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30  Abstract: Understanding biological diversity and the mechanisms of the

31  Sino-Japanese disjunctions are major challenges in eastern Asia biogeography. The

32 Sino-Japanese flora has been broadly studied as an ideal model for plant

33 phylogeography. Diabelia (Caprifoliaceae) is an East Asian genus, with a disjunctive
34  distribution across the Sino-Japanese region. However, relationships within Diabelia
35  remain elusive. In this study, we reconstructed the phylogeny of Diabelia and inferred
36  historical biogeography and evolutionary patterns based on nuclear and plastid

37  sequences from target enrichment and genome skimming approaches, respectively. We
38  found that the main clades within Diabelia were discordant between nuclear and

39  plastid trees. Both nuclear and plastid phylogenetic analyses supported five main

40  clades: D. serrata, D. tetrasepala, D. sanguinea, D. spathulata var. stenophylla and D.
41  spathulata var. spathulata. Species network analyses revealed that Diabelia

42 tetrasepala is likely the result of a hybridization event. Divergence time estimation and
43 ancestral area reconstructions showed that Diabelia originated in Japan during the

44  early Miocene, with subsequent vicariance and dispersal events between Japan and

45  Korea, and between Japan and China. Overall, our results support the division of

46  Diabelia into five main clades and the recognition of five species in the genus. This
47  research provides new insights in the species delimitation and speciation processes of
48  taxonomically complex lineages such as Diabelia.

49
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56 1 Introduction

57 Understanding how different factors have shaped current biological diversity is a
58  major challenge for evolutionary biology (Jiang et al., 2016; Casebolt & Kowalewski,
59  2018; Wang et al., 2018; Martinez-Espinosa, 2021; Maguilla et al., 2021). The

60  Sino-Japanese floristic region (SJFR) of East Asia was an important glacial sanctuary
61  during the Quaternary and harbors the highest diversity of temperate plant species in
62  the world, warranting much attention to understand its origin and diversification

63  (Mitsui et al., 2008; Qiu et al., 2009; 2011; Zhao et al., 2019; Tian et al. 2020; Zhang
64 etal., 2020). The SJFR extends widely over an area from southwest China to northern
65  Japan, with complex topography and multiple climatic zones (Qiu et al., 2011; Lu et
66  al., 2020). The eastern edge of the SJFR experienced dramatic changes in the

67  palaeo-landscape during the Miocene and Pliocene (Ota, 1988; Lu et al., 2020), which
68  may have played key roles in isolating ancient Japanese plant species from continental
69  East Asian species.

70 Diabelia Landrein (Caprifoliaceae) is an East Asian endemic genus and was

71  recently segregated from Abelia based on the paired flowers appearing at the end of
72 short shoots (Landrein, 2010; Wang et al., 2020). This genus of shrubs belongs to the
73 subfamily Linnaeoideae (Landrein, 2010; Wang et al., 2015; Landrein and Farjon,

74 2020; Wang et al., 2020) and traditionally included three species: Diabelia serrata

75  (Siebold & Zucc.) Landrein with two sepals, D. tetrasepala (Koidz.) Landrein with

76  four big and one smaller sepal, and D. spathulata (Siebold & Zucc.) Landrein with five
77  sepals, which is further subdivided into three varieties, var. spathulata, var. sanguinea
78  (Makino) Landrein, and var. stenophylla (Honda) Landrein (Fig. 1; Hara, 1983).

79  Diabelia shows a disjunct distribution in the SJFR (Hara, 1983; Landrein, 2010; Zhao
80  etal., 2019; Landrein and Farjon, 2020; Wang et al., 2020): D. serrata is widely

81  distributed in southern Japan as well as on the southeastern coast of China; D.

82  spathulata is distributed in south, central and northern areas of Japan, but rare in China
83  and Korea; D. tetrasepala is distributed in the area from Fukushima to Fukuoka

84  Prefectures in Japan, and its distribution range partly overlaps with that of D.
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85  spathulata and D. serrata. Based on morphological characters (the number of sepals,
86  nectary cushion position, and corolla color), Landrein and Farjon (2020) have
87  proposed the recognition of four species: D. serrata, D. spathulata, D. sanguinea
88  (Makino) Landrein, and D. stenophylla (Honda) Landrein.
89 There have been several previous studies on disjunct distributions between China
90  and Japan (e.g., Lu et al., 2020; Hagq et al., 2020; Takano et al., 2020), with most
91  studies focusing on species that are widely distributed in Japan. Disjunct distribution
92  patterns typically have been attributed to vicariance or long-distance dispersal events
93  (Doyle et al., 2004; Baenfer et al., 2006; Bobo-Pinilla et al., 2018; Torres-Cambas et al.,
94  2019; Wang et al., 2020; Nge et al., 2021). The disjunct distribution of Diabelia can be
95  dated back to the middle Oligocene, spanning the long geological history of the
96  formation of the flora in China and Japan (Yang et al., 2011; Shin et al., 2012; Zhao et
97 al., 2019; Wang et al., 2020; Zhang et al., 2020). Overall, exploring the internal
98  phylogenetic relationships and biogeographic diversification of Diabelia is conducive
99  for further inference of the mechanisms leading to the disjunct distribution of SJFR in
100  East Asia.
101 Several previous molecular phylogenetic studies have been conducted on
102 Diabelia (Zhou et al., 2004; Landrein et al., 2012; Wang et al., 2015). However,
103 relationships within Diabelia remain controversial due to limited markers and
104  sampling. Zhou et al. (2004) conducted an Amplified Fragment Length Polymorphism
105  (AFLP) analysis including six Diabelia samples and found that D. serrata from China
106  was closely related to accessions of the same species from Japan. Using the nuclear
107  internal transcribed spacer (ITS) and plastid markers (rbcL, ndhF, matK, trnL intron
108 and trnL-F intergenic spacer), Landrein et al. (2012) found a close relationship
109  between D. serrata and D. spathulata. Based on nine plastid markers, Wang et al.
110 (2015) constructed a phylogeny recovering a close relationship of D. serrata between
111 China and Japan. Subsequent molecular phylogenetic studies have enriched sampling
112 across the SJFR to further investigate the phylogenetic relationships within Diabelia.
113 Using plastid fragments from 37 Diabelia samples, Zhao et al. (2019) found the

114  non-monophyly of several Diabelia species. Yet based on complete plastomes, Wang et
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115 al. (2020) recovered the monophyly of D. serrata while the relationships of the other
116  species remained unresolved. Overall, sufficient informative molecular data from both
117  nuclear and plastid genomes and a large taxonomic sampling are essential for the

118  comprehensive reconstruction of phylogenetic relationships within Diabelia.

119 Organelle genes often exhibit phylogenetic patterns significantly different from
120 nuclear markers (Toews and Brelsford, 2012; Leducq et al., 2017; Ji et al., 2019; Yao et
121 al., 2019; Wang et al., 2021). Currently, target enrichment is emerging as the method of
122 choice to obtain target sequence for numerous nuclear orthologs of many complex taxa
123 (Wanke et al., 2017; Buys et al., 2019; Schneider et al., 2020; Granados Mendoza et al.,
124 2020; Wang et al., 2021). Many studies have applied this method to obtain data sets for
125  analyzing cyto-nuclear discordance, speciation, hybridization, and polyploidy (e.g.,

126  Bogarin et al., 2018; Morales-Briones et al., 2018; 2021). Given that the species-level
127 phylogeny of Diabelia has remained largely unresolved, we obtained data through

128  target enrichment and genome skimming of broadly sampled Diabelia accessions

129  across the SJFR, which allowed us to (1) robustly explore intrageneric phylogenetic

130 relationships and compare them against previous phylogenies, and (2) to elucidate the
131 biogeography and evolution of the genus to offer a comprehensive phylogenetic

132 framework for future studies.
133

134 2 Materials and Methods

135 2.1 Sampling

136 A data set of 47 accessions was analyzed including 42 Diabelia samples

137 (encompassing all four currently recognized species of Diabelia and one variety of
138 Diabelia stenophylla (Honda) Landrein var. fetrasepala (Koidz.) Landrein) (Landrein
139 etal., 2012; Zhao et al. 2019; Landrein and Farjon, 2020; Wang et al., 2020) and five
140  outgroup samples representing Linnaeoideae (Abelia macrotera var. macrotera,

141 Dipelta floribunda Maxim., Kolkwitzia amabilis Graebn., Vesalea floribunda

142 M.Martens & Galeotti, Linnaea borealis L.). Voucher specimens have been deposited

143 in the herbarium of the Institute of Tropical Agriculture and Forestry of Hainan
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144 University (HUTB), Haikou, China. Detailed information on the geographical
145  distribution and voucher details for the 47 samples and the localities of the populations
146 sampled in this study are shown in Table S1.

147

148 2.2 DNA extraction and sequencing

149 We used a modified CTAB method (Doyle & Doyle, 1987) to extract total

150  genomic DNA from silica gel-dried tissue or herbarium accessions. The concentration
151  of each extraction was checked with a Qubit 2.0 Fluorometer (Thermo Fisher

152 Scientific, Waltham, MA, USA). A total of 400 ng of DNA was sonicated with a

153 Covaris S2 (Covaris, Woburn, MA) to produce fragments ~150-350 bp in length prior
154  to library preparation. Libraries of genomic DNA were made following Weitemier et al.
155  (2014). To ensure that genomic DNA was sheared to the appropriate fragment size, all
156  samples were evaluated on a 1.2% (w/v) agarose gel.

157 To obtain nuclear data we used a target enrichment approach (Weitemier et al.,
158 2014) and plastid data we used genome skimming (Wang et al., 2020). Baits designed
159  across Dipsacales (Wang et al., 2021) were used to target 428 putatively single-copy
160  genes. Hybridization, enrichment, and sequencing followed Wang et al. (2021).

161

162 2.3 Reads processing and assembly

163 Trimmomatic v.0.36 (Bolger et al., 2014) was used to remove adaptor sequences
164  and low-quality bases from the raw reads (ILLUMINACLIP: TruSeq ADAPTER:

165  2:30:10 SLIDINGWINDOW: 4:5 LEADING: 5 TRAILING: 5 MINLEN: 25). HybPiper
166  v.1.3.1 (Johnson et al., 2016) was employed to assemble the nuclear loci. Exons were
167  assembled individually to avoid chimeric sequences in multi-exon genes produced by
168  potential paralogy (Morales-Briones et al., 2018), in which exons longer than 150 bp
169  were set as a reference. Paralog detection was undertaken for all exons using the

170 ‘paralog_investigator’ option in HybPiper. To obtain ‘monophyletic outgroup’(MO)
171 orthologs (Yang and Smith, 2014), all assembled loci (with and without paralogs

172 detected) were processed following Morales-Briones et al. (2021).
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173 For the plastome assemblies, clean reads were extracted from the raw sequencing
174 reads by using SOAPfilter v2.2 to remove adapter sequences and low-quality reads.
175  The resulting reads were used as the input to assemble plastomes using MITObim v1.8
176~ (Hahn et al. 2013) following Wang et al. (2020).

177
178 2.4 Phylogenetic analyses

179 Nuclear data sets. We used concatenation and coalescent-based methods to

180  analyze the nuclear data. For concatenation analyses, sequences of individual nuclear
181  exons were aligned with MAFFT v.7.407 (Katoh & Standley, 2013) and columns with
182 more than 90% missing data were removed using Phyutility (Smith and Dunn, 2008).
183 A maximum likelihood tree from the concatenated matrix was inferred with RAXML
184  v.8.2.20 (Stamatakis, 2014) using a partition-by-locus scheme and the GTRGAMMA
185  substitution model for all partitions. We assessed clade support with 100 rapid

186 bootstrap replicates (BS). For coalescent species tree estimation, ASTRAL-III v.5.7.1
187  (Zhang et al., 2018) was used to estimate a species tree based on individual exon trees
188  constructed using RAXML with a GTRGAMMA model. We used local posterior

189  probabilities (LPP) to calculate branch support (Sayyari and Mirarab, 2016). To

190  evaluate nuclear gene tree discordance, we used Quartet Sampling (QS; Pease et al.,
191 2018) to distinguish strong conflict from weakly supported branches with 1000

192 replicates. Additionally, we calculated the internode certainty all (ICA) score (Salichos
193 etal.,, 2014) and the number of conflicting and concordant bipartitions on each node of
194  the species trees with Phyparts (Smith et al., 2015).

195 Plastome data set. Complete plastomes were aligned using MAFFT v.7.407

196  (Katoh and Standley, 2013). A ML tree was inferred with IQ-TREE v.1.6.1 (Nguyen et
197  al., 2015) under the extended model and 200 non-parametric BS replicates for branch
198  support. In addition, branch support was evaluated using QS with 1000 replicates.

199

200 2.5 Species network analysis

201 We used PhyloNet (Wen et al., 2018) to infer a maximum pseudo-likelihood
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202  species network with the InferNetwork MPL command (Yu and Nakhleh, 2015). Due
203  to computational restrictions and given that we were primarily concerned with the

204  underlying network between different species, we reduced the 47-taxon data set to one
205  outgroup and 14 ingroup taxa to represent all major clades within Diabelia. Network
206  searches were undertaken using only nodes in the gene trees that had at least 50%

207  bootstrap support, allowing up to five hybridization events while optimizing branch
208  lengths and inheritance probabilities of the returned species networks under the full
209  likelihood. The command ‘CalGTProb’ in PhyloNet was used to infer the maximum
210  likelihood of the concatenated RAXML, ASTRAL, and plastid trees, given the

211 individual gene trees to estimate the optimal number of hybridization events and

212 inspect whether the species network represented a better model than a purely

213 bifurcating tree. The bias-corrected Akaike information criterion (AICc; Sugiura, 1978),
214 Akaike information criterion (AIC; Akaike, 1973), and Bayesian information criterion
215 (BIC; Schwarz, 1978) were used for model selection, with the best-fit-species network
216  having the lowest AICc, AIC and BIC scores.

217

218 2.6 Divergence time estimation

219 Divergence times were estimated with BEAST v.2.4.0 (Bouckaert et al., 2014)
220  using the concatenated nuclear data set. The root age was set to 50 Ma (lognormal

221  prior distribution 32.66 - 57.81 Ma) following Wang et al. (2021). We selected the fruit
222 fossil of Diplodipelta Manchester & Donoghue (Bell & Donoghue, 2005) that could
223 confidently be placed in our tree as an internal calibration point, with the constraint set
224 to 36 Ma (offset 36 Ma, lognormal prior distribution 34.07 - 37.20 Ma). Dating

225  analyses were carried out using an uncorrelated lognormal relaxed clock under the

226  GTR + G model for each marker partitioned separately and a Yule tree prior. The

227 MCMC chains were run for 500,000,000 generations and sampling every 5,000

228  generations. Tracer v.1.7 (Drummond et al., 2012) was used to check convergence with
229 the first 10% of trees removed as burn-in and to assess that all effective sample size

230  (ESS) values were = 200. The produced tree files were combined using
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231  LogCombiner v1.8.2 and the maximum clade credibility tree was generated in
232 TreeAnnotator v1.8.4 (Drummond et al., 2012).

233

234 2.7 Ancestral area reconstruction

235 The ancestral area reconstruction was done using the Statistical Dispersal -

236 Vicariance Analysis (S - DIVA) in RASP version 4.2 (Yu et al., 2015) based on

237  Bayesian Binary Method (BBM) with the concatenated nuclear data set. To prevent
238  biased inferences towards wide or unlikely distributions for the crown node of the

239 ingroup (only Diabelia species) due to the uncertainty in the root area of the outgroup,
240  we pruned the five outgroups for our ancestral state reconstructions. Three areas were
241  defined to cover the present distribution range of Diabelia: (A) Japan, (B) Korea, and
242 (C) China. Distribution areas of all populations in this study were defined according to
243 field observations (Table S1). The BBM analyses ran for 500,000,000 generations

244  using 10 MCMC chains.

245

246 2.8 Data accessibility

247 Raw Illumina data from target capture are available in the Sequence Read Archive
248 (SRA) under accession SUB10211626 (see Table S1 for individual sample SRA

249  accession numbers). DNA alignments, phylogenetic trees and results from all analyses
250  and data sets can be found in the Dryad data repository XXXXXX.

251

252 3 Results

253 3.1 Exon assembly

254 The number of assembled exons per species (with > 75% of the target length;

255  except the outgroups) ranged from 587 (D. serrata E314) to 989 (D. sanguinea E301),
256  with an average of 889 exons per sample (Table S2; Fig. S1). The number of exons
257  with paralog warnings (except the outgroups) ranged from 34 in D. serrata E314 to
258 619 in D. sanguinea E301 (Table S2). The concatenated alignment had a length of

259 392,600 bp, including 18,057 parsimony-informative sites, and a matrix occupancy of

9
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260  86.7% (Table 1). The plastid alignment resulted in a matrix of 159,365 bp with 4,693
261  parsimony-informative sites and a matrix occupancy of 98.2% (Table 1).

262

263 3.2 Phylogenetic reconstruction

264 Our nuclear phylogenetic analyses recovered the monophyly of Diabelia with

265  maximum support (BS = 100; LPP = 1) and recognized five main clades: D. serrata, D.
266  stenophylla var. tetrasepala, D. sanguinea, D. stenophylla and D. spathulata. However,
267  the relationships of the five main groups within Diabelia varied among analyses and
268  data sets.

269 With respect to the nuclear concatenated ML tree, the phylogeny was recovered
270  with moderate (50 <BS < 70) to high (BS > 70) support along the five main clades
271 (Figs. 2, S3 - S4). The monophyly of Diabelia was supported by 313 gene trees (out of
272 439 informative gene trees; [CA = 0.41) and full QS support (1.0/-/1.0; i.e., all

273 sampled quartets supported that node). Diabelia serrata forms a clade with strong QS
274 support (0.91/0.4/1) and only 34 concordant trees (out of 427; ICA = 0.02). The

275  monophyly of D. stenophylla var. tetrasepala was supported by 158 out of 316

276  informative trees (ICA = 0.24) and full QS support. The sister relationship of D.

277  stenophylla var. tetrasepala and D. serrata was supported by only 12 gene trees (out of
278  478; ICA=0.01) and had moderate QS support with a signal of a possible alternative
279  topology (0.21/0.35/0.99). Diabelia sanguinea was supported by only 24 gene trees

280  (out of 395; ICA =0.03) but had full QS support. The sister relationship of D.

281  sanguinea and the clade of D. serrata + D. stenophylla var. tetrasepala was supported
282 by only 4 gene trees (out of 490; ICA = -0.02) and moderate QS support, with a signal
283  for a possible alternative topology (0.21/0.49/0.99). The clade of D. stenophylla had 43
284  concordant trees (out of 376; ICA =0.04) and high QS support (0.91/0.33/1). Diabelia
285  spathulata was supported by 26 gene trees (out of 304; ICA = 0.06) and moderate QS
286  support (0.22/0.29/0.98), with the sister relationship to the remainder of Diabelia.

287 The ASTRAL species tree (Fig. 3, S2) presented a largely congruent topology

288  compared to the nuclear ML tree with all five major groupings recovered, each being

289  respectively monophyletic. The main clades were highly supported (LPP > 0.93)

10
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290  except for the sister node of D. sanguinea and D. serrata (LPP = 0.44). The

291  monophyly of D. serrata had strong QS support with a signal for a possible alternative
292 topology (0.92/0.38/1). Diabelia spathulata var. sanguinea was supported by moderate
293 QS support (0.62/0.78/0.99). The sister relationship of the clade of D. sanguinea and D.
294  serrata was supported by only four gene trees (out of 496; ICA = - 0.02) and had

295  counter QS support with signal for a possible alternative topology (-0.22/0.21/0.99).
296  Diabelia stenophylla var. tetrasepala was sister to the clade of D. serrata + D.

297  sanguinea with moderate QS support (0.2/0.35/0.99). The clade of D. stenophylla

298  between China and Japan had strong QS support (0.9/0.2/1).

299 The phylogenetic relationships in the plastid ML tree of Diabelia (Fig. 2 and S5)
300  were also confirmed with full QS support. The clade of D. sanguinea + D. stenophylla
301  (Japan) was sister to the D. serrata + D. stenophylla var. tetrasepala clade, and the

302  combined clade had strong support (BS = 98) and moderate QS score (0.14/0.57/0.98).
303  There were some observed topological differences between the plastid and nuclear

304 trees. For example, the plastid trees showed that D. stenophylla var. tetrasepala was
305  nested within D. serrata with strong support (BS = 98) and full QS support; D.

306  sanguinea was not-monophyletic; and D. stenophylla from Zhejiang was sister to the
307  remainder of Diabelia, rather than to D. spathulata.

308

309 3.3 Species network analysis

310 The species network analyses (15-taxa data set) recovered topologies with one to
311  five reticulation events, which appear to be a better model than a strictly bifurcating
312 tree (Table 2; Fig. S6). Model selection preferred the network with two reticulation

313 events (Fig. 4). With this preferred network, the first reticulation event involved D.

314 serrata and D. spathulata. The inheritance probabilities of this event showed that the
315  ancestral lineage of D. stenophylla var. tetrasepala had the largest genomic

316  contribution of 65.9 % from the clade of D. spathulata, and a smaller portion (34.1 %)
317  came from the D. serrata clade. Another reticulation event was observed indicating the
318  clade of D. spathulata + D. stenophylla had genetic contributions (79.3%) from the

319  lineage leading to D. sanguinea.

11
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320

321 3.4 Divergence time estimation

322 Our dating estimates based on the nuclear data suggested an early Miocene crown
323 age for Diabelia of 22.53 Ma (95% Highest Posterior Density (HPD): 17.89 - 27.73
324 Ma, node 1 in Fig. 5). The sister relationships of D. serrata and D. stenophylla var.

325  tetrasepala diverged during the early Miocene 18.17 Ma (95% HPD: 14.07 - 22.41 Ma,
326  node 4 in Fig. 5). The crown age of D. serrata was dated to 14.88 Ma (95% HPD:

327 11.10-18.91 Ma, node 5 in Fig. 5). The split between D. spathulata (E271) and D.

328  sanguinea occurred between 3.90 and 9.41 Ma (node 7 in Fig. 5). The diversification
329  of D. spathulata between Korea and Japan was estimated as 4.78 Ma (95% HPD: 3.02
330 - 6.84 Ma, node 8 in Fig. 5). The divergence time of D. stenophylla between China and
331  Japan was 6.30 Ma (95% HPD: 3.90 - 9.41 Ma, node 6 in Fig. 5).

332

333 3.5 Ancestral area reconstruction

334 The reconstruction results of the ancestral distribution of Diabelia were presented
335 in Fig. 6. There were three dispersal events and three vicariance events identified

336 within the three defined biogeographic areas (Fig. 6). Our analyses revealed that the
337  ancestor of Diabelia was present throughout Japan (region A) in the early Miocene

338  (Fig. 6), followed by dispersal or vicariance events across Japan, Korea, and China.
339  Migration events occurred primarily during the Neogene. Diabelia spathulata from
340  Korea was suggested to have originated in Northeast Japan. However, one vicariance
341  and one dispersal event were detected for the ancestral nodes of D. stenophylla from
342 China, supporting their origin from Japan.

343

344

345 4 Discussion

346 4.1 Phylogenetic incongruence and hybridization, and implications for species

347  delimitation

348 Our phylogenetic analyses retrieved the same five main clades of Diabelia in the

349  nuclear ML tree, which are also supported in the ASTRAL tree, but the relationships
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350  among these clades are incongruent between the nuclear and plastid data (Figs. 2 and
351 3). For example, D. serrata and D. stenophylla var. tetrasepala were recovered as

352 monophyletic in the nuclear ML tree, while D. stenophylla var. tetrasepala was nested
353 within D. serrata in the plastid ML tree (Fig. 2). We not only detected widespread

354  cytonuclear discordance across Diabelia (Fig. 2), but our results also showed extensive
355  conflict among individual gene trees and the species trees (Figs. 3 and S2). Several
356  processes can lead to gene tree inconsistencies between closely related groups,

357  including incomplete lineage sorting (ILS), hybridization, horizontal gene transfer, or
358  gene duplication and loss (Morales-Briones et al., 2018; Bogarin et al., 2018; Carter et
359 al., 2019; Stull et al., 2020; Wang et al., 2021). Ancestral polymorphisms may lead to
360  incomplete genealogical classification, therefore phylogenetic relationships between
361  organelle markers may fail to capture the true process of population differentiation, or
362  inconsistencies in gene trees may reflect interspecies hybridization and cytoplasmic
363 infiltration (Lee-Yaw et al., 2019; Wielstra & Arntzen, 2020; Tkach et al., 2020).

364  Therefore, exploring the causes of inconsistencies in gene trees may help explain the
365  relative influences of drift, gene flow and selection on the maintenance of organelle
366  variation within and between groups, which is helpful for revealing the evolutionary
367  process of inter-group relationships (Mao et al., 2020; Dufresnes et al., 2020).

368 Comparing the topologies between the nuclear and plastid data, we found that the
369  topology from the nuclear gene data was more stable. The nuclear data recovered five
370  strongly supported clades (Figs. 2 and 3), with D. serrata forming a stable

371  monophyletic group that was consistent with previous studies supporting the

372 monophyletic nature of D. serrata (Wang et al., 2020). Diabelia stenophylla and D.
373 spathulata were each also recovered as monophyletic based on the nuclear data. While
374 D. sanguinea was not recovered as a monophyletic group in the plastid tree (Fig. 2),
375  the possibility exists that the non-monophyly of D. sanguinea is due to plastid capture
376 events or ILS (Liu et al., 2017; Renoult et al., 2009; Wang et al., 2020). Notably, the
377  placement of D. sanguinea in the nuclear data had full LPP support with low ICA

378  value and moderate QS score, which suggests that ILS and/or unidentified hybrid

379  lineages continue to obscure our understanding of the relationship of D. sanguinea
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380  within the genus, and even the relationships of Diabelia as a whole, due to strong

381  signals of gene tree discordance. Previous phylogenetic relationships of Diabelia based
382  on only plastid data have also been unstable (Zhao et al., 2019; Wang et al., 2020). In
383  the present study, the nuclear data provide a more robust estimate of the species tree
384  compared to plastid data, suggesting that sufficiently informative molecular data are
385  important to our understanding of relationships in Diabelia.

386 A previous study (Zhao et al., 2019) reported gene introgression events between
387  Diabelia species and speculated that D. stenophylla var. tetrasepala (four big and one
388  small sepals) may have resulted from hybridization between D. serrata (two sepals)
389  and D. spathulata (five sepals). However, this hypothesis has not been confirmed. In
390  this study, we conducted network analyses for Diabelia and our results support the

391  existence of reticulation events within the genus (Fig. 4). Concerning the reticulate
392 evolution of the D. stenophylla var. tetrasepala clade, the inheritance contributions
393 (34.1 % and 65.9 %) support the hybridization event between D. serrata and D.

394  spathulata. Based on two similar morphologies but different origins of taxa within
395  Melastoma, Zou et al. (2017) suggested that it is difficult to infer the origins of hybrid
396  taxa based only on morphology, and the hybrids may be the result of small range

397  overlaps among parental species. Morales-Briones et al. (2018), based on the extensive
398  history of hybridization and network results in Lachemilla, showed the potential of
399  phylogenetic species network methods to investigate phylogenetic discordance caused
400 by ILS and hybridization. Given our network results and the distribution of D.

401  stenophylla var. tetrasepala partly overlaps with those of parental populations, we

402  argue that D. stenophylla var. tetrasepala may be of hybrid origin between D. serrata
403  and D. spathulata. As noted by Morales-Briones et al. (2018), additional biological
404  information is necessary for a robust interpretation of values from the phylogenetic
405  networks. Hence, we will include more samples to obtain a more robust inference of
406  relationships for future studies.

407 Despite the strong signals of gene tree discordance, our nuclear and plastid

408  phylogenies strongly supported five major clades in Diabelia: Diabelia serrata, D.

409  stenophylla var. tetrasepala, D. spathulata, D. sanguinea, and D. stenophylla (Figs. 2, 3).
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410  Especially in the nuclear data, all five major branches are monophyletic. These

411  correspond to the species of D. serrata, D. spathulata, D. sanguinea, and D. stenophylla,
412 but the clade of D. stenophylla var. tetrasepala does not form a monophyletic lineage
413 with D. stenophylla. To resolve the non-monophyly of D. stenophylla, and to clarify the
414  phylogenetic relationship within Diabelia, we raise D. stenophylla var. tetrasepala to the
415  species level, recognizing it as  Diabelia tetrasepala (Hara, 1983; Landrein, 2010). Hara
416  (1983) also recognized Diabelia tetrasepala as a distinct species. Additionally, this taxon
417  can be easily distinguished by the form of sepals (sepals 4 plus a reduced adaxial sepal
418  lobe in D. tetrasepala, sepals 5 of similar size in D. stenophylla) (Zhao et al., 2019;

419  Landrein and Farjon, 2020; Wang et al., 2020). Overall, based on our phylogenetic

420  inferences (nuclear), we recognize five species in the genus (i.e., D. serrata, D.

421  tetrasepala, D. spathulata, D. sanguinea, and D. stenophylla).

422

423 4.2 Molecular dating and demographic analyses

424 Based on our nuclear chronogram (Fig. 5), all major Diabelia lineages

425  differentiated 22.53-18.17 Ma (Fig. 5). Notably, this point estimate broadly coincides
426  with the isolation of the Japanese island (24-22 Ma) (Hotta, 1974; lijima and Tada,

427 1990; Li et al., 1996; Maekawa, 1998) and the estimated dates are earlier than previous
428  estimates based on chloroplast data (Wang et al., 2020). The East China Sea (ESC)

429  land bridge likely acted as a barrier to the dispersal of plant species during the LGM

430  and earlier cold periods, despite its repeated exposure during the Miocene (7.0-5.0 Ma)
431  and Quaternary (2.0-1.3 Ma, 0.2-0.015 Ma) (Harrison, 2001). Even though the

432 Japanese archipelago was not covered by a major ice sheet during the last glacial

433 period (Ono, 1984), the mean annual temperature was 5°C-9°C cooler and the

434  precipitation was less than at present (Yasuda and Narita, 1981; Tsukada, 1988). In

435  addition, because of lower sea levels (ca. 100 m below present), Shikoku and Kyushu
436  were continuous with Honshu, and the continental shelf, ca. 20-30 km from the present
437  coastline, emerged around the archipelago (Ohta and Yonekura, 1987). The distribution
438  data of D. serrata suggests a wide distribution in Japan except for Hokkaido. As the

439  climate warmed, the species recovered and expanded northward or towards higher
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440  altitudes (Tsukada, 1988; Takahara et al., 2000), therefore, forming the current isolated
441  distribution.

442 Diabelia species are relatively tolerant to cold and arid climates, which might
443  have facilitated gene exchange across the glacially exposed ECS land bridge up until
444 its latest submergence. All Diabelia species have fruits forming samaras, which

445  increase long-distance dispersal abilities (Landrein, 2010). Our molecular dating

446  indicates that Diabelia originated in the Japanese archipelago (Fig. 5) and the onset of
447  diversification of D. stenophylla from Japan and D. stenophylla from China occurred
448  during the early Pliocene. Our results suggest a vicariance event and a dispersal event
449  associated with D. stenophylla from China (Fig. 6). Under the hypothesis of

450  long-distance dispersal, a predicted lineage in one region should nest within a lineage
451  from a separate disjunctive region. In contrast, under vicariance, lineages from

452  different geographic regions would each be monophyletic with relatively comparable
453  levels of genetic diversity in each region of the distribution (Yoder & Nowak, 2006;
454  Liao et al., 2016; Thomas et al., 2017). The disjunction between D. stenophylla in

455  Japan and D. stenophylla from China may have resulted from migration across this
456  land bridge followed by vicariance.

457 Our results show that that the interchanges of the populations of D. spathulata
458  between Korea and Japan are frequent. The close relationships between Japan and

459  Korea have also been observed in other taxa such as Meehania urticifolia (Takano et
460  al., 2020) and Kirengeshoma koreana (Qiu et al., 2011). Furthermore, our results also
461  suggest that populations of D. spathulata in Korea originated from Japan and are likely
462  due to recent vicariance and dispersal events (Fig. 6), which is largely congruent with
463  the previous conclusions by Wang et al. (2020). Wang et al. (2020) showed that the
464  populations between Korea and the northern Japan may have resulted from a

465  vicariance event. Our results further suggest an early and a later dispersal event,

466  supporting a highly dynamic biogeographic relationships between Japan and Korea.
467  Our divergence time estimates suggest that species differentiation in D. spathulata

468  occurred during the late Miocene to the early Pliocene (4.78 Ma, 95% HPD: 3.02 -

469  6.84 Ma), suggesting that extant populations likely differentiated well before the LGM.
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470  The cooling and drying climate in the late Miocene drove the formation of D.

471  spathulata. The changing climate in the late Pliocene and Pleistocene is related to

472  lineage differentiation, genetic diversity, and population contraction and expansion,
473 which have also been observed in Cercidiphyllum japonicum (Qi et al., 2012) and

474 Euptelea (Cao et al., 2016). This study adds another example of this well-documented
475  pattern.

476

477 5 Conclusions

478 A robust phylogeny of Diabelia was reconstructed with nuclear and plastid data
479  based on target enrichment and genome skimming approaches. The inferred

430  phylogenies from both nuclear and plastome data indicate that Diabelia can be divided
481  into five main clades, which are further supported by morphological traits such as

432  number of sepals, nectary cushion position, and corolla color. Our results show clear
483  cytonuclear discordance and strong conflict between individual gene trees and species
484  trees in Diabelia. The PhyloNet results further confirmed the existence of reticulation
485  events in Diabelia, supporting that D. tetrasepala was the result of a hybridization
486  event. The divergence time and biogeographic analyses further support the

487  differentiation and propagation of Diabelia with multiple vicariance events from the
488  perspective of time and space, further supporting the complex natural hybridization
489  and evolutionary network of the disjunctive flora of Japan and China. Tree-like and
490  reticulate evolution should be considered when reconstructing phylogenetic

491  relationships among closely related species. The appropriate choice of data to construct
492 phylogenetic trees is important in the era of genomics. Further studies are needed to
493  clarify the origin, dispersal and evolution of Sino-Japanese disjunct species with

494  nuclear and plastid data at the population level. Finally, our results shed light on the
495  species delimitation, supporting the recognition of five species in Diabelia,

496  corresponding to the five main clades within the genus in the nuclear phylogeny.

497

498  Taxonomic treatment

499 Based on our results, we formally recognize five species in Diabelia. Landrein &
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500  Farjon (2019) treated four of the five species, i.e., D. sanguinea, D. serrata, D.

501  stenophylla, and D. spathulata. Below we provide the synoptic treatment for Diabelia
502  tetrasepala.

503

504  Diabelia tetrasepala (Koidz.) Landrein, Phytotaxa 3: 37. 2010.

505  Basionym: Abelia spathulata Siebold & Zucc. var. tetrasepala Koidz., Bot. Mag.

506  (Tokyo) 29 (348): 311. 1915.

507  Abelia tetrasepala (Koidz.) H. Hara & S. Kuros. in Kurosawa & Hara, J. Jap. Bot. 30:
508 296. 1955; Diabelia stenophylla (Honda) Landrein var. tetrasepala (Koidz.)
509 Landrein, Kew Bull. 74(4)-70: 186. 2019.

510  Abelia spathulata Siebold & Zucc. var. subtetrasepala Makino, J. Jap. Bot. 1: 18.

511 1917.

512 Abelia spathulata Siebold & Zucc. var. subtetrasepala Makino f. flavescens Honda, J.
513 Jap. Bot. 11: 569. 1935.
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823  Figure Legends
824  Fig. 1. Floral diversity of Diabelia. (A) Diabelia serrata (Photograph by Difei Wu), (B)

825 D. serrata var. buchwaldii (Photograph by Shota Sakaguchi), (C) D. stenophylla
826 var. tetrasepala (Photograph by Shota Sakaguchi), (D) D. spathulata (Photograph
827 by Kyoungsu Choi), (E) D. spathulata (Photograph by Sven Landrein), (F) D.

828 sanguinea (Photograph by Sven Landrein).

829  Fig. 2. Tanglegram of the nuclear concatenated (left) and plastid (right) phylogenies of

830 Diabelia. Dotted lines connect taxa between the two phylogenies. Maximum
831 likelihood bootstrap support values are shown above branches. The asterisks
832 indicate maximum likelihood bootstrap support of 100%. Major taxonomic
833 groups or main clades in the family as currently recognized are indicated by
834 branch colors as a visual reference to relationships.

835  Fig. 3. ASTRAL species tree of Diabelia; Clade support is depicted as: Local posterior
836 probability (LPP)/Quartet concordance (QC)/Quartet differential (QD)/Quartet
837 informativeness (QI).

838  Fig. 4. Best supported species network inferred with PhyloNet for the 15-taxa.

839 Numbers next to the inferred hybrid branches indicate inheritance probabilities.
840 Blue curved lines represent major hybrid edges. Red curved lines represent minor
841 hybrid edges (edges with an inheritance contribution < add space 0.50).

842 Fig. 5. BEAST analysis of divergence times based on the nuclear data set. Calibration

843 points are indicated by A, B. Numbers 1-8 represent major divergence events in
844 Diabelia; mean divergence times and 95% highest posterior densities (HDP) are
845 provided for each node of interests. Blue bars represent 95% HDP.

846  Fig. 6. Ancestral area reconstruction for Diabelia. Areas of endemism are as follows:
847 (A) Japan, (B) Korea, (C) China. The numbered nodes represent crown nodes of
848 important colonization events.

849  Table 1. Data set statistics, including the number of taxa, number of characters, number
850 of PI characters, missing data.

851  Table 2. Model selection of the different species networks and bifurcating trees.

852
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853  Fig. S1. Heatmaps showing gene recovery efficiency for the nuclear genes in 42
854 species of Diabelia. Columns represent genes, and each row is one sample.
855 Shading indicates the percentage of the reference locus length coverage.

856  Fig. S2. ASTRAL species tree. Numbers above branches indicate the number of gene

857 trees concordant/conflicting with that node in the species tree. Numbers below the
858 branches are the Internode Certainty All score. Pie charts next to the nodes

859 present the proportion of gene trees that supports that clade (blue), the proportion

860 that supports the main alternative for that clade (green), the proportion that

861 supports the remaining alternatives (red), light gray means missing data, and dark

862 gray means uninformative (BS < 50%).

863  Fig. S3. Results of the Quartet Sampling of the nuclear RAXML tree; Clade support is
864 depicted as: Local posterior probability (LPP)/Quartet concordance (QC)/Quartet
865 differential (QD)/Quartet informativeness (QI).

866  Fig. S4. Nuclear RAXML tree. Numbers above branches indicate the number of gene

867 trees concordant/conflicting with that node in the species tree. Numbers below the
868 branches are the Internode Certainty All score. Pie charts next to the nodes

869 present the proportion of gene trees that supports that clade (blue), the proportion

870 that supports the main alternative for that clade (green), the proportion that

871 supports the remaining alternatives (red), light gray means missing data, and dark
872 gray means uninformative (BS < 50%).

873  Fig. S5. Results of the Quartet Sampling of the plastid IQ-tree tree; Clade support is
874 depicted as: Local posterior probability (LPP)/Quartet concordance (QC)/Quartet
875 differential (QD)/Quartet informativeness (QI).

876  Fig. S6. Best species networks of the selective nuclear data set estimated with

877 PhyloNet for the 15-taxa data set. A: One hybridization event; B: Two

878 hybridization events; C: Three hybridization events; D: Four hybridization events;
879 F: Five hybridization events. Blue branches connect the hybrid nodes. Numbers
880 next to blue branches indicate inheritance probabilities.

881  Table S1. List of species and vouchers used in this study.

882  Table S2. HybPiper assembly statistics.
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Table 1. Data set statistics, including the number of taxa, number of characters, number of PI characters, missing data.

No. of variable/Parsimony

Alignment No. of taxa No. sites Missing data (%) ) o
informative sites

Nuclear 392,600 13.2 43,250/18,057

Plastid 159,365 1.8 8,243/4,693

Table 2. Model selection of the different species networks and bifurcating trees.

Information criteria

Topology InL Parameters Loci  Number of hybridizations  AIC AlCc BIC

15 taxa

Nuclear ASTRAL -6134.788576 27 241 N/A 12323.577153 12330.675744  12417.666670
Nuclear RAXML ~ -6137.811629 27 241 N/A 12329.623259 12336.721850  12423.712776
Plastid -6427.555081 27 241  N/A 12909.110161 12916.208753  13003.199679
Network 1 -6079.839883 29 241 1 12217.679766 12225.926212  12318.738877
Network 2 -6006.511111 31 241 2 12075.022221 12084.515044  12183.050926
Network 3 -6079.836581 33 241 1 12225.673162 12236.513742  12340.671461
Network 4 -6038.368637 35 241 4 12146.737274 12159.029957  12268.705166
Network 5 -6088.526401 37 241 5 12251.052802 12264.905019  12379.990288
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Table. S1 List of species and vouchers used in this study.

Voucher
Ingroup/ . . . .
Order Taxon Coding Locality specimen SRA accession
Outgroup
number

1 Ingroup Diabelia serrata A Ogawara plateau, Tokushima , Japan HUTB, E314  SRR15731354
2 Ingroup Diabelia serrata var. buchwaddi A Takanose-kyo gorgeJ,ag;[lo, Naka-cho, Kochi, HUTB, E324  SRR15731353
3 Ingroup Diabelia serrata A Mt. Shiraga, Motoyama-cho, Kochi, Japan HUTB, E137  SRR15731342
4 Ingroup Diabelia serrata A Kochi, Japan HUTB, E140  SRR15731331
5 Ingroup Diabelia serrata A Kakiki-mura, Kanoashi-gun, Shimane, Japan HUTB, E122  SRR15731324
6 Ingroup Diabelia serrata A Anan, Tokushima, Japan HUTB, E123  SRR13705758
7 Ingroup Diabelia serrata A Mt. Shiraga, Motoyama-cho, Kochi, Japan HUTB, E138  SRR15731323
8 Ingroup Diabelia serrata A Mt. Shiraga, Motoyama-cho, Kochi, Japan HUTB, E139  SRR15731322
9 Ingroup Diabelia serrata A Takanose-kyo gorgeJ,ag;[lo, Naka-cho, Kochi, HUTB, E128  SRR15731321
10 Ingroup Diabelia serrata A Takakuma, Kagoshima, Japan HUTB, E321  SRR13890747
11 Ingroup Diabelia serrata A Mt. Shozanji, Kamiyama, Tokushima, Japan HUTB, E125 SRR15731320
12 Ingroup Diabelia serrata A Ogawara plateau, Tokushima , Japan HUTB, E126  SRR15731319
13 Ingroup Diabelia serrata A Takaga, Seki city, Gifu, Japan HUTB, E124  SRR15731352
14 Ingroup Diabelia stenophylla var. tetrasepala A Mt. Takamaru, Kamikatsu, Tokushima, Japan HUTB, E142  SRR15731351
15 Ingroup Diabelia stenophylla var. tetrasepala A Mt. Takamaru, Kamikatsu, Tokushima, Japan HUTB, E143  SRR15731350
16 Ingroup Diabelia stenophylla var. tetrasepala A Mt. Takamaru, Kamikatsu, Tokushima, Japan HUTB, E185  SRR15731349
17 Ingroup Diabelia stenophylla var. tetrasepala A Mt. Takamaru, Kamikatsu, Tokushima, Japan HUTB, E312  SRR15731348
18 Ingroup Diabelia stenophylla var. tetrasepala A Mt. Takamaru, Kamikatsu, Tokushima, Japan HUTB, E311  SRR15731347
19 Ingroup Diabelia spathulata A Tochigi, Japan HUTB, E271  SRR15731346
20 Ingroup Diabelia sanguinea A Yumoto, Nasu-cho, Nasu-gun, Tochigi, Japan HUTB, E130  SRR15731345
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Table S2. HybPiper assembly statistics

Number of
Number of Number of Number of )
Number Number Number . ) . exons with Number of
Number Percent exons with  exons with  exons with )
) Number of exons of exons of exons sequences exons with
Species of reads reads on ) ) ) sequences > sequences > sequences >
of reads with with with >150% of paralog
on target target i 25% ofthe  50% ofthe  75% of the )
reads  contigs sequences the target warnings
target length target length target length
length
D. spathulata E129 16390784 4958995 0.303 1114 1025 994 992 982 934 1 101
D. sanguinea E306 9313351 1888267 0.203 1119 1007 977 974 960 889 0 79
D. sanguinea E308 5571741 780542 0.14 1097 981 960 956 936 875 0 69
D. stenophylla var. tetrasepala E142 14145605 1023090 0.072 1089 987 963 962 952 899 1 79
D. stenophylla var. tetrasepala E143 4395804 228392 0.052 1050 900 878 878 851 783 0 54
D. stenophylla var. tetrasepala E185 5533465 1430420 0.259 1114 1008 978 977 959 898 0 90
D. sanguinea E294 1071353 238126 0.222 1021 876 862 861 841 779 0 56
D. stenophylla E295 9507905 2627497 0.276 1138 1024 992 992 971 904 0 92
D. tetrasepala E311 12638082 3514670 0.278 1144 1030 995 994 982 937 2 98
D. tetrasepala E312 26768128 7923496 0.296 1130 1022 995 994 984 940 2 102
D. stenophylla E170 8333538 2519416 0.302 1127 1017 995 994 979 922 1 90
D. stenophylla E171 8838954 2672116 0.302 1108 1017 987 985 972 923 1 96
D. stenophylla E172 6849894 2064638 0.301 1103 1008 983 981 962 908 1 92
D. stenophylla E201 10281957 3225974 0.314 1112 1015 988 987 973 922 1 86
D. stenophylla E202 7944302 2326039 0.293 1109 1012 986 985 968 915 1 86
D. stenophylla E203 8895646 3097609 0.348 1122 1022 996 995 980 924 1 85
D. stenophylla E204 6642696 2077347 0.313 1103 1006 983 982 962 908 1 76
D. stenophylla E205 9630997 2810192 0.292 1128 1020 995 993 972 920 1 80
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