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ABSTRACT 20 
Humans are uniquely capable of adapting to highly changing environments by updating 21 
relevant information and adjusting ongoing behaviour accordingly. Here we show how this 22 
ability —termed cognitive flexibility— is differentially modulated by high and low arousal 23 
fluctuations. We implemented a probabilistic reversal learning paradigm in healthy participants 24 
as they transitioned towards sleep or physical extenuation. The results revealed, in line with 25 
our pre-registered hypotheses, that low arousal leads to diminished behavioural performance 26 
through increased decision volatility, while performance decline under high arousal was 27 
attributed to increased perseverative behaviour. These findings provide evidence for distinct 28 
patterns of maladaptive decision-making on each side of the arousal inverted u-shaped curve, 29 
differentially affecting participants' ability to generate stable evidence-based strategies, and 30 
introduces wake-sleep and physical exercise transitions as complementary experimental 31 
models for investigating neural and cognitive dynamics. 32 

33 
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INTRODUCTION 34 
Making mistakes is inherent to learning and the accomplishment of any task. We make 35 
mistakes every day, even when faced with the same task repeatedly. Our ability to learn from 36 
these errors and flexibly adapt ongoing behaviour according to changes in the environment is 37 
critical for our survival. This ability —termed cognitive flexibility— depends on our innate 38 
capacity to establish associations between stimuli (S), responses (R), and outcomes (O), as well 39 
as to integrate previously acquired knowledge and skills into effective strategies for coping 40 
with similar future demands.1 Here, we implement a Probabilistic Reversal Learning (PRL) 41 
task to study the modulatory effect of low and high arousal on cognitive flexibility —42 
participants continue to perform as they fall asleep or with increasing physical exercise— to 43 
map either side of the Yerkes-Dodson Curve (1908).2 44 

Cognitive flexibility is often studied using PRL tasks, typically assigning probabilistic 45 
reinforcement contingencies to abstract S-R associations, that are later abruptly reversed, 46 
requiring participants to learn new S-R reinforcement contingencies by trial and error to 47 
overcome prepotent ones3. Efficient performance relies on learning from the reinforcement 48 
received4, the estimation of the likelihood that a reversal may occur,5,6 and the continuous 49 
integration of a history of choices and reinforcements.7 Indeed, evidence from both human and 50 
animal studies suggests that different high- and low-order strategies or series of rules are 51 
adopted during reversal learning, leading to maladaptive response patterns when the external 52 
pressures change or when the internal milieu varies.7,8 Parsing the microstructure of learning 53 
derived from trial-by-trial responses enables the dissociation of the cognitive processes and 54 
behavioural strategies that drive subjects’ choices during reversal learning. Here we propose 55 
that arousal fluctuations may differentially modulate cognitive flexibility leading to distinct 56 
maladaptive behavioural patterns of performance.9 57 

Fluctuations in arousal and alertness (hereafter described jointly as “arousal”) occur 58 
constantly across the day but are exacerbated during transitions toward strained states such as 59 
sleep10 or physical extenuation,11 where arousal levels change drastically in a progressive and 60 
nonlinear manner.12,13 These arousal fluctuations play a crucial role in modulating cognition, 61 
facilitating or hindering certain cognitive processes and performance to internal and external 62 
stimuli. 14,15,16,17,18  63 

The interaction between arousal and cognition has been traditionally approached from 64 
the perspective proposed by Yerkes and Dodson in 1908.2 According to their famous inverted 65 
U-shaped law, the optimal level of cognitive performance in complex tasks is reached at 66 
moderate levels of arousal, whereas deviations from this optimal arousal point, below or 67 
beyond, result in cognitive performance impairments. Though reductionist, the inverted U-68 
shaped law represents a useful minimal framework to characterize the neural and cognitive 69 
dynamics of many physiological states across the arousal spectrum. Among these physiological 70 
states, researchers have paid special attention to reduced arousal states, including sleep stages,19 71 
sedation,20 sleep deprivation,21 motivation22 and fatigue.23 72 

Sleep can be used as the gold standard model of transition toward low arousal.10 This 73 
area looking at the interaction between homeostasis and cognitive function is understudied due 74 
to the complexity of capturing dynamically metastable states like mild sedation24,25 and 75 
drowsiness.17 When falling asleep, individuals manifest a wide range of changes, from 76 
physiological to phenomenological, that are categorized into several well-described sleep 77 
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stages.26 One of these stages is drowsiness, a transitional stage of consciousness between 78 
attentive wakefulness and light sleep, characterized by a progressive and nonlinear loss of 79 
responsiveness to external stimuli which does not immediately imply unconsciousness.,27,28,29 80 
Drowsiness, as well as similar reduced arousal states, has been repeatedly associated with an 81 
impairment of cognitive processing, and particularly the capacity to deal with conflicting 82 
information,18 attentional performance,30 and perceptual decision-making.31 However, in 83 
drowsiness, and even during highly reduced arousal states, pre-attentive and early bottom-up 84 
attentive processing can still be accomplished with and without conscious awareness. 17,32,33 85 
 The transition towards the other side of the arousal spectrum (i.e., heightened arousal 86 
states) has received even less attention.34 The absence of a theoretical model for progressive 87 
physiological transitions towards high arousal states, has also contributed to a lack of advance 88 
in the field. Here, we consider endurance physical exercise as a useful experimental model of 89 
arousal transition upwards, with many commonalities with sleep transition. A single bout of 90 
endurance physical exercise (e.g., running or cycling) up to physical extenuation involves a 91 
complex transition encompassing a wide range of changes (e.g., neural, motor, endocrinal, 92 
phenomenological, etc.), that are also categorized into several well-described stages, from 93 
resting, through the aerobic and the anaerobic thresholds, up to the limit where the individual 94 
has to stop.35 This highly fluctuating transition has been also associated with changes in 95 
cognitive processing to internal and external stimuli.36,37,38 In particular, high-order top-down 96 
processes that govern goal-directed behaviour in changing environments (i.e., cognitive 97 
control) appear to benefit from increases in the level of arousal39 up to a certain exercise 98 
intensity. Further intensity increments approaching and exceeding the anaerobic threshold 99 
seem to hinder cognitive performance,36,37,38,40 in line with the Yerkes-Dodson law prediction.  100 

Sleep and physical exercise provide complementary perspectives on the cognitive 101 
dynamics, and experimental models, when the arousal level is altered. However, and despite 102 
the fact that both sides of the arousal spectrum exhibit similar cognitive performance 103 
impairments, they cannot be treated as mirroring states in terms of cognitive performance 104 
without a fine-grained differentiation of the behavioural dynamics that lead to these global 105 
impairments. Furthermore, the theoretical differences in the transitions towards sleep or 106 
complete (physical) exhaustion have to be considered in the assumptions and interpretations of 107 
this and future studies. Thus, it is crucial to ask when arousal is altered (increased or decreased), 108 
which specific processes of cognitive flexibility and information processing are affected, and 109 
whether low and high arousal states are characterized by different strategic behaviours 110 
underlying decision-making. It should be understood that the physiological processes 111 
underlying the change in performance seen in different Dodson-Yerkes experiments since 1908 112 
are different at each side of the curve, and it should be expected that these changes in arousal 113 
modulate differently the cognitive abilities. Here, we use a PRL task to disentangle the 114 
behavioural dynamics of cognitive flexibility as they get modulated by ongoing fluctuations in 115 
arousal levels and to further delineate the microstructure of learning derived from trial-by-trial 116 
responses to conflicting evidence. In particular, we manipulated arousal level to facilitate 117 
natural transitions to low alertness, from awake to asleep; or to elicit high arousal, instructing 118 
participants to exercise during 60 minutes at the highest intensity and effort possible without 119 
reaching premature exhaustion. During both arousal modulations, participants performed a 120 
PRL task, requiring the adaptation of behaviour following changes in reinforcement and 121 
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punishment, as well as the maintenance of strategic response patterns in the face of misleading 122 
(probabilistic) feedback.  123 

Based on the premises that (1) drowsiness hinders the extraction of task-relevant 124 
information from external stimuli and its integration, fragmenting specific aspects of cognition 125 
while preserving crucial executive control processes;18,31,33,41 (2) drowsiness has been 126 
associated with more liberal decision-making;17,30,31 (3) moderate-to-high intensity endurance 127 
exercise leads to a selective enhancement of executive control processes while lower and higher 128 
intensities result in an impairment or minimal effect;40,42,43 and (4) high arousal promotes 129 
habitual responding and reduced engagement of complex cognitive strategies;44,45,46 predicted 130 
that behavioural performance would be enhanced in moderate-intensity physical exercise, 131 
while drowsiness and high-intensity exercise would lead to diminished performance in light of 132 
the inverted U-shaped Yerkes-Dodson Law. Specifically, we hypothesized that reduced arousal 133 
states would be associated with an impairment of performance (compared to baseline), which 134 
would be attributed to a tendency to apply a simple strategy (win-stay/lose-shift) instead of 135 
using an integrated history of choices and outcomes to drive performance (probabilistic 136 
switching behaviour). In contrast, while we also expected an impairment of performance during 137 
heightened arousal states, we hypothesized it would be attributed to a failure to disengage from 138 
ongoing behaviour (perseveration). In addition, we hypothesized that altered arousal states 139 
might reduce the ability of participants to apply a proper higher order strategy, resulting in wide 140 
periods of time-on-task in which participants would perform the task simply responding to the 141 
tones (i.e., automatic rule) but without applying any strategy (i.e., higher order rule). All these 142 
hypotheses, together with the analysis plan, were pre-registered after data collection.9  143 
 144 
RESULTS 145 
To investigate the modulatory effect of arousal fluctuations on cognitive flexibility, a PRL task 146 
was carried out with human participants (n=100) while they were transitioning towards 147 
drowsiness or physical extenuation. Participants were instructed to associate an auditory 148 
stimulus (S) —high pitch sound or low pitch sound— with a response (R) button —left or right. 149 
In this auditory version of the PRL task, each S-R association leads to an auditory outcome (O) 150 
—correct (ding sound) or incorrect (white noise)— which participants use to assess their 151 
choice, and apply this knowledge to guide the next choices. Indeed, participants were explicitly 152 
told that there was a rule connecting each of the auditory sounds to a corresponding button 153 
(e.g., the low pitch sound could correspond to the left button, and the high pitch sound to the 154 
right button or vice-versa), which they had to figure out based upon instructive feedback they 155 
would receive after each R. Additionally, they were instructed on two key issues: 1) the S-R 156 
rule might switch after a certain amount of time —becoming the opposite of what it was 157 
previously—  and that no specific indication whether such a switch had occurred would be 158 
provided; 2) although the majority of the time the feedback would be truthful, sometimes it 159 
could be false and in essence mislead to them. Therefore, the task entails the use of, at least, 160 
two rules to success, as participants have to press a button after each auditory stimulus (i.e., 161 
automatic rule) and to use an integrated history of S-R-O associations to determine the correct 162 
S-R association (i.e., high order rule). Once participants reach 90% accuracy or greater on the 163 
latest 10 trials, the implicit abstract S-R association is reversed, and participants have to infer 164 
the new association from the feedback received. The number of responses needed to attain a 165 
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reversal (RAR) of the abstract association is used as the main index of performance. We 166 
hypothesized9 that reduced arousal states would lead to reductions in behavioural performance 167 
compared to baseline arousal state; while heightened arousal states would lead to improved 168 
performance relative to baseline, but only to an optimal point (i.e., moderate arousal) after 169 
which the performance will be deteriorated with further increases in arousal level (see figure 170 
1A). These hypotheses were formulated in line with the famous psychology inverted u-shaped 171 
law originally attributed to Yerkes and Dodson (1908)2 relating arousal modulation 172 
performance in complex tasks, but later more formally defined by Broadhurst (1958)47 and 173 
Brown (1961).48 174 

Note that, as a probabilistic task, the feedback provided is not always truthful nor 175 
reliable and misleads the participant 20% of the time (see figure 1B). Thus, the participant 176 
could correctly apply the S-R association and press the correct button in response to the 177 
auditory stimulus, and still receive negative feedback, thus indicating an incorrect choice. This 178 
scenario of conflicting evidence can lead participants to two different maladaptive response 179 
patterns (see figure 1C) while performing the task: 1) switching the pattern choice across trials 180 
with little (i.e., one negative feedback against the choice) or no evidence (i.e., no feedback 181 
against the choice) of an actual rule change (probabilistic switching); or 2) sticking with the 182 
previous choice despite having strong evidence (i.e., two or more negative feedbacks against 183 
the choice) of an actual rule change (perseveration). Relying on these response patterns lead to 184 
poor performance,7 as the optimal strategy in this task is to stick with the previous choice with 185 
zero or one negative feedback against the choice, and to switch the pattern choice if two or 186 
more consecutive negative feedbacks against the choice happen.  187 
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 188 
Figure 1. Experimental design and arousal level classification: A) Schematic representation of the 189 
experimental design and main hypotheses. Arousal level was endogenously manipulated by facilitating the natural 190 
transition of participants from awake to sleep, or instructing them to exercise during 60’ at the highest intensity 191 
and effort they could maintain without reaching premature extenuation. Notice that half of the participant 192 
transitioned towards drowsiness, while the other half transitioned towards physical exertion. A probabilistic 193 
reversal learning task was assessed continuously during the arousal modulation. Optimal performance of the task 194 
was expected at moderate arousal state (exercising at moderate intensity), while lower (drowsiness) and higher 195 
(exercising at high-intensity) arousal state were expected to result in task performance deterioration. B) In this 196 
auditory version of the probabilistic reversal learning paradigm, an auditory stimulus was presented on each trial, 197 
and participants had to associate the sound with a response button, left or right. After that, auditory feedback was 198 
provided according to the ongoing implicit rule. Notice that the feedback provided was not always truthful nor 199 
reliable, and attempted to mislead the participant 20% of the time. C) Task trials were grouped into sequences of 200 
trials following a particular rule (trend) where a particular sound was implicitly associated with a response button 201 
(e.g., high pitch sound with the left button, and low pitch sound with the right button). Participants were instructed 202 
to infer the rule from the provided feedback to assess their previous choice and apply the knowledge of their 203 
accuracy to guide the next choices, knowing that the rule might change after a certain time. Based on the feedback 204 
received, participants could make probabilistic or perseverative errors in the following trials. D) Automatic 205 
classification of arousal during a drowsy session (representative participant). The pink line depicts changes in the 206 
theta:alpha ratio (occipital electrodes cluster) during the pre-trial period (2 seconds before the auditory stimulus 207 
onset). The horizontal bars on top represent trials classified as baseline (grey) or low arousal (blue). The variability 208 
in the reaction times (green circles) closely follows the changes in theta:alpha ratio. Notice that circles on the 209 
horizontal axis (reaction time equal to zero) were non-responsive trials, usually during low arousal (drowsy) 210 
periods but also observed during exercise periods. E) Automatic classification of arousal during a physical 211 
exercise session (representative participant). The red line depicts changes in the heart rate during the pre-trial 212 
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period (2 seconds before sound onset), and the horizontal bars on top represent trials classified as baseline (grey), 213 
moderate (yellow) or high arousal (red). Similar to the low arousal session, the reaction times (green circles) 214 
fluctuates with the changes in heart rate. 215 
 216 
Arousal modulates probabilistic information during a stream of conflicting evidence. 217 
First, we calculate the average RAR per participant in each arousal state (low, baseline sitting, 218 
baseline cycling, moderate, high). To account for the dependencies potentially generated by 219 
any procedural differences between Experiments, we fitted RAR using hierarchical linear 220 
mixed-effects modelling, with arousal as fixed effect, and participant nested into Experiment 221 
as random effects. The model showed a strong effect of arousal on RAR, F (3,113.02) = 11.59, 222 
p < 0.001, β = 0.61 (details on testing model assumptions can be found in the supplementary 223 
material), indicating that the processing of probabilistic information that allows the detection 224 
of changing patterns in a stream of conflicting evidence was modulated by the arousal level. 225 
Next, we checked for non-linearity in the relationship between arousal and RAR, to test the 226 
famous u-shaped curve. As expected, we found that the quadratic (AIC = 1243.6; BIC = 1262.3; 227 
R² = 0.40) outperformed linear fitting (AIC = 1264.8; BIC = 1280.4; R² = 0.23), confirming a 228 
possible curvilinear pattern (U shaped) of the effect of arousal on RAR (see figure 2), with a 229 
reliable increase in the number of responses required by the participants to complete a trend 230 
reversal (i.e., decrease of performance) as the level of arousal progress towards the extremes 231 
of the defined arousal range, confirming, for reversal learning, convergence with the Yerkes-232 
Dodson law, later reformulated by Broadhurst in 1958.47 233 

Splitting the comparisons to its specific baselines per arousal condition (i.e., sitting 234 
baseline compared to low arousal in the drowsiness condition; cycling baseline compared to 235 
moderate and high arousal in the exercise condition) yielded a reliable increase of RAR in low 236 
arousal, t (124.62) = 5.67, p < 0.001, β = 1.02, and high arousal state, t (117.93) = 2.57, p = 237 
0.011, β = 0.45, compared with their corresponding baselines. Notably, baseline performance 238 
did not differ across arousal conditions (see supplementary figure 1). Contrary to what we 239 
expected, moderate arousal state was not associated with a decrease of RAR (the expected peak 240 
in performance), relative to baseline (t (114.85) = 1.61, p = 0.11, β = 0.25,). Moreover, we did 241 
not find evidence for a potential dual-task confounding effect in the heightened arousal 242 
conditions (see supplementary material). In sum, these findings provide evidence for an 243 
impairment in the processing of probabilistic information when the arousal level is altered, 244 
regardless of the side of the arousal spectrum. 245 
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 246 
Figure 2. Number of responses needed to attain a trend reversal as a function of the arousal state. A) Violins 247 
and overlaid box plots of mean responses to reverse across arousal states. In box plots, middle black mark indicates 248 
the median, and bottom and top edges indicate 25th and 75th percentiles, respectively. The upper and lower 249 
whiskers indicate the maximum value of the variable located within a distance of 1.5 times the interquartile range 250 
above the 75th percentile and below the corresponding distance to the 25th percentile value. Surrounding the 251 
boxes (shaded area) is a rotated kernel density plot, which is comparable to a histogram with infinitely small bin 252 
sizes. Jittered dots represent the averaged response to reverse score for each participant in each arousal state. 253 
Linear mixed-effects model analysis revealed a reliable quadratic fitting between arousal and task performance, 254 
outlined by the dashed line. Low and high arousal states were associated with a worse task performance relative 255 
to their own baseline arousal states. Moderate arousal state was not associated with the expected optimal 256 
performance as no differences were found with the baseline arousal state. B) Baseline differences of each 257 
participant across altered arousal states are represented by the bars (grey bars indicate that these participants 258 
needed more trials to attain a trend reversal in the baseline compared with the altered arousal states; blue, yellow 259 
and red bars depict that these participants needed more trials to attain a trend reversal when arousal level was 260 
altered -increased or decreased- compared with baseline arousal state). Participants are sorted by performance 261 
difference between baseline and the arousal state. Upper and bottom panels show a consistent impairment of task 262 
performance across participants in low and high arousal states. Non-reliable differences were found between 263 
moderate and baseline arousal. 264 
 265 
Different underlying mechanisms explain decreased performance in low and high arousal 266 
states 267 
In the analysis above, performance under high and low arousal states was compared 268 
irrespective of the strategy participants may have used to solve the task. To test for the 269 
hypotheses of the differential mechanism driving changes in performance for each arousal side 270 
of the u-shaped curve, we calculated: a) probabilistic switching, as the proportion of trials when 271 
the participants change the pattern choice with little or no evidence (i.e., zero or one negative 272 
feedback against the choice); and b) perseveration, the likelihood of sticking with the previous 273 
choice despite strong evidence (i.e., receiving two or more negative feedbacks in a row) that 274 
the pattern has changed. Probabilistic switching and perseveration are proportion indices of 275 
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strategic behaviour based on the probability of switching when negative feedback is provided. 276 
Thus, they range between 0 and 1, allowing comparison across arousal states while accounting 277 
for potential experimental differences (e.g., number of trials). We hypothesized that the 278 
impairment of performance in low arousal would be primarily attributed to an increase in 279 
probabilistic switching, relative to the baseline arousal state; and in contrast, the observed 280 
impairment of performance in high arousal state will be primarily due to an increase in 281 
perseverative behaviour. To test these hypotheses, we fitted probabilistic switching and 282 
perseveration (separately for low and high arousal states) using the hierarchical linear mixed-283 
effects model structure defined previously. The analyses revealed that, while the probabilistic 284 
switching increased consistently across subjects during low arousal state compared with 285 
baseline arousal, F (1,56) = 14.78, p < 0.001, β = 1.01, R² = 0.21, no reliable differences were 286 
observed in perseveration between these arousal states (F < 1). On the other hand, high arousal 287 
states led to a reliable increase in perseverative behaviour compared to the baseline state, F 288 
(1,67) = 9.12, p = 0.035, β = 0.34, R² = 0.12, with no reliable differences observed in 289 
probabilistic switching (F < 1). These results suggest that altered arousal states lead to distinct 290 
maladaptive decision-making patterns that affect participants' ability to generate stable 291 
evidence-based strategies, although evidence-driven responses were present (see figure 3A). 292 

To further prove that the impairment in performance in low and high arousal states 293 
could be attributed to the different maladaptive behavioural patterns, we carried on a mediation 294 
analysis separately for each arousal state (low, high). We first confirmed that probabilistic 295 
switching and perseveration have an effect on the RAR, while controlling for the arousal state 296 
(see figure 3B). These results, together with the previous analyses where we found an effect of 297 
arousal state on probabilistic switching and perseveration, revealed a full mediation between 298 
these variables. As figure 3B illustrates, the regression coefficient between arousal and RAR, 299 
and the regression coefficient between probabilistic switching and RAR were statistically 300 
reliable, showing a full mediation of probabilistic switching on the effect of low arousal on 301 
RAR. The bootstrapped standardized indirect effect of low arousal on RAR, mediated by 302 
probabilistic switching, was 0.65 (p < 0.001), and the 95% confidence interval ranged from 303 
0.29 to 1.07. A similar fully mediation effect was observed in high arousal state, showing that 304 
the effect of high arousal on behavioural performance was fully mediated via the perseverative 305 
behaviour. The bootstrapped standardized indirect effect was 0.10 (p = 0.014), and the 95% 306 
confidence interval ranged from 0.14 to 0.24. As predicted, participants showed an impairment 307 
of performance during low arousal state, relative to baseline arousal, which was primarily 308 
attributed to an increase of probabilistic switching (i.e., changing pattern choice with little or 309 
no evidence of an actual rule change). In contrast, while participants also showed an 310 
impairment of performance during high arousal state, relative to the baseline arousal, it was not 311 
attributed to an increase in probabilistic switching, but to an increase in perseverative behaviour 312 
(i.e., sticking with the previous choice despite consecutive negative feedbacks). 313 
 314 
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 315 
Figure 3. Maladaptive behavioural patterns across participants in low and high arousal states. A) Violins 316 
and overlaid box plots of the percentage of change from baseline to low (blue) and high (red) arousal states in 317 
probabilistic switching and perseveration. In box plots, middle black mark indicates the median, and bottom and 318 
top edges indicate 25th and 75th percentiles, respectively. The upper and lower whiskers indicate the maximum 319 
value of the variable located within a distance of 1.5 times the interquartile range above the 75th percentile and 320 
below the corresponding distance to the 25th percentile value. Surrounding the boxes (shaded area) is a rotated 321 
kernel density plot, which is comparable to a histogram with infinitely small bin sizes. Jittered dots represent the 322 
averaged response to reverse score for each participant in each arousal state. B) Mediation model diagram to 323 
illustrate that the general impairment in task performance found in low and high arousal states was mediated by 324 
different maladaptive behavioural patterns. Dashed lines (indirect effects) represent the effect of low (blue) and 325 
high (red) arousal on task performance (indexed by the averaged responses to attain a trend reversal) through 326 
probabilistic switching and perseveration, respectively. Solid lines depict direct effects between variables. Grey 327 
lines represent the absence of a direct effect of low arousal on perseveration and high arousal on probabilistic 328 
switching. Notice that a direct effect of an independent variable (arousal) onto the mediator (probabilistic 329 
switching, perseveration) is a prerequisite for mediation being possible. Standardized β regression coefficients are 330 
indicated in each effect (* depicts p < 0.05). Accordingly, the values of all effects are expressed as the number of 331 
standard deviations from the mean. For example, the direct effect of high arousal on RAR (β = 0.22) implies that 332 
a standard deviation change of 1 in the arousal variable would result in a standard deviation increase of 0.22 in 333 
RAR. 334 
 335 
Arousal disrupts the reversal strategy  336 
To maximise performance in the task, a good strategy is to not fall for the false feedback and 337 
stand your ground until the next feedback, as well as switch to the second consecutive feedback. 338 
The fact that participants sometimes needed an unreasonable high number of responses to attain 339 
a reversal in low and high arousal states suggests the existence of sections of time on task in 340 
which they responded to the tones but could not apply the strategy rules (see fig 4A). These 341 
sections without clear strategic behaviour, that we call breakdowns, have been often neglected 342 
in previous studies using PRL tasks as failures of compliances or “bad participant”. The 343 
transient on/off nature of these breakdowns may provide valuable insight into the behavioural 344 
dynamics of participants in different states of arousal. We hypothesized that breakdowns 345 
sections would increase in low and high arousal states, relative to a baseline arousal state. First, 346 
we traced the sections of the task (more than 20 trials) in which participants did not attain a 347 
reversal. Second, we calculated the proportion of time these sections represented to the total 348 
time-on-task, and finally, we implemented a hierarchical linear mixed-effects model with the 349 
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structure defined in previous analyses, separately for each arousal state (low, high), with the 350 
number of breakdowns as the index of performance. As hypothesized, low and high arousal 351 
states lead to longer breakdown sections compared with baseline arousal state (t (127.99) = 352 
3.40, p < 0.001, β = 0.13; t (121.69) = -2.97, p = 0.003, β = 0.11). Subject-by-subject results 353 
(fig 4C) show a consistent increase of breakdowns across participants in low arousal state. 354 
Although high arousal states also showed a reliable increase of breakdowns as a group, this 355 
effect was less systemic, with half of the participants showing the opposite effect, no difference 356 
or no breakdowns. 357 
 358 

 359 
Figure 4. Behavioural strategy breaks as arousal changes. A) Automatic classification of a section of time 360 
where a representative participant responded without a clear behavioural strategy. The green circles show RTs 361 
and the blue line shows the ongoing accuracy of the task (10-points moving average). The grey shaded area flanked 362 
by the zigzagging vertical lines depicts the section of time classified as a breakdown. B) Violins and overlaid box 363 
plots of the averaged percentage of time-on-task without strategy across participants in low and high arousal states, 364 
compared with their respective baselines states. In box plots, the middle black mark indicates the median, and 365 
bottom and top edges indicate 25th and 75th percentiles, respectively. The upper and lower whiskers indicate the 366 
maximum value of the variable located within a distance of 1.5 times the interquartile range above the 75th 367 
percentile and below the corresponding distance to the 25th percentile value. Surrounding the boxes (shaded area) 368 
is a rotated kernel density plot, which is comparable to a histogram with infinitely small bin sizes. Jittered dots 369 
represent the averaged percentage of time-on-task without a strategy of each participant in each arousal state. 370 
Linear mixed-effects model analyses revealed that low and high arousal states lead to longer periods of breakdown 371 
relative to the baseline arousal state. Interestingly, violin plots show a considerable number of participants who 372 
had no breakdowns at baseline arousal states, something that completely disappears in low arousal state (all 373 
participants had breakdowns), and that is reduced in high arousal state. C) Baseline differences of each participant 374 
in low and high arousal states represented by horizontal bars (grey bars indicate that these participants spent more 375 
time performing the task without a particular strategy in the baseline arousal state compared with the altered 376 
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arousal states; blue and red bars depict that these participants were applying behavioural strategies less time when 377 
arousal level was altered (increased or decreased) than in baseline arousal state. Participants are sorted by 378 
performance difference between baseline and the arousal state. Both panels show a consistent impairment of task 379 
performance across participants in low and high arousal states.  380 
 381 
DISCUSSION 382 
In the present study, we facilitated natural transition of healthy participants towards the borders 383 
of non-pharmacological arousal states (drowsiness, physical exertion) to investigate the 384 
behavioural dynamics of cognitive flexibility. In line with our pre-registered hypotheses,9 the 385 
findings revealed a quadratic-like pattern (inverted U-shape) of the effect of arousal 386 
fluctuations on cognitive performance. As the level of arousal progressed towards the extremes 387 
of the defined arousal range reversal learning performance decreased, in agreement with the 388 
predictions of the Yerkes-Dodson law (1908).2 Although cognitive flexibility diminished in 389 
both under high and low arousal states, different maladaptive behavioural patterns drove this 390 
performance impairment. As predicted, the performance decline exhibited by our participants 391 
under drowsy states was primarily attributed to a more decision volatility (i.e., shifting pattern 392 
choice with little or no evidence of reinforcement contingencies change). In contrast, 393 
participants also showed a decline in performance during high arousal state but attributed to 394 
increased perseverative behaviour (i.e., sticking with a particular pattern choice despite having 395 
strong evidence that the contingencies have changed). Our findings also revealed that most 396 
participants undergo prolonged periods of time-on-task in which they seem unable to apply any 397 
specific higher order strategy. These breakdown periods, which can last for several minutes, 398 
are more frequent and sustained during high or low arousal. In short, our results provide solid 399 
evidence for distinct maladaptive decision-making patterns under altered arousal states, 400 
differentially affecting the participants' ability to generate stable evidence-based strategies. 401 
 Arousal fluctuations thus seem to elicit a distinctive behavioural distortion of cognitive 402 
flexibility as further indicated by the microstructure of learning derived from trial-by-trial 403 
responses to negative feedback. Healthy participants under high arousal exhibited normal 404 
acquisition of S-R reinforcement contingencies but perseverative response patterns when 405 
contingencies were reversed. This failure to disengage from ongoing behaviour is a 406 
translational phenomenon strongly linked to impulsivity and compulsivity,49 and prevalent in 407 
numerous neuropsychiatric and medical conditions.7,50,51 For instance, patients with lesions that 408 
include ventral prefrontal cortex and orbitofrontal cortex,52 as well as chronic cocaine users53 409 
and patients with schizophrenia,54 show normal acquisition of S-R contingencies but are 410 
severely impaired when those S-R reinforcement contingencies are abruptly reversed, 411 
exhibiting perseverative responding to the previously reinforced S-R contingency. Altogether, 412 
these findings suggest that high arousal undermines healthy individuals’ capacity to engage in 413 
complex cognitive strategies driving them to rely on habitual response patterns, which, 414 
paradoxically, might also enhance behavioural control in terms of response inhibition.46 Our 415 
findings not only further the understanding of the processes underlying automatized behaviour 416 
and habitual response tendencies, but high arousal may be used as a model to inform both 417 
impulsive and compulsive aspects of psychopathology. 418 

In contrast, healthy participants under low arousal seemed unable to maintain the 419 
learned S-R reinforcement contingency and started to deviate from the evidence, revealing a 420 
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volatile pattern of behaviour. Since a crucial aspect of the PRL experimental design was the 421 
existence of a 20% of misleading feedback, to maximise performance, individuals should not 422 
fall for the false feedback and —ideally— stand their ground until the next feedback. Further 423 
and as part of a successful strategy, they should switch if two or more consecutive feedbacks 424 
are given against the previously reinforced choice pattern. Consequently, adaptive behaviour 425 
during the task requires a balance between both types of behaviour (stability and flexibility). 426 
Those participants under low arousal fell repeatedly for the misleading feedback, switching 427 
prematurely after negative feedback. Furthermore, they showed increased decision volatility 428 
by spontaneously switching even without any negative feedback. This volatile pattern of 429 
cognitive flexibility has been linked to serotonin55 and dopamine systems,56 and is observed in 430 
patients with major depression,57,58,59 often linked to either an oversensitivity to punishment or 431 
an impaired control over negative feedback.60,61 It is reasonable to speculate that low arousal 432 
levels render individuals more sensitive in updating S-R reinforcement contingencies, rather 433 
than increase sensitivity to punishment as in major depression. Moreover, low arousal may 434 
increase volatility by decreasing attentional resources, leading to spontaneous explorations, 435 
higher RT variability and periodic omissions (see supplementary figure 2). 436 

The fragmentation of cognitive control due to changes in arousal has been primarily 437 
shown in sleep deprivation62,63,64,65,66 and not in spontaneous fluctuations of alertness as we 438 
show in this study. The increased volatility in the PRL with low arousal suggests a decrease in 439 
cognitive control that is different from an increase in perseverative behaviour seen in high 440 
arousal. Indeed, we have previously shown that decreased levels of arousal can fragment or 441 
reconfigure specific aspects of cognition while preserving crucial executive control processes 442 
such as the capacity to detect and react to incongruity,18 the efficiency in perceptual decision 443 
making,31 and the precision of conscious access.17 Here, we add further evidence showing that 444 
individuals under reduced arousal state, although struggling to maintain stable evidence-based 445 
decision-making patterns, are able to learn new S-R reinforcement contingencies, 446 
demonstrating flexibility of the human brain to adapt to increasing levels of endogenous 447 
(arousal) noise. The evidence of cognitive and —indirectly— neural reconfiguration of 448 
cognitive control networks suggests compensatory mechanisms elicited by the change in 449 
arousal. 450 

Upon further examining the microstructure of learning derived from trial-by-trial 451 
performance of the PRL task, we uncovered the existence of prolonged periods of time-on-task 452 
in which participants did not seem to apply any particular high-order behavioural strategy. 453 
Although these breakdown periods emerged regardless of the arousal level, they were prevalent 454 
under low and high arousal states, lasting from few to several minutes. Remarkably, the 455 
transient on/off nature of these breakdowns suggests that extreme arousal levels alternate 456 
between different metastable cognitive states. The first state can be defined by a relatively 457 
successful application of the reinforcement information where participants can navigate the 458 
uncertainty of the PRL, while in the other metastable state they seem to only apply the simple 459 
auditory-motor S-R rule to respond to the auditory tones but are unable to use choice history 460 
to develop a successful strategy. 461 

In the context of this study, arousal as a biological construct defined by the homeostatic 462 
regulatory capacity of the system and its responsiveness,67 helps to link drowsiness and 463 
increased alertness during physical exercise in a common framework where the predictions of 464 
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the Yerkes-Dodson inverted U-shaped law can be experimentally tested. Despite the obvious 465 
difference at the biological, neural and psychological level between both sides of the curve, the 466 
common decrease in performance highlights the commonalities between the extremes in human 467 
performance, adding to the fact that both —sleep and physical exertion— emerge as natural 468 
transitions from a similar state (resting) traversing different stages, and exhibit nonlinear 469 
dynamics and hysteresis processes in their transitions.12 Thus, drowsiness and physical exertion 470 
provide complementary perspectives on cognitive dynamics when the arousal level is altered. 471 
The present findings point out their differences in the cognitive fragmentation leading to a 472 
general decline in task performance.  473 

Transitions towards drowsiness or physical exertion entail changes in levels of arousal, 474 
which are in turn associated with a wide range of alterations (e.g., neural, motor, endocrinal, 475 
phenomenological, etc.) that might cause the cognitive fragmentation described in the present 476 
study. For instance, during a single bout of aerobic exercise, as intensity increases from low to 477 
high, there is a release of epinephrine and, to lesser extent norepinephrine, into the blood from 478 
the adrenal medulla.15 This exercise-induced increase in brain concentrations of 479 
catecholamines has been proposed as a physiological mechanism underlying cognitive 480 
performance during and after physical exercise.15 Similarly, when falling asleep, we experience 481 
a cascade of changes in almost every system of the organism, including the somatic and 482 
autonomic nervous systems,12 which might be playing a crucial role in cognitive processing. 483 
The extent to which each of the changes that occur during these transitions (drowsiness and 484 
physical exertion) are responsible for the cognitive adaptations we report here is something 485 
that future studies might reveal, for example, combining measurements of the autonomic 486 
nervous system and brain functioning, which would make it possible to gain more insight into 487 
the underlying physiological mechanisms involved in arousal-related changes in cognition. 488 
These inferences of this study are hence mediated by physiological processes that might 489 
partially explain the cognitive modulations in an independent manner if dissociated from 490 
arousal changes. 491 

Though the Yerkes-Dodson law was not initially formulated to be a general rule to 492 
apply to all psychology subfields (learning, motivation, emotion, etc.), through the years, and 493 
with the pressure to find common mechanisms in psychology, the findings initially defined for 494 
learning were further extended and reinterpreted as a law about the relationship between 495 
arousal and other physiological constructs to perceptual and cognitive performance.68 Despite 496 
this overgeneralization from its genuine formulation and its reductionist nature, our findings 497 
rely on such inverted U-shaped law as a basic useful theoretical framework, providing an 498 
attractive theoretical model to characterize the neural, cognitive and behavioural dynamics 499 
involved in the impact of arousal fluctuations in a wide range of physiological states and 500 
neuropsychiatric conditions. 501 

 Our findings bring some generalizations about the need to extend the traditional 502 
framework of understanding the interplay between cognitive dynamics and arousal through the 503 
prism of the homeostatic steady-state dynamics using pharmacological interventions34 or 504 
transient alterations of emotional state.69 In addition to this classical approach, we believe that 505 
drowsiness and physical exertion provide fruitful —naturally occurring— alterations of the 506 
arousal level with a preserved capacity to behaviourally respond, which can be utilized to study 507 
the modulation of neural function and cognitive processing. In the traditional steady-state 508 
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approach, such natural fluctuations of the arousal level may be undetected,70 hindering or 509 
distorting cognitive and neural markers of crucial aspects of information processing.17 510 
Pharmacological and lesion perturbations of the brain are regarded as causal in cognitive 511 
neuroscience and regarded as stronger in their explanatory power than conditions relying on 512 
stimuli or psychological modulations. Arousal is an internally modulated change that can be 513 
used to study cognition and may be regarded in the strong causality range due to its partial 514 
independence from psychological processes.18 The cases of drowsiness and physical exertion 515 
as causal models to study the neural mechanism of cognitive flexibility may prove to be very 516 
useful in the exploration of how cognition is fragmented or remain resilient under (reversible) 517 
perturbations of arousal17,33,71 Our findings highlight that further research should focus on the 518 
rapidly changing dynamics of brain function and cognitive processing that appear to capture 519 
key dynamics relevant to our behavioural and perhaps even phenomenological experience, as 520 
we drift into strained physiological states. 521 
 522 
MATERIALS AND METHODS 523 
Participants 524 
A total sample of 100 participants of an age range between 18 and 40 years old was included 525 
in the present study. All participants reported normal binaural hearing, no visual impairment 526 
and no history of cardiovascular, neurological or psychiatric disease. They were asked to get a 527 
normal night rest on the day previous to testing, and not to consume stimulants like coffee or 528 
tea on the day of the experiment. 529 
 The first experiment (herein Experiment#1) consisted of 35 participants (15 female; age 530 
range 18-40). In addition to the general aforementioned inclusion criteria, only easy sleepers, 531 
as assessed by the Epworth Sleepiness Scale (ESS),72 were selected to increase the probability 532 
that participants fell asleep. Recruited participants were considered healthy with relatively high 533 
ESS scores but not corresponding to a condition of pathological sleep such as hypersomnia 534 
(i.e., scores 7–14). They were recruited via the Cambridge Psychology SONA system. Note 535 
that the target sample size was 50 participants transitioning towards drowsiness. However, after 536 
collecting the first 35 we decided to make slight modifications to the experimental protocol by 537 
increasing the time of the drowsy blocks to obtain a higher proportion of trials in low arousal. 538 
For this reason, we decided to collect a second sample (Experiment#2) which consisted of 15 539 
participants (11 female; age range 18-40), where we included these key modifications to the 540 
experimental protocol (see Procedure section for more details). Inclusion criteria and 541 
recruitment processes were similar to Experiment#1.  542 

The third experiment (herein Experiment#3) consisted of 50 participants (6 female; age 543 
range 19-39). Additionally to the common inclusion criteria, only individuals who reported at 544 
least 8 hours of cycling or triathlon per week were selected. Well-trained cyclists were selected 545 
because they are used to maintaining the pedalling cadence at high intensity during long periods 546 
of time. Furthermore, they are able to keep a fixed posture over time, which notably reduces 547 
movement artefacts. They were recruited from the University of Granada (Spain) through 548 
announcements on billboards and previous databases. 549 

All participants from the three experiments gave written informed consent to participate 550 
in the study and received a remuneration of 10€ per hour (i.e., approximately 30€ per 551 
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participant). The Cambridge Psychology Ethics Committee and the University of Granada 552 
Ethics Committee approved the study (CPREC 2014.25; 287/CEIH/2017). 553 
 554 
Experimental task 555 
A modified version of the probabilistic reversal learning paradigm was used in all three 556 
experiments, which was characterized by employing auditory stimuli and an abstract rule (see 557 
figure 1B-C). In this task, participants learnt to choose one of two randomly presented tones 558 
by receiving instructive auditory feedback tones after each response, indicating either a correct 559 
or incorrect choice. When participants reached a 90% accuracy in the last 10 trials, 560 
reinforcement/punishment contingencies were reversed so that the previously reinforced tone 561 
was punished and vice versa. Within each reversal trend, a 20% probabilistic error trial was 562 
included in which “wrong” feedback was given for correct choices, even though the 563 
reinforcement contingencies had not changed. Participants were instructed to infer the rule 564 
from the feedback received, knowing that sometimes it might be misleading and that the rule 565 
might change after a certain time (see supplementary material for more details on the task 566 
instructions). The stimuli were binaurally presented at a random time interval (between 1000 567 
and 1500 ms) during 500 ms. They had to respond to both targets by pressing a button with 568 
their right or left hand.  569 

 570 
Procedure 571 
In Experiment#1, participants were fitted with an EGI electrolyte 129-channel cap (Electrical 572 
Geodesics, Inc. systems) after receiving the task instructions and subsequently signing the 573 
informed consent. The whole session was completed in a comfortable adjustable chair with 574 
closed eyes. Task instructions were to respond as fast and accurately as possible, reducing body 575 
movements as possible and keeping the eyes closed. In the beginning, the back of the chair was 576 
set up straight and the lights in the room were on. Participants were asked to remain awake 577 
with their eyes closed whilst performing the first block (awake block) of the task which 578 
consisted of 480 trials, lasting 30 min approximately. Then, the chair was reclined to a 579 
comfortable position, the lights were turned off and participants were offered a pillow and a 580 
blanket. They were explicitly told that they were allowed to fall asleep during this part of the 581 
task and that the experimenter would wake them up by making a sound (i.e. knocking on the 582 
wall) if they missed 5 consecutive trials. This block (drowsy block) also consisted of 480 trials. 583 
Then, the sequence of two blocks (awake-drowsy) was repeated. In total, participants 584 
completed 1920 trials divided into 4 blocks of 480 trials each one. The whole session lasted for 585 
3 hours approximately.  586 

In Experiment#2, the procedure was similar to the Experiment#1 except for the time to 587 
fall asleep that was increased to get a higher amount of low-arousal (i.e., drowsy) trials. 588 
Participants completed a total of 2120 trials, divided into 4 blocks. The order of the blocks was 589 
the same for all participants and followed the same sequence as in Experiment#1: awake-590 
drowsy-awake-drowsy. Awake blocks had 100 trials each one, while drowsy blocks consisted 591 
of 960 trials each one. The session lasted for 3 hours approximately.  592 

In Experiment#3, upon arrival to the laboratory, participants were seated in front of a 593 
computer in a dimly illuminated, sound-attenuated room with a Faraday cage. They received 594 
verbal and written instruction about the experiment and were prepared for electrophysiological 595 
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measurement. They were fitted with a 64-channel high-density actiCHamp EEG system (Brain 596 
Products GmbH, Munich, Germany) and a Polar RS800CX heart rate (HR) monitor (Polar 597 
Electro Öy, Kempele, Finland). Notice that EEG data was acquired but was not used to test the 598 
hypotheses of this study, and will be reported elsewhere. The whole session consisted of 4 599 
different blocks. The first one was an adaptation (non-exercise) block in which participants 600 
performed 100 trials while resting in a comfortable chair. Then, they got on a cycle-ergometer 601 
and completed 100 trials while warming-up at light intensity. Subsequently, they completed a 602 
self-paced 60’ time-trial (i.e., high-intensity exercise) while performing the task, resulting in 603 
850 trials approximately (the number of trials slightly varied as a function of the reaction time 604 
of participants). In line with previous experiments from our laboratory,73,74,75 in the self-paced 605 
time-trial participants were instructed to achieve the highest average power (watts) during the 606 
60’ time-trial exercise, and were allowed to modify the power load during the exercise. They 607 
were encouraged to self-regulate effort in order to optimize physical performance without 608 
reaching premature exhaustion. That self-regulation yielded fluctuations of effort during the 609 
60’ exercise period, which allowed us to study the effect of arousal on the management of 610 
probabilistic information. Once the 60’ time-trial block was finished, participants completed 611 
the last block while cooling down at light intensity, which was also composed of 100 trials. All 612 
participants completed the blocks in the same order, lasting around 3 hours.  613 

 614 
Arousal classification 615 
To capture the arousal fluctuations during the transitions towards drowsiness or physical 616 
exertion at the single-trial level, we implemented two different analytical approaches which 617 
were pre-registered after data collection.9 618 

In Experiment#1 and Experiment#2, the arousal level was endogenously manipulated 619 
by facilitating the natural transition from awake to sleep. This transition reduces arousal and 620 
yields a considerable proportion of drowsy yet responsive trials as seen in previous experiments 621 
from our laboratory.17,30,71 This way, we were able to study the effect of arousal (i.e. baseline 622 
arousal [awake] trials vs. low-arousal [drowsy] trials) on the management of probabilistic 623 
information. Given that awake-sleep transition is characterized by a decreasing alpha range 624 
activity, together with an increasing theta range activity (Hori et al., 1994), progression of 625 
drowsiness was quantified by the spectral power of respective EEG frequency bandsi. We 626 
computed the spectral power of EEG frequency oscillations for each trial from -2000 ms to 0 627 
ms in respect to the onset of a target tone using continuous wavelet transform, set from 3 cycles 628 
at 3 Hz to 8 cycles at 40 Hz. Theta (4-6 Hz) and alpha (10-12 Hz) power were then averaged 629 
individually for each trial across central (E36, E104) and occipital (E75, E70, E83) electrodes 630 
for theta and alpha rhythms respectively. Finally, theta/alpha ratio was computed and smoothed 631 
with a 4-point moving average resulting in a single “sleepiness” value per trial. Visual 632 
                                                
i Deviation from pre-registration. Originally, we aimed to use the automated offline method developed by 
Jagannathan and collaborators based on frequency and sleep grapho elements to detect EEG micro variations in 
alertness and characterize awake and drowsy trials.76  However, our PRL task design, especially the pretrial 
duration, which was limited to 2 seconds, did not fit the task features recommended by Jagannathan and 
collaborators (e.g., 4 seconds pretrial duration) for a reliable characterization of awake and drowsy trials. So we 
decided to classify awake/drowsy trials based on theta:alpha ratio, as seen in previous experiments from our 
laboratory.17,30,71 
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inspection of theta/alpha ratio and RT dynamics of each participant confirmed the presence of 633 
clear sleepiness-related fluctuations during the experimental session, especially during drowsy 634 
blocks. Those participants who did not show clear fluctuations of the theta:alpha ratio were 635 
removed from final analyses (5 subjects). Then, each trial for each participant was initially 636 
categorized as drowsy (top 33% of lower theta-upper alpha ratio scores) or alert (lowest 33%). 637 
Further, following the sleep hysteresis physiology criteria77 isolated awake trials within 638 
prolonged periods of drowsy (≥10 trials) were considered as drowsy to account for the gradual 639 
homeostatic change during the sleep transition. In addition, the first 100 trials of each block 640 
(awake and drowsy) were considered as awake trials. 641 

In Experiment#3, the arousal level was endogenously manipulated by facilitating the 642 
natural transition from a resting state to high-intensity physical exercise. This transition 643 
increases the arousal level progressively, with continuous fluctuations that affect cognitive 644 
performance as seen in previous studies from our laboratory.40,75,78,79 We captured these arousal 645 
fluctuations at a single trial level (moderate arousal trials, high arousal trials) by using the HR 646 
response. To address the intersubject variability, HR data were transformed into differential 647 
scores relative to the HRmax estimated using the equation of Tanaka et al., (2001)80, a reliable 648 
and well-established method to calculate HRmax in healthy individuals. Then, moderate and 649 
high arousal trials were characterized based on percentage relative to HRmax. HR between 650 
60% and 80% of HRmax were considered as moderate arousal, while HR higher than 80% 651 
HRmax were considered as high arousal. Due to technical issues with HR monitoring, 4 652 
subjects were removed for further analyses. 653 
 654 
Behavioural data analysis 655 
In probabilistic reversal learning paradigms, participants are instructed to infer an abstract rule 656 
form the feedback they receive, knowing that sometimes it might be misleading and that the 657 
rule might change. Since a reversal is triggered when a high-level accuracy is reached, the 658 
number of responses needed to attain a reversal is considered one of the main indices of 659 
performance. To delineate the microstructure of learning derived from trial-by-trial responses 660 
we considered the likelihood of switching the pattern choice across trials as a function of the 661 
amount of consecutive negative feedback received. The likelihood of switching was considered 662 
the main index of strategic behaviour, and was divided into 2 different strategies: i) 663 
Probabilistic switching: the proportion of trials when the participants change the pattern choice 664 
with little (one negative feedback against the choice) or no evidence (no feedback against the 665 
choice) of an actual rule change; ii) Perseveration: likelihood that participants stay with the 666 
seemingly incorrect choice even after receiving two or more negative feedbacks in a row).  667 

The number of breakdown sections was also used as an index of performance. We 668 
defined a breakdown as a section of time in which participants ‘lose’ the task, and do not follow 669 
any strategy, being unable to reach a change of trend during more than 20 consecutive trials. 670 
RT, accuracy, and omissions were also checked as secondary indices of behavioural 671 
performance. 672 

Participants with overall accuracy under 60% or less than 3 reversals attained during 673 
the baseline period were excluded (i.e., 4 subjects from Experiment 1; 2 subjects from 674 
Experiment 2; 6 subjects from Experiment 3). 675 
 676 
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Statistics 677 
Single-subject analysis  678 
In order to test the hypotheses, we took a set of strategies. We first captured the direction of 679 
effects for each of the key performance variables (i.e., RAR, RT, accuracy, omissions, and 680 
switching likelihood), and contrasted them for each participant, obtaining an indication of the 681 
direction and strength of the effects per participant. Descriptive and distribution measures, as 682 
well as single-subject statistics, were used as guidance of the variability of effect size in single 683 
variables, and for guiding the previously defined exploratory hypotheses. Per participant, effect 684 
sizes were calculated and depicted for each of the key performance variables to check the effect 685 
size of individual differences across arousal states.ii 686 
 687 
Group analysis 688 
To investigate the management of probabilistic information as a function of arousal, we 689 
conducted mixed-effects analyses including data from the three experiments collapsed into a 690 
single dataset with RAR as the main index of performance. In face of the diversity of samples’ 691 
characteristics and experiment features, we fit RAR using hierarchical linear mixed-effects 692 
modelling, as implemented in the lme4 R package.81 We treated RAR as obeying to a 693 
hierarchical data structure with arousal as fixed effect, and participant (level 2) nested into 694 
experiment (level 1) as random effects. This random part was common to all models. We tested 695 
the specific hypothesis by using the same approach based on multilevel linear mixed-effects 696 
modelling. Different variables (i.e., probabilistic switching, perseveration, breakdowns, RT 697 
variability and omissions) were analysed in a multilevel data structure, with the fixed (arousal) 698 
and random effects (experiment/participant) adjusted to the specific hypothesis tested. 699 

Models were compared using the Akaike Information Criterion (AIC), and a likelihood 700 
ratio test. Notice that AIC does not assume that the true model is among the set of candidates 701 
(and is just intended to select the one that is closest to the true one). In our case, fitting decisions 702 
were not about the truthiness of models, but to include or not a given factor. For model 703 
comparisons performed to identify the best-fitting model, a relatively lenient 0.010 p-value 704 
criterion was adopted.  705 

Causal mediation analyses were conducted to estimate the proportional direct and 706 
indirect effects of arousal on task performance through probabilistic switching and 707 
perseveration strategies (mediators) using the “mediation” package in Riii.82 This method 708 
allowed us to assess a confidence interval of the mediation effect itself using rigorous sampling 709 
techniques with fewer assumptions of the data. The average causal mediation effect was 710 
determined using a nonparametric bootstrapping method (bias-corrected and accelerated; 1000 711 
iterations) and reported as standardized β regression coefficients for direct comparison with 712 
each other. Confidence intervals were obtained using a quasi-Bayesian approximation. 713 
 714 

                                                
ii Deviation from pre-registration. Spearman rank-order correlation tests and Bayes factors were finally not 
performed to estimate the degree of association between switch likelihood as a function of consecutive negative 
feedbacks and arousal states. We will check the slope and effect. 
iii Deviation from pre-registration. The mediation analysis was not initially included in the pre-registration, 
however, we decided to run it in order to test whether the impairment in performance in low and high arousal 
states could be attributed to the different maladaptive behavioural patterns. 
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Pre-registration 715 
The hypotheses and analyses plan were pre-registered in the OSF repository after data 716 
collection (https://osf.io/tzw6d). 717 
 718 
Data and code 719 
Data and codes used for the analyses presented here are available at the OSF repository 720 
(https://osf.io/xk379/). 721 
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SUPPLEMENTARY MATERIAL 908 
Dual-tasking effect of physical exercise on baseline performance 909 
Is the detrimental effect of heightened arousal on behavioural performance truly due to the 910 
increased arousal level, or does it simply reflect a dual-task confounding effect of the physical 911 
and the cognitive task occurring simultaneously? Although this question is partially tackled in 912 
main analyses as the baseline arousal state of the heightened arousal states was also a dual-task 913 
condition (i.e., warm-up), we specifically explored whether a dual-tasking arousal baseline 914 
might be associated with poorer performance (i.e., higher RAR and RT variability), relative to 915 
a non-exercise adaptation period that participants performed just before the warm-up. Contrary 916 
to what we expected, the mixed-effects model yielded no reliable performance differences 917 
between the adaptation period and the warm-up (RAR: t (39) = 1.41, p = 0.167, β = 0.18; RT 918 
variability: t (39) = 1.50, p = 0.14, β = 0.19). To further confirm that baseline performance was 919 
equal or similar for all experiments, we analysed the behavioural performance during baselines 920 
of Experiments 1 and 2 (i.e., wakefulness periods), as well as during baseline of Experiment 3 921 
(i.e., warm-up period). Neither the number of responses needed to attain a reversal (RAR) nor 922 
accuracy showed reliable differences in baseline performance between experiments (F < 1). 923 
Subject-by-subject results show a similar distribution of performance across subjects in each 924 
Experiment (see supplementary figure 1).  925 

 926 
Supplementary figure 1: Subject-by-subject baseline performance. Individual behavioural measures during 927 
baseline across databases. Grey bars represent individual participants within each experiment. All subjects are 928 
arranged by performance, from best to worst in RAR, and from worst to best in accuracy. The analysis revealed 929 
no reliable differences in behavioural performance during baseline periods across experiments. 930 
 931 
 932 
Low arousal deceleration in behavioural dynamics 933 
The transition from wakefulness to sleep involves a progressive, and sometimes nonlinear loss 934 
of responsiveness to external stimuli and a progressive increase of RT variability.10,18,30 To 935 
further characterise the behavioural pattern of this transition, and compared to previous falling 936 
asleep tasks, we investigated the responsiveness and RT dynamics of the participants in the 937 
low arousal condition. We fitted a mixed-effects model separately for RT variability and 938 
omissions as dependent variables. As predicted from other cognitive tasks, 17,18,30,33 low arousal 939 
led to higher RT variability (t (27.99) = 4.59, p < 0.001, β = 0.54), which was accompanied by 940 
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a drastic increase in omitted response to stimuli (t (27.99) = 5.11, p < 0.001, β = 0.67), 941 
compared with the baseline arousal state (see supplementary figure 2). These findings confirm 942 
the convergence to other tasks of our arousal manipulation in probabilistic reversal learning in 943 
its basic effects.  944 
 945 

 946 
Supplementary figure 2. RT dynamic in low arousal. A) RT distribution during low (blue bars) and baseline 947 
(grey bars) arousal states. B) Violins and overlaid box plots of the averaged reaction time variability across 948 
participants in low and baseline arousal states. C) Subject-by-subject baseline differences in RT variability in low 949 
arousal. Grey bars represent participants with a higher RT variability in the baseline compared with low arousal 950 
state. Blue bars depict participants with a higher RT variability when arousal level was reduced compared with 951 
baseline arousal state. Participants are sorted by the RT variability difference between baseline and the arousal 952 
state. 953 
 954 
Testing the assumption of the final mixed-model 955 
We tested the main assumptions of mixed-models on the hierarchical linear mixed-effects 956 
model (m1) we used to assess the effect of arousal of RAR with participant nested into 957 
Experiment as random effects. We first tested the linearity of the data by plotting the model 958 
residuals (i.e., the difference between the observed value and the model-estimated value) 959 
against the predictor (see supplementary figure 3A-B). As we predicted, the relationship 960 
between arousal and RAR is not well described by a straight line (Shapiro-Wilk normality test 961 
= 0.85963, p < 0.001) but by a quadratic function as shown in the Results section. Then, we 962 
checked that the covariance of the residuals was equal across experiments and participants. We 963 
run a variation of Levene’s test by calculating the absolute value of the residuals from the 964 
model, and squaring them for a more robust analysis with respect to issues of normality (Glaser 965 
2006). Neither the ANOVA of the between experiments residuals (F < 1) nor the ANOVA of 966 
the between subject residuals (F = 1.24, p = 0.163) yielded significant differences. Therefore, 967 
our model met the assumption of homoscedasticity. Finally, we estimate whether the residuals 968 
of the analysis were normally distributed (see figure 3C). The QQ plot provides an estimation 969 
of where the standardized residuals lie with respect to normal quantiles, showing a light 970 
deviation from the provided line that suggest that the residuals themselves were not normally 971 
distributed. The violation of this normality assumption however has been proven that do not 972 
noticeably impact results where the number of observations per variable is higher than 10 973 
(Schmidt & Finan, 2018). 974 
 975 
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 976 
Supplementary figure 3. Model validation graphs. A) Fitted values versus model’s residuals 977 
(homoscedasticity). B) Histogram of model’s residuals (normality). C) Estimation of the linearity of the residuals 978 
(linearity). 979 
 980 
Probabilistic reversal learning task instructions for participants 981 
This experiment will consist of four separate blocks. First there will be 2 short ‘alert’ blocks (5-10 982 
minutes in length) during which you will remain fully attentive and try your best at completing the task. 983 
Then afterwards there will be 2 longer ‘drowsy’ blocks (45-60 minutes in length) during which you still 984 
need to complete the task, however the lights will be turned off, your seat reclined, and you can relax 985 
and embrace whatever drowsiness/boredom comes along.  986 
 987 
The task itself involves listening to sounds through a set of headphones and then responding to those 988 
sounds with the button box provided. There are two separate sounds that you can hear, either a low 989 
pitch sound or a high pitch sound, and there is a rule that connects each of these sounds to a 990 
corresponding button on the button box. For example, the low pitch sound could correspond to the left 991 
button, and the high pitch sound to the right button, or vice versa. You will not know what the rules are 992 
when you first begin the task, but rather you must figure them out based upon instructive feedback that 993 
you will receive after each response, indicating either a correct or incorrect choice. If after hearing the 994 
stimulus sound you correctly press the corresponding button, you will hear a nice ‘ding’ sound as 995 
feedback indicating you made the correct choice. However, if your response on the button box is not in 996 
line with the current rule, you will hear a ‘static’ noise as feedback, indicating an incorrect response. 997 
 998 
At this point ask the participant if they fully understand how their job works for the task. Feel free to 999 

elaborate and go over it again and again if necessary. There is little risk of influencing the data based 1000 
upon variations in instruction for this core aspect of the experiment, and it is imperative that they 1001 

fully understand this basic part otherwise their data WILL actually be corrupted. Additionally, if they 1002 
do not fully understand up until this point, they will certainly become even more confused with the 1003 

remaining information. 1004 
 1005 
Now because we like to make things complicated, there are two important caveats to remember in terms 1006 
of this experiment. The first is that the rule that connects each sound (high or low) to a specific button 1007 
(left or right) will not always remain the same. After a certain amount of time the rule may switch and 1008 
therefore become the opposite of what it was previously. So for example, if previously the rule was the 1009 
high sound corresponds to the left button and the low sound to the right button, the new rule would be 1010 
high equals right and low equals left. This switching of the rules can occur more than one time 1011 
throughout each block, and you will receive no specific indication if a switch has occurred. It is up to 1012 
you to figure out if and when a switch happened based upon your choices and the feedback you receive.  1013 
 1014 
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The second caveat is that although the majority of the time the feedback you receive in response to 1015 
your button choice will be truthful, sometimes it will be false and in essence lie to you/try to trick you. 1016 
So for example, if the current underlying rule states that the high pitch sound corresponds to the left 1017 
button, and you make the correct choice (press the left button after hearing the high pitch sound), the 1018 
feedback could be the ‘incorrect static’ sound. Again, most the time the feedback will be truthful and 1019 
not trying to deceive you, but it is important to keep in mind that it can happen occasionally.  1020 
 1021 

If the participant has any questions after explaining these caveats, be mindful of how you answer. 1022 
Feel free to go over them again, but try to basically use the same wording as the first time you 1023 

explained. This is because small differences in word choice have the potential to greatly influence 1024 
how the participant approaches the task (how often they feel the rules switch, how much they trust the 1025 

feedback, etc.). 1026 
 1027 
Now because this can seem quite complicated at first, you can have a quick practice session to get used 1028 
to the experiment. This is often helpful to participants and will hopefully make you more comfortable 1029 
in your understanding of the task. If you still have any questions afterward we can briefly go over it 1030 
again. 1031 
 1032 

If after the practice session the participant still seems to not understand the task, you can go over it 1033 
again but still be mindful of your word choice. There is a difficult line to straddle between making 1034 

sure the participant fully understands the task, and making sure we are consistent in our explanation 1035 
and therefore the participants’ approach. Straying too far in either direction can greatly influence the 1036 

data. 1037 
 1038 

After the practice session ends it is time to begin the first ‘alert’ block of the experiment. 1039 
 1040 
Now we are going to begin the actual experiment. First up we will have the two short ‘alert’ blocks 1041 
which will be around 5-10 minutes each. When performing the task during these two blocks please 1042 
remain fully alert and focus on the task as much as possible. Your eyes must remain closed during the 1043 
duration of these blocks. 1044 
 1045 

After the completion of the two ‘alert’ blocks, get the participant comfortable for the ‘drowsy’ 1046 
portion. It is very important to make the participant as comfortable as possible. This can include 1047 

reclining their chair, supplying pillows or blankets, participants removing their shoes, etc. It is VERY 1048 
important they are actually comfortable (and not just saying “yeah sure whatever”). 1049 

 1050 
Now we are going to begin the ‘drowsy’ portion of the experiment. There will be two separate blocks, 1051 
around 45-60 minutes each. You are encouraged to become as comfortable and relaxed as possible, and 1052 
to embrace any feelings of drowsiness that come over you. However, you do of course still need to try 1053 
to complete the task so you cannot sleep throughout the entire experiment. If I see that you have actually 1054 
fallen asleep, I will lightly knock on the door to wake you back up, no worries! I will turn the lights off 1055 
for these two blocks and once again please keep your eyes closed for the duration of the blocks. 1056 
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