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ABSTRACT

Humans are uniquely capable of adapting to highly changing environments by updating
relevant information and adjusting ongoing behaviour accordingly. Here we show how this
ability —termed cognitive flexibility— is differentially modulated by high and low arousal
fluctuations. We implemented a probabilistic reversal learning paradigm in healthy participants
as they transitioned towards sleep or physical extenuation. The results revealed, in line with
our pre-registered hypotheses, that low arousal leads to diminished behavioural performance
through increased decision volatility, while performance decline under high arousal was
attributed to increased perseverative behaviour. These findings provide evidence for distinct
patterns of maladaptive decision-making on each side of the arousal inverted u-shaped curve,
differentially affecting participants' ability to generate stable evidence-based strategies, and
introduces wake-sleep and physical exercise transitions as complementary experimental
models for investigating neural and cognitive dynamics.
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INTRODUCTION

Making mistakes is inherent to learning and the accomplishment of any task. We make
mistakes every day, even when faced with the same task repeatedly. Our ability to learn from
these errors and flexibly adapt ongoing behaviour according to changes in the environment is
critical for our survival. This ability —termed cognitive flexibility— depends on our innate
capacity to establish associations between stimuli (S), responses (R), and outcomes (O), as well
as to integrate previously acquired knowledge and skills into effective strategies for coping
with similar future demands.' Here, we implement a Probabilistic Reversal Learning (PRL)
task to study the modulatory effect of low and high arousal on cognitive flexibility —
participants continue to perform as they fall asleep or with increasing physical exercise— to
map either side of the Yerkes-Dodson Curve (1908).

Cognitive flexibility is often studied using PRL tasks, typically assigning probabilistic
reinforcement contingencies to abstract S-R associations, that are later abruptly reversed,
requiring participants to learn new S-R reinforcement contingencies by trial and error to
overcome prepotent ones’. Efficient performance relies on learning from the reinforcement
received’, the estimation of the likelihood that a reversal may occur,™ and the continuous
integration of a history of choices and reinforcements.’ Indeed, evidence from both human and
animal studies suggests that different high- and low-order strategies or series of rules are
adopted during reversal learning, leading to maladaptive response patterns when the external
pressures change or when the internal milieu varies.”® Parsing the microstructure of learning
derived from trial-by-trial responses enables the dissociation of the cognitive processes and
behavioural strategies that drive subjects’ choices during reversal learning. Here we propose
that arousal fluctuations may differentially modulate cognitive flexibility leading to distinct
maladaptive behavioural patterns of performance.’

Fluctuations in arousal and alertness (hereafter described jointly as “arousal’’) occur
constantly across the day but are exacerbated during transitions toward strained states such as
sleep'’ or physical extenuation,'' where arousal levels change drastically in a progressive and
nonlinear manner.'>"® These arousal fluctuations play a crucial role in modulating cognition,
facilitating or hindering certain cognitive processes and performance to internal and external
stimuli, 415:16.17.18

The interaction between arousal and cognition has been traditionally approached from
the perspective proposed by Yerkes and Dodson in 1908.* According to their famous inverted
U-shaped law, the optimal level of cognitive performance in complex tasks is reached at
moderate levels of arousal, whereas deviations from this optimal arousal point, below or
beyond, result in cognitive performance impairments. Though reductionist, the inverted U-
shaped law represents a useful minimal framework to characterize the neural and cognitive
dynamics of many physiological states across the arousal spectrum. Among these physiological
states, researchers have paid special attention to reduced arousal states, including sleep stages,"”
sedation,” sleep deprivation,”' motivation** and fatigue.”

Sleep can be used as the gold standard model of transition toward low arousal.'® This
area looking at the interaction between homeostasis and cognitive function is understudied due
to the complexity of capturing dynamically metastable states like mild sedation®** and
drowsiness.'” When falling asleep, individuals manifest a wide range of changes, from
physiological to phenomenological, that are categorized into several well-described sleep
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78  stages.”® One of these stages is drowsiness, a transitional stage of consciousness between
79  attentive wakefulness and light sleep, characterized by a progressive and nonlinear loss of
80  responsiveness to external stimuli which does not immediately imply unconsciousness.””***’
81  Drowsiness, as well as similar reduced arousal states, has been repeatedly associated with an
82 impairment of cognitive processing, and particularly the capacity to deal with conflicting
83  information,'® attentional performance,”® and perceptual decision-making.”’ However, in
84  drowsiness, and even during highly reduced arousal states, pre-attentive and early bottom-up
85  attentive processing can still be accomplished with and without conscious awareness. ' ==
86 The transition towards the other side of the arousal spectrum (i.e., heightened arousal
87  states) has received even less attention.”* The absence of a theoretical model for progressive
88  physiological transitions towards high arousal states, has also contributed to a lack of advance
89 in the field. Here, we consider endurance physical exercise as a useful experimental model of
90 arousal transition upwards, with many commonalities with sleep transition. A single bout of
91  endurance physical exercise (e.g., running or cycling) up to physical extenuation involves a
92  complex transition encompassing a wide range of changes (e.g., neural, motor, endocrinal,
93  phenomenological, etc.), that are also categorized into several well-described stages, from
94  resting, through the aerobic and the anaerobic thresholds, up to the limit where the individual
95  has to stop.”> This highly fluctuating transition has been also associated with changes in
96  cognitive processing to internal and external stimuli.’**’** In particular, high-order top-down
97  processes that govern goal-directed behaviour in changing environments (i.e., cognitive
98  control) appear to benefit from increases in the level of arousal® up to a certain exercise
99 intensity. Further intensity increments approaching and exceeding the anaerobic threshold
100  seem to hinder cognitive performance,’®’*** in line with the Yerkes-Dodson law prediction.
101 Sleep and physical exercise provide complementary perspectives on the cognitive
102  dynamics, and experimental models, when the arousal level is altered. However, and despite
103  the fact that both sides of the arousal spectrum exhibit similar cognitive performance
104  impairments, they cannot be treated as mirroring states in terms of cognitive performance
105  without a fine-grained differentiation of the behavioural dynamics that lead to these global
106  impairments. Furthermore, the theoretical differences in the transitions towards sleep or
107  complete (physical) exhaustion have to be considered in the assumptions and interpretations of
108 this and future studies. Thus, it is crucial to ask when arousal is altered (increased or decreased),
109  which specific processes of cognitive flexibility and information processing are affected, and
110  whether low and high arousal states are characterized by different strategic behaviours
111 underlying decision-making. It should be understood that the physiological processes
112 underlying the change in performance seen in different Dodson-Yerkes experiments since 1908
113  are different at each side of the curve, and it should be expected that these changes in arousal
114  modulate differently the cognitive abilities. Here, we use a PRL task to disentangle the
115  behavioural dynamics of cognitive flexibility as they get modulated by ongoing fluctuations in
116  arousal levels and to further delineate the microstructure of learning derived from trial-by-trial
117  responses to conflicting evidence. In particular, we manipulated arousal level to facilitate
118  natural transitions to low alertness, from awake to asleep; or to elicit high arousal, instructing
119  participants to exercise during 60 minutes at the highest intensity and effort possible without
120  reaching premature exhaustion. During both arousal modulations, participants performed a
121 PRL task, requiring the adaptation of behaviour following changes in reinforcement and
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122 punishment, as well as the maintenance of strategic response patterns in the face of misleading
123  (probabilistic) feedback.

124 Based on the premises that (1) drowsiness hinders the extraction of task-relevant
125  information from external stimuli and its integration, fragmenting specific aspects of cognition
126  while preserving crucial executive control processes; > '~>*! (2) drowsiness has been
127  associated with more liberal decision-making;'’*%"" (3) moderate-to-high intensity endurance
128  exercise leads to a selective enhancement of executive control processes while lower and higher
129  intensities result in an impairment or minimal effect;**** and (4) high arousal promotes
130  habitual responding and reduced engagement of complex cognitive strategies;****° predicted
131  that behavioural performance would be enhanced in moderate-intensity physical exercise,
132  while drowsiness and high-intensity exercise would lead to diminished performance in light of
133  the inverted U-shaped Yerkes-Dodson Law. Specifically, we hypothesized that reduced arousal
134  states would be associated with an impairment of performance (compared to baseline), which
135  would be attributed to a tendency to apply a simple strategy (win-stay/lose-shift) instead of
136  using an integrated history of choices and outcomes to drive performance (probabilistic
137  switching behaviour). In contrast, while we also expected an impairment of performance during
138  heightened arousal states, we hypothesized it would be attributed to a failure to disengage from
139  ongoing behaviour (perseveration). In addition, we hypothesized that altered arousal states
140  might reduce the ability of participants to apply a proper higher order strategy, resulting in wide
141 periods of time-on-task in which participants would perform the task simply responding to the
142  tones (i.e., automatic rule) but without applying any strategy (i.e., higher order rule). All these
143 hypotheses, together with the analysis plan, were pre-registered after data collection.’

144

145 RESULTS

146  To investigate the modulatory effect of arousal fluctuations on cognitive flexibility, a PRL task
147  was carried out with human participants (n=100) while they were transitioning towards
148  drowsiness or physical extenuation. Participants were instructed to associate an auditory
149  stimulus (S) —high pitch sound or low pitch sound— with a response (R) button —Ileft or right.
150  In this auditory version of the PRL task, each S-R association leads to an auditory outcome (O)
151  ——correct (ding sound) or incorrect (white noise)}— which participants use to assess their
152  choice, and apply this knowledge to guide the next choices. Indeed, participants were explicitly
153  told that there was a rule connecting each of the auditory sounds to a corresponding button
154  (e.g., the low pitch sound could correspond to the left button, and the high pitch sound to the
155  right button or vice-versa), which they had to figure out based upon instructive feedback they
156  would receive after each R. Additionally, they were instructed on two key issues: 1) the S-R
157  rule might switch after a certain amount of time —becoming the opposite of what it was
158  previously— and that no specific indication whether such a switch had occurred would be
159  provided; 2) although the majority of the time the feedback would be truthful, sometimes it
160  could be false and in essence mislead to them. Therefore, the task entails the use of, at least,
161  two rules to success, as participants have to press a button after each auditory stimulus (i.e.,
162  automatic rule) and to use an integrated history of S-R-O associations to determine the correct
163  S-R association (i.e., high order rule). Once participants reach 90% accuracy or greater on the
164  latest 10 trials, the implicit abstract S-R association is reversed, and participants have to infer
165  the new association from the feedback received. The number of responses needed to attain a
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166  reversal (RAR) of the abstract association is used as the main index of performance. We
167  hypothesized’ that reduced arousal states would lead to reductions in behavioural performance
168  compared to baseline arousal state; while heightened arousal states would lead to improved
169  performance relative to baseline, but only to an optimal point (i.e., moderate arousal) after
170  which the performance will be deteriorated with further increases in arousal level (see figure
171 1A). These hypotheses were formulated in line with the famous psychology inverted u-shaped
172 law originally attributed to Yerkes and Dodson (1908)” relating arousal modulation
173 performance in complex tasks, but later more formally defined by Broadhurst (1958)* and
174  Brown (1961).*

175 Note that, as a probabilistic task, the feedback provided is not always truthful nor
176  reliable and misleads the participant 20% of the time (see figure 1B). Thus, the participant
177  could correctly apply the S-R association and press the correct button in response to the
178  auditory stimulus, and still receive negative feedback, thus indicating an incorrect choice. This
179  scenario of conflicting evidence can lead participants to two different maladaptive response
180  patterns (see figure 1C) while performing the task: 1) switching the pattern choice across trials
181  with little (i.e., one negative feedback against the choice) or no evidence (i.e., no feedback
182  against the choice) of an actual rule change (probabilistic switching); or 2) sticking with the
183  previous choice despite having strong evidence (i.e., two or more negative feedbacks against
184  the choice) of an actual rule change (perseveration). Relying on these response patterns lead to
185  poor performance,’ as the optimal strategy in this task is to stick with the previous choice with
186  zero or one negative feedback against the choice, and to switch the pattern choice if two or
187  more consecutive negative feedbacks against the choice happen.
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189 Figure 1. Experimental design and arousal level classification: A) Schematic representation of the
190 experimental design and main hypotheses. Arousal level was endogenously manipulated by facilitating the natural
191 transition of participants from awake to sleep, or instructing them to exercise during 60’ at the highest intensity
192 and effort they could maintain without reaching premature extenuation. Notice that half of the participant
193 transitioned towards drowsiness, while the other half transitioned towards physical exertion. A probabilistic
194  reversal learning task was assessed continuously during the arousal modulation. Optimal performance of the task
195  was expected at moderate arousal state (exercising at moderate intensity), while lower (drowsiness) and higher
196 (exercising at high-intensity) arousal state were expected to result in task performance deterioration. B) In this
197 auditory version of the probabilistic reversal learning paradigm, an auditory stimulus was presented on each trial,
198 and participants had to associate the sound with a response button, left or right. After that, auditory feedback was
199 provided according to the ongoing implicit rule. Notice that the feedback provided was not always truthful nor
200  reliable, and attempted to mislead the participant 20% of the time. C) Task trials were grouped into sequences of
201 trials following a particular rule (trend) where a particular sound was implicitly associated with a response button
202 (e.g., high pitch sound with the left button, and low pitch sound with the right button). Participants were instructed
203  to infer the rule from the provided feedback to assess their previous choice and apply the knowledge of their
204 accuracy to guide the next choices, knowing that the rule might change after a certain time. Based on the feedback
205  received, participants could make probabilistic or perseverative errors in the following trials. D) Automatic
206  classification of arousal during a drowsy session (representative participant). The pink line depicts changes in the
207  theta:alpha ratio (occipital electrodes cluster) during the pre-trial period (2 seconds before the auditory stimulus
208 onset). The horizontal bars on top represent trials classified as baseline (grey) or low arousal (blue). The variability
209 in the reaction times (green circles) closely follows the changes in theta:alpha ratio. Notice that circles on the
210  horizontal axis (reaction time equal to zero) were non-responsive trials, usually during low arousal (drowsy)
211 periods but also observed during exercise periods. E) Automatic classification of arousal during a physical
212 exercise session (representative participant). The red line depicts changes in the heart rate during the pre-trial
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213  period (2 seconds before sound onset), and the horizontal bars on top represent trials classified as baseline (grey),
214 moderate (yellow) or high arousal (red). Similar to the low arousal session, the reaction times (green circles)
215  fluctuates with the changes in heart rate.

216

217  Arousal modulates probabilistic information during a stream of conflicting evidence.
218  First, we calculate the average RAR per participant in each arousal state (low, baseline sitting,
219  baseline cycling, moderate, high). To account for the dependencies potentially generated by
220 any procedural differences between Experiments, we fitted RAR using hierarchical linear
221  mixed-effects modelling, with arousal as fixed effect, and participant nested into Experiment
222  asrandom effects. The model showed a strong effect of arousal on RAR, F (3,113.02) =11.59,
223  p<0.001, B =0.61 (details on testing model assumptions can be found in the supplementary
224  material), indicating that the processing of probabilistic information that allows the detection
225  of changing patterns in a stream of conflicting evidence was modulated by the arousal level.
226  Next, we checked for non-linearity in the relationship between arousal and RAR, to test the
227  famous u-shaped curve. As expected, we found that the quadratic (4/C = 1243.6; BIC=1262.3;
228  R*=0.40) outperformed linear fitting (4/C = 1264.8; BIC = 1280.4; R* = 0.23), confirming a
229  possible curvilinear pattern (U shaped) of the effect of arousal on RAR (see figure 2), with a
230 reliable increase in the number of responses required by the participants to complete a trend
231 reversal (i.e., decrease of performance) as the level of arousal progress towards the extremes
232 of the defined arousal range, confirming, for reversal learning, convergence with the Yerkes-
233 Dodson law, later reformulated by Broadhurst in 1958.*

234 Splitting the comparisons to its specific baselines per arousal condition (i.e., sitting
235  Dbaseline compared to low arousal in the drowsiness condition; cycling baseline compared to
236  moderate and high arousal in the exercise condition) yielded a reliable increase of RAR in low
237  arousal, 7 (124.62) = 5.67, p < 0.001, B = 1.02, and high arousal state, ¢ (117.93) =2.57, p =
238 0.011, B =0.45, compared with their corresponding baselines. Notably, baseline performance
239  did not differ across arousal conditions (see supplementary figure 1). Contrary to what we
240  expected, moderate arousal state was not associated with a decrease of RAR (the expected peak
241  in performance), relative to baseline (¢ (114.85) = 1.61, p = 0.11, f = 0.25,). Moreover, we did
242  not find evidence for a potential dual-task confounding effect in the heightened arousal
243  conditions (see supplementary material). In sum, these findings provide evidence for an
244  impairment in the processing of probabilistic information when the arousal level is altered,
245  regardless of the side of the arousal spectrum.
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247 Figure 2. Number of responses needed to attain a trend reversal as a function of the arousal state. A) Violins
248 and overlaid box plots of mean responses to reverse across arousal states. In box plots, middle black mark indicates
249 the median, and bottom and top edges indicate 25th and 75th percentiles, respectively. The upper and lower
250 whiskers indicate the maximum value of the variable located within a distance of 1.5 times the interquartile range
251  above the 75th percentile and below the corresponding distance to the 25th percentile value. Surrounding the
252 boxes (shaded area) is a rotated kernel density plot, which is comparable to a histogram with infinitely small bin
253  sizes. Jittered dots represent the averaged response to reverse score for each participant in each arousal state.
254 Linear mixed-effects model analysis revealed a reliable quadratic fitting between arousal and task performance,
255 outlined by the dashed line. Low and high arousal states were associated with a worse task performance relative
256 to their own baseline arousal states. Moderate arousal state was not associated with the expected optimal
257 performance as no differences were found with the baseline arousal state. B) Baseline differences of each
258 participant across altered arousal states are represented by the bars (grey bars indicate that these participants
259 needed more trials to attain a trend reversal in the baseline compared with the altered arousal states; blue, yellow
260 and red bars depict that these participants needed more trials to attain a trend reversal when arousal level was
261 altered -increased or decreased- compared with baseline arousal state). Participants are sorted by performance
262 difference between baseline and the arousal state. Upper and bottom panels show a consistent impairment of task
263 performance across participants in low and high arousal states. Non-reliable differences were found between
264  moderate and baseline arousal.

265

266  Different underlying mechanisms explain decreased performance in low and high arousal
267  states

268 In the analysis above, performance under high and low arousal states was compared
269 irrespective of the strategy participants may have used to solve the task. To test for the
270  hypotheses of the differential mechanism driving changes in performance for each arousal side
271 of'the u-shaped curve, we calculated: a) probabilistic switching, as the proportion of trials when
272  the participants change the pattern choice with little or no evidence (i.e., zero or one negative
273  feedback against the choice); and b) perseveration, the likelihood of sticking with the previous
274  choice despite strong evidence (i.e., receiving two or more negative feedbacks in a row) that

275  the pattern has changed. Probabilistic switching and perseveration are proportion indices of
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276  strategic behaviour based on the probability of switching when negative feedback is provided.
277  Thus, they range between 0 and 1, allowing comparison across arousal states while accounting
278  for potential experimental differences (e.g., number of trials). We hypothesized that the
279  impairment of performance in low arousal would be primarily attributed to an increase in
280 probabilistic switching, relative to the baseline arousal state; and in contrast, the observed
281  impairment of performance in high arousal state will be primarily due to an increase in
282  perseverative behaviour. To test these hypotheses, we fitted probabilistic switching and
283  perseveration (separately for low and high arousal states) using the hierarchical linear mixed-
284  effects model structure defined previously. The analyses revealed that, while the probabilistic
285  switching increased consistently across subjects during low arousal state compared with
286  baseline arousal, F (1,56) = 14.78, p <0.001, p = 1.01, R> = 0.21, no reliable differences were
287  observed in perseveration between these arousal states (F < 1). On the other hand, high arousal
288  states led to a reliable increase in perseverative behaviour compared to the baseline state, F
289 (1,67) = 9.12, p = 0.035, B = 0.34, R> = 0.12, with no reliable differences observed in
290 probabilistic switching (F < 1). These results suggest that altered arousal states lead to distinct
291  maladaptive decision-making patterns that affect participants' ability to generate stable
292  evidence-based strategies, although evidence-driven responses were present (see figure 3A).

293 To further prove that the impairment in performance in low and high arousal states
294  could be attributed to the different maladaptive behavioural patterns, we carried on a mediation
295  analysis separately for each arousal state (low, high). We first confirmed that probabilistic
296  switching and perseveration have an effect on the RAR, while controlling for the arousal state
297  (see figure 3B). These results, together with the previous analyses where we found an effect of
298  arousal state on probabilistic switching and perseveration, revealed a full mediation between
299  these variables. As figure 3B illustrates, the regression coefficient between arousal and RAR,
300 and the regression coefficient between probabilistic switching and RAR were statistically
301 reliable, showing a full mediation of probabilistic switching on the effect of low arousal on
302 RAR. The bootstrapped standardized indirect effect of low arousal on RAR, mediated by
303  probabilistic switching, was 0.65 (p < 0.001), and the 95% confidence interval ranged from
304 0.29 to 1.07. A similar fully mediation effect was observed in high arousal state, showing that
305 the effect of high arousal on behavioural performance was fully mediated via the perseverative
306  behaviour. The bootstrapped standardized indirect effect was 0.10 (p = 0.014), and the 95%
307  confidence interval ranged from 0.14 to 0.24. As predicted, participants showed an impairment
308 of performance during low arousal state, relative to baseline arousal, which was primarily
309 attributed to an increase of probabilistic switching (i.e., changing pattern choice with little or
310 no evidence of an actual rule change). In contrast, while participants also showed an
311 impairment of performance during high arousal state, relative to the baseline arousal, it was not
312  attributed to an increase in probabilistic switching, but to an increase in perseverative behaviour

313  (i.e., sticking with the previous choice despite consecutive negative feedbacks).
314
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A. Evidence-driven behaviour is impared in altered arousal states B. Adaptation to a new rule impaired due to different strategic patterns
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316 Figure 3. Maladaptive behavioural patterns across participants in low and high arousal states. A) Violins
317 and overlaid box plots of the percentage of change from baseline to low (blue) and high (red) arousal states in
318 probabilistic switching and perseveration. In box plots, middle black mark indicates the median, and bottom and
319  top edges indicate 25th and 75th percentiles, respectively. The upper and lower whiskers indicate the maximum
320 value of the variable located within a distance of 1.5 times the interquartile range above the 75th percentile and
321 below the corresponding distance to the 25th percentile value. Surrounding the boxes (shaded area) is a rotated
322 kernel density plot, which is comparable to a histogram with infinitely small bin sizes. Jittered dots represent the
323 averaged response to reverse score for each participant in each arousal state. B) Mediation model diagram to
324 illustrate that the general impairment in task performance found in low and high arousal states was mediated by
325 different maladaptive behavioural patterns. Dashed lines (indirect effects) represent the effect of low (blue) and
326 high (red) arousal on task performance (indexed by the averaged responses to attain a trend reversal) through
327  probabilistic switching and perseveration, respectively. Solid lines depict direct effects between variables. Grey
328 lines represent the absence of a direct effect of low arousal on perseveration and high arousal on probabilistic
329 switching. Notice that a direct effect of an independent variable (arousal) onto the mediator (probabilistic
330 switching, perseveration) is a prerequisite for mediation being possible. Standardized 3 regression coefficients are
331 indicated in each effect (* depicts p < 0.05). Accordingly, the values of all effects are expressed as the number of
332 standard deviations from the mean. For example, the direct effect of high arousal on RAR (B = 0.22) implies that
333 a standard deviation change of 1 in the arousal variable would result in a standard deviation increase of 0.22 in
334 RAR.

335

336  Arousal disrupts the reversal strategy

337  To maximise performance in the task, a good strategy is to not fall for the false feedback and
338  stand your ground until the next feedback, as well as switch to the second consecutive feedback.
339  The fact that participants sometimes needed an unreasonable high number of responses to attain
340 areversal in low and high arousal states suggests the existence of sections of time on task in
341 which they responded to the tones but could not apply the strategy rules (see fig 4A). These
342  sections without clear strategic behaviour, that we call breakdowns, have been often neglected
343  in previous studies using PRL tasks as failures of compliances or “bad participant”. The
344  transient on/off nature of these breakdowns may provide valuable insight into the behavioural
345 dynamics of participants in different states of arousal. We hypothesized that breakdowns
346  sections would increase in low and high arousal states, relative to a baseline arousal state. First,
347  we traced the sections of the task (more than 20 trials) in which participants did not attain a
348 reversal. Second, we calculated the proportion of time these sections represented to the total

349  time-on-task, and finally, we implemented a hierarchical linear mixed-effects model with the
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structure defined in previous analyses, separately for each arousal state (low, high), with the
number of breakdowns as the index of performance. As hypothesized, low and high arousal
states lead to longer breakdown sections compared with baseline arousal state (¢ (127.99) =
3.40, p <0.001, B =0.13; £ (121.69) = -2.97, p = 0.003, B = 0.11). Subject-by-subject results
(fig 4C) show a consistent increase of breakdowns across participants in low arousal state.
Although high arousal states also showed a reliable increase of breakdowns as a group, this
effect was less systemic, with half of the participants showing the opposite effect, no difference
or no breakdowns.

A. Section of time-on-task where the participant responds without strategy
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Figure 4. Behavioural strategy breaks as arousal changes. A) Automatic classification of a section of time
where a representative participant responded without a clear behavioural strategy. The green circles show RTs
and the blue line shows the ongoing accuracy of the task (10-points moving average). The grey shaded area flanked
by the zigzagging vertical lines depicts the section of time classified as a breakdown. B) Violins and overlaid box
plots of the averaged percentage of time-on-task without strategy across participants in low and high arousal states,
compared with their respective baselines states. In box plots, the middle black mark indicates the median, and
bottom and top edges indicate 25th and 75th percentiles, respectively. The upper and lower whiskers indicate the
maximum value of the variable located within a distance of 1.5 times the interquartile range above the 75th
percentile and below the corresponding distance to the 25th percentile value. Surrounding the boxes (shaded area)
is a rotated kernel density plot, which is comparable to a histogram with infinitely small bin sizes. Jittered dots
represent the averaged percentage of time-on-task without a strategy of each participant in each arousal state.
Linear mixed-effects model analyses revealed that low and high arousal states lead to longer periods of breakdown
relative to the baseline arousal state. Interestingly, violin plots show a considerable number of participants who
had no breakdowns at baseline arousal states, something that completely disappears in low arousal state (all
participants had breakdowns), and that is reduced in high arousal state. C) Baseline differences of each participant
in low and high arousal states represented by horizontal bars (grey bars indicate that these participants spent more
time performing the task without a particular strategy in the baseline arousal state compared with the altered
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377 arousal states; blue and red bars depict that these participants were applying behavioural strategies less time when
378 arousal level was altered (increased or decreased) than in baseline arousal state. Participants are sorted by
379 performance difference between baseline and the arousal state. Both panels show a consistent impairment of task
380  performance across participants in low and high arousal states.

381

382  DISCUSSION

383  Inthe present study, we facilitated natural transition of healthy participants towards the borders
384  of non-pharmacological arousal states (drowsiness, physical exertion) to investigate the
385  behavioural dynamics of cognitive flexibility. In line with our pre-registered hypotheses,’ the
386 findings revealed a quadratic-like pattern (inverted U-shape) of the effect of arousal
387  fluctuations on cognitive performance. As the level of arousal progressed towards the extremes
388  of the defined arousal range reversal learning performance decreased, in agreement with the
389  predictions of the Yerkes-Dodson law (1908).> Although cognitive flexibility diminished in
390  both under high and low arousal states, different maladaptive behavioural patterns drove this
391  performance impairment. As predicted, the performance decline exhibited by our participants
392  under drowsy states was primarily attributed to a more decision volatility (i.e., shifting pattern
393 choice with little or no evidence of reinforcement contingencies change). In contrast,
394  participants also showed a decline in performance during high arousal state but attributed to
395 increased perseverative behaviour (i.e., sticking with a particular pattern choice despite having
396 strong evidence that the contingencies have changed). Our findings also revealed that most
397  participants undergo prolonged periods of time-on-task in which they seem unable to apply any
398  specific higher order strategy. These breakdown periods, which can last for several minutes,
399  are more frequent and sustained during high or low arousal. In short, our results provide solid
400 evidence for distinct maladaptive decision-making patterns under altered arousal states,
401  differentially affecting the participants' ability to generate stable evidence-based strategies.
402 Arousal fluctuations thus seem to elicit a distinctive behavioural distortion of cognitive
403  flexibility as further indicated by the microstructure of learning derived from trial-by-trial
404  responses to negative feedback. Healthy participants under high arousal exhibited normal
405 acquisition of S-R reinforcement contingencies but perseverative response patterns when
406  contingencies were reversed. This failure to disengage from ongoing behaviour is a
407  translational phenomenon strongly linked to impulsivity and compulsivity,” and prevalent in
408  numerous neuropsychiatric and medical conditions.”*"! For instance, patients with lesions that
409  include ventral prefrontal cortex and orbitofrontal cortex,’* as well as chronic cocaine users™
410  and patients with schizophrenia,”* show normal acquisition of S-R contingencies but are
411  severely impaired when those S-R reinforcement contingencies are abruptly reversed,
412  exhibiting perseverative responding to the previously reinforced S-R contingency. Altogether,
413  these findings suggest that high arousal undermines healthy individuals’ capacity to engage in
414  complex cognitive strategies driving them to rely on habitual response patterns, which,
415  paradoxically, might also enhance behavioural control in terms of response inhibition.*® Our
416  findings not only further the understanding of the processes underlying automatized behaviour
417  and habitual response tendencies, but high arousal may be used as a model to inform both
418  impulsive and compulsive aspects of psychopathology.

419 In contrast, healthy participants under low arousal seemed unable to maintain the
420 learned S-R reinforcement contingency and started to deviate from the evidence, revealing a
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421  volatile pattern of behaviour. Since a crucial aspect of the PRL experimental design was the
422  existence of a 20% of misleading feedback, to maximise performance, individuals should not
423  fall for the false feedback and —ideally— stand their ground until the next feedback. Further
424  and as part of a successful strategy, they should switch if two or more consecutive feedbacks
425  are given against the previously reinforced choice pattern. Consequently, adaptive behaviour
426  during the task requires a balance between both types of behaviour (stability and flexibility).
427  Those participants under low arousal fell repeatedly for the misleading feedback, switching
428  prematurely after negative feedback. Furthermore, they showed increased decision volatility
429 by spontaneously switching even without any negative feedback. This volatile pattern of
430  cognitive flexibility has been linked to serotonin® and dopamine systems,’® and is observed in
431  patients with major depression,””**’ often linked to either an oversensitivity to punishment or
432 an impaired control over negative feedback.®”' It is reasonable to speculate that low arousal
433  levels render individuals more sensitive in updating S-R reinforcement contingencies, rather
434  than increase sensitivity to punishment as in major depression. Moreover, low arousal may
435 increase volatility by decreasing attentional resources, leading to spontaneous explorations,
436  higher RT variability and periodic omissions (see supplementary figure 2).

437 The fragmentation of cognitive control due to changes in arousal has been primarily
438  shown in sleep deprivation®*®***%® and not in spontaneous fluctuations of alertness as we
439  show in this study. The increased volatility in the PRL with low arousal suggests a decrease in
440  cognitive control that is different from an increase in perseverative behaviour seen in high
441  arousal. Indeed, we have previously shown that decreased levels of arousal can fragment or
442  reconfigure specific aspects of cognition while preserving crucial executive control processes
443  such as the capacity to detect and react to incongruity,'® the efficiency in perceptual decision
444  making,’' and the precision of conscious access.'’ Here, we add further evidence showing that
445  individuals under reduced arousal state, although struggling to maintain stable evidence-based
446  decision-making patterns, are able to learn new S-R reinforcement contingencies,
447  demonstrating flexibility of the human brain to adapt to increasing levels of endogenous
448  (arousal) noise. The evidence of cognitive and —indirectly— neural reconfiguration of
449  cognitive control networks suggests compensatory mechanisms elicited by the change in
450  arousal.

451 Upon further examining the microstructure of learning derived from trial-by-trial
452  performance of the PRL task, we uncovered the existence of prolonged periods of time-on-task
453  in which participants did not seem to apply any particular high-order behavioural strategy.
454  Although these breakdown periods emerged regardless of the arousal level, they were prevalent
455 under low and high arousal states, lasting from few to several minutes. Remarkably, the
456  transient on/off nature of these breakdowns suggests that extreme arousal levels alternate
457  between different metastable cognitive states. The first state can be defined by a relatively
458  successful application of the reinforcement information where participants can navigate the
459  uncertainty of the PRL, while in the other metastable state they seem to only apply the simple
460  auditory-motor S-R rule to respond to the auditory tones but are unable to use choice history
461  to develop a successful strategy.

462 In the context of this study, arousal as a biological construct defined by the homeostatic
463  regulatory capacity of the system and its responsiveness,” helps to link drowsiness and
464  increased alertness during physical exercise in a common framework where the predictions of
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465  the Yerkes-Dodson inverted U-shaped law can be experimentally tested. Despite the obvious
466  difference at the biological, neural and psychological level between both sides of the curve, the
467  common decrease in performance highlights the commonalities between the extremes in human
468  performance, adding to the fact that both —sleep and physical exertion— emerge as natural
469 transitions from a similar state (resting) traversing different stages, and exhibit nonlinear
470  dynamics and hysteresis processes in their transitions.'* Thus, drowsiness and physical exertion
471  provide complementary perspectives on cognitive dynamics when the arousal level is altered.
472  The present findings point out their differences in the cognitive fragmentation leading to a
473  general decline in task performance.

474 Transitions towards drowsiness or physical exertion entail changes in levels of arousal,
475  which are in turn associated with a wide range of alterations (e.g., neural, motor, endocrinal,
476  phenomenological, etc.) that might cause the cognitive fragmentation described in the present
477  study. For instance, during a single bout of aerobic exercise, as intensity increases from low to
478  high, there is a release of epinephrine and, to lesser extent norepinephrine, into the blood from
479  the adrenal medulla.”” This exercise-induced increase in brain concentrations of
480  catecholamines has been proposed as a physiological mechanism underlying cognitive
481  performance during and after physical exercise.'” Similarly, when falling asleep, we experience
482  a cascade of changes in almost every system of the organism, including the somatic and
483  autonomic nervous systems,'> which might be playing a crucial role in cognitive processing.
484  The extent to which each of the changes that occur during these transitions (drowsiness and
485  physical exertion) are responsible for the cognitive adaptations we report here is something
486  that future studies might reveal, for example, combining measurements of the autonomic
487  nervous system and brain functioning, which would make it possible to gain more insight into
488  the underlying physiological mechanisms involved in arousal-related changes in cognition.
489  These inferences of this study are hence mediated by physiological processes that might
490 partially explain the cognitive modulations in an independent manner if dissociated from
491  arousal changes.

492 Though the Yerkes-Dodson law was not initially formulated to be a general rule to
493  apply to all psychology subfields (learning, motivation, emotion, etc.), through the years, and
494  with the pressure to find common mechanisms in psychology, the findings initially defined for
495  learning were further extended and reinterpreted as a law about the relationship between
496  arousal and other physiological constructs to perceptual and cognitive performance.®® Despite
497  this overgeneralization from its genuine formulation and its reductionist nature, our findings
498 rely on such inverted U-shaped law as a basic useful theoretical framework, providing an
499  attractive theoretical model to characterize the neural, cognitive and behavioural dynamics
500 involved in the impact of arousal fluctuations in a wide range of physiological states and
501  neuropsychiatric conditions.

502 Our findings bring some generalizations about the need to extend the traditional
503  framework of understanding the interplay between cognitive dynamics and arousal through the
504 prism of the homeostatic steady-state dynamics using pharmacological interventions™ or
505  transient alterations of emotional state.”” In addition to this classical approach, we believe that
506  drowsiness and physical exertion provide fruitful —naturally occurring— alterations of the
507 arousal level with a preserved capacity to behaviourally respond, which can be utilized to study
508 the modulation of neural function and cognitive processing. In the traditional steady-state
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509  approach, such natural fluctuations of the arousal level may be undetected,”” hindering or
510  distorting cognitive and neural markers of crucial aspects of information processing.'’
511  Pharmacological and lesion perturbations of the brain are regarded as causal in cognitive
512  neuroscience and regarded as stronger in their explanatory power than conditions relying on
513  stimuli or psychological modulations. Arousal is an internally modulated change that can be
514  used to study cognition and may be regarded in the strong causality range due to its partial
515  independence from psychological processes.'® The cases of drowsiness and physical exertion
516  as causal models to study the neural mechanism of cognitive flexibility may prove to be very
517  useful in the exploration of how cognition is fragmented or remain resilient under (reversible)
518  perturbations of arousal'**’”" Our findings highlight that further research should focus on the
519  rapidly changing dynamics of brain function and cognitive processing that appear to capture
520  key dynamics relevant to our behavioural and perhaps even phenomenological experience, as
521  we drift into strained physiological states.

522

523 MATERIALS AND METHODS

524  Participants

525 A total sample of 100 participants of an age range between 18 and 40 years old was included
526  in the present study. All participants reported normal binaural hearing, no visual impairment
527  and no history of cardiovascular, neurological or psychiatric disease. They were asked to get a
528  normal night rest on the day previous to testing, and not to consume stimulants like coffee or
529  tea on the day of the experiment.

530 The first experiment (herein Experiment#1) consisted of 35 participants (15 female; age
531  range 18-40). In addition to the general aforementioned inclusion criteria, only easy sleepers,
532  as assessed by the Epworth Sleepiness Scale (ESS),”* were selected to increase the probability
533 that participants fell asleep. Recruited participants were considered healthy with relatively high
534  ESS scores but not corresponding to a condition of pathological sleep such as hypersomnia
535  (i.e., scores 7—14). They were recruited via the Cambridge Psychology SONA system. Note
536 that the target sample size was 50 participants transitioning towards drowsiness. However, after
537  collecting the first 35 we decided to make slight modifications to the experimental protocol by
538 increasing the time of the drowsy blocks to obtain a higher proportion of trials in low arousal.
539  For this reason, we decided to collect a second sample (Experiment#2) which consisted of 15
540 participants (11 female; age range 18-40), where we included these key modifications to the
541  experimental protocol (see Procedure section for more details). Inclusion criteria and
542  recruitment processes were similar to Experiment#1.

543 The third experiment (herein Experiment#3) consisted of 50 participants (6 female; age
544  range 19-39). Additionally to the common inclusion criteria, only individuals who reported at
545  least 8 hours of cycling or triathlon per week were selected. Well-trained cyclists were selected
546  because they are used to maintaining the pedalling cadence at high intensity during long periods
547  of time. Furthermore, they are able to keep a fixed posture over time, which notably reduces
548 movement artefacts. They were recruited from the University of Granada (Spain) through
549  announcements on billboards and previous databases.

550 All participants from the three experiments gave written informed consent to participate
551 in the study and received a remuneration of 10€ per hour (i.e., approximately 30€ per
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552  participant). The Cambridge Psychology Ethics Committee and the University of Granada
553  Ethics Committee approved the study (CPREC 2014.25; 287/CEIH/2017).

554

555  Experimental task

556 A modified version of the probabilistic reversal learning paradigm was used in all three
557  experiments, which was characterized by employing auditory stimuli and an abstract rule (see
558  figure 1B-C). In this task, participants learnt to choose one of two randomly presented tones
559 by receiving instructive auditory feedback tones after each response, indicating either a correct
560 or incorrect choice. When participants reached a 90% accuracy in the last 10 trials,
561 reinforcement/punishment contingencies were reversed so that the previously reinforced tone
562  was punished and vice versa. Within each reversal trend, a 20% probabilistic error trial was
563 included in which “wrong” feedback was given for correct choices, even though the
564  reinforcement contingencies had not changed. Participants were instructed to infer the rule
565  from the feedback received, knowing that sometimes it might be misleading and that the rule
566  might change after a certain time (see supplementary material for more details on the task
567 instructions). The stimuli were binaurally presented at a random time interval (between 1000
568 and 1500 ms) during 500 ms. They had to respond to both targets by pressing a button with
569 their right or left hand.

570

571  Procedure

572  In Experiment#l, participants were fitted with an EGI electrolyte 129-channel cap (Electrical
573  Geodesics, Inc. systems) after receiving the task instructions and subsequently signing the
574  informed consent. The whole session was completed in a comfortable adjustable chair with
575  closed eyes. Task instructions were to respond as fast and accurately as possible, reducing body
576  movements as possible and keeping the eyes closed. In the beginning, the back of the chair was
577  set up straight and the lights in the room were on. Participants were asked to remain awake
578  with their eyes closed whilst performing the first block (awake block) of the task which
579  consisted of 480 trials, lasting 30 min approximately. Then, the chair was reclined to a
580 comfortable position, the lights were turned off and participants were offered a pillow and a
581  blanket. They were explicitly told that they were allowed to fall asleep during this part of the
582  task and that the experimenter would wake them up by making a sound (i.e. knocking on the
583  wall) if they missed 5 consecutive trials. This block (drowsy block) also consisted of 480 trials.
584  Then, the sequence of two blocks (awake-drowsy) was repeated. In total, participants
585  completed 1920 trials divided into 4 blocks of 480 trials each one. The whole session lasted for
586 3 hours approximately.

587 In Experiment#2, the procedure was similar to the Experiment#1 except for the time to
588  fall asleep that was increased to get a higher amount of low-arousal (i.e., drowsy) trials.
589  Participants completed a total of 2120 trials, divided into 4 blocks. The order of the blocks was
590  the same for all participants and followed the same sequence as in Experiment#1: awake-
591  drowsy-awake-drowsy. Awake blocks had 100 trials each one, while drowsy blocks consisted
592  of 960 trials each one. The session lasted for 3 hours approximately.

593 In Experiment#3, upon arrival to the laboratory, participants were seated in front of a
594  computer in a dimly illuminated, sound-attenuated room with a Faraday cage. They received
595  verbal and written instruction about the experiment and were prepared for electrophysiological
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596  measurement. They were fitted with a 64-channel high-density actiCHamp EEG system (Brain
597  Products GmbH, Munich, Germany) and a Polar RS800CX heart rate (HR) monitor (Polar
598  Electro Oy, Kempele, Finland). Notice that EEG data was acquired but was not used to test the
599  hypotheses of this study, and will be reported elsewhere. The whole session consisted of 4
600  different blocks. The first one was an adaptation (non-exercise) block in which participants
601  performed 100 trials while resting in a comfortable chair. Then, they got on a cycle-ergometer
602 and completed 100 trials while warming-up at light intensity. Subsequently, they completed a
603  self-paced 60’ time-trial (i.e., high-intensity exercise) while performing the task, resulting in
604 850 trials approximately (the number of trials slightly varied as a function of the reaction time
605  of participants). In line with previous experiments from our laboratory,”’*" in the self-paced
606  time-trial participants were instructed to achieve the highest average power (watts) during the
607 60’ time-trial exercise, and were allowed to modify the power load during the exercise. They
608  were encouraged to self-regulate effort in order to optimize physical performance without
609 reaching premature exhaustion. That self-regulation yielded fluctuations of effort during the
610 60’ exercise period, which allowed us to study the effect of arousal on the management of
611  probabilistic information. Once the 60’ time-trial block was finished, participants completed
612  the last block while cooling down at light intensity, which was also composed of 100 trials. All
613  participants completed the blocks in the same order, lasting around 3 hours.

614

615  Arousal classification

616  To capture the arousal fluctuations during the transitions towards drowsiness or physical
617  exertion at the single-trial level, we implemented two different analytical approaches which
618  were pre-registered after data collection.’

619 In Experiment#1 and Experiment#2, the arousal level was endogenously manipulated
620 by facilitating the natural transition from awake to sleep. This transition reduces arousal and
621  yields a considerable proportion of drowsy yet responsive trials as seen in previous experiments
622  from our laboratory.'’”*"" This way, we were able to study the effect of arousal (i.e. baseline
623  arousal [awake] trials vs. low-arousal [drowsy] trials) on the management of probabilistic
624  information. Given that awake-sleep transition is characterized by a decreasing alpha range
625 activity, together with an increasing theta range activity (Hori et al., 1994), progression of
626  drowsiness was quantified by the spectral power of respective EEG frequency bands'. We
627  computed the spectral power of EEG frequency oscillations for each trial from -2000 ms to 0
628  ms in respect to the onset of a target tone using continuous wavelet transform, set from 3 cycles
629 at 3 Hz to 8 cycles at 40 Hz. Theta (4-6 Hz) and alpha (10-12 Hz) power were then averaged
630 individually for each trial across central (E36, E104) and occipital (E75, E70, E83) electrodes
631  for theta and alpha rhythms respectively. Finally, theta/alpha ratio was computed and smoothed
632 with a 4-point moving average resulting in a single “sleepiness” value per trial. Visual

' Deviation from pre-registration. Originally, we aimed to use the automated offline method developed by
Jagannathan and collaborators based on frequency and sleep grapho elements to detect EEG micro variations in
alertness and characterize awake and drowsy trials.” However, our PRL task design, especially the pretrial
duration, which was limited to 2 seconds, did not fit the task features recommended by Jagannathan and
collaborators (e.g., 4 seconds pretrial duration) for a reliable characterization of awake and drowsy trials. So we
decided to classify awake/drowsy trials based on theta:alpha ratio, as seen in previous experiments from our

laboratory.'™*"!
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633  inspection of theta/alpha ratio and RT dynamics of each participant confirmed the presence of
634  clear sleepiness-related fluctuations during the experimental session, especially during drowsy
635  blocks. Those participants who did not show clear fluctuations of the theta:alpha ratio were
636 removed from final analyses (5 subjects). Then, each trial for each participant was initially
637  categorized as drowsy (top 33% of lower theta-upper alpha ratio scores) or alert (lowest 33%).
638  Further, following the sleep hysteresis physiology criteria’’ isolated awake trials within
639  prolonged periods of drowsy (>10 trials) were considered as drowsy to account for the gradual
640  homeostatic change during the sleep transition. In addition, the first 100 trials of each block
641  (awake and drowsy) were considered as awake trials.

642 In Experiment#3, the arousal level was endogenously manipulated by facilitating the
643  natural transition from a resting state to high-intensity physical exercise. This transition
644  increases the arousal level progressively, with continuous fluctuations that affect cognitive
645 performance as seen in previous studies from our laboratory.**>’*” We captured these arousal
646  fluctuations at a single trial level (moderate arousal trials, high arousal trials) by using the HR
647  response. To address the intersubject variability, HR data were transformed into differential
648  scores relative to the HRmax estimated using the equation of Tanaka et al., (2001)", a reliable
649  and well-established method to calculate HRmax in healthy individuals. Then, moderate and
650  high arousal trials were characterized based on percentage relative to HRmax. HR between
651  60% and 80% of HRmax were considered as moderate arousal, while HR higher than 80%
652 HRmax were considered as high arousal. Due to technical issues with HR monitoring, 4
653  subjects were removed for further analyses.

654

655 Behavioural data analysis

656  In probabilistic reversal learning paradigms, participants are instructed to infer an abstract rule
657  form the feedback they receive, knowing that sometimes it might be misleading and that the
658 rule might change. Since a reversal is triggered when a high-level accuracy is reached, the
659 number of responses needed to attain a reversal is considered one of the main indices of
660  performance. To delineate the microstructure of learning derived from trial-by-trial responses
661  we considered the likelihood of switching the pattern choice across trials as a function of the
662  amount of consecutive negative feedback received. The likelihood of switching was considered
663 the main index of strategic behaviour, and was divided into 2 different strategies: i)
664  Probabilistic switching: the proportion of trials when the participants change the pattern choice
665  with little (one negative feedback against the choice) or no evidence (no feedback against the
666  choice) of an actual rule change; i) Perseveration: likelihood that participants stay with the
667  seemingly incorrect choice even after receiving two or more negative feedbacks in a row).
668 The number of breakdown sections was also used as an index of performance. We
669  defined a breakdown as a section of time in which participants ‘lose’ the task, and do not follow
670 any strategy, being unable to reach a change of trend during more than 20 consecutive trials.
671 RT, accuracy, and omissions were also checked as secondary indices of behavioural
672  performance.

673 Participants with overall accuracy under 60% or less than 3 reversals attained during
674  the baseline period were excluded (i.e., 4 subjects from Experiment 1; 2 subjects from
675  Experiment 2; 6 subjects from Experiment 3).

676
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677  Statistics

678  Single-subject analysis

679 In order to test the hypotheses, we took a set of strategies. We first captured the direction of
680 effects for each of the key performance variables (i.e., RAR, RT, accuracy, omissions, and
681  switching likelihood), and contrasted them for each participant, obtaining an indication of the
682  direction and strength of the effects per participant. Descriptive and distribution measures, as
683  well as single-subject statistics, were used as guidance of the variability of effect size in single
684  variables, and for guiding the previously defined exploratory hypotheses. Per participant, effect
685  sizes were calculated and depicted for each of the key performance variables to check the effect
686 size of individual differences across arousal states."

687

688  Group analysis

689 To investigate the management of probabilistic information as a function of arousal, we
690  conducted mixed-effects analyses including data from the three experiments collapsed into a
691  single dataset with RAR as the main index of performance. In face of the diversity of samples’
692  characteristics and experiment features, we fit RAR using hierarchical linear mixed-effects
693 modelling, as implemented in the Ime4 R package.”’ We treated RAR as obeying to a
694  hierarchical data structure with arousal as fixed effect, and participant (level 2) nested into
695  experiment (level 1) as random effects. This random part was common to all models. We tested
696 the specific hypothesis by using the same approach based on multilevel linear mixed-effects
697 modelling. Different variables (i.e., probabilistic switching, perseveration, breakdowns, RT
698  variability and omissions) were analysed in a multilevel data structure, with the fixed (arousal)
699 and random effects (experiment/participant) adjusted to the specific hypothesis tested.

700 Models were compared using the Akaike Information Criterion (AIC), and a likelihood
701 ratio test. Notice that AIC does not assume that the true model is among the set of candidates
702  (andis just intended to select the one that is closest to the true one). In our case, fitting decisions
703  were not about the truthiness of models, but to include or not a given factor. For model
704  comparisons performed to identify the best-fitting model, a relatively lenient 0.010 p-value
705  criterion was adopted.

706 Causal mediation analyses were conducted to estimate the proportional direct and
707  indirect effects of arousal on task performance through probabilistic switching and
708  perseveration strategies (mediators) using the “mediation” package in R™.** This method
709  allowed us to assess a confidence interval of the mediation effect itself using rigorous sampling
710  techniques with fewer assumptions of the data. The average causal mediation effect was
711 determined using a nonparametric bootstrapping method (bias-corrected and accelerated; 1000
712 iterations) and reported as standardized P regression coefficients for direct comparison with
713 each other. Confidence intervals were obtained using a quasi-Bayesian approximation.

714

" Deviation from pre-registration. Spearman rank-order correlation tests and Bayes factors were finally not
performed to estimate the degree of association between switch likelihood as a function of consecutive negative
feedbacks and arousal states. We will check the slope and effect.

" Deviation from pre-registration. The mediation analysis was not initially included in the pre-registration,
however, we decided to run it in order to test whether the impairment in performance in low and high arousal
states could be attributed to the different maladaptive behavioural patterns.
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715  Pre-registration

716 The hypotheses and analyses plan were pre-registered in the OSF repository after data
717  collection (https://osf.io/tzw6d).

718

719  Data and code

720 Data and codes used for the analyses presented here are available at the OSF repository
721 (https://osf.io/xk379/).

722

723  Funding

724  This research was supported by a University of Granada Postdoctoral Fellowship
725  (2019/P7/100) and the Junta de Andalucia (DOC 00225) to L.F.C, a research grant from the
726  Ministerio de Economia y Competitividad (PSI2016-75956-P and PID2019- 105635GB-100)
727  to D.S., and Wellcome Trust Biomedical Research Fellowship (WT093811MA) awarded to
728 T.A.B.

729

730 REFERENCES

731 1. Salehi, B., Cordero, M. 1. & Sandi, C. Learning under stress: The inverted-U-shape function
732  revisited. Learn. Mem. 17, 522530 (2010).

733 2. Yerkes, R. M. & Dodson, J. D. The relation of strength of stimulus to rapidity of habit-
734  formation. J. Comp. Neurol. Psychol. 18, 459—482 (1908).

735 3. Shiu, L. & Chan, T. Unlearning a stimulus—response association. Psychol. Res. 70, 193-199
736  (2006).

737 4. Stalnaker, T. A., Cooch, N. K. & Schoenbaum, G. What the orbitofrontal cortex does not do.
738  Nat. Neurosci. 18, 620 (2015).

739 5. Costa, V. D., Tran, V. L., Turchi, J. & Averbeck, B. B. Reversal Learning and Dopamine: A
740  Bayesian Perspective. J. Neurosci. 35, 2407-2416 (2015).

741 6. Jang, A. 1. et al. The role of frontal cortical and medial-temporal lobe brain areas in learning a
742  Bayesian prior belief on reversals. J. Neurosci. 35, 11751-11760 (2015).

743 7. Izquierdo, A., Brigman, J. L., Radke, A. K., Rudebeck, P. H. & Holmes, A. The neural basis of
744  reversal learning: An updated perspective. Neuroscience 345, 12-26 (2017).

745 8. Murray, E. A. & Gaffan, D. Prospective memory in the formation of learning sets by rhesus
746  monkeys (Macaca mulatta). J. Exp. Psychol. Anim. Behav. Process. 32, 87 (2006).

747 9. Ciria, L. F. et al. Probabilistic trend detection in different levels of arousal. OSF (2019).

748  10. Goupil, L. & Bekinschtein, T. A. Cognitive processing during the transition to sleep. 15.

749 11. Schmit, C. & Brisswalter, J. Executive functioning during prolonged exercise: a fatigue-based
750  neurocognitive perspective. Int. Rev. Sport Exerc. Psychol. 13, 21-39 (2020).

751 12. Ogilvie, R. D. & Wilkinson, R. T. The detection of sleep onset: behavioral and physiological
752  convergence. Psychophysiology 21, 510-520 (1984).

753 13. Bernaola-Galvén, P. A., Gémez-Extremera, M., Romance, A. R. & Carpena, P. Correlations in
754 magnitude series to assess nonlinearities: Application to multifractal models and heartbeat fluctuations.
755  Phys. Rev. E 96, 032218 (2017).

756 14. Wickens, C. D., Hutchins, S. D., Laux, L. & Sebok, A. The impact of sleep disruption on
757  complex cognitive tasks: a meta-analysis. Hum. Factors 57, 930-946 (2015).

758 15. McMorris, T. & Hale, B. J. Differential effects of differing intensities of acute exercise on speed
759  and accuracy of cognition: A meta-analytical investigation. Brain Cogn. 80, 338-351 (2012).

760 16. McMorris, T., Sproule, J., Turner, A. & Hale, B. J. Acute, intermediate intensity exercise, and

20


https://doi.org/10.1101/2021.02.26.431959
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.431959; this version posted July 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

761 speed and accuracy in working memory tasks: a meta-analytical comparison of effects. Physiol. Behav.
762 102, 421-428 (2011).

763 17. Noreika, V. et al. Alertness fluctuations when performing a task modulate cortical evoked
764  responses to transcranial magnetic stimulation. Neurolmage 223, 117305 (2020).

765 18. Canales-Johnson, A. et al. Decreased alertness reconfigures cognitive control networks. J.
766  Neurosci. 40, 71427154 (2020).

767 19. Nir, Y., Massimini, M., Boly, M. & Tononi, G. Sleep and consciousness. in Neuroimaging of
768  consciousness 133—182 (Springer, 2013).

769  20. Cimenser, A. et al. Tracking brain states under general anesthesia by using global coherence
770  analysis. Proc. Natl. Acad. Sci. 108, 8832—8837 (2011).

771 21. Hudson, A. N., Van Dongen, H. P. & Honn, K. A. Sleep deprivation, vigilant attention, and
772  brain function: a review. Neuropsychopharmacology 45, 21-30 (2020).

773 22, Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483-494 (2004).

774 23, Tanaka, M., Ishii, A. & Watanabe, Y. Neural correlates of central inhibition during physical
775  fatigue. PloS One 8, €70949 (2013).

776 24, Chennu, S., O’Connor, S., Adapa, R., Menon, D. K. & Bekinschtein, T. A. Brain connectivity
777  dissociates responsiveness from drug exposure during propofol-induced transitions of consciousness.
778  PLoS Comput. Biol. 12, 1004669 (2016).

779 25, Lee, M. et al. Network properties in transitions of consciousness during propofol-induced
780  sedation. Sci. Rep. 7, 1-13 (2017).

781 26. Pace-Schott, E. F. & Hobson, J. A. The neurobiology of sleep: genetics, cellular physiology
782  and subcortical networks. Nat. Rev. Neurosci. 3, 591-605 (2002).

783  27. Bareham, C. A., Bekinschtein, T. A., Scott, S. K. & Manly, T. Does left-handedness confer
784  resistance to spatial bias? Sci. Rep. 5, (2015).

785 28. Overgaard, M. & Overgaard, R. Measurements of consciousness in the vegetative state. The
786  Lancet 378,2052-2054 (2011).

787  29. Sanders, R. D., Tononi, G., Laureys, S. & Sleigh, J. Unconsciousness, not equal to
788  unresponsiveness. Anesthesiology 116, 946-959 (2013).

789 30. Bareham, C. A., Manly, T., Pustovaya, O. V., Scott, S. K. & Bekinschtein, T. A. Losing the left
790  side of the world: rightward shift in human spatial attention with sleep onset. Sci. Rep. 4, 1-5 (2014).
791 31. Jagannathan, S. R., Barecham, C. A. & Bekinschtein, T. A. Decreasing arousal modulates
792  perceptual  decision-making.  http://biorxiv.org/lookup/doi/10.1101/2020.07.23.218727  (2020)
793  doi:10.1101/2020.07.23.218727.

794 32, Chennu, S. & Bekinschtein, T. A. Arousal Modulates Auditory Attention and Awareness:
795  Insights from Sleep, Sedation, and Disorders of Consciousness. Front. Psychol. 3, (2012).

796 33. Kouider, S., Andrillon, T., Barbosa, L. S., Goupil, L. & Bekinschtein, T. A. Inducing Task-
797  Relevant Responses to Speech in the Sleeping Brain. Curr. Biol. 24, 2208-2214 (2014).

798 34. Berridge, C. W. & Arnsten, A. F. Psychostimulants and motivated behavior: arousal and
799  cognition. Neurosci. Biobehav. Rev. 37, 1976—-1984 (2013).

800  35. Kenney, W. L., Wilmore, J. H. & Costill, D. L. Physiology of sport and exercise. (Human
801  kinetics, 2018).

802  36. Verburgh, L., Konigs, M., Scherder, E. J. A. & Oosterlaan, J. Physical exercise and executive
803  functions in preadolescent children, adolescents and young adults: a meta-analysis. Br. J. Sports Med.
804  48,973-979 (2014).

805 37. Chang, Y. K., Labban, J. D., Gapin, J. I. & Etnier, J. L. The effects of acute exercise on
806  cognitive performance: A meta-analysis. Brain Res. 1453, 87-101 (2012).

807 38. Lambourne, K. & Tomporowski, P. The effect of exercise-induced arousal on cognitive task
808  performance: A meta-regression analysis. Brain Res. 1341, 12-24 (2010).

21


https://doi.org/10.1101/2021.02.26.431959
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.431959; this version posted July 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

809  39. Erickson, K. I., Hillman, C. H. & Kramer, A. F. Physical activity, brain, and cognition. Curr.
810  Opin. Behav. Sci. 4, 27-32 (2015).

811 40. Gonzélez-Fernandez, F., Etnier, J. L., Zabala, M. & Sanabria, D. Vigilance performance during
812  acute exercise. Int. J. Sport Psychol. 48, 435-447 (2017).

813 41. Andrillon, T., Poulsen, A. T., Hansen, L. K., Léger, D. & Kouider, S. Neural markers of
814  responsiveness to the environment in human sleep. J. Neurosci. 36, 6583-6596 (2016).

815 42. Chmura, J., Krysztofiak, H., Ziemba, A. W., Nazar, K. & Kaciuba-Uscilko, H. Psychomotor
816  performance during prolonged exercise above and below the blood lactate threshold. Eur. J. Appl.
817  Physiol. 77, 77-80 (1997).

818  43. Del Giorno, J. M., Hall, E. E., O’Leary, K. C., Bixby, W. R. & Miller, P. C. Cognitive function
819  during acute exercise: a test of the transient hypofrontality theory. J. Sport Exerc. Psychol. 32,312-323
820  (2010).

821 44, Maran, T. et al. Lost in Time and Space: States of High Arousal Disrupt Implicit Acquisition
822  of Spatial and Sequential Context Information. Front. Behav. Neurosci. 11, (2017).

823  45. Packard, M. G. & Goodman, J. Emotional arousal and multiple memory systems in the
824  mammalian brain. Front. Behav. Neurosci. 6, 14 (2012).

825  46. Schwabe, L. & Wolf, O. T. Stress and multiple memory systems: from ‘thinking’to ‘doing’.
826  Trends Cogn. Sci. 17, 6068 (2013).

827  47. Broadhurst, P. L. The interaction of task difficulty and motivation: The Yerkes Dodson law
828  revived. Acta Psychol. Amst. (1959).

829  48. Brown, J. S. Motivation of behavior. (Prabhat Prakashan, 1961).

830  49. Izquierdo, A. & Jentsch, J. D. Reversal learning as a measure of impulsive and compulsive
831 behavior in addictions. Psychopharmacology (Berl.) 219, 607-620 (2012).
832  50. Swainson, R. ef al. Probabilistic learning and reversal deficits in patients with Parkinson’s

833  disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication.
834  Neuropsychologia 38, 596—612 (2000).

835 51. Remijnse, P., Nielen, M., Uylings, H. & Veltman, D. Neural correlates of a reversal learning
836  task with an affectively neutral baseline: An event-related fMRI study. Neurolmage 26, 609—618
837  (2005).

838  52. Clark, L., Cools, R. & Robbins, T. W. The neuropsychology of ventral prefrontal cortex:
839  Decision-making and reversal learning. Brain Cogn. 55, 41-53 (2004).

840 53. Ersche, K. D., Roiser, J. P., Robbins, T. W. & Sahakian, B. J. Chronic cocaine but not chronic
841 amphetamine use is associated with perseverative responding in humans. Psychopharmacology (Berl.)
842  197,421-431 (2008).

843  54. Leeson, V. C. et al. Discrimination learning, reversal, and set-shifting in first-episode
844  schizophrenia: stability over six years and specific associations with medication type and
845  disorganization syndrome. Biol. Psychiatry 66, 586—593 (2009).

846  55. Kanen, J. W. et al. Effect of lysergic acid diethylamide (LSD) on reinforcement learning in
847  humans. bioRxiv 202012 (2021).

848 56. den Ouden, H. E. M. er al. Dissociable Effects of Dopamine and Serotonin on Reversal
849  Learning. Neuron 80, 1090—1100 (2013).

850 57. Murphy, F. C., Michael, A., Robbins, T. W. & Sahakian, B. J. Neuropsychological impairment
851 in patients with major depressive disorder: the effects of feedback on task performance. Psychol. Med.
852 33,455 (2003).

853 58. Dombrovski, A. Y., Szanto, K., Clark, L., Reynolds, C. F. & Siegle, G. J. Reward signals,
854  attempted suicide, and impulsivity in late-life depression. JAMA Psychiatry 70, 1020-1030 (2013).
855  59. Dombrovski, A. Y. et al. Corticostriatothalamic reward prediction error signals and executive
856  control in late-life depression. Psychol. Med. 45, 1413 (2015).

22


https://doi.org/10.1101/2021.02.26.431959
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.431959; this version posted July 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

857  60. Tavares, J. V. T. et al. Neural basis of abnormal response to negative feedback in unmedicated
858  mood disorders. Neuroimage 42, 1118—1126 (2008).

859 o6l. Mueller, E. M., Pechtel, P., Cohen, A. L., Douglas, S. R. & Pizzagalli, D. A. POTENTIATED
860 PROCESSING OF NEGATIVE FEEDBACK IN DEPRESSION IS ATTENUATED BY
861 ANHEDONIA: Research Article: Anhedonia and Feedback Processing in MDD. Depress. Anxiety 32,
862  296-305 (2015).

863  62. Drummond, S. The Effects of Total Sleep Deprivation on Cerebral Responses to Cognitive
864  Performance. Neuropsychopharmacology 25, S68-S73 (2001).

865  63. Jackson, M. L. et al. Deconstructing and reconstructing cognitive performance in sleep
866  deprivation. Sleep Med. Rev. 17,215-225 (2013).

867 64. Gevers, W., Deliens, G., Hoffmann, S., Notebaert, W. & Peigneux, P. Sleep deprivation
868  selectively disrupts top-down adaptation to cognitive conflict in the Stroop test. J. Sleep Res. 24, 666—
869 672 (2015).

870  65. Whitney, P. et al. Sleep deprivation diminishes attentional control effectiveness and impairs
871 flexible adaptation to changing conditions. Sci. Rep. 7, 1-9 (2017).

872 66. Whitney, P., Hinson, J. M. & Nusbaum, A. T. A dynamic attentional control framework for
873  understanding sleep deprivation effects on cognition. Prog. Brain Res. 246, 111-126 (2019).

874  67. Bekinschtein, T. A. et al. Neural signature of the conscious processing of auditory regularities.
875  Proc. Natl. Acad. Sci. 106, 1672—-1677 (2009).

876  68. Teigen, K. H. Yerkes-Dodson: A Law for all Seasons. Theory Psychol. 4, 525547 (1994).
877 69. Mauss, 1. B. & Robinson, M. D. Measures of emotion: A review. Cogn. Emot. 23, 209-237
878  (2009).

879  70. Tagliazucchi, E. Decoding Wakefulness Levels from Typical fMRI Resting-State Data Reveals
880  Reliable Drifts between Wakefulness and Sleep. 14.

881  71. Comsa, I. M., Bekinschtein, T. A. & Chennu, S. Transient Topographical Dynamics of the
882  Electroencephalogram Predict Brain Connectivity and Behavioural Responsiveness During
883  Drowsiness. Brain Topogr. 32, 315-331 (2019).

884  72. Johns, M. W. A new method for measuring daytime sleepiness: the Epworth sleepiness scale.
885  sleep 14, 540-545 (1991).

886  73. Holgado, D. et al. Tramadol effects on physical performance and sustained attention during a
887  20-min indoor cycling time-trial: A randomised controlled trial. J. Sci. Med. Sport 21, 654—660 (2018).
888 74. Holgado, D. et al. Transcranial direct current stimulation (tDCS) over the left prefrontal cortex

889  does not affect time-trial self-paced cycling performance: Evidence from oscillatory brain activity and
890  power output. PloS One 14, ¢0210873 (2019).

891  75. Zandonai, T. et al. Novel evidence on the effect of tramadol on self-paced high-intensity
892  cycling. J. Sports Sci. 1-9 (2021) doi:10.1080/02640414.2021.1877440.
893 76. Jagannathan, S. R. et al. Tracking wakefulness as it fades: Micro-measures of alertness.

894  Neurolmage 176, 138—151 (2018).

895 77. Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J. & Scammell, T. E. Sleep State Switching.
896  Neuron 68, 10231042 (2010).

897 78. Ciria, L. F., Perakakis, P., Luque-Casado, A. & Sanabria, D. Physical exercise increases overall
898  brain oscillatory activity but does not influence inhibitory control in young adults. Neurolmage 181,
899  203-210 (2018).

900 79. Ciria, L. F. et al. Oscillatory brain activity during acute exercise: Tonic and transient neural
901  response to an oddball task. Psychophysiology €13326 (2019) doi:10.1111/psyp.13326.

902  80. Tanaka, H., Monahan, K. D. & Seals, D. R. Age-predicted maximal heart rate revisited. J. Am.
903  Coll. Cardiol. 37, 153-156 (2001).

904  8l. Bates, D. et al. Package ‘Imed’. Convergence 12, (2015).

23


https://doi.org/10.1101/2021.02.26.431959
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.431959; this version posted July 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

905 82. Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. mediation : R Package for Causal
906  Mediation Analysis. J. Stat. Softw. 59, (2014).
907

24


https://doi.org/10.1101/2021.02.26.431959
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.431959; this version posted July 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

908 SUPPLEMENTARY MATERIAL

909  Dual-tasking effect of physical exercise on baseline performance

910 Is the detrimental effect of heightened arousal on behavioural performance truly due to the
911  increased arousal level, or does it simply reflect a dual-task confounding effect of the physical
912  and the cognitive task occurring simultaneously? Although this question is partially tackled in
913  main analyses as the baseline arousal state of the heightened arousal states was also a dual-task
914  condition (i.e., warm-up), we specifically explored whether a dual-tasking arousal baseline
915  might be associated with poorer performance (i.e., higher RAR and RT variability), relative to
916  anon-exercise adaptation period that participants performed just before the warm-up. Contrary
917  to what we expected, the mixed-effects model yielded no reliable performance differences
918  between the adaptation period and the warm-up (RAR: ¢ (39) = 1.41, p =0.167, p = 0.18; RT
919  variability: 7 (39) = 1.50, p = 0.14, B = 0.19). To further confirm that baseline performance was
920  equal or similar for all experiments, we analysed the behavioural performance during baselines
921  of Experiments 1 and 2 (i.e., wakefulness periods), as well as during baseline of Experiment 3
922  (i.e., warm-up period). Neither the number of responses needed to attain a reversal (RAR) nor
923  accuracy showed reliable differences in baseline performance between experiments (F < 1).
924  Subject-by-subject results show a similar distribution of performance across subjects in each
925  Experiment (see supplementary figure 1).

45
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927 Supplementary figure 1: Subject-by-subject baseline performance. Individual behavioural measures during
928 baseline across databases. Grey bars represent individual participants within each experiment. All subjects are
929 arranged by performance, from best to worst in RAR, and from worst to best in accuracy. The analysis revealed
930 no reliable differences in behavioural performance during baseline periods across experiments.

931

932

933  Low arousal deceleration in behavioural dynamics

934  The transition from wakefulness to sleep involves a progressive, and sometimes nonlinear loss
935  of responsiveness to external stimuli and a progressive increase of RT variability.'*'®*° To
936  further characterise the behavioural pattern of this transition, and compared to previous falling
937  asleep tasks, we investigated the responsiveness and RT dynamics of the participants in the
938 low arousal condition. We fitted a mixed-effects model separately for RT variability and
939  omissions as dependent variables. As predicted from other cognitive tasks, ''**%** low arousal
940 led to higher RT variability (¢ (27.99) = 4.59, p <0.001, B = 0.54), which was accompanied by
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941  a drastic increase in omitted response to stimuli (¢ (27.99) = 5.11, p < 0.001, B = 0.67),
942  compared with the baseline arousal state (see supplementary figure 2). These findings confirm
943  the convergence to other tasks of our arousal manipulation in probabilistic reversal learning in
944  its basic effects.

A. RT distribution across arousal levels B. Average RT variability across subjects C. RT variability baseline differences
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947 Supplementary figure 2. RT dynamic in low arousal. A) RT distribution during low (blue bars) and baseline
948 (grey bars) arousal states. B) Violins and overlaid box plots of the averaged reaction time variability across
949 participants in low and baseline arousal states. C) Subject-by-subject baseline differences in RT variability in low
950 arousal. Grey bars represent participants with a higher RT variability in the baseline compared with low arousal
951 state. Blue bars depict participants with a higher RT variability when arousal level was reduced compared with
952 baseline arousal state. Participants are sorted by the RT variability difference between baseline and the arousal
953  state.

954

955  Testing the assumption of the final mixed-model

956  We tested the main assumptions of mixed-models on the hierarchical linear mixed-effects
957 model (ml) we used to assess the effect of arousal of RAR with participant nested into
958  Experiment as random effects. We first tested the linearity of the data by plotting the model
959  residuals (i.e., the difference between the observed value and the model-estimated value)
960 against the predictor (see supplementary figure 3A-B). As we predicted, the relationship
961  between arousal and RAR is not well described by a straight line (Shapiro-Wilk normality test
962 =0.85963, p <0.001) but by a quadratic function as shown in the Results section. Then, we
963  checked that the covariance of the residuals was equal across experiments and participants. We
964 run a variation of Levene’s test by calculating the absolute value of the residuals from the
965 model, and squaring them for a more robust analysis with respect to issues of normality (Glaser
966  2006). Neither the ANOVA of the between experiments residuals (F < 1) nor the ANOVA of
967  the between subject residuals (F = 1.24, p = 0.163) yielded significant differences. Therefore,
968  our model met the assumption of homoscedasticity. Finally, we estimate whether the residuals
969  of the analysis were normally distributed (see figure 3C). The QQ plot provides an estimation
970  of where the standardized residuals lie with respect to normal quantiles, showing a light
971  deviation from the provided line that suggest that the residuals themselves were not normally
972  distributed. The violation of this normality assumption however has been proven that do not
973  noticeably impact results where the number of observations per variable is higher than 10
974  (Schmidt & Finan, 2018).

975
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A. Model’s residuals B. Histogram of model’s residuals C. Normal QQ-plot
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Supplementary figure 3. Model validation graphs. A) Fitted values versus model’s residuals
(homoscedasticity). B) Histogram of model’s residuals (normality). C) Estimation of the linearity of the residuals

(linearity).

Probabilistic reversal learning task instructions for participants

This experiment will consist of four separate blocks. First there will be 2 short ‘alert’ blocks (5-10
minutes in length) during which you will remain fully attentive and try your best at completing the task.
Then afterwards there will be 2 longer ‘drowsy’ blocks (45-60 minutes in length) during which you still
need to complete the task, however the lights will be turned off, your seat reclined, and you can relax
and embrace whatever drowsiness/boredom comes along.

The task itself involves listening to sounds through a set of headphones and then responding to those
sounds with the button box provided. There are two separate sounds that you can hear, either a low
pitch sound or a high pitch sound, and there is a rule that connects each of these sounds to a
corresponding button on the button box. For example, the low pitch sound could correspond to the left
button, and the high pitch sound to the right button, or vice versa. You will not know what the rules are
when you first begin the task, but rather you must figure them out based upon instructive feedback that
you will receive after each response, indicating either a correct or incorrect choice. If after hearing the
stimulus sound you correctly press the corresponding button, you will hear a nice ‘ding’ sound as
feedback indicating you made the correct choice. However, if your response on the button box is not in
line with the current rule, you will hear a ‘static’ noise as feedback, indicating an incorrect response.

At this point ask the participant if they fully understand how their job works for the task. Feel free to
elaborate and go over it again and again if necessary. There is little risk of influencing the data based
upon variations in instruction for this core aspect of the experiment, and it is imperative that they
fully understand this basic part otherwise their data WILL actually be corrupted. Additionally, if they
do not fully understand up until this point, they will certainly become even more confused with the
remaining information.

Now because we like to make things complicated, there are two important caveats to remember in terms
of this experiment. The first is that the rule that connects each sound (high or low) to a specific button
(left or right) will not always remain the same. After a certain amount of time the rule may switch and
therefore become the opposite of what it was previously. So for example, if previously the rule was the
high sound corresponds to the left button and the low sound to the right button, the new rule would be
high equals right and low equals left. This switching of the rules can occur more than one time
throughout each block, and you will receive no specific indication if a switch has occurred. It is up to
you to figure out if and when a switch happened based upon your choices and the feedback you receive.
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1015  The second caveat is that although the majority of the time the feedback you receive in response to
1016  your button choice will be truthful, sometimes it will be false and in essence lie to you/try to trick you.
1017  So for example, if the current underlying rule states that the high pitch sound corresponds to the left
1018  button, and you make the correct choice (press the left button after hearing the high pitch sound), the
1019 feedback could be the ‘incorrect static’ sound. Again, most the time the feedback will be truthful and
1020  not trying to deceive you, but it is important to keep in mind that it can happen occasionally.

1021

1022 If the participant has any questions after explaining these caveats, be mindful of how you answer.
1023 Feel free to go over them again, but try to basically use the same wording as the first time you
1024 explained. This is because small differences in word choice have the potential to greatly influence
1025  how the participant approaches the task (how often they feel the rules switch, how much they trust the
1026 feedback, etc.).

1027

1028  Now because this can seem quite complicated at first, you can have a quick practice session to get used
1029  to the experiment. This is often helpful to participants and will hopefully make you more comfortable
1030  in your understanding of the task. If you still have any questions afterward we can briefly go over it

1031 again.

1032

1033 If after the practice session the participant still seems to not understand the task, you can go over it
1034 again but still be mindful of your word choice. There is a difficult line to straddle between making
1035 sure the participant fully understands the task, and making sure we are consistent in our explanation
1036  and therefore the participants’ approach. Straying too far in either direction can greatly influence the
1037 data.

1038

1039 After the practice session ends it is time to begin the first ‘alert’ block of the experiment.

1040

1041  Now we are going to begin the actual experiment. First up we will have the two short ‘alert’ blocks
1042  which will be around 5-10 minutes each. When performing the task during these two blocks please
1043  remain fully alert and focus on the task as much as possible. Your eyes must remain closed during the
1044  duration of these blocks.

1045

1046 After the completion of the two ‘alert’ blocks, get the participant comfortable for the ‘drowsy’
1047 portion. It is very important to make the participant as comfortable as possible. This can include
1048 reclining their chair, supplying pillows or blankets, participants removing their shoes, etc. It is VERY
1049 important they are actually comfortable (and not just saying “yeah sure whatever”).

1050

1051 Now we are going to begin the ‘drowsy’ portion of the experiment. There will be two separate blocks,
1052  around 45-60 minutes each. You are encouraged to become as comfortable and relaxed as possible, and
1053  to embrace any feelings of drowsiness that come over you. However, you do of course still need to try
1054  to complete the task so you cannot sleep throughout the entire experiment. If I see that you have actually
1055  fallen asleep, I will lightly knock on the door to wake you back up, no worries! I will turn the lights off
1056  for these two blocks and once again please keep your eyes closed for the duration of the blocks.
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