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Abstract

Motivation

The ongoing SARS-CoV-2 pandemic has demonstrated the utility of real-time analysis of
sequencing data, with a wide range of databases and resources for analysis now available.
Here we show how the real-time nature of Oxford Nanopore Technologies sequencers can
accelerate consensus generation, lineage and variant status assignment. We exploit the fact
that multiplexed viral sequencing libraries quickly generate sufficient data for the majority of
samples, with diminishing returns on remaining samples as the sequencing run progresses.
We demonstrate methods to determine when a sequencing run has passed this point in

order to reduce the time required and cost of sequencing.

Results

We extended MinoTour, our real-time analysis and monitoring platform for nanopore
sequencers, to provide SARS-CoV2 analysis using ARTIC network pipelines. We
additionally developed an algorithm to predict which samples will achieve sufficient
coverage, automatically running the ARTIC medaka informatics pipeline once specific
coverage thresholds have been reached on these samples. After testing on run data, we find
significant run time savings are possible, enabling flow cells to be used more efficiently and
enabling higher throughput data analysis. The resultant consensus genomes are assigned
both PANGO lineage and variant status as defined by Public Health England. Samples from
within individual runs are used to generate phylogenetic trees incorporating optional

background samples as well as summaries of individual SNPs. As minoTour uses ARTIC
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pipelines, new primer schemes and pathogens can be added to allow minoTour to aid in

real-time analysis of pathogens in the future.

Availability and Implementation

Source code and documentation is available at https://github.com/LooselLab/minotourapp.

Supplementary information

Supplementary data are available from

https://github.com/LooselLab/artic_minotour_analyses.

Introduction

Oxford Nanopore Technologies (ONT) range of sequencers (MinlON, GridlON and
Promethion) have transformed sequencing from a fixed to real-time process (Jain et al.,
2016). By writing batches of sequenced reads to disk after DNA has finished translocating
the pore, sequence data become available immediately, meaning data analysis can begin
earlier, reducing the total time required to answer a specific question. The ongoing Covid-19
pandemic has provided a clear demonstration of the proposed benefits of real-time analysis
of sequence data (Gardy and Loman, 2018; Quick et al., 2016), with questions such as
lineage assignment and Variant of Concern/Variant under Investigation (VoC/Vul) status
potentially being time sensitive (O’ Toole et al., 2021). In theory this can be accelerated by
incrementally analysing reads as they are created, a feature unique to ONT sequencers that

we exploit here.

In our work as members of the COG-UK network (COVID-19 Genomics UK (COG-UK)
consortiumcontact@cogconsortium.uk, 2020), we generated thousands of SARS-CoV2
consensus sequences using ONT sequencers. To assess sequencing performance in
real-time, we used minoTour, our real time analysis and monitoring system (Munro et al.,
2021) (https://github.com/looselab/minotourapp), to track the performance of each
sequencing run. Given that ONT flow cells, even using barcodes, can provide more data
than required for an individual viral genome, it makes sense to stop sequencing once
sufficient data are available for the analysis to be completed. Shorter sequencing runs
preserve flow cell health, which can then be flushed and reused for other sequencing
libraries and experiments. If efficiently implemented, this can reduce the cost per sample for

sequencing. We therefore integrated these capabilities into minoTour.
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The ARTIC Network (Tyson et al., 2020; Quick et al., 2017) (https://artic.network) provides
comprehensive protocols for both wet lab and downstream state-of-the-art best practice
informatics analysis for SARS-CoV2. The optimal ARTIC pipeline uses Nanopolish (Loman
et al., 2015; Quick et al., 2017) for signal level analysis of Nanopore data during variant
calling. As an alternative to Nanopolish, ARTIC provides medaka, a machine learning
pipeline which only requires FASTQ data (https://github.com/nanoporetech/medaka). As
signal level data are unavailable within minoTour, we integrated the ARTIC medaka workflow
to enable real-time generation of consensus genomes in parallel with sequence data
generation. This contrasts with other web based analysis platforms which either do not
exploit the real-time features of the nanopore platform or do not have access to the
sequence data themselves for further analysis (Ferguson et al., 2021; Bruno et al., 2021).
The ARTIC network provides a tool, RAMPART, which can monitor a run over time and
complete analysis for individual samples, but does not provide many of the other features

shown here at this time (https://artic.network/rampart).

To enable automatic consensus generation minoTour uses a real-time predictive model for
viral genome sequence coverage. Combining this with the ARTIC medaka pipeline, we can
exploit the real-time features of Nanopore sequencing and demonstrate significant savings in
run time, with resultant cost savings from flow cell reuse as well as faster identification of
VoC/Vul’s in specific samples. MinoTour alerts the user through the Twitter API that a run
can be stopped as well as providing visual feedback on the website that further sequencing
may be a waste. The user can then use minoTour’s detailed breakdowns and visualisations
of the ongoing sequencing run to make an informed decision on when to stop the run. Whilst
this step could be automated, we have not implemented this as specific individual samples
may be important enough that the user wishes for a run to continue, even with the reduction

in useful data being generated.

We analyse the impact that stopping runs early may have on the generation of consensus
genomes for samples by comparing the consensus sequences for 454 SARS-nCoV-2
samples assembled by both the medaka and nanopolish pipelines, investigating
Phylogenetic Assignment of Named Global Outbreak (PANGO) lineage assignment, VoC/Vul
assignment, as well as SNP calls for each sample at relevant timepoints during the run. We
find a small loss of coverage from the last sample to complete on an individual flow cell.
However, PANGO lineages and VoC/Vul assignments are all concordant within our 454
samples at all time points with both Nanopolish or Medaka based pipelines. Some SNP
differences are observed, but these are predominantly ambiguous no calls (i.e an N at an

individual position) rather than miss-calls.
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Implementation

minoTour - A real-time LIMS system

MinoTour is free and open source software, written in python using the Django framework
(see Munro et al). A separate command line client, minFQ (available via PyPi), uploads
sequence data and sequencer metrics from the sequencing computer to the minoTour
server. Once sequence data arrives, minoTour stores it in memory until it can be processed.
Once processed and analysed, any sequence data are usually discarded, although they can
optionally be stored in a database. Produced metrics are always stored in the database and
visualised in the browser. MinoTour is compatible with Oxford Nanopore MinlION and

GridION sequencers and can process FASTQ files as generated by the Guppy base caller.

Arctic Pipeline implementation

Our ARTIC based SARS-CoV2 python pipeline is executed as a Celery
(https://docs.celeryproject.org/en/stable/) task, processing read batches pulled from
minoTours memory cache. The pipeline is asynchronous, preventing blocking of any other
analyses being performed. Reads are first filtered by length, with the minimum and
maximum | calculated from the mean length of all amplicons in the scheme, plus/minus 50%,
respectively. Reads are also filtered by the QC score assigned by Guppy, with only passing
reads (Q score > 9, see Guppy release notes) being used in further analysis. The filtered
reads are then mapped to an appropriate SARS-CoV-2 reference using minimap2 (Li, 2018).
A numpy array of the length of the reference is created for each barcode as it is identified,
and per base coverage is tracked using the mapped reads in real-time (van der Walt et al.,
2011).

Coverage is tracked for each individual amplicon as defined by the primer scheme in use.
Default parameters for triggering the analysis of a specific sample are at least 90% of the
amplicons (completeness) covered at a median depth of at least 20x (coverage), but this can
be changed by the user depending on requirements. Once this threshold has been passed,
the accumulated mapped reads for that sample are passed to the ARTIC network medaka
pipeline. The user can apply multiple coverage and completeness thresholds, re-triggering
the analysis if more data becomes available. Varying primer schemes can be chosen,
including custom schemes, simply by creating the appropriate primer scheme and reference

files and uploading them to minoTour.


https://paperpile.com/c/vUVaja/cErr
https://paperpile.com/c/vUVaja/Cnwa
https://paperpile.com/c/vUVaja/Cnwa
https://doi.org/10.1101/2021.09.13.459777
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.13.459777; this version posted September 17, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Once a consensus genome is available for a sample, minoTour uses pangolin (O’'Toole et al.,
2021) to assign a PANGO lineage from the most recent lineage classifications. After this
step, the consensus sequence is compared with the current VoC/Vul definitions as defined
by Public Health England (https://github.com/phe-genomics/variant_definitions) using the
AIn2Type tool (https://github.com/connor-lab/aln2type). Both PANGO lineages and VoC/Vul
designations are automatically updated daily by minoTour. Together, these generate a report
for each sample (see Supplementary Figure 1C,D) and optionally the user can be notified if
a VoC/Vul has been identified via the Twitter API. Finally, the sequences within each run are
globally aligned using MAFFT (Katoh et al., 2002) and an illustrative tree generated using
iQ-Tree (Minh et al., 2020) and visualised with figtree.js or ToyTree (Rambaut; Eaton, 2020).
Additional background sequences can be included in these trees if desired and the
distribution of SNPs within consensus sequences from the run compared with the reference
are displayed in a snipit plot (https://github.com/aineniamh/snipit) (Supplementary Figure
1A). Links out from minoTour are provided to http://cov-lineages.org and http://outbreak.info
for each specific variant identified as well as to the individual descriptors and data sources

used to determine VoC/Vul classifications.

Results from the pipeline are maintained for historical record, with files stored on disk and
metrics about the ARTIC sequencing experiment stored in a SQL database. These results
are then visualised in the minoTour web server (discussed below). At any point, the user can
choose to fire the ARTIC pipeline on one or all samples to investigate specific samples in
more detail. Once a run has completed, automatically recognised by the fact that no further
data are added to the flow cell within a fixed period of time, all analyses are automatically
re-run to ensure maximum coverage for consensus generation. A retention policy for
sequence data is set globally for the site and all read data can be automatically scrubbed

from the server after consensus generation, if desired.

Amplicon coverage prediction model

MinoTour predicts if individual samples are likely to result in an informative genome
sequence, requiring no prior knowledge about sample numbers loaded on to an individual
flow cell. MinoTour assumes the user is seeking minimal useful genome completeness
(default 90% amplicons with at least 20X median “pass” read coverage). By using median
depth, the impact of small insertions/deletions influencing our assessment of low coverage
amplicons is reduced. The median coverage is only calculated for unique regions of each
amplicon, excluding overlap to prevent artificial coverage inflation on schemes that contain

amplicons with more than 50% overlap with neighbours. For making predictions, we assume


https://paperpile.com/c/vUVaja/d2if
https://paperpile.com/c/vUVaja/d2if
https://paperpile.com/c/vUVaja/hKLV
https://paperpile.com/c/vUVaja/DFzT
https://paperpile.com/c/vUVaja/gL8O+V2Es
https://doi.org/10.1101/2021.09.13.459777
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.13.459777; this version posted September 17, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

that an ONT flow cell can generate at least 100,000 reads for each barcoded sample loaded
and so project if each sample will reach minimal useful completeness. Our model's algorithm
is applied to each amplicon in the scheme (Equation 1). A sample is projected to finish if
90% of the amplicons have a predicted final coverage over the minimum required coverage
(default 20X). All sequencing runs gather data for 1 hour before any of our strategies are

used to ensure reasonable sampling of the loaded library.

Amplicon median coverage
Total mapped reads

X Number of barcodes identified X 100,000 > Minimum required coverage

Equation 1 - Used to predict if an amplicon will achieve the minimum required coverage

during a run.

ARTIC visualisations and reporting

Once the pipeline is underway, a new tab is added to the respective flow cell page,
containing all data and visualisations pertaining to this ARTIC run (Supplementary Figure 1).
The tab contains two sections of visualisations, with the top visualisations (Supplementary
Figure 1A,B) showing the performance of all samples in the run, and the bottom section
visualising a detailed performance for an individual sample. The visualised metrics include a
bar chart displaying the read count for all barcoded samples, a bar chart displaying the mean
read length of each sample in the run and the proportion of reads in the run that are

unclassified vs. classified.

Below this a sortable and searchable summary table showing users metrics about each
sample in the run, with average coverage, number of amplicons at >20X, >1X and 0X and
basic statistics such as mean read length and read count displayed. If the sample has
sufficient data to be run through the ARTIC pipeline, we display the assigned lineage and

VoC/Vol status, and colour code the table row to indicate the sample has completed.

If a sample is selected to display more information, visualisations display a per base
coverage across the sample genome, with plot bands displaying the primer schemes
amplicon coordinates that the sequencing library was amplified with. Assigned PANGO
lineage information is provided, with links out to further information describing each lineage
(htpps://cov.lineages.org and https://outbreak.info). The VoC/Vul report generated by
AIn2Type is visualised and the final status assigned displayed. A PDF report for each
barcode and the overall run can be exported, showing all above metrics for each barcode

(Supplementary File 1).
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At the completion of a sequencing run, consensus sequence, pass and fail VCF files, BAM
files and pangolin lineages can be downloaded. Optionally, these features can be disabled
and minoTour will remove all files that may contain identifiable information from the server.
By maintaining compatibility with standard ARTIC bioinformatics pipelines, this tool can be
adapted to run any ARTIC compatible pathogen analysis simply by uploading the

appropriate reference files.

Post Run Genome Analysis

To investigate how manipulating run time affects results, we defined three timepoints of
interest for a sample during a sequencing run. The full run time (FR), the run until time (RU)
and the stop at time (SA). FR is defined as the time point at which the run completed with no
intervention. RU is the point in a run where all samples our algorithm predicted would
complete (90% completeness, 20X) had done so. Finally, SA is the point at which an
individual sample in a run reached sufficient completeness and is automatically put through

the ARTIC pipeline by minoTour, whilst the run continues.

To create consensus genomes from time points equivalent to our ARTIC pipeline and
compare the results of both medaka and nanopolish we had to identify both the signal
(FAST5) and FASTQ files equivalent to those minoTour would see. We mapped all reads
from each barcode across all 13 reference ARTIC runs using minimap2 (Li, 2018) in file
creation order. Using mosdepth (Pedersen and Quinlan, 2018) we determined coverage at
each base across the reference genome and then median coverage for each amplicon using
the same approach as in minoTour. This identifies the time points when sufficient data are
available to trigger minoTour to analyse the genomes. The creation time point for the FASTQ
file that results in sufficient coverage to meet the appropriate thresholds identifies the time in
the sequencing run when analysis would occur. Using this method, we can identify the
equivalent FASTS5 files enabling us to analyse the data with both medaka and nanopolish.
The code to generate this analysis is available from

https://github.com/Loosel ab/artic-minotour-analyses-scripts. For each of these timepoints,
we generated consensus FASTA files to calculate genome recovery, defined as the
proportion of non N positions in the final sequence. Whilst this is not a direct comparison to
our completeness metric, it is a close approximation, as any base that has 20X coverage

going into the ARTIC medaka pipeline will most likely be called as non N.
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Results and Discussion

Amplicon coverage prediction model performance

The amplicon prediction model performed well across all runs (Figure 1A, R?=0.991). The
model is conservative and underestimates true coverage, preventing waiting for genomes to
complete which would never do so. Predicted genome recovery after an hour of data
collection compares well with that observed at the calculated RU times for the 13 runs
(Figure 1B). The strong correlation (R?=0.993) between predicted values and values actually
recovered provides confidence in our algorithms performance. Comparing the RU stop time
genome coverage with the FR coverage (Figure 1C) shows some small further benefits in
coverage (R?=0.996). This is expected as continuing the run for longer allows the missing
10% of each genome to acquire some further coverage. However the longer a run continues
the more this return diminishes, so stopping earlier accelerates time to answer as well as
allowing the flow cell to be reused and so reduce cost. In addition, only the last genome to
complete is typically affected. This can be seen more clearly (Figure 1D, R?=0.994) when
filtering out those runs where no time is saved by our model. Genomes from these runs have

the same RU and FR time, and so are identical by definition.

Our model predicts if a sample will generate sufficient data to provide useful information with
enough accuracy to support a decision on whether or not to continue sequencing. There is a
potential small loss in data as a consequence of reducing the sequencing time. We therefore

quantify the consequences of this on time saved, lineage assignment and SNP calling below.

Run until time saving

To quantify the time savings offered by our run until approach, we tracked metrics and
predicted amplicon coverages per barcoded genome sample using minoTour for 13
sequencing runs. We plotted the time we would stop a run according to our model and the
full length of the run (Figure 2A). Runs 9 through 13 were actively monitored with minoTour
and manually stopped at earlier run times in response to the model predictions. Time
savings using this approach are dependent on the sample composition, but are often
significant (for example, Run 4, Figure 2A). Time savings are greater in runs with fewer
samples as each has relatively more sequencing capacity available as can be seen in Figure
2B-N.
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Genome recovery

We next investigated the impact of stopping a run early on genome recovery. The number of
genomes predicted to finish after one hour of sequencing with 20x median coverage across
90% of amplicons is very similar to those that actually do so (331/334 genomes predicted to
finish do so, whilst 3/174 genomes not predicted to finish do, see Figure 3A). Where we
predict more samples finish than will do so (e.g Run 2, Run 7, Run 11) no time savings are
possible as minoTour will wait for these samples to complete before recommending stopping
the run. In all cases this is caused by samples reaching a completeness just short of the
90% threshold but theoretically being able to complete given more reads. These nuances
are not yet fully captured in our model and so users can fine tune these parameters as they

need.

Figure 3B shows samples recovered at RU vs FR, wth 90% genome coverage. In almost all
cases, we capture as much genomic data when stopping the run early as we would have by
continuing sequencing. In only one case, Run 4, two samples failed to reach the maximum
possible coverage. This was an artifact of marginal gains in sample coverage from allowing
the run to continue for longer. Of course, if the user varies the minimum completeness of the
genome required, the behaviour changes. Figure 3C illustrates genome recovery when
specifying only 50% of amplicons are covered at a median depth of 20x. Only one run (Run

3) had a difference between samples recovered at RU and the FR timepoints.
Lineage and SNP calling analysis

Lineage assignment to consensus genomes

Across all 13 sequencing runs, a total of 508 SARS-CoV-2 genomes were sequenced
(including negative and positive controls). Of these, 456 produced genomes with both
medaka and nanopolish ARTIC pipelines at FR, 454 produced genomes at RU and 335
genomes were produced at SA. The two additional genomes at the FR time are both
extremely low completeness genomes (only 1% of the genome has consensus sequence)
that failed to call at the RU time. Across all time points for any given sample in any run, we
observe complete concordance in lineage assignment between either medaka or nanopolish
analysed genomes (Supplementary File 2). Any loss of data seen by stopping sequencing
early did not impact PANGO lineage assignment in a SARS-CoV-2 sequencing run. We note
that these sequences are predominantly from the B.1.1.7 lineage due to the timeframe in
which they were collected, but given our observations on SNP calling below do not envisage

this being an issue.
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Comparing SNPs between medaka and nanopolish consensus genomes

We compared nanopolish and medaka consensus genome sequences for each genome in
our data set (1,245 genomes from 456 unique samples) constructed from all three timepoints
(FR, RU and SA) (Figure 4A-C). The SNPs were called using nextclade

(https://clades.nextstrain.org) with the output data available in Supplementary Files 3 and 4.

From all 13 runs, 456 unique samples generated a consensus genome at FR with both
medaka and nanopolish (Figure 4A). 341 of these samples were identical between the two
pipelines. The remaining 115 genomes have at least one difference in the consensus
sequence. The majority of these are where either medaka or nanopolish are unable to
confidently call a site and so assigns an ambiguous base (N). Of more concern, there are
some sites which are incorrectly assigned as a reference call by medaka. On closer
inspection, the majority of these are for one single site in the genome at position 28,111
(Figure 41). At the RU timepoint, a similar pattern is observed with a small increase in the
number of ambiguous (N) sites, most likely a consequence of the slightly lower coverage
data available (Figure 4B). At the most extreme, the SA time, the number of ambiguous sites
increases further (Figure 4C). It is worth noting that on any multiplexed run, only one sample
ever finishes at this time point. All other samples, by definition, are complete at the RU
timepoint and so are expected to be of higher quality. Thus the majority of SNP differences

between medaka and nanopolish are differences in ambiguous calls.

Comparing SNPs between timepoints with medaka and nanopolish

To determine if stopping a run early was detrimental to calling SNPs using either pipeline, we
compared SNP calls between the FR and RU, and FR and SA timepoints for genomes
produced by both medaka and nanopolish (Figure 4D-G). As expected, the vast majority of
these differences are conservative ambiguous (N) calls when less sequencing data are
available for consensus generation. Nanopolish appears more conservative in this regard
resulting in more ambiguous calls than medaka. We find one site, 913, for which Nanopolish

rarely can call a SNP at lower coverage, but changes to an ambiguous call at higher depth

SNIPIT plots illustrating the differences between genomes (Figure 4H,l) provide examples of
the various SNP artifacts caused by changes in coverage and pipeline. Of concern are those
positions where a reference site is called when a SNP is likely present (Figure 4l). This is
most common at position 28,111 (53/69 occurrences) and rare elsewhere in the genome.
Overall, we find that medaka is sufficient for variant calling and lineage assignment, but in
our workflows we routinely ran both pipelines for confirmation. Handling signal data in

minoTour is not currently feasible, excluding the nanopolish pipeline from our analyses.
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Conclusions

The use of real-time sequencing has been proposed as a key component of pathogen
surveillance during disease outbreaks (Gardy and Loman, 2018). The SARS-CoV2
pandemic has seen the development of new tools and enhancement of existing approaches
for collating, sharing and analysing sequence data at local, national and international scales
(Nicholls et al., 2021; COVID-19 Genomics UK (COG-UK)
consortiumcontact@cogconsortium.uk, 2020; Shu and McCauley, 2017; Hadfield et al.,
2018). Portable sequencers, such as those developed by Oxford Nanopore, can be readily
deployed in the field and samples can be sequenced anywhere. Excellent analysis pipelines
are available to generate consensus genomes, but even though well documented, can be
beyond some users to apply (Tyson et al., 2020). Here we show how our existing Nanopore
toolset, minoTour, can be extended to include real-time analysis using the best available

practices for SARS-CoV2 sequencing.

By formalising a model predicting likely coverage per sample, we enable the user to predict
the performance of a sequencing run and better determine when to stop sequencing. This
approach leads to cost and time savings in many instances. Benefits of centralising analysis
include standardisation of analysis pipelines as well as the opportunity to incorporate
additional reporting such as lineage and VoC/Vul assignment as well as linking out to useful
further resources. The generation of consensus sequence and lineage assignment happens

during the sequencing run, enabling the potential for rapid feedback of results if required.

MinoTour can be installed on a single laptop/computer running sequencing or can be run as
a central hub with data uploaded by multiple devices concurrently. Docker and standard
Django installation instructions are available. In our experience, a laptop powerful enough to
run a nanopore sequencer with real time base-calling is sufficient to also run minoTour. The
exception to this is the minIT/MK1C device which cannot be configured to run minoTour at
present. However, these can be used with the minFQ client for data upload. Thus minoTour
can serve as a hub for data collection from multiple sites. We have engineered the ARTIC
pipeline in minoTour such that any ARTIC compatible primer scheme can be incorporated
and used for analysis. As proof of principle we have tested this with multiple SARS-CoV2
schemes as well as using historical data from studies of Ebola (Quick et al., 2016). A single
instance of minoTour can run multiple ARTIC pipelines tailored for specific pathogens,
although additional features such as PANGO lineage assignment and variant detection

pipelines are pathogen specific. Uniquely, and in contrast to other tools, minoTour exploits
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almost all the real-time features of the Nanopore sequencing platform for maximising ARTIC

sequencing speed and simplifying analysis.

Acknowledgements

Thanks to John Tyson and members of the COG-UK Consortium for helpful comments on

early prototypes of the code presented here.

Funding

Work on minoTour has been funded by BBSRC (BB/M020061/1) as well as additional
support from the Defence Science and Technology Laboratory (DSTLX-1000138444). RM is
supported by a BBSRC iCASE studentship. The sequencing data used to develop the
ARTIC components of minoTour were generated as part of COG-UK, itself supported by
funding from the Medical Research Council (MRC) part of UK Research & Innovation
(UKRI), the National Institute of Health Research (NIHR) [grant code: MC_PC_19027], and

Genome Research Limited, operating as the Wellcome Sanger Institute.

Conflict of Interest:

ML was a member of the MinlON access program and has received free flow cells and
sequencing reagents in the past. ML has received reimbursement for travel, accommodation

and conference fees to speak at events organized by Oxford Nanopore Technologies.

References

Bruno,A. et al. (2021) BoardION: real-time monitoring of Oxford Nanopore sequencing
instruments. BMC Bioinformatics, 22, 245.

COVID-19 Genomics UK (COG-UK) consortiumcontact@cogconsortium.uk (2020) An
integrated national scale SARS-CoV-2 genomic surveillance network. Lancet Microbe,
1, €99—-e100.

Eaton,D.A.R. (2020) Toytree: A minimalist tree visualization and manipulation library for
Python. Methods Ecol. Evol., 11, 187-191.

Ferguson,J.M. et al. (2021) InterARTIC: an interactive web application for whole-genome
nanopore sequencing analysis of SARS-CoV-2 and other viruses. bioRXxiv,
2021.04.21.440861.

Gardy,J.L. and Loman,N.J. (2018) Towards a genomics-informed, real-time, global pathogen
surveillance system. Nat. Rev. Genet., 19, 9-20.

Hadfield,J. et al. (2018) Nextstrain: real-time tracking of pathogen evolution. Bioinformatics,
34, 4121-4123.

Jain,M. et al. (2016) The Oxford Nanopore MinlON: delivery of nanopore sequencing to the
genomics community. Genome Biol., 17, 239.

12


http://paperpile.com/b/vUVaja/5k2k
http://paperpile.com/b/vUVaja/5k2k
http://paperpile.com/b/vUVaja/jOST5
http://paperpile.com/b/vUVaja/jOST5
http://paperpile.com/b/vUVaja/jOST5
http://paperpile.com/b/vUVaja/V2Es
http://paperpile.com/b/vUVaja/V2Es
http://paperpile.com/b/vUVaja/mz7pz
http://paperpile.com/b/vUVaja/mz7pz
http://paperpile.com/b/vUVaja/mz7pz
http://paperpile.com/b/vUVaja/sWVu
http://paperpile.com/b/vUVaja/sWVu
http://paperpile.com/b/vUVaja/a1u8
http://paperpile.com/b/vUVaja/a1u8
http://paperpile.com/b/vUVaja/ii3W
http://paperpile.com/b/vUVaja/ii3W
https://doi.org/10.1101/2021.09.13.459777
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.13.459777; this version posted September 17, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Katoh,K. et al. (2002) MAFFT: a novel method for rapid multiple sequence alignment based
on fast Fourier transform. Nucleic Acids Res., 30, 3059—-3066.

Li,H. (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34,
3094-3100.

Loman,N.J. et al. (2015) A complete bacterial genome assembled de novo using only
nanopore sequencing data. Nat. Methods, 12, 733—735.

Minh,B.Q. et al. (2020) IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
Inference in the Genomic Era. Mol. Biol. Evol., 37, 1530-1534.

Munro,R. et al. (2021) MinoTour, real-time monitoring and analysis for Nanopore
Sequencers. bioRxiv, 2021.09.10.459783.

Nicholls,S.M. et al. (2021) CLIMB-COVID: continuous integration supporting decentralised
sequencing for SARS-CoV-2 genomic surveillance. Genome Biol., 22, 196.

O'Toole,A. et al. (2021) Assignment of epidemiological lineages in an emerging pandemic
using the pangolin tool. Virus Evolution, veab064.

Pedersen,B.S. and Quinlan,A.R. (2018) Mosdepth: quick coverage calculation for genomes
and exomes. Bioinformatics, 34, 867—868.

Quick,dJ. et al. (2017) Multiplex PCR method for MinlON and Illumina sequencing of Zika and
other virus genomes directly from clinical samples. Nat. Protoc., 12, 1261.

Quick,J. et al. (2016) Real-time, portable genome sequencing for Ebola surveillance. Nature,
530, 228-232.

Rambaut,A. figtree.js: Phylogenetic tree library for JavaScript/Node.js Github.

Shu,Y. and McCauley,J. (2017) GISAID: Global initiative on sharing all influenza data — from
vision to reality. Euro Surveill., 22.

Tyson,J.R. et al. (2020) Improvements to the ARTIC multiplex PCR method for SARS-CoV-2
genome sequencing using nanopore. bioRXxiv.

van der Walt,S. et al. (2011) The NumPy Array: A Structure for Efficient Numerical
Computation. Computing in Science Engineering, 13, 22-30.

13


http://paperpile.com/b/vUVaja/hKLV
http://paperpile.com/b/vUVaja/hKLV
http://paperpile.com/b/vUVaja/cErr
http://paperpile.com/b/vUVaja/cErr
http://paperpile.com/b/vUVaja/aJLzi
http://paperpile.com/b/vUVaja/aJLzi
http://paperpile.com/b/vUVaja/DFzT
http://paperpile.com/b/vUVaja/DFzT
http://paperpile.com/b/vUVaja/dYEd
http://paperpile.com/b/vUVaja/dYEd
http://paperpile.com/b/vUVaja/ELEu
http://paperpile.com/b/vUVaja/ELEu
http://paperpile.com/b/vUVaja/d2if
http://paperpile.com/b/vUVaja/d2if
http://paperpile.com/b/vUVaja/gHso
http://paperpile.com/b/vUVaja/gHso
http://paperpile.com/b/vUVaja/m1bC
http://paperpile.com/b/vUVaja/m1bC
http://paperpile.com/b/vUVaja/9bVB
http://paperpile.com/b/vUVaja/9bVB
http://paperpile.com/b/vUVaja/gL8O
http://paperpile.com/b/vUVaja/vNhc
http://paperpile.com/b/vUVaja/vNhc
http://paperpile.com/b/vUVaja/RuFuY
http://paperpile.com/b/vUVaja/RuFuY
http://paperpile.com/b/vUVaja/Cnwa
http://paperpile.com/b/vUVaja/Cnwa
https://doi.org/10.1101/2021.09.13.459777
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.13.459777; this version posted September 17, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Figures

Predicted genome recovery vs.
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Figure 1 - Genome recovery at time points throughout all 13 runs. A) The percentage of sample
amplicons predicted to reach 20X coverage by our model using data from one hour of sequencing,
compared to the percentage of the genome recovered (Non N bases) at FR by ARTICs medaka
pipeline. B) The percentage of sample amplicons predicted to reach 20X coverage by our model
using data from one hour of sequencing, compared to the percentage of the genome recovered (Non
N bases) at the RU timepoint by ARTICs medaka pipeline. C) The percentage of the genome
recovered (Non N bases) by ARTICs medaka pipeline at FR compared against the same at RU. D)
The percentage of the genome recovered (Non N bases) by ARTICs medaka pipeline at FR

compared against the same at RU, filtered for runs that would have saved time.
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Figure 2 - A) The FR time point plotted alongside the RU time point as hours since the run started.
B-N) Samples across the course of 13 runs showing the percentage of amplicons at 20x. Barcodes
that we project to finish are displayed with solid lines, whilst barcodes we project not to finish are
dashed. 90% (Our threshold for firing) is marked on each plot. Once all barcodes that are projected to
finish cross the 90% threshold, we would instruct MinKNOW to stop the run. This time is marked by a

solid blue vertical line.
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Figure 3 - Genome completeness across 13 runs. A) Genomes predicted with one hours data to
achieve 20x median coverage across 90% of amplicons compared with genomes that were recovered
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Figure 4 - Comparison of SNPs called from consensus genomes generated by ARTICs nanopolish
and medaka pipelines. A-C) Comparison of sample SNPs from consensus genomes generated by
medaka and nanopolish, at FR, RU and SA. Samples are split by the number of differing SNP calls
between them, with the reason for differences colour coded into bars. D-G) Comparison of sample
SNPs at FR and SA, and FR and RU, for consensuses generated by either medaka or nanopolish.
Samples are split by the number of differing SNP calls between them, and the reason for the
difference is colour coded into bars. H). SNIPIT plot of an example pair of consensus genomes,
showing the nanopolish pipeline switch from a SNP to an N at position 913 with more data. I). SNIPIT
plot showing an example pair of consensus genomes with nanopolish calling a SNP at position 28111

but medaka calling reference.
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Sample genome recovery at timepoints throughout run
Predicted (1hr) vs FR (90% genome coverage)
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RU vs. FR timepoints
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% of genome recovered at full run time
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