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Abstract 
Single cell transcriptomic approaches are becoming mainstream, with replicate experiments 
commonly performed with the same single cell technology. Methods that enable integration of 
these datasets by removing batch effects while preserving biological information are required 
for unbiased data interpretation. Here we introduce Canek for this purpose. Canek leverages 
information from mutual nearest neighbor to combine local linear corrections with cell-specific 
non-linear corrections within a fuzzy logic framework. Using a combination of real and synthetic 
datasets, we show that Canek corrects batch effects while introducing the least amount of bias 
compared with competing methods. Canek is computationally efficient and can easily integrate 
thousands of single-cell transcriptomes from replicated experiments. 

Introduction 
Single cell sequencing technologies allow quantification of RNA expression levels within a given 
cell with unprecedented resolution [1]. However, these approaches require integration over 
multiple observations to increase signal to noise. In such efforts, the true biological signal can 
become distorted. Even the most skilled operator using the same instrument will tend to 
observe systematic differences in replicates. Although such batch effects are well-known, they 
do not result from a single cause and thus are difficult to define or correct [2]. 

Many methods to integrate single cell datasets obtained from the same tissues using different 
technologies have been introduced [3]. One of the pioneering techniques is the so-called Mutual 
Nearest Neighbors (MNN) correction method [4]. In this method, MNN pairs are used to identify 
corresponding cells in two different batches. A pair-specific correction vector is then defined as 
the difference between the expression profiles of the cells from each MNN pair. The correction 
vectors are then weighted to smooth the corrections between adjacent cells. Subsequently, 
other tools have been developed that use MNNs to integrate batches [5-7]. One popular method, 
implemented in the Seurat R package, finds MNN pairs in a correlated space using canonical 
correlation analysis (CCA) [5]. The identified pairs are used as “anchors” to correct batch effects. 
Another interesting approach, Harmony, iteratively removes batch effects by clustering in a low 
dimensional space [8]. LIGER applies a similar clustering approach by segmenting cells using a 
shared factor neighborhood graph under a low dimensional space defined with an integrative 
non-negative matrix factorization method [9]. 
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In a comprehensive benchmark of 14 batch correction methods, including the ones above, the 
methods were tested under different scenarios to quantify the effects of data acquired by 
different technologies, use of dissimilar cells, data size, numbers of batches and simulated biases 
[3]. The three top-scoring methods were Harmony, Liger, and Seurat. However, the authors 
found that each method performed differently on each test, with no obviously superior method 
[3]. Another benchmark done on atlas-level datasets found that the best integration approach 
strongly depended on the target task [10]. This ambiguity makes best practices for integration 
of batches from replicated experiments unclear. An important question is how much bias such 
methods introduce and which of the methods is best suited for this task. To address these issues, 
we introduce Canek. Canek operates on two levels: it assumes mostly linear batch effects within 
a cluster of similar cells but allows non-linear corrections between different clusters of cells in a 
pair of datasets. This allows Canek to efficiently integrate single cell transcriptomes from 
replicated experiments while introducing minimal bias, thus preserving biologically relevant 
information. 

Results 
Overview of Canek 
Canek corrects multiple batches by integrating pairs of batches sequentially. The dataset pairs 
that are input to Canek are denoted reference batch and query batch (Figure 1a). Then the 
integrated dataset becomes the reference to integrate the following batch. Batch effect 
observations are defined using mutual nearest neighbors (MNN) [4] and groups of similar cells 
are identified from the query batch using clustering (Figure 1b). Canek estimates a correction 
vector for each cluster using the median gene expression differences between cells in each 
cluster of the query batch and the corresponding cells in the reference as identified by MNN 
(arrows on Figure 1c). The correction vector can thus be used to remove the batch effect from 
each cluster in the query batch. In this linear correction, the same correction is applied to all the 
cells in the cluster (Figure 1c). Subsequently, Canek performs a non-linear correction by 
calculating a cell-specific transformation using fuzzy logic. This is done by defining a minimum 
spanning tree among clusters and then smoothing the transitions between the correction 
vectors (Figure 1d). Using a combination of real and simulated data, we show that, Canek 
exhibits unbiased corrections of single cell transcriptome data. 

 

Figure 1 Overview of Canek workflow. a) Canek starts with a reference batch and query batch, assuming 
a predominantly linear batch effect. b) Cell clusters are defined on the query batch and MNN pairs (arrows) 
are used to define batch effect observations. c) The MNN pairs from each cluster are used to estimate 
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cluster specific correction vectors. These vectors can be used to correct the batch effect or, d) a non-linear 
correction can be applied by calculating cell-specific correction vectors using fuzzy logic. 

Canek successfully corrects batch effects in a Jurkat/293T mixture dataset 
An example where batch effects are clearly visible is the mixture of cells used to demonstrate 
the 10x chromium sequencing technology [11]. The dataset consists of three batches: one 
containing only 293T HEK (Human Embryonic Kidney) cells, another containing only Jurkat cells 
(immortalized human T lymphocytes), and a third comprised of a 50:50 mixture of 293T and 
Jurkat cells [11]. Principal component analysis (PCA) of the Uncorrected dataset is shown in 
Figure 2a. Looking at cell-specific markers we can see there is a cluster of cells expressing XIST 
(293T cells) and two clusters of cells expressing CD3D (Jurkat cells). While the cluster of 293T 
cells shows mixing of cells from both batches, the two clusters of Jurkat cells show batch specific 
distributions, suggesting an unknown systematic bias. We used different integration methods 
and assessed their ability to correct the systematic differences in the Jurkat cell data without 
introducing additional bias. To this end, we applied batch correction using Canek and 8 state-of-
the-art methods: Combat, ComBat-seq, Harmony, Liger, MNN, Scanorama, scMerge, and Seurat 
[4, 5, 7-9, 12-14]. Both Canek and MNN corrected the batch effect and enabled the identification 
of the expected cell population clusters (Figure 2b,c). However, other methods, including 
Combat and Seurat, resulted in incorrect mixing of cell populations (Figure 2d, e). The results for 
all methods are shown in Supplementary Figure 1 for PCA, and Supplementary Figure 2 for 
Uniform Manifold Approximation and Projection (UMAP) [15] plots. 

To evaluate the performance of batch correction we computed kBET and Silhouette scores for 
the Uncorrected and corrected datasets (Figure 2f). We chose the kBET metric to estimate the 
mixing of batches after correction, while the Silhouette metric enabled us to assess the 
preservation of the original cell clusters. Most methods show similar values of kBET, indicating 
similar levels of mixing. Methods that successfully integrated the batches while preserving cell 
populations had higher values in the Silhouette score. Canek, Harmony, MNN, and Scanorama 
all have similar values, and lead to visually successful integrations as seen in the PCA and UMAP 
plots. Combat, ComBat-seq and Seurat resulted in good integration but different levels of 
success in preserving the cell populations. Liger showed very different behavior (high kBET and 
low Silhouette), suggesting excessive mixing while not preserving cell populations. This agrees 
with the PCA/UMAP plots in Supplementary Figures 1 and 2. These results show that Canek was 
able to successfully identify and correct the local batch effect while preserving biologically 
meaningful cell type differences. 
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Figure 2 Batch effect correction methods may incorrectly mix dissimilar cell types. Batch effect correction 
of three batches, two containing pure Jurkat and HEK293T cells, and one with a 50:50 mix of Jurkat and 
HEK293T cells. a) Jurkat and HEK293T cells are characterized by the expression of CD3D and XIST genes 
respectively. Before correction Jurkat cells grouped by batch. b-e) show the results of batch effect 
correction using Canek, Combat, MNN and Seurat. Canek and MNN correctly integrated the Jurkat cells. 
Combat and Seurat incorrectly mixed Jurkat and HEK293T cells. 

Evaluation of correction bias 
As shown above, batch correction methods can introduce biases in the data that disturb the 
biological information or alter the structure of cell populations [10, 16]. As single-cell genomics 
technologies become mainstream, more laboratories will perform experiments under different 
conditions with biological replicates obtained using a common technology. In this scenario, 
integration of datasets with minimal impact on cell phenotype is essential. 

We define batch correction bias as undesired correction that may alter the original biological 
signal. To quantify how much bias correction methods introduce, we use a pseudo-batch 
approach (shown schematically in Figure 3a). Starting from a single dataset we identified clusters 
to define cell populations. Then we generated two pseudo-batches by sampling cells without 
replacement. Each pseudo-batch preserves the information about the original cell populations 
(clusters). Because no modifications to the original expression values were introduced during 
the sampling process, the batch effect between the two pseudo-batches is effectively zero. We 
assume that batch correction methods should not correct in this scenario since no batch effect 
exists, and identification of clusters from the integrated batches should preserve the clusters 
obtained from the original (Uncorrected) dataset. 

We applied this strategy to the droplet spleen dataset from Tabula Muris [17]. In Figure 3b the 
first UMAP plot shows the original dataset with cell clusters indicated with colors. The next two 
UMAP plots show the cells from the two pseudo-batches obtained after sampling. We applied 
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batch correction to these two pseudo-batches. To quantify the introduced bias, we computed 
kBET and Silhouette scores for the Uncorrected and corrected datasets. Since there was no 
batch effect, the scores for the Uncorrected dataset corresponded to the optimal values. 

Figure 3c shows that Canek integration resulted in even distribution of the cells from both 
batches and cluster distribution that resembled the original dataset. Figure 3d shows that MNN 
failed to completely integrate this dataset, with uneven distribution of cells from the pseudo-
batches. In Supplementary Figure 3 we show UMAP plots with results for each of the evaluated 
methods. Although in some cases it was trivial to identify differences with the Uncorrected 
dataset due to obvious changes in cell distributions, it was not always easy to evaluate the 
relative performance. To do so, we calculated kBET and Silhouette scores and compared them 
with those obtained from the Uncorrected dataset, which represented the optimal values. 
Figure 3e shows the scores for kBET and Silhouette metrics obtained from this experiment. In 
this plot, the dashed lines indicate the scores for the Uncorrected dataset, with the crossing 
point representing the optimal value. Canek, Combat, ComBat-seq and Harmony resulted in 
scores very close to the optimal value. To estimate the variability of the results due to pseudo-
batch sampling, we repeated this experiment 10 times. Supplementary Figure 4 shows that 
Canek obtained scores closest to the values of the Uncorrected dataset, demonstrating that it 
introduced the least amount of bias when no batch effect was present. 

 

Figure 3 Correction methods may introduce biases. a) Strategy for pseudo-batch generation: Starting from 
a single dataset with identified cell populations (clusters), we sample without replacement to generate 
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two pseudo-batches. Then, we integrate these pseudo-batches and check whether the integration 
introduced biases comparing the result with the original dataset. b) Pseudo-batch generation using the 
spleen dataset from Tabula Muris. c) Canek integrated the pseudo-batches without introducing biases to 
the cell distribution. e) MNN integration led to uneven distribution of cells from the pseudo-batches in the 
UMAP plot. e) Using kBET and Silhouette metrics, the mixing among batches and the cluster preservation 
were evaluated. The optimal scores from the Uncorrected data are shown as dashed lines, while the scores 
from the correction methods are indicated as colored points. Unbiased methods are those whose metrics 
are closest to the intersection of the gray lines. 

Evaluation of integration in simulated data 
To estimate the ability to correct batch effects when the effect is known exactly, we compared 
Canek with other methods using simulated data. We simulated three batches with shared cell 
types using the splatter package [18] from which we can obtain an integrated dataset to use as 
a gold standard (GS). Batch 1 was composed of two shared and one unique cell type, whereas 
batches 2 and 3 had one shared and one unique cell type (see Table 2 for a complete description). 
Figures 4a and 4b show UMAP plots from the GS and the Uncorrected dataset, respectively. 
Figure 4c shows kBET and Silhouette scores from the GS (cross of dashed lines), Uncorrected 
data, and integrated datasets. We expected the best correction methods to be close to the 
metrics from GS. These results show that Canek scores were closest to those of the GS. This is 
consistent with the UMAP plot shown in Figure 4d, where Canek corrected the differences 
among shared cell types. Interestingly, Harmony returned scores very close to the Uncorrected 
data, suggesting that it performed almost no correction, consistent with the UMAP plot in Figure 
4e. 

 

Figure 4 Batch effect correction on simulated data with a known gold standard. Three batches were 
simulated to test the integration methods in a scenario with a known gold standard a). The gold standard 
shows the UMAP plot for the batches without batch effect. Two cell types (Cell-1 and Cell-2) are shared 
among different batches. b) The Uncorrected dataset shows batch-specific differences in cells of the same 
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type. c) kBET and Silhouette metrics for Uncorrected, Gold Standard (dashed lines) and the 9 evaluated 
methods. Canek shows scores closest to the Gold Standard. d) UMAP plot shows that Canek correctly 
integrated the shared cell types while maintaining the identity of non-shared ones. e) Harmony correction 
failed to integrate cells from the same type. 

Application to real datasets 
Next, we compared Canek with other methods on 3 real datasets: Tabula Muris spleen, human 
pancreatic islets, and interferon beta stimulation [17, 19-23]. 

First, we tested a scenario in which the same sample was used with two different technologies 
simultaneously. For this we integrated the droplet and FACS batches from the Tabula Muris 
spleen datasets [17]. Supplementary Figure 6 shows UMAP plots for the Uncorrected data, and 
the correction done by Canek and the other 8 correction methods. Except for scMerge, which 
merged some cell populations, all the methods successfully integrated the datasets, with cells 
from the same type found in the same clusters. This demonstrates that Canek can integrate 
datasets even from different technologies. 

Next, we tested the scenario in which similar tissues were used with different technologies. For 
this we integrated eight human pancreatic islet datasets from five different technologies. Figure 
5a shows the Uncorrected data, where the batch effect caused the cells to cluster by batch. The 
results for all methods are shown in Supplementary Figure 7. Figure 5 highlights the results from 
Canek and Seurat. Canek (Figure 5b) was able to integrate the batches, but some differences 
remained. Other methods like Seurat (Figure 5c) and MNN (Supplementary Figure 7g) mixed the 
batches almost perfectly. Interestingly, the differences remaining in Canek integration are 
correlated with disease state (Supplementary Figure 8), with some of the samples containing 
type 2 diabetes whereas other containing only healthy individuals. Therefore, we tentatively 
speculate that the observed differences may, indeed, be due to true biological differences. 

 

Figure 5 Integration datasets from different technologies. Eight pancreatic datasets obtained using 
different technologies were corrected. a) Batch effects caused the cells to cluster by batch instead of by 
cell type. c-f) The batches were integrated using different methods. 

Finally, we evaluated the scenario wherein two samples from different conditions were assayed 
using the same technology. For this we integrated a dataset obtained from PBMCs with and 
without interferon-beta stimulation [24]. In this scenario, differences between the same cell 
types due to the stimulation were expected. Supplementary Figure 9a shows that in the 
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Uncorrected data, cells separate by batch. Supplementary Figures 4b-j shows the correction 
done by Canek and 8 other methods. After integrating with Canek, B cells and T cells were almost 
completely integrated but some differences remained. Differences in monocytes and dendritic 
cells in the stimulated vs. non-stimulated cells were more prominent. This is in agreement with 
experiments showing that interferon beta induces stronger changes in gene expression in 
monocytes compared to T cells [25]. 

Integration of a human lung dataset 
To evaluate how Canek performs on the task of integrating samples from replicated experiments, 
we used a human lung single cell dataset with 78 samples including IPF (n = 32; idiopathic 
pulmonary fibrosis), COPD (n = 18; chronic obstructive pulmonary disease), and control donors 
(n = 28) [26]. This dataset consisted of 312,928 cells distributed over 107 sequencing libraries 
that we treated as different batches. Figure 6a-b shows that Canek integration resulted in good 
mixing among libraries while preserving the cell populations identified in the original publication. 
These cell types closely correlated with cell clusters based on Canek integration (Figure 6c). Most 
cells were distributed evenly among all cell types and disease conditions (Figure 6d). Enrichment 
and depletion in cell populations associated with disease were preserved (Supplementary Figure 
10). A group of macrophages enriched in IPF in clusters 12 (interstitial macrophages expressing 
matrix metallopeptidase 9; MMP9, Figure 7e-g) and 16 (alveolar macrophages) showed cells in 
a transitional state almost exclusively from IPF donors [26]. This demonstrates that Canek can 
integrate a high number of replicated datasets while preserving biologically meaningful 
information. 
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Figure 6 Integration of the lung dataset from Adams (2020). a) UMAP plot showing the mixing between batches. b) 
Cell populations described in the original publication are preserved. c) Clustering based on Canek integration matches 
with cell populations. d) Distribution of cells by disease condition shows even distribution except for a group of IPF 
specific cells in clusters 12 and 16. e) MMP9 is highly expressed in cluster 12 (interstitial macrophages), f) in IPF donors. 
g) Cluster 12 and 16 are enriched in cells from IPF. 

Computational performance 
To compare the computational performance and scalability of Canek and eight other batch 
correction methods, we simulated datasets using splatter and recorded the integration time. 
We fixed the number of genes to 2,000 and varied the number of cells from 10k to 100k. Figure 
7 shows run times as a function of the number of cells. The fastest method was Combat, 
followed by Scanorama, Harmony, and Canek, all of which showed near linear run time 
dependence and ability to integrate 100k cells in under 20 min. On the other side of the 
spectrum MNN, Seurat, and ComBat-seq showed a strong dependence of run time on data size. 
These results demonstrated that Canek is a scalable method that can integrate hundreds of 
thousands of single-cell transcriptomes efficiently. 

 

 

Figure 7 Runtime benchmark of Canek and other eight batch correction methods. Each method was run 5 times on 
different datasets with the number of genes fixed to 2k and the number of cells varying in a range of 5k to 100k. The 
color code differentiates each of the methods, the dots represent the runtime, and the lines represent the time 
increasing trends. Canek displayed a linear time increase over these conditions. 

Discussion 
Existing batch effect correction methods focus on integrating single-cell transcriptomics 
datasets obtained from different technologies and/or species, minimizing the differences 
among batches to obtain correlated cell types. While these frameworks offer a powerful solution 
to integrate datasets with strong differences between batches, they may also introduce 
significant biases due to over-correction. This represents a potential problem when these 
methods are applied to datasets where we wish to preserve biological differences (e.g., 
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replicated experiments obtained with the same technology). Over-correction could negatively 
affect downstream tasks such as clustering or differential gene expression analysis. Canek 
provides an unbiased batch effect correction method for single-cell transcriptomics data that is 
suited for such integration of experimental replicates. We focused on preserving the inherent 
biological structure while being flexible enough to deal with small non-linear differences that 
might appear on heterogeneous datasets. We applied Canek to simulated and real datasets and 
showed its ability to correct batch effects without masking real biological signals. We also tested 
Canek on a pseudo-batch scenario with no batch effect and observed that it preserved the 
biological structure and introduced the least undesirable bias among tested methods. 

We further showed that Canek successfully integrated datasets from different technologies (e.g., 
the Tabula Muris spleen dataset). Depending on the nature of the dataset, Canek did not 
necessarily lead to the best batch mixing (e.g., in the human pancreatic islet integration). 
However, latent variables other than batch effects (i.e., disease condition) may influence the 
integration of these datasets. It is an open question how to integrate complex datasets with 
cofounding variables. 

The main goal of Canek is to enable efficient and unbiased integration of replicated experiments. 
Thus, we applied Canek to a large dataset from human lung disease. We identified enrichment 
of cell populations reported in the original publication, including cells in an apparently 
transitional state between interstitial to alveolar macrophages. This showed that Canek was able 
to integrate large numbers of replicated experiments while preserving biological information. 

As single-cell RNA-seq from replicated experiments using the same technology become more 
common, batch effect correction methods that conserve local differences will become more 
important. Canek provides a solution to this problem with an unbiased and computationally 
efficient batch effect correction. 

Methods 
Canek workflow 
Figure 2 shows the workflow for correcting a pair of batches. We define one of the batches as 
the query batch and the other one as the reference batch. We correct the cells from the query 
batch to match the cells from the reference batch. When correcting more than two batches we 
perform an optional hierarchical optimization of batch order (see Hierarchical integration 
section). The main steps of Canek's workflow are: 

1. Obtaining batch effect observations using mutual nearest neighbors (MNN) pairs. 
2. Clustering the query batch to define local groups of cells. 
3. Calculating a batch effect correction vector for each cluster. 
4. Obtaining a fuzzy correction by smoothing the transitions between the local correction 

vectors. 

Canek expects input datasets to be log normalized. The output dataset retains the same 
dimensionality (number of genes) as the input batches. 
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Batch effect Observations 
The first step is to identify what we call batch effect observations. This is the gene expression 
differences of a set of cells from the reference and query batches that will enable us to estimate 
the batch effect. 

To speed up computation we calculate the first 50 principal components (PCs) [27] using the 
prcom_irlba function from the ilrba R package [28]. This lower dimensional space is used to 
identify MNNs, and in the clustering and fuzzy correction steps. However, during the calculation 
of the correction vector step, we use the original input datasets. 

We calculate mutual nearest neighbors (MNN) pairs [4] using 50 PCs to obtain batch effect 
observations. We assume that at least one cell is shared between the batches to integrate. The 
MNN pairs are defined by the intersection of the crossed k nearest neighbors for each cell of two 
input batches. For example, for a cell 𝑐ଵfrom batch one, we find the k closest cells from batch 
two, and for cell 𝑐ଶfrom batch two, we find the k closest cells from batch one. If 𝑐ଵ and 𝑐ଶare 
mutually contained on each other’s nearest neighbor set, they are considered as a MNN pair. In 
Canek, to identify MNN pairs we first find the crossed 30 nearest neighbors of the query and 
reference batches using the get.knn function from the FNN R package [29]. We then select those 
cells that fulfill the MNN criteria to form cell pairs. We treat the gene expression differences 
from these pairs as observations of the batch effect. 

Clustering 
Following Haghverdi et al. (2018) [4] we assume that the batch effect is almost orthogonal to 
the biological space, and that the variations due to the batch effect are smaller than the 
biological variation (see Supplementary material of [4] for a deeper discussion of these 
assumptions). Small variations to this orthogonality assumption can be caused by noise or by 
non-linearities. A common way to deal with non-linear dynamics is to linearize over bounded 
regions [30], to solve each of these local problems, and, if necessary, to join all the pieces back 
into a non-linear global solution. Following this idea, we partition the query batch into clusters, 
which we define as a bounded set of related cells, using the Louvain algorithm implemented in 
the igraph R package [31]. By default, clustering is done using the first 10 PCs. 

Correction Vector 
Following our local orthogonal batch effect assumption, for each cluster we state the relation: 

𝑔ொೖ

௜ = 𝑔ோೖ 
௜ + 𝑔஻ாೖ 

௜ + 𝜖 

where 𝑔௜ , 𝑖 = 1, … , 𝑛, is the log-normalized gene expression level of the 𝑛 genes from the input 
batches. The batch effect 𝑔஻ாೖ

 is represented as an additive value in the query batch 𝑔ொ௞
 in 

terms of the same gene in the reference batch 𝑔ோೖ
, 𝑘 = 1, … , 𝑝, being 𝑝 the number of MNN 

pairs from the membership under analysis. Finally, 𝜖 represents a normally distributed random 
error term with mean zero and standard deviation 𝜎, which we assume to be independent of 𝑔௜ 
on each cluster. Thus, using 

𝑔ொೖ
− 𝑔ோೖ 

 = 𝑔஻ாೖ 
 + 𝜖 

on each gene 𝑖 , the term 𝑔஻ாೖ
+ 𝜖  would be normally distributed with mean 𝜇 = 𝑔஻ா  and 

standard deviation 𝜎. Accordingly, a good estimation of the batch effect would be the mean of 
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the gene expression subtraction between MNN cells pairs (e.g. 𝑔ො஻ா =
ଵ

௡
∑ ൫𝑔ொೖ

− 𝑔ோೖ
൯

௣
௞ୀଵ ). But 

there is a complication with this approach, since erroneous pairs between cells from distinct but 
related cell types could be formed, resulting in the incorrect integration of dissimilar 
subpopulations [5]. To tackle this problem, reasoning that abnormal pairs would appear as 
outliers to the normal distribution of 𝑔஻ாೖ

+ 𝜖, we estimate a correction vector  

𝐶𝑉 = − ቎

𝑔ො஻ாೖ

ଵ = 𝑀𝑒𝑑൫𝑔ொೖ

ଵ − 𝑔ோೖ

ଵ ൯

⋮
𝑔ො஻ாೖ

௡ = 𝑀𝑒𝑑൫𝑔ொೖ

௡ − 𝑔ோೖ

௡ ൯
቏   

where the function 𝑀𝑒𝑑 represents the statistical median, which is less affected by outliers than 
the mean. Canek uses this approach by default to reduce the impact from outliers, but it is 
possible to perform an optional filtering step (with extra computational cost) based on the 
interquartile range to detect MNN outliers (see Filtering section). 

Fuzzy correction 
From the steps described above, each cell from the same cluster will be assigned the same 
correction vector. We use fuzzy logic to smoothly join the cluster-specific corrections into a cell-
specific one, where each cell has a unique correction vector (see Supplementary Figure 12). 
Within this fuzzy logic framework, the clusters previously identified will be considered as 
memberships. 

Using the PCs of the query batch, we create a minimum spanning tree (MST) over the 
memberships’ center points (𝑀𝐶 s) using the mst function from the R package igraph [31] 
(Supplementary Figure 11a,b). For each edge of the MST, we construct a pair of membership 
functions (𝑀𝐹s). These 𝑀𝐹𝑠 are used to calculate a fuzzy score for the cells (Supplementary 
Figure 11c,d). For example, let us consider an edge that joins the centers of memberships 
number 1 (𝑀𝐶ଵ) and 2 (𝑀𝐶ଶ). For each cell 𝑗 that belongs to memberships 1 or 2, we define the 
vector 𝑉௝ as a vector for cell 𝑗 from 𝑀𝐶ଵ in the PCs embeddings. Similarly, let 𝑉ெ஼మ

 be the vector 
corresponding to 𝑀𝐶ଶ. Then, we obtain the scalar projection 𝑝௝  for each cell 𝑗 onto the line 
connecting 𝑀𝐶ଵ and 𝑀𝐶ଶ as: 

𝑝௝ = 𝑉௝ ∙
𝑉ெ஼మ

ฮ𝑉ெ஼మ
ฮ

   

where  the operator ∙  denots the dot product, and ฮ𝑉ெ஼మ
ฮ is the length of 𝑉ெ஼మ

. We then 
construct the 𝑀𝐹s (i.e., 𝑀𝐹ଵ and 𝑀𝐹ଶ) as 

𝑀𝐹ଵ(𝑗) = 1 −
𝑝௝ − 𝑝௠௜௡

𝑝௠௔௫ − 𝑝௠௜௡
 

𝑀𝐹ଶ(𝑗) =
𝑝௝ − 𝑝௠௜௡

𝑝௠௔௫ − 𝑝௠௜௡
 

Here, 𝑝௠௔௫ and 𝑝௠௜௡ are the maximum and the minimum of the scalar projections of the cells 
in the memberships (𝑝௠௔௫ = max

௝
𝑝௝ and 𝑝௠௜௡ = min

௝
𝑝௝). In this way, the membership function 

𝑀𝐹ଵ (𝑀𝐹ଶ) takes the maximum value 1 (the minimum value 0) for 𝑝௠௜௡ and the minimum value 
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0 (the maximum value 1) for 𝑝௠௔௫, respectively, and linearly interpolates for the other values of 
the projections. (Supplementary Figure 12).  

We calculate cell specific correction vectors 𝐶𝑉௝ by using the Takagi-Sugeno approach [32] to 
combine the membership's correction vector 𝐶𝑉(௟)  (see Correction Vector section) with the 
membership functions: 

𝐶𝑉௝ =  
∑ 𝑀𝐹௟(𝑗)𝐶𝑉(௟)

௟

∑ 𝑀𝐹௟(𝑗)௟
 

When a membership 𝑙 is connected to several edges, we use the average of the membership 
functions 𝑀𝐹௟ defined for all the edges associated with membership 𝑙. 

Even though the fuzzy scheme is applied in a low dimensional representation, the final output 
is in the original dimensionality of the input datasets. We recommend using Canek with the fuzzy 
step, but to skip it users can set the boolean parameter fuzzy to FALSE. In this case the final 
integration will be done using a membership-specific correction instead of a cell-specific one. 

Hierarchical integration 
We define a hierarchical integration when Canek is applied to more than two input batches. We 
first sort the batches by cell number in descending order and use the batch with the higher 
number of cells as the first reference batch. To determine the query batch, we prioritize to 
integrate first related batches as they would have a higher number of MNN pairs. The query 
batch is therefore chosen as the batch sharing the highest number of MNN pairs with the 
reference. For this, we obtain their first three PCs using the prcomp_irlba function in the irlba R 
package [28], find the MNN pairs and select the query batch as the one with the highest number 
of pairs. Once the reference and the selected query batch are integrated, we define the 
integrated batch as the new reference, and again select the query batch following the same 
procedure as before. We continue this process until all the input batches are integrated. The 
hierarchical integration is optional and can be deactivated by setting the boolean parameter 
hierarchical to FALSE. In this case, the order of integration follows the order in the input list. 

Filtering 
We assume that erroneous MNN pairs would appear as outliers from the normal distribution of 
𝑔஻ாೖ

+ 𝜖 =  𝑔ொೖ

௡ − 𝑔ோೖ

௡  (see Correction Vector section). We use the median function to reduce 
the impact of these outliers on the correction vector estimation. In addition, the user can select 
an extra filtering step based on the interquartile range: 

𝐼𝑄𝑅 = 𝑄଻ହ − 𝑄ଶହ 

where 𝑄଻ହ  and 𝑄ଶହ  are the 75th and 25th percentiles of the distribution of the 𝑝 MNN pairs’ 
Euclidean distance 𝑑(𝑘), 𝑘 = 1, … , 𝑝. Therefore, we will select and filter any outlier MNN pairs 
as: 

𝑀𝑁𝑁௞  𝑰𝑺 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 𝑰𝑭 (𝑑(𝑀𝑁𝑁௞) < (𝑄ଶହ − 1.5𝐼𝑄𝑅) | 𝑑(𝑀𝑁𝑁௞) > (𝑄଻ହ + 1.5𝐼𝑄𝑅)). 
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Analysis details 
Data pre-processing 
We performed the same data pre-processing for all the analyses. We implemented the 
“Standard Workflow” from the Seurat R package [33], which involves: 

 Normalization: using the function NormalizeData. Gene expression levels are divided by 
the total number of transcripts and multiplied by 10,000. The results are then log 
normalized. 

 Identification of high variable features: using the function FindVariableFeatures. Genes 
that show high variations among cells are selected using the vst method. 

Batch-correction algorithms 
Table 1 lists the batch correction methods used. 

 Method Batch effect corrected output Package version 
Seurat Normalized gene expression matrix Seurat version 3.2.2 [5] 
MNN Normalized gene expression matrix Bioconductor’s batchelor version 1.6.2 [4] 
Scanorama Normalized gene expression matrix Scanorama version 1.6 [7] 
ComBat Normalized gene expression matrix sva version 3.38.0 [13] 
Harmony Normalized feature reduction vectors Harmony version 1.0 [8] 
Liger Normalized feature reduction vectors Liger version 0.5.0 [9] 
ComBat-seq Normalized gene expression matrix sva version 3.38.0 [12]  
scMerge Normalized gene expression matrix scMerge version 1.6.0 [14] 
Canek Normalized gene expression matrix Canek version 0.1.7 

Table 1 Batch effect correction methods used. 

To objectively compare the batch effect correction methods, we used the same pre-processed 
data and the same variable genes on each method. We obtained the variable genes from 
Seurat’s integration using the VariableFeatures(assay=“integrated”) function from the Seurat R 
package [33] and used them to subset the pre-processed uncorrected datasets. We 
implemented the integration methods as follows: 

Seurat. We used the FindIntegrationAnchors and IntegrateData functions with default 
parameters from the Seurat R package [33]. 

Canek. We used the RunCanek function from the Canek R package with default 
parameters. 

MNN. We used the mnnCorrect(cos.norm.out = FALSE) function with default parameters 
from the batchelor Bioconductor package [4]. 

Scanorama. We used the scanorama.correct(return_dense=TRUE) with default 
parameters from the scanorama Python library [7]. 

ComBat. We used the ComBat function with default parameters from the sva R package 
[13]. 

Harmony. We used the RunHarmony function with default parameters from the 
harmony R package [8]. 
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Liger. We used the RunOptimizeALS(k=20, lambda=5) and the RunQuantileNorm 
functions with default parameters from the SeuratWrappers R package [9]. 

ComBat-seq. We used the ComBat_seq function with default parameters from the sva 
R package [12].   

scMerge. We used the scMerge function with default parameters from the scMerge R 
package [14]. For the parameter kmeansK, we used the number of cell types when known, 
otherwise the number of clusters. 

After correcting batch effects, we scaled each of the integrated and uncorrected 
datasets using the ScaleData function from the Seurat R package, except for Harmony and Liger 
integrations, as their output is already a low dimensional space. 

Dimensionality reduction 
We obtained the principal components [27] from the corrected and uncorrected datasets using 
the RunPCA function from the Seurat R package. We used the first 10 PCs as the standard in all 
the tests. In the case of the UMAP representation [15], we applied the RunUMAP from the 
Seurat R package to the selected PCs. 

Simulated data 
We used the splatSimulate function from the splatter Bioconductor package [18] to simulate 
three batches with batch effect. Splatter allows us to simulate cell types whether as groups or 
paths. Because we wanted to assess cell type preservation on a mixed population scenario with 
clearly defined groups along with a differentiation process, we simulated paths and groups 
separately and merged them. Then, we manually removed cells such that the batches shared 
only one cell type. The final cell type composition is: 

Method Path cells Group cells 
 Cell-1 Cell-2 Cell-3 Cell-4 Cell-5 

Batch-1    - - 
Batch-2 -  -  - 
Batch-3  - - -  

Table 2 Cell type distribution on simulated data. 

After removing the cell types, the number of cells per batch is: 1,671 cells for Batch 1, 975 cells 
for Batch 2 and 964 cells for Batch 3, all of them with the same 2,000 genes. 

To obtain the gold standard without batch effects, we used splatSimulate(batch.rmEffect = 
TRUE) and removed the same cells as the simulations with batch effects. 

Running time benchmark 
We used the splatSimulate function from the Splatter Bioconductor package [18] to 

simulate two datasets with a 2,000 genes and a varying number of cells in the range of 10k to 
100k. Each dataset contained three cell types with appearance probabilities of 0.3, 0.3, and 0.4 
respectively. We applied each of the correction methods five times on each of the simulated 
datasets and recorded the time. We used the geom_smooth function from the ggplot2 R 
package [34] to plot the time trend lines. 
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Public datasets 
Table 3 lists the public datasets we used. 

Dataset Number of cells Technology Reference 

Jurkat cells 3,258 

10x [11] HEK293T cells 2,885 

Jurkat:HEK293T 50:50 mixture 3,388 

Mouse spleen 1,697 SMART-seq2 [17] 
9,552 10x 

Human pancreas 

8,569 inDrop [19] 
2,285 CEL-seq [20] 
1,004 CEL-seq2  
638 Fluidgm C1  

 2,394 Smart-seq2 [23] 
Human PBMCs (Interferon beta) 13,999 10x [24] 

Human lung 312,928 10x [26] 
Table 3 Public datasets used. 

Jurkat/t293 data analysis 
 We used the following publicly available datasets: 

 293T cells. https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/293t_3t3 

 Jurkat cells. https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/jurkat 

 50:50 Jurkat:293T cell mixture. https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/jurkat:293t_50:50 

In the 50:50 Jurkat:293T cell dataset, we used the kmeans function from the stats R package 
[35] with k = 2, checked the expression of the XIST and CD3D3 genes and assigned the 
appropriate cell type labels. 

Spleen data analysis (pseudo-batch) 
 We use the publicly available dataset from Tabula Muris [17] 

https://ndownloader.figshare.com/files/13090478 . 

Pancreatic data analysis 
 We obtained the five public datasets [19-23] from the SeuratData R package[5] and used 

the provided cell type labels.  

PBMC unstimulated and IFN-β-stimulated data analysis 
 We obtained the public datasets [24] from the SeuratData R package [5] and used the 

provided cell type labels.  

Human lung dataset 
Single cell RNA-seq data and associated metadata from human lung was downloaded from 
GSE136831, loaded into R and converted into a Seurat object [5]. This object was converted into 
a list of objects with the SplitObject function using Library_Identity as batch variable. The 
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standard processing workflow was used to normalize and find highly variable features in each 
of the libraries (see Data preprocessing above). This data was passed to the function RunCanek 
with hierarchical integration set to FALSE. The integrated dataset was scaled using ScaleData 
and Principal Component Analysis dimensions were calculated with RunPCA. The top 25 
principal components were used to calculate UMAP using RunUMAP, and to create the Shared 
Nearest Neighbors graph with FindNeighbors. Clustering was done using FindClusters with the 
Louvain algorithm and a resolution of 1. Cells annotated as multiplets in the original publication 
were removed. 

Metrics 
We evaluated the results from the batch-correction methods by scoring the mixing between 
batches with the k-nearest-neighbor batch effect test (kBET) [36], and the cell purity 
preservation with the average Silhouette width (Silhouette) [37]. We used the kBET and 
batch_sil functions from the kBET R package [36]. 

The kBET metric provides a rejection rate within 0 and 1 after testing batch mixing at the local 
level. The kBET’s score could be affected by the choice in the number of k-nearest neighbors 
(kNN). To objectively assess the different integration methods, following the idea of Tran et al. 
[3], we obtained the mean cell number of the datasets and performed the scoring by fixing the 
kNN size as the 5%, 15%, and 30% of this mean. To ease the interpretation of this metric, we 
calculated an “acceptance rate” by subtracting the rejection rate from 1. 

We used the Silhouette coefficient to assess cell purity after integration [37]. This metric 
analyzes the separation among cells from the same cluster as compared with cells from other 
clusters. Let 𝑎(𝑖) be the average Euclidean distance of cell 𝑖 to all other cells from the same 
cluster as 𝑖, then the Silhouette width 𝑠(𝑖) is defined as: 

𝑠(𝑖) =  
𝑏(𝑖) − 𝑎(𝑖)

max൫𝑎(𝑖), 𝑏(𝑖)൯
 

where 𝑏(𝑖) is calculated as 

𝑏(𝑖) = min
஼

𝑑(𝑖, 𝐶) 

being 𝑑(𝑖, 𝐶) the average distance of cell 𝑖 to all the other cells assigned to different clusters 𝐶. 
A higher score means a longer separation between clusters and a lower score means a shorter 
separation. We used the cell type labels provided for each dataset as inputs to the Silhouette 
coefficient, except on the pseudo-batch experiment, where we obtained the cluster labels using 
the FindNeighbors and FindClusters(resolution = 0.5) functions from the Seurat R package. 

For both kBET and Silhouette metrics we used the “harmony” and “iNMF” embeddings from 
Harmony and Liger corrections respectively. For the rest of the methods and the Uncorrected 
data we used the first 10 PCs. 

Data availability 
The datasets used for the simulation and pseudo-batch tests are available from figshare: 
https://figshare.com/projects/Canek/122638. 
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Code availability 
Canek is implemented as an R package and is available from GitHub: 
https://github.com/MartinLoza/Canek. Code used to replicate the analyses presented in this 
paper is available from: https://github.com/MartinLoza/WorkflowsCanek 
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