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Abstract

The prevalence of clonal haematopoiesis of indeterminate potential (CHIP) in healthy individuals
increases rapidly from age 60 onwards and has been associated with increased risk for
malignancy, heart disease and ischemic stroke. CHIP is driven by somatic mutations in stem
cells that are also drivers of myeloid malignancies. Since mutations in stem cells often drive
leukaemia, we hypothesised that stem cell fitness substantially contributes to transformation
from CHIP to leukaemia. Stem cell fitness is defined as the proliferative advantage over cells
carrying no or only neutral mutations. It is currently unknown whether mutations in different
CHIP genes lead to distinct fithess advantages that could form the basis for patient stratification.
We set out to quantify the fitness effects of CHIP drivers over a 12 year timespan in older age,
using longitudinal error-corrected sequencing data. We developed a new method based on drift-

induced fluctuation (DIF) filtering to extract fithess effects from longitudinal data, and thus
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quantify the growth potential of variants within each individual. Our approach discriminates
naturally drifting populations of cells and faster growing clones, while taking into account
individual mutational context. We show that gene-specific fithess differences can outweigh inter-

individual variation and therefore could form the basis for personalised clinical management.

Introduction

Age is the single largest factor underlying the onset of many cancers (de Magalhaes, 2013).
Age-related accumulation and clonal expansion of cancer-associated somatic mutations in
healthy tissues has been posited recently as a pre-malignant status consistent with the
multistage model of carcinogenesis (Martincorena, 2019). However, the widespread presence of
cancer-associated mutations in healthy tissues highlights the complexity of early detection and
diagnosis of cancer (Ayachi et al., 2020; Genovese et al., 2014; Jaiswal et al., 2014; Lee-Six et
al., 2019; Martincorena et al., 2015).

Clonal haematopoiesis of indeterminate potential (CHIP) is defined as the clonal expansion of
haematopoietic stem and progenitor cells (HSPCs) in healthy aged individuals. CHIP affects
more than 10% of individuals over the age of 60 years and is associated with an estimated 10-
fold increased risk for the later onset of haematological neoplasms (Ayachi et al., 2020;
Genovese et al., 2014; Jaiswal et al., 2014). There is a clear benefit of detecting CHIP early as
the association between clone size and malignancy progression is well-established (Jaiswal
and Ebert, 2019; Jaiswal et al., 2014; Park and Bejar, 2020).

The particular mechanisms by which common mutations of CHIP, e.g. DNMT3A, TET2,
contribute to the progression of leukaemia are still not understood, which hinders early
diagnosis of CHIP on a gene or variant-basis (Challen and Goodell, 2020; Jaiswal and Ebert,
2019; Shih et al., 2012; Terradas-Terradas et al., 2020). In clinical practice, CHIP is diagnosed
by the presence of somatic mutations at variant allele frequencies (VAF) of at least 0.02 in
cancer-associated genes in more than 4% of all blood cells (Jaiswal and Ebert, 2019; Steensma
and Bolton, 2020). Clonal fitness, defined as the proliferative advantage of stem cells carrying a
mutation over cells carrying no or only neutral mutations, has emerged as an alternative clone-
specific quantitative marker of CHIP (Watson et al., 2020; Williams et al., 2020). As mutations in
stem cells often drive leukaemia (Jaiswal et al., 2014), we hypothesise that stem cell fitness

contributes substantially to transformation from CHIP to leukaemia.
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Stratification of individuals to inform clinical management for early detection or prevention of
leukaemia will depend on our ability to accurately associate genes and their variants with
progression to disease. However, it remains unresolved whether variant- or gene-specific
fitness effects transcend other factors contributing to variable progression between individuals

such as environment or genetics.

Hitherto fithess effects have been predicted from large cross-sectional cohort data (Abelson et
al., 2018; Watson et al., 2020). In this approach, single time-point data from many individuals is
pooled to generate allele frequency distributions. Although this method allows the study of a
large collection of variants, pooling prevents estimation of an individual’s mutational fitness
effects from cross-sectional data. Inferring fitness from a single time-point creates additional
uncertainty about whether a mutation has arisen recently and has grown rapidly (high fitness
advantage), or arose a long time ago and grown slowly (low fitness advantage). With
longitudinal samples, fitness effects of individual mutations can be estimated directly from the

change in VAF over multiple time-points.

In this study we work with longitudinal data from the Lothian Birth Cohorts of 1921 (LBC1921)
and 1936 (LBC1936). Such longitudinal data are rare worldwide owing to their participants’ older
age (70-90 years) and their three-yearly follow-ups over 12 years in each cohort and over 21
years total timespan. We developed a new framework for extracting fitness effects from
longitudinal data. Firstly, a drift-induced fluctuations (DIF) filter allowed us to better segregate
between naturally drifting populations of cells and fast-growing clones. Secondly, a context-
dependent fitting method quantified the growth potential or fitness effects simultaneously for all
selected mutations within each individual. We detected gene-specific fithess effects within our

cohorts, highlighting the potential for personalised clinical management.

Material and Methods

Participant samples

The Lothian Birth Cohort 1921 (LBC1921) contains a total of 550 participants at Wave 1 of their
testing (done between 1999 and 2001) with a gender ratio of 234/316 (m/f) and a mean age at
Wave 1 of 79.1 (SD=0.6) (Table 1, (Taylor et al., 2018)). The Lothian Birth Cohort 1936
(LBC1936), contains a total of 1091 participants at Wave1 of their testing (done between 2004
and 2007) with a gender ratio of 548/543 (m/f) and a mean age at Wave 1 of 69.5 (SD=0.8)
(Table 1, (Taylor et al., 2018)). We previously identified 73 participants with CHIP at Wave 1
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(Robertson et al., 2019). We sequenced DNA from those 73 LBC participants longitudinally and
added 16 LBC participants with previously unidentified CHIP, for a total of 298 samples together
with 14 “Genome in a Bottle” (GIAB) controls (Supplemental Table 1).

Targeted, error-corrected Sequencing and Data filtering

DNA was extracted from EDTA whole blood using the Nucleon BACCS3 kit, following the
manufacturer’s instructions. Libraries were prepared from 200ng of each DNA sample using the
Archer VariantPlex 75 Myeloid gene panel and VariantPlex Somatic Protocol for lllumina
Sequencing (Invitae, Table 2), including modifications for detecting low allele frequencies.
Sequencing of each pool was performed using the NextSeq 500/550 High-Output v2.5 (300
cycle) kit on the NextSeq 550 platform. To inform reproducibility, background model for error
and batch correction, we sequenced “genome in a bottle” DNA in each batch of samples (DNA
NA12878 Coriell Institute).

Reads were filtered for phred 230 and adapters removed using Trimmomatic (Bolger et al.,
2014) before undergoing guided alignment to human genome assembly hg19 using bwa-mem
and bowtie2. Unique molecular barcodes (ligated prior to PCR amplification) were utilised for
read deduplication to support quantitative multiplexed analysis and confident mutation detection.
Within targeted regions, variants were called using three tools (Lofreq (Wilm et al., 2012),
Freebayes (Garrison and Marth, 2012) and Vision (ArcherDX, unpublished) — building a

consensus from the output of all callers (Table 3).

All filtered variants at 0.02 VAF met the following criteria: 1) the number of reads supporting the
alternative allele surpasses the coverage criteria while exhibiting no directional biases (AO = 5,
UAO = 3); 2) variants are significantly underrepresented within the Genome Aggregation
Database (gnomAD; p < 0.05); 3) variants are not obviously germline variants (stable VAF
across all waves ~0.5 or ~1) that may have been underrepresented in the gnomAD database
due to the narrow geographical origin of the Lothian Birth Cohort participants; 4) contain events
that are overrepresented across the dataset - generally frameshift duplications and deletions -
whose reads share some sequence homology to target regions yet are likely misaligned artefact
from the capture method. In addition, we manually curated this list checking for variants that
were previously reported, as per Jaiswal et al. (Jaiswal et al., 2014b), in the COSMIC
(Catalogue of Somatic Mutations in Cancer) database or within the published literature (Table

4). Finally, for any variant that surpassed the above criteria at, or above, 0.02 VAF across the
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measured time period, we endeavored to include all other participant matched data points

regardless of VAF level (SuppFig.1A).

Computational prediction of missense variant effects

To predict which missense variants are most likely to be damaging, we used six computational
variant effect predictors recently identified as being most useful for identifying pathogenic
mutations (Carter et al., 2013; Hecht et al., 2015; loannidis et al., 2016; Livesey and Marsh,
2020; Raimondi et al., 2017; Riesselman et al., 2018; Vaser et al., 2016). Specifically, for each
variant identified in this study, we determined what fraction of previously identified pathogenic
and likely pathogenic missense variants from ClinVar, and what fraction of variants observed in
the human population from gnomAD v2.1 for each computational predictor. We then averaged
these fractions across all predictors. Note that DeepSequence was only included for DNMT3A
and TP53 due to its computational intensiveness and difficulty of running on long protein

sequences.

Modelling to estimate fitness

Given the longitudinal nature of this study we can directly fit the deterministic solution of an
established minimal model of cell division (Till et al., 1964; Watson et al., 2020) to the time
evolution of VAF trajectories in a participant’s genetic profiles (Fig.2C). For each individual we
simultaneously estimate the fithess and time of acquisition of variants as well as the size of the

stem cell pool.

In this model cells exist in two states: stem cells (SCs) or differentiated cells (DCs). Under the
assumption that DCs cannot revert to a SC state, differentiation inevitably leads to cell death
and is treated as such. Furthermore, assuming that each SC produces the same amount of fully
differentiated blood cells allows a direct comparison between the VAF of a variant as observed
in blood samples and the number of SCs forming the genetic clone (clone size). For an

individual with a collection of clones {c;};c;, the VAF evolution in time v;(t) of a clone c;

n;(t)
2N(t)’

corresponds to v;(t) = where v;(t) is the variant allele frequency of the variant at time ¢,

n;(t) is the number of SCs carrying the variant and N(t) corresponds to the total number of
diploid HSPCs present in the individual. Finally, we assume that that N(t) = N,, + Y/ n;(t)
where N,, is the average number of wildtype (WT) HSPCs in the individual.
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The bias towards self-renewal of symmetric divisions is parameterised by s and determines the
fithess advantage of a clone. In normal haematopoiesis s = 0, in which case clones undergo
neutral drift. The stochastic time-evolution of neutral clones corresponds to that of a critical birth
and death model (CBM) that we exploit to identify mutations with a clear proliferative advantage,
as detailed below. For clones with non-neutral (fitness-increasing) mutations, s > 0, and these
clones grow in size exponentially in time as e$(~t) from an initial population of 1 SC at the time

of mutation acquisition t.

Altogether, the exponential proliferation of an isolated genetic clone in an individual results in

the logistic time-evolution of its corresponding VAF,
1
2 4+ 2N, e~s(t-to)’

v(t) =

allowing us to estimate the fithess advantage in trajectories with at least 3 data points - 46% of
all fit trajectories - using least-squares fitting. Further, when multiple fit clones are present in an
individual we constrain the fit to share the stem cell pool size N(t) for all variant trajectories in
this individual. This increases the data/parameter ratio, and produces richer dynamics, where
exponentially growing clones can be suppressed by the growth of a fitter clone. Critically, this
implies that even non-competitive models, where trajectories grow independently of each other,
will result in competitive dynamics in the observed VAF trajectories as variants strive for

dominance of the total production of blood cells.

Notice that this model cannot account for loss of heterozygosity events. Overall, only one
variant - JAK2 ¢.1849G>T - averaged a VAF > 0.5 and was consequently left out of this study.
Further, following the fit, three filters were implemented to detect inaccurately fitted trajectories
left out from the reported fitness estimates: 1) individuals presenting a large r*-value, total
squared error accumulated over all fitted trajectories in a participant (2 of 54 participants); 2)
trajectories with a negative Pearson correlation coefficient between fit and observed data, e.g. a
growing trajectory with a decreasing fit, which could result from fitter variants that were not
captured in our gene panel (34 of 90 trajectories when using a 0.02 VAF filter, 8 of 96
trajectories when using a drift-induced fluctuations filter, see below and Results for filtering
approaches); 3) individuals with clinical records indicating treatment that could affect the clonal
dynamics (1 participant, see S| methods). Both exclusion criteria 1 and 2 included participants

that likely had clones with multiple mutations based on visual inspection.
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Filtering fit variants using mathematical modelling of neutral drift

A critical birth-death process (Fig.2C) predicts drift-induced fluctuations (DIF) in the size of
clones with zero mean and variance o(t)? = 2An(t,)t, where n(t,) is the clone size at the start
of the observation period of length t, and A is the rate of symmetric self-renewing cell divisions.
This results in a predicted linear relationship between the VAF of a clone, v, and the expected
variance in the distribution of its fluctuations, Av (VAF gradient between two time points
normalised to be independent of time, S| methods). More precisely, the distribution of DIF, Av,
will have expectation 4, = 0 and variance ag,,2 = v(ty)A/N, where N is again the total number
of HSPCs in the individual. In the presence of a sufficiently large growing non-neutral mutation,
the expected size of DIF of neutral clones is no longer zero but decreases with VAF (Sl

methods), py, ~ —v(ty), While a,,,% remains proportional to VAF (S| methods).

We use the longitudinal trajectories of synonymous mutations, as a proxy for neutral mutations,
in the LBC to fit linear regressions p,, ~ —v(ty) and a,,% ~ v(t,) (Fig.3B). The DIF filter then
identifies variants whose growth cannot be explained by neutral drift fluctuations, that is variants

v satisfying Av > u,, + 20,,(SI methods).

Results

The Lothian Birth Cohorts allow for longitudinal profiling of CHIP variants in advanced
age

The Lothian Birth Cohorts (LBCs) of 1921 (n=550) and 1936 (n=1091) are two independent,
longitudinal studies of ageing with approximately three yearly follow up for five waves, from the
age of 70 (LBC1936) and 79 (LBC1921) (Taylor et al., 2018). We previously identified 73
participants with CHIP at Wave 1 through whole-genome sequencing (Robertson et al., 2019).
Here, we used a targeted error-corrected sequencing approach using a 75 gene panel
(ArcherDX/Invitae) to assess longitudinal changes in variant allele frequencies (VAF) and clonal
evolution over 21 years across both LBC cohorts and 12 years within each cohort (Table 1).
Error-corrected sequencing allowed accurate quantification, providing more sensitive clonal
outgrowth estimates compared to our previous WGS data. We sequenced 298 samples (89
individuals across 2-5 time-points) and achieved a sequencing depth of 1953x mean coverage
(1930x median) over all targeted sites with an average of 2.4 unique somatic variants (pan-
cohort VAF 0.0005-0.87, median VAF 0.025) detected per participant. We examined all

participant-matched events across the time-course: sequence quality control metrics revealed
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Figure 1. Clonal Haematopoiesis in the Lothian Birth Cohorts of 1921 and 1936.

A. Counts of unique events that exceeded 0.02 VAF across the range of the longitudinal cohorts
(approx. 70 - 79 years and 79 - 91 years in LBC36 and LBC21, respectively) in our panel of 75
haematopoietic genes.

B. Counts of the functional consequences of the unique events listed in Fig.1A, highlighting
missense mutations as the most frequently encountered event type. Several other key protein
altering event types rank highly, including frameshift insertions/deletions and nonsense
mutations.

C. Schematic of the top seven most affected genes in the cohort with the largest clone size of
an event in any given gene shown. All affected participants have been clustered across all
time-points, with the point size scaled by VAF and coloured by the functional consequence of
the variant (as per Fig.1B and legend). Participants broadly cluster together across their time-
course, driven by the expanding or stable VAF of their harboured mutations and underscores
the high prevalence and large clone size of common clonal haematopoietic drivers, namely,
DNMT3A, TET2 and JAK2.

D. Clone size trajectories of all DNMT3A mutations across the time-series in both LBC21 and
LBC36 coloured by the functional consequence of the variant (as per Fig.1B and 1C).

E. Locations of the somatic mutations discovered in DNMT3A. Protein affecting events are
marked and labeled across the structure of the gene (missense in red, truncating in purple,
stacked for multiple events) highlighting a strong, previously described tendency for CH events
in DNMT3A to occur in conserved structural and domain loci (which are coloured and labeled
along the amino acid length of the protein).

F. Clone size trajectories of all TET2 mutations across the time-series in both LBC21 and
LBC36 coloured by the functional consequence of the variant (as per Fig.1B and 1C).

G. The locations of somatic mutations in TET2. Protein affecting events are marked and
labeled across the structure of the protein (missense in red, truncating in purple, stacked for
multiple events).

H. Clone size trajectories of all JAK2 mutations across the time-series in both LBC21 and
LBC36 coloured by the functional consequence of the variant (as per Fig.1B and 1C). Points
marked in black denote time-points after which the affected participant received treatment for
leukaemia - potentially driving the observed reductions in clone size.

I. The locations of somatic mutations in JAK2. Protein affecting events are marked and labeled
across the structure of the protein (missense in red, truncating in purple, stacked for multiple
events). Here, all eight JAK2 mutations are p.Val617Phe (JAK2-V617F) missense variants.
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that only 12 of 466 data-points failed to meet our quality criteria likely due to low initial VAF. The
majority of our variant loci generally displayed a high number of supporting reads, with a mean
of 186 (SuppFig.1A).

For our initial analysis, we retained variants with at least one time-point at 0.02 VAF (Table 5).
DNMT3A was the most commonly mutated CHIP gene (n=53 events in 42 participants),
followed by TET2 (n=22 events in 18 participants), NOTCH1 (n=10 events in 9 participants),
JAKZ2 (n=8 events in 8 participants) and U2AF2 (n= 7 events in 6 participants) (Fig.1A and 1C).
Our mutation spectrum is consistent with previous studies in finding DNMT3A and TET2 as the
most frequently mutated genes. However, we detected a lower frequency of mutations in
splicing genes, such as SRSF2, U2AF1 and SF3B1, despite the older age of the cohort (Fig.1A
and SuppFig.1A). This is in contrast to previously published cohort data, where splicing
mutations became more prominent with increased age (McKerrell et al., 2015). The majority of
mutations were missense, frameshift and nonsense mutations (Fig.1B). Clonal evolution and
changes in VAF per participant over all time points are shown in Fig.1C and SuppFig.1C. We
detected some variants more frequently at certain hot spots within a gene such as p.Arg882His
in DNMT3A, with previously unreported variants being present as well (Fig.1D-l, Table 2,
(Jaiswal et al., 2014)). In the case of JAK2V617F, we identified two individuals who developed
leukaemia at Wave 2 and received treatment between Waves 2 and 3, likely driving a clear
reduction in clone size (Fig.1H). Those indivdiuals were excluded from further analysis.
Overall, our sequencing approach allowed for high resolution, longitudinal mapping of CHIP
variants over a 12-year time span per cohort and 21 year timespan across both cohorts from the

same geographical region and born 9 years apart.

Identification of harmful CHIP variants in the LBCs

Stem cell fitness is defined as the proliferative advantage over cells carrying no or only neutral
mutations. It remains incompletely understood to what extent fitness is gene- or variant-specific,
or determined by the bone marrow microenvironment and clonal composition. Earlier estimates
suggested a wide spread of fithess effects even for variants of the same gene (Watson et al.,
2020), which would make it difficult to clinically stratify individuals with CHIP. To determine the
fitness effects of the variants identified in our cohorts (Fig.1A), we initially selected all CHIP
variants in our data using the commonly used criterion of defining any variants with VAF>0.02
as CHIP (Jaiswal and Ebert, 2019; Steensma and Bolton, 2020), and retaining only those
variants with at least 2 time-points (Fig.2A). This approach identified 140 CHIP mutations
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Figure 2. Fitness effects of variants thresholded at 0.02 VAF.

A. VAF measurement v(t,) at initial time-point t, vs time-normalized gradient in VAF,

(v(tena) = v(t0)) / \[tena — to, between initial and last time-points t, and tenq of all variants
detected in the LBC with at least 2 time-points. Each data point corresponds to a trajectory in
the LBC and has been coloured according to its CHIP status based on the 0.02 VAF threshold
(dashed green line). Blue and orange respectively denote whether or not trajectories achieved a
VAF > 0.02 during the observed time-span. Inset: Close-up of low VAF region showing a large
number of variants below 0.02 VAF. Note data below 0.01 VAF were only included if the
trajectory later rises above 0.01, hence the data are less dense below VAF=0.01.

B. Number of trajectories passing the currently used 0.02 VAF-threshold, broken down into
whether VAF is increasing or decreasing from first to last time-point.

C. Schematic of mathematical model of clonal dynamics. Stem cells naturally acquire mutations
over time leading to the formation of genetic clones. Artwork includes images by Servier Medical
Art licensed under CC BY 3.0.

D. Fitted trajectories (lines) and fitness estimates (box-plots) for all variants in selected genes
DNMT3A, JAK2, ASXL1, TET2. Note decreasing trajectories occur even for non-zero fitness
because our model fitting takes into account the presence of other fit mutations in the same
individual.

E. Fitness effects of mutations ranked by median fitness. Note fitness is displayed on a
logarithmic scale to emphasize relative differences in fitness between variants. Boxplots show

median and exclusive interquartile range.

(Fig.2B) overall. To estimate the fitness effect each variant confers, we fitted longitudinal
trajectories using birth-death models of clonal dynamics (Fig.2C) on trajectories with 3 or more
time-points (Table 6). The resulting fitness values show an overall dependence of fitness on the
gene level (Fig.2E), with a wide distribution of fitness for some genes, such as TET2 and
DNMT3A (Fig.2D and 2E), but not others such as JAK2 (which are all the same variant).

Longitudinal trajectories allow for a more accurate stratification of CHIP variants

Since longitudinal data allow direct quantification of the growth in VAF over time, we can inspect
the gradients (fluctuations) in VAF for variants that were classified as CHIP based on
thresholding. We find that a VAF>0.02 threshold not only misses fast growing and potentially
harmful variants (Fig.2A), but can include variants whose frequencies are shrinking (Fig.2A and

2B) and thus either do not confer a fitness advantage or are being outcompeted by other clones.
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Overall, only 56% of CHIP mutations detected by thresholding at 0.02 VAF were growing during
the observed time span (Fig.2B). Longitudinal data thus reveal limitations in defining CHIP
mutations based on a widely used VAF threshold. We therefore sought to filter variants based
on longitudinal information, by selecting variants whose growth cannot be explained by the drift
in VAF from neutral fluctuations (Fig.3A). Using the longitudinal behaviour of synonymous
mutations in the LBCs, as a proxy for neutral trajectories, we find that the predicted linear
relationships for mean and variance of VAF-gradients (see Methods) accurately reflect the data
(Fig.3B). This novel approach, which we named drift-induced fluctuations (DIF) filter, allows us
to estimate the distribution of fluctuations due to the neutral drift of clone populations as a
function of VAF and detects variants growing more than two standard deviations from the mean
of the predicted neutral drift (Fig.3A, Table7). DIF-filtering resulted in 226 variant trajectories
(Fig.3C), 97% of which grew over the observed time span. We note that the VAF of fit mutations
may still shrink over time due to the presence of an even fitter clone in the same individual. This
is in contrast to thresholding at 0.02 VAF, with only 56% of variants identified to be growing and
thus likely to confer a fithess advantage. Of 226 variants we detected, only 81 would have been
detected using the previous VAF-threshold filter approach. We recomputed fitness estimates for
this new set of filtered trajectories (Fig.3F). Growing variants that were missed by the traditional
filtering method include highly fit variants such as U2AF1 c.470A>G and NPM1 c.847-4C>T
(Fig.3D and 3F). VAF-thresholding identified NOTCH1 as one of the top three most frequently
mutated genes in our cohort. However, only 1 of the 8 variants identified was growing over the
observed time-course. In contrast, all 6 NOTCH1 variants identified by using our DIF filter were
growing, thus our filtering method allows us to more effectively separate benign from potentially
harmful variants. Overall, the variants only detected by DIF-filtering, but not VAF-thresholding,
were of high fitness (Fig.3E).

We further stratified variants using a combination of computational predictors (Fig.3G, see
Methods), categorising the most prevalent CHIP variants into damaging (6 variants), possibly
damaging (3 variants) and likely benign (2 variants), as well as frameshifts and terminations (34
variants, which are also most likely damaging to protein structure and thus protein function). The
novel DIF-filter therefore produces a low false discovery rate of pathogenic variants, with 88% of
the detected fit variants being predicted to be likely damaging, frameshift or termination. As our
approach detects very few benign variants by design, we were unable to report statistically

significant differences between the fitness distributions classified by damaging. Further,
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Figure 3. Filtering trajectories based on whether they exceed neutral fluctuations.

A. Time-normalised gradient in VAF vs VAF for variants detected in the LBC with at least 2 time-
points and at least one VAF >0.01 per trajectory, with synonymous (orange dots), non-
synonymous fit (blue dots) and likely neutral (purple dots) mutations, classified based on
whether the gradient exceeds the drift-induced fluctuations (DIF) of synonymous mutations (red
line, two standard deviations above mean, green line). Inset: Close-up of low VAF region. Note
that data below 0.01 VAF were only included if the trajectory later rises above 0.01, hence the
data are less dense below VAF=0.01.

B. Statistics of fluctuations of synonymous mutations. Both the mean (middle) and variance
(top) of time-normalised VAF-gradients were fitted with a linear model. Only data at VAF = 0.01
where used as data below this are incompletely sampled (see A). The fit was weighted by the
number of data in each bin (bottom).

C. Number of trajectories passing the DIF filter, broken down into whether VAF is increasing or
decreasing from first to last time-point.

D. Variant trajectories in one individual classified according to the DIF filter. Mutations with
positive fitness effects are coloured according to variant classification (see Fig.1B) while likely
neutral trajectories are shown in grey. For fit variants, points correspond to the observed VAF
measurements and lines to the model fit. While the TETZ2 variant was also detected using the
0.02 VAF-threshold, the NPM1 and U2AF1 were only detected using the DIF-filter, as they did
not reach 0.02 VAF. In particular the U2AF1 variant is fast growing (s=0.364).

E. Fitness effects of variants broken down by filtering method.

F. Fitness effects of mutations ranked by median fitness. Note fitness is displayed on a
logarithmic scale to emphasize relative differences in fitness between variants (E&F).

Boxplots show median and exclusive interquartile range

G. Fitness effects of variants broken down by predicted mutation effect (see Methods).

H. Analysis of variance of the distribution of fitness across genes. Heatmap of all statistically
significant (p<0.05) Kruskal-Wallis H statistics, labeled by effect size, computed for all
combinations of pairs of genes.

I. Predicted growth of SF3B1 and DNMT3A variants over 10 years, all starting at 0.02 VAF,

using the median fitness effects per gene (F).

predicted benign mutations selected as fit could be the result of clonal hitchhiking (mutations co-

occurring in cells carrying a damaging mutation).
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Taken together, measuring changes in synonymous variants combined with mathematical
models of neutral drift results in an alternative method, DIF-filtering, that improves on the
threshold-based definition of CHIP mutations (Fig.3A), by replacing an arbitrary cut-off on VAF
by a choice of false discovery rate and as a result selecting fewer trajectories with shrinking
VAF (Fig.2B and 3C). Importantly, only 2 time points are necessary to apply DIF-filtering,

making this a widely applicable method for existing cohorts and future studies.

Predicting trajectories using our fitness estimates from single-time point data

We further analysed differences in the distributions of fithess between genes using a non-
parametric test. Despite having small sample sizes for many genes we still detected statistically
significant differences among the distributions of fithess effects (Fig.3H). In particular, we found
that mutations in gene SF3B1 conferred a higher fithess advantage over mutations in common
genes such as DNMT3A, TET2 or ASXL1. Differences in the distribution of fitness allow us to
predict the future growth of mutations from initial time-points. For example, if a patient presents
with a variant in gene SF3B1 or DNMT3A at 0.02 VAF, their growth is predicted to differ by
158% percent in 3 years (respectively achieving 0.057 and 0.026 VAF, assuming median fitness
for each gene), warranting a clinical follow-up over that time-frame. We have also tested
differences in fithess by genes when summarised into functional categories and found
trajectories of genes involved in DNA methylation to have lower fithess than genes involved in

splicing, the cohesin complex and histone methylation (SuppFig.2G and 2H).

Discussion

The clinical potential for stratifying progression of CHIP depends on whether genes confer
distinct fitness advantages. Indeed, most studies so far have not shown a clear distinction of
fitness effects on a gene basis, and have shown considerable overlap in fithess coefficients
between variants of different genes. We show that fitness can substantially differ by gene and
gene category. Combining longitudinal data with a new method to identify CHIP variants allows
for more accurate fitness estimates of CHIP than cross sectional cohort data, and motivates

further studies with increased sample sizes.

The strength of our approach, combining longitudinal data with our new DIF-filtering method, is
exemplified by NOTCH1 and LUC7L2. NOTCH1 variants identified by a 0.02 VAF threshold
were prominent in the LBCs (Fig.1A). However, all but one of these were shrinking in frequency.

In contrast, our DIF-filtering method identified 6 variants conferring a fitness advantage,
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including the only increasing variant detected at a 0.02 VAF level, c.4598A>C (Fig.3C).
Although NOTCH1 mutations commonly occur in leukaemia, this specific mutation has not been
reported in COSMIC, thus more cohort studies are needed to clarify a role for NOTCH1 in CHIP
(Ferrando, 2009; Rossi et al., 2012). LUC7L2 is a pre-mRNA splicing factor that has been
previously reported to be involved in CHIP, MDS and AML (Hershberger et al., 2016; Sperling et
al., 2017). LUC7L2 was excluded from our list of CHIP mutations when using a 0.02 VAF cut-
off. In contrast, we find several LUC7L2 mutations using DIF-filtering, thus supporting previous
findings. Other well-described CHIP genes that were only detected using DIF-filtering include
NPM1, TP53 and U2AF2 (see Fig.2E and 3F,(Jaiswal et al., 2014)). DIF-filtering also results in
higher fitness estimates for some genes, such as PPM1D, U2AF1 and RAD21, because we
either detected more trajectories of a gene with the DIF filter or were able to detect other
variants at small VAF in the same individuals (Fig.2E and 3F). Importantly, a minimum of two
time points per participant is needed to apply DIF-filtering, making this method widely applicable

to future prospective studies and existing cohorts.

Synonymous mutations in our study reached a VAF of up to 0.02 (Fig.3B). Some previous
studies have claimed that neutral events will typically not expand to > 0.001 VAF over a human
lifespan (Lee-Six et al., 2018), and that all synonymous variants detected are likely hitchhikers
(Watson et al., 2020). Our longitudinal data clearly show many synonymous and non-
synonymous mutations larger than 0.001 VAF that do not grow in VAF (Fig.3A) or whose growth
and shrinkage over time is consistent with neutral drift (Fig.3B and S| methods). If the
synonymous mutations were able to grow to such high frequencies by hitchhiking on clones with
fit mutations, these no longer have a fitness advantage over the observation period. An
alternative explanation considers the number N of self-renewing cells (HSPCs). For an
individual aged t, neutrally drifting mutations are only expected to achieve ~ +/t/N VAF. Recent
studies, therefore, suggest that the high frequency at which CHIP is found in the elderly is likely
the result of a small pool of stem cells (Zink et al., 2017). Estimates for the number of HSPCs in
healthy adult humans vary widely, with recent phylogenetic estimates suggesting 50k-200k
(Lee-Six et al., 2018), whereas other estimates suggest 11-22k (Abkowitz et al., 2002). On the
lower end, a study based on allometric scaling estimates that the “pool of actively replicating
cells that contribute to hematopoiesis” is around 500 cells (Dingli and Pacheco, 2006). In our
study, the distribution of gradients of synonymous variants provides the estimate § ~ 1/N,
where 6 corresponds to the slope of the linear relation between variance and vaf (Fig.3B) and A

to the rate of self-renewing divisions. Using the well-established rate 1 = 1.3/year (once every
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40 weeks, (Catlin et al., 2011)) we obtain an estimate on the number of HSPCs of N ~ 6500
(see SI methods for a more detailed analysis). The presence of neutral events reaching large
VAFs in our data could be explained by a depletion of the stem cell pool in participants of the
LBC (80 years mean across all collected blood samples). Both a study of somatic mutations in a
115-yr-old woman and a recent longitudinal study following the evolution of clones in an
individual from age 103 to 110 (3 time points) found that likely benign clones achieved VAFs of
up to 0.3 (van den Akker et al., 2020; Holstege et al., 2014)- suggesting a very small pool of
stem cells. Another possible explanation is that the observed variants arose in cells with faster
rates of self-renewing symmetric divisions 4, either due to natural selection of faster dividing
HSPCs or because the observed variants in the LBC arose in different HSPC compartments,
such as multipotent progenitor cells (Barile et al., 2020; Morcos et al., 2020; Takahashi et al.,
2021). Since we can only directly measure 6, it is possible that both a depletion of the pool of
HSPCs at old age and heterogeneity in the self-renewal rate A have enabled neutral events to
reach high VAFs. Despite the disparity of estimates on the number of HSPCs in healthy
individuals between studies, the fitness estimates we report (Fig.2 and Fig.3) are valid for the

wide ranges of reported HSPC estimates (SuppFig.2E and 2F and SI methods).

In this work, we have assumed each mutation to uniquely identify a clone. It is possible for
multiple mutations to have occurred in the same clone, though this has been estimated to be as
rare as 0.16 double mutants per person, for mutations conveying a fitness advantage s = 0.1,
achieving VAF > 0.005 at age 80 (Watson et al., 2020). There may be a few variants that are
double mutants, and these would increase the distribution of fithess reported for individual
genes (Fig.2C and 3F), but not strongly affect the median fitness per gene. Double mutant
clones in which one mutation is a hitchhiker contributing little to the fitness effect could be
identified by seeking trajectories with very similar fitness values. Further work could estimate the
fitness effects of double mutants by identifying possible subclone structures and then fitting
models separately for each case. Ultimately, we will need single-cell targeted sequencing or
colony growth essays combined with sequencing to verify the identity of clones with multiple

mutations.
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Supplemental Figure Legends

Figure S1. Clonal Haematopoiesis in the Lothian Birth Cohorts.

A. Sequence quality metrics for our mutation calls across all participants and time-points filtered
for 0.02 VAF. Plotted here are the AO (the number of sequenced reads supporting the
alternative allele (mutation)) against the UAO (the number of sequenced reads with unique start
sites that support the alternative allele - an additional measure of molecular complexity in our
sequencing libraries). The red dotted lines denote the filter thresholds in both measurements
(AO = 5, UAO = 3) and points are scaled by the VAF of the somatic mutation. Having mined for
participant matched data points for any variant that surpasses our 0.02 VAF threshold, only 12
data points failed to meet our filter criteria (of 466). We did not exclude these as they were
supported with matching events across any participants’ time series.

B. Box and jitter plot of the variant allele frequency of all observed events in the 1st Wave at a
0.02 VAF filter coloured by variant classification and ordered by largest mean VAF.

C. Schematic of all affected genes in the cohort with the largest clone size of an event in any
given gene shown. All affected participants have been clustered across all time-points, with the
point size scaled by VAF and coloured by the functional consequence of the variant (as per

legend).
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Figure S2. Cohort properties for fitness estimates

A - D. Box plots show median (bold line) and mean (dashed line) and exclusive interquartile
range.

A. Distribution of maximum VAF, v, per participant of the LBC. v is computed as the mean over
all observations of a trajectory. One trajectory with v > 0.5 was excluded for this distribution.

B. Distribution of maximum inferred fitness, s, per participant of the LBC. This distribution only
shows participants with at least one trajectory selected as fit using the DIF filter.

C. Distribution of maximum inferred s * v per participant in the LBC. s corresponds to the
inferred fithess of a variant and v to its average observed VAF. This distribution only shows
participants with at least one trajectory selected as fit using the DIF filter.

D. Distribution of maximum VAF, v, of synonymous mutations per participant of the LBC. v is
computed as the mean over all observations of a trajectory.

E. Hypersurface of parameters producing the same fit to the evolution of a fit clone in a
participant of the LBC. Each marker corresponds to a combination of parameters (fitness,
number of wild type HSPCs in individual and time of mutation acquisition) fitted to the trajectory
of a participant in the LBC. The colour scale shows the absolute difference between the inferred
fitnesses associated with each marker and the fit producing the least squared error. All markers
shown are within a relative tolerance of 107 of the solution presenting the least squared error.
F. Hypersurface of parameters producing similar fits to the evolution of clones in a participant of
the LBC with 3 fit variants. Each marker corresponds to a combination of parameters (fitness,
number of wild type HSPCs in individual and time of mutation acquisition). Curves were fitted
simultaneously, sharing a common number of HSPCs. The colour scale shows, for each variant,
the absolute difference between the inferred fithesses associated each marker and to the fit
producing the least squared error. All markers shown are within a relative tolerance of 2x107 of
the solution presenting the least squared error. Notice that the fitness of variant DDX41
marginally increases when the time of mutation acquisition meets the boundary at age 0 in the
exponentially decreasing hypersurface of parameter solutions.

G. Fitness effects of mutations grouped by gene category and ranked by median fitness. Note
fitness is displayed on a logarithmic scale to emphasize relative differences in fitness between
variants.

H. Analysis of variance of the distribution of fithess across genes. Heatmap of all statistically
significant (p<0.05) Kruskal-Wallis H statistics, labelled by effect size, computed for all

combinations of pairs of genes.
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Supplementary Methods for
“Longitudinal dynamics of clonal hematopoiesis
identifies gene-specific fitness effects”

1 Birth-death model of clonal dynamics

Consider a population X (t) of haematopoietic stem and progenitor cells (HSPCs)
in an individual at time ¢. A classical model of stem cell population assumes that
HSPCs divide and differentiate according to the following birth-death process,
(Till et al., 1964; Watson et al., 2020):

HSPC — HSPC + HSPC, with (A+s) dt, (1)
— D+ D, with A dt,
— HSPC + D, with  Adt,

where D denotes a differentiated cell. Since differentiated cells cannot self-renew,
differentiation will result in cell death and is treated as such. The deterministic
behaviour of this system is given by

dX

—(t) = sX(1). 2

3 (1) =sX(®) (2)
Consequently, the time evolution of the population of HSPCs is

X(t) = X(0)e™, (3)

where X (0) corresponds to the initial population at time ¢ = 0. It is clear that
parameter s regulates the excess growth towards self-renewal and dictates the
evolution of X ().

The stochastic behaviour of this model, on the other hand, is more involved. As-
suming that X (0) = 1, X (¢) has the following probability distribution (Bailey,
1990):

—« — m=1 "y
P{X(t)_m}_{s A=§Fm m >0 n

)
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where

(et —1) -
4= (A +s)est =\ b=

Ats)(e=1)
Drset—a ®)

More generally, the distribution accounting for the case when the initial popu-
lation is a > 0,

P (t,0) =P{X (t) =m | X (0) = a}, (6)

can be analytically derived as

pX (t.0) = {Zmin(a,m) ((l) (a+m—j—1)aa—j6m—j (1—a- ﬁ)J m>0,

7=0 J a—1
a’, m = 0.

(7)

Of particular relevance is the mean and variance of X (¢), if X (0) = a:

px () =ae’® and o% (t) = @e“ (e’ —1). (8)

2 A stochastic model of neutral clones

Assume that all HSPCs in an individual follow a critical birth-death (CBD)
process (s = 0). When a mutation occurs in a HSPC it gives rise to a genetic
clone ¢; with

n; (t) = Number of HSPC cells in clone ¢; at time t¢. (9)

For now, we assume that mutations have no impact in the bias towards self-
renewal, s, and that n; in turn follows a CBD process. We refer to {c¢;}iec
as the collection of all neutral clones (s = 0) present in the individual. If we
denote by t¢; the time of acquisition of the mutation, so that n; (¢;) = 1, then
the probability distribution of n; (t) is given by the limiting case s — 0 of (4) ,
(Bailey, 1990). That is, for any ¢t > ¢;,

2 m—1
1 A(t—ti) 0
P{n; (t) = m} = (iéi(é) m) () - m> (10)
T+A(t—t;)’ m =0,

Further, given ty > t;, for any t > ty consider
pri (tya) :=P{n; (t+tg) =m | n;(to) =a}. (11)

The mean and variance of this probability distribution can be derived, again,
as the limit s — 0 of (8),

tn, () = ni (to) and o2 (t) = 2An; (to) (t — o) . (12)

ez
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2.1 Distribution of VAF gradients in neutral clones

Next, we want to understand how the stochastic evolution of HSPC counts
over time translates to the evolution of the variant allele frequency (VAF or
blood share) of genetic clones. Further, rather than the distribution of VAFs at
a particular time, we want to derive the distribution of expected gradients of
VAF between two time points.

2.1.1 Linear scaling of random variables

First, let us remind the scaling properties of the mean and variance of a random
variable under affine transformations. Let X be a random variable with mean
px and variance 0% and define Y as

X +b

Y =" (13)

for scalars b and k. Then mean and variance scale as follows,

_ px +b

2
ny ? and o% = X (14)

2.1.2 Distribution of VAF evolution

Since we assume that all HSPCs in the individual follow a CBD process, the
total population of HSPCs remains stable, on average, at N. Further, since
asymmetric divisions are far more common than symmetric divisions, we can
assume that the number of differentiated blood cells produced by a clone of
HSPCs is directly proportional to the clone’s size. We therefore model the VAF
of a clone ¢; at time t > t; as

n; (t)
i t) = )
vi (t) = <
where the factor 2 in the denominator is the result of diploidy in HSPCs.

(15)

Further, for any time ¢ > ty > t; we can consider the probability distribution
pli(t,a) of the evolution of VAF from an initial state v;(tp) = a as in (11). It
follows from the distribution of clone sizes (12) and scaling properties (14) that

_ ZA’N,? (to) (t — to)

. (16)

o, (1) = v; (ko) and o2, (¢)
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When observing VAF distributions, it is worth noting the natural emergence of
parameter

A

A CBD model of the evolution of clones in HSPCs, therefore, yields that the
variance of the distribution of VAFs at time ¢ from an initial state v;(tg) is

o2 (t) = Ovi(to) (t — to) . (17)

vy

2.1.3 Distribution of VAF gradients between two time points

Again, for any t > ¢y > t; consider the VAF evolution v;(t) of a neutral clone ¢;
and the resulting probability distribution of the time-adjusted gradient
vi (t) — vi (to)

Vi—to

From scaling properties (14) and the distribution of VAFs of neutral clones (16)
and (17), it follows that

Ay, (t) = (18)

s, () === = =0 (19)
and
2 03, (t)
O, (t) = ti o Ov; (to) - (20)

Notice that by considering a time-adjusted gradient (taking the square root of
the time difference) the variance of A, (t) becomes independent of time.

3 A stochastic model of neutral clones in the
presence of a fit clone

In the following we want to study the evolution of a neutral clone’s gradient in
the presence of a non-stochastic growing mutation (the deterministic limit for
s> 0). Consider an individual with a collection of neutral clones, {c;}icr, that
harbours a mutation at time ¢ giving rise to a clone c; with a fitness advantage
s> 0.

In the continuum limit, the deterministic evolution (3) of the clone’s size ny (t)
is
ng (t) = est=tr),
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The total pool of HSPCs in this individual is, therefore, comprised of a collection
of wild type HSPCs that remains constant in time at N,, and a mutant growing
population of size ny(t):
N (t) = expected amount of HSCs at time ¢
=N, + nf(t).

The evolution of the time-adjusted VAF gradient of neutral clones then becomes

Vi (t) — U; (to)

T 2/i—to \N({t) N/’
3.1 Neutral drift in the presence of a fit clone

Here we will show that A,,(t) = a(t)Ag,(t) + b(t), where v;(t) corresponds to
the evolution of a neutral clone’s VAF in the absence of fit clones,

Bilt) = Z]\(,i)

(21)
and a(t) and b(t) are functions of time, independent of the random process n;(t).

First, notice that

_nt)

v = 58
= f(t)i(t), (22)
with f(t) = Nw/N(t). The mean value theorem asserts that 3¢ € [to, ] so that
f(to) = f(t) = (t = t0) f'(€) (23)

and

Ay, (t) = F@)0i(t) — f(to)vi(to)

VE—to
= f(t)As,(t) + vVt —tof'(&)vi(to)- (24)

3.2 Estimating the mean gradient of neutral variants

Since the expectation operator yi.)(t) is a linear operator and pay, (t) = 0, (24)
yields

pa, (t) =Vt —tof (§)vi(to). (25)
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From the definition of f(t) it follows that, f'(§) = —2svs(£)f(§). Combining
this expression with (22) we have

1a,, (t) = —Uz‘(to)QSUf(f)J{((fo))vt — to, (26)

and assuming f(§) = f(to),
pa, (8) & —ui(t0)2s0, (VI o (1)

for £ € [to,t]. We use the Lothian Birth cohort (LBC) data to extract statistics
about the distributions of VAF and fitness of clones to check that this linear
relation holds true (Fig.3B and SuppFig.2A-D). We find that the median over
all participants with a measurable fit mutation (fit mutations can occur outside
the set of sequenced genes) of the maximum realisation of vs(t) * s across all
present fit clones is

median max vy * s ~ 4 x 107° (28)
peLBC fep

where vy is the averaged VAF over all data points (SuppFig.2C). Further, the
average over all combinations of t,ty in our data is v/t — tg &~ 2.5. With these
we estimate

KAy, (t) = —av;(to), (29)

with a ~ 0.02.

We estimate the mean of VAF fluctuations of neutral clones by averaging the
fluctuations of synonymous trajectories (clonal trajectories of genetic variants
not changing the coded amino acid) with the same VAF, v, across all partici-
pants, Ly, (to)=v(Ay, (t)). Fitting a weighted linear regression model on our data
yields

o (to)=v (Do, (1)) = —av + b (30)

with a ~ 0.3 and an intercept b ~ 1073 to account for the lack of observations
of extinction events (Fig.3B). There are a number of possible reasons for the
numerical discrepancy of the theoretically estimated and empirically observed
slope, such as the approximation f(§) ~ f(to) made above, but also the fact
that many individuals will have multiple fit clones affecting the gradients of
VAF of neutral variants.

3.3 Estimating the variance of gradients

From (24) and scaling of random variables (14) we find

0%, (1) = F(1)%03, (0. (31)
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First notice that, in the presence of a small fit clone ng(t) < N, & vf(t) <
0.25, the scaling factorf(¢) is bounded by 1/2 < f(£)~' < 1. This initial
approximation yields a bound on the variance of fluctuations in the presence of
small clones:

o%, ()
S Bt MURSS WO (32)

A more careful analysis shows a linear relation oX () ~ vi(to). Combining
(31) and (17) we obtain '
Af(t)?

UQA” (t) = mvi(to)- (33)

Then, approximating f(t) = f(to) yields

A

Finally, from the definition of VAF it follows that N, + ns(t) = 17%; @ and

o ML= 204(1))

A, (t) = N, vi(to)- (35)

To estimate o} () from the LBC data we approximate 0% (t) by the vari-

ance of observed gradients over all synonymous trajectories with v;(to) = v,
Gﬁi(to):v(A“i (t)). To compute the variance over trajectories with v;(t) = v we
bin trajectories by VAF size. Then a linear regression fit using weighted least

squares (weighted by bin size) yields (Fig.3B):
Jii(to):U(Avi (1) =2 x 10~ %o, (36)

4 Estimation of the number of HSPCs in partic-
ipants of the LBC.

Combining (35) and (36) we can provide an approximation of the number of
HSPCs in an individual

AL — 204 (1))

N, ~
v 2 x 104

(37)
Denoting by v; the mean VAF of a clone v;(t) over the observed time span in

the LBC, we approximate

v (t) ~ median max v; & 3.38 x 1072, (38)
pELBC i€l
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as the median over all participants in the LBC of the mean VAF of their largest
clone (SuppFig.2A). Further, we use the well-established estimate that HSPCs
divide symmetrically for self-renewal every 40 weeks (Catlin et al., 2011), A =
1.3, and estimate

N,, ~ 6000 (39)

4.1 Estimations not accounting for the presence of fit clones

Since fit variants remain relatively small, notice that estimate (39) does not
differ much from the estimate obtained directly from the evolution of neutral
clones in the absence of a fit clone (20),

A
Ny=——~ . 4
w= 5 701 6500 (40)

An even simpler approach to estimating the number of HSCs is provided by
the distribution of neutral clones (16). At age ¢ the maximum VAF reached by
neutral clones, ¢;, should be .

(1) & Ly, (T 20, (t
(e vi(t) & oy (£) + 200, (1)
— N (0.5 + \/2/\15) . (41)

In the LBC data, we estimate max,,,9)—1 vi(t) using the mean size and age of

i

synonymous trajectories vy (SuppFig.2D):

mean max v, ~ 1 x 1072, (42)
peLBC vs€p

Using the average age of participants during the observation of the trajectories
used to compute the above estimate, t &~ 80 years, we obtain the rough estimate

N,, ~ 1000. (43)

5 Drift-induced fluctuations filter

In the LBC, we estimate linear relations (30) and (36) and select clonal tra-
jectories, v(t), growing more than the expected growth over the observed time
span,

Ay(t) > Mo, (to)=v (A, (1) + 20—31(t0):v (A, (1)), (44)

as mutations conferring a fitness advantage, s > 0.
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Notice that, although this sieving method depends on the length of the obser-
vation period t — t, estimate (30) takes into account the average observation
period of clonal trajectories. Further, the square root scaling of time in (27)
reduces in the impact of the difference of observation periods; a span of 3 to 5
data points per trajectory yield v6 </ — o < V12 .

6 Estimating clonal fitness

Given an individual with a collection of fit clones {c; };c r with fitness parameters
{si}ier, their predicted deterministic time evolution is

esf(tftf)
N Yepen Tt

vr(t) (45)
for f € F'. We fit this evolution to data using least squares to infer parameters
(sf,ty) for each clone {cf}ser and a parameter N, shared across all clones
present in the individual.

We note the existence of a hypersurface of parameters yielding the same evolu-
tion. In the case of a single fit clone, v¢(t), equation (45) can be re-parametrised
as

1

= S sa(s)e (46)

v (t)
with a(s) = Nye®/. Therefore, any combination of parameters N,, and ¢ sat-
isfying N, = a(s)e™* will produce the same VAF evolution vs(¢) (SuppFig.2E
and 2F). Let us highlight that, although different choices of N,, will result in
a different t¢, the order of mutation acquisition remains unchanged with any
choice of parameters in the specified hypersurface.

In this study we have refrained from fitting the 2-parameter model given both
the impracticality of providing realistic bounds to a(s) (constraining N,, within
a pre-established ranges and ¢y < t¢ < t within achievable times as a function of
fitness) and to show the existence of global solutions that span across different
estimates of IV, in the literature through no or minor adjustments of inferred
fitness values (SuppFig.2E and 2F).

7 Multiple fit clones

If two clones with s1 2 > 0 are present in an individual, the VAF is given by

esit

= N et (47)

Vg
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Assume without loss of generality that the second clone is fitter, so > s1, and
consider under what conditions the VAF of the first clone will shrink, i.e.,

dU1

—_— 4
& <0, (48)

which is equivalent to

eslt (Sleslt + SzeSQt)

. 4
s1v1 < (No et + 652t)2 (49)
Solving for t gives
1
t> (%NO), (50)

where As = sy — s1. From this we can see the fitter clone will always cause
the first clone’s VAF to shrink for times greater than (50). As we expect, this
happens earlier for fitter secondary clones (greater s3), and there is a further log-
arithmic dependence on the fitness of the first clone (later shrinking for greater
s1), the size of the neutral HSPC pool (later shrinking for greater Ny), and the
difference in fitness between the two clones (earlier shrinking for larger As).
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