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Abstract:

Many factors determine whether an individual responding to vaccination will generate an
immune response that can lead to protection. Several studies have shown that the pre-
vaccination immune state is associated with the antibody response to vaccines. However,
the generalizability and mechanisms that underlie this association remain poorly defined.
Here, we sought to identify a common pre-vaccination signature and mechanisms that
could predict the immune response across a wide variety of vaccines. We leveraged the
‘Immune Signatures Data Resource” created by the NIH Human Immunology Project
Consortium (HIPC) to integrate data from 28 studies involving 13 different vaccines and
associate the blood transcriptional status of 820 healthy young adults with their
responses. An unsupervised analysis of blood transcriptional profiles across studies
revealed three distinct pre-vaccination states, characterized by the differential expression
of genes associated with a pro-inflammatory response, cell proliferation, and metabolism
alterations downstream of NFkB and IRF7. Innate and adaptive immune cell subset-
specific genes were also associated with the three pre-vaccination states. Importantly,
individuals whose pre-vaccination state was enriched in pro-inflammatory response
genes known to be downstream of NFkB tended to have higher serum antibody
responses one month after vaccination. A supervised analysis of the same data resulted
in a single classifier, also enriched for NFkB regulated genes, that predicted the antibody
response across most of the vaccines. Projection into single-cell RNA-sequencing data
suggested that this pre-vaccination state was attributable to the signature of activation of
non-classical monocytes and myeloid dendritic cells. Transcriptional signatures of acute
responses to bacterial and not viral infections were enriched in the high pro-inflammatory
pre-vaccination state and also included NFkB regulated genes. The pro-inflammatory pre-
vaccination state was highly reminiscent of the innate activation state triggered by TLR
ligands or adjuvants. These results demonstrate that wide variations in the transcriptional
state of the immune system in humans can be a key determinant of responsiveness to
vaccination. They also define a transcriptional signature NFkB activation at baseline, that
is associated with a greater magnitude of antibody response to multiple vaccines, and
suggest that modulation of the innate immune system by next-generation adjuvants
targeting NFkB before vaccine administration may improve vaccine responsiveness.
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Introduction:

Prophylactic vaccination is a cost-effective strategy to prevent or reduce the effect of viral
and bacterial infections. Vaccine efficacy often varies in the population and can depend
on by age', sex?, ethnicity® and genetics*. Human immune responses are also shaped by
the environment, including previous pathogenic perturbation of the immune system.
Indeed, pre-vaccination predictors of antibody response to specific vaccines such as
influenza, yellow fever and hepatitis B vaccines have been identified>-2, including baseline
predictive signatures of both influenza and yellow fever vaccines®. However, whether pre-
vaccination markers exist for all vaccine platforms or if universal pre-vaccination markers
of vaccine response can be identified have not been addressed for a large number of
vaccines.

To define the biological signatures associated with the induction of protective immune
responses induced by vaccination, high-throughput transcriptomic technologies
(microarray and RNA sequencing) have been used to profile the peripheral blood cells of
vaccine recipients. Paired with the use of machine-learning techniques, previous studies
have identified signatures (i.e. sets of genes) of vaccine conferred protection and/or of
protective antibody responses to immunization. For example, different aspects of pre-
vaccination states, including the frequency of B cell subsets as well as the expression of
genes related to B cell receptor signaling and antigen processing predicted antibody
response to influenza, yellow fever and hepatitis B vaccinations®81°. In contrast, pre-
vaccination expression of genes related to granulocytes and interferon (IFN)-stimulated
genes have been associated with a poor response to hepatitis B vaccination®'!. Genes
related to proliferation and inflammatory responses were also shown to be expressed at
a higher level by participants with a poorer response to the influenza vaccine®'? and the
malaria vaccine'3. However, a common pre-vaccination signature shared by all of these
vaccines has yet to be identified. Moreover, some of the biological pathways identified
showed opposite associations with response between vaccines (e.g., IFN signaling is
negative predictor of antibody response for hepatitis B'" but type | IFN genes are positive
predictor of antibody response for influenza and yellow fever vaccination®), or between
studies for the same vaccine (e.g., B cell signaling for influenza vaccination'®'?). The
interpretation of these differences can often be complicated by not only the vaccine type,
but also factors such as geographic region (e.g., whether the targeted pathogen is
endemic vs. not), age, and different genes in the same pathway (or geneset) driving the
association signals. The interaction of those various factors is complex and they could
thus confound smaller-size cohort studies. Meta-analyses, leveraging information from
many cohorts, have the advantage of an increased power to detect pre-vaccination
signatures predictive of antibody responses to vaccines while minimizing the effects of
co-founding variables (e.g., age, ethnicity, geographical region).

Identifying a universal pre-vaccination signature predictive of antibody responses to
vaccines and understanding the biological pathways associated, and therefore potentially
required for, inducing a protective humoral response following vaccination in healthy
adults may lead to more effective strategies (e.g., administration of immunomodulators)
to enhance vaccine response’4. Those new strategies may particularly benefit the most
vulnerable populations, including infants, the elderly, and immunosuppressed individuals.
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Here, we show that a common pre-vaccination peripheral blood transcriptional signature
is predictive of antibody responses across 13 different vaccines. Functional annotation of
this signature shows enrichment of effector genes of pro-inflammatory responses and
pre-exposure sensing of ligands associated with bacterial infections. Single-cell
transcriptomic data showed that non-classical monocytes and myeloid dendritic cells as
the likely source of this pre-vaccination signature. The overlap between this predictive
signature and the transcriptomic signature following Toll-like receptor (TLR) stimulation
or adjuvant treatment suggests that a state of natural adjuvantation is associated with
better responses to vaccination.

Results:

Heterogeneity of transcriptional profiles pre-vaccination

Transcriptomic profiles of whole blood and peripheral blood mononuclear cells of 820
healthy adults aged 18 to 55 before and after vaccination were collected from publicly
available databases (refer to as the “Immune Signatures Data Resource”'®). Several
vaccine platforms ranging from live-attenuated viruses (i.e. yellow fever, smallpox and
influenza vaccines), inactivated viruses (i.e. influenza vaccine) and glycoconjugate
vaccines (i.e. pneumococcal and meningococcal vaccines) were included in this dataset
(Figure 1A-B). We assessed the contribution of different socio-demographic (age,
biological sex, ethnicity) and experimental (vaccine platform, time after vaccination)
variables on the variance in the transcriptomic data (Figure 1C). Age (14%), timepoints
(9%) and vaccine (9%) explained only a small fraction of the variance observed in the
transcriptomic data; over 62% of the variance between samples could not be explained
by any of the recorded clinical and experimental variables. To understand the source of
the variance between participants, we restricted our analysis to the pre-vaccination
timepoints (Figure S1). We used hierarchical clustering to identify subgroups of
participants with similar transcriptomic profiles pre-vaccination.

Pre-vaccination states of the immune system modulate the transcriptional response to
vaccines

Hierarchical clustering (an unsupervised method) followed by identification of the number
of clusters by the Gap statistic identified three groups of participants (i.e. states) based
on their pre-vaccination expression of genesets included in the MSigDB hallmark
genesets '® and blood transcriptomic modules '7 (Figure 2 and Figure S2A). Neither age,
sex, nor pre-existing antibody levels to the immunogen were associated with the
differences in gene expression observed in these three states (Figure S2B). Using
samples collected 7 days before vaccination and those just before vaccination (Day 0)
from the same participants (n=74), we confirmed the stability over time of these
transcriptomic profiles (Figure S2C).

One state showed heightened expression of transcriptomic markers of monocytes and
dendritic cells, IFN-stimulated genes (ISGs) and pro-inflammatory genes and thus was
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designated a high inflammatory (inflam.hi) state. Transcriptomic markers of monocytes
and dendritic cells induced in the inflam.hi state included several innate immune sensors
(TLR1, TLRZ2, TLR4) and concomitantly genes of the TLR4 signaling cascade (TLR4,
LY96, DNM3, PLCG2) (Figure S2D). The type | IFN signaling cascade was also an
important feature of the inflam.hi state. Receptors upstream of the IFN pathways (IFNAZ2,
IFNAR1, IFNAR2, TYK2), nucleic acid sensors that trigger this pathway (DDX58, TRIM25,
MAVS, TRAF6, TANK), and transcription factors that regulate the expression of ISGs
(STATH1, STATZ2, IRF1, IRF7) were all upregulated in the inflam.hi state compared to the
other two states. The NFkB pathway, a hallmark of inflammation, and its target genes,
including pro-inflammatory cytokines (TNF, IL6, IL1B) and their receptors (TNFRSF1A)
or effector molecules regulated by NFkB, including the metalloprotease ADAM17 that
cleaves the ectodomain of TNF-a, were all induced in the inflam.hi stat. Likewise, the IL-
6 signaling pathway (IL6R, JAK2, STAT3), a pathway that triggers the proliferation of
activated B cells, was induced in the inflam.hi state. Moreover, several genes of the
inflammasome complex and IL-1 signaling, also downstream of NFkB, were also
upregulated in this state of subjects, including IL1A, IL1B, IL1R1 and IL1RAP. Altogether,
this state was characterized by genes and pathways involved in pro-inflammatory
processes common to nucleic acid-sensing, which could promote the development of an
immune response to vaccines.

A second state showed lower expression of the above-listed pro-inflammatory genes and
pathways (i.e. NFKB and ISGs) when compared to the first state (Table S1). This state
was designated as the low inflammatory (inflam.lo) state. Heightened expression of
transcriptomic markers of natural killer cells, T cells, B cells and target genes of the
transcription factors E2F and MYC both involved in the upregulation of cell proliferation
and cell metabolism were features specific to the inflam.lo state. Transcriptomic markers
of natural killer (NK) cells induced in the inflam.lo state included cell surface markers of
NK cells (KLRD1, KLRB1), effector molecules of cytotoxic function (GZMB, FASLG,
CASP3), and genes of the IL12 signaling cascade (IL12RB1, STAT4). Transcriptomic
markers of T cells expressed in the inflam.lo state included members of the IL2 signaling
cascade (IL2RA, IL2RB, LCK), CD28 dependent PI3K/AKT signaling cascade (CD28,
CD80, PIK3CA, PIK3R1, PIK3R3, AKT3) and IL7 signaling cascade (IL7, IL7R); the latter
two pathways being involved in the maintenance of the naive T cell pool. Transcriptomic
markers expressed by B cells of the inflam.lo state included cell surface receptors
(CD79A, CD79B, CD22, CD19) and kinases (FYN, BTK) of the BCR signaling complex.
Known target genes of E2F and MYC induced in the inflam.lo state include cell cycle and
proliferation regulators (MYC, CDKN2A, AURKA) and cell metabolism (LDHA, MTHFD2,
TYMS). Altogether, this state was characterized by the lack of expression of genes
downstream of innate sensing (i.e. IFNs and NFkB target genes), while their
transcriptomic profiles showed that cells of the adaptive immune system were activated
and engaged in an ongoing immune response .

Finally, a third state showed a mixed transcriptomic profile between low and inflam.hi
states and was designated as the mid inflammatory (inflam.mid) state. T cells, NK cells
and B cell-specific genes were upregulated in these participants compared to the inflam.hi
state and higher levels of pro-inflammatory genes are found in this state compared to the
inflam.lo state (Table S1).
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Immune cell frequencies vary between the pre-vaccination states

Flow cytometry (n=164) and immune cell deconvolution '%2° were used to determine if
the three pre-vaccination inflammatory states were driven the frequency of different innate
and adaptive immune cell subsets (Figure S2E). The inflam.lo state showed an increased
frequency of naive B cells (CD19+CD27-1gG-IgA- cells with heightened expression of
ABCB4, ADAM28 and BACHZ2), which is in line with the above-described gene expression
profiles. CD8+ T cells (CD3+CD8+CD45RA+ cells with heightened expression of
CRTAM, PIK3IP1, TRAV12-2) were also more prevalent in this state. In contrast, the
inflam.hi states showed an increase in Monocyte frequencies (19% of immune cells in
inflam.hi versus 16% in inflam.lo), in line with the results from the transcriptomic profiling
(Figure 2). To assess whether the change in gene expression between the three states
could be explained solely by the difference in immune cell frequency, differential
expression analysis was performed, adjusting for the immune cell frequency, and re-
identified inflammatory genes as markers of three states (Table S2). This analysis
suggests that the difference in inflammatory gene expression between the three states
could not be explained by differences in cell frequencies alone and confirmed the
differential transcriptomic activity of those inflammatory genes between states.

The pre-vaccination states are associated with the early gene expression response to
vaccines

Next, we evaluated the impact of the pre-vaccination inflammatory states on the
magnitude and kinetics of post-vaccination transcriptional responses. The pre-
vaccination inflammatory states explained 12.5% of the variance in gene expression
observed pre- and post-vaccination (Figure S3A). Participants from the inflam.hi state
showed reduced vaccine-induced expression of pro-inflammatory pathways (e.g.,
complement pathway, IL6 signaling pathway) at Days 1 and 3 post-vaccination when
compared to the participants from the inflam.low (log2 fold-change (log2FC) < -1.46;
Wilcoxon-rank sum test: p<0.0106) and inflam.mid (log2FC < -0.643; Wilcoxon rank-sum
test: p<0.0996; Figure 3A and Figure S3B) states. By day 7, levels of the pro-
inflammatory pathways returned to pre-vaccination levels in all three states. Similarly,
participants from the inflam.hi state showed reduced expression of ISGs at day 1 post-
vaccination when compared to the inflam.low (log2FC=-2.81; Wilcoxon rank-sum test:
p=8.08x10*) and inflam.mid (log2FC=-1.54; Wilcoxon rank-sum test: p=0.0996; Figure
3B and Figure S3C) states. The inflam.hi state participants also had a dampened B cell
signature on day 7 and beyond compared to the inflam.low state (log2FC=-0.866;
Wilcoxon rank-sum test: p=1.87x10*; Figure 3C and Figure S3D). The levels of B cell
markers returned to pre-vaccination levels by day 7 in the inflam.lo group contrary to the
inflam.hi where B cell markers were sustainably induced compared to pre-vaccination
levels (Figure S3E). Similarly, T helper 2 cell markers, necessary to mount an humoral
response, were induced at day 7 post-vaccination in the inflam.hi group but not in the
inflam.lo (Figure S3F). The inflammatory states affected the magnitude of the
transcriptomic changes triggered by the vaccines, specifically at the earliest time points.
However, we did not observe kinetic differences (i.e. delays in gene expression) between
the three states.
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Identification of universal predictive signatures of antibody responses to vaccination

We then assessed the association between the pre-vaccination states and antibody
responses triggered by all 13 vaccines and measured 1 month (Day 28) after
immunization. Participants from the inflam.hi state showed significantly higher antibody
responses across all vaccines compared to participants of the inflam.lo state
(log2FC=1.58, Wilcoxon rank-sum test: p=0.0161, Figure 4A). The association between
the inflammatory states and antibody response was stronger for influenza inactivated
vaccines but remained significant for the remaining vaccines (Figure S4A). The
inflammatory states tended to be associated with antibody response measured beyond
Day 28 but did not reach significance (Figure S4B). Taken together, there is an
association between pre-vaccination immunological states and vaccine-induced antibody
response.

To complement the unsupervised approach, we used a supervised approach to identify
genes that are predictive of high (top 30%) versus low (bottom 30%) antibody response
to vaccination. We trained a random forest classifier that predicts vaccine-specific
antibody responses based on pre-vaccination gene-expression profiles. This classifier
achieved an area under the ROC curve of 60% as estimated by 10-fold cross-validation
(Figure 4B). The accuracy of the classifier was significant for the vaccines with the
greatest number of samples (Influenza inactivated: n=476; p<2.95x1033; Yellow fever:
n=96; p=1.32x10-3) and deteriorated for vaccines with smaller sample sizes (Figure S4B,
n<30; p>0.322). We did not observe any significant association between misclassification
and the sex, age, ethnicities or geographical locations of the participants, suggesting that
the classifier accuracy is not affected by those parameters. For example, the yellow fever
vaccine recipients included in the immune signature dataset originated from five cohorts
recruited in the United States, Canada, Switzerland, Uganda and China. The supervised
classifier was significantly associated with high vaccine response in all cohorts except the
one from the United States. The immune signature datasets also include vaccines that
were administered intramuscularly, intravenously or intranasally (e.g., FIUMIST), and the
inflammatory signatures were predictive independently of the route of vaccination.

The top 200 predictive genes selected by their importance in the classifier were enriched
for inflammatory markers (Fisher's exact test: p=4.25x10; Figure 4C). Inflammation
markers (identified in Figure 2) that contributed to the classifier predictions included
several pro-inflammatory cytokines and chemokines (CCL20/MIP3a, CXCL10/IP-10,
IL1B), receptors involved in innate immune signaling (TLR2, TLR3, CD70/TNFSF7),
mediators of complement activation (C3AR1, ICAM1) and pro-apoptotic effector
molecules (CASP7, CASP10). The classifier was compared to six previously identified
pre-vaccination signatures of vaccine responses®®911.21.22 There was no significant
overlap in gene content between the supervised classifier and the six previously identified
pre-vaccination gene signatures (Figure S4C). Notably, the classifier developed here was
the only one to predict antibody response across the majority of the vaccines tested. In
contrast, most of the previously identified signatures, including the pro-inflammatory
signature we previously identified that predicted influenza vaccination response®, were
largely predictive for the vaccine types they have been trained on less on the remaining
vaccine types (Figure 4D). Altogether, the signature identified here provides evidence


https://doi.org/10.1101/2021.09.26.461847
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.26.461847; this version posted October 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

that a specific inflammation signature pre-vaccination helps to mount a good antibody
response across multiple vaccines.

Etiology of the pre-vaccination inflammatory states

To identify the cells that potentially express the inflammatory genes included in the
classifier of vaccine-induced antibody responses, we utilized CITE-seq data from PBMCs
collected from 20 healthy participants prior to vaccination with an inactivated influenza
vaccine °. We tested if the inflammatory genes were elevated in a specific cell subset or
if their expression reflected a heightened global state of immune cell activation pre-
vaccination common to all subsets. We analyzed the expression of the inflammatory
genes of the classifier of vaccine-induced antibody responses within clusters of single
cells defined by the expression of 65 specific cell surface proteins (Figure 5A and Figure
S5). The inflammatory genes identified by the unsupervised and supervised analysis were
highly enriched within the innate immune cell subsets compared to other cell populations,
in particular within CD14* CD16" classical monocytes, CD14- CD16* non-classical
monocytes, CD1c* CD11c* mDCs, and CD123* CD303" pDCs (Figure 5B). These results
suggested that the cellular source of the pre-vaccination activated state found through
orthogonal supervised and unsupervised analysis was derived from innate immune
myeloid cells (as suggested from Figure 2).

Pre-vaccination inflammation in seemingly healthy participants can result from a non-
infectious etiology or from bacterial- or viral-induced proinflammatory responses. To
identify the possible upstream signals associated with the inflammation described above,
we used the 7-gene classifier described in Sweeney et al.?3 to discriminate between
inflammation caused by bacterial (classifier score above 0) or viral infections (classifier
score below 0). Applying this classifier to our cohort of vaccinees showed that participants
within the inflam-high state and the highest Ab response expressed genes associated
with exposure to bacterial infections (Figure 6A).

We further observed that one of the bacterial markers in this 7-gene classifier, TNIP1, is
a known NFkB target and that the classifier score was positively correlated with an
induction of NFkB target genes. This contrasts with IFI27, a ISG used as a viral marker
in the 7-gene classifier, and that IFN targets negatively correlated with the bacterial/viral
classifier score. Interestingly, vaccines that were correctly predicted by the classifier show
a stronger induction of NFkB targets in high-responders than low-responders (Figure
S6A; ex: Influenza inactivated: log2FC=2.48; Yellow fever: log2FC=0.743; Hepatitis B:
log2FC=1.12). ISGs, downstream of IRF7, were also associated with a robust humoral
response to most of the vaccines except vaccines using poxvirus vectors such as the
Smallpox or Yellow fever vaccines; for which strong expression of ISGs were associated
with hyporesponses (Figure S6A).

To confirm those results, we queried publicly available transcriptomic datasets related to
bacterial inflammation?#, viral inflammation?*, PRR activation?® and antibiotic treatment?6.
Again, counter-intuitively, our inflammatory signature generated on healthy participants
showed significantly overlapping with gene signatures from participants infected by S.
aureus and S. pneumoniae compared to healthy participants and to peripheral
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mononuclear cells stimulated in vitro with the TLR2/6 ligand PAM2 (Figure S6B). Gene
expression of dendritic cells stimulated with pattern recognition ligands (several of them
used as vaccine adjuvants)?” showed strong induction of the inflammatory genes that
were part of our classifier, suggesting that the heightened expression of those genes is a
hallmark of a naturally adjuvanted immune system (Figure 6B).

Discussion

In this manuscript, we characterize the inter-individual heterogeneity in the inflammatory
state of the peripheral immune system pre-vaccination associated with vaccine response.
We show that this heterogeneity is characterized by different transcriptional signatures,
which are also associated with a distinct distribution of cell subsets pre-vaccination. Our
results show that this heterogeneity is associated broadly with the relative magnitude of
the antibody response to 13 different vaccines. Our work highlights the impact of the role
of the pre-vaccination immune system and pre-sensitization of the innate immune system
to pathogen-associated molecular patterns in priming the B cell response to vaccination.
The universality of previous pre-vaccination signatures across vaccines and populations
has not been established. The results presented here extend these earlier observations
to more diverse vaccines and populations; more importantly, they provide a mechanistic
framework that can lead to the selection of adjuvants most efficient at stimulating vaccine-
induced protective immune responses.

The inflammatory signature identified in this work predicts antibody response with a
significant accuracy across the 13 vaccines tested. Compared to previously identified pre-
vaccination signatures of vaccine response, ours was thus the closest to a universal
signature of vaccine response. This suggests that a set of genes and pathways
associated with protective antibody responses following immunization are shared among
vaccines. This is noteworthy as our analysis included a broad range of vaccines that
engage several innate immune system cells and molecules. For example, the live
attenuated yellow fever vaccine will engage TLR2 and TLR8 on mDCs, TLR7 and TLR9
in pDCs, and RIG-I/MDA5 28, Smallpox virus will engage STING, whereas inactivated
influenza vaccine will engage TLR7/TLR8.

The approach undertaken herein that consisted of training on all 13 vaccines
distinguishes this work from previously published reports. This strategy is most likely the
main factor contributing to the identification of this pan-vaccine classifier. Training this
classifier on one vaccine type did not confer predictive power on distinct vaccine types
irrespective of whether this was a live attenuated, inactivated, or subunit vaccine (data
not shown). In contrast, the global classifier of vaccine responses identified herein
performed as well as a classifier trained on a given vaccine and tested on that same
vaccine. Our classifier performed better on vaccines with a greater sample size
suggesting that the accuracy of our classifier could be improved by performing
transcriptomic analysis of future studies for those vaccines where we were able to obtain
a limited set of samples.
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Our results show that qualitative and quantitative features, including transcriptional
programs (MYC and E2F versus IFNs and NFkB target genes), can identify a pre-
vaccination environment that will lead to heightened antibody response to vaccines.
Expression of NFkB, the prototypic transcriptomic factor that controls the development of
inflammatory responses, and its target genes are induced in the inflam.high state. NFkB
is essential for driving the transcription of cytokines (e.g., TNF) and chemokines (e.g.,
CXCL10) that trigger cells of the innate and adaptive immune responses to migrate to
sites of vaccination and differentiate into effector cells. Consistent with our previous
reports on positive pre-vaccination signatures of antibody responses to vaccination,
upregulation of ISGs is a feature of this state of participants, including the master
transcriptomic factor of the type l/type Il IFNs cascades IRF-7. Type | and type Il IFNs
regulate genes involved in antigen processing and presentation. In contrast, inflam.lo
participants demonstrated upregulation of transcriptional networks that highlight genes
and pathways of T and B cell activation, proliferation while these same participants
showed low NFkB and IRF7 expression.

These two pathways seem to be driven by acute response to bacteria (NFkB) or to virus
(interferons) infections. Both signatures show synergy (additivity) with vaccines that
trigger MyD88 and IRFs, suggesting that the activation of these pathways in innate
immune cells will lead to more efficient priming of innate immune responses. Indeed, both
TNF and the inflammasome are potent inducers of adaptive immune responses and are
triggered by several adjuvants including Alum and MF59. Of note, presence of the IFN
signature prior to vaccination can also be negatively associated with the antibody
responses in live attenuated viral vaccines in some populations (yellow fever, Smallpox,
dengue vaccine?®). This inhibitory effect of IFNs may be due to their antiviral activity,
which could limit viral replication and antigen production by vaccines.

The heightened transcriptional signature of inflammation-related genes pre-vaccination,
confirmed to be stable over a week-long period could result from (i) host genetics; (ii) the
environment, which includes diet, prior infection etc, and (iii) the microbiome. To the latter
point, our previous work showed that TLR5-mediated sensing of flagellin in the gut
microbiota promoted influenza vaccine specific antibody response by stimulating lymph
node macrophages to produce plasma cell growth factors .

The inflammatory response has been linked to aging; a process that has been termed
inflammaging. Compared to young adults, increased inflammation in the elderly has been
reported to be associated with hyporesponse to vaccines. The inflammatory signature
identified here was not associated with the humoral response to influenza, hepatitis B and
varicella zoster vaccines in the elderly, suggesting that age-associated inflammation® is
different (i.e. lacking intersecting genes) from the inflammatory signals associated with
vaccination-response in adults (18 to 55 years). This suggests that different types of
inflammation can lead to different responses to vaccination. Indeed, we provide direct
evidence that inflammation is heterogeneous across individuals and associated with
vaccine responses. Importantly, we show that this inflammatory signature that was
associated with response to vaccination overlapped with the inflammation triggered by
exposure to bacterial byproducts including or by translocation of bacteria from the gut;
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the latter signature is different from the inflammation caused by non-infectious diseases,
viral infection or antibiotic therapy. The inflammatory signature described in this work
contains several TLR genes and appears to be concentrated in mDCs and non-classical
monocytes. These leukocytes are different from those mediating other types of
inflammation listed above, suggesting that the inflammation associated with vaccine
response may result from different biological drivers than other types of inflammation. The
prevalence of different types of inflammation is also suggested by the lack of overlapping
genes with inflammation signatures in the elderly (inflammaging) which have been
associated with poor vaccine response. In addition to a distinct relationship of
inflammatory states to vaccine responses, additional factors contribute to age-specific
immune responses to adjuvants and vaccines, including distinct PRR function with age®'.

Our data show that higher frequencies of monocytes are observed in participants with
high inflammatory responses (14% to 26% of immune cells in blood). In contrast,
participants of the low inflammatory state demonstrated high frequencies of naive B cells
and CD8 T cells. Although we observed differences in immune subset frequencies
between the pre-vaccination states, those frequencies could not solely explain the
differences in gene-expression observed between the pre-vaccination states, highlighting
that in addition to differences in cellular composition of blood, pre-vaccination states also
reflect differential transcriptomic activities associated with the state of the immune system
pre-vaccination.

Participants from the inflam.lo states showed several marks of a distinctly activated
immune system prior to vaccination, including a heightened expression of E2F and MYC
transcriptomic program and heightened frequency of CD8+ T cells. In addition, the
inferred frequency of CD8+ T cells from the deconvolution analysis was negatively
correlated with Day 28 antibody response suggesting that participants of the inflam.lo
states may have an activated/committed immune system prior to vaccination.

Strategies that directly impact pre-vaccination inflammation or modulate the pre-
vaccination commensal bacterial flora impact the immune response to vaccination'26. In
this study, we observed similarities between the pro-inflammatory signature associated
with vaccine response and the pro-inflammatory signatures induced by bacterial infection.
Bacterial infections activate pattern recognition receptor signaling cascades, which will
trigger the activation of the NFkB transcription factor complex and the induction of pro-
inflammatory transcriptomic programs. The overlap between the pro-inflammatory
signatures associated with vaccine response and following bacterial signaling was not
specific to one bacterial species but was shared by different bacteria such as S. aureus
and S. pneumoniae. The signature overlapped with that of the activation of PRRs by
bacterial immunogens such as TLR1, TLR2 and TLR4. Interestingly, the expression of
TLR1, TLR2 and TLR4 were identified in the pro-inflammatory signature that was
associated with enhanced responses to vaccines. Moreover, engagement of other
adjuvants, such as polylC enhances the expression of PRRs and the induction of the
same pro-inflammatory genes as those associated with robust vaccine responses.
Among the 13 vaccines part of the immune signature dataset, only the hepatitis B vaccine
was adjuvanted with aluminum hydroxide. For the other vaccines that did not use an
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adjuvant, having a pro-inflammatory signature pre-vaccination originating from dendritic
cells and non-classical monocytes appeared to reflect an activated innate immune state
and was associated with an enhanced humoral response post-vaccination.

In conclusion, the inflammatory signature identified herein predicts humoral response
across diverse vaccines and provides a mechanistic framework that can lead to the
selection of adjuvants most efficient at stimulating vaccine-induced protective immune
responses. Whether the heightened inflammatory response is also associated with
humoral response to current or future vaccines platforms (mRNA, nanoparticle,
adenoviruses) not included in the meta-analysis, including vaccines against SARS-CoV-
2, remains to be determined.

Material and Methods

Gene-expression Preprocessing

They included 2,949 samples from published studies and 228 samples not included in
previously published studies. All these samples were assembled into a single resource
(referred to as the immune signature dataset).

An extensive description of the preprocessing of microarray and RNA-Sequencing (RNA-
Seq) datasets included in the immune signature dataset can be found at '5. Briefly, raw
probe intensity data for Affymetrix studies were background corrected and summarized
using the RMA algorithm. For studies using the lllumina array platform, background
correct raw probe intensities were used. For RNA-Seq studies, count data was voom-
transformed to mimic gene array expression intensities distribution. Expression data
within each study is quantile normalized and log-transformed separately for each study.

Batch correction

An extensive description of the across studies normalization used to correct for batch
effect can be found at 'S. Briefly, a linear model was fit using the pre-vaccination
normalized gene-expression as a dependent variable and platform, study and cell types
as independent variables. The estimated effect of the platform, study and cell types was
then subtracted to the entire gene expression (pre- and post-vaccination) to obtain the
batch corrected gene expression used for the analysis presented in this article. Principal
variance component analysis (PVCA) was used to assess the effect of other phenotypic
variables on the batch corrected gene expression. All the phenotypic variables were
coded as categorical variables before the PVCA analysis; this includes the age imputed
coded as 10-years intervals and the timepoints before and after vaccination left-censored
at 20 days and coded as days from vaccination.

Clustering of the samples

For functional characterization of the genes, we made use of known genesets from two
sources: Hallmark collection from MSigDB (version 7.2) ' and the blood transcriptomic
modules (BTM)'". Overall activity on each geneset/pathway was estimated for each
sample using Sample-Level Enrichment Analysis (SLEA)2. Hierarchical clustering using
Euclidean distance and complete linkage was used to cluster samples. The resulting
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dendrogram was cut to generate three clusters of samples. The three clusters were
designated as low-, mid-, high-inflammatory clusters based on the average SLEA z-score
of four hallmark inflammatory genesets (HALLMARK_INFLAMMATORY_RESPONSE,
HALLMARK_COMPLEMENT, HALLMARK_IL6_JAK_STAT3_SIGNALING and
HALLMARK_TNFA_SIGNALING_VIA_NFKB). Hallmark and BTM genesets were
grouped based on their name and description into markers of seven cell subsets or
canonical pathways (T cells, NK cells, B cells, Monocytes/DC, Inflammation, E2F/MYC
and ISGs). Canonical genes of those seven cell subsets or canonical pathways were
identified by looking at the genes part of the genesets annotated to those cell subsets or
canonical pathways and ranking them based on the number of GeneRIF entries
associating them to cell subsets or canonical pathways. The expression of the top 10
genes annotated to those seven cell subsets and canonical pathways are presented in
the gene-level heatmap.

Antibody response
Maximum fold-change was calculated for all participants with neutralizing antibody
response, HAI, or IgG levels measured by ELISA 5.

Identification of high and low responders

The maximum fold-change (MFC) between day 28 (+/-2 days) and pre-vaccination tiers
was used to quantify the antibody response to vaccination. To minimize the difference in
antibody response between studies (due to differents vaccines, different techniques used
for antibody concentration assessment), the high and low responders were identified for
each study separately by selecting the participants with MFC above the 70th percentile
as high responders and participants with MFC below the 30th percentile as low
responders.

Strategy for identifying a gene signature predictive of vaccine response using pre-
vaccination transcriptomic profiles

In order to evaluate if participant-specific transcriptomic profiles taken pre-vaccination
were predictive of antibody response 28 days post-vaccine, we set out to develop
predictive models using the random forest algorithm. The training set included
participants achieving a high or low antibody response (n=522) based on the
discretization of maximum fold-change (MFC_p30) and top 500 varying genes as input.
The predictive model was trained to minimize the Brier score and tuning parameters were
estimated based on 10-fold cross-validation. In this final model, the performance was
assessed using 10-fold cross-validation using standard performance metrics including
auROC, Accuracy, PPV, NPV, Sens, Spec, as well as Brier score.

Metalntegrator was used to apply previously identified pre-vaccination signatures of
vaccine response and the predictive model identify in this work to the different studies
part of ‘lmmune Signatures Data Resource3. The area under the receiver operating
curve (auROC) was used to assess the accuracy of the signatures.

CITE-Seq analysis

CITE-seq data consisting of pre-vaccination PBMC samples from participants in SDY80
were downloaded from °. Cell type annotations used in this analysis are the ‘high
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resolution’ annotations from Kotliarov et. al, these clusters were derived from graph-
based clustering using Seurat®* directly on a Euclidean distance matrix of surface protein
expression. CITE-seq surface protein data was normalized and denoised using dsb3.
UMAP embeddings were calculated using the umap python package?®. A Wilcoxon Rank
Sum test with a minimum proportion of expressing cells of 0.2 and a log fold-change
threshold of 0.3 was used to test genes from the high inflammatory state between different
clusters using Seurat (all genes shown in the heatmap in Figure 5).

Comparison with other pre-vaccination signatures

The bacterial/viral classifier was applied to the immune signature dataset by averaging
the expression of the bacterial infection markers (HK3, TNIP1, GPAA1, and CTSB) and
subtracting the average expression of the viral infection markers (IF127, JUP, and LAX1);
a resulting score above or equal 0 was considered more similar to bacterial infection while
a score below 0 more similar to viral infection.

Data availability
All data used in this study are available in ImmuneSpace (www.immunespace.org/is2.url).

Code availability
R code used to generate the figures presented in the paper can be found at
(www.immunespace.org/is2.url).
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Figure 1. Creation of a combined dataset of transcriptional responses to vaccination
across diverse pathogens and vaccine types (A) Flowchart describing the collection,
curation, standardization and preprocessing steps leading to the creation of the vaccine
transcriptomics compendium. (B) Histogram of the timepoints pre- (days -7 and 0) and
post-vaccination (days > 0) available in the immune signature data resource. In the plot,
each vaccine is represented by a different color, while the size of the bar is proportional
to the number of samples with available transcriptomic data. Only healthy adults, aged
18 to 50 years old, with available pre-vaccination data were included in the resource. (C)
Principal variance component analysis was used to estimate the proportion of the
variance observed in the transcriptomic data that can be attributed to clinical (age, sex,
ethnicity) and experimental variables (time after vaccination, vaccine). The proportion of
the variance that could not be explained by those variables is depicted by the residuals
(resid). Confidence intervals (95%, percentile method) and bar height (mean) were
computed from 4000 bootstrap replicates.
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Figure 2. Participants have distinct pre-vaccination transcriptomic profiles. Hierarchical
clustering (Euclidean distance metric and complete linkage agglomeration method) of
pre-vaccination samples (day -7 and day 0) based on the expression of the blood
transcriptomic modules (BTM) and hallmark genesets. The overall transcriptomic activity
of genesets/modules were estimated using the SLEA method®’. Three groups of
participants/states can be identified by cutting the dendrogram. Average SLEA score of
the four hallmark inflammatory genesets (bold row labels; inflam.gs), discretized
tertiles, is shown as sample annotation. One state with heightened pre-vaccination
inflammatory pathways (i.e. high), one with low levels of inflammatory pathways (i.e. low)
and one intermediary state (i.e. mid). Expression of genes part of the hallmark and BTM
genesets are presented in a heatmap (right side).
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Figure 3. Kinetic of response dictated by pre-vaccination profiles. Line plot showing the
expression of inflammatory pathways (A), ISGs (B) and B cells (C) as a function time,
separately for participants with low, mid or high pre-vaccination inflammation. Each
colored line corresponds to one participant, LOESS regression was used to determine
the average expression per pre-vaccination state (black lines).
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Figure 4. Prediction of antibody response by pre-vaccination profiles. (A) Boxplot of the
maximum fold-change (MFC) between antibody responses at day 28 over pre-vax as a
function of the pre-vaccination inflammation states. The MFC was scaled to a mean of 0
and a standard-deviation of 1 across vaccines (sSMFC). A Kruskal-Wallis test was used to
assess differences in antibody response between states and resulted in a p-value of
0.0323. (B) A supervised approach consisting in building an random-forest classifier was
adopted to distinguish high vaccine responders (3" tercile) from low vaccine responders
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(1%t tercile) at day 28. The accuracy of the ensemble model was assessed by 10-fold
cross-validation (10-fold CV). The receiver operating characteristic (ROC) curve is
presented along with the area under the ROC curve (AUC) with 95% CI estimated from
the 10-fold CV. (C) Top predictive genes/features included in the ensemble overlap
inflammatory genes identified in the unsupervised approach (Fisher's exact test: p <
3.93e-4). Heatmap showing the expression of the overlapping genes pre-vaccination.
Samples columns are ordered by increasing levels of expression of the inflammatory
genes. A Wilcoxon-rank sum test was used to assess association between the
inflammatory signatures and high/low antibody response and resulted in a p-value of
4.25e-6. (D) Comparison of the gene signature in this work compared to previously
identified pre-vaccination signatures of vaccine response. Metalntegrator was used to
apply each previously published pre-vaccination signatures of vaccine response, as well
as the signature identified in this work, to the transcriptomic studies of “Immune
Signatures Data Resource”. Circles correspond to studies used to train those pre-
vaccination signature while asterisks indicate better than random identification of high-
responder on a transcriptomic study.
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low responders profiled by CITE-seq?; subsets were identified based on surface protein
expression (average dsb normalized protein expression within each cluster). (B) Single
cell CITE-seq deconvolution of inflammatory genes identified by the unsupervised and
supervised approaches as being associated with antibody response in the blood cells
subsets. The color represents average log normalized expression within each cluster with
scales clipped at a maximum of 0.25, and the dot size represents the percent of cells
within that cluster with non-zero expression of the gene.

19


https://doi.org/10.1101/2021.09.26.461847
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.26.461847; this version posted October 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B Ctrl cGAMP polylC Zymosan
[ W 1. m CXCL10
| KCNJ2
y IL15RA
9 L6
24 . tH * CCL4
1‘ ICAM1
o S E A
= d L20
S 1 ! ‘JE‘ PTGS2
4 IL1B
ko] ﬁ IL1A
£ TNFSF9
£ o i t oA '°2F°
S 'gg i HPN
© u S l u NR4A1
5 g - B B WEGR %
8 14 QF 3 TLR2 i_w
54 S NR4A3
o ¥ ATF3
» DNAJB4
7 . TLR3
24 1 : ] ICOSLG
. PLK2
1 P2RY2
B EGR3
low mid high I\CA[S)7R()1
Prevax inflammatory cluster TACR3
C3AR1
[ | EGR2

OIS COOTINS QOO OOOTTIOS OIS

..........

Figure 6. (A) Boxplot showing the Bacterial/Viral metascore?® as a function of the pre-
vaccination inflammatory states. A Kruskal-Wallis test was used to assess the difference
in bacterial/viral metascore between states and resulted in a p-value of 3.76x102%'. (B)
Gene expression of dendritic cells from three independents donors stimulated for 6 hours
with five PRR ligands.
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