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Summary	37 

Epithelial	 to	mesenchymal	 transition	 (EMT)	 is	 a	 complex	 cellular	 program	proceeding	 through	 a	38 
hybrid	 E/M	 state	 linked	 to	 cancer-associated	 stemness,	 migration	 and	 chemoresistance.	 Deeper	39 
molecular	understanding	of	this	dynamic	physiological	landscape	is	needed	to	define	events	which	40 
regulate	 the	 transition	 and	 entry	 into	 and	 exit	 from	 the	 E/M	 state.	 Here,	we	 quantified	 >60,000	41 
molecules	 across	 ten	 time	 points	 and	 twelve	 omic	 layers	 in	 human	 mammary	 epithelial	 cells	42 
undergoing	TGFβ-induced	EMT.	Deep	proteomic	profiles	of	whole	cells,	nuclei,	extracellular	vesicles,	43 
secretome,	membrane	and	phosphoproteome	defined	state-specific	signatures	and	major	transition	44 
points.	Parallel	metabolomics	showed	metabolic	reprogramming	preceded	changes	in	other	layers,	45 
while	 single-cell	 RNA	 sequencing	 identified	 transcription	 factors	 controlling	 entry	 into	 E/M.	46 
Covariance	 analysis	 exposed	 unexpected	 discordance	 between	 the	 molecular	 layers.	 Integrative	47 
causal	 modeling	 revealed	 co-dependencies	 governing	 entry	 into	 E/M	 that	 were	 verified	48 
experimentally	 using	 combinatorial	 inhibition.	 Overall,	 this	 dataset	 provides	 an	 unprecedented	49 
resource	on	TGFβ	signaling,	EMT	and	cancer.	50 
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Introduction	58 

Epithelial	to	mesenchymal	transition	(EMT)	regulates	cell	plasticity	during	embryonic	development,	59 
wound	healing,	 fibrosis	and	cancer,	where	polarized	epithelial	 (E)	cells	dedifferentiate,	 transition	60 
through	 intermediate	hybrid	 states	 (E/M)	and	acquire	mesenchymal	 (M)	properties	 (Nieto	et	 al.,	61 
2016).	In	cancer,	cells	in	E/M	state	possess	several	clinically	important	attributes	of	circulating	tumor	62 
cells	 (CTCs)	and	are	responsible	 for	EMT-associated	stemness,	 chemoresistance,	 immune	evasion	63 
and	metastasis	(Dongre	and	Weinberg,	2019).	Complete	molecular	characterization	of	E/M	states,	64 
and	the	mechanisms	driving	plasticity	between	E®E/M®M	transitions	will	enable	development	of	65 
refined	mechanistic	models	and	discovery	of	new	therapeutic	strategies.	66 

Approximately	150	genes	are	currently	described	as	hallmarks	of	EMT	(MSigDB	database)	that	were	67 
identified	from	studies	measuring	the	expression	of	‘endpoint’	markers	(e.g.	CDH1,	MUC1,	VIM,	FN1)	68 
to	 track	 the	process	 (Sha	et	al.,	2019).	Although	EMT	 is	 frequently	studied	as	a	 transcriptionally-69 
driven	program	(Yang	et	al.,	2020),	the	poor	correlation	between	genomic	alterations	or	mRNA	levels	70 
and	proteins	in	tumors	(Liu	et	al.,	2016)	highlights	the	need	for	multi-level	analysis.	Furthermore,	71 
EMT	 is	 likely	 an	 emergent	 phenomenon,	 where	 the	 shifts	 in	 cell	 physiology	 and	 phenotype	 are	72 
orchestrated	by	intra-	and	extra-cellular	signaling	(Sigston	and	Williams,	2017),	extensive	receptor-73 
ligand	crosstalk,	protein	relocalization	(Hung	and	Link,	2011)	and	metabolic	adaptations	(Thomson	74 
et	 al.,	 2019)	 that	 requires	 an	 integrated	multi-omic	 approach.	 However,	most	 attempts	made	 to	75 
model	 EMT	 primarily	 invoked	 gene-regulatory	 networks	 (GRNs)	 controlled	 by	 key	 transcription	76 
factors	(TFs)	and	miRNAs.	These	models	are	usually	based	on	a	restricted	number	of	factors	and	thus	77 
do	not	capture	the	multi-layered	architecture	of	signaling	during	EMT	(Hong	et	al.,	2015;	Zhang	et	al.,	78 
2014).	 To	 date,	 no	 EMT-focused	 studies	 have	 simultaneously	 measured	 metabolite	 and	 gene	79 
expression	changes	at	different	functional	levels	(e.g.,	mRNA,	total	protein,	nucleus,	secretome,	etc.).	80 

Consequentially,	 several	 aspects	 of	 EMT	 remain	 unclear.	 This	 includes	 dependencies	 between	81 
molecular	layers,	secreted	molecules,	and	specific	signatures	at	various	stages	of	EMT,	kinetics	and	82 
scope	 of	 metabolic	 reprogramming,	 dynamics	 of	 subcellular	 protein	 localizations	 and	 ligand-83 
receptor	 mediated	 intercellular	 crosstalk.	 To	 bridge	 these	 gaps,	 we	 employed	 multiple	 high-84 
throughput	 platforms	 including	microarray,	 scRNAseq	 and	 precision	mass	 spectrometry	 (MS)	 to	85 
quantify	molecules	spanning	12	distinct	layers	of	biological	information.	Our	ability	to	integrate	this	86 
information	allowed	us	to	define	signatures	of	E/M	states	and	identify	molecular	regulators	of	key	87 
transition	points.	88 

	89 

	90 

	91 

	92 
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RESULTS	93 

A	comprehensive	resource	on	TGFβ-induced	EMT	94 

The	human	mammary	epithelial	cell	line	MCF10A	is	widely	used	to	study	TGFβ	(transforming	growth	95 
factor	β)	induced	EMT.	To	generate	temporal	expression	maps	of	evolving	EMT	landscape,	cells	were	96 
treated	with	TGFβ	(TGF-β1;	10	ng/mL)	over	12	days	(0,	4	hrs,	1–6,	8	&	12	days),	spanning	multiple	97 
‘omics’	 layers	and	employing	complementary	technologies	(Fig.	1A-B,	Fig.	S1A-C).	After	stringent	98 
quality	 control	 (see	 STAR	 Methods),	 we	 report	 nanoLC-MS/MS-based	 quantifications	 (Fig.	 1C,	99 
Table	S1)	 of	 6,540	whole	 cell	 (WC),	 4,198	nuclear	 (Nuc),	 2,223	plasma	membrane	 (Mem),	 1,209	100 
extracellular	vesicle	(EV)	and	1,133	secreted	(Sec)	proteins.	Using	a	serial	enrichment	workflow	(see	101 
STAR	Methods)	we	also	quantified	the	total	phosphoproteome	(Phos;	8,741	high-confidence	sites	on	102 
2,254	proteins;	 including	6,975	Ser,	962	Thr	and	140	Tyr	residues),	N-glycoproteome	(Glyco;	549	103 
proteins),	acetylome	(Acet;	349	sites	on	165	proteins)	and	peptidome	(Pep;	547	peptides	from	202	104 
proteins).	For	proteomics,	samples	for	ten	time	point	were	multiplexed	using	isobaric	tandem	mass	105 
tags	 (TMT-10),	 enabling	 higher	 throughput	 and	 robust	 comparisons.	 In	 addition	 to	 proteins,	 we	106 
tracked	 cellular	 metabolism	 in	 the	 same	 samples	 by	 nanoLC-MS/MS-based	 untargeted	107 
metabolomics,	 quantifying	 4,259	 HMDB-indexed	 endogenous	 small	 molecules	 (Metabol).	108 
Furthermore,	we	measured	23,787	gene	transcripts	(mRNA)	and	2,578	microRNAs	(miRNA)	using	109 
microarrays.	To	assess	cellular	heterogeneity,	we	employed	scRNAseq	to	quantify	transcriptomes	of	110 
1,913	 individual	 cells	 (>200	 cells	 per	 time	 point)	 undergoing	 EMT.	 In	 total,	 this	 study	 provides	111 
temporal	 quantifications	 of	 >60,000	 proteins,	 phosphosites,	 mRNAs,	 miRNAs,	 and	 metabolites	112 
combined,	in	addition	to	9,785	mRNAs	in	scRNAseq	dataset	(Fig.	1C).		113 

Subcellular	enrichments	were	performed	using	previously	established	MS-compatible	protocols	(see	114 
STAR	Methods),	yielding	high	purity	as	determined	through	keyword	matching	against	a	cellular	115 
compartment	annotation	database	(Fig.	S1D).	Quantitative	reproducibility	across	 the	3	biological	116 
replicates	 was	 excellent	 (Fig.	 S1E).	 The	 expression	 profiles	 in	 Fig.	 1D	 provide	 a	 snapshot	 of	117 
concurrent	 changes	 of	 a	 given	 gene	 over	 various	 layers	 during	 EMT.	 We	 reproduced	 expected	118 
expression	behavior	for	many	established	markers	of	EMT,	including	an	increase	of	M	markers	VIM,	119 
CDH2	and	concomitant	decrease	of	E	markers	SCRIB,	MUC1.		120 

Using	strict	criteria	for	differential	expression	(Benjamini-Hochberg	adj.	p-value	<	0.05;	r2	≥	0.6	&	121 
|log2FC|	 ≥	 1)	we	 identified	 >10,000	 significantly	 regulated	molecules	 (Table	 S2).	We	 found	 that	122 
molecular	abundances	were	highly	variable	across	layers	and	time	points	(Fig.	S1F)	and	all	layers	123 
contributed	significantly	to	the	overall	variation	in	the	system	(Fig.	1E).	While	each	layer	showed	124 
substantive	 alterations,	 the	 magnitudes	 (Fig.	 S1G),	 response	 profiles	 (Fig.	 1F)	 and	 fraction	 of	125 
differentially	 expressed	molecules	 (Fig.	 1G)	 of	 each	 omic	 data	 set	 during	 the	 time	 course	 varied	126 
significantly.	 These	 findings	 provide	 direct	 evidence	 for	 global	 reorganization	 of	 cell	 physiology	127 
during	 EMT.	 For	 example,	 Phos	 and	 Sec	 showed	 the	 highest	 fractional	 change	 (36%	 &	 40%,	128 
respectively)	(Fig.	1G),	suggesting	extensive	intra-	and	extra-cellular	signaling	during	EMT	(Scheel	129 
et	al.,	2011).	As	such,	this	study	is	the	largest	experimental	description	of	EMT	till	date	and	adds	new	130 
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depth	to	our	current	understanding	of	TGFβ	signaling	and	EMT	(Fig.	1H,	I).		131 

	132 

Integrative	multi-tiered	topology	of	EMT	reveals	key	transition	points	and	identifies	133 
molecular	drivers	134 

Although	E®M	progression	is	considered	a	continuum,	the	existence	of	E,	hybrid	E/M,	and	M	states	135 
have	 been	 reported	 for	 MCF10A	 cells	 (Zhang	 et	 al.,	 2014),	 and	 cancer	 tissues	 (Liu	 et	 al.,	 2019;	136 
Pastushenko	et	al.,	2018).	Using	a	phylogenetic	clustering	approach	(Hughes	and	Friedman,	2009)	137 
we	 estimated	 ‘distances’	 between	 time	 steps	 to	 understand	 the	 transition	 kinetics	 (Fig.	 2A).	We	138 
observed	that	up	to	24	hours	cells	maintained	their	parental	E	type,	while	day	2	marked	a	swift	exit	139 
from	E,	and	entry	into	E/M	which	continued	through	Day	5,	after	which	cells	gradually	entered	the	140 
M	state.	Cells	in	day	2	to	5	can	be	further	sub-divided	into	E/M–1	(Day	2/3,	late	E)	and	E/M–2	(Day	141 
4/5,	early	M)	states.	These	cellular	 reconfigurations	agreed	with	principal	 component	analysis	of	142 
individual	layers,	such	as	Mem,	Phos	and	WC	(Fig.	S2A).	143 

Our	observations	suggest	a	distinct	and	complementary	role	for	each	molecular	layer	in	shaping	the	144 
transition	(Fig	2B,	Fig	1E-G,	Fig	S1F,	G).	Although,	the	topology	was	generally	correlated	(Fig.	2C),	145 
pairwise	coefficients	of	determination	(adj.	R2)	revealed	an	unexpectedly	low	concordance	between	146 
total	proteins	and	other	proteomic	layers	(mean	R2	ranging	from	0.015	for	Acet	to	0.299	for	Glyco)	147 
(Fig.	2D,	Upper	panel).	The	discordance	was	even	stronger	between	mRNA	and	various	proteomic	148 
layers	 (mean	R2	 ranging	 from	0.011	 for	Pep	 to	 just	0.109	 for	WC)	 (Fig.	2D,	Lower	panel),	which	149 
increased	further	with	EMT	progression.	Collectively,	these	observations	illustrate	that	at	a	systems	150 
level	 mRNA	 quantity	 is	 a	 poor	 proxy	 of	 protein	 abundance.	 Even	 total	 protein	 quantity	 is	 an	151 
unreliable	predictor	of	post-translational	modifications	or	subcellular	trafficking,	which	ultimately	152 
determines	signaling	output.		153 

Next,	we	modeled	the	regulatory	patterns	of	molecules	using	a	3-step	computational	workflow.	First,	154 
we	used	a	regression	strategy	for	time-course	measurements	(Conesa	et	al.,	2006)	to	remove	residual	155 
noise	(time	dimension)	and	non-reliable	(replicates)	components.	Second,	an	unsupervised	machine	156 
learning	approach	 (self-organizing	maps,	 SOMs)	 (Wirth	et	 al.,	 2012)	was	applied	on	 the	 retained	157 
molecules	to	generate	time-point	specific	SOM	portraits	(Fig.	2E,	Fig.	S2B-D,	see	STAR	Methods	for	158 
details).	 SOMs	 are	 a	 powerful	 integration	 tool	 for	 diverse	 global	 datasets	 to	 extract	 underlying	159 
patterns	of	co-regulation	(Tamayo	et	al.,	1999).	Third,	we	performed	pathway	enrichments	of	these	160 
SOMs	to	elucidate	the	overarching	functional	themes	at	each	time-step	of	EMT	(Fig.	2F).	161 

SOMs	traced	the	temporal	unfolding	of	the	transition	and	provided	molecular	fingerprints	of	each	162 
time-step.	Molecules	ranking	high	(top	1%	i.e.,	rank	≤	250	&	log2FC	≥	1)	with	SOMs	for	control	to	day	163 
1	(430	unique	molecules)	primarily	included	proteins	characteristic	of	an	E	state	(Fig.	2E,	Table	S3),	164 
such	 as,	 ACTG1	 (Mem;	 establishes	 cell	 junctions	 and	 shape)	 and	 EPHB2	 (Glyco;	 regulates	165 
angiogenesis,	contact	dependent	adhesion	and	migration;	tumor	suppressor).	SOMs	for	days	6–12	166 
(252	unique	molecules)	contained	known	M	markers,	e.g.,	CALD1,	CDH2,	FLNA,	FN1,	FSTL1,	LGALS1,	167 
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NT5E,	TAGLN,	TPM1,	TPM2,	TPM4	and	VIM.	This	group	also	 included	molecules	with	established	168 
roles	in	cancer	and	EMT,	 including	miR-5189	(miR;	 targets	ARF6	which	internalizes	CDH1),	CALR	169 
(Acet;	 Lys	 62;	 calcium	 homeostasis,	 promotes	metastasis,	 imparts	 resistance	 to	 anoikis),	 ALCAM	170 
(Nuc;	 prognostic	 marker	 in	 multiple	 cancers	 linked	 to	 nuclear	 translocation	 of	 β-catenin	 and	171 
stemness),	 ARHGAP33	 (Sec;	 regulates	 intracellular	 trafficking),	 RAPGEF5	 (Sec;	 promotes	 nuclear	172 
translocation	of	β-catenin)	and	SOCS3	(Phos;	Thr	3/13;	E3	ligase,	E3	ligase	inhibiting	TGFβ	signaling).	173 
As	suggested	 in	Fig	2A,	 the	 first	major	shift,	E®E/M,	occurred	at	day	2	and	was	 likely	driven	by	174 
molecules	peaking	at	its	corresponding	SOM	(95	molecules)	such	as	miR-675-5p/H19	(miR;	induces	175 
HIF1α,	SNAIL	activity),	LTBP1	 (Sec;	master	 regulator	of	 integrin-dependent	TGFβ	activation)	and	176 
CD44	(Sec;	signal	transduction).	Notably,	many	of	the	molecules	identified	in	the	SOM	analysis,	to	our	177 
knowledge,	have	not	been	previously	linked	to	TGFβ	signaling	or	EMT,	presumably	because	they	do	178 
not	show	clear	changes	in	mRNA	or	WC	but	in	‘other’	molecular	layers,	such	as	EV	or	Sec	(Fig.	S2E).	179 
This	 contrasts	with	most	MSigDB	 hallmarks	 of	 EMT	 for	which	we	 captured	 clear	 transcriptional	180 
profiles	(Fig.	S2F).	181 

Gene-set	enrichment	analysis	using	active	subnetworks	which	yields	more	robust	inferences	than	182 
traditional	approaches	(Ulgen	et	al.,	2019),	identified	237	significant	pathways	(Fig.	2F,	Table	S3),	183 
discretized	across	sequential	steps	of	EMT.	For	example,	‘Beta	oxidation	of	hexanoyl-CoA	to	butanoyl-184 
CoA’	declined	as	cells	leave	E	and	enter	E/M,	indicating	reprogramming	of	mitochondrial	fatty	acid	185 
β-oxidation,	 consistent	with	 a	metastatic	 phenotype	 (Ma	 et	 al.,	 2018).	 Conversely,	 ‘RHO	GTPases	186 
mediated	activation	of	ROCKs/PAKs/IQGAPs’	increased	as	cells	leave	E/M	and	enter	M,	suggestive	of	187 
their	key	role	at	this	stage	of	EMT	(Ungefroren	et	al.,	2018).	The	E/M	specifically	were	associated	188 
with	migration-associated	pathways	such	as	 ‘anchoring	 fibril	 formation’,	 ‘ECM	proteoglycans’	and	189 
‘laminin	interactions’,	consistent	with	their	shared	property	with	CTCs.	190 

Overall,	 we	 catalogued	 complex	 kinetics	 of	 thousands	 of	molecules	 spanning	multiple	molecular	191 
layers	 during	 EMT.	 Importantly,	 we	 identify	 critical	 transition	 points	 during	 EMT	 and	 predict	192 
signatures	specific	to	each	stage,	e.g.,	E/M,	with	potential	clinical	value.	193 

	194 

Metabolomics	reveals	kinetics	and	predicts	novel	enzyme-metabolite	associations	195 

TGFβ	regulates	Warburg	effect	in	cancer	cells,	but	may	also	regulate	other	metabolic	pathways	with	196 
implications	for	cancer	management	(Hua	et	al.,	2019).	Active	subnetwork	analysis	of	WC	and	Phos	197 
datasets	 identified	 13	 enriched	KEGG	metabolic	 pathways	 during	 TGFβ-induced	EMT	 (Fig.	 S3A).	198 
Notably,	significant	enrichment	(p–value	≤	0.05)	for	any	pathway	was	only	observed	after	day	2	and	199 
included	processes	such	as	steroid	hormone	biosynthesis	(SHB),	sphingolipid	metabolism	and	(SLM)	200 
glycosaminoglycan	 degradation	 (GMGD).	 To	 evaluate	 these	 gene-centric	 inferences	 of	 metabolic	201 
phenotypes,	we	directly	profiled	intra-cellular	small	molecules	by	applying	an	optimized	untargeted	202 
metabolomics	workflow	to	the	same	set	of	samples.	Using	stringent	criteria	(see	STAR	Methods),	we	203 
quantified	>4,000	putative	HMDB-compounds	covering	a	wide	range	of	chemical	classes	(Fig.	3A).	 204 
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Using	 phylogenetic	 clustering	 (Fig.	 3B)	 and	 SOM	analysis	 (Fig.	 3C)	 driven	 solely	 by	 the	Metabol	205 
dataset,	we	observed	the	E®E/M	transition	as	early	as	4	hours,	followed	by	another	transition	after	206 
day	1.	This	indicates	rapid	modulation	of	cellular	metabolism	by	TGFβ,	preceding	changes	in	most	207 
other	layers.	The	E/M®M	transition	occurred	around	day	5,	in	line	with	the	integrative	analysis.	208 

To	 glean	 further	 insights,	 we	 performed	 integrative	 network	 analysis	 of	 metabolite	 SOMs	 with	209 
differential	 molecules	 in	WC	 and	 Phos	 using	MetaboAnalyst	 (Chong	 et	 al.,	 2019)	 (Fig.	 3D).	 This	210 
analysis	 reiterated	 several	 enriched	pathways	predicted	with	protein	 expression	alone,	 e.g.,	 SHB,	211 
SLM,	 GMGD,	 glycerophospholipid	 metabolism	 (GPLM)	 and	 lysine	 degradation	 (LD)	 (Fig.	 S3A).	212 
However,	 integration	 of	 metabolite	 and	 protein	 data	 within	 the	 framework	 of	 metabolite	 SOMs	213 
revealed	 pathway	 activities	 representative	 of	 key	 transition	 steps	 of	 EMT	 driven	 primarily	 by	214 
corresponding	 metabolite	 signatures	 (Fig.	 S3B-D).	 Indeed,	 we	 observed	 that	 arachidonic	 acid	215 
metabolism	 (AAM),	 GPLM	 and	 LD	 pathways	were	 activated	within	 4	 hours	 of	 TGFβ	 stimulation,	216 
which	was	not	captured	by	gene-set	analysis.	Consistent	with	observations	in	Fig	2F,	processes	such	217 
as	fatty	acid	metabolism,	SHB	and	SLM	appear	after	day	2,	as	cells	prepare	for	a	metastatic	phenotype	218 
(Koundouros	and	Poulogiannis,	2020).		219 

Pairwise-correlation	based	integration	of	metabolite	profiles	with	proteomics	measurements	from	220 
the	 same	 samples	 could	 enable	 mechanistic	 predictions	 and	 aid	 discovery	 of	 novel	 players.	 To	221 
explore	 this,	 we	 chose	 AAM	 as	 an	 example.	 Arachidonic	 acid	 is	 an	 omega-6	 fatty	 acid	 stored	 as	222 
membrane	 phosphoglycerolipid.	 Its	 cytosolic	 release	 enables	 stoichiometric	 chain	 reactions	 and	223 
results	in	>100	functionally	diverse	compounds	(Hanna	and	Hafez,	2018)	impacting	processes	such	224 
as	redox	state,	proliferation,	apoptosis	and	chemotaxis	(Tallima	and	El	Ridi,	2018).	We	computed	225 
Pearson’s	 correlations	 between	 abundance	 of	 KEGG-annotated	 enzymes,	 in	WC	 and	 Phos,	 and	226 
metabolites	of	AAM	pathway,	in	Metabol,	quantified	at	SOM	for	4	hours	to	day	1	(Fig.	3E,	F).	Overall,	227 
we	found	that	metabolites	mapping	to	AAM	either	rapidly	increased	and	then	stabilized	(Cytochrome	228 
P450,	 CYP450,	 branch)	 or	 showed	 a	 delayed	 but	 consistent	 increase	 over	 the	 time	 course	229 
(Cyclooxygenase,	COX,	and	Lipoxygenase,	LOX,	branches)	(Fig.	3G),	suggesting	fine-tuned	regulation	230 
of	 the	 different	 branches.	 Encouragingly,	 our	 enzyme-metabolite	 association	 map	 identified	231 
PLA2G4A,	the	rate-limiting	phospholipase	of	AAM	pathway	(Hanna	and	Hafez,	2018),	among	the	top	232 
candidates	 (Fig.	 3F).	 Interestingly,	 correlation	 and	 expression	 profiles	 of	 PLA2G15,	 another	233 
phospholipase,	(Fig.	3E-G)	indicated	a	potential	enzyme-mediated	switch	from	CYP450	to	COX/LOX	234 
branches	during	E®E/M.		235 

Overall,	 these	observations	reveal	 the	kinetics	of	metabolic	 reprogramming	during	TGFβ	 induced	236 
EMT.	We	found	metabolites	and	protein	signatures	coordinating	processes	such	as	AAM,	GPLM	and	237 
LD	during	key	stages	of	the	transition.	We	also	demonstrate	how	our	enzyme-metabolite	correlation	238 
map	could	be	used	as	a	resource	to	predict	novel	enzymes	for	observed	metabolic	changes.		239 

	240 
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scRNAseq	 analysis	 reveals	 heterogeneous	 responses	 to	 TGFβ	 and	 novel	241 
transcriptional	regulators	of	EMT	242 

scRNAseq	studies	 in	murine	epithelial	Py2T	cells	 treated	with	TGFβ	(Krishnaswamy	et	al.,	2018),	243 
MCF10A	 cells	 undergoing	 confluence-dependent	 EMT	 (McFaline-Figueroa	 et	 al.,	 2019)	 and	 LPS-244 
induced	EMT	in	alveolar	epithelial	cells	(Riemondy	et	al.,	2019),	provided	valuable	insights	into	EMT.	245 
However,	a	temporal	analysis	of	TGFβ-induced	EMT	to	understand	the	transition	states	has	not	been	246 
reported.	247 

After	quality	control,	we	retained	1,913	single	cells	with	a	combined	depth	of	9,785	genes	(Fig.	S4A,	248 
Table	S1).	As	anticipated,	many	of	the	top	expressing	genes	(TGFB1,	TPT1,	KRT6A,	TMSB10,	MT2A)	249 
are	key	players	in	EMT	(Fig.	S4B).	Interestingly,	similar	to	many	primary	human	tumors	(Puram	et	250 
al.,	2018),	we	did	not	observe	an	explicit	loss	of	several	classical	E	markers	at	the	transcript	level	251 
(Fig.	 4A,	 Fig.	 S4C),	 suggesting	 post-transcriptional	 regulation,	 a	 strategy	 which	 could	 be	252 
energetically	economical	for	tumor	cells	(Lambert	et	al.,	2017).	253 

To	understand	the	stages	of	cell	differentiation,	we	took	advantage	of	the	multiple	time	points	in	our	254 
dataset	(as	opposed	to	a	‘pseudo-time’),	and	identified	20	cell	clusters	in	3	disjoint	partitions,	using	255 
Monocle3	(Fig.	4B,	Fig.	S4D).	Partition	P2	(12	clusters)	represents	the	primary	EMT	axis	while	P1/P3	256 
predominantly	expressed	genes	related	to	cell	cycle	(Fig.	S4E)	and	were	ignored	for	further	analysis.	257 
We	 observed	 that	 C3	 responded	 strongly	 to	 TGFβ	 (Fig.	 4C),	 C4/6	 resisted	 EMT,	 C5/C8	 are	 the	258 
‘transition’	states	and	C13/14	represented	terminal	M	cells	(in	terms	of	hallmark	M	markers;	Fig.	4C,	259 
right	panel).	Examining	clusters	C9/18/19	which	were	composed	of	cells	from	nearly	all	time	points,	260 
suggests	presence	of	stable	M-type	cells	in	MCF10A	populations	and	appears	to	be	at	transcriptional	261 
impasse	for	TGFβ	signaling.	Notably,	using	scRNAseq,	we	could	observe	an	E®E/M	transition,	but	262 
the	E/M®M	transition,	as	revealed	by	integrative	analysis,	was	not	clear.	263 

To	explore	the	underlying	gene	expression	program,	we	used	hierarchical	clustering	to	group	the	264 
individual	clusters	into	6	subtypes	(Fig.	4C)	and	employed	SCENIC	(Aibar	et	al.,	2017)	to	infer	TFs	265 
and	GRNs	underlying	these	subtypes	(Fig.	D-F;	Table	S5).	For	each	subtype,	we	identified	several	266 
unique	(Fig.	4E)	or	highly	active	TFs	(Fig.	4F),	including	both	established	and	novel	players.	Several	267 
TFs	implicated	in	EMT	(TWIST2,	FOXK2,	ZEB1,	ID2,	MSX1,	ING4)	were	over-represented	in	S4-S6,	268 
which	corresponds	to	 later	stages	of	EMT.	In	contrast,	direct	evidence	of	mechanistic	 links	of	TFs	269 
enriched	in	early	stages	of	EMT	(i.e.,	S3,	S4)	are	lacking,	indicating	gaps	in	current	EMT	models.	Using	270 
human	TF–binding	arrays	(see	STAR	Methods,	Fig.	4G)	we	confirmed	elevated	activity	of	three	S3	271 
TFs,	GLIS2,	SP1	and	ZNF266	upon	TGFβ	induction	(Fig.	4H).	In	addition	to	providing	experimental	272 
evidence	to	our	predictions,	the	TF-binding	array	also	revealed	several	other	TFs	potentially	playing	273 
important	roles	at	the	early	stages	of	EMT	(Fig.	4I).		274 

Overall,	we	provide	a	high-resolution	temporal	map	of	gene	expression	programs	of	individual	cells	275 
as	they	respond	to	TGFβ	signaling	and	undergo	EMT.	More	generally,	our	data	suggests	that	most	276 
transcriptional	changes	occur	at	early	time	points	(also	Fig.	2D,	Lower	panel),	followed	by	further	277 
adaptations	driven	predominantly	by	post-transcriptional	mechanisms.	278 
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	279 

Spatial	regulation	of	proteins	and	inter-cellular	communication	during	EMT	280 

Regulation	 of	 protein	 distribution	 is	 a	 crucial	 signaling	 mechanism	 (Ferrell,	 1998),	 but	 remains	281 
insufficiently	understood	in	EMT.	The	average	Pearson’s	correlation	between	proteins	quantified	in	282 
multiple	 cellular	 compartments	 (CCs)	 ranged	 between	 r	 =	 0.12	 to	 0.58	 indicating	 fine-tuned	283 
regulation	of	protein	distributions	(Fig.	5A).	We	found	3,965	proteins	localizing	to	≥2	CCs	(Fig.	S5A),	284 
which	we	categorized	into	2	classes	as	follows:	Class	I	proteins	(1,424)	displayed	a	correlated	trend	285 
(r	≥	0.4)	consistently	across	all	CC	pairs	suggesting	regulation	primarily	at	or	before	the	translation	286 
step	 (Fig.	 5B,	 C;	 Table	 S5).	 Class	 II	 proteins	 (1,205)	 displayed	 anti-correlated	 trend	 (r	 ≤	 –0.4)	287 
between	any	two	CCs,	 implying	active	post-translational	control	of	their	asymmetric	distributions	288 
(Fig.	5D,	E;	Table	S5).		289 

The	Bromodomain	and	ExtraTerminal	(BET)	cofactors,	BRD2	and	BRD4,	were	identified	as	Class	II	290 
proteins	(Fig.	5F).	Using	TF-binding	arrays,	we	verified	enhanced	global	recruitment	of	BRD4,	but	291 
not	two	other	cofactors,	p300	and	LSD1,	(Fig.	5G)	 indicating	its	specific	role	during	EMT.	Indeed,	292 
treatment	with	a	selective	BET	inhibitor	JQ-1	suppressed	EMT	(Fig.	5H).	Another	notable	Class	II	293 
protein	was	SCRIB	(Fig.	5I),	which	regulates	apical-basal	polarity	and	directional	migration	by	acting	294 
as	a	molecular	scaffold	through	protein-protein	interactions	(PPIs)	(Bonello	and	Peifer,	2019).	Using	295 
an	in	vivo	proximity	ligation	(BioID)	screen	of	SCRIB	((Fig.	S5B,	see	STAR	Methods),	we	identified	296 
multiple	 novel	 interactors	 (Table	 S6)	 of	 which	many	 have	 known	 roles	 in	 EMT	 (Fig.	 5J).	 Using	297 
immunoprecipitation,	we	verified	interactions	of	SCRIB	with	SNAP23	and	ARHGEF7	(Fig.	5K).	298 

Subtypes	 within	 a	 cell	 population	 can	 differ	 in	 their	 capacity	 to	 send	 and	 receive	 signals,	 with	299 
implications	for	metastasis	and	drug	resistance	(Kim	et	al.,	2018;	Tabassum	and	Polyak,	2015).	To	300 
map	 the	 inter-cellular	 communication	between	subgroups	of	 cells	during	TGFβ-induced	EMT,	we	301 
integrated	proteomics	and	scRNAseq	data	to	perform	a	systems-wide	survey	of	ligand-receptor	(L-302 
R)	pair	mediated	crosstalk	(Fig.	5L).	First,	using	a	database	of	>2,500	curated	binary	L-R	interactions	303 
(Ramilowski	 et	 al.,	 2015),	we	 searched	 for	 pairs	 of	 L	 and	 R	 in	 our	 Sec	 and	Mem/Glyco	 datasets,	304 
respectively,	assuming	that	co-directional	expression	changes	in	L	and/or	R	of	a	pair	(FDR	adj.	p-305 
value	<	0.05	and	combined	L-R	|log2FC|	≥1)	can	indicate	biological	role.	Currently,	at	least	two	L-R	306 
pairs	are	implicated	in	TGFβ-induced	EMT	(Heldin	et	al.,	2012).	Our	analysis	detected	67	upregulated	307 
and	12	downregulated	L-R	pairs	at	any	given	time	point	following	TGFβ	treatment	(Fig.	5M,	Table	308 
S7).	Notably,	none	of	these	pairs	have	been	directly	implicated	in	TGFβ	signaling	or	EMT,	although	309 
individually	many	of	the	identified	L	or	R	occur	frequently	in	the	context	of	EMT	and/or	cancer.	For	310 
instance,	LAMC2	with	its	7	receptors	(CD151,	COL17A1,	ITGA2,	ITGA3,	ITGA6,	ITGB1,	ITGB4)	exhibit	311 
significant	 alteration	 during	 EMT.	 LAMC2	 is	 overexpressed	 in	 cancers	 (Garg	 et	 al.,	 2014)	 and	 its	312 
silencing	can	reverse	EMT	(Pei	et	al.,	2019).	The	cognate	receptors,	CD151,	ITGA3,	ITGA6	and	ITGB1	313 
synergize	with	TGFβ	 signaling	 to	promote	metastatic	 behavior	 (Pellinen	 et	 al.,	 2018;	 Sadej	 et	 al.,	314 
2010;	Shirakihara	et	al.,	2013;	Zhang	et	al.,	2017).		315 

Next,	by	systematically	comparing	the	expression	patterns	of	L	&	R	(identified	above)	among	the	16	316 
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clusters	(identified	in	our	scRNAseq	dataset),	we	obtained	cell-cell	communication	networks	(sender	317 
®	 receiver)	 (Fig.	 5N,	 Fig.	 S5C,	Table	 S7).	 For	 example,	 C13	 cells,	which	 appeared	 at	 day	 3	 and	318 
showed	highest	M	 genes	 expression	 (Fig.	 4C),	 produced	 the	 receptor	 CD44	 to	 its	 cognate	 ligand	319 
MMP7	 expressed	 by	 C17	 (Fig.	 S5D).	 Together,	 this	 suggests	 that	 communication	 between	 cell	320 
subgroups	(C17:MMP7	®	C13:CD44)	may	exist	during	EMT	which	might	have	potential	ramifications	321 
for	 tumor	 growth.	 Interestingly,	 our	 analysis	 suggests	 a	 global	 switch	 in	 cell	 surface	 proximal	322 
signaling	cascades	at	day	2,	corresponding	to	E®E/M	transition,	and	likely	modulating	processes	323 
characteristic	of	E/M	cells,	e.g.,	migration	(e.g.,	FN1–ITGB6)	and	stemness	(e.g.,	TIMP2–ITGA3).	324 

As	independent	corroboration,	several	identified	L-R	pairs	showed	strong	correlation	(Fig.	5O)	in	325 
human	 breast	 invasive	 carcinoma	 samples	 (Cancer	 Genome	 Atlas	 Network,	 2012;	 Cerami	 et	 al.,	326 
2012).	 Notably,	 a	 slightly	 stronger	 correlation	 between	 the	 L–R	 pairs	was	 observed	with	 CPTAC	327 
proteomics	data	than	with	TCGA	mRNA	datasets.	328 

Our	 study	 provides	 a	 comprehensive	 analysis	 of	 TGFβ-triggered	 subcellular	 trafficking	 as	 cells	329 
undergo	EMT.	 Such	 translocations,	 potentially	 driven	 by	 differential	 PPI,	 could	mediate	 the	 tight	330 
coordination	 between	 functional	 modules	 (e.g.,	 SCRIB	 complex)	 and	 EMT	 phenotypes	 such	 as	331 
cytoskeletal	 rearrangement.	We	 also	 uncovered	 novel	 cell-cell	 communication	 pathways	 via	 L-R	332 
interactions	in	driving	EMT,	representing	an	untapped	clinical	opportunity.	333 

	334 

Modeling	phosphoproteome	dynamics	during	EMT	reveals	kinase	susceptibilities	335 

Phosphoregulatory	 mechanisms	 are	 a	 key	 aspect	 of	 TGFβ	 signaling	 and	 EMT.	 We	 confidently	336 
quantified	8,741	phosphosites	(p-sites;	6,975	Ser,	962	Thr	and	140	Tyr	residues)	(Fig.	S6A-C)	over	a	337 
dynamic	range	of	106	orders	of	magnitude	(Fig.	S6D),	and	phospho–STY	frequencies	(Fig.	S6E)	in	338 
line	with	previous	reports	(D’Souza	et	al.,	2014)	mapping	to	2,254	proteins	(Fig.	S6F).	Of	all	p-sites,	339 
3,138	(35.8%)	were	differentially	regulated	in	at	 least	one	time	point	(Fig.	S6G).	At	protein	level,	340 
different	 patterns	 of	 regulation	 were	 noted;	 some	 proteins,	 such	 as	 DEK,	 VIM	 and	 MISP,	 were	341 
regulated	at	~90%	of	detected	sites,	some	proteins,	such	as	CAV1,	CAMK2	and	GOLGA1,	showed	a	342 
~50%	mixture	of	regulated	and	unregulated	sites,	while	others	such	as	AHNAK,	PML	and	BCLAF1	343 
showed	~2%	differential	 sites	 (Fig.	6A).	 Interestingly,	 the	 fraction	of	 regulated	p-sites	 in	 several	344 
proteins,	e.g.,	VIM,	increased	with	EMT	progression	(Fig.	6B).		345 

We	observed	that	in	~50%,	p-sites	dynamics	were	not	explained	(r	≤	0.4)	by	a	corresponding	change	346 
at	the	protein	level	(Fig.	6C,	D).	Interestingly,	 for	~26%,	a	directionally	opposite	change	between	347 
phosphorylation	and	the	corresponding	protein	abundance	was	noted	(r	≤	–0.1),	suggesting	effects	348 
on	protein	stability.	Phospho-regulated	proteins	were	enriched	for	‘nucleus’,	‘cytoskeleton’	and	‘focal	349 
adhesion’	annotations	(Fig.	6E)	reflecting	the	importance	of	CC	remodeling	during	EMT.		350 

We	 also	 computed	 correlations	 between	 nuclear	 localization	 profiles	 (Nuc)	 and	 phosphorylation	351 
kinetics	(Phos)	of	individual	proteins	(Fig.	6F,	G).	For	instance,	phosphorylation	of	MICAL3	at	T684	352 
and	S685	regulates	CSCs	by	promoting	symmetric	division	(Tominaga	et	al.,	2019).	The	pattern	of	353 
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phosphorylation	of	MICAL3	at	residues	T684,	S685	and	S687	(Fig.	6D,	MICAL3)	which	are	located	at	354 
the	consensus	NLS	motif	suggests	a	role	in	regulating	nuclear	translocation	of	MICAL3	at	E®E/M	355 
transition.	Indeed,	the	bipartite	NLS	motif	of	MICAL3	interacts	with	Importin-α	and	the	p-sites	T684,	356 
S685,	S687	are	directly	adjacent	to	the	binding	interface	(Fig.	6H).	357 

To	analyze	stage-specific	kinase	activities	we	generated	a	ternary	model	which	distinguishes	active	358 
kinases	into	3	broad	stages	(i.e.,	E,	E/M,	and	M)	of	EMT	(Fig.	6I).	An	example	that	illustrates	the	utility	359 
of	 this	model	are	AKT	 isoforms	that	have	distinct	and	opposing	roles	during	cancer	development	360 
(Hinz	and	Jücker,	2019).	We	predict	AKT1	is	strongly	associated	with	the	E-stage,	which	is	consistent	361 
with	its	role	in	maintaining	the	E	phenotype	(Li	et	al.,	2016).	In	fact,	depletion	of	AKT1	in	MCF10A	362 
cells	promoted	TGFβ-induced	E®E/M	transition	(Iliopoulos	et	al.,	2009).	Our	model	further	predicts	363 
key	roles	for	AKT2	and	AKT3	at	E/M®M	transition.	Indeed,	AKT2	and	AKT3	were	associated	with	364 
tumor	invasiveness,	stemness	and	sensitivity	to	drug	treatment	(Chin	et	al.,	2014),	key	characteristics	365 
of	the	E/M	populations	 	(Dongre	and	Weinberg,	2019).	Among	several	other	kinases	(Fig.	6J,	Fig.	366 
S6H),	our	ternary	model	predicted	key	roles	for	PRKCA	and	AURKB	at	the	junction	of	E®E/M	and	367 
E/M®M	transitions.	PRKCA	is	reportedly	a	hub	and	therapeutic	target	for	EMT-induced	breast	CSCs	368 
(Tam	et	al.,	2013).	Similarly,	inhibition	of	AURKB	was	found	to	reverse	EMT	and	reduce	breast	cancer	369 
metastasis	in	vivo	(Zhang	et	al.,	2020).	370 

Overall,	we	reveal	the	rich	intricacies	of	the	phosphoregulome	during	EMT,	identified	functional	p-371 
sites,	 predict	 novel	 kinase	 susceptibilities,	 and	 provide	 a	 mechanistic	 framework	 to	 enhance	372 
understanding	of	the	signaling	mechanisms	during	EMT.		373 

	374 

Integrative	systems	causal	model	of	EMT	identifies	mechanistic	vulnerabilities	375 

Systems	 biology	 approaches	 that	 combine	 multiple	 molecular	 types	 (proteins,	 mRNAs,	 miRNAs,	376 
metabolites)	into	a	framework	of	established	knowledge	allow	for	a	rich	assessment	of	a	biological	377 
context	 (Hawe	 et	 al.,	 2019).	 Using	 experimentally	 validated	 functional	 priors	 (compiled	 from	378 
ENCODE,	 PhosphoSitePlus,	 SignaLink	 2.0,	 SIGNOR	 2.0,	 HINT,	 miRTarBase	 and	 MetaBridge),	 we	379 
combined	causal	 inference	and	PCSF	 (Prize	Collecting	Steiner	Forest)	 (Akhmedov	et	al.,	 2017)	 to	380 
construct	hierarchical	mechanistic	models	of	the	EMT	program	(Fig.	7A,	see	STAR	Methods).	The	381 
final	 ‘EMT	 network’	 comprised	 of	 3,255	 edges	 connecting	 2,217	 molecules,	 including	 723	382 
kinase/phosphatase–substrate,	 1,407	 TF–target,	 746	 miRNA–target	 and	 31	 metabolite–gene	383 
interactions.	384 

One	of	the	potential	applications	of	the	EMT	network	is	to	discover	signaling	paths	from	TGFBR1/2	385 
to	 any	 gene(s)	 of	 interest	 within	 the	 network.	 As	 a	 demonstration,	 we	 queried	 several	 EMT-386 
associated	 genes	 (FN1,	 MMP7,	 CD44,	 SCRIB,	 TWISTNB,	 ZEB1,	 SNAI2)	 and	 recovered	 previously	387 
known	and	unknown	paths	to	them	putatively	active	at	multiple	stages	of	EMT	(Fig.	S7A).	Next,	to	388 
identify	key	factors	driving	EMT,	we	performed	‘controllability’	analysis	(Vinayagam	et	al.,	2016)	to	389 
identify	 controllers	 (nodes)	 exerting	 a	 significant	 influence	 on	 EMT	 network	 topology.	 Not	390 
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surprisingly,	a	few	of	them	are	established	key	regulators	of	metastasis	(Fig.	7B).	Unlike	controllers,	391 
however,	 the	 non-controller	 nodes	 were	 poorly	 represented	 in	 EMT	 literature	 (Fig.	 7C),	 again	392 
highlighting	gaps,	and	potentially	identifying	new	regulatory	processes.	Survival	analysis	against	a	393 
large	publicly	available	dataset	of	primary	breast	cancers	with	long-term	patient	outcomes	(Cancer	394 
Genome	 Atlas	 Network,	 2012)	 showed	 a	 significant	 association	 between	 tumors	 with	 altered	395 
expression	of	these	controllers	and	shortened	overall	survival	(Fig.	7D).	396 

We	queried	the	EMT	network	to	identify	signaling	contexts	in	which	these	controllers	are	active	at	397 
various	key	stages	of	EMT,	which	could	also	provide	clues	into	mechanistic	vulnerabilities	(Fig.	7E).	398 
As	cells	are	stimulated	with	TGFβ,	the	TFs	SMAD2	and	SMAD3	are	activated,	as	expected.	Another	399 
early	responder	was	RHO	GTPase	RAC1,	an	effector	of	both	KRAS	(Wu	et	al.,	2014)	and	TGFβ	signaling	400 
(Ungefroren	et	al.,	2018),	suggesting	potential	crosstalk.	The	downstream	effector	of	RAC1,	MAPK14	401 
(p38	MAPK),	was	 also	 regulated	 early	 in	EMT,	 suggesting	 cooperation	between	RAC1	 and	MAPK	402 
pathways	(Santibáñez	et	al.,	2010).	Our	model	suggests	SMAD3	regulates	two	other	TF	hubs,	CEBPB	403 
(CCAAT/enhancer-binding	protein	β)	and	FOXA1.	Loss	of	CEBPB	reportedly	switches	TGFβ	signaling	404 
from	growth-inhibiting	to	EMT-inducing	(Johansson	et	al.,	2013),	while	FOXA1	is	reportedly	a	key	TF	405 
during	EMT	(Wang	et	al.,	2013).	We	observed	that	STAT3	is	suppressed	at	 later	stages	of	EMT.	A	406 
recent	study	in	KRAS-driven	lung	and	pancreatic	cancer	found	that	STAT3	is	required	for	maintaining	407 
the	E	state	and	is	lost	during	acquisition	of	M	phenotypes	(D’Amico	et	al.,	2018).	408 

The	EMT	network	directly	predicts	novel	avenues	for	blocking	EMT.	To	assess	this,	we	performed	a	409 
morphometry-based	screening	where	we	treated	MCF10A	cells	with	TGFβ	in	combination	with	drugs	410 
which	were	predicted	to	inhibit	several	of	the	controllers	active	at	E®E/M	transition	(Fig.	7F,	see	411 
STAR	Methods).	Our	analysis	using	a	custom-built	(Ochs	et	al.,	2019)	and	publicly	accessible	image	412 
analysis	 software	 GENIMASEG	 (Fig.	 7F)	 showed	 significant	 efficacy	 of	 LB100+Barasertib,	413 
LB100+PP1	and	Sonidegib+Autocamtide	in	reverting	the	elongated	phenotype	of	EMT-induced	cells	414 
(Fig.	7G),	 thus	providing	direct	experimental	evidence	 to	our	predictions.	Using	a	biomimetic	3D	415 
mammary	duct-on-a-chip	platform	(Kutys	et	al.,	2020),	we	further	observed	that	combinatorically	416 
inhibiting	SMO	and	CAMK-II	(Sonidegib+Autocamtide)	inhibits	invasion	driven	by	the	PI3K	variant,	417 
PIK3CαH1047R,	 which	 is	 associated	 with	 chemo-refractoriness	 in	 a	 subset	 of	 triple	 negative	 BrCa	418 
patients	(Janku	et	al.,	2013).	419 

Overall,	 our	 EMT	 network	 recapitulates	 known	 signaling	 pathways,	 uncovers	 novel	 routes	 of	420 
information	flow	to	known	regulators	of	EMT,	identifies	new	signaling	players	and	pathways,	makes	421 
substantial	 and	 provocative	 novel	 predictions	 and	 reveals	 cohesive	 time-resolved	 regulatory	422 
patterns	and	mechanistic	links	between	both	controllers	and	non-controllers.	423 

	424 

DISCUSSION	425 

EMT	and	cancer	are	emergent	systems	 (Sigston	and	Williams,	2017)	wherein	progression	through	426 
various	stages	 is	 regulated	by	 intricate	networks	of	 intra-	and	extra-cellular	 signaling	within	and	427 
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between	 cells.	 The	 key	 to	 understanding	 such	 complex	 biological	 phenomena	 are	 establishing	428 
experimental	 workflows	 that	 integrate	 multiple	 tiers	 of	 biological	 information	 (Karczewski	 and	429 
Snyder,	2018).	430 

Discussions	on	EMT	are	often	guided	by	the	Waddington	metaphor	of	a	ball	(=cell)	rolling	over	a	431 
phenotypic	landscape,	which	is	dynamically	shaped	by	multiple	parameters:	topologies	of	signaling	432 
networks,	molecular	stochasticity,	extraneous	cooperating	and	opposing	forces	(e.g.,	EMT	inducing	433 
and/or	inhibitory	ligands,	interaction	with	other	cells)	(Li	and	Balazsi,	2018).	By	integrating	several	434 
molecular	 layers,	 SOMs	 and	 ‘neighbor	 joining’	 approaches	 revealed	 the	 kinetics	 of	 cell-fate	435 
transitions	 and	 major	 phenotypic	 switch	 points	 driven	 by	 TGFβ.	 Several	 studies	 have	 indicated	436 
molecular	 and	 phenotypic	 granularity	 in	 EMT	 continuum	 and	 suggested	 existence	 of	 discrete	437 
metastable	E/M	(Sha	et	al.,	2019).	Many	current	EMT	markers	are	biased	toward	the	later	stages	of	438 
EMT,	when	the	process	is	approaching	completion	(Song	et	al.,	2019).	Consequently,	the	molecular	439 
nature	of	E/M	is	still	poorly	understood.	Our	time-course	integrative	SOM	allowed	us	to	trace	the	440 
temporal	unfolding	and	uncover	the	molecular	nature	of	the	E®M	transition.		441 

While	previous	omics	studies	have	measured	either	one	or	two	molecular	layers	to	describe	EMT,	442 
our	multi-tiered	 datasets	 enabled	 the	 discovery	 of	 several	 new	 aspects	 of	 EMT	which	 were	 not	443 
captured	by	previous	approaches.	For	example,	the	correlation	between	mRNA	and	proteins	were	444 
weak.	Strikingly,	correlations	between	the	various	proteomics	layers	were	also	found	to	be	quite	poor, 445 
indicating	that	systems	behavior	cannot	readily	be	extrapolated	by	any	single	layer	(e.g.,	mRNA	or	446 
total	proteome),	but	instead	needs	an	integrated	analysis	of	several	molecular	layers.	We	show	that	447 
TGFβ-induced	EMT	is	only	partially	driven	by	transcription,	where	several	E	genes	are	repressed	448 
only	post-transcriptionally,	while	transcripts	of	M	genes	are	upregulated	but	mostly	during	earlier	449 
time	points.	At	later	stages,	post-translational	mechanisms	become	more	prominent	in	driving	the	450 
process,	 suggesting	 that	 the	 regulatory	 control	 of	 EMT	 may	 be	 more	 flexible	 than	 previously	451 
appreciated.	 Similarly,	 our	 results	 also	predict	 the	mechanistic	 importance	of	 protein	 subcellular	452 
localization	during	EMT.	A	comparison	of	proteins	detected	in	EV,	Sec,	Glyco,	Mem	and	Nuc	indicated	453 
extensive	regulation	of	protein	localizations.	Further,	previous	studies	on	EMT	have	largely	focused	454 
on	 cell-autonomous	 signaling,	 whereas	 multiple	 inter-cellular	 signaling	 mechanisms	 are	 evident	455 
from	our	integrative	analysis.	Indeed,	we	found	both	EV	and	Sec	to	be	extensively	regulated	during	456 
EMT.	Once	considered	as	cellular	‘garbage	bins’,	their	active	participation	in	signaling	and	crosstalk	457 
is	 increasingly	 recognized	 (H.	Rashed	 et	 al.,	 2017).	Our	 results	 demonstrating	 limited	qualitative	458 
overlap	between	EV	and	Sec	hint	at	a	potentially	overlooked	mechanistic	distinction	and	provides	459 
opportunities	for	new	biological	insights.	We	utilized	our	Mem,	Glyco	and	Sec	datasets	to	provide	a	460 
repertoire	of	79	putative	new	L-R	pairs	with	potential	roles	during	EMT,	which	should	be	validated	461 
in	future	studies.	By	combining	these	results	with	the	scRNAseq	profiles,	we	were	able	to	define	an	462 
extensive	network	of	inter-cellular	communications.		463 

In	 conclusion,	 we	 have	 established	 a	 comprehensive	 multi-tiered	 molecular	 landscape	 of	 TGFβ-464 
induced	 EMT.	 This	 study	 aims	 to	 provide	 a	 valuable	 resource	 which	 is	 accessible	 through	 an	465 
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interactive	 website	 (https://www.bu.edu/dbin/cnsb/emtapp/)	 (Fig.	 S7)	 and	 will	 strongly	466 
complement	hypothesis-driven	research	with	direct	implications	for	epithelial	cancers.		 	467 
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Main	figure	legends	682 

Figure	1.	A	multi-dimensional	resource	on	TGFβ-induced	EMT	683 

(A) MCF10A	cells	exposed	to	TGFβ	for	indicated	time	points	were	used	to	study	the	molecular	684 
landscapes	during	EMT.	685 

(B) Samples	 from	 3	 biological	 replicates	 were	 aliquoted	 and	 multiple	 technologies	 were	686 
employed	to	quantify	various	molecular	layers.		687 

(C) An	overview	of	numbers	of	molecules	quantified	in	various	layers.		688 
(D) Expression	 snapshots	 of	 some	 well-known	 EMT	markers.	 Heatmaps	 show	 log2FC	 values	689 

(relative	to	Control,	adj.	p-value	<	0.05).		690 
(E) Variance	explained	by	each	layer	over	4	principal	components.	691 
(F) Ridge	plot	showing	differential	molecules,	as	%	of	total	quantified,	for	each	layer.	692 
(G) Pie	 chart	 showing	 the	 overall	 fraction	 (in	 %)	 of	 differential	 molecules	 (yellow	 portion)	693 

relative	to	all	molecules	quantified	in	each	layer.	694 
(H) Overlap	 between	 established	 EMT	 databases	 (MSigDB,	 www.gsea-msigdb.org;	 dbEMT2.0,	695 

http://dbemt.bioinfo-minzhao.org)	and	differential	proteins	and	miRNAs	(adj.	p-value	<	0.05;	696 
r2	≥	0.6	&	|log2FC|	≥	1)	from	this	study.	697 

(I) Differential	molecules	(proteins,	miRNAs,	metabolites)	were	used	to	assess	the	number	of	698 
coherent	functional	modules,	i.e.,	known	interactions	between	molecules,	by	employing	the	699 
Prize-Collecting	Steiner	Forest	 algorithm	on	a	network	 compiled	 from	PathwayCommons,	700 
miRTarBase	and	STITCH.	701 

Figure	2.	The	topological	architecture	of	EMT		702 
(A) Phylogenetic	neighbor-joining	tree	reveals	similarities	(=distances)	between	time	points.	703 
(B) Combined	 pseudo-eigenvalues	 space	 of	 all	 datasets,	 indicating	 the	 contribution	 of	 each	704 

dataset	to	the	eigenvalue	(variance).	705 
(C) Matrix	correlations	between	each	pair	of	datasets.	706 
(D) Line	plots	show	the	distribution	of	adjusted	coefficient	of	determination	(R2)	values	between	707 

layers	as	a	function	of	time	points.	708 
(E) Left	panel.	SOM	portraits.	Color	gradient	refers	to	over-	or	under-expression	of	metagenes	in	709 

each	time-point	compared	to	the	mean	expression	level	of	the	metagene	in	the	pool	of	all	time	710 
points:	red	=	high,	yellow/green	=	intermediate	levels	and	blue	=	low	(see	STAR	Methods	for	711 
details).	Middle	 panel.	 Representative	 examples	 that	 appeared	 among	 the	highest-ranking	712 
features	(top	1%)	in	each	time-point.	Right	panel.	Barplot	shows	the	number	of	features	that	713 
were	contributed	by	each	layer	among	the	highest-ranking	features	(top	1%)	in	time-point.	714 

(F) Heatmap	depicts	sample-wise	pathway	scores,	which	were	derived	from	enrichment	analysis	715 
of	active	subnetworks	using	the	highest-ranking	molecules	(top	1%)	for	each	SOM.	716 

Figure	3.	Dynamics	of	TGFβ-induced	metabolic	adaptations	717 

(A) Barplot	 showing	 the	 ‘class’	 distribution	 of	 quantified	 metabolite	 features	 in	 HMBD.	 Also	718 
shown	are	the	relative	proportions	of	differentially	expressed	features	for	each	class	(p-value	719 
≤	0.01,	absolute	log2FC	≥	1).	720 
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(B) Neighbor-joining	tree	for	the	Metabol	dataset.		721 
(C) SOM	analysis	of	the	Metabol	dataset.		722 
(D) Top	10%	of	metabolite	features	of	each	SOM	were	grouped	based	on	clusters	in	`B`	and	used	723 

for	“Network	analysis”	using	MetaboAnalyst	(https://www.metaboanalyst.ca).		724 
(E) Identified	metabolites	of	AAM	pathway	in	SOM	for	4	hours	to	day	1	were	taken	and	Pearson’s	725 

correlation	computed	with	known	metabolic	enzymes	(KEGG)	quantified	in	the	Phos	&	WC	726 
datasets.	727 

(F) The	plot	shows	enzymes	ranked	according	to	their	Pearson’s	correlation	with	metabolites	of	728 
AAM	pathway,	as	detected	in	this	study.	729 

(G) Schematics	of	information	flow	from	TGFβ	signaling	to	AAM	pathway,	mediated	by	known	730 
enzymes.	Heatmaps	and	line	plots	display	‘standardized’	expression	values.	731 

Figure	4.	scRNAseq	analysis	reveals	cellular	dynamics	and	novel	TFs	for	EMT	732 
(A) Violin	plots	showing	expression	of	well-known	EMT	hallmarks	in	each	time	point.	733 
(B) UMAP	 of	 scRNAseq	 by	Monocle3.	 Dots	 represent	 single	 cells	 and	 are	 colored	 by	 inferred	734 

clusters,	while	trajectories	depict	cells	during	EMT.	735 
(C) Heatmap	showing	the	number	of	cells	(in	 log2	scale)	 in	each	cluster	of	partition	P2.	Mean	736 

expression	of	some	well-known	E	and	M	markers	in	each	cluster	are	also	shown.		737 
(D) The	plot	shows	all	TFs	ranked	according	to	their	SCENIC	score.	TF	names	are	shown	for	the	738 

5	TFs	with	the	highest	scores	and	some	well-known	EMT	associated	TFs.	739 
(E) Tree	displays	unique	TFs	identified	by	SCENIC	for	each	subtype.	TFs	highlighted	in	‘bold’	are	740 

known	players	 in	EMT.	The	genes	 in	the	outer	circle	are	representative	examples	used	by	741 
SCENIC	to	infer	TF	activity.	742 

(F) Barplot	shows	the	inferred	activities	of	top	15	TFs	based	on	SCENIC	scores	in	each	subtype.	743 
(G) Schematics	of	the	human	TF-binding	array	workflow	(see	STAR	Methods	for	details).	744 
(H) &	(I)	Density	plots	of	∂B-scores	of	indicated	TFs.	Two-sided	Kolmogorov-Smirnov	test	was	745 

performed	to	evaluate	the	significance	of	distribution	differences	between	Control	and	TGFβ	746 
treated	conditions.	747 

Figure	5.	Spatial	regulation	of	proteins	and	intercellular	communication	748 
(A) The	 schematic	 summarizes	 Pearson’s	 coefficients	 between	 overlapping	 proteins	 of	 the	749 

indicated	layers.	Each	pie	chart	depicts	the	fraction	of	differential	proteins	(orange	slice)	with	750 
respect	to	all	proteins	quantified	in	the	layer.	751 

(B) The	plot	displays	top	25	Class	I	proteins.	Each	pair	is	represented	by	a	different	shape.	752 
(C) Expression	profiles	of	top	3	Class	I	proteins.	Each	colored	line	represents	a	molecular	layer.	753 
(D) The	plot	displays	top	25	Class	II	proteins.	Each	pair	is	represented	by	a	different	shape.	754 
(E) Expression	profiles	of	top	3	Class	II	proteins.	Each	colored	line	represents	a	molecular	layer.	755 
(F) Expression	profiles	of	BRD2	and	BRD4	in	various	layers.	Legend	as	in	E.	756 
(G) Density	plots	of	∂B-scores	of	indicated	co-factors.	Two-sided	Kolmogorov-Smirnov	test	was	757 

performed	to	evaluate	the	significance	of	difference	in	distributions.	758 
(H) Phase-contrast	images	after	6	days	of	TGFβ	treatment	in	presence	or	absence	of	active	JQ-1	759 

(100	nM)	or	its	inactive	analogue.	760 
(I) Expression	profile	of	SCRIB	in	various	layers.	Legend	as	in	E.	761 
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(J) PPI	network	of	SCRIB	interactors	identified	using	BioID.	762 
(K) Immunoblots	showing	interactions	of	a	few	SCRIB	partners	identified	using	BioID.	763 
(L) Schematics	of	analysis	pipeline	for	discovering	active	L-R	pairs	(see	STAR	Methods).	764 
(M) Heatmap	showing	combined	log2FCs	of	L-R	pairs	in	the	Sec	and	Mem/Glyco	datasets.	765 
(N) Network	plot	showing	L-R	interactions	detected	between	different	P2	cell	clusters.	766 
(O) Scatter	 plot	 of	 correlations	 between	 indicated	 gene-pairs	 in	 Breast	 invasive	 carcinoma	767 

samples.	Regression	line	is	shown	in	red.		768 

Figure	6.	Phosphoproteome	dynamics	during	EMT	769 
(A) Fraction	of	detected	p-sites	on	a	protein	that	are	regulated	during	EMT.	770 
(B) Detected	p-sites	on	VIM	and	their	expression	during	EMT.	The	gray	lines	indicate	all	p-sites	771 

that	are	catalogued	in	PhosphoSitePlus	database.	772 
(C) Distribution	of	Pearson’s	correlation	between	expression	of	proteins	and	p-sites	detected	on	773 

them.		774 
(D) Schematic	 showing	 two	 examples	 each	where	 expression	 of	 proteins	 and	 p-sites	 showed	775 

either	low	(≤–0.1;	CDS2,	CBX1)	or	high	(≥0.4;	MISP,	MICAL3)	correlation.	776 
(E) Gene	ontology	enrichment	of	genes	with	at	least	a	single	regulated	p-site	at	any	time	point.	777 
(F) Distribution	of	Pearson’s	correlation	between	expression	of	proteins	detected	in	Nuc	 layer	778 

and	the	p-sites	detected	on	them	in	the	Phos	layer.	A	few	EMT	hallmarks	are	highlighted.	779 
(G) Heatmaps	of	expression	profiles	of	indicated	molecules	in	Nuc	and	Phos	layers.		780 
(H) Structural	model	of	MICAL3	p-sites,	NLS	and	Importin-α.	781 
(I) Ternary	plot	of	kinase	activity	scores	binned	into	3	broad	stages	of	EMT,	i.e.,	E,	ICS,	and	M.	782 
(J) and	(K)	Top.	Expression	of	PRKCA	or	AURKB	as	detected	in	various	layers.	Bottom.	Pathway	783 

enrichment	of	all	differential	substrates	of	PRKCA	or	AURKB	detected	in	our	dataset.	784 

Figure	7.	Integrative	systems	causal	model	of	EMT	785 
(A) Schematics	 of	 causal	 modeling	 workflow.	 Non-redundant	 genes	 with	 most	 significant	786 

expression	 profiles	 (Hotelling’s	 T2	 statistic)	 were	 used.	 CausalPath-estimated	 logical	787 
networks	were	used	 to	augment	a	 custom-built	 confidence-weighted	scaffold	 interactome	788 
which	was	then	used	to	solve	the	Steiner	Forest	problem	using	the	OmicsIntegrator	software.	789 
Only	differential	molecules	(relative	to	Control,	FDR	adj.p-value	≤	0.05,	|log2FC|	≥	1)	were	790 
considered	as	‘prizes’.	791 

(B) Overlap	between	EMT	databases	and	‘controllers’	identified	in	this	study.	792 
(C) Overlap	between	EMT	databases	and	‘non-controllers’	identified	in	this	study.	793 
(D) Kaplan-Meier	 plots	 comparing	 prognostic	 performance	 of	 MSigDB	 hallmarks	 and	794 

‘controllers’	identified	in	this	study.	795 
(E) A	simplified	 schematic	 showing	 the	hierarchical	 relationships	between	 several	bottleneck	796 

genes	at	different	stages	of	EMT,	as	indicated.	797 
(F) Workflow	for	morphometric	screening	of	drug	combinations.	798 
(G) Barplot	of	results	of	above	experiment	indicates	varying	degrees	of	synergy	or	antagonism	799 

between	inhibitors,	in	influencing	EMT-associated	changes	in	cell	shape	(eccentricity).	Error	800 
bars	indicate	spread	of	datapoints	across	all	quantified	cells	in	each	condition.	801 
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(H) 3D	ducts	were	seeded	with	stable	MCF10APIK3CA-H1047R	cells	and	treated	with	Sonidegib	and	802 
Autocamtide	for	3	days.	Area	of	invading	cells	and	average	distance	traveled	away	from	the	803 
ducts	as	compared	to	DMSO	treated	controls	were	quantified	using	ImageJ	(n=6	devices).	804 

Supplementary	figure	legends	805 

Figure	S1.	Related	to	Figure	1.	A	multi-dimensional	resource	on	TGFβ-induced	EMT	806 
(A) TGFβ	treatments	were	staggered,	at	defined	time	periods,	such	that	all	plates	were	harvested	807 

at	the	same	time.	Cells	were	serum	starved	for	16	hours	before	harvesting.	808 
(B) Phase-contrast	images	of	MCF10A	cells	at	different	time	points.	Scale	bar	=	100	µm.	809 
(C) For	 maximizing	 efficiency	 while	 maintaining	 compatibility	 with	 technology-specific	810 

protocols,	 after	 harvesting	 cells	 were	 collected	 in	 4	 aliquots	 per	 replicate,	 as	 shown.	811 
Conditioned	media	were	also	collected.	812 

(D) Upper	 panel	 –	 barplot	 showing	 percentage	 of	 quantified	 proteins	with	 annotation	 in	 the	813 
‘Cellular	 Component’	 category.	 Lower	 panel	 –	 boxplot	 showing	 intensity	 values	 (log2)	 of	814 
proteins	(=markers)	commonly	used	to	assess	sub-cellular	 fractionation	purity.	Box	edges	815 
correspond	to	25th	and	75th	percentiles,	whiskers	include	extreme	data	points.	816 

(E) Cumulative	 distribution	 (%)	 of	 Pearson’s	 coefficients	 across	 the	 samples	 (=	 time	 points).	817 
Significant	 overlap	 between	 the	 3	 biological	 replicates,	 shown	 as	 3	 colors,	 indicates	 high	818 
reproducibility.		819 

(F) Heatmaps	of	molecular	expression	profiles	of	 indicated	 layers.	The	mean	of	all	quantified	820 
molecules	across	the	3	replicates	was	used.		821 

(G) Violin	 plots	 showing	 the	 spread	 of	 log2FCs	 of	 molecules	 at	 each	 time	 point	 (relative	 to	822 
Control)	for	each	layer.	823 

Figure	S2.	Related	to	Figure	2.	The	topological	architecture	of	EMT		824 
(A) PCA	of	the	various	molecular	layers.	Time	points	are	shown	with	different	shapes	and	825 

colors.	Points	with	similar	shape/color	indicate	biological	replicates.	826 
(B) The	population	map	presents	the	number	of	genes	mapped	to	each	individual	metagene.	827 
(C) The	plot	summarizes	co-variance	structure	of	datasets	at	the	metagene	level.	828 
(D) The	plot	shows	correlation	of	expression	patterns	of	individual	genes	and	the	metagenes	in	829 

which	they	are	contained.	830 
(E) Temporal	expression	profiles	of	a	few	example	genes	identified	in	SOM	analysis.	Each	colored	831 

line	represents	a	molecular	layer,	as	shown.	832 
(F) Temporal	expression	profiles	of	a	few	example	genes	enlisted	as	‘EMT	hallmarks’	in	MSigDB	833 

database.	Each	colored	line	represents	a	molecular	layer,	as	shown.	834 

Figure	S3.	Related	to	Figure	3.	Dynamics	of	TGFβ-induced	metabolic	adaptations	835 
(A) The	heatmap	displays	the	results	of	active	subnetwork	analysis	using	differential	molecules	836 

in	WC	and	Phos	datasets.	837 
(B) –	 (D)	 Metabolite-metabolite	 interaction	 networks,	 using	 MetaboAnalyst,	 for	 indicated	838 

clusters.	High	connectivity	indicates	co-regulation	of	functionally	related	metabolites.	839 
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Figure	S4.	Related	to	Figure	4.	scRNAseq	analysis	reveals	cellular	dynamics	and	novel	TFs	for	840 
EMT	841 

(A) An	outline	of	the	QC	pipeline	employed	for	scRNAseq	data	analysis.	842 
(B) The	plot	shows	top	25	most	expressed	genes.	Each	row	corresponds	to	a	gene	and	each	bar	843 

corresponds	to	the	expression	of	the	gene	in	single	cells.	844 
(C) Expression	of	indicated	genes	in	mRNA	layer.	845 
(D) Developmental	 trajectories	 of	 MCF10A	 cells	 in	 response	 to	 TGFβ,	 inferred	 by	 Monocle3.	846 

Clusters	are	indicated	by	colors.	847 
(E) Heatmap	 showing	 aggregate	 expression	 of	 groups	 of	 genes	 (=Modules)	 with	 similar	848 

expression	pattern	across	the	partitions,	by	Monocle3.	Modules	9/12	were	highly	expressed	849 
in	P1/P3	and	were	enriched	for	‘Cell	cycle’	related	GO	annotations.	850 

Figure	S5.	Related	to	Figure	5.	Spatial	regulation	of	proteins	and	intercellular	communication	851 
(A) The	 plot	 shows	 number	 of	 common	 genes	 (intersection	 size,	 y	 axis)	 between	 layers	 as	852 

indicated.	Only	differential	genes	in	each	layer	(‘Set	size’,	FDR	≤	0.05;	adj.	p-value	≤	0.05;	r2	≥	853 
0.6	&	|log2FC|,	relative	to	Control,	of	≥	1)	were	considered	for	the	analysis.	854 

(B) Schematics	of	the	BioID	experiment	performed	to	discover	novel	SCRIB	partners	induced	by	855 
TGFβ	signaling.	856 

(C) Circos	plot	showing	L-R	interactions	between	the	P2	clusters.	857 
(D) UMAP	plots	of	scRNAseq	data	highlighting	the	co-expression	patterns	of	MMP7	and	CD44.	858 

Figure	S6.	Related	to	Figure	6.	Phosphoproteome	dynamics	during	EMT	859 
(A) An	outline	of	QC	pipeline	for	Phos	data	analysis.	860 
(B) Enrichment	efficiency	for	TiO2	workflow	employed	for	the	study.	861 
(C) About	74%	of	all	detected	p-sites	were	reliably	localized	(=Class	I)	by	MaxQuant.		862 
(D) Quantifications	of	p-sites	were	achieved	with	a	dynamic	range	of	106	orders	of	magnitude.	863 
(E) Proportions	of	number	of	phosphate	moieties	in	each	detected	p-site.	864 
(F) Number	of	phosphoproteins	regulated	over	the	time	course.	865 
(G) Magnitudes	of	log2FC	values	for	p-sites	over	the	time	course.	866 
(H) The	plot	 shows	all	 kinases	 ranked	according	 to	 their	KSEA	enrichment.	Mean	of	 |z-score|	867 

values	over	all	time	points	were	taken.	868 

Figure	S7.	Related	to	Figure	7.	Integrative	systems	causal	model	of	EMT	869 

(A) A	subgraph	showing	the	signaling	context	of	well-known	EMT	players	‘queried’	on	the	EMT	870 
network.		871 

(B) A	 snapshot	 of	 the	 companion	 website	 which	 can	 be	 interactively	 and	 freely	 accessed	 at	872 
https://www.bu.edu/dbin/cnsb/emtapp/.	873 
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Figure S1. Related to Figure 1
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Figure S2. Related to Figure 2
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Figure S3. Related to Figure 3
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Figure S4. Related to Figure 4
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Figure S5. Related to Figure 5
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Figure S6. Related to Figure 6
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Figure S7. Related to Figure 7
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C18orf21
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OVCA2

PPIL3
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TXN
SLC16A1

TBP

PLD1

SPAG9
CD2AP

HNRNPD

RBL2

CDH4

DDB1

NFE2L2SUPT16H

PPP2CB
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MDH1 EIF2B4
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MYO9B
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VPS53

CHCHD5

C1orf131
MUT
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C18orf25
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TXN2
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PPP2CA
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HIST3H2BB
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DIAPH1 GALE
PRPF19
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EIF4A3SRRM1

SUMO2

IMPDH2
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GABARAP

DTL

SLC35B2

TTC39B
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ACTN1

PDLIM1

ACTN4

HMGB3 MRPS25 FRMD4B
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RALY

PRRC2B

CWC25

GTF3C1

RRP12

ESYT1

PACS2
ANPEP

FAM134C
LIPA

UBE2J1
CDK14

ARHGAP32 CHSY1
KRT77

LUC7L2
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GBP1
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MAP3K7

TFE3
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TBC1D15

SMG7
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hsa-miR-137

TNS3

HPR

HBB

LDLR

HSPBP1

GPR56

PRCC

DMWD

ANXA9

GUSB
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C1GALT1hsa-miR-300FAM171A1PPP1R14B

JPH2
ACSL5

HPX

SMYD5
LRP11
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DAGLB

TRAM2MRPS11

TNFRSF12A

UBA52

PRKCSH
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PLCG1hsa-miR-612
PYGL ARPC1B

BCAP31

FAT2

ICMT
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SERPINE2
APEX1

TAB1

TGFBR1

LRRC41

TFPI

B4GALT4

RAD21 FLVCR1

ATF7IP
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Properties of the EMT network
Total number of nodes: 2217
Total number of edges: 3255
Average number of neighbor: 2.970
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