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Abstract

Motivation

The ongoing SARS-CoV-2 pandemic has demonstrated the utility of real-time analysis of

sequencing data, with a wide range of databases and resources for analysis now available.

Here we show how the real-time nature of Oxford Nanopore Technologies sequencers can

accelerate consensus generation, lineage and variant status assignment. We exploit the fact

that multiplexed viral sequencing libraries quickly generate sufficient data for the majority of

samples, with diminishing returns on remaining samples as the sequencing run progresses.

We demonstrate methods to determine when a sequencing run has passed this point in

order to reduce the time required and cost of sequencing.

Results

We extended MinoTour, our real-time analysis and monitoring platform for nanopore

sequencers, to provide SARS-CoV2 analysis using ARTIC network pipelines. We

additionally developed an algorithm to predict which samples will achieve sufficient

coverage, automatically running the ARTIC medaka informatics pipeline once specific

coverage thresholds have been reached on these samples. After testing on run data, we find

significant run time savings are possible, enabling flow cells to be used more efficiently and

enabling higher throughput data analysis. The resultant consensus genomes are assigned

both PANGO lineage and variant status as defined by Public Health England. Samples from

within individual runs are used to generate phylogenetic trees incorporating optional

background samples as well as summaries of individual SNPs. As minoTour uses ARTIC

1

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.13.459777doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.459777
http://creativecommons.org/licenses/by/4.0/


pipelines, new primer schemes and pathogens can be added to allow minoTour to aid in

real-time analysis of pathogens in the future.

Availability and Implementation

Source code and documentation is available at https://github.com/LooseLab/minotourapp.

Supplementary information

Supplementary data are available from

https://github.com/LooseLab/artic_minotour_analyses.

Introduction

Oxford Nanopore Technologies (ONT) range of sequencers (MinION, GridION and

Promethion) have transformed sequencing from a fixed to real-time process (Jain et al.,

2016). By writing batches of sequenced reads to disk after DNA has finished translocating

the pore, sequence data become available immediately, meaning data analysis can begin

earlier, reducing the total time required to answer a specific question. The ongoing Covid-19

pandemic has provided a clear demonstration of the proposed benefits of real-time analysis

of sequence data (Gardy and Loman, 2018; Quick et al., 2016), with questions such as

lineage assignment and Variant of Concern/Variant under Investigation (VoC/VuI) status

potentially being time sensitive (O’Toole et al., 2021). In theory this can be accelerated by

incrementally analysing reads as they are created, a feature unique to ONT sequencers that

we exploit here.

In our work as members of the COG-UK network (COVID-19 Genomics UK (COG-UK)

consortiumcontact@cogconsortium.uk, 2020), we generated thousands of SARS-CoV2

consensus sequences using ONT sequencers. To assess sequencing performance in

real-time, we used minoTour, our real time analysis and monitoring system (Munro et al.,

2021) (https://github.com/looselab/minotourapp), to track the performance of each

sequencing run. Given that ONT flow cells, even using barcodes, can provide more data

than required for an individual viral genome, it makes sense to stop sequencing once

sufficient data are available for the analysis to be completed. Shorter sequencing runs

preserve flow cell health, which can then be flushed and reused for other sequencing

libraries and experiments. If efficiently implemented, this can reduce the cost per sample for

sequencing. We therefore integrated these capabilities into minoTour.
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The ARTIC Network (Tyson et al., 2020; Quick et al., 2017) (https://artic.network) provides

comprehensive protocols for both wet lab and downstream state-of-the-art best practice

informatics analysis for SARS-CoV2. The optimal ARTIC pipeline uses Nanopolish (Loman

et al., 2015; Quick et al., 2017) for signal level analysis of Nanopore data during variant

calling. As an alternative to Nanopolish, ARTIC provides medaka, a machine learning

pipeline which only requires FASTQ data (https://github.com/nanoporetech/medaka). As

signal level data are unavailable within minoTour, we integrated the ARTIC medaka workflow

to enable real-time generation of consensus genomes in parallel with sequence data

generation. This contrasts with other web based analysis platforms which either do not

exploit the real-time features of the nanopore platform or do not have access to the

sequence data themselves for further analysis (Ferguson et al., 2021; Bruno et al., 2021).

The ARTIC network provides a tool, RAMPART, which can monitor a run over time and

complete analysis for individual samples, but does not provide many of the other features

shown here at this time (https://artic.network/rampart).

To enable automatic consensus generation minoTour uses a real-time predictive model for

viral genome sequence coverage. Combining this with the ARTIC medaka pipeline, we can

exploit the real-time features of Nanopore sequencing and demonstrate significant savings in

run time, with resultant cost savings from flow cell reuse as well as faster identification of

VoC/VuI’s in specific samples. MinoTour alerts the user through the Twitter API that a run

can be stopped as well as providing visual feedback on the website that further sequencing

may be a waste. The user can then use minoTour’s detailed breakdowns and visualisations

of the ongoing sequencing run to make an informed decision on when to stop the run. Whilst

this step could be automated, we have not implemented this as specific individual samples

may be important enough that the user wishes for a run to continue, even with the reduction

in useful data being generated.

We analyse the impact that stopping runs early may have on the generation of consensus

genomes for samples by comparing the consensus sequences for 454 SARS-nCoV-2

samples assembled by both the medaka and nanopolish pipelines, investigating

Phylogenetic Assignment of Named Global Outbreak (PANGO) lineage assignment, VoC/VuI

assignment, as well as SNP calls for each sample at relevant timepoints during the run. We

find a small loss of coverage from the last sample to complete on an individual flow cell.

However, PANGO lineages and VoC/VuI assignments are all concordant within our 454

samples at all time points with both Nanopolish or Medaka based pipelines. Some SNP

differences are observed, but these are predominantly ambiguous no calls (i.e an N at an

individual position) rather than miss-calls.
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Implementation

minoTour - A real-time LIMS system

MinoTour is free and open source software, written in python using the Django framework

(see Munro et al). A separate command line client, minFQ (available via PyPi), uploads

sequence data and sequencer metrics from the sequencing computer to the minoTour

server. Once sequence data arrives, minoTour stores it in memory until it can be processed.

Once processed and analysed, any sequence data are usually discarded, although they can

optionally be stored in a database. Produced metrics are always stored in the database and

visualised in the browser. MinoTour is compatible with Oxford Nanopore MinION and

GridION sequencers and can process FASTQ files as generated by the Guppy base caller.

Arctic Pipeline implementation

Our ARTIC based SARS-CoV2 python pipeline is executed as a Celery

(https://docs.celeryproject.org/en/stable/) task, processing read batches pulled from

minoTours memory cache. The pipeline is asynchronous, preventing blocking of any other

analyses being performed. Reads are first filtered by length, with the minimum and

maximum l calculated from the mean length of all amplicons in the scheme, plus/minus 50%,

respectively. Reads are also filtered by the QC score assigned by Guppy, with only passing

reads (Q score > 9, see Guppy release notes) being used in further analysis. The filtered

reads are then mapped to an appropriate SARS-CoV-2 reference using minimap2 (Li, 2018).

A numpy array of the length of the reference is created for each barcode as it is identified,

and per base coverage is tracked using the mapped reads in real-time (van der Walt et al.,

2011).

Coverage is tracked for each individual amplicon as defined by the primer scheme in use.

Default parameters for triggering the analysis of a specific sample are at least 90% of the

amplicons (completeness) covered at a median depth of at least 20x (coverage), but this can

be changed by the user depending on requirements. Once this threshold has been passed,

the accumulated mapped reads for that sample are passed to the ARTIC network medaka

pipeline. The user can apply multiple coverage and completeness thresholds, re-triggering

the analysis if more data becomes available. Varying primer schemes can be chosen,

including custom schemes, simply by creating the appropriate primer scheme and reference

files and uploading them to minoTour.
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Once a consensus genome is available for a sample, minoTour uses pangolin (O’Toole et al.,

2021) to assign a PANGO lineage from the most recent lineage classifications. After this

step, the consensus sequence is compared with the current VoC/VuI definitions as defined

by Public Health England (https://github.com/phe-genomics/variant_definitions) using the

Aln2Type tool (​​https://github.com/connor-lab/aln2type). Both PANGO lineages and VoC/VuI

designations are automatically updated daily by minoTour. Together, these generate a report

for each sample (see Supplementary Figure 1C,D) and optionally the user can be notified if

a VoC/VuI has been identified via the Twitter API. Finally, the sequences within each run are

globally aligned using MAFFT (Katoh et al., 2002) and an illustrative tree generated using

iQ-Tree (Minh et al., 2020) and visualised with figtree.js or ToyTree (Rambaut; Eaton, 2020).

Additional background sequences can be included in these trees if desired and the

distribution of SNPs within consensus sequences from the run compared with the reference

are displayed in a snipit plot (https://github.com/aineniamh/snipit) (Supplementary Figure

1A). Links out from minoTour are provided to http://cov-lineages.org and http://outbreak.info

for each specific variant identified as well as to the individual descriptors and data sources

used to determine VoC/VuI classifications.

Results from the pipeline are maintained for historical record, with files stored on disk and

metrics about the ARTIC sequencing experiment stored in a SQL database. These results

are then visualised in the minoTour web server (discussed below). At any point, the user can

choose to fire the ARTIC pipeline on one or all samples to investigate specific samples in

more detail. Once a run has completed, automatically recognised by the fact that no further

data are added to the flow cell within a fixed period of time, all analyses are automatically

re-run to ensure maximum coverage for consensus generation. A retention policy for

sequence data is set globally for the site and all read data can be automatically scrubbed

from the server after consensus generation, if desired.

Amplicon coverage prediction model

MinoTour predicts if individual samples are likely to result in an informative genome

sequence, requiring no prior knowledge about sample numbers loaded on to an individual

flow cell. MinoTour assumes the user is seeking minimal useful genome completeness

(default 90% amplicons with at least 20X median “pass” read coverage). By using median

depth, the impact of small insertions/deletions influencing our assessment of low coverage

amplicons is reduced. The median coverage is only calculated for unique regions of each

amplicon, excluding overlap to prevent artificial coverage inflation on schemes that contain

amplicons with more than 50% overlap with neighbours. For making predictions, we assume
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that an ONT flow cell can generate at least 100,000 reads for each barcoded sample loaded

and so project if each sample will reach minimal useful completeness. Our model's algorithm

is applied to each amplicon in the scheme (Equation 1). A sample is projected to finish if

90% of the amplicons have a predicted final coverage over the minimum required coverage

(default 20X). All sequencing runs gather data for 1 hour before any of our strategies are

used to ensure reasonable sampling of the loaded library.
𝐴𝑚𝑝𝑙𝑖𝑐𝑜𝑛 𝑚𝑒𝑑𝑖𝑎𝑛 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 ×  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟𝑐𝑜𝑑𝑒𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 ×  100, 000 ≥  𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

Equation 1 - Used to predict if an amplicon will achieve the minimum required coverage

during a run.

ARTIC visualisations and reporting

Once the pipeline is underway, a new tab is added to the respective flow cell page,

containing all data and visualisations pertaining to this ARTIC run (Supplementary Figure 1).

The tab contains two sections of visualisations, with the top visualisations  (Supplementary

Figure 1A,B) showing the performance of all samples in the run, and the bottom section

visualising a detailed performance for an individual sample. The visualised metrics include a

bar chart displaying the read count for all barcoded samples, a bar chart displaying the mean

read length of each sample in the run and the proportion of reads in the run that are

unclassified vs. classified.

Below this a sortable and searchable summary table showing users metrics about each

sample in the run, with average coverage, number of amplicons at >20X, >1X and 0X and

basic statistics such as mean read length and read count displayed. If the sample has

sufficient data to be run through the ARTIC pipeline, we display the assigned lineage and

VoC/VoI status, and colour code the table row to indicate the sample has completed.

If a sample is selected to display more information, visualisations display a per base

coverage across the sample genome, with plot bands displaying the primer schemes

amplicon coordinates that the sequencing library was amplified with. Assigned PANGO

lineage information is provided, with links out to further information describing each lineage

(htpps://cov.lineages.org and https://outbreak.info). The VoC/VuI report generated by

Aln2Type is visualised and the final status assigned displayed. A PDF report for each

barcode and the overall run can be exported, showing all above metrics for each barcode

(Supplementary File 1).
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At the completion of a sequencing run, consensus sequence, pass and fail VCF files, BAM

files and pangolin lineages can be downloaded. Optionally, these features can be disabled

and minoTour will remove all files that may contain identifiable information from the server.

By maintaining compatibility with standard ARTIC bioinformatics pipelines, this tool can be

adapted to run any ARTIC compatible pathogen analysis simply by uploading the

appropriate reference files.

Post Run Genome Analysis

To investigate how manipulating run time affects results, we defined three timepoints of

interest for a sample during a sequencing run. The full run time (FR), the run until time (RU)

and the stop at time (SA). FR is defined as the time point at which the run completed with no

intervention. RU is the point in a run where all samples our algorithm predicted would

complete (90% completeness, 20X) had done so. Finally, SA is the point at which an

individual sample in a run reached sufficient completeness and is automatically put through

the ARTIC pipeline by minoTour, whilst the run continues.

To create consensus genomes from time points equivalent to our ARTIC pipeline and

compare the results of both medaka and nanopolish we had to identify both the signal

(FAST5) and FASTQ files equivalent to those minoTour would see. We mapped all reads

from each barcode across all 13 reference ARTIC runs using minimap2 (Li, 2018) in file

creation order. Using mosdepth (Pedersen and Quinlan, 2018) we determined coverage at

each base across the reference genome and then median coverage for each amplicon using

the same approach as in minoTour. This identifies the time points when sufficient data are

available to trigger minoTour to analyse the genomes. The creation time point for the FASTQ

file that results in sufficient coverage to meet the appropriate thresholds identifies the time in

the sequencing run when analysis would occur. Using this method, we can identify the

equivalent FAST5 files enabling us to analyse the data with both medaka and nanopolish.

The code to generate this analysis is available from

https://github.com/LooseLab/artic-minotour-analyses-scripts. For each of these timepoints,

we generated consensus FASTA files to calculate genome recovery, defined as the

proportion of non N positions in the final sequence. Whilst this is not a direct comparison to

our completeness metric, it is a close approximation, as any base that has 20X coverage

going into the ARTIC medaka pipeline will most likely be called as non N.
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Results and Discussion

Amplicon coverage prediction model performance

The amplicon prediction model performed well across all runs (Figure 1A, R2=0.991). The

model is conservative and underestimates true coverage, preventing waiting for genomes to

complete which would never do so. Predicted genome recovery after an hour of data

collection compares well with that observed at the calculated RU times for the 13 runs

(Figure 1B). The strong correlation (R2=0.993) between predicted values and values actually

recovered provides confidence in our algorithms performance. Comparing the RU stop time

genome coverage with the FR coverage (Figure 1C) shows some small further benefits in

coverage (R2=0.996). This is expected as continuing the run for longer allows the missing

10% of each genome to acquire some further coverage. However the longer a run continues

the more this return diminishes, so stopping earlier accelerates time to answer as well as

allowing the flow cell to be reused and so reduce cost. In addition, only the last genome to

complete is typically affected. This can be seen more clearly (Figure 1D, R2=0.994) when

filtering out those runs where no time is saved by our model. Genomes from these runs have

the same RU and FR time, and so are identical by definition.

Our model predicts if a sample will generate sufficient data to provide useful information with

enough accuracy to support a decision on whether or not to continue sequencing. There is a

potential small loss in data as a consequence of reducing the sequencing time. We therefore

quantify the consequences of this on time saved, lineage assignment and SNP calling below.

Run until time saving

To quantify the time savings offered by our run until approach, we tracked metrics and

predicted amplicon coverages per barcoded genome sample using minoTour for 13

sequencing runs. We plotted the time we would stop a run according to our model and the

full length of the run (Figure 2A). Runs 9 through 13 were actively monitored with minoTour

and manually stopped at earlier run times in response to the model predictions. Time

savings using this approach are dependent on the sample composition, but are often

significant (for example, Run 4, Figure 2A). Time savings are greater in runs with fewer

samples as each has relatively more sequencing capacity available as can be seen in Figure

2B-N.
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Genome recovery

We next investigated the impact of stopping a run early on genome recovery. The number of

genomes predicted to finish after one hour of sequencing with 20x median coverage across

90% of amplicons is very similar to those that actually do so (331/334 genomes predicted to

finish do so, whilst 3/174 genomes not predicted to finish do, see Figure 3A). Where we

predict more samples finish than will do so (e.g Run 2, Run 7, Run 11) no time savings are

possible as minoTour will wait for these samples to complete before recommending stopping

the run. In all cases this is caused by samples reaching a completeness just short of the

90% threshold but theoretically being able to complete given more reads. These nuances

are not yet fully captured in our model and so users can fine tune these parameters as they

need.

Figure 3B shows samples recovered at RU vs FR, wth 90% genome coverage. In almost all

cases, we capture as much genomic data when stopping the run early as we would have by

continuing sequencing. In only one case, Run 4, two samples failed to reach the maximum

possible coverage. This was an artifact of marginal gains in sample coverage from allowing

the run to continue for longer. Of course, if the user varies the minimum completeness of the

genome required, the behaviour changes. Figure 3C illustrates genome recovery when

specifying only 50% of amplicons are covered at a median depth of 20x. Only one run (Run

3) had a difference between samples recovered at RU and the FR timepoints.

Lineage and SNP calling analysis

Lineage assignment to consensus genomes

Across all 13 sequencing runs, a total of 508 SARS-CoV-2 genomes were sequenced

(including negative and positive controls). Of these, 456 produced genomes with both

medaka and nanopolish ARTIC pipelines at FR, 454 produced genomes at RU and 335

genomes were produced at SA. The two additional genomes at the FR time are both

extremely low completeness genomes (only 1% of the genome has consensus sequence)

that failed to call at the RU time. Across all time points for any given sample in any run, we

observe complete concordance in lineage assignment between either medaka or nanopolish

analysed genomes (Supplementary File 2). Any loss of data seen by stopping sequencing

early did not impact PANGO lineage assignment in a SARS-CoV-2 sequencing run. We note

that these sequences are predominantly from the B.1.1.7 lineage due to the timeframe in

which they were collected, but given our observations on SNP calling below do not envisage

this being an issue.
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Comparing SNPs between medaka and nanopolish consensus genomes

We compared nanopolish and medaka consensus genome sequences for each genome in

our data set (1,245 genomes from 456 unique samples) constructed from all three timepoints

(FR, RU and SA) (Figure 4A-C). The SNPs were called using nextclade

(https://clades.nextstrain.org) with the output data available in Supplementary Files 3 and 4.

From all 13 runs, 456 unique samples generated a consensus genome at FR with both

medaka and nanopolish (Figure 4A). 341 of these samples were identical between the two

pipelines. The remaining 115 genomes have at least one difference in the consensus

sequence. The majority of these are where either medaka or nanopolish are unable to

confidently call a site and so assigns an ambiguous base (N). Of more concern, there are

some sites which are incorrectly assigned as a reference call by medaka. On closer

inspection, the majority of these are for one single site in the genome at position 28,111

(Figure 4I). At the RU timepoint, a similar pattern is observed with a small increase in the

number of ambiguous (N) sites, most likely a consequence of the slightly lower coverage

data available (Figure 4B). At the most extreme, the SA time, the number of ambiguous sites

increases further (Figure 4C). It is worth noting that on any multiplexed run, only one sample

ever finishes at this time point. All other samples, by definition, are complete at the RU

timepoint and so are expected to be of higher quality. Thus the majority of SNP differences

between medaka and nanopolish are differences in ambiguous calls.

Comparing SNPs between timepoints with medaka and nanopolish

To determine if stopping a run early was detrimental to calling SNPs using either pipeline, we

compared SNP calls between the FR and RU, and FR and SA timepoints for genomes

produced by both medaka and nanopolish (Figure 4D-G). As expected, the vast majority of

these differences are conservative ambiguous (N) calls when less sequencing data are

available for consensus generation. Nanopolish appears more conservative in this regard

resulting in more ambiguous calls than medaka. We find one site, 913, for which Nanopolish

rarely can call a SNP at lower coverage, but changes to an ambiguous call at higher depth

SNIPIT plots illustrating the differences between genomes (Figure 4H,I) provide examples of

the various SNP artifacts caused by changes in coverage and pipeline. Of concern are those

positions where a reference site is called when a SNP is likely present (Figure 4I). This is

most common at position 28,111 (53/69 occurrences) and rare elsewhere in the genome.

Overall, we find that medaka is sufficient for variant calling and lineage assignment, but in

our workflows we routinely ran both pipelines for confirmation. Handling signal data in

minoTour is not currently feasible, excluding the nanopolish pipeline from our analyses.
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Conclusions

The use of real-time sequencing has been proposed as a key component of pathogen

surveillance during disease outbreaks (Gardy and Loman, 2018). The SARS-CoV2

pandemic has seen the development of new tools and enhancement of existing approaches

for collating, sharing and analysing sequence data at local, national and international scales

(Nicholls et al., 2021; COVID-19 Genomics UK (COG-UK)

consortiumcontact@cogconsortium.uk, 2020; Shu and McCauley, 2017; Hadfield et al.,

2018). Portable sequencers, such as those developed by Oxford Nanopore, can be readily

deployed in the field and samples can be sequenced anywhere. Excellent analysis pipelines

are available to generate consensus genomes, but even though well documented, can be

beyond some users to apply (Tyson et al., 2020). Here we show how our existing Nanopore

toolset, minoTour, can be extended to include real-time analysis using the best available

practices for SARS-CoV2 sequencing.

By formalising a model predicting likely coverage per sample, we enable the user to predict

the performance of a sequencing run and better determine when to stop sequencing. This

approach leads to cost and time savings in many instances. Benefits of centralising analysis

include standardisation of analysis pipelines as well as the opportunity to incorporate

additional reporting such as lineage and VoC/VuI assignment as well as linking out to useful

further resources. The generation of consensus sequence and lineage assignment happens

during the sequencing run, enabling the potential for rapid feedback of results if required.

MinoTour can be installed on a single laptop/computer running sequencing or can be run as

a central hub with data uploaded by multiple devices concurrently. Docker and standard

Django installation instructions are available. In our experience, a laptop powerful enough to

run a nanopore sequencer with real time base-calling is sufficient to also run minoTour. The

exception to this is the minIT/MK1C device which cannot be configured to run minoTour at

present. However, these can be used with the minFQ client for data upload. Thus minoTour

can serve as a hub for data collection from multiple sites. We have engineered the ARTIC

pipeline in minoTour such that any ARTIC compatible primer scheme can be incorporated

and used for analysis. As proof of principle we have tested this with multiple SARS-CoV2

schemes as well as using historical data from studies of Ebola (Quick et al., 2016). A single

instance of minoTour can run multiple ARTIC pipelines tailored for specific pathogens,

although additional features such as PANGO lineage assignment and variant detection

pipelines are pathogen specific. Uniquely, and in contrast to other tools, minoTour exploits
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almost all the real-time features of the Nanopore sequencing platform for maximising ARTIC

sequencing speed and simplifying analysis.
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Figures

Figure 1 - Genome recovery at time points throughout all 13 runs. A) The percentage of sample

amplicons predicted to reach 20X coverage by our model using data from one hour of sequencing,

compared to the percentage of the genome recovered (Non N bases) at FR by ARTICs medaka

pipeline. B) The percentage of sample amplicons predicted to reach 20X coverage by our model

using data from one hour of sequencing, compared to the percentage of the genome recovered (Non

N bases) at the RU timepoint by ARTICs medaka pipeline. C) The percentage of the genome

recovered (Non N bases) by ARTICs medaka pipeline at FR compared against the same at RU. D)
The percentage of the genome recovered (Non N bases) by ARTICs medaka pipeline at FR

compared against the same at RU, filtered for runs that would have saved time.
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Figure 2 - A) The FR time point plotted alongside the RU time point as hours since the run started.

B-N) Samples across the course of 13 runs showing the percentage of amplicons at 20x. Barcodes

that we project to finish are displayed with solid lines, whilst barcodes we project not to finish are

dashed. 90% (Our threshold for firing) is marked on each plot. Once all barcodes that are projected to

finish cross the 90% threshold, we would instruct MinKNOW to stop the run. This time is marked by a

solid blue vertical line.
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Figure 3 - Genome completeness across 13 runs. A) Genomes predicted with one hours data to

achieve 20x median coverage across 90% of amplicons compared with genomes that were recovered

at 90% completeness  (% non N bases) at FR, as a percentage of total genomes loaded onto flow

cells. B) Genomes with 90% of amplicons covered at 20x median coverage at RU compared with

genomes recovered at 90% genome completeness (% non N bases) at FR, as a percentage of total

genomes loaded onto flow cells. C) Genomes recovered at 50% of amplicons covered at 20x at RU

stop time compared with genomes recovered at 50% genome completeness (% non N bases) at FR

as a percentage of total genomes loaded onto flow cells.
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Figure 4 - Comparison of SNPs called from consensus genomes generated by ARTICs nanopolish

and medaka pipelines. A-C) Comparison of sample SNPs from consensus genomes generated by

medaka and nanopolish, at FR, RU and SA. Samples are split by the number of differing SNP calls

between them, with the reason for differences colour coded into bars. D-G) Comparison of sample

SNPs at FR and SA, and FR and RU, for consensuses generated by either medaka or nanopolish.

Samples are split by the number of differing SNP calls between them, and the reason for the

difference is colour coded into bars. H). SNIPIT plot of an example pair of consensus genomes,

showing the nanopolish pipeline switch from a SNP to an N at position 913 with more data. I). SNIPIT

plot showing an example pair of consensus genomes with nanopolish calling a SNP at position 28111

but medaka calling reference.
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