
 1

Unbiased integration of single cell transcriptome
replicates

Martin Loza Lopez1, Shunsuke Teraguchi1,2,3, Daron M. Standley1,3, Diego Diez1,*

1Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan

2Faculty of Data Science, Shiga University, Hikone, 522-8522, Japan

3Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan

* Corresponding author: diez@ifrec.osaka-u.ac.jp

Abstract
Single cell transcriptomic approaches are becoming mainstream, with replicate experiments
commonly performed with the same single cell technology. Methods that enable integration of
these datasets by removing batch effects while preserving biological information are required
for unbiased data interpretation. Here we introduce Canek for this purpose. Canek leverages
information from mutual nearest neighbor to combine local linear corrections with cell-specific
non-linear corrections within a fuzzy logic framework. Using a combination of real and synthetic
datasets, we show that Canek corrects batch effects while introducing the least amount of bias
compared with competing methods. Canek is computationally efficient and can easily integrate
thousands of single-cell transcriptomes from replicated experiments.

Introduction
Single cell sequencing technologies allow quantification of RNA expression levels within a given
cell with unprecedented resolution [1]. However, these approaches require integration over
multiple observations to increase signal to noise. In such efforts, the true biological signal can
become distorted. Even the most skilled operator using the same instrument will tend to
observe systematic differences in replicates. Although such batch effects are well-known, they
do not result from a single cause and thus are difficult to define or correct [2].

Many methods to integrate single cell datasets obtained from the same tissues using different
technologies have been introduced [3]. One of the pioneering techniques is the so-called Mutual
Nearest Neighbors (MNN) correction method [4]. In this method, MNN pairs are used to identify
corresponding cells in two different batches. A pair-specific correction vector is then defined as
the difference between the expression profiles of the cells from each MNN pair. The correction
vectors are then weighted to smooth the corrections between adjacent cells. Subsequently,
other tools have been developed that use MNNs to integrate batches [5-7]. One popular method,
implemented in the Seurat R package, finds MNN pairs in a correlated space using canonical
correlation analysis (CCA) [5]. The identified pairs are used as “anchors” to correct batch effects.
Another interesting approach, Harmony, iteratively removes batch effects by clustering in a low
dimensional space [8]. LIGER applies a similar clustering approach by segmenting cells using a
shared factor neighborhood graph under a low dimensional space defined with an integrative
non-negative matrix factorization method [9].

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 2

In a comprehensive benchmark of 14 batch correction methods, including the ones above, the
methods were tested under different scenarios to quantify the effects of data acquired by
different technologies, use of dissimilar cells, data size, numbers of batches and simulated biases
[3]. The three top-scoring methods were Harmony, Liger, and Seurat. However, the authors
found that each method performed differently on each test, with no obviously superior method
[3]. Another benchmark done on atlas-level datasets found that the best integration approach
strongly depended on the target task [10]. This ambiguity makes best practices for integration
of batches from replicated experiments unclear. An important question is how much bias such
methods introduce and which of the methods is best suited for this task. To address these issues,
we introduce Canek. Canek operates on two levels: it assumes mostly linear batch effects within
a cluster of similar cells but allows non-linear corrections between different clusters of cells in a
pair of datasets. This allows Canek to efficiently integrate single cell transcriptomes from
replicated experiments while introducing minimal bias, thus preserving biologically relevant
information.

Results
Overview of Canek
Canek corrects multiple batches by integrating pairs of batches sequentially. The dataset pairs
that are input to Canek are denoted reference batch and query batch (Figure 1a). Then the
integrated dataset becomes the reference to integrate the following batch. Batch effect
observations are defined using mutual nearest neighbors (MNN) [4] and groups of similar cells
are identified from the query batch using clustering (Figure 1b). Canek estimates a correction
vector for each cluster using the median gene expression differences between cells in each
cluster of the query batch and the corresponding cells in the reference as identified by MNN
(arrows on Figure 1c). The correction vector can thus be used to remove the batch effect from
each cluster in the query batch. In this linear correction, the same correction is applied to all the
cells in the cluster (Figure 1c). Subsequently, Canek performs a non-linear correction by
calculating a cell-specific transformation using fuzzy logic. This is done by defining a minimum
spanning tree among clusters and then smoothing the transitions between the correction
vectors (Figure 1d). Using a combination of real and simulated data, we show that, Canek
exhibits unbiased corrections of single cell transcriptome data.

Figure 1 Overview of Canek workflow. a) Canek starts with a reference batch and query batch, assuming
a predominantly linear batch effect. b) Cell clusters are defined on the query batch and MNN pairs (arrows)
are used to define batch effect observations. c) The MNN pairs from each cluster are used to estimate

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 3

cluster specific correction vectors. These vectors can be used to correct the batch effect or, d) a non-linear
correction can be applied by calculating cell-specific correction vectors using fuzzy logic.

Canek successfully corrects batch effects in a Jurkat/293T mixture dataset
An example where batch effects are clearly visible is the mixture of cells used to demonstrate
the 10x chromium sequencing technology [11]. The dataset consists of three batches: one
containing only 293T HEK (Human Embryonic Kidney) cells, another containing only Jurkat cells
(immortalized human T lymphocytes), and a third comprised of a 50:50 mixture of 293T and
Jurkat cells [11]. Principal component analysis (PCA) of the Uncorrected dataset is shown in
Figure 2a. Looking at cell-specific markers we can see there is a cluster of cells expressing XIST
(293T cells) and two clusters of cells expressing CD3D (Jurkat cells). While the cluster of 293T
cells shows mixing of cells from both batches, the two clusters of Jurkat cells show batch specific
distributions, suggesting an unknown systematic bias. We used different integration methods
and assessed their ability to correct the systematic differences in the Jurkat cell data without
introducing additional bias. To this end, we applied batch correction using Canek and 8 state-of-
the-art methods: Combat, ComBat-seq, Harmony, Liger, MNN, Scanorama, scMerge, and Seurat
[4, 5, 7-9, 12-14]. Both Canek and MNN corrected the batch effect and enabled the identification
of the expected cell population clusters (Figure 2b,c). However, other methods, including
Combat and Seurat, resulted in incorrect mixing of cell populations (Figure 2d, e). The results for
all methods are shown in Supplementary Figure 1 for PCA, and Supplementary Figure 2 for
Uniform Manifold Approximation and Projection (UMAP) [15] plots.

To evaluate the performance of batch correction we computed kBET and Silhouette scores for
the Uncorrected and corrected datasets (Figure 2f). We chose the kBET metric to estimate the
mixing of batches after correction, while the Silhouette metric enabled us to assess the
preservation of the original cell clusters. Most methods show similar values of kBET, indicating
similar levels of mixing. Methods that successfully integrated the batches while preserving cell
populations had higher values in the Silhouette score. Canek, Harmony, MNN, and Scanorama
all have similar values, and lead to visually successful integrations as seen in the PCA and UMAP
plots. Combat, ComBat-seq and Seurat resulted in good integration but different levels of
success in preserving the cell populations. Liger showed very different behavior (high kBET and
low Silhouette), suggesting excessive mixing while not preserving cell populations. This agrees
with the PCA/UMAP plots in Supplementary Figures 1 and 2. These results show that Canek was
able to successfully identify and correct the local batch effect while preserving biologically
meaningful cell type differences.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 4

Figure 2 Batch effect correction methods may incorrectly mix dissimilar cell types. Batch effect correction
of three batches, two containing pure Jurkat and HEK293T cells, and one with a 50:50 mix of Jurkat and
HEK293T cells. a) Jurkat and HEK293T cells are characterized by the expression of CD3D and XIST genes
respectively. Before correction Jurkat cells grouped by batch. b-e) show the results of batch effect
correction using Canek, Combat, MNN and Seurat. Canek and MNN correctly integrated the Jurkat cells.
Combat and Seurat incorrectly mixed Jurkat and HEK293T cells.

Evaluation of correction bias
As shown above, batch correction methods can introduce biases in the data that disturb the
biological information or alter the structure of cell populations [10, 16]. As single-cell genomics
technologies become mainstream, more laboratories will perform experiments under different
conditions with biological replicates obtained using a common technology. In this scenario,
integration of datasets with minimal impact on cell phenotype is essential.

We define batch correction bias as undesired correction that may alter the original biological
signal. To quantify how much bias correction methods introduce, we use a pseudo-batch
approach (shown schematically in Figure 3a). Starting from a single dataset we identified clusters
to define cell populations. Then we generated two pseudo-batches by sampling cells without
replacement. Each pseudo-batch preserves the information about the original cell populations
(clusters). Because no modifications to the original expression values were introduced during
the sampling process, the batch effect between the two pseudo-batches is effectively zero. We
assume that batch correction methods should not correct in this scenario since no batch effect
exists, and identification of clusters from the integrated batches should preserve the clusters
obtained from the original (Uncorrected) dataset.

We applied this strategy to the droplet spleen dataset from Tabula Muris [17]. In Figure 3b the
first UMAP plot shows the original dataset with cell clusters indicated with colors. The next two
UMAP plots show the cells from the two pseudo-batches obtained after sampling. We applied

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 5

batch correction to these two pseudo-batches. To quantify the introduced bias, we computed
kBET and Silhouette scores for the Uncorrected and corrected datasets. Since there was no
batch effect, the scores for the Uncorrected dataset corresponded to the optimal values.

Figure 3c shows that Canek integration resulted in even distribution of the cells from both
batches and cluster distribution that resembled the original dataset. Figure 3d shows that MNN
failed to completely integrate this dataset, with uneven distribution of cells from the pseudo-
batches. In Supplementary Figure 3 we show UMAP plots with results for each of the evaluated
methods. Although in some cases it was trivial to identify differences with the Uncorrected
dataset due to obvious changes in cell distributions, it was not always easy to evaluate the
relative performance. To do so, we calculated kBET and Silhouette scores and compared them
with those obtained from the Uncorrected dataset, which represented the optimal values.
Figure 3e shows the scores for kBET and Silhouette metrics obtained from this experiment. In
this plot, the dashed lines indicate the scores for the Uncorrected dataset, with the crossing
point representing the optimal value. Canek, Combat, ComBat-seq and Harmony resulted in
scores very close to the optimal value. To estimate the variability of the results due to pseudo-
batch sampling, we repeated this experiment 10 times. Supplementary Figure 4 shows that
Canek obtained scores closest to the values of the Uncorrected dataset, demonstrating that it
introduced the least amount of bias when no batch effect was present.

Figure 3 Correction methods may introduce biases. a) Strategy for pseudo-batch generation: Starting from
a single dataset with identified cell populations (clusters), we sample without replacement to generate

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 6

two pseudo-batches. Then, we integrate these pseudo-batches and check whether the integration
introduced biases comparing the result with the original dataset. b) Pseudo-batch generation using the
spleen dataset from Tabula Muris. c) Canek integrated the pseudo-batches without introducing biases to
the cell distribution. e) MNN integration led to uneven distribution of cells from the pseudo-batches in the
UMAP plot. e) Using kBET and Silhouette metrics, the mixing among batches and the cluster preservation
were evaluated. The optimal scores from the Uncorrected data are shown as dashed lines, while the scores
from the correction methods are indicated as colored points. Unbiased methods are those whose metrics
are closest to the intersection of the gray lines.

Evaluation of integration in simulated data
To estimate the ability to correct batch effects when the effect is known exactly, we compared
Canek with other methods using simulated data. We simulated three batches with shared cell
types using the splatter package [18] from which we can obtain an integrated dataset to use as
a gold standard (GS). Batch 1 was composed of two shared and one unique cell type, whereas
batches 2 and 3 had one shared and one unique cell type (see Table 2 for a complete description).
Figures 4a and 4b show UMAP plots from the GS and the Uncorrected dataset, respectively.
Figure 4c shows kBET and Silhouette scores from the GS (cross of dashed lines), Uncorrected
data, and integrated datasets. We expected the best correction methods to be close to the
metrics from GS. These results show that Canek scores were closest to those of the GS. This is
consistent with the UMAP plot shown in Figure 4d, where Canek corrected the differences
among shared cell types. Interestingly, Harmony returned scores very close to the Uncorrected
data, suggesting that it performed almost no correction, consistent with the UMAP plot in Figure
4e.

Figure 4 Batch effect correction on simulated data with a known gold standard. Three batches were
simulated to test the integration methods in a scenario with a known gold standard a). The gold standard
shows the UMAP plot for the batches without batch effect. Two cell types (Cell-1 and Cell-2) are shared
among different batches. b) The Uncorrected dataset shows batch-specific differences in cells of the same

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 7

type. c) kBET and Silhouette metrics for Uncorrected, Gold Standard (dashed lines) and the 9 evaluated
methods. Canek shows scores closest to the Gold Standard. d) UMAP plot shows that Canek correctly
integrated the shared cell types while maintaining the identity of non-shared ones. e) Harmony correction
failed to integrate cells from the same type.

Application to real datasets
Next, we compared Canek with other methods on 3 real datasets: Tabula Muris spleen, human
pancreatic islets, and interferon beta stimulation [17, 19-23].

First, we tested a scenario in which the same sample was used with two different technologies
simultaneously. For this we integrated the droplet and FACS batches from the Tabula Muris
spleen datasets [17]. Supplementary Figure 6 shows UMAP plots for the Uncorrected data, and
the correction done by Canek and the other 8 correction methods. Except for scMerge, which
merged some cell populations, all the methods successfully integrated the datasets, with cells
from the same type found in the same clusters. This demonstrates that Canek can integrate
datasets even from different technologies.

Next, we tested the scenario in which similar tissues were used with different technologies. For
this we integrated eight human pancreatic islet datasets from five different technologies. Figure
5a shows the Uncorrected data, where the batch effect caused the cells to cluster by batch. The
results for all methods are shown in Supplementary Figure 7. Figure 5 highlights the results from
Canek and Seurat. Canek (Figure 5b) was able to integrate the batches, but some differences
remained. Other methods like Seurat (Figure 5c) and MNN (Supplementary Figure 7g) mixed the
batches almost perfectly. Interestingly, the differences remaining in Canek integration are
correlated with disease state (Supplementary Figure 8), with some of the samples containing
type 2 diabetes whereas other containing only healthy individuals. Therefore, we tentatively
speculate that the observed differences may, indeed, be due to true biological differences.

Figure 5 Integration datasets from different technologies. Eight pancreatic datasets obtained using
different technologies were corrected. a) Batch effects caused the cells to cluster by batch instead of by
cell type. c-f) The batches were integrated using different methods.

Finally, we evaluated the scenario wherein two samples from different conditions were assayed
using the same technology. For this we integrated a dataset obtained from PBMCs with and
without interferon-beta stimulation [24]. In this scenario, differences between the same cell
types due to the stimulation were expected. Supplementary Figure 9a shows that in the

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 8

Uncorrected data, cells separate by batch. Supplementary Figures 4b-j shows the correction
done by Canek and 8 other methods. After integrating with Canek, B cells and T cells were almost
completely integrated but some differences remained. Differences in monocytes and dendritic
cells in the stimulated vs. non-stimulated cells were more prominent. This is in agreement with
experiments showing that interferon beta induces stronger changes in gene expression in
monocytes compared to T cells [25].

Integration of a human lung dataset
To evaluate how Canek performs on the task of integrating samples from replicated experiments,
we used a human lung single cell dataset with 78 samples including IPF (n = 32; idiopathic
pulmonary fibrosis), COPD (n = 18; chronic obstructive pulmonary disease), and control donors
(n = 28) [26]. This dataset consisted of 312,928 cells distributed over 107 sequencing libraries
that we treated as different batches. Figure 6a-b shows that Canek integration resulted in good
mixing among libraries while preserving the cell populations identified in the original publication.
These cell types closely correlated with cell clusters based on Canek integration (Figure 6c). Most
cells were distributed evenly among all cell types and disease conditions (Figure 6d). Enrichment
and depletion in cell populations associated with disease were preserved (Supplementary Figure
10). A group of macrophages enriched in IPF in clusters 12 (interstitial macrophages expressing
matrix metallopeptidase 9; MMP9, Figure 7e-g) and 16 (alveolar macrophages) showed cells in
a transitional state almost exclusively from IPF donors [26]. This demonstrates that Canek can
integrate a high number of replicated datasets while preserving biologically meaningful
information.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 9

Figure 6 Integration of the lung dataset from Adams (2020). a) UMAP plot showing the mixing between batches. b)
Cell populations described in the original publication are preserved. c) Clustering based on Canek integration matches
with cell populations. d) Distribution of cells by disease condition shows even distribution except for a group of IPF
specific cells in clusters 12 and 16. e) MMP9 is highly expressed in cluster 12 (interstitial macrophages), f) in IPF donors.
g) Cluster 12 and 16 are enriched in cells from IPF.

Computational performance
To compare the computational performance and scalability of Canek and eight other batch
correction methods, we simulated datasets using splatter and recorded the integration time.
We fixed the number of genes to 2,000 and varied the number of cells from 10k to 100k. Figure
7 shows run times as a function of the number of cells. The fastest method was Combat,
followed by Scanorama, Harmony, and Canek, all of which showed near linear run time
dependence and ability to integrate 100k cells in under 20 min. On the other side of the
spectrum MNN, Seurat, and ComBat-seq showed a strong dependence of run time on data size.
These results demonstrated that Canek is a scalable method that can integrate hundreds of
thousands of single-cell transcriptomes efficiently.

Figure 7 Runtime benchmark of Canek and other eight batch correction methods. Each method was run 5 times on
different datasets with the number of genes fixed to 2k and the number of cells varying in a range of 5k to 100k. The
color code differentiates each of the methods, the dots represent the runtime, and the lines represent the time
increasing trends. Canek displayed a linear time increase over these conditions.

Discussion
Existing batch effect correction methods focus on integrating single-cell transcriptomics
datasets obtained from different technologies and/or species, minimizing the differences
among batches to obtain correlated cell types. While these frameworks offer a powerful solution
to integrate datasets with strong differences between batches, they may also introduce
significant biases due to over-correction. This represents a potential problem when these
methods are applied to datasets where we wish to preserve biological differences (e.g.,

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 10

replicated experiments obtained with the same technology). Over-correction could negatively
affect downstream tasks such as clustering or differential gene expression analysis. Canek
provides an unbiased batch effect correction method for single-cell transcriptomics data that is
suited for such integration of experimental replicates. We focused on preserving the inherent
biological structure while being flexible enough to deal with small non-linear differences that
might appear on heterogeneous datasets. We applied Canek to simulated and real datasets and
showed its ability to correct batch effects without masking real biological signals. We also tested
Canek on a pseudo-batch scenario with no batch effect and observed that it preserved the
biological structure and introduced the least undesirable bias among tested methods.

We further showed that Canek successfully integrated datasets from different technologies (e.g.,
the Tabula Muris spleen dataset). Depending on the nature of the dataset, Canek did not
necessarily lead to the best batch mixing (e.g., in the human pancreatic islet integration).
However, latent variables other than batch effects (i.e., disease condition) may influence the
integration of these datasets. It is an open question how to integrate complex datasets with
cofounding variables.

The main goal of Canek is to enable efficient and unbiased integration of replicated experiments.
Thus, we applied Canek to a large dataset from human lung disease. We identified enrichment
of cell populations reported in the original publication, including cells in an apparently
transitional state between interstitial to alveolar macrophages. This showed that Canek was able
to integrate large numbers of replicated experiments while preserving biological information.

As single-cell RNA-seq from replicated experiments using the same technology become more
common, batch effect correction methods that conserve local differences will become more
important. Canek provides a solution to this problem with an unbiased and computationally
efficient batch effect correction.

Methods
Canek workflow
Figure 2 shows the workflow for correcting a pair of batches. We define one of the batches as
the query batch and the other one as the reference batch. We correct the cells from the query
batch to match the cells from the reference batch. When correcting more than two batches we
perform an optional hierarchical optimization of batch order (see Hierarchical integration
section). The main steps of Canek's workflow are:

1. Obtaining batch effect observations using mutual nearest neighbors (MNN) pairs.
2. Clustering the query batch to define local groups of cells.
3. Calculating a batch effect correction vector for each cluster.
4. Obtaining a fuzzy correction by smoothing the transitions between the local correction

vectors.

Canek expects input datasets to be log normalized. The output dataset retains the same
dimensionality (number of genes) as the input batches.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 11

Batch effect Observations
The first step is to identify what we call batch effect observations. This is the gene expression
differences of a set of cells from the reference and query batches that will enable us to estimate
the batch effect.

To speed up computation we calculate the first 50 principal components (PCs) [27] using the
prcom_irlba function from the ilrba R package [28]. This lower dimensional space is used to
identify MNNs, and in the clustering and fuzzy correction steps. However, during the calculation
of the correction vector step, we use the original input datasets.

We calculate mutual nearest neighbors (MNN) pairs [4] using 50 PCs to obtain batch effect
observations. We assume that at least one cell is shared between the batches to integrate. The
MNN pairs are defined by the intersection of the crossed k nearest neighbors for each cell of two
input batches. For example, for a cell 𝑐ଵfrom batch one, we find the k closest cells from batch
two, and for cell 𝑐ଶfrom batch two, we find the k closest cells from batch one. If 𝑐ଵ and 𝑐ଶare
mutually contained on each other’s nearest neighbor set, they are considered as a MNN pair. In
Canek, to identify MNN pairs we first find the crossed 30 nearest neighbors of the query and
reference batches using the get.knn function from the FNN R package [29]. We then select those
cells that fulfill the MNN criteria to form cell pairs. We treat the gene expression differences
from these pairs as observations of the batch effect.

Clustering
Following Haghverdi et al. (2018) [4] we assume that the batch effect is almost orthogonal to
the biological space, and that the variations due to the batch effect are smaller than the
biological variation (see Supplementary material of [4] for a deeper discussion of these
assumptions). Small variations to this orthogonality assumption can be caused by noise or by
non-linearities. A common way to deal with non-linear dynamics is to linearize over bounded
regions [30], to solve each of these local problems, and, if necessary, to join all the pieces back
into a non-linear global solution. Following this idea, we partition the query batch into clusters,
which we define as a bounded set of related cells, using the Louvain algorithm implemented in
the igraph R package [31]. By default, clustering is done using the first 10 PCs.

Correction Vector
Following our local orthogonal batch effect assumption, for each cluster we state the relation:

𝑔ொೖ

௜ = 𝑔ோೖ
௜ + 𝑔஻ாೖ

௜ + 𝜖

where 𝑔௜ , 𝑖 = 1, … , 𝑛, is the log-normalized gene expression level of the 𝑛 genes from the input
batches. The batch effect 𝑔஻ாೖ

 is represented as an additive value in the query batch 𝑔ொ௞
 in

terms of the same gene in the reference batch 𝑔ோೖ
, 𝑘 = 1, … , 𝑝, being 𝑝 the number of MNN

pairs from the membership under analysis. Finally, 𝜖 represents a normally distributed random
error term with mean zero and standard deviation 𝜎, which we assume to be independent of 𝑔௜
on each cluster. Thus, using

𝑔ொೖ
− 𝑔ோೖ

 = 𝑔஻ாೖ
 + 𝜖

on each gene 𝑖 , the term 𝑔஻ாೖ
+ 𝜖 would be normally distributed with mean 𝜇 = 𝑔஻ா and

standard deviation 𝜎. Accordingly, a good estimation of the batch effect would be the mean of

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 12

the gene expression subtraction between MNN cells pairs (e.g. 𝑔ො஻ா =
ଵ

௡
∑ ൫𝑔ொೖ

− 𝑔ோೖ
൯

௣
௞ୀଵ). But

there is a complication with this approach, since erroneous pairs between cells from distinct but
related cell types could be formed, resulting in the incorrect integration of dissimilar
subpopulations [5]. To tackle this problem, reasoning that abnormal pairs would appear as
outliers to the normal distribution of 𝑔஻ாೖ

+ 𝜖, we estimate a correction vector

𝐶𝑉 = − ቎

𝑔ො஻ாೖ

ଵ = 𝑀𝑒𝑑൫𝑔ொೖ

ଵ − 𝑔ோೖ

ଵ ൯

⋮
𝑔ො஻ாೖ

௡ = 𝑀𝑒𝑑൫𝑔ொೖ

௡ − 𝑔ோೖ

௡ ൯
቏

where the function 𝑀𝑒𝑑 represents the statistical median, which is less affected by outliers than
the mean. Canek uses this approach by default to reduce the impact from outliers, but it is
possible to perform an optional filtering step (with extra computational cost) based on the
interquartile range to detect MNN outliers (see Filtering section).

Fuzzy correction
From the steps described above, each cell from the same cluster will be assigned the same
correction vector. We use fuzzy logic to smoothly join the cluster-specific corrections into a cell-
specific one, where each cell has a unique correction vector (see Supplementary Figure 12).
Within this fuzzy logic framework, the clusters previously identified will be considered as
memberships.

Using the PCs of the query batch, we create a minimum spanning tree (MST) over the
memberships’ center points (𝑀𝐶 s) using the mst function from the R package igraph [31]
(Supplementary Figure 11a,b). For each edge of the MST, we construct a pair of membership
functions (𝑀𝐹s). These 𝑀𝐹𝑠 are used to calculate a fuzzy score for the cells (Supplementary
Figure 11c,d). For example, let us consider an edge that joins the centers of memberships
number 1 (𝑀𝐶ଵ) and 2 (𝑀𝐶ଶ). For each cell 𝑗 that belongs to memberships 1 or 2, we define the
vector 𝑉௝ as a vector for cell 𝑗 from 𝑀𝐶ଵ in the PCs embeddings. Similarly, let 𝑉ெ஼మ

 be the vector
corresponding to 𝑀𝐶ଶ. Then, we obtain the scalar projection 𝑝௝ for each cell 𝑗 onto the line
connecting 𝑀𝐶ଵ and 𝑀𝐶ଶ as:

𝑝௝ = 𝑉௝ ∙
𝑉ெ஼మ

ฮ𝑉ெ஼మ
ฮ

where the operator ∙ denots the dot product, and ฮ𝑉ெ஼మ
ฮ is the length of 𝑉ெ஼మ

. We then
construct the 𝑀𝐹s (i.e., 𝑀𝐹ଵ and 𝑀𝐹ଶ) as

𝑀𝐹ଵ(𝑗) = 1 −
𝑝௝ − 𝑝௠௜௡

𝑝௠௔௫ − 𝑝௠௜௡

𝑀𝐹ଶ(𝑗) =
𝑝௝ − 𝑝௠௜௡

𝑝௠௔௫ − 𝑝௠௜௡

Here, 𝑝௠௔௫ and 𝑝௠௜௡ are the maximum and the minimum of the scalar projections of the cells
in the memberships (𝑝௠௔௫ = max

௝
𝑝௝ and 𝑝௠௜௡ = min

௝
𝑝௝). In this way, the membership function

𝑀𝐹ଵ (𝑀𝐹ଶ) takes the maximum value 1 (the minimum value 0) for 𝑝௠௜௡ and the minimum value

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 13

0 (the maximum value 1) for 𝑝௠௔௫, respectively, and linearly interpolates for the other values of
the projections. (Supplementary Figure 12).

We calculate cell specific correction vectors 𝐶𝑉௝ by using the Takagi-Sugeno approach [32] to
combine the membership's correction vector 𝐶𝑉(௟) (see Correction Vector section) with the
membership functions:

𝐶𝑉௝ =
∑ 𝑀𝐹௟(𝑗)𝐶𝑉(௟)

௟

∑ 𝑀𝐹௟(𝑗)௟

When a membership 𝑙 is connected to several edges, we use the average of the membership
functions 𝑀𝐹௟ defined for all the edges associated with membership 𝑙.

Even though the fuzzy scheme is applied in a low dimensional representation, the final output
is in the original dimensionality of the input datasets. We recommend using Canek with the fuzzy
step, but to skip it users can set the boolean parameter fuzzy to FALSE. In this case the final
integration will be done using a membership-specific correction instead of a cell-specific one.

Hierarchical integration
We define a hierarchical integration when Canek is applied to more than two input batches. We
first sort the batches by cell number in descending order and use the batch with the higher
number of cells as the first reference batch. To determine the query batch, we prioritize to
integrate first related batches as they would have a higher number of MNN pairs. The query
batch is therefore chosen as the batch sharing the highest number of MNN pairs with the
reference. For this, we obtain their first three PCs using the prcomp_irlba function in the irlba R
package [28], find the MNN pairs and select the query batch as the one with the highest number
of pairs. Once the reference and the selected query batch are integrated, we define the
integrated batch as the new reference, and again select the query batch following the same
procedure as before. We continue this process until all the input batches are integrated. The
hierarchical integration is optional and can be deactivated by setting the boolean parameter
hierarchical to FALSE. In this case, the order of integration follows the order in the input list.

Filtering
We assume that erroneous MNN pairs would appear as outliers from the normal distribution of
𝑔஻ாೖ

+ 𝜖 = 𝑔ொೖ

௡ − 𝑔ோೖ

௡ (see Correction Vector section). We use the median function to reduce
the impact of these outliers on the correction vector estimation. In addition, the user can select
an extra filtering step based on the interquartile range:

𝐼𝑄𝑅 = 𝑄଻ହ − 𝑄ଶହ

where 𝑄଻ହ and 𝑄ଶହ are the 75th and 25th percentiles of the distribution of the 𝑝 MNN pairs’
Euclidean distance 𝑑(𝑘), 𝑘 = 1, … , 𝑝. Therefore, we will select and filter any outlier MNN pairs
as:

𝑀𝑁𝑁௞ 𝑰𝑺 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 𝑰𝑭 (𝑑(𝑀𝑁𝑁௞) < (𝑄ଶହ − 1.5𝐼𝑄𝑅) | 𝑑(𝑀𝑁𝑁௞) > (𝑄଻ହ + 1.5𝐼𝑄𝑅)).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 14

Analysis details
Data pre-processing
We performed the same data pre-processing for all the analyses. We implemented the
“Standard Workflow” from the Seurat R package [33], which involves:

 Normalization: using the function NormalizeData. Gene expression levels are divided by
the total number of transcripts and multiplied by 10,000. The results are then log
normalized.

 Identification of high variable features: using the function FindVariableFeatures. Genes
that show high variations among cells are selected using the vst method.

Batch-correction algorithms
Table 1 lists the batch correction methods used.

 Method Batch effect corrected output Package version
Seurat Normalized gene expression matrix Seurat version 3.2.2 [5]
MNN Normalized gene expression matrix Bioconductor’s batchelor version 1.6.2 [4]
Scanorama Normalized gene expression matrix Scanorama version 1.6 [7]
ComBat Normalized gene expression matrix sva version 3.38.0 [13]
Harmony Normalized feature reduction vectors Harmony version 1.0 [8]
Liger Normalized feature reduction vectors Liger version 0.5.0 [9]
ComBat-seq Normalized gene expression matrix sva version 3.38.0 [12]
scMerge Normalized gene expression matrix scMerge version 1.6.0 [14]
Canek Normalized gene expression matrix Canek version 0.1.7

Table 1 Batch effect correction methods used.

To objectively compare the batch effect correction methods, we used the same pre-processed
data and the same variable genes on each method. We obtained the variable genes from
Seurat’s integration using the VariableFeatures(assay=“integrated”) function from the Seurat R
package [33] and used them to subset the pre-processed uncorrected datasets. We
implemented the integration methods as follows:

Seurat. We used the FindIntegrationAnchors and IntegrateData functions with default
parameters from the Seurat R package [33].

Canek. We used the RunCanek function from the Canek R package with default
parameters.

MNN. We used the mnnCorrect(cos.norm.out = FALSE) function with default parameters
from the batchelor Bioconductor package [4].

Scanorama. We used the scanorama.correct(return_dense=TRUE) with default
parameters from the scanorama Python library [7].

ComBat. We used the ComBat function with default parameters from the sva R package
[13].

Harmony. We used the RunHarmony function with default parameters from the
harmony R package [8].

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 15

Liger. We used the RunOptimizeALS(k=20, lambda=5) and the RunQuantileNorm
functions with default parameters from the SeuratWrappers R package [9].

ComBat-seq. We used the ComBat_seq function with default parameters from the sva
R package [12].

scMerge. We used the scMerge function with default parameters from the scMerge R
package [14]. For the parameter kmeansK, we used the number of cell types when known,
otherwise the number of clusters.

After correcting batch effects, we scaled each of the integrated and uncorrected
datasets using the ScaleData function from the Seurat R package, except for Harmony and Liger
integrations, as their output is already a low dimensional space.

Dimensionality reduction
We obtained the principal components [27] from the corrected and uncorrected datasets using
the RunPCA function from the Seurat R package. We used the first 10 PCs as the standard in all
the tests. In the case of the UMAP representation [15], we applied the RunUMAP from the
Seurat R package to the selected PCs.

Simulated data
We used the splatSimulate function from the splatter Bioconductor package [18] to simulate
three batches with batch effect. Splatter allows us to simulate cell types whether as groups or
paths. Because we wanted to assess cell type preservation on a mixed population scenario with
clearly defined groups along with a differentiation process, we simulated paths and groups
separately and merged them. Then, we manually removed cells such that the batches shared
only one cell type. The final cell type composition is:

Method Path cells Group cells
 Cell-1 Cell-2 Cell-3 Cell-4 Cell-5

Batch-1 - -
Batch-2 - - -
Batch-3 - - -

Table 2 Cell type distribution on simulated data.

After removing the cell types, the number of cells per batch is: 1,671 cells for Batch 1, 975 cells
for Batch 2 and 964 cells for Batch 3, all of them with the same 2,000 genes.

To obtain the gold standard without batch effects, we used splatSimulate(batch.rmEffect =
TRUE) and removed the same cells as the simulations with batch effects.

Running time benchmark
We used the splatSimulate function from the Splatter Bioconductor package [18] to

simulate two datasets with a 2,000 genes and a varying number of cells in the range of 10k to
100k. Each dataset contained three cell types with appearance probabilities of 0.3, 0.3, and 0.4
respectively. We applied each of the correction methods five times on each of the simulated
datasets and recorded the time. We used the geom_smooth function from the ggplot2 R
package [34] to plot the time trend lines.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 16

Public datasets
Table 3 lists the public datasets we used.

Dataset Number of cells Technology Reference

Jurkat cells 3,258

10x [11] HEK293T cells 2,885

Jurkat:HEK293T 50:50 mixture 3,388

Mouse spleen 1,697 SMART-seq2 [17]
9,552 10x

Human pancreas

8,569 inDrop [19]
2,285 CEL-seq [20]
1,004 CEL-seq2
638 Fluidgm C1

 2,394 Smart-seq2 [23]
Human PBMCs (Interferon beta) 13,999 10x [24]

Human lung 312,928 10x [26]
Table 3 Public datasets used.

Jurkat/t293 data analysis
 We used the following publicly available datasets:

 293T cells. https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/293t_3t3

 Jurkat cells. https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/jurkat

 50:50 Jurkat:293T cell mixture. https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/jurkat:293t_50:50

In the 50:50 Jurkat:293T cell dataset, we used the kmeans function from the stats R package
[35] with k = 2, checked the expression of the XIST and CD3D3 genes and assigned the
appropriate cell type labels.

Spleen data analysis (pseudo-batch)
 We use the publicly available dataset from Tabula Muris [17]

https://ndownloader.figshare.com/files/13090478 .

Pancreatic data analysis
 We obtained the five public datasets [19-23] from the SeuratData R package[5] and used

the provided cell type labels.

PBMC unstimulated and IFN-β-stimulated data analysis
 We obtained the public datasets [24] from the SeuratData R package [5] and used the

provided cell type labels.

Human lung dataset
Single cell RNA-seq data and associated metadata from human lung was downloaded from
GSE136831, loaded into R and converted into a Seurat object [5]. This object was converted into
a list of objects with the SplitObject function using Library_Identity as batch variable. The

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 17

standard processing workflow was used to normalize and find highly variable features in each
of the libraries (see Data preprocessing above). This data was passed to the function RunCanek
with hierarchical integration set to FALSE. The integrated dataset was scaled using ScaleData
and Principal Component Analysis dimensions were calculated with RunPCA. The top 25
principal components were used to calculate UMAP using RunUMAP, and to create the Shared
Nearest Neighbors graph with FindNeighbors. Clustering was done using FindClusters with the
Louvain algorithm and a resolution of 1. Cells annotated as multiplets in the original publication
were removed.

Metrics
We evaluated the results from the batch-correction methods by scoring the mixing between
batches with the k-nearest-neighbor batch effect test (kBET) [36], and the cell purity
preservation with the average Silhouette width (Silhouette) [37]. We used the kBET and
batch_sil functions from the kBET R package [36].

The kBET metric provides a rejection rate within 0 and 1 after testing batch mixing at the local
level. The kBET’s score could be affected by the choice in the number of k-nearest neighbors
(kNN). To objectively assess the different integration methods, following the idea of Tran et al.
[3], we obtained the mean cell number of the datasets and performed the scoring by fixing the
kNN size as the 5%, 15%, and 30% of this mean. To ease the interpretation of this metric, we
calculated an “acceptance rate” by subtracting the rejection rate from 1.

We used the Silhouette coefficient to assess cell purity after integration [37]. This metric
analyzes the separation among cells from the same cluster as compared with cells from other
clusters. Let 𝑎(𝑖) be the average Euclidean distance of cell 𝑖 to all other cells from the same
cluster as 𝑖, then the Silhouette width 𝑠(𝑖) is defined as:

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max൫𝑎(𝑖), 𝑏(𝑖)൯

where 𝑏(𝑖) is calculated as

𝑏(𝑖) = min
஼

𝑑(𝑖, 𝐶)

being 𝑑(𝑖, 𝐶) the average distance of cell 𝑖 to all the other cells assigned to different clusters 𝐶.
A higher score means a longer separation between clusters and a lower score means a shorter
separation. We used the cell type labels provided for each dataset as inputs to the Silhouette
coefficient, except on the pseudo-batch experiment, where we obtained the cluster labels using
the FindNeighbors and FindClusters(resolution = 0.5) functions from the Seurat R package.

For both kBET and Silhouette metrics we used the “harmony” and “iNMF” embeddings from
Harmony and Liger corrections respectively. For the rest of the methods and the Uncorrected
data we used the first 10 PCs.

Data availability
The datasets used for the simulation and pseudo-batch tests are available from figshare:
https://figshare.com/projects/Canek/122638.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 18

Code availability
Canek is implemented as an R package and is available from GitHub:
https://github.com/MartinLoza/Canek. Code used to replicate the analyses presented in this
paper is available from: https://github.com/MartinLoza/WorkflowsCanek

Acknowledgements
We thank Dr. Alexis Vandenbon for valuable comments on our manuscript.

Author contributions
ML conceived this work with contributions from ST and DD. DMS provided guidance for
benchmarking and performance evaluation. ML and DD implemented the methods. ML
performed the analyses with contributions from DD. ML and DD wrote the manuscript with
contributions from ST and DMS. All authors edited and approved the submitted manuscript.

Competing interests
The authors declare no competing interests.

References
1. Svensson, V., R. Vento-Tormo, and S.A. Teichmann, Exponential scaling of single-cell

RNA-seq in the past decade. Nat Protoc, 2018. 13(4): p. 599-604.
2. Leek, J.T., et al., Tackling the widespread and critical impact of batch effects in high-

throughput data. Nat Rev Genet, 2010. 11(10): p. 733-9.
3. Tran, H.T.N., et al., A benchmark of batch-effect correction methods for single-cell RNA

sequencing data. Genome Biol, 2020. 21(1): p. 12.
4. Haghverdi, L., et al., Batch effects in single-cell RNA-sequencing data are corrected by

matching mutual nearest neighbors. Nat Biotechnol, 2018. 36(5): p. 421-427.
5. Stuart, T., et al., Comprehensive Integration of Single-Cell Data. Cell, 2019. 177(7): p.

1888-1902.e21.
6. Polański, K., et al., BBKNN: fast batch alignment of single cell transcriptomes.

Bioinformatics, 2020. 36(3): p. 964-965.
7. Hie, B., B. Bryson, and B. Berger, Efficient integration of heterogeneous single-cell

transcriptomes using Scanorama. Nat Biotechnol, 2019. 37(6): p. 685-691.
8. Korsunsky, I., et al., Fast, sensitive and accurate integration of single-cell data with

Harmony. Nat Methods, 2019. 16(12): p. 1289-1296.
9. Welch, J.D., et al., Single-Cell Multi-omic Integration Compares and Contrasts Features

of Brain Cell Identity. Cell, 2019. 177(7): p. 1873-1887.e17.
10. Luecken, M.D., et al., Benchmarking atlas-level data integration in single-cell genomics.

bioRxiv, 2020: p. 2020.05.22.111161.
11. Zheng, G.X., et al., Massively parallel digital transcriptional profiling of single cells. Nat

Commun, 2017. 8: p. 14049.
12. Zhang, Y., G. Parmigiani, and W.E. Johnson, : batch effect adjustment for RNA-seq

count data. NAR Genom Bioinform, 2020. 2(3): p. lqaa078.
13. Johnson, W.E., C. Li, and A. Rabinovic, Adjusting batch effects in microarray expression

data using empirical Bayes methods. Biostatistics, 2007. 8(1): p. 118-27.
14. Lin, Y., et al., scMerge leverages factor analysis, stable expression, and

pseudoreplication to merge multiple single-cell RNA-seq datasets. Proc Natl Acad Sci U
S A, 2019. 116(20): p. 9775-9784.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 19

15. McInnes, L., J. Healy, and J. Melville, Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

16. Argelaguet, R., et al., Computational principles and challenges in single-cell data
integration. Nat Biotechnol, 2021.

17. Tabula Muris, C., et al., Single-cell transcriptomics of 20 mouse organs creates a Tabula
Muris. Nature, 2018. 562(7727): p. 367-372.

18. Zappia, L., B. Phipson, and A. Oshlack, Splatter: simulation of single-cell RNA
sequencing data. Genome Biol, 2017. 18(1): p. 174.

19. Baron, M., et al., A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas
Reveals Inter- and Intra-cell Population Structure. Cell Syst, 2016. 3(4): p. 346-360.e4.

20. Muraro, M.J., et al., A Single-Cell Transcriptome Atlas of the Human Pancreas. Cell Syst,
2016. 3(4): p. 385-394 e3.

21. Grün, D., et al., De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome
Data. Cell Stem Cell, 2016. 19(2): p. 266-277.

22. Lawlor, N., et al., Single-cell transcriptomes identify human islet cell signatures and
reveal cell-type-specific expression changes in type 2 diabetes. Genome Res, 2017.
27(2): p. 208-222.

23. Segerstolpe, A., et al., Single-Cell Transcriptome Profiling of Human Pancreatic Islets in
Health and Type 2 Diabetes. Cell Metab, 2016. 24(4): p. 593-607.

24. Kang, H.M., et al., Multiplexed droplet single-cell RNA-sequencing using natural genetic
variation. Nature biotechnology, 2018. 36(1): p. 89.

25. Henig, N., et al., Interferon-beta induces distinct gene expression response patterns in
human monocytes versus T cells. PLoS One, 2013. 8(4): p. e62366.

26. Adams, T.S., et al., Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell
populations in idiopathic pulmonary fibrosis. Sci Adv, 2020. 6(28): p. eaba1983.

27. Pearson, K., LIII. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901.
2(11): p. 559-572.

28. Lewis, B.W., J. Baglama, and L. Reichel, The irlba Package. 2019.
29. Beygelzimer, A., et al., Package ‘FNN’. Accessed June, 2015. 1.
30. Strogatz, S., Nonlinear dynamics and chaos: with applications to physics, biology,

chemistry, and engineering (studies in nonlinearity). 2001.
31. Csardi, G. and T. Nepusz, The igraph software package for complex network research.

InterJournal, complex systems, 2006. 1695(5): p. 1-9.
32. Takagi, T. and M. Sugeno, Fuzzy identification of systems and its applications to

modeling and control. IEEE transactions on systems, man, and cybernetics, 1985(1): p.
116-132.

33. Butler, A., et al., Integrating single-cell transcriptomic data across different conditions,
technologies, and species. Nat Biotechnol, 2018. 36(5): p. 411-420.

34. Wickham, H., W. Chang, and M.H. Wickham, Package ‘ggplot2’. Create Elegant Data
Visualisations Using the Grammar of Graphics. Version, 2016. 2(1): p. 1-189.

35. Team, R.C., Vienna: R Foundation for Statistical Computing, 2020. 2020.
36. Büttner, M., et al., A test metric for assessing single-cell RNA-seq batch correction. Nat

Methods, 2019. 16(1): p. 43-49.
37. Rousseeuw, P.J., Silhouettes: a graphical aid to the interpretation and validation of

cluster analysis. Journal of computational and applied mathematics, 1987. 20: p. 53-
65.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

 20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.05.05.442380doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.05.442380
http://creativecommons.org/licenses/by-nc-nd/4.0/

