatic lipid handling without exacerbating preexisting hyperglycemia¹⁴. Peptide 20 was
297 developed through a series of optimizing processes based on GCGR agonism in diet-induced obese mice, concluding
298 that the ideal metabolic benefits of triagonism predominantly depend on fine-tuning the GCG component¹⁴. The
299 structures reveal that lipidation at K10 of peptide 20 allows the hydrophobic acyl tail to interact with the TMD

300 region of all three receptors, providing a new clue for peptidic ligand design. From the perspective of precision
301 medicines, combinatorial agonism might be precisely designed to reflect pharmacological profiles of individual
302 receptors such that diabetic patients at different disease stages could be prescribed with different unimolecular
303 agonists to take personalized therapeutic advantages.

304 **References**

305 1 Wootten, D., Miller, L. J., Koole, C., Christopoulos, A. & Sexton, P. M. Allostery and biased agonism at class B
306 G protein-coupled receptors. *Chem Rev* **117**, 111-138, doi:10.1021/acs.chemrev.6b00049 (2017).

307 2 Hollenstein, K. *et al.* Insights into the structure of class B GPCRs. *Trends Pharmacol Sci* **35**, 12-22,
308 doi:10.1016/j.tips.2013.11.001 (2014).

309 3 Stemmer, K., Finan, B., DiMarchi, R. D., Tschop, M. H. & Muller, T. D. Insights into incretin-based therapies for
310 treatment of diabetic dyslipidemia. *Adv Drug Deliv Rev* **159**, 34-53, doi:10.1016/j.addr.2020.05.008 (2020).

311 4 Qiao, A. *et al.* Structural basis of Gs and Gi recognition by the human glucagon receptor. *Science* **367**, 1346-1352,
312 doi:10.1126/science.aaz5346 (2020).

313 5 Yuliantie, E. *et al.* Pharmacological characterization of mono-, dual- and tri-peptidic agonists at GIP and GLP-1
314 receptors. *Biochem Pharmacol* **177**, 114001, doi:10.1016/j.bcp.2020.114001 (2020).

315 6 Darbalaei, S. *et al.* Evaluation of biased agonism mediated by dual agonists of the GLP-1 and glucagon receptors.
316 *Biochem Pharmacol* **180**, 114150, doi:10.1016/j.bcp.2020.114150 (2020).

317 7 Christensen, M., Vedtofte, L., Holst, J. J., Vilsbøll, T. & Knop, F. K. Glucose-dependent insulinotropic
318 polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans. *Diabetes*
319 **60**, 3103-3109, doi:10.2337/db11-0979 (2011).

320 8 Gault, V. A., Flatt, P. R. & O'Harte, F. P. M. Glucose-dependent insulinotropic polypeptide analogues and their
321 therapeutic potential for the treatment of obesity-diabetes. *Biochem Biophys Res Commun* **308**, 207-213,
322 doi:10.1016/S0006-291X(03)01361-5 (2003).

323 9 Campbell, J. E. & Drucker, D. J. Islet alpha cells and glucagon--critical regulators of energy homeostasis. *Nat
324 Rev Endocrinol* **11**, 329-338, doi:10.1038/nrendo.2015.51 (2015).

325 10 Brandt, S. J., Gotz, A., Tschop, M. H. & Muller, T. D. Gut hormone polygonists for the treatment of type 2
326 diabetes. *Peptides* **100**, 190-201, doi:10.1016/j.peptides.2017.12.021 (2018).

327 11 Frias, J. P. *et al.* The Sustained Effects of a Dual GIP/GLP-1 Receptor Agonist, NNC0090-2746, in Patients with
328 Type 2 Diabetes. *Cell Metab* **26**, 343-352 e342, doi:10.1016/j.cmet.2017.07.011 (2017).

329 12 Brandt, S. J., Muller, T. D., DiMarchi, R. D., Tschop, M. H. & Stemmer, K. Peptide-based multi-agonists: a new
330 paradigm in metabolic pharmacology. *J Intern Med* **284**, 581-602, doi:10.1111/joim.12837 (2018).

331 13 Yang, D. *et al.* G protein-coupled receptors: structure- and function-based drug discovery. *Signal Transduct
332 Target Ther* **6**, 7, doi:10.1038/s41392-020-00435-w (2021).

333 14 Finan, B. *et al.* A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. *Nat
334 Med* **21**, 27-36, doi:10.1038/nm.3761 (2015).

335 15 Frías, J. P. *et al.* Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. *N Engl J Med*,
336 doi:10.1056/NEJMoa2107519 (2021).

337 16 Frias, J. P. *et al.* Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with
338 type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. *Lancet* **392**,
339 2180-2193, doi:10.1016/S0140-6736(18)32260-8 (2018).

340 17 Alexiadou, K., Anyiam, O. & Tan, T. Cracking the combination: Gut hormones for the treatment of obesity and
341 diabetes. *J Neuroendocrinol* **31**, e12664, doi:10.1111/jne.12664 (2019).

342 18 Day, J. W. *et al.* A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. *Nat Chem Biol* **5**, 749-757,
343 doi:10.1038/nchembio.209 (2009).

344 19 Tschop, M. H. *et al.* Unimolecular Polypharmacy for Treatment of Diabetes and Obesity. *Cell Metab* **24**, 51-62,
345 doi:10.1016/j.cmet.2016.06.021 (2016).

346 20 Jall, S. *et al.* Monomeric GLP-1/GIP/glucagon triagonism corrects obesity, hepatosteatosis, and dyslipidemia in
347 female mice. *Mol Metab* **6**, 440-446, doi:10.1016/j.molmet.2017.02.002 (2017).

348 21 Zhao, F. *et al.* Structural insights into hormone recognition by the human glucose-dependent insulinotropic
349 polypeptide receptor. *eLife* **10**, e68719, doi:10.7554/eLife.68719 (2021).

350 22 Wootten, D., Simms, J., Miller, L. J., Christopoulos, A. & Sexton, P. M. Polar transmembrane interactions drive
351 formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. *Proc
352 Natl Acad Sci U S A* **110**, 5211-5216, doi:10.1073/pnas.1221585110 (2013).

353 23 Zhang, X. *et al.* Differential GLP-1R Binding and Activation by Peptide and Non-peptide Agonists. *Mol Cell* **80**,
354 485-500 e487, doi:10.1016/j.molcel.2020.09.020 (2020).

355 24 Chang, R. *et al.* Cryo-electron microscopy structure of the glucagon receptor with a dual-agonist peptide. *J Biol
356 Chem* **295**, 9313-9325, doi:10.1074/jbc.RA120.013793 (2020).

357 25 Lau, J. *et al.* Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. *J Med
358 Chem* **58**, 7370-7380, doi:10.1021/acs.jmedchem.5b00726 (2015).

359 26 Zhang, X. *et al.* Structure and dynamics of semaglutide and taspoglutide bound GLP-1R-G_s complexes. *Cell Rep.*
360 36, 109374, doi:10.1016/j.celrep.2021.109374 (2021).

361 27 Wu, F. *et al.* Full-length human GLP-1 receptor structure without orthosteric ligands. *Nat Commun* **11**, 1272,
362 doi:10.1038/s41467-020-14934-5 (2020).

363 28 Zhang, H. *et al.* Structure of the full-length glucagon class B G-protein-coupled receptor. *Nature* **546**, 259-264,
364 doi:10.1038/nature22363 (2017).

365 29 Zhang, Y. *et al.* Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. *Nature* **546**,
366 248-253, doi:10.1038/nature22394 (2017).

367 30 Liang, Y. L. *et al.* Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-G_s complex.
368 *Nature* **555**, 121-125, doi:10.1038/nature25773 (2018).

369 31 Zhao, L. H. *et al.* Structure and dynamics of the active human parathyroid hormone receptor-1. *Science* **364**,
370 148-153, doi:10.1126/science.aav7942 (2019).

371 32 Hilger, D. *et al.* Structural insights into differences in G protein activation by family A and family B GPCRs.
372 *Science* **369**, doi:10.1126/science.aba3373 (2020).

373 33 Sun, W. *et al.* A unique hormonal recognition feature of the human glucagon-like peptide-2 receptor. *Cell Res* **30**,
374 1098-1108, doi:10.1038/s41422-020-00442-0 (2020).

375 34 Zhou, F. *et al.* Structural basis for activation of the growth hormone-releasing hormone receptor. *Nat Commun* **11**,
376 5205, doi:10.1038/s41467-020-18945-0 (2020).

377 35 Willard, F. S. *et al.* Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. *JCI Insight* **5**,
378 doi:10.1172/jci.insight.140532 (2020).

379 36 Novikoff, A. *et al.* Spatiotemporal GLP-1 and GIP receptor signaling and trafficking/recycling dynamics induced
380 by selected receptor mono- and dual-agonists. *Mol Metab* **49**, 101181, doi:10.1016/j.molmet.2021.101181 (2021).

381 37 Pabreja, K., Mohd, M. A., Koole, C., Wootten, D. & Furness, S. G. Molecular mechanisms underlying
382 physiological and receptor pleiotropic effects mediated by GLP-1R activation. *Br J Pharmacol* **171**, 1114-1128,
383 doi:10.1111/bph.12313 (2014).

384 38 Coskun, T. *et al.* LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes
385 mellitus: From discovery to clinical proof of concept. *Mol Metab* **18**, 3-14, doi:10.1016/j.molmet.2018.09.009
386 (2018).

387 39 Hoare, S. R. Mechanisms of peptide and nonpeptide ligand binding to Class B G-protein-coupled receptors. *Drug
388 Discov Today* **10**, 417-427, doi:10.1016/S1359-6446(05)03370-2 (2005).

389 40 Zhao, L. H. *et al.* Differential Requirement of the Extracellular Domain in Activation of Class B G
390 Protein-coupled Receptors. *J Biol Chem* **291**, 15119-15130, doi:10.1074/jbc.M116.726620 (2016).

391 41 Siu, F. Y. *et al.* Structure of the human glucagon class B G-protein-coupled receptor. *Nature* **499**, 444-449,

392 doi:10.1038/nature12393 (2013).
 393 42 Song, G. *et al.* Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators.
 394 *Nature* **546**, 312-315, doi:10.1038/nature22378 (2017).
 395 43 Cong, Z. *et al.* Molecular insights into ago-allosteric modulation of the human glucagon-like peptide-1 receptor.
 396 *Nat Commun* **12**, 3763, doi:10.1038/s41467-021-24058-z (2021).
 397 44 Samms, R. J., Coghlan, M. P. & Sloop, K. W. How May GIP Enhance the Therapeutic Efficacy of GLP-1? *Trends Endocrinol Metab* **31**, 410-421, doi:10.1016/j.tem.2020.02.006 (2020).
 398 45 Tuttle, K. R. Breaking New Ground with Incretin Therapy in Diabetes. *N Engl J Med*,
 399 doi:10.1056/NEJMMe2109957 (2021).
 400

401 Methods

402 **Cell lines**

403 *Spodoptera frugiperda* 9 (Sf9) (Invitrogen) and High Five™ insect cells (Expression Systems) were cultured in ESF
404 921 serum-free medium (Expression Systems) at 27°C and 120 rpm. Human embryonic kidney 293 cells containing
405 SV40 large T-antigen (HEK293T) were cultured in DMEM (Gibco) supplemented with 10% (v/v) fetal bovine
406 serum (FBS, Gibco), 1 mM sodium pyruvate (Gibco) and 100 units/mL penicillin and 100 µg/mL streptomycin at
407 37°C in 5% CO₂. Chinese hamster ovary (CHO-K1) cells were cultured in F-12 (Gibco) containing 10% FBS, 100
408 units/mL penicillin and 100 µg/mL streptomycin at 37°C in 5% CO₂. For cAMP and receptor expression assays,
409 HEK293T cells were seeded into 6-well cell culture plates at a density of 7×10^5 cells per well. For whole-cell
410 binding assay, CHO-K1 cells were seeded into 96-well fibronectin-treated cell culture plates at a density of 3×10^4
411 cells per well. After overnight incubation, cells were transfected with GIPR, GLP-1R or GCGR construct using
412 Lipofectamine 2000 transfection reagent (Invitrogen). Following 24 h culturing, the transfected cells were ready for
413 use.

414 Construct

415 The human GIPR DNA (Genewiz) with one mutation (T345F) was cloned into the pFastBac vector (Invitrogen) with
 416 its native signal peptide replaced by the haemagglutinin (HA) signal peptide. A BRIL fusion protein was added at the
 417 N-terminal of the ECD with a TEV protease site and 2GSA linker between them. C-terminal 45 amino acids
 418 (Q422-C466) of the receptor were truncated. LgBiT was added at the end of helix 8 with a 15-amino acid (15AA)
 419 polypeptide linker in between, followed by a TEV protease cleavage site and an OMBP-MBP tag. A
 420 dominant-negative bovine $\text{G}\alpha_s$ (DNG α_s) construct with 9 mutations (S54N, G226A, E268A, N271K, K274D,
 421 R280K, T284D, I285T and A366S)^{58,59} was used to help stabilize the tirzepatide–GIPR– G_s complex. Meanwhile, a
 422 DNG α_s construct with 8 mutations (S54N, G226A, E268A, N271K, K274D, R280K, T284D and I285T) was used to
 423 help stabilize the peptide 20–GIPR– G_s complex^{34,59}. Rat $\text{G}\beta 1$ was cloned with a C-terminal SmBiT34 (peptide 86 or
 424 HiBiT, Promega) connected with a 15AA polypeptide linker. The modified rat $\text{G}\beta 1$ and bovine $\text{G}\gamma 2$ were both
 425 cloned into a pFastBac vector. The construct and various mutants of human GIPR were cloned into pcDNA3.1
 426 vector for cAMP accumulation and whole-cell binding assays.

427 The human GLP-1R was modified with its native signal sequence (M1-P23) replaced by the HA signal peptide
 428 to facilitate receptor expression. To obtain a GLP-1R-G_s complex with good homogeneity and stability, we used the

429 NanoBiT tethering strategy, in which the C terminus of GLP-1R was directly attached to LgBiT subunit followed by
430 a TEV protease cleavage site and a double MBP tag. Rat G β 1 was the same as the construct used in the GIPR
431 structure determination. The G α_s (DNG α_s with 9 mutations) used to stabilize the tirzepatide–GLP-1R–G $_s$ complex
432 was the same as that employed for the tirzepatide–GIPR–G $_s$ complex. A dominant-negative human G α_s (DNG α_s)
433 with 8 mutations (S54N, G226A, E268A, N271K, K274D, R280K, T284D and I285T) was generated as previously
434 described to limit G protein dissociation⁵⁹. The constructs were cloned into both pcDNA3.1 and pFastBac vectors
435 for functional assays in mammalian cells and protein expression in insect cells, respectively. Other constructs
436 including the full-length and various mutants of human GLP-1R were cloned into pcDNA3.1 vector for cAMP
437 accumulation and whole-cell binding assays.

438 The human GCGR gene was cloned into pFastBac1 vector with GP64 promoter at the N terminus to enhance
439 the protein yield. Forty-five residues (H433-F477) were truncated at the C terminus to improve the thermostability
440 and an affinity tag, HPC4 tag, was added to the C terminus (GP64-HA-GCGR-GSGS linker-HPC4). G α_s (DNG α_s
441 with 8 mutations) was modified as above to stabilize the interaction with $\beta\gamma$ subunits. The rat G β 1 and bovine G γ 2
442 were used in the structure determination.

443 Additionally, we used an engineered G $_s$ (mini-G $_s$) protein to stabilize the non-acylated tirzepatide (the
444 side-chain was removed at C20) bound GIPR or GLP-1R as described previously⁶⁰.

445 **Protein expression**

446 Baculoviruses containing the above complex constructs were prepared by the Bac-to-Bac system (Invitrogen). For
447 the tirzepatide–GIPR–G $_s$ and non-acylated tirzepatide–GIPR–mini-G $_s$ complexes, GIPR and DNG α_s or mini-G $_s$
448 heterotrimer were co-expressed in High FiveTM cells. Briefly, insect cells were grown in ESF 921 culture medium
449 (Expression Systems) to a density of 3.2×10^6 cells/mL. The cells were then infected with
450 BRIL-TEV-2GSA-GIPR(22-421)T345F-15AA-LgBiT-TEV-OMBP-MBP, DNG α_s or mini-G $_s$, G β 1-peptide 86 and
451 G γ 2, respectively, at a ratio of 1:4:4:4. For the peptide 20–GIPR–G $_s$ complex, GIPR and G $_s$ heterotrimer were
452 co-expressed in High FiveTM cells grown in ESF 921 culture medium (Expression Systems) to a density of 3.2×10^6
453 cells/mL. The cells were then infected with BRIL-TEV-2GSA-GIPR(22-421)T345F-15AA-LgBiT-TEV-OMBP-MBP,
454 DNG α_s , G β 1-peptide 86 and G γ 2, respectively, at a ratio of 1:3:3:3. After 48 h incubation at 27°C, the cells were collected by centrifugation and stored
455 at -80°C until use.

457 The GLP-1R-LgBiT-2MBP, DNG α_s or mini-G $_s$, G β 1-peptide 86 and G γ 2 were co-expressed at multiplicity of
458 infection (MOI) ratio of 1:1:1:1 by infecting Sf9 cells at a density of 3.0×10^6 cells/mL. Other operations are the
459 same as GIPR.

460 The GCGR construct, DNG α_s and G β 1 and G γ 2 were co-expressed in High FiveTM cells and infected with four
461 separate baculoviruses at a ratio of 4:1:1:1. Other operations are the same as GIPR.

462 **Nb35 expression and purification**

463 Nanobody-35 (Nb35) with a 6 \times his tag at the C-terminal was expressed in the periplasm of *E. coli* BL21 (DE3) cells.

464 Briefly, Nb35 target gene was transformed in the bacterium and amplified in TB culture medium with 100 μ g/mL
465 ampicillin, 2 mM MgCl₂, 0.1 % (w/v) glucose at 37°C, 180 rpm. When OD600 reached 0.7-1.2, 1 mM IPTG was
466 added to induce expression followed by overnight incubation at 28°C. The cell pellet was then collected under 4°C
467 and stored at -80°C. Nb35 was purified by size-exclusion chromatography (SEC) using a HiLoad 16/600 Superdex
468 75 column (GE Healthcare) with running buffer containing 20 mM HEPES, 100 mM NaCl, pH 7.4. Fractions of
469 Nb35 were concentrated to ~2 mg/mL and quickly frozen in the liquid nitrogen with 10% glycerol and stored in
470 -80°C.

471 **Complex formation and purification**

472 For the tirzepatide–GIPR–G_s complex, cell pellets were lysed in a buffer containing 20 mM HEPES, 100 mM NaCl,
473 pH 7.4, 10 mM MgCl₂, 1 mM MnCl₂ and 10% glycerol supplemented with protease inhibitor cocktail, EDTA-free
474 (TragetMol). Cell membranes were then collected by ultracentrifugation at 4°C, 90,000 g for 35 min. A buffer
475 consisting of 20 mM HEPES, 100 mM NaCl, pH 7.4, 10 mM MgCl₂, 1 mM MnCl₂ and 10% glycerol was used to
476 re-suspend the collected membranes. To assemble the GIPR–G_s complex, 15 μ M tirzepatide (GL Biochem) was
477 added to the preparation accompanied by 100 μ M TCEP, 25 mU/mL apyrase (Sigma-Aldrich), 20 μ g/mL Nb35 and
478 100 U salt active nuclease (Sigma-Aldrich) supplemented with protease inhibitor cocktail for 1.5 h incubation at
479 room temperature (RT). The membrane was then solubilized with 0.5% (w/v) lauryl maltose neopentylglycol
480 (LMNG, Anatrace) and 0.1% (w/v) cholesterol hemisuccinate (CHS, Anatrace) with additional 2 μ M tirzepatide for
481 3 h at 4°C. The supernatant was isolated by centrifugation at 90,000 g for 35 min and the solubilized complex was
482 incubated with amylose resin (NEB) for 2.5 h at 4°C. The resin was collected by centrifugation at 550 g and loaded
483 onto a gravity flow column. The resin in the column was first washed with 5 column volumes (CVs) of buffer
484 containing 20 mM HEPES, pH 7.4, 100 mM NaCl, 10% (v/v) glycerol, 5 mM MgCl₂, 1 mM MnCl₂, 25 μ M TCEP, 5
485 μ M tirzepatide, 0.1% (w/v) LMNG and 0.02% (w/v) CHS. After this, the resin was further washed with 25 CVs of
486 buffer containing 20 mM HEPES, pH 7.4, 100 mM NaCl, 10% (v/v) glycerol, 5 mM MgCl₂, 1 mM MnCl₂, 25 μ M
487 TCEP, 5 μ M tirzepatide, 0.03% (w/v) LMNG, 0.01% (w/v) glyco-diosgenin (GDN, Anatrace) and 0.008% (w/v)
488 CHS. The protein was then incubated with a buffer consisting of 20 mM HEPES, pH 7.4, 100 mM NaCl, 10% (v/v)
489 glycerol, 5 mM MgCl₂, 1 mM MnCl₂, 25 μ M TCEP, 50 μ M tirzepatide, 20 μ g/mL Nb35, 0.03% (w/v) LMNG, 0.01%
490 (w/v) GDN, 0.008% (w/v) CHS and 30 μ g/mL His-tagged TEV protease on the column overnight at 4°C. The flow
491 through was collected and concentrated to 500 μ L using a 100 kDa filter (Merck Millipore). SEC was performed by
492 loading the protein onto Superose 6 Increase 10/300GL (GE Healthcare) column with running buffer containing 20
493 mM HEPES, pH 7.4, 100 mM NaCl, 10 mM MgCl₂, 100 μ M TCEP, 5 μ M tirzepatide, 0.00075% (w/v) LMNG,
494 0.00025% (w/v) GDN, 0.0002% (w/v) CHS and 0.00025% digitonin (Anatrace). The tirzepatide–GIPR–G_s
495 complexes were collected and concentrated for cryo-EM analysis.

496 For the non-acylated tirzepatide–GIPR–mini-G_s complex, the operations of the purification were the same as
497 the tirzepatide–GIPR–G_s complex, except that the peptide was replaced by the non-acylated tirzepatide. The
498 complex samples were concentrated to 14-16 mg/mL for cryo-EM analysis.

499 For the tirzepatide–GLP-1R–G_s complex, cells were suspended in 20 mM HEPES, pH 7.4, 100 mM NaCl and
500 10% (v/v) glycerol in the presence of protease inhibitor cocktail. Complex was formed by adding 10 mM MgCl₂, 1
501 mM MnCl₂, 50 mU/mL apyrase, 30 μM tirzepatide, 100 μM TCEP and 10 μg/mL Nb35 to the cell lysate and
502 incubated at RT for 1.5 h. Cell membranes were solubilized by adding 0.5% (w/v) LMNG supplemented with 0.1%
503 (w/v) CHS at 4°C for 2 h, followed by centrifugation at 65,000 g for 30 min at 4°C. The supernatant was taken to
504 bind with amylose resin for 2 h at 4°C. After packing, the column was washed with buffer containing 20 mM
505 HEPES, pH 7.4, 100 mM NaCl, 10% (v/v) glycerol, 5 μM tirzepatide, 25 μM TCEP, 5 mM MgCl₂, 1 mM MnCl₂,
506 0.1% (w/v) LMNG and 0.02% (w/v) CHS first (10 CVs), and then with decreased concentrations of detergents, 0.03%
507 (w/v) LMNG, 0.01% (w/v) GDN and 0.006% (w/v) CHS (20 CVs). TEV enzyme was added to the resin and kept at
508 4°C overnight to remove the OMBP-MBP tag. The complex was eluted from the resin and concentrated to 500 μL
509 using a 100 kDa MWCO Amicon Ultra Centrifugal Filter. SEC was carried out by loading the protein sample to
510 Superdex 200 Increase 10/300GL (GE Healthcare) to obtain the monomer complex. The column was
511 pre-equilibrated with 20 mM HEPES, pH 7.4, 100 mM NaCl, 5 μM tirzepatide, 100 μM TCEP, 2 mM MgCl₂,
512 0.00075% (w/v) LMNG, 0.00025% (w/v) GDN, 0.00015% (w/v) CHS and 0.00025% digitonin.

513 For the non-acylated tirzepatide–GLP-1R–mini-G_s complex, the operations of the purification were the same as
514 the peptide 20–GLP-1R–G_s complex, except that the peptide was replaced by the non-acylated tirzepatide, and the
515 detergent of SEC running buffer was changed to 0.01% digitonin. The complex samples were concentrated to 16-18
516 mg/mL for cryo-EM analysis.

517 For the peptide 20–GIPR–G_s complex, the operations of the purification was the same as the
518 tirzepatide–GIPR–G_s complex, except that the peptide was replaced by the peptide 20. The complex samples were
519 concentrated to 5-6 mg/mL for cryo-EM analysis.

520 For the peptide 20–GLP-1R–G_s complex, cell pellets were thawed and lysed in a buffer containing 20 mM
521 HEPES, pH 7.5, 100 mM NaCl, 10% (v/v) glycerol, 10 mM MgCl₂, 1 mM MnCl₂ and 100 μM TCEP supplemented
522 with EDTA-free protease inhibitor cocktail by dounce homogenization. The complex formation was initiated by the
523 addition of 20 μM peptide 20, 10 μg/mL Nb35 and 25 mU/mL apyrase. After 1.5 h incubation at RT, the membrane
524 was solubilized in the buffer above supplemented with 0.5% (w/v) LMNG and 0.1% (w/v) CHS for 2 h at 4°C. The
525 supernatant was isolated by centrifugation at 65,000 g for 30 min and incubated with amylose resin for 2 h at 4°C.
526 The resin was then collected by centrifugation at 500 g for 10 min and washed in gravity flow column with 5 CVs of
527 buffer containing 20 mM HEPES, pH 7.5, 100 mM NaCl, 10% (v/v) glycerol, 5 mM MgCl₂, 1 mM MnCl₂, 25 μM
528 TCEP, 0.1% (w/v) LMNG, 0.02% (w/v) CHS and 5 μM peptide 20, followed by washing with 15 CVs of buffer
529 containing 20 mM HEPES, pH 7.5, 100 mM NaCl, 10% (v/v) glycerol, 5 mM MgCl₂, 1 mM MnCl₂, 25 μM TCEP,
530 0.03% (w/v) LMNG, 0.01% (w/v) GDN, 0.008% (w/v) CHS and 5 μM peptide 20. The protein was then incubated
531 overnight with TEV protease on the column to remove the C-terminal 2MBP-tag in the buffer above at 4°C. The
532 flow through was collected next day and concentrated with a 100 kDa molecular weight cut-off concentrator. The
533 concentrated product was loaded onto a Superdex 200 increase 10/300 GL column with SEC running buffer

534 containing 20 mM HEPES, pH 7.5, 100 mM NaCl, 10 mM MgCl₂, 100 μM TCEP, 2 μM peptide 20, 0.00075%
535 LMNG, 0.00025% GDN and 0.0002% (w/v) CHS. The fractions for monomeric complex were collected and
536 concentrated to 15-20 mg/mL for cryo-EM examination.

537 For the peptide 20–GCGR–G_s complex, cell pellets were resuspended in 20 mM HEPES, pH 7.4, 50 mM NaCl,
538 2 mM MgCl₂ with protease inhibitor cocktail, EDTA-free, 5 μM peptide 20, 10 μg/mL Nb35 and 25 mU/mL apyrase.
539 The suspension was incubated at RT for 2 h to promote the formation of complexes. Membranes were collected by
540 centrifugation (30,000 rpm) at 4°C for 30 min, and solubilized in 0.5% (w/v) LMNG, 0.1% (w/v) CHS, 10 μM
541 peptide 20, 2 mM MgCl₂, 100 U salt active nuclease and 25 mU/ml apyrase for 2.5 h at 4°C. Supernatant was
542 collected by centrifugation at 30,000 rpm for 30 min. The GCGR complex was incubated overnight with anti-HPC4
543 affinity resin in the presence of 2 mM CaCl₂, washed with 20 CVs of 20 mM HEPES, pH 7.4, 100 mM NaCl, 2 mM
544 MgCl₂, 2 mM CaCl₂, 5 μM peptide 20, 0.02% (w/v) LMNG and 0.004% (w/v) CHS, and eluted with 5 CVs of
545 buffer by adding 6 mM EDTA and 5 μM peptide 20. The complexes were concentrated by a molecular weight
546 cut-off concentrator and separated by SEC on a Superose 6 Increase 10/300GL with running buffer containing 20
547 mM HEPES, pH 7.4, 100 mM NaCl, 2 mM MgCl₂, 0.01% (w/v) LMNG, 0.002% (w/v) CHS and 5 μM peptide 20.
548 The complex samples were concentrated to 12-14 mg/mL for cryo-EM analysis.

549 **Structure determination**

550 To prepare high-quality human GIPR–G_s complexes, the receptor’s C terminal forty-five amino acids (Q422-C466)
551 were truncated, and the NanoBiT tethering strategy was applied^{21,33,34,61}. To enhance the receptor’s expression, a
552 BRIL fusion protein and an optimized maltose binding protein-maltose binding protein tag (OMBP-MBP)⁶² were
553 added to the N and C termini of the receptor to facilitate the receptor stability and expression (Fig. S2a). To solve the
554 tirzepatide–GIPR–G_s complex structure, we introduced one mutation (T345F) to stabilize complex assembly (Fig.
555 S3a). This mutation did not affect ligand binding and signaling properties as verified by both cAMP accumulation
556 and receptor binding assays (Fig. S2d).

557 The tirzepatide–GLP-1R–G_s complex was prepared using the same NanoBiT technique to achieve good
558 homogeneity and stability as described previously⁴³ (Fig. S2b). Large-scale purification was performed and the
559 complexes were collected by SEC for cryo-EM studies, with all components of the complex identified in
560 SDS-PAGE of the SEC peak (Fig. S3b). Activation of the modified GIPR and GLP-1R constructs by tirzepatide
561 were confirmed by cAMP accumulation and receptor binding assays, showing similar responses to those of the
562 wild-type (WT) receptors (Fig. S3e-h). Acylated and non-acylated tirzepatide displayed reduced potencies in
563 eliciting GIPR- or GLP-1R-mediated cAMP responses (Fig. S2f, g).

564 Identical GIPR and GLP-1R constructs were used for the complex structure with peptide 20. Large-scale
565 purification was conducted and the peptide 20–GIPR/GLP-1R–G_s complexes were collected by SEC for cryo-EM
566 studies, with all components of the complex identified in SDS-PAGE of the SEC peak (Fig. S4a, b). Activation of
567 the modified GIPR and GLP-1R constructs by peptide 20 were confirmed by cAMP accumulation assays, showing
568 similar responses to those of the WT (Fig. S4d, e). To obtain the peptide 20–GCGR–G_s complexes, 45 residues

569 (H433-F477) were truncated at the C terminus of the receptor followed by a HPC4 tag²⁴ (Fig. S2c). We used a
570 dominant negative form of Gα_s^{30,59} and nanobody 35 (Nb35) that binds across the Gα:Gβ interface⁶³ to enhance
571 protein stability. Purified complex was resolved as a monodisperse peak on SEC, with all components of the
572 complex identified in SDS-PAGE of the SEC peak (Fig. S4c). The modified GCGR construct had a lower potency
573 than that of the WT but did not significantly affect the binding affinity and cAMP signaling of GCG (Fig. S4f).

574 **Data acquisition and image processing**

575 The purified tirzepatide–GIPR–G_s–Nb35 complex at a concentration of 18-20 mg/mL was mixed with 100 μM
576 tirzepatide at 4°C and applied to glow-discharged holey carbon grids (Quantifoil R1.2/1.3, Au 300 mesh) that were
577 subsequently vitrified by plunging into liquid ethane using a Vitrobot Mark IV (ThermoFisher Scientific). A Titan
578 Krios equipped with a Gatan K3 Summit direct electron detector was used to acquire cryo-EM images. The microscope
579 was operated at 300 kV accelerating voltage, at a nominal magnification of 46,685× in counting mode,
580 corresponding to a pixel size of 1.071 Å. Totally, 5,434 movies were obtained with a defocus range of -1.2 to -2.2
581 μm. An accumulated dose of 80 electrons per Å² was fractionated into a movie stack of 36 frames.

582 The purified tirzepatide–GLP-1R–G_s–Nb35 complex (3 μL at about 20 mg/mL) was applied to a
583 glow-discharged holey carbon grid (Quantifoil R1.2/1.3) and blotted subsequently. Sample-coated grids were
584 vitrified by plunging into liquid ethane using a Vitrobot Mark IV (ThermoFisher Scientific). Automatic data
585 collection was performed on a Titan Krios equipped with a Gatan K3 Summit direct electron detector. The microscope
586 was operated at 300 kV accelerating voltage, at a nominal magnification of 46,685× in counting mode,
587 corresponding to a pixel size of 1.071 Å. A total of 9,309 movies were obtained with a defocus ranging from -1.2 to
588 -2.2 μm. An accumulated dose of 80 electrons per Å² was fractionated into a movie stack of 45 frames.

589 The purified peptide 20–GIPR–G_s–Nb35 complex at a concentration of 5-6 mg/mL was mixed with 100 μM
590 peptide 20 at 4°C and applied to glow-discharged holey carbon grids (Quantifoil R1.2/1.3, Au 300 mesh) that were
591 subsequently vitrified by plunging into liquid ethane using a Vitrobot Mark IV (ThermoFisher Scientific). A Titan
592 Krios equipped with a Gatan K3 Summit direct electron detector was used to acquire cryo-EM images. The microscope
593 was operated at 300 kV accelerating voltage, at a nominal magnification of 46,685× in counting mode,
594 corresponding to a pixel size of 1.071 Å. Totally, 3,948 movies were obtained with a defocus range of -1.2 to -2.2 μm.
595 An accumulated dose of 80 electrons per Å² was fractionated into a movie stack of 36 frames.

596 The purified peptide 20–GCGR–G_s–Nb35 complex at a concentration of 12-14 mg/mL was mixed with 100 μM
597 peptide 20 at 4°C and applied to glow-discharged holey carbon grids (Quantifoil R1.2/1.3, Au 300 mesh) that were
598 subsequently vitrified by plunging into liquid ethane using a Vitrobot Mark IV (ThermoFisher Scientific). A Titan
599 Krios equipped with a Gatan K3 Summit direct electron detector was used to acquire cryo-EM images. The microscope
600 was operated at 300 kV accelerating voltage, at a nominal magnification of 46,685× in counting mode,
601 corresponding to a pixel size of 1.071 Å. Totally, 4,620 movies were obtained with a defocus range of -1.2 to -2.2 μm.
602 An accumulated dose of 80 electrons per Å² was fractionated into a movie stack of 36 frames.

603 The purified peptide 20–GLP-1R–G_s–Nb35 complex (3.5 μL) was applied to glow-discharged holey carbon

604 grids (Quantifoil R1.2/1.3, 300 mesh), and subsequently vitrified using a Vitrobot Mark IV (ThermoFisher Scientific)
605 set at 100% humidity and 4°C. Cryo-EM images were collected on a Titan Krios microscope (FEI) equipped with
606 Gatan energy filter and K3 direct electron detector. The microscope was operated at 300 kV accelerating voltage and
607 a calibrated magnification of 46,685 \times in counting mode, corresponding to a pixel size of 1.071 Å. The total exposure
608 time was set to 7.2 s with intermediate frames recorded every 0.2 s, resulting in an accumulated dose of 80 electrons
609 per Å² with a defocus range of -1.2 to -2.2 μm. Totally, 4,778 images were collected and used for data processing.

610 The purified non-acylated tirzepatide–GIPR–mini-G_s–Nb35 complex at a concentration of 14–16 mg/mL was
611 mixed with 100 μM non-acylated tirzepatide at 4°C and applied to glow-discharged holey carbon grids (Quantifoil
612 R1.2/1.3, Au 300 mesh) that were subsequently vitrified by plunging into liquid ethane using a Vitrobot Mark IV
613 (ThermoFisher Scientific). A Titan Krios equipped with a Gatan K3 Summit direct electron detector was used to
614 acquire cryo-EM images. The microscope was operated at 300 kV accelerating voltage, at a nominal magnification
615 of 46,685 \times in counting mode, corresponding to a pixel size of 1.071 Å. Totally, 8,159 movies were obtained with a
616 defocus range of -1.2 to -2.2 μm. An accumulated dose of 80 electrons per Å² was fractionated into a movie stack of
617 36 frames.

618 The purified non-acylated tirzepatide–GLP-1R–mini-G_s–Nb35 complex (3.5 μL) was applied to
619 glow-discharged holey carbon grids (Quantifoil R1.2/1.3, 300 mesh), and subsequently vitrified using a Vitrobot
620 Mark IV (ThermoFisher Scientific) set at 100% humidity and 4°C. Cryo-EM images were collected on a Titan Krios
621 microscope (FEI) equipped with Gatan energy filter and K3 direct electron detector. The microscope was operated at
622 300 kV accelerating voltage and a calibrated magnification of 46,685 \times in counting mode, corresponding to a pixel
623 size of 1.071 Å. The total exposure time was set to 7.2 s with intermediate frames recorded every 0.2 s, resulting in
624 an accumulated dose of 80 electrons per Å² with a defocus range of -1.2 to -2.2 μm. Totally, 4,778 images were
625 collected and used for data processing.

626 Dose-fractionated image stacks were subjected to beam-induced motion correction using MotionCor2.1⁶⁴. A
627 sum of all frames, filtered according to the exposure dose, in each image stack was used for further processing.
628 Contrast transfer function parameters for each micrograph were determined by Gctf v1.06⁴⁷. Automated particle
629 selection and data processing were performed using RELION-3.0 beta2⁴⁸.

630 For the dataset of the tirzepatide–GIPR–G_s–Nb35 complex, automated particle selection yielded 4,260,187
631 particles, which were subjected to reference-free 2D classification, producing 1,771,599 particles with well-defined
632 averages. This subset of particle projections was subjected to a round of 3D classification resulting in one
633 well-defined subset with 870,227 projections. Further 3D classification focusing the alignment on the whole
634 complex produced one high-quality subset accounting for 511,557 particles. These particles were subsequently
635 subjected to CTF refinement and Bayesian polishing, which generated a map with an indicated global resolution of
636 3.4 Å.

637 For the dataset of the tirzepatide–GLP-1R–G_s–Nb35 complex, automated particle selection yielded 4,213,140
638 particles, which were subjected to reference-free 2D classification, producing 668,880 particles with well-defined

639 averages. This subset of particle projections was subjected to a round of 3D classification resulting in one
640 well-defined subset with 296,989 projections. Further 3D classification focusing the alignment on the whole
641 complex produced one high-quality subset accounting for 125,391 particles. These particles were subsequently
642 subjected to CTF refinement and Bayesian polishing, which generated a map with an indicated global resolution of
643 3.4 Å.

644 For the dataset of the peptide 20–GIPR–G_s–Nb35 complex, automated particle selection yielded 5,322,921
645 particles. The particles were extracted on a binned dataset with a pixel size of 2.142 Å and were subjected to
646 reference-free 2D classification, producing 4,334,371 particles with well-defined averages. This subset of particle
647 projections was subjected to a round of 3D classification resulting in one well-defined subset with 1,876,783
648 projections. Further 3D classifications focusing the alignment on the whole complex and the receptor produced one
649 high-quality subset accounting for 255,256 particles. These particles were subsequently subjected to CTF refinement
650 and Bayesian polishing, which generated a map with an indicated global resolution of 3.1 Å.

651 For the dataset of the peptide 20–GLP-1R–G_s–Nb35 complex, automated particle selection yielded 4,124,536
652 particles, which were subjected to reference-free 2D classification, producing 2,354,838 particles with well-defined
653 averages. This subset of particle projections was subjected to a round of 3D classification resulting in one
654 well-defined subset with 1,523,580 projections. Further 3D classifications focusing the alignment on the whole
655 complex and the receptor produced one high-quality subset accounting for 241,786 particles. These particles were
656 subsequently subjected to CTF refinement and Bayesian polishing, which generated a map with an indicated global
657 resolution of 3.0 Å.

658 For the dataset of the peptide 20–GCGR–G_s–Nb35 complex, automated particle selection yielded 3,931,945
659 particles, which were subjected to reference-free 2D classification, producing 917,065 particles with well-defined
660 averages. This subset of particle projections was subjected to a round of 3D classification resulting in one
661 well-defined subset with 578,668 projections. Further 3D classification focusing the alignment on the whole
662 complex produced one high-quality subset accounting for 383,657 particles. These particles were subsequently
663 subjected to CTF refinement and Bayesian polishing, which generated a map with an indicated global resolution of
664 3.5 Å.

665 For the dataset of the non-acylated tirzepatide–GIPR–mini-G_s–Nb35 complex, automated particle selection
666 yielded 7,204,521 particles, which were subjected to reference-free 2D classification, producing 2,718,249 particles
667 with well-defined averages. This subset of particle projections was subjected to a round of 3D classification resulting
668 in one well-defined subset with 2,102,580 projections. Further 3D classification focusing the alignment on the whole
669 complex produced one high-quality subset accounting for 1,251,553 particles. These particles were subsequently
670 subjected to CTF refinement and Bayesian polishing, which generated a map with an indicated global resolution of
671 3.2 Å.

672 For the dataset of the non-acylated tirzepatide–GLP-1R–mini-G_s–Nb35 complex, automated particle selection
673 yielded 5,985,110 particles, which were subjected to reference-free 2D classification, producing 1,723,671 particles

674 with well-defined averages. This subset of particle projections was subjected to a round of 3D classification resulting
675 in one well-defined subset with 906,824 projections. Further 3D classification focusing the alignment on the whole
676 complex produced one high-quality subset accounting for 452,921 particles. These particles were subsequently
677 subjected to CTF refinement and Bayesian polishing, which generated a map with an indicated global resolution of
678 3.0 Å.

679 **Model building and refinement**

680 The models of the tirzepatide–GIPR–G_s complex and peptide 20–GIPR–G_s complex were built using the cryo-EM
681 structure of the GIP–GIPR–G_s complex (PDB code: 7DTY)²¹ as the starting point. The models of the
682 tirzepatide–GLP-1R–G_s complex and peptide 20–GLP-1R–G_s complex were built using the cryo-EM structure of the
683 GLP-1–GLP-1R–G_s complex (PDB code: 6X18)²³ as the starting point. The model of the peptide 20–GCGR–G_s
684 complex was built using the cryo-EM structure of the GCG–GCGR–G_s complex (PDB code: 6LMK)⁴ as the starting
685 point. The models were docked into the EM density maps using Chimera⁵¹, followed by iterative manual adjustment
686 and rebuilding in COOT⁴⁹. Real space refinement was performed using Phenix⁵⁰. The model statistics were validated
687 with MolProbity⁶⁵. The final refinement statistics are provided in Table S1.

688 **cAMP accumulation assay**

689 For GIPR, GLP-1R and GCGR, unimolecular agonist stimulated cAMP accumulation was measured by a LANCE
690 Ultra cAMP kit (PerkinElmer). After 24 h culture, the transfected cells were seeded into 384-well microtiter plates at
691 a density of 3,000 cells per well in HBSS supplemented with 5 mM HEPES, 0.1% (w/v) bovine serum albumin
692 (BSA) and 0.5 mM 3-isobutyl-1- methylxanthine. The cells were stimulated with different concentrations of
693 tirzepatide or peptide 20 for 40 min at RT. Eu-cAMP tracer and ULightTM-anti-cAMP were then diluted by cAMP
694 detection buffer and added to the plates separately to terminate the reaction. Plates were incubated at RT for 1 h and
695 the fluorescence intensity measured at 620 nm and 650 nm by an EnVision multilabel plate reader (PerkinElmer).

696 **Whole-cell binding assay**

697 For GIPR, CHO-K1 cells were cultured in F-12 medium with 10% FBS and seeded at a density of 30,000 cells/well
698 in Isoplate-96 plates (PerkinElmer). The wild-type (WT) or mutant GIPR was transiently transfected using
699 Lipofectamine 2000 transfection reagent as previous described²¹. For homogeneous binding, cells were incubated in
700 binding buffer with a constant concentration of ¹²⁵I-GIP (30 pM, PerkinElmer) and increasing concentrations of
701 unlabeled tirzepatide or peptide 20 (3.57 pM to 1 μM) at RT for 3 h. Following incubation, cells were washed three
702 times with ice-cold PBS and lysed by addition of 50 μL lysis buffer (PBS supplemented with 20 mM Tris-HCl, 1%
703 Triton X-100, pH 7.4). Fifty μL of scintillation cocktail (OptiPhase SuperMix, PerkinElmer) were added and the
704 plates were subsequently counted for radioactivity (counts per minute, CPM) in a MicroBeta² microplate counter
705 (PerkinElmer).

706 For GLP-1R and GCGR, CHO-K1 cells (3×10^4 per well) were seeded into Isoplate-96 plates and incubated
707 for 24 h at 37°C in 5% CO₂. They were then washed twice using F-12 with 0.1% BSA, 33 mM HEPES, and
708 incubated for 2 h at 37°C. The medium was removed and ¹²⁵I-GLP-1(7-36)NH₂ (60 pM) or ¹²⁵I-GCG (40 pM)

709 (PerkinElmer) and increasing concentrations unlabeled tirzepatide or peptide 20 were added for overnight incubation
710 at 4°C. Cells were washed three times with ice-cold PBS and lysed in PBS with 1% Triton X-100, 20 mM Tris-HCl.
711 After addition of scintillation cocktail (PerkinElmer), radioactivity (CPM) was counted on a MicroBeta² microplate
712 counter (PerkinElmer). Data were normalized to the WT response and analyzed using three-parameter logistic
713 equation.

714 **Receptor expression**

715 Cell surface expression of GIPR, GLP-1R and GCGR were determined by flow cytometry 24 h post-transfection in
716 HEK293T cells. Briefly, approximately 2×10^5 cells were blocked with PBS containing 5% BSA (w/v) at RT for 15
717 min. After that, cells expressing GIPR and GLP-1R were incubated with 1:300 anti-Flag primary antibody (diluted
718 with PBS containing 5% BSA, Sigma), and those expressing GCGR were incubated with 1:50 anti-GCGR antibody
719 (diluted with PBS containing 5% BSA, Abcam) at RT for 1 h. The cells were then washed three times with PBS
720 containing 1% BSA (w/v) followed by 1 h incubation with 1:1,000 anti-mouse Alexa Fluor 488 conjugated
721 secondary antibody (diluted with PBS containing 5% BSA, Invitrogen) at RT in the dark. After washing three times,
722 cells were resuspended in 200 μ L PBS containing 1% BSA for detection by NovoCyte (Agilent) utilizing laser
723 excitation and emission wavelengths of 488 nm and 530 nm, respectively. For each sample, 20,000 cellular events
724 were collected, and the total fluorescence intensity of positive expression cell population was calculated. Data were
725 normalized to the WT receptor.

726 **Molecular dynamics simulation**

727 Molecular dynamics (MD) simulation was performed by Gromacs 2020.1⁵². The peptide-receptor- complexes were
728 prepared by the Protein Preparation Wizard (Schrodinger 2017-4) with G protein and Nb35 nanobody removed. The
729 receptors were capped with acetyl and methylamide, and the titratable residues were left in their dominant state at
730 pH 7.0. The complexes were embedded in a bilayer composed of 195~200 POPC lipids and solvated with 0.15 M
731 NaCl in explicitly TIP3P waters using CHARMM-GUI Membrane Builder v3.2.2⁵⁴. The CHARMM36-CAMP force
732 field⁵⁵ was adopted for protein, peptides, lipids and salt ions. The 16-carbon acyl chain (palmitoyl; 16:0) covalently
733 attached to the side-chain amine of Lys10 in peptide 20 through a γ -carboxylate spacer and the γ Glu-2 \times OEG linker,
734 and C18 fatty diacid moiety that was acylated on Lys26 in tirzepatide were modelled with the CHARMM CGenFF
735 small-molecule force field, program version 1.0.0. The Particle Mesh Ewald (PME) method was used to treat all
736 electrostatic interactions beyond a cut-off of 10 Å and the bonds involving hydrogen atoms were constrained using
737 LINCS algorithm⁵⁶. The complex system was first relaxed using the steepest descent energy minimization, followed
738 by slow heating of the system to 310 K with restraints. The restraints were reduced gradually over 50 ns. Finally,
739 a restraint-free production run was carried out for each simulation, with a time step of 2 fs in the NPT ensemble at 310
740 K and 1 bar using the Nose-Hoover thermostat and the semi-isotropic Parrinello-Rahman barostat⁵⁷, respectively.
741 The buried interface areas were calculated with FreeSASA⁵³ using the Sharke-Rupley algorithm with a probe radius
742 of 1.2 Å.

743 **Statistical analysis**

744 All functional data were presented as means \pm standard error of the mean (S.E.M.). Statistical analysis was
745 performed using GraphPad Prism 8 (GraphPad Software). Concentration-response curves were evaluated with a
746 three-parameter logistic equation. The significance was determined with either two-tailed Student's *t*-test or one-way
747 ANOVA. Significant difference is accepted at $P < 0.05$.

748 **Data availability**

749 The atomic coordinates and the electron microscopy maps have been deposited in the Protein Data Bank (PDB)
750 under accession codes: xxx and Electron Microscopy Data Bank (EMDB) accession codes: xxx, respectively. All
751 relevant data are available from the authors and/or included in the manuscript or supplemental data.

752 **References**

753 45 Tuttle, K. R. Breaking New Ground with Incretin Therapy in Diabetes. *N Engl J Med*,
754 doi:10.1056/NEJMMe2109957 (2021).

755 46 Ma, S. *et al.* Molecular Basis for Hormone Recognition and Activation of Corticotropin-Releasing Factor
756 Receptors. *Mol Cell* **77**, 669-680 e664, doi:10.1016/j.molcel.2020.01.013 (2020).

757 47 Zhang, K. Gctf: Real-time CTF determination and correction. *J Struct Biol* **193**, 1-12,
758 doi:10.1016/j.jsb.2015.11.003 (2016).

759 48 Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. *J Struct
760 Biol* **180**, 519-530, doi:10.1016/j.jsb.2012.09.006 (2012).

761 49 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta Crystallogr D Biol Crystallogr*
762 **60**, 2126-2132, doi:10.1107/S0907444904019158 (2004).

763 50 Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta
764 Crystallogr D Biol Crystallogr* **66**, 213-221, doi:10.1107/S0907444909052925 (2010).

765 51 Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput
766 Chem* **25**, 1605-1612, doi:10.1002/jcc.20084 (2004).

767 52 Abraham, M. J. *et al.* GROMACS: High performance molecular simulations through multi-level parallelism from
768 laptops to supercomputers. *SoftwareX* **1-2**, 19-25, doi:10.1016/j.softx.2015.06.001 (2015).

769 53 Mitternacht, S. FreeSASA: An open source C library for solvent accessible surface area calculations. *F1000Res* **5**,
770 189, doi:10.12688/f1000research.7931.1 (2016).

771 54 Wu, E. L. *et al.* CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. *J Comput
772 Chem* **35**, 1997-2004, doi:10.1002/jcc.23702 (2014).

773 55 Guvench, O. *et al.* CHARMM additive all-atom force field for carbohydrate derivatives and its utility in
774 polysaccharide and carbohydrate-protein modeling. *J Chem Theory Comput* **7**, 3162-3180,
775 doi:10.1021/ct200328p (2011).

776 56 Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. *J Chem Theory Comput* **4**,
777 116-122, doi:10.1021/ct00200b (2008).

778 57 Aoki, K. M. & Yonezawa, F. Constant-pressure molecular-dynamics simulations of the crystal-smectic transition
779 in systems of soft parallel spherocylinders. *Phys Rev A* **46**, 6541-6549, doi:10.1103/physreva.46.6541 (1992).

780 58 Dong, M. *et al.* Structure and dynamics of the active Gs-coupled human secretin receptor. *Nat Commun* **11**, 4137,
781 doi:10.1038/s41467-020-17791-4 (2020).

782 59 Liang, Y. L. *et al.* Dominant Negative G Proteins Enhance Formation and Purification of Agonist-GPCR-G
783 Protein Complexes for Structure Determination. *ACS Pharmacol Transl Sci* **1**, 12-20,
784 doi:10.1021/acspctsci.8b00017 (2018).

785 60 Zhou, F. *et al.* Molecular basis of ligand recognition and activation of human V2 vasopressin receptor. *Cell Res*,

786 doi:10.1038/s41422-021-00480-2 (2021).

787 61 Duan, J. *et al.* Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT
788 tethering strategy. *Nat Commun* **11**, 4121, doi:10.1038/s41467-020-17933-8 (2020).

789 62 Kang, Y. *et al.* Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. *Nature* **523**, 561-567,
790 doi:10.1038/nature14656 (2015).

791 63 Rasmussen, S. G. *et al.* Crystal structure of the beta2 adrenergic receptor-Gs protein complex. *Nature* **477**,
792 549-555, doi:10.1038/nature10361 (2011).

793 64 Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron
794 microscopy. *Nat Methods* **14**, 331-332, doi:10.1038/nmeth.4193 (2017).

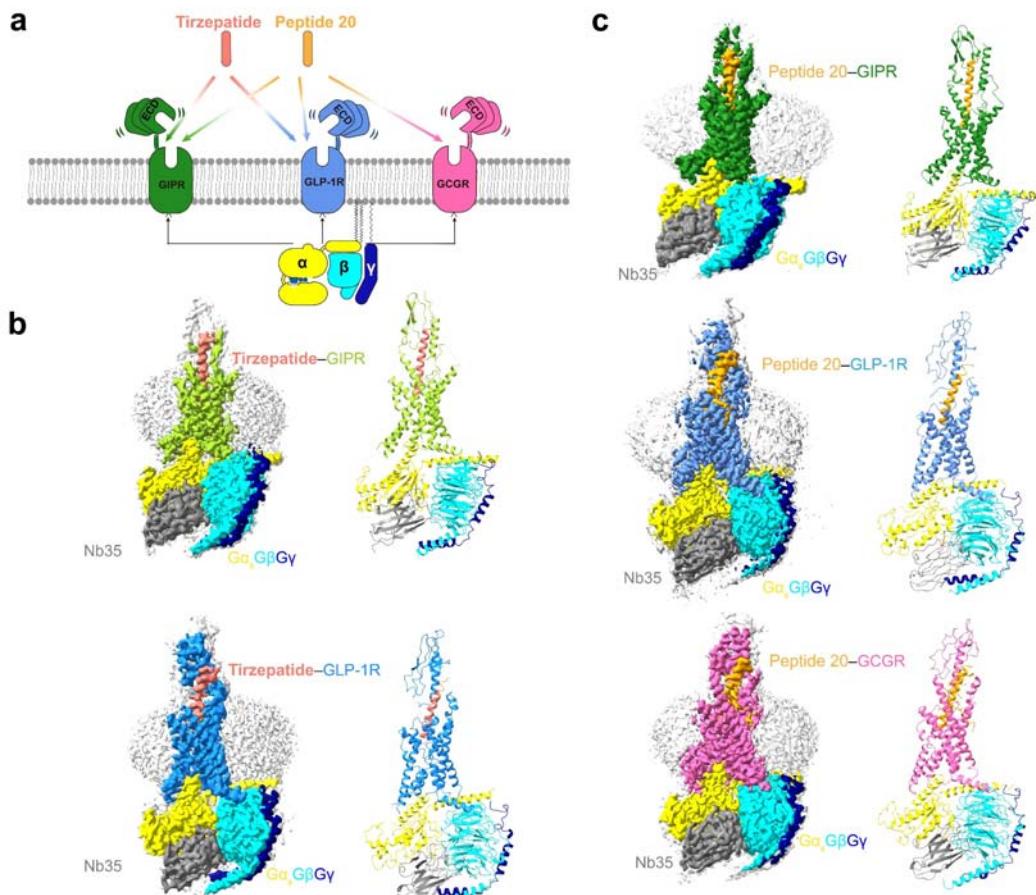
795 65 Chen, V. B. *et al.* MolProbity: all-atom structure validation for macromolecular crystallography. *Acta Crystallogr
796 D Biol Crystallogr* **66**, 12-21, doi:10.1107/S0907444909042073 (2010).

797 66 Yu, W., He, X., Vanommeslaeghe, K. & MacKerell, A. D., Jr. Extension of the CHARMM General Force Field to
798 sulfonyl-containing compounds and its utility in biomolecular simulations. *J Comput Chem* **33**, 2451-2468,
799 doi:10.1002/jcc.23067 (2012).

800 **Acknowledgements**

801 We are grateful to Drs. Fan Wu and Fulai Zhou for technical assistance and to Drs. Raymond C. Stevens, Radostin
802 Danev, Denise Wootten and Patrick M. Sexton for valuable interactions. This work was partially supported by
803 National Natural Science Foundation of China 81872915 (M.-W.W.), 82073904 (M.-W.W.), 32071203 (L.H.Z.),
804 81922071 (Y.Z.), 81773792 (D.Y.), 81973373 (D.Y.) and 21704064 (Q.Z.); National Science and Technology
805 Major Project of China – Key New Drug Creation and Manufacturing Program 2018ZX09735-001 (M.-W.W.) and
806 2018ZX09711002-002-005 (D.Y.); the National Key Basic Research Program of China 2018YFA0507000
807 (M.-W.W.) and 2019YFA0508800 (Y.Z.); Ministry of Science and Technology of China 2018YFA0507002
808 (H.E.X.); Shanghai Municipal Science and Technology Major Project 2019SHZDZX02 (H.E.X.); the Strategic
809 Priority Research Program of Chinese Academy of Sciences XDB37030103 (H.E.X.); Novo Nordisk-CAS Research
810 Fund grant NNCAS-2017-1-CC (D.Y.); Zhejiang Province Science Fund for Distinguished Young Scholars
811 LR19H310001 (Y.Z.); Fundamental Research Funds for Central Universities 2019XZZX001-01-06 (Y.Z.); Novo
812 Shanghai Science and Technology Development Funds 18ZR1447800 (L.H.Z.) and 18431907100 (M.-W.W.); The
813 Young Innovator Association of CAS 2018325 (L.H.Z.) and SA-SIBS Scholarship Program (L.H.Z. and D.Y.). The
814 cryo-EM data were collected at Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica,
815 Chinese Academy of Sciences.

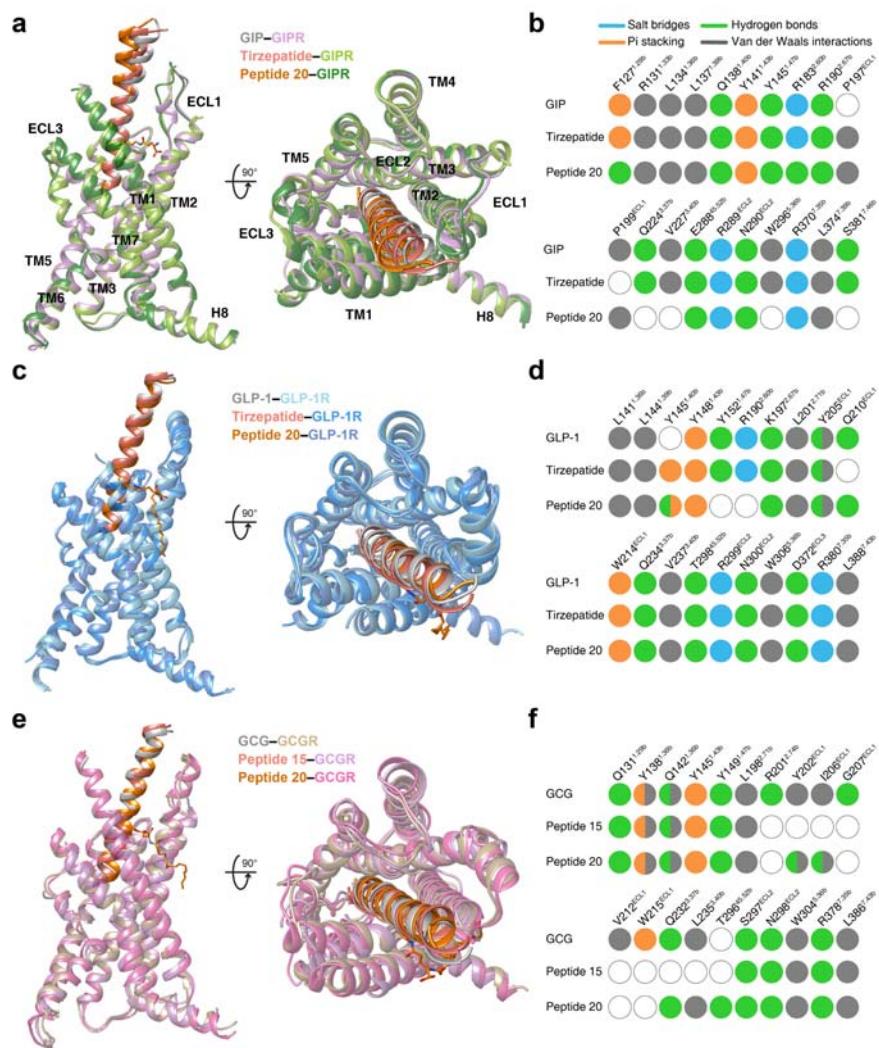
816 **Author contributions**


817 F.H.Z., Z.T.C., K.N.H. and C.Z. designed expression constructs, purified the receptor complexes, screened the
818 specimen, prepared the final samples for negative staining, collected cryo-EM data and participated in manuscript
819 preparation. X.Y.Z., A.Y.L. and T.X. conducted map calculation and participated in figure preparation; Q.Q.M.,

820 M.W., L.N.C. and L.H.Z. built the models of the complexes and carried out structural analyses; Q.T.Z. conducted
821 MD simulations, comparative structural analysis and figure preparation; A.T.D. and Y.C. performed ligand binding
822 and signaling experiments under the supervision of D.H.Y.; R.L.C. and P.Y.X. participated in method development;
823 Y.Z. and B.W. assisted in structural studies on GLP-1R and GCGR; H.E.X. and M.-W.W. initiated the project;
824 Q.T.Z., L.H.Z., H.E.X. and M.-W.W. supervised the studies, analyzed the data and wrote the manuscript with inputs
825 from all co-authors.

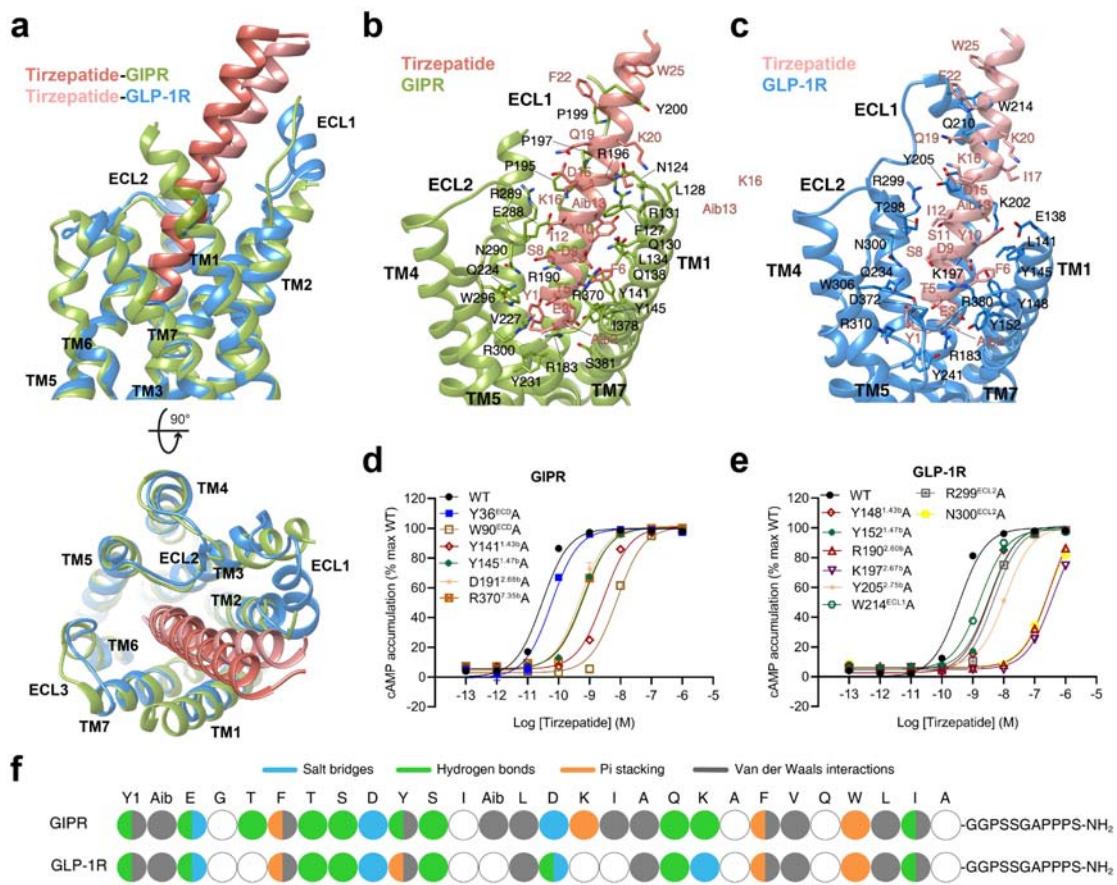
826 **Competing interests** The authors declare no competing interests.

827 **Correspondence and requests for materials** should be addressed to D.H.Y., L.H.Z.; H.E.X. or M.-W.W.

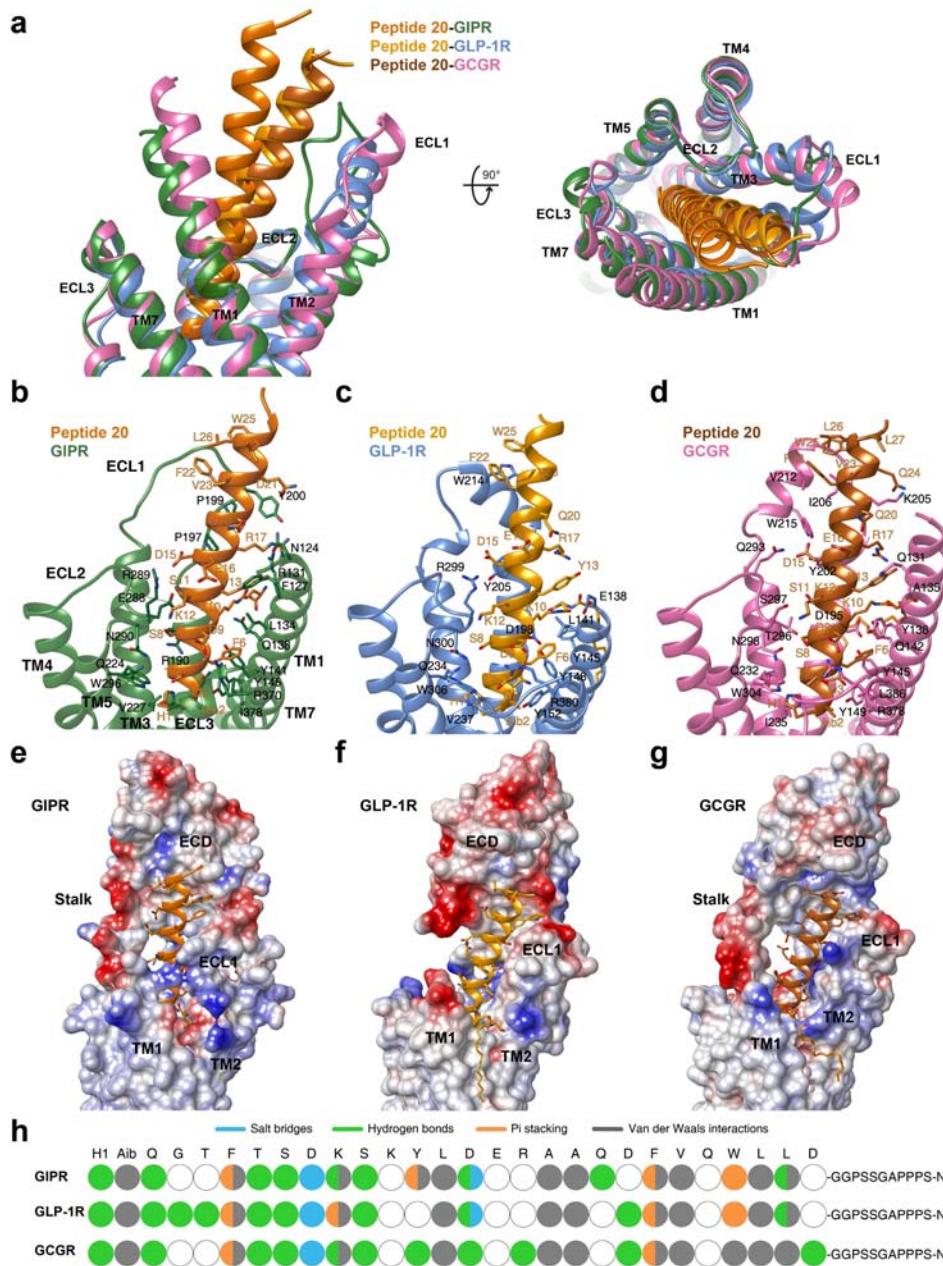

828 **Figures**

829

830 **Fig. 1 | Cryo-EM structures of tirzepatide and peptide 20-bound GIPR, GLP-1R and GCGR in complex with**
831 **G_s.** **a**, Unimolecular peptides tirzepatide and peptide 20 possess distinct combinatorial agonism at GIPR, GLP-1R and
832 GCGR. **b**, Cryo-EM maps (left) and structural models (right) of tirzepatide-bound GIPR (top) and GLP-1R (bottom)
833 in complex with G_s. The sharpened cryo-EM density map at the 0.243 threshold shown as light gray surface indicates
834 a micelle diameter of 10 nm. The colored cryo-EM density map is shown at the 0.424 threshold. The tirzepatide is
835 shown in salmon, GIPR in yellow green, GLP-1R in dodger blue, G α _s in yellow, G β subunit in cyan, G γ subunit in
836 navy blue and Nb35 in gray. **c**, Cryo-EM maps (left) and structural models (right) of peptide 20-bound GIPR (top),
837 GLP-1R (middle) and GCGR (bottom) in complex with G_s. The sharpened cryo-EM density map at the 0.228
838 threshold shown as light gray surface indicates a micelle diameter of 11 nm. The colored cryo-EM density map is
839 shown at the 0.576 threshold. The peptide 20 is shown in orange, GIPR in forest green, GLP-1R in blue, GCGR in hot
840 pink, G α _s in yellow, G β subunit in cyan, G γ subunit in navy blue and Nb35 in gray.


841

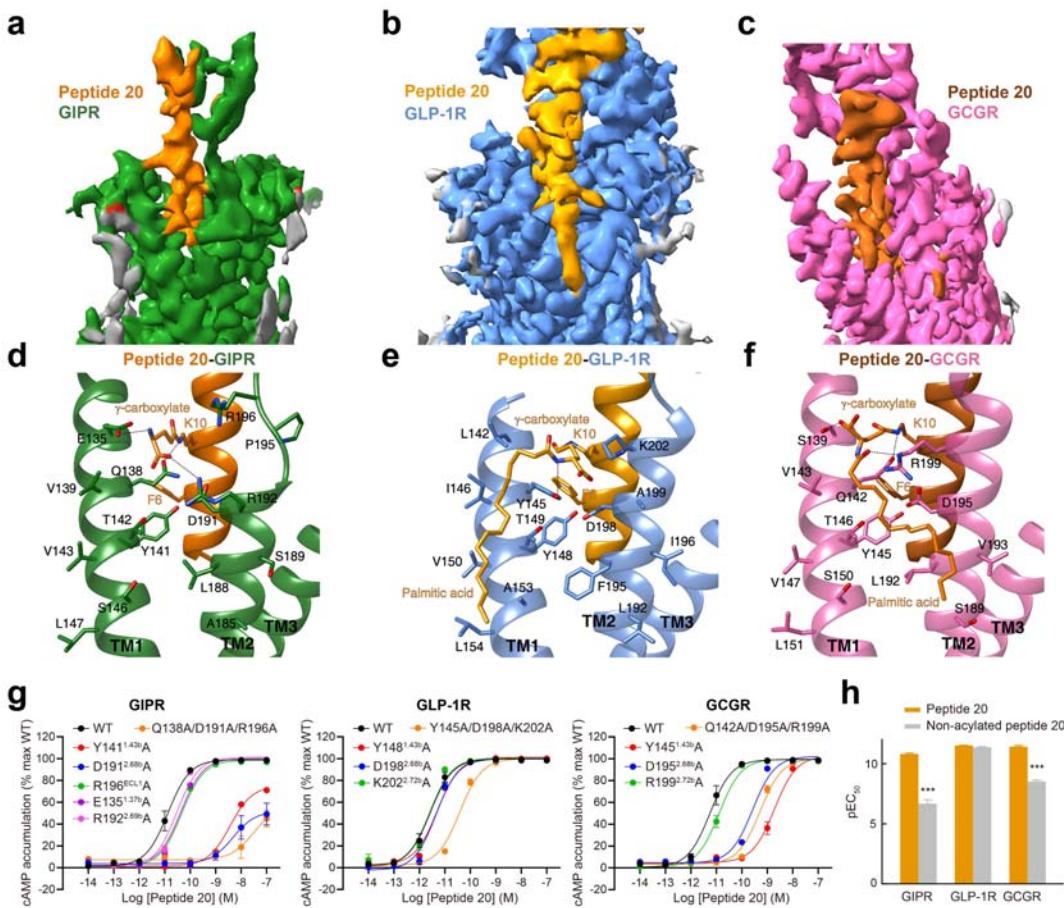
842


843 **Fig. 2 | Structural comparison of GIPR, GLP-1R and GCGR bound by mono-, dual and triple agonists.** **a,**
844 Structural comparison of GIP-GIPR-G_s²¹, tirzepatide-GIPR-G_s and peptide 20-GIPR-G_s. Receptor ECD and G
845 protein are omitted for clarity. **b**, Comparison of residue interactions employed by GIPR to recognize GIP,
846 tirzepatide and peptide 20, described by fingerprint strings encoding different interaction types of the surrounding
847 residues in each peptide. Color codes are listed on the top panel. Residues that show no interaction with ligands are
848 displayed as white circles. **c**, Structural comparison of GLP-1-GLP-1R-G_s²³, tirzepatide-GLP-1R-G_s and peptide
849 20-GLP-1R-G_s. Receptor ECD and G protein are omitted for clarity. **d**, Comparison of residue interactions that
850 GLP-1R employed to recognize GLP-1, tirzepatide and peptide 20, described by fingerprint strings encoding
851 different interaction types of the surrounding residues in each peptide. **e**, Structural comparison of
852 GCG-GCGR-G_s⁴, peptide 15-GCGR-G_s²⁴ and peptide 20-GCGR-G_s. Receptor ECD and G protein are omitted for
853 clarity. **f**, Comparison of residue interactions that GCGR employed to recognize GCG, peptide 15 and peptide 20,
854 described by fingerprint strings encoding different interaction types of the surrounding residues in each peptide.

855

856

857 **Fig. 3 | Molecular recognition of tirzepatide by GIPR and GLP-1R.** **a**, Structural comparison of
 858 tirzepatide-GIPR-G_s and tirzepatide-GLP-1R-G_s. Receptor ECD and G protein are omitted for clarity. **b**,
 859 Interactions between tirzepatide (salmon) and the TMD of GIPR (yellow green). Residues involved in interactions
 860 are shown as sticks. **c**, Interactions between tirzepatide (light salmon) and the TMD of GLP-1R (dodger blue).
 861 Residues involved in interactions are shown as sticks. **d-e**, Effects of receptor mutations on tirzepatide-induced
 862 cAMP accumulation. Data shown are means \pm S.E.M. of at least three independent experiments performed in
 863 quadruplicate. **f**, The peptide recognition modes are described by fingerprint strings encoding different interaction
 864 types of the surrounding residues in each receptor. Residues that show no interaction with receptors are displayed as
 865 white circles. Color codes are listed on the top panel. WT, wild-type.



867

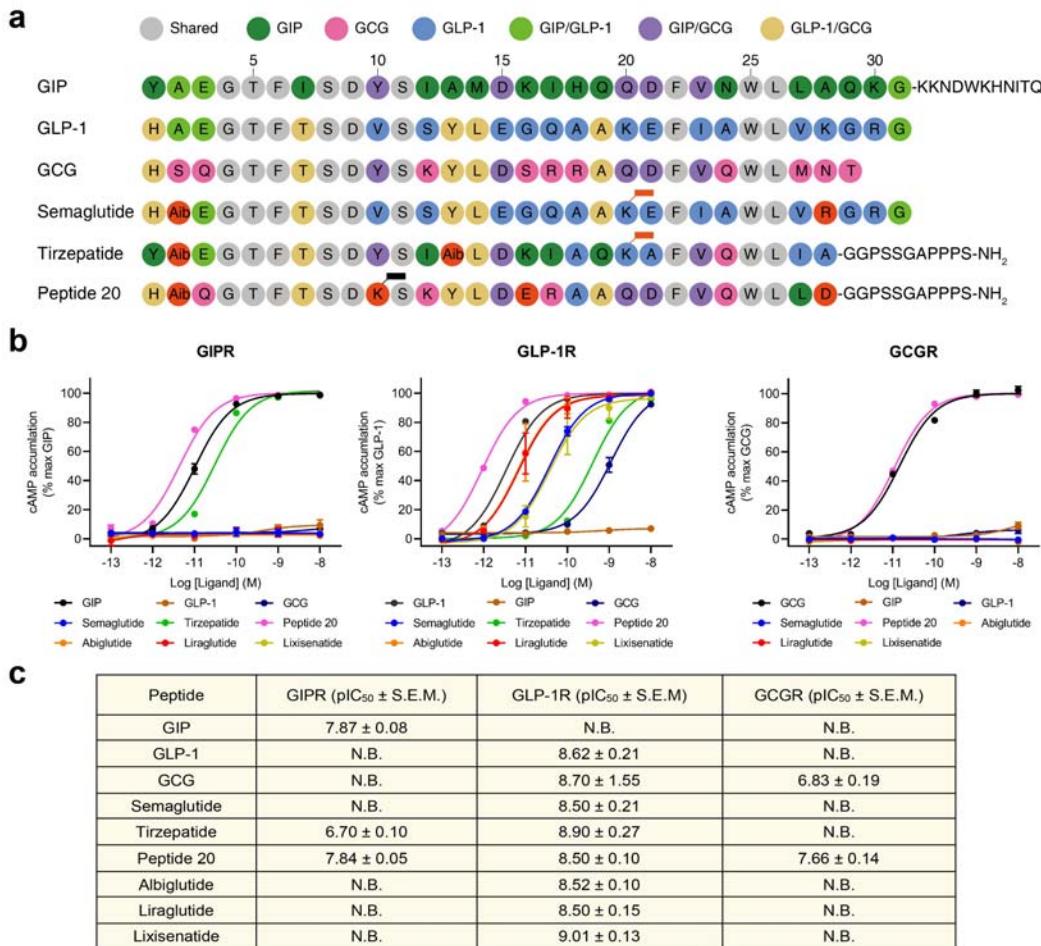
Fig. 4 | Molecular recognition of peptide 20 by GIPR, GLP-1R and GCGR. **a**, Structural comparison of peptide 20-GIPR-G_s, peptide 20-GLP-1R-G_s and peptide 20-GCGR-G_s. Receptor ECD and G protein are omitted for clarity. **b-d**, Interactions between peptide 20 and the TMDs of GIPR (forest green), GLP-1R (blue), and GCGR (hot pink). Residues involved in interactions are shown as sticks. **e-g**, Electrostatic surface representations of the receptor for each of the peptide-receptor complex, with the peptides shown as ribbon and sticks. Electrostatic surface potential was calculated in Chimera according to Coulomb's law and contoured at $\pm 10 \text{ kT e}^{-1}$. Negatively and positively charged surface areas are colored red and blue, respectively. **h**, The peptide recognition modes are described by fingerprint strings encoding different interaction types of the surrounding residues in each receptor.

876 Color codes are listed on the top panel. Residues that show no interaction with receptors are displayed as white

877 circles.

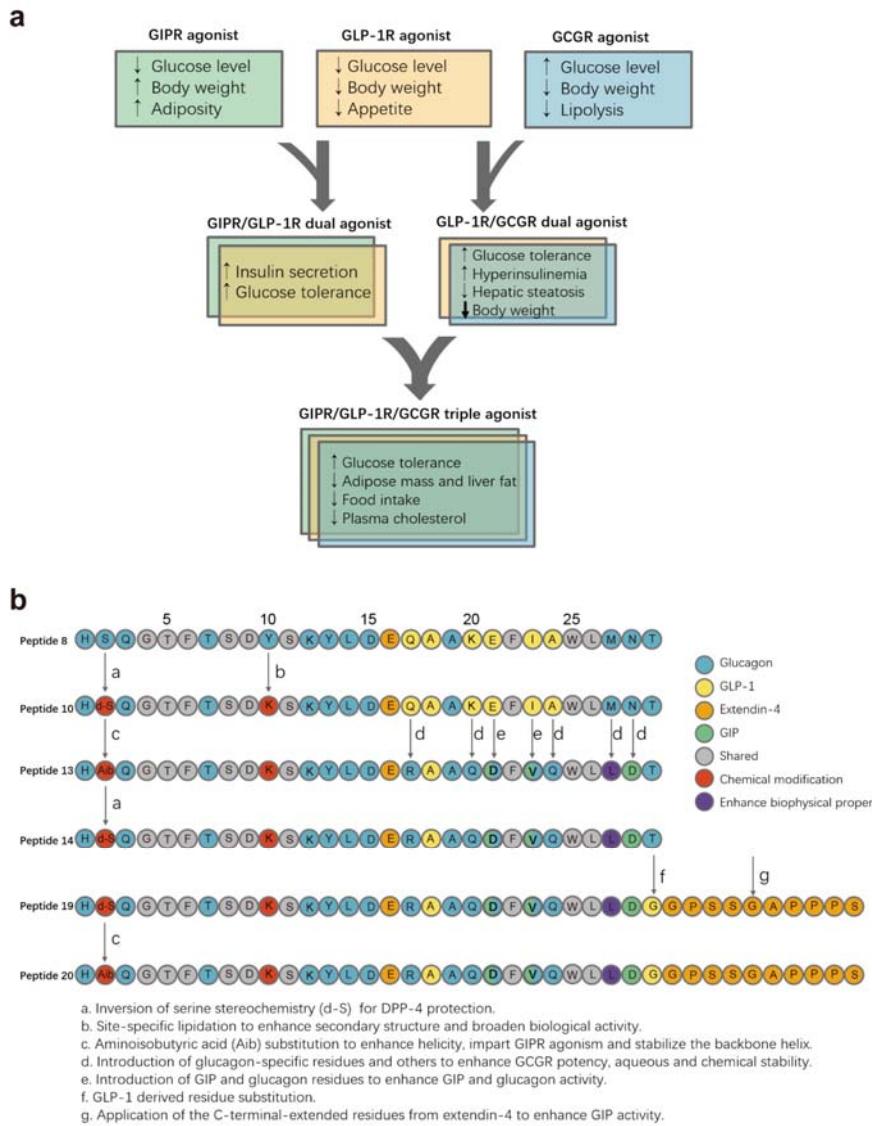
878

879 **Fig. 5 | Structural and functional feature of lipidated K10^P of peptide 20.** **a-c**, Close-up views of the crevices
880 between TM1 and TM2 displayed by cryo-EM maps of peptide 20-bound GIPR (a), GLP-1R (b) and GCGR (c).
881 Continuous electron densities connected to K10 in peptide 20 were observed in the three peptide 20-bound
882 receptor-G_s complexes. **d-f**, Interactions between lipidated K10^P and the TM1-TM2 crevice of GIPR (d), GLP-1R (e)
883 and GCGR (f), with interacting residues shown in sticks. Hydrogen bonds are shown with dashed lines. **g**, Effects of
884 receptor mutations on peptide 20-induced cAMP accumulation. Data shown are means \pm S.E.M. of at least three
885 independent experiments performed in quadruplicate. **h**, Effects of K10 lipidation on peptide 20-induced cAMP
886 accumulation. The bar graph represents the average pEC₅₀ (that is, $-\log EC_{50}$) measured from three independent
887 experiments performed in quadruplicate. Statistically significant differences were determined with a two-tailed
888 Student's t test. ***P<0.001. WT, wild-type.


889

890

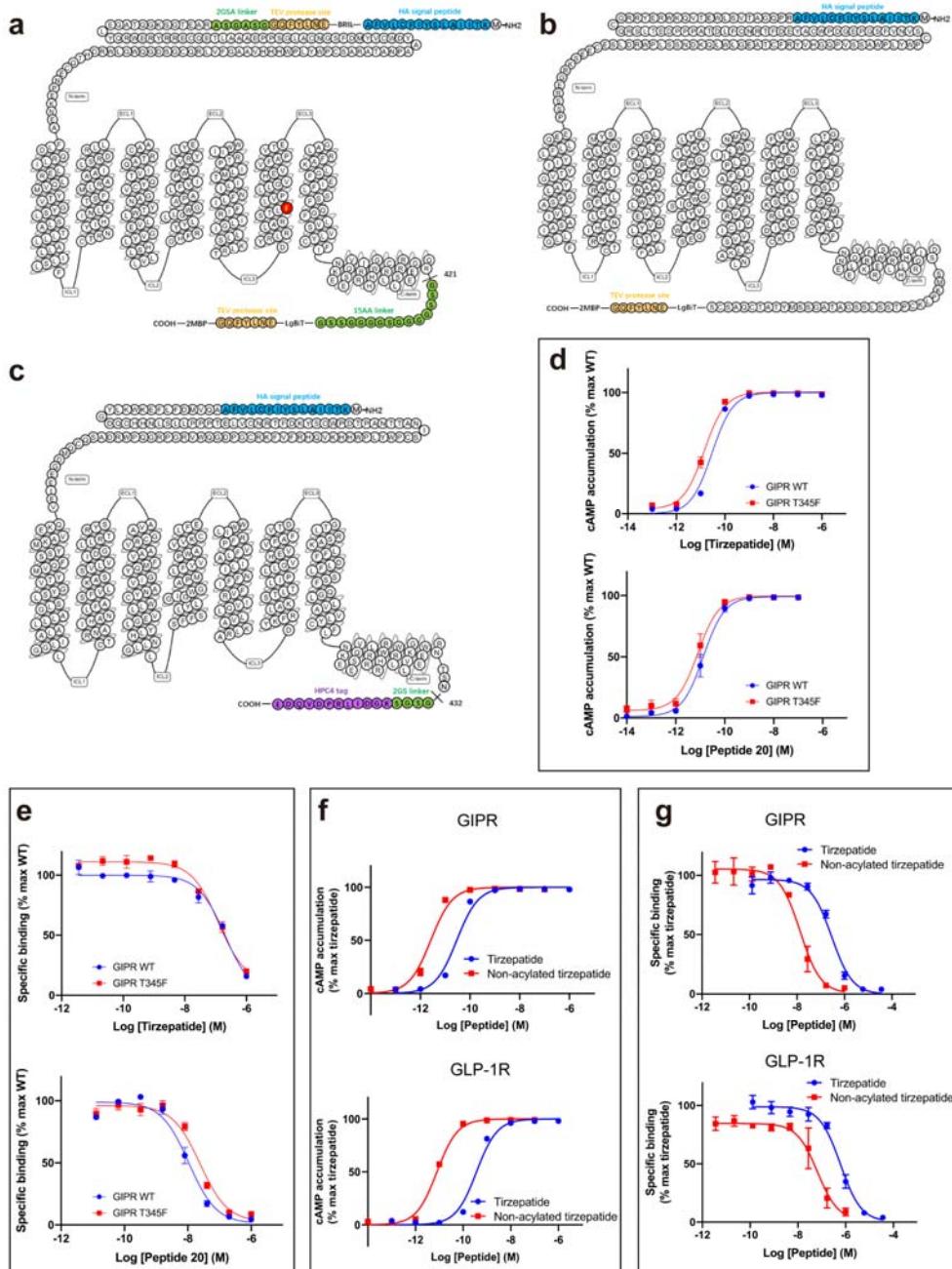
891 **Fig. 6 | G protein coupling of unimolecular agonist-bound GIPR, GLP-1R and GCGR.** **a**, Comparison of G
892 protein coupling among GIPR, GLP-1R and GCGR^{4,21,23}. The Gα_s α5-helix of the Gα_s Ras-like domain inserts into
893 an intracellular crevice of receptor's TMD. The receptors and G proteins are colored as the labels. **b**, Comparison of
894 ICL2 conformation in the peptide 20-bound GIPR, GCGR and GLP-1R. **c**, Comparison of F257^{3,60b} conformation in
895 the GLP-1R bound by GLP-1, tirzepatide and peptide 20. **d**, Comparison of E262^{ICL2} conformation in the GLP-1R
896 bound by GLP-1, tirzepatide and peptide 20. **e**, Comparison of E253^{ICL2} conformation in the GIPR bound by
897 tirzepatide and peptide 20. Residues involved in interactions are shown as sticks. Polar interactions are shown as
898 black dashed lines.


899

900

901 **Fig. 7 | Structure-basis of receptor selectivity demonstrated by tirzepatide, peptide 20 and GLP-1 analogs. a,** Amino acid sequences of endogenous agonists, unimolecular agonists and approved GLP-1 analogs including 902 semaglutide. Residues are colored according to sequence conservation among GIP, GLP-1 and GCG. Aib, 903 aminoisobutyric acid. Semaglutide and tirzepatide are conjugated by a C20 fatty diacid moiety via a linker connected 904 to the lysine residue at position 20, while peptide 20 is covalently attached by a 16-carbon acyl chain (palmitoyl; 16:0) 905 via a γ -carboxylate spacer at K10^P. **b**, Receptor signaling profiles of endogenous agonists, unimolecular agonists 906 and approved drug GLP-1 analogs including semaglutide. Data shown are means \pm S.E.M. of at least three independent 907 experiments performed in quadruplicate. **c**, Receptor binding profiles of endogenous agonists, unimolecular agonists 908 and approved GLP-1 analogs. Data shown are means \pm S.E.M.

910



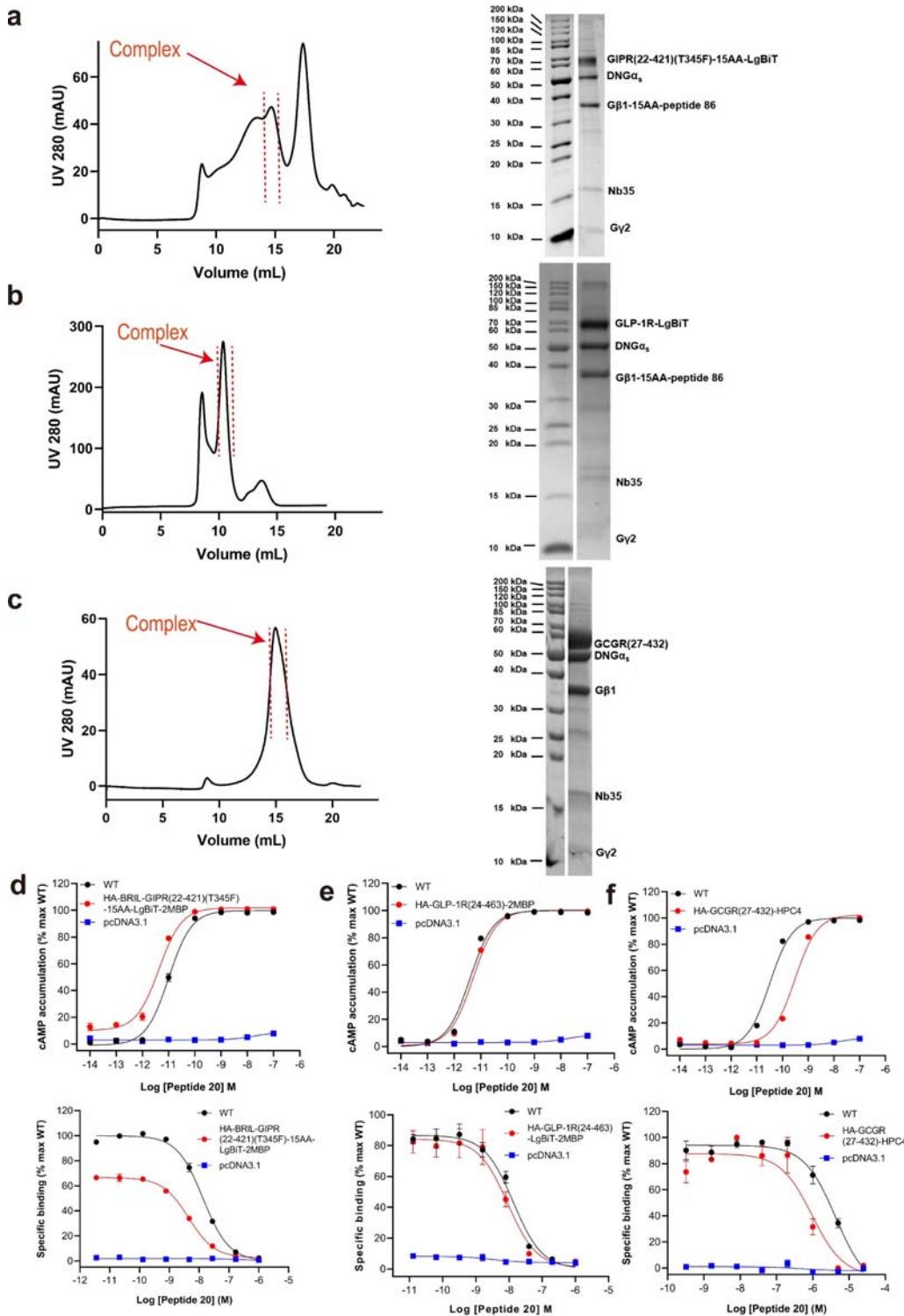
911

912

Fig. S1. Principles of combinatorial agonism to synergize metabolic actions and maximize therapeutic benefits.

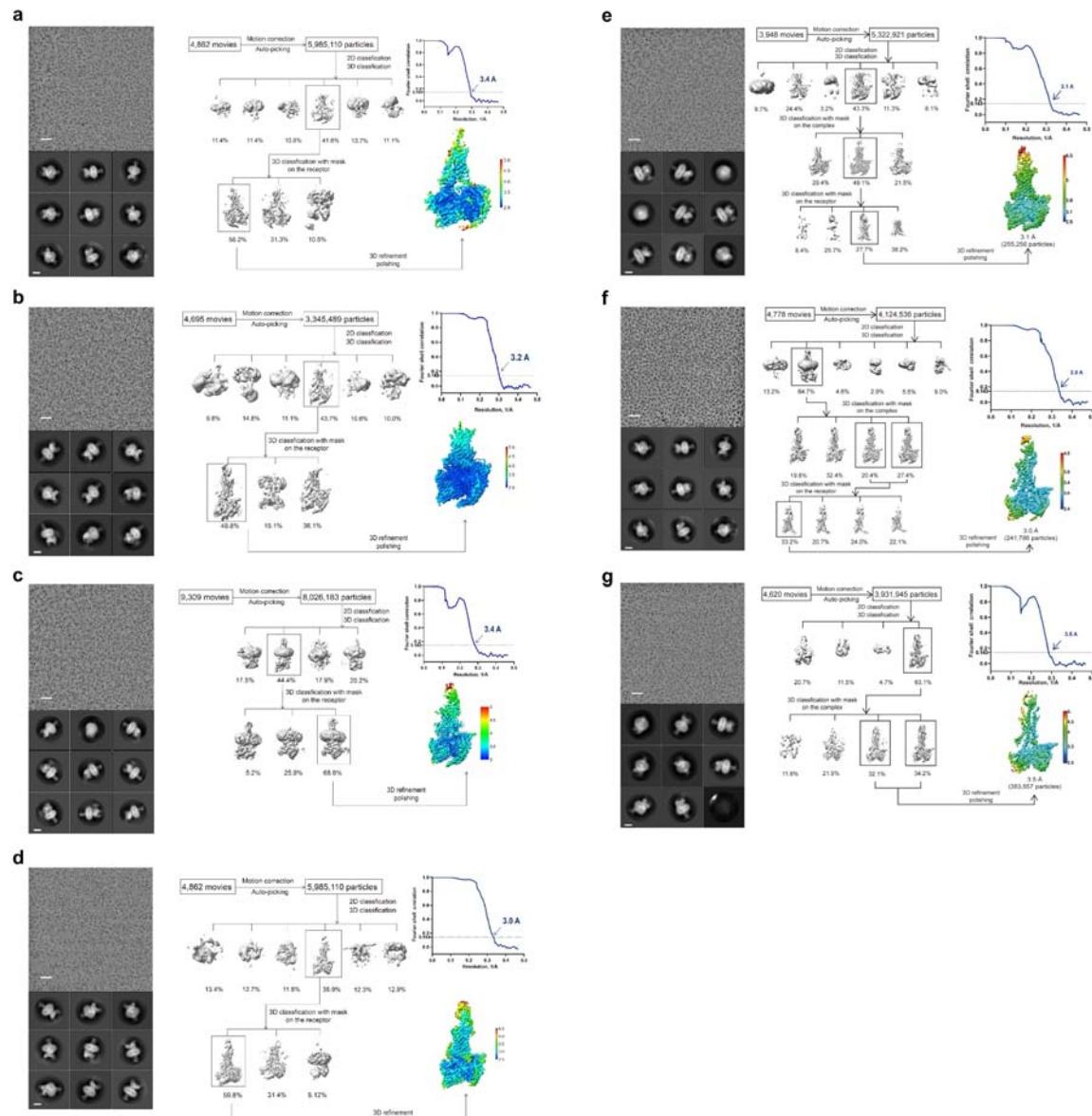
913 **a**, Schematic representation of the therapeutic advantages of dual and triple agonists targeting the human
 914 glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1) and glucagon (GCG)
 915 receptors (GIPR, GLP-1R and GCGR, respectively). GLP-1R agonists are used to treat type 2 diabetes and obesity
 916 because of their ability to promote satiety and insulin secretion. Their effect on weight loss could be complemented
 917 by that of glucagon on lipolysis and thermogenesis, leading to a series of GLP-1R/GCGR dual agonists (e.g., peptide
 918 8) based on the sequence of GCG. Subsequently, GIPR agonism was added to GLP-1R agonists to enhance the
 919 glycemic benefits of GLP-1 resulting in a new series of dual agonists (e.g., tirzepatide) that improved insulin
 920 secretion and glucose tolerance while reducing adverse events of the monotherapy. Given the enhanced performance
 921 of both dual agonists in the treatment of obesity and T2D, as well as the structural similarity among the three
 922 peptides, Unimolecular GIPR/GLP-1R/ GCGR triple agonists (e.g., peptide 20) were developed to combine the
 923 strength of both types of dual agonists. **b**, Evolutionary pathway towards a highly potent and balanced unimolecular
 924 triple agonist (peptide 20) for GIPR, GLP-1R and GCGR. The modifications and their actions on combinatorial
 925 agonism are explained in the bottom.

926


927 **Fig. S2. Receptor constructs for structure determination.** **a-c**, Schematic diagrams of receptor constructs used for
928 structure determination: GIPR construct (**a**), GLP-1R construct (**b**) and GCGR construct (**c**). **d**, Effects of GIPR
929 T345F on tirzepatide (top) and peptide 20 (bottom)-induced cAMP accumulation. **e**, Effects of GIPR T345F on
930 receptor binding affinities of tirzepatide (top) and peptide 20 (bottom). **f**, Effects of tirzepatide acylation on GIPR
931 (top) and GLP-1R (bottom)-mediated cAMP accumulation. **g**, Effects of tirzepatide acylation on receptor binding
932 affinities with GIPR (top) and GLP-1R (bottom). cAMP accumulation and binding data were normalized to the
933 maximum response of wild-type (WT) or tirzepatide and concentration-response curves were analyzed using a
934 three-parameter logistic equation. The experiments were carried out independently at least twice with similar results.

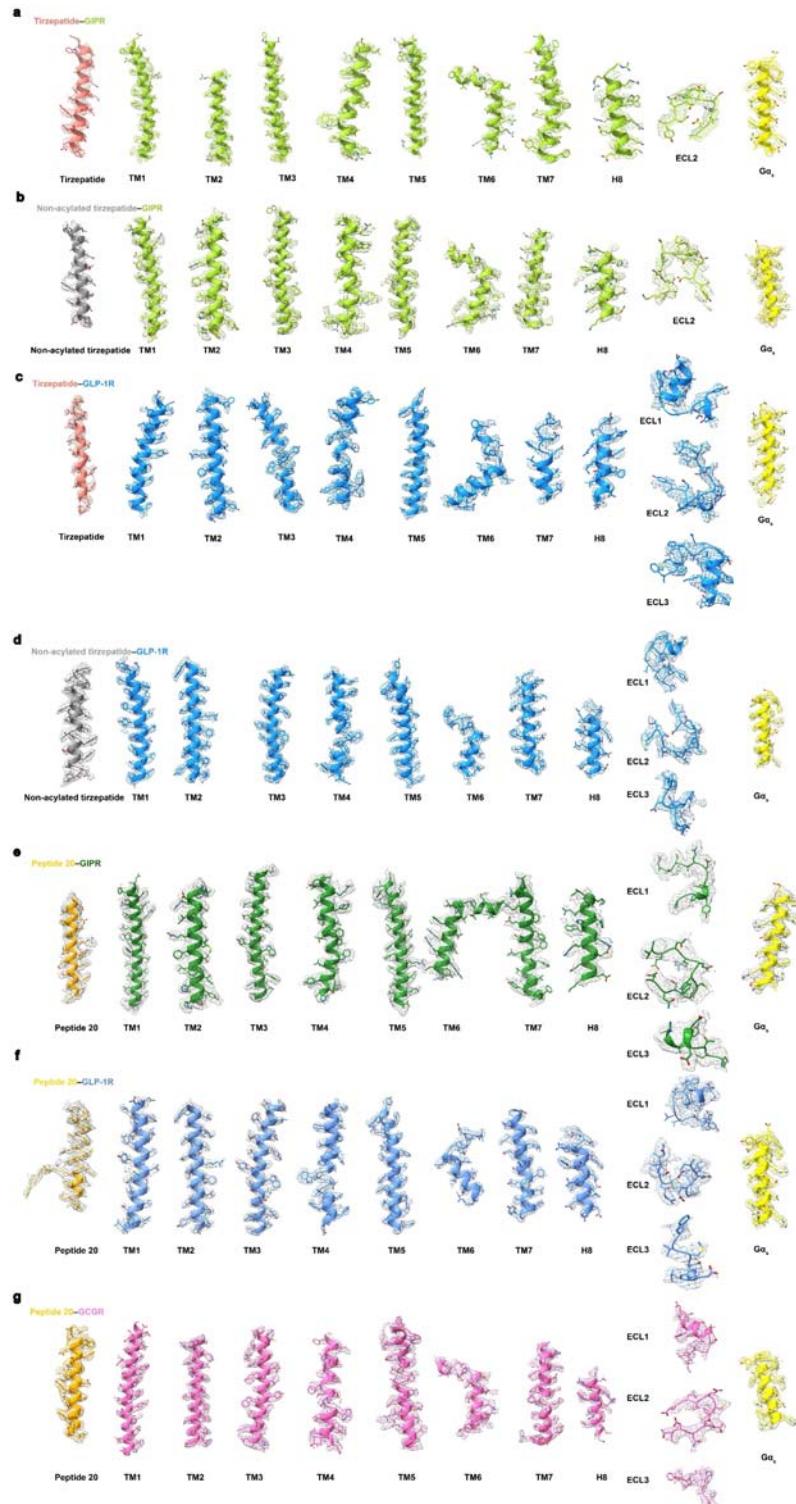
935

936 **Fig. S3. Purification and characterization of the tirzepatide-GIPR/GLP-1R-G_s-Nb35 complexes and**
 937 **non-acylated tirzepatide-GIPR/GLP-1R-G_s-Nb35 complexes. a, Size-exclusion chromatography on Superose 6**
 938 **Increase 10/300GL and SDS-PAGE of the tirzepatide-GIPR-G_s-Nb35 complex. b, Size-exclusion chromatography**
 939 **on Superdex 200 Increase 10/300GL and SDS-PAGE of the tirzepatide-GLP-1R-G_s-Nb35 complex. c,**
 940 **Size-exclusion chromatography on Superose 6 Increase 10/300GL and SDS-PAGE of the non-acylated**
 941 **tirzepatide-GIPR-mini-G_s-Nb35 complex. d, Size-exclusion chromatography on Superdex 200 Increase 10/300GL**
 942 **and SDS-PAGE of the non-acylated tirzepatide-GLP-1R-mini-G_s-Nb35 complex. e, cAMP responses following**
 943 **tirzepatide stimulation in HEK 293T cells transfected with wild-type (WT) or modified GIPR constructs. f, Binding**


944 of tirzepatide to the full-length or modified GIPR in competition with ^{125}I -GIP₁₋₄₂. **g**, cAMP responses following
945 tirzepatide stimulation in HEK 293T cells transfected with WT or modified GLP-1R constructs. **h**, Binding of
946 tirzepatide to the full-length or modified GLP-1R in competition with ^{125}I -GLP-1_{(7-36)NH₂}. **i**, cAMP responses
947 following non-acylated tirzepatide stimulation in HEK 293T cells transfected with WT or modified GIPR constructs.
948 **j**, Binding of non-acylated tirzepatide to the full-length or modified GIPR in competition with ^{125}I -GIP₁₋₄₂. **k**, cAMP
949 responses following non-acylated tirzepatide stimulation in HEK 293T cells transfected with WT or modified
950 GLP-1R constructs. **l**, Binding of non-acylated tirzepatide to the full-length or modified GLP-1R in competition with
951 ^{125}I -GLP-1_{(7-36)NH₂}. Signals were normalized to the maximum response of the WT and dose-response curves were
952 analyzed using a three-parameter logistic equation. Whole cell binding assay was performed in CHO-K1 cells.
953 Binding data were analyzed using a three-parameter logistic equation to determine pIC₅₀ and span values. Data
954 shown are means \pm S.E.M. of at least three independent experiments.

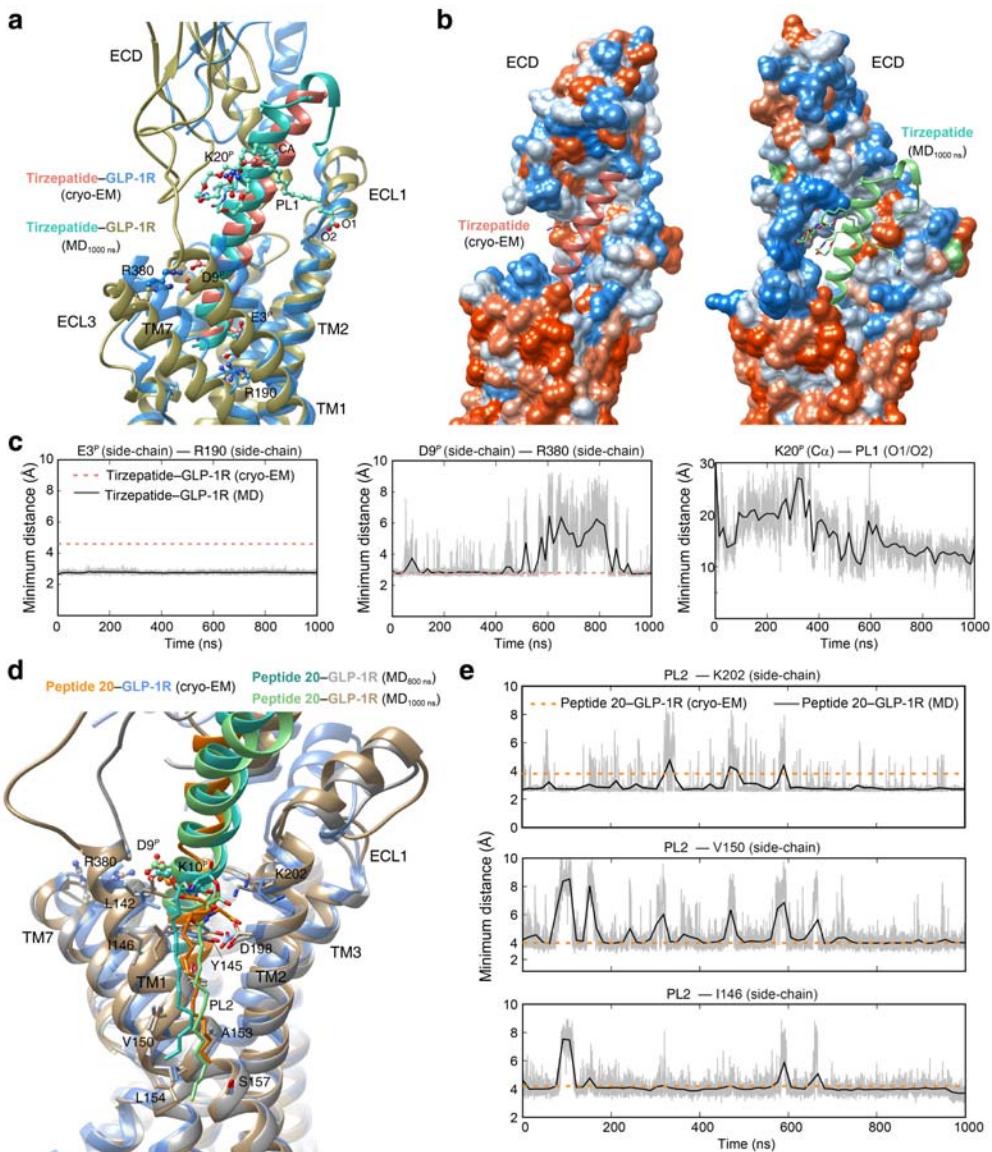
955

956 **Fig. S4. Purification and characterization of the peptide 20–GIPR/GLP-1R/GCGR–G_s–Nb35 complexes. a,**
957 Size-exclusion chromatography on Superose 6 Increase 10/300GL and SDS-PAGE of the peptide
958 20–GIPR–G_s–Nb35 complex. **b**, Size-exclusion chromatography on Superdex 200 Increase 10/300GL and
959 SDS-PAGE of the peptide 20–GLP-1R–G_s–Nb35 complex. **c**, Size-exclusion chromatography on Superose 6
960 Increase 10/300GL and SDS-PAGE of the peptide 20–GCGR–G_s–Nb35 complex. **d**, Top, cAMP responses

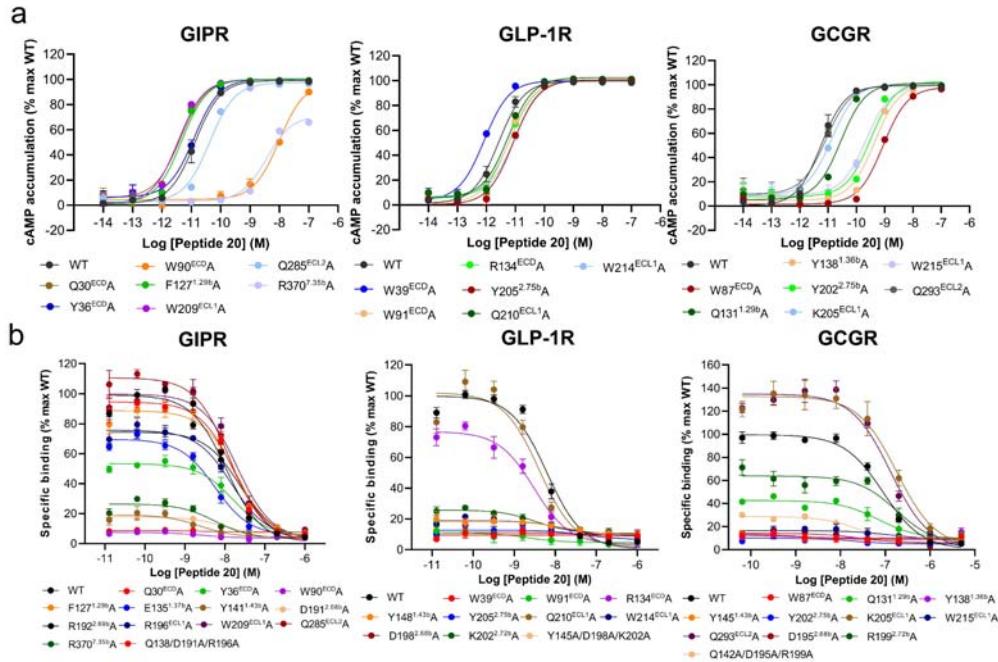

961 following peptide 20 stimulation in HEK 293T cells transfected with wild-type (WT) or modified GIPR constructs.
962 Bottom, binding of peptide 20 to the full-length or modified GIPR in competition with ^{125}I -GIP₁₋₄₂. **e**, Top, cAMP
963 responses following peptide 20 stimulation in HEK 293T cells transfected with WT or modified GLP-1R constructs.
964 Bottom, binding of peptide 20 to the full-length or modified GLP-1R in competition with ^{125}I -GLP-1_{(7-36)NH₂}. **f**, Top,
965 cAMP responses following peptide 20 stimulation in HEK 293T cells transfected with WT or modified GCGR
966 constructs. Bottom, binding of peptide 20 to the full-length or modified GCGR in competition with ^{125}I -GCG.
967 Signals were normalized to the maximum response of the WT and dose-response curves were analyzed using a
968 three-parameter logistic equation. Whole cell binding assay was performed in CHO-K1 cells. Binding data were
969 analyzed using a three-parameter logistic equation to determine pIC₅₀ and span values. Data shown are means \pm
970 S.E.M. of at least three independent experiments.

971

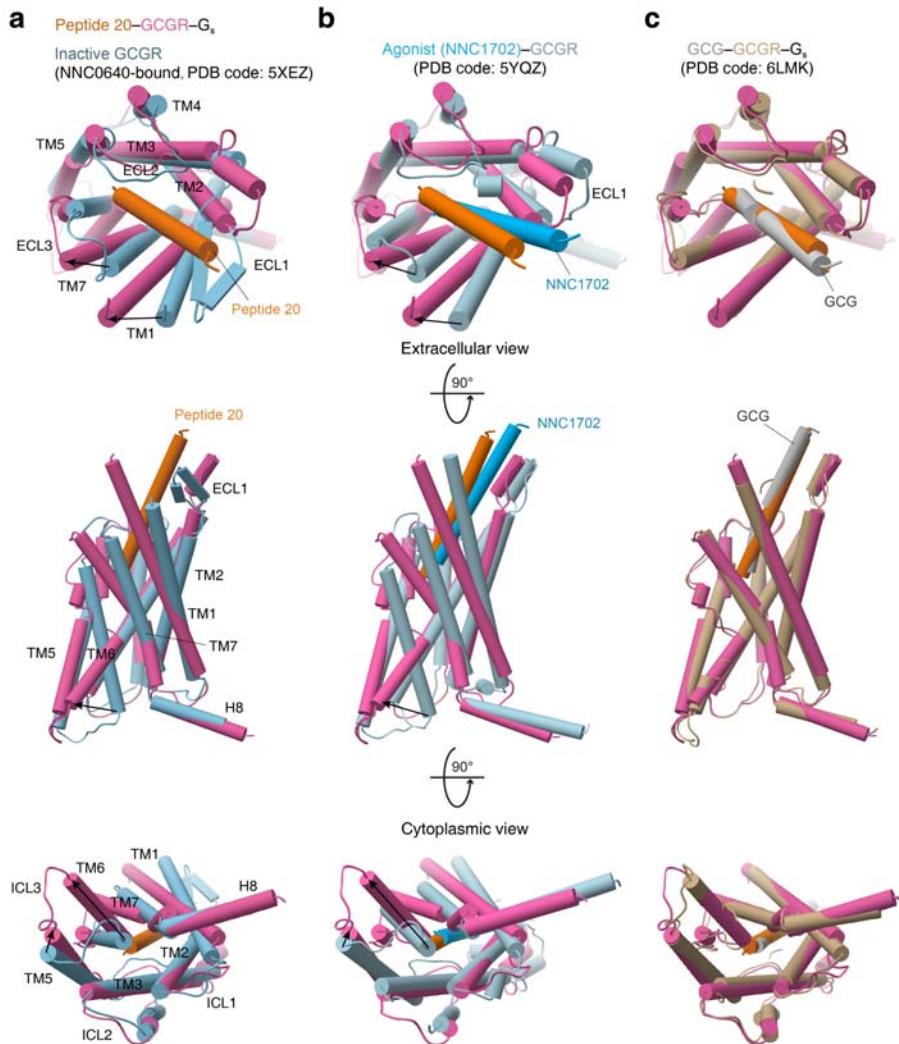
972 **Fig. S5. Cryo-EM data processing and validation.** **a**, Tirzepatide–GIPR–G_s complex: top left, representative
973 cryo-EM micrograph (scale bar: 40 nm) and two-dimensional class averages (scale bar: 5 nm); top right, flow chart
974 of cryo-EM data processing; bottom left, local resolution distribution map of the complex with the ECD and
975 Gold-standard Fourier shell correlation (FSC) curves of overall refined receptor; bottom right, local resolution
976 distribution map of the complex without the ECD and FSC curves of overall refined receptor. **b**, Non-acetylated
977 tirzepatide–GIPR–G_s complex: left, representative cryo-EM micrograph (scale bar: 40 nm) and two-dimensional
978 class averages (scale bar: 5 nm); middle, flow chart of cryo-EM data processing; right, local resolution distribution
979 map of the complex and FSC curves of overall refined receptor. The experiments were conducted twice
980 independently with similar results. **c**, Tirzepatide–GLP-R–G_s complex: left, representative cryo-EM micrograph
981 (scale bar: 40 nm) and two-dimensional class averages (scale bar: 5 nm); middle, flow chart of cryo-EM data
982 processing; right, local resolution distribution map of the complex and FSC curves of overall refined receptor. **d**,
983 Non-acetylated tirzepatide–GLP-1R–G_s complex: left, representative cryo-EM micrograph (scale bar: 40 nm) and
984 two-dimensional class averages (scale bar: 5 nm); middle, flow chart of cryo-EM data processing; right, local


985 resolution distribution map of the complex and FSC curves of overall refined receptor. The experiments were
986 performed twice independently with similar results. **e**, Peptide 20–GIPR–G_s complex: left, representative cryo-EM
987 micrograph (scale bar: 40 nm) and two-dimensional class averages (scale bar: 5 nm); middle, flow chart of cryo-EM
988 data processing; right, local resolution distribution map of the complex and FSC curves of overall refined receptor.
989 The experiments were carried out twice independently with similar results. **f**, Peptide 20–GLP-1R–G_s complex: left,
990 representative cryo-EM micrograph (scale bar: 40 nm) and two-dimensional class averages (scale bar: 5 nm); middle,
991 flow chart of cryo-EM data processing; right, local resolution distribution map of the complex and FSC curves of
992 overall refined receptor. The experiments were repeated independently twice with similar results. **g**, Peptide
993 20–GCGR–G_s complex: left, representative cryo-EM micrograph (scale bar: 40 nm) and two-dimensional class
994 averages (scale bar: 5 nm); middle, flow chart of cryo-EM data processing; right, local resolution distribution map of
995 the complex and FSC curves of overall refined receptor. The experiments were executed twice independently with
996 similar results.

997


998 **Fig. S6. Near-atomic resolution model of the complexes in the cryo-EM density maps. a,** EM density map and
999 model of the tirzepatide–GIPR–G α _s complex are shown for all seven-transmembrane α -helices (7TMs), helix 8 and
1000 extracellular loop 2 (ECL2) of GIPR, tirzepatide and the α 5-helix of the G α _s Ras-like domain. **b,** EM density map
1001 and model of the non-acylated tirzepatide–GIPR–G α _s complex are shown for 7TMs, helix 8 and ECL2 of GIPR,
1002 tirzepatide and the α 5-helix of the G α _s Ras-like domain. **c,** EM density map and model of the

1003 tirzepatide–GLP-1R–G_s complex are shown for 7TMs, helix 8 and all extracellular loops of GLP-1R, tirzepatide and
1004 the α 5-helix of the G α _s Ras-like domain. **d**, EM density map and model of the non-acylated tirzepatide–GLP-1R–G_s
1005 complex are shown for 7TMs, helix 8 and all extracellular loops of GLP-1R, tirzepatide and the α 5-helix of the G α _s
1006 Ras-like domain. **e**, EM density map and model of the peptide 20–GIPR–G_s complex are shown for 7TMs, helix 8
1007 and all extracellular loops of GIPR, peptide 20 and the α 5-helix of the G α _s Ras-like domain. **f**, EM density map and
1008 model of the peptide 20–GLP-1R–G_s complex are shown for 7TMs, helix 8 and all extracellular loops of GLP-1R,
1009 peptide 20 and the α 5-helix of the G α _s Ras-like domain. **g**, EM density map and model of the peptide 20–GCGR–G_s
1010 complex are shown for 7TMs, helix 8 and all extracellular loops of GCGR, peptide 20 and the α 5-helix of the G α _s
1011 Ras-like domain.


1012

1013 **Fig. S7. Molecular dynamics (MD) simulation of GLP-1R bound by tirzepatide and peptide 20.** **a**, Comparison
1014 of tirzepatide conformations between simulation snapshot and the cryo-EM structure. The acylated K20^P by a
1015 γ Glu-2 \times OEG linker and C18 fatty diacid moiety (named as PL1) is shown in sticks. **b**, Surface representation of the
1016 tirzepatide-binding pocket in GLP-1R for cryo-EM structure (left panel) and final MD snapshot at 1000 ns (right
1017 panel). The receptor is shown in surface representation and colored from dodger blue for the most hydrophilic region,
1018 to white, to orange red for the most hydrophobic region. **c**, Representative minimum distance between peptide and
1019 receptor indicates dynamic conformations of the tail of PL1. **d**, Comparison of peptide 20 conformations between
1020 simulation snapshots and the cryo-EM structure. The lipiated K20^P by a 16-carbon acyl chain (palmitoyl; 16:0) via a
1021 γ E spacer (named as PL2), with interacting residues shown in sticks. **e**, Representative minimum distance between
1022 heavy atoms of PL2 and its interacting residues suggest that PL2 steadily interacts with the TM1-TM2 crevice
1023 residues.

1024

1025 **Fig. S8. Effect of receptor mutation on peptide 20-induced cAMP accumulation.** **a**, Signaling profiles of GIPR
1026 (left), GLP-1R (middle) and GCGR (right) mutants. cAMP accumulation was measured in wild-type (WT) and
1027 single-point mutated GIPR, GLP-1R or GCGR expressing in HEK 293T cells, respectively. cAMP accumulation
1028 was normalized to the maximum response of the WT and dose-response curves were analyzed using a
1029 three-parameter logistic equation. Data were generated and graphed as means \pm S.E.M. **b**, Binding of peptide 20 to
1030 the GIPR (left), GLP-1R (mid) and GCGR (right) mutants in CHO-K1 cells in competition with ^{[125]I}-GIP₁₋₄₂,
1031 ^{[125]I}-GLP-1_{(7-36)NH₂} or ^{[125]I}-GCG. Binding data were analyzed using a three-parameter logistic equation to determine
1032 pIC₅₀ and span values. Data were generated and graphed as means \pm S.E.M.

1033

1034 **Figure S9. Conformational changes upon GCGR activation.** **a-c**, Comparison of peptide 20-bound GCGR with
1035 inactive (a), agonist-bound (b) and both GCG-bound and G protein-coupled active GCGR (c). G proteins and
1036 receptor ECD are omitted for clarity.

Table S1. Cryo-EM data collection, refinement and validation statistics

	Tirzepatide–GIPR–G _s – Nb35 complex	Non-acylated tirzepatide–GIPR–G _s – Nb35 complex	Tirzepatide–GLP-1R–G _s – Nb35 complex	Non-acylated tirzepatide–GLP-1R–G _s – Nb35 complex	Peptide 20–GIPR–G _s –N b35 complex	Peptide 20–GLP-1R–G _s – Nb35 complex	Peptide 20–GCGR–G _s –N b35 complex
Data collection and processing							
Magnification	46,685	46,685	46,685	46,685	46,685	46,685	46,685
Voltage (kV)	300	300	300	300	300	300	300
Electron exposure (e ⁻ /Å ²)	80	80	80	80	80	80	80
Defocus range (μm)	-1.2 to -2.2	-1.2 to -2.2	-1.2 to -2.2	-1.2 to -2.2	-1.2 to -2.2	-1.2 to -2.2	-1.2 to -2.2
Pixel size (Å)	1.071	1.071	1.071	1.071	1.071	1.071	1.071
Symmetry imposed	C1	C1	C1	C1	C1	C1	C1
Initial particle images (no.)	4,260,187	7,204,521	4,213,140	5,985,110	5,322,921	4,124,536	3,931,945
Final particle images (no.)	511,557	1,251,553	125,391	452,921	255,256	241,786	383,657

Map	3.4	3.2	3.4	3.0	3.1	3.0	3.5
resolution	0.143	0.143	0.143	0.143	0.143	0.143	0.143
(Å)							
FSC							
threshold							
Map	3.1 – 5.4	3.0 – 5.5	3.1 – 6.5	2.7 – 5.0	2.5 – 6.5	2.8 – 4.5	3.1 – 5.4
resolution							
range (Å)							
Refinement							
Initial	PDB code 7DTY	PDB code 7DTY	PDB code 6X18	PDB code 6X18	PDB code 7DTY	PDB code 6X18	PDB code 6LMK
model used							
(PDB code)							
Model	3.5	3.3	3.9	3.2	3.5	3.2	3.8
resolution	0.5	0.5	0.5	0.5	0.5	0.5	0.5
(Å)							
FSC							
threshold							
Model	2.8 – 5.0	2.9 – 5.0	3.0 – 5.0	3.0 – 5.0	3.0 – 4.0	3.0 – 5.0	2.9 – 5.0
resolution							
range (Å)							
Map	-168.8	-182.1	-128.0	-148.1	-69.0	-137.2	-191.5
sharpening							
B factor							
(Å ²)							
Model							
composition	9,556	9,409	9,223	9,223	9,556	9,116	9,040
	1,176	1,156	1,158	1,158	1,170	1,141	1,142
Non-hydrogen atoms	6	6	0	0	7	0	0

Protein residues							
Lipids							
B factors							
(Å ²)	145.0	133.1	172.0	174.0	133.2	159.0	59.5
Protein	158.0	177.9	0	0	201.6	154.0	74.4
Ligand	142.5	145.8	0	0	148.3	0	0
Lipids							
R.m.s.							
deviations	0.004	0.005	0.003	0.008	0.005	0.100	0.002
Bond	0.753	1.036	0.825	1.021	1.038	1.051	0.552
lengths (Å)							
Bond angles (Å)							
Validation							
1.20	1.21	1.46	1.64	1.32	1.78	1.37	
MolProbity	3.64	4.31	6.96	6.41	4.37	7.61	4.71
score	0	0	0	0	0	0	0
Clash score							
Poor rotamers (%)							
Ramachandran plot	97.42	98.15	97.62	95.85	97.48	94.72	97.32
Favored	2.58	1.85	2.38	4.15	2.52	5.28	2.68
Gated	0	0	0	0	0	0	0.00

Allowed
(%)

Disallowed
(%)
