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Summary

Epithelial to mesenchymal transition (EMT) is a complex cellular program proceeding through a
hybrid E/M state linked to cancer-associated stemness, migration and chemoresistance. Deeper
molecular understanding of this dynamic physiological landscape is needed to define events which
regulate the transition and entry into and exit from the E/M state. Here, we quantified >60,000
molecules across ten time points and twelve omic layers in human mammary epithelial cells
undergoing TGFf-induced EMT. Deep proteomic profiles of whole cells, nuclei, extracellular vesicles,
secretome, membrane and phosphoproteome defined state-specific signatures and major transition
points. Parallel metabolomics showed metabolic reprogramming preceded changes in other layers,
while single-cell RNA sequencing identified transcription factors controlling entry into E/M.
Covariance analysis exposed unexpected discordance between the molecular layers. Integrative
causal modeling revealed co-dependencies governing entry into E/M that were verified
experimentally using combinatorial inhibition. Overall, this dataset provides an unprecedented
resource on TGFf signaling, EMT and cancer.

Short title

Multi-level time-resolved deconstruction of EMT program
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Introduction

Epithelial to mesenchymal transition (EMT) regulates cell plasticity during embryonic development,
wound healing, fibrosis and cancer, where polarized epithelial (E) cells dedifferentiate, transition
through intermediate hybrid states (E/M) and acquire mesenchymal (M) properties (Nieto et al.,
2016). In cancer, cells in E/M state possess several clinically important attributes of circulating tumor
cells (CTCs) and are responsible for EMT-associated stemness, chemoresistance, immune evasion
and metastasis (Dongre and Weinberg, 2019). Complete molecular characterization of E/M states,
and the mechanisms driving plasticity between E—->E/M—M transitions will enable development of
refined mechanistic models and discovery of new therapeutic strategies.

Approximately 150 genes are currently described as hallmarks of EMT (MSigDB database) that were
identified from studies measuring the expression of ‘endpoint’ markers (e.g. CDH1, MUC1, VIM, FN1)
to track the process (Sha et al.,, 2019). Although EMT is frequently studied as a transcriptionally-
driven program (Yang et al., 2020), the poor correlation between genomic alterations or mRNA levels
and proteins in tumors (Liu et al., 2016) highlights the need for multi-level analysis. Furthermore,
EMT is likely an emergent phenomenon, where the shifts in cell physiology and phenotype are
orchestrated by intra- and extra-cellular signaling (Sigston and Williams, 2017), extensive receptor-
ligand crosstalk, protein relocalization (Hung and Link, 2011) and metabolic adaptations (Thomson
et al, 2019) that requires an integrated multi-omic approach. However, most attempts made to
model EMT primarily invoked gene-regulatory networks (GRNs) controlled by key transcription
factors (TFs) and miRNAs. These models are usually based on a restricted number of factors and thus
do not capture the multi-layered architecture of signaling during EMT (Hong et al., 2015; Zhang et al,,
2014). To date, no EMT-focused studies have simultaneously measured metabolite and gene
expression changes at different functional levels (e.g., mRNA, total protein, nucleus, secretome, etc.).

Consequentially, several aspects of EMT remain unclear. This includes dependencies between
molecular layers, secreted molecules, and specific signatures at various stages of EMT, kinetics and
scope of metabolic reprogramming, dynamics of subcellular protein localizations and ligand-
receptor mediated intercellular crosstalk. To bridge these gaps, we employed multiple high-
throughput platforms including microarray, scRNAseq and precision mass spectrometry (MS) to
quantify molecules spanning 12 distinct layers of biological information. Our ability to integrate this
information allowed us to define signatures of E/M states and identify molecular regulators of key
transition points.
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93  RESULTS

94 A comprehensive resource on TGF@-induced EMT

95  The human mammary epithelial cell line MCF10A is widely used to study TGFf (transforming growth

96  factor ) induced EMT. To generate temporal expression maps of evolving EMT landscape, cells were

97  treated with TGFf (TGF-f1; 10 ng/mL) over 12 days (0, 4 hrs, 1-6, 8 & 12 days), spanning multiple

98  ‘omics’ layers and employing complementary technologies (Fig. 1A-B, Fig. S1A-C). After stringent

99  quality control (see STAR Methods), we report nanoLC-MS/MS-based quantifications (Fig. 1C,
100  Table S1) of 6,540 whole cell (WC), 4,198 nuclear (Nuc), 2,223 plasma membrane (Mem), 1,209
101  extracellular vesicle (EV) and 1,133 secreted (Sec) proteins. Using a serial enrichment workflow (see
102  STAR Methods) we also quantified the total phosphoproteome (Phos; 8,741 high-confidence sites on
103 2,254 proteins; including 6,975 Ser, 962 Thr and 140 Tyr residues), N-glycoproteome (Glyco; 549
104  proteins), acetylome (Acet; 349 sites on 165 proteins) and peptidome (Pep; 547 peptides from 202
105  proteins). For proteomics, samples for ten time point were multiplexed using isobaric tandem mass
106  tags (TMT-10), enabling higher throughput and robust comparisons. In addition to proteins, we
107  tracked cellular metabolism in the same samples by nanoLC-MS/MS-based untargeted
108  metabolomics, quantifying 4,259 HMDB-indexed endogenous small molecules (Metabol).
109  Furthermore, we measured 23,787 gene transcripts (mRNA) and 2,578 microRNAs (miRNA) using
110 microarrays. To assess cellular heterogeneity, we employed scRNAseq to quantify transcriptomes of
111 1,913 individual cells (>200 cells per time point) undergoing EMT. In total, this study provides
112 temporal quantifications of >60,000 proteins, phosphosites, mRNAs, miRNAs, and metabolites
113 combined, in addition to 9,785 mRNAs in scRNAseq dataset (Fig. 1C).

114 Subcellular enrichments were performed using previously established MS-compatible protocols (see
115  STAR Methods), yielding high purity as determined through keyword matching against a cellular
116  compartment annotation database (Fig. S1D). Quantitative reproducibility across the 3 biological
117  replicates was excellent (Fig. S1E). The expression profiles in Fig. 1D provide a snapshot of
118  concurrent changes of a given gene over various layers during EMT. We reproduced expected
119  expression behavior for many established markers of EMT, including an increase of M markers VIM,
120  CDH2 and concomitant decrease of E markers SCRIB, MUC1.

121  Using strict criteria for differential expression (Benjamini-Hochberg adj. p-value < 0.05; r2 = 0.6 &
122 |log2FC| = 1) we identified >10,000 significantly regulated molecules (Table S2). We found that
123 molecular abundances were highly variable across layers and time points (Fig. S1F) and all layers
124 contributed significantly to the overall variation in the system (Fig. 1E). While each layer showed
125  substantive alterations, the magnitudes (Fig. S1G), response profiles (Fig. 1F) and fraction of
126  differentially expressed molecules (Fig. 1G) of each omic data set during the time course varied
127  significantly. These findings provide direct evidence for global reorganization of cell physiology
128  during EMT. For example, Phos and Sec showed the highest fractional change (36% & 40%,
129  respectively) (Fig. 1G), suggesting extensive intra- and extra-cellular signaling during EMT (Scheel
130  etal, 2011). As such, this study is the largest experimental description of EMT till date and adds new
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131  depth to our current understanding of TGF@ signaling and EMT (Fig. 1H, I).
132

133  Integrative multi-tiered topology of EMT reveals key transition points and identifies
134  molecular drivers

135  Although E—M progression is considered a continuum, the existence of E, hybrid E/M, and M states
136  have been reported for MCF10A cells (Zhang et al., 2014), and cancer tissues (Liu et al., 2019;
137  Pastushenko et al., 2018). Using a phylogenetic clustering approach (Hughes and Friedman, 2009)
138  we estimated ‘distances’ between time steps to understand the transition kinetics (Fig. 2A). We
139  observed that up to 24 hours cells maintained their parental E type, while day 2 marked a swift exit
140  from E, and entry into E/M which continued through Day 5, after which cells gradually entered the
141 M state. Cells in day 2 to 5 can be further sub-divided into E/M-1 (Day 2/3, late E) and E/M-2 (Day
142 4/5, early M) states. These cellular reconfigurations agreed with principal component analysis of
143 individual layers, such as Mem, Phos and WC (Fig. S2A).

144 Our observations suggest a distinct and complementary role for each molecular layer in shaping the
145  transition (Fig 2B, Fig 1E-G, Fig S1F, G). Although, the topology was generally correlated (Fig. 2C),
146  pairwise coefficients of determination (adj. R?) revealed an unexpectedly low concordance between
147  total proteins and other proteomic layers (mean R? ranging from 0.015 for Acet to 0.299 for Glyco)
148  (Fig. 2D, Upper panel). The discordance was even stronger between mRNA and various proteomic
149  layers (mean R? ranging from 0.011 for Pep to just 0.109 for WC) (Fig. 2D, Lower panel), which
150  increased further with EMT progression. Collectively, these observations illustrate that at a systems
151  level mRNA quantity is a poor proxy of protein abundance. Even total protein quantity is an
152  unreliable predictor of post-translational modifications or subcellular trafficking, which ultimately
153  determines signaling output.

154  Next, we modeled the regulatory patterns of molecules using a 3-step computational workflow. First,
155  weused aregression strategy for time-course measurements (Conesa et al., 2006) to remove residual
156  noise (time dimension) and non-reliable (replicates) components. Second, an unsupervised machine
157  learning approach (self-organizing maps, SOMs) (Wirth et al., 2012) was applied on the retained
158  molecules to generate time-point specific SOM portraits (Fig. 2E, Fig. S2B-D, see STAR Methods for
159  details). SOMs are a powerful integration tool for diverse global datasets to extract underlying
160  patterns of co-regulation (Tamayo et al., 1999). Third, we performed pathway enrichments of these
161  SOMs to elucidate the overarching functional themes at each time-step of EMT (Fig. 2F).

162  SOMs traced the temporal unfolding of the transition and provided molecular fingerprints of each
163  time-step. Molecules ranking high (top 1% i.e., rank < 250 & log2FC = 1) with SOMs for control to day
164 1 (430 unique molecules) primarily included proteins characteristic of an E state (Fig. 2E, Table S3),
165 such as, ACTG1 (Mem; establishes cell junctions and shape) and EPHB2 (Glyco; regulates
166  angiogenesis, contact dependent adhesion and migration; tumor suppressor). SOMs for days 6-12
167 (252 unique molecules) contained known M markers, e.g., CALD1, CDH2, FLNA, FN1, FSTL1, LGALS1,
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168  NT5E, TAGLN, TPM1, TPM2, TPM4 and VIM. This group also included molecules with established
169  roles in cancer and EMT, including miR-5189 (miR; targets ARF6 which internalizes CDH1), CALR
170 (Acet; Lys 62; calcium homeostasis, promotes metastasis, imparts resistance to anoikis), ALCAM
171 (Nuc; prognostic marker in multiple cancers linked to nuclear translocation of -catenin and
172 stemness), ARHGAP33 (Sec; regulates intracellular trafficking), RAPGEF5 (Sec; promotes nuclear
173  translocation of $-catenin) and SOCS3 (Phos; Thr 3/13; E3 ligase, E3 ligase inhibiting TGF{ signaling).
174  As suggested in Fig 2A, the first major shift, E->E/M, occurred at day 2 and was likely driven by
175  molecules peaking at its corresponding SOM (95 molecules) such as miR-675-5p/H19 (miR; induces
176  HIF1la, SNAIL activity), LTBP1 (Sec; master regulator of integrin-dependent TGF{ activation) and
177  CD44 (Sec; signal transduction). Notably, many of the molecules identified in the SOM analysis, to our
178  knowledge, have not been previously linked to TGFf signaling or EMT, presumably because they do
179  not show clear changes in mRNA or WC but in ‘other’ molecular layers, such as EV or Sec (Fig. S2E).
180  This contrasts with most MSigDB hallmarks of EMT for which we captured clear transcriptional
181  profiles (Fig. S2F).

182  Gene-set enrichment analysis using active subnetworks which yields more robust inferences than
183  traditional approaches (Ulgen et al.,, 2019), identified 237 significant pathways (Fig. 2F, Table S3),
184  discretized across sequential steps of EMT. For example, ‘Beta oxidation of hexanoyl-CoA to butanoyl-
185  CoA’ declined as cells leave E and enter E/M, indicating reprogramming of mitochondrial fatty acid
186  B-oxidation, consistent with a metastatic phenotype (Ma et al, 2018). Conversely, ‘RHO GTPases
187  mediated activation of ROCKs/PAKs/IQGAPs’ increased as cells leave E/M and enter M, suggestive of
188  their key role at this stage of EMT (Ungefroren et al., 2018). The E/M specifically were associated
189  with migration-associated pathways such as ‘anchoring fibril formation’, ‘ECM proteoglycans’ and
190  ‘laminin interactions’, consistent with their shared property with CTCs.

191  Overall, we catalogued complex kinetics of thousands of molecules spanning multiple molecular
192  layers during EMT. Importantly, we identify critical transition points during EMT and predict
193  signatures specific to each stage, e.g., E/M, with potential clinical value.

194

195 Metabolomics reveals Kkinetics and predicts novel enzyme-metabolite associations

196  TGFf regulates Warburg effect in cancer cells, but may also regulate other metabolic pathways with
197  implications for cancer management (Hua et al.,, 2019). Active subnetwork analysis of WC and Phos
198  datasets identified 13 enriched KEGG metabolic pathways during TGFf-induced EMT (Fig. S3A).
199  Notably, significant enrichment (p-value < 0.05) for any pathway was only observed after day 2 and
200  included processes such as steroid hormone biosynthesis (SHB), sphingolipid metabolism and (SLM)
201  glycosaminoglycan degradation (GMGD). To evaluate these gene-centric inferences of metabolic
202  phenotypes, we directly profiled intra-cellular small molecules by applying an optimized untargeted
203  metabolomics workflow to the same set of samples. Using stringent criteria (see STAR Methods), we
204  quantified >4,000 putative HMDB-compounds covering a wide range of chemical classes (Fig. 3A).
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205  Using phylogenetic clustering (Fig. 3B) and SOM analysis (Fig. 3C) driven solely by the Metabol
206  dataset, we observed the E—E/M transition as early as 4 hours, followed by another transition after
207  day 1. This indicates rapid modulation of cellular metabolism by TGFf, preceding changes in most

208  other layers. The E/M—M transition occurred around day 5, in line with the integrative analysis.

209  To glean further insights, we performed integrative network analysis of metabolite SOMs with
210  differential molecules in WC and Phos using MetaboAnalyst (Chong et al., 2019) (Fig. 3D). This
211  analysis reiterated several enriched pathways predicted with protein expression alone, e.g., SHB,
212 SLM, GMGD, glycerophospholipid metabolism (GPLM) and lysine degradation (LD) (Fig. S3A).
213 However, integration of metabolite and protein data within the framework of metabolite SOMs
214  revealed pathway activities representative of key transition steps of EMT driven primarily by
215  corresponding metabolite signatures (Fig. S3B-D). Indeed, we observed that arachidonic acid
216  metabolism (AAM), GPLM and LD pathways were activated within 4 hours of TGFf stimulation,
217  which was not captured by gene-set analysis. Consistent with observations in Fig 2F, processes such
218  asfatty acid metabolism, SHB and SLM appear after day 2, as cells prepare for a metastatic phenotype
219  (Koundouros and Poulogiannis, 2020).

220  Pairwise-correlation based integration of metabolite profiles with proteomics measurements from
221  the same samples could enable mechanistic predictions and aid discovery of novel players. To
222 explore this, we chose AAM as an example. Arachidonic acid is an omega-6 fatty acid stored as
223  membrane phosphoglycerolipid. Its cytosolic release enables stoichiometric chain reactions and
224 results in >100 functionally diverse compounds (Hanna and Hafez, 2018) impacting processes such
225  as redox state, proliferation, apoptosis and chemotaxis (Tallima and El Ridi, 2018). We computed
226 Pearson’s correlations between abundance of KEGG-annotated enzymes, in WC and Phos, and
227  metabolites of AAM pathway, in Metabol, quantified at SOM for 4 hours to day 1 (Fig. 3E, F). Overall,
228  we found that metabolites mapping to AAM either rapidly increased and then stabilized (Cytochrome
229 P450, CYP450, branch) or showed a delayed but consistent increase over the time course
230  (Cyclooxygenase, COX, and Lipoxygenase, LOX, branches) (Fig. 3G), suggesting fine-tuned regulation
231  of the different branches. Encouragingly, our enzyme-metabolite association map identified
232 PLA2GA4A, the rate-limiting phospholipase of AAM pathway (Hanna and Hafez, 2018), among the top
233 candidates (Fig. 3F). Interestingly, correlation and expression profiles of PLA2G15, another
234  phospholipase, (Fig. 3E-G) indicated a potential enzyme-mediated switch from CYP450 to COX/LOX
235  branches during E5E/M.

236 Overall, these observations reveal the kinetics of metabolic reprogramming during TGFf induced
237  EMT. We found metabolites and protein signatures coordinating processes such as AAM, GPLM and
238 LD during key stages of the transition. We also demonstrate how our enzyme-metabolite correlation
239  map could be used as a resource to predict novel enzymes for observed metabolic changes.

240
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241 scRNAseq analysis reveals heterogeneous responses to TGFB and novel
242  transcriptional regulators of EMT

243 scRNAseq studies in murine epithelial Py2T cells treated with TGFB (Krishnaswamy et al., 2018),
244 MCF10A cells undergoing confluence-dependent EMT (McFaline-Figueroa et al, 2019) and LPS-
245  induced EMT in alveolar epithelial cells (Riemondy et al., 2019), provided valuable insights into EMT.
246  However, a temporal analysis of TGFB-induced EMT to understand the transition states has not been
247  reported.

248  After quality control, we retained 1,913 single cells with a combined depth of 9,785 genes (Fig. S4A,
249  Table S1). As anticipated, many of the top expressing genes (TGFB1, TPT1, KRT6A, TMSB10, MT2A)
250  are key players in EMT (Fig. S4B). Interestingly, similar to many primary human tumors (Puram et
251  al, 2018), we did not observe an explicit loss of several classical E markers at the transcript level
252  (Fig. 4A, Fig. S4C), suggesting post-transcriptional regulation, a strategy which could be
253  energetically economical for tumor cells (Lambert et al., 2017).

254  To understand the stages of cell differentiation, we took advantage of the multiple time points in our
255  dataset (as opposed to a ‘pseudo-time’), and identified 20 cell clusters in 3 disjoint partitions, using
256  Monocle3 (Fig. 4B, Fig. S4D). Partition P2 (12 clusters) represents the primary EMT axis while P1/P3
257  predominantly expressed genes related to cell cycle (Fig. S4E) and were ignored for further analysis.
258  We observed that C3 responded strongly to TGFf (Fig. 4C), C4/6 resisted EMT, C5/C8 are the
259  ‘transition’ states and C13/14 represented terminal M cells (in terms of hallmark M markers; Fig. 4C,
260  rightpanel). Examining clusters C9/18/19 which were composed of cells from nearly all time points,
261  suggests presence of stable M-type cells in MCF10A populations and appears to be at transcriptional
262  impasse for TGFp signaling. Notably, using scRNAseq, we could observe an E—E/M transition, but

263  the E/M—M transition, as revealed by integrative analysis, was not clear.

264  To explore the underlying gene expression program, we used hierarchical clustering to group the
265  individual clusters into 6 subtypes (Fig. 4C) and employed SCENIC (Aibar et al., 2017) to infer TFs
266  and GRNs underlying these subtypes (Fig. D-F; Table S5). For each subtype, we identified several
267  unique (Fig. 4E) or highly active TFs (Fig. 4F), including both established and novel players. Several
268  TFs implicated in EMT (TWIST2, FOXK2, ZEB1, ID2, MSX1, ING4) were over-represented in S4-S6,
269  which corresponds to later stages of EMT. In contrast, direct evidence of mechanistic links of TFs
270  enriched in early stages of EMT (i.e., S3, S4) are lacking, indicating gaps in current EMT models. Using
271  human TF-binding arrays (see STAR Methods, Fig. 4G) we confirmed elevated activity of three S3
272  TFs, GLIS2, SP1 and ZNF266 upon TGFf induction (Fig. 4H). In addition to providing experimental
273  evidence to our predictions, the TF-binding array also revealed several other TFs potentially playing
274  important roles at the early stages of EMT (Fig. 41I).

275  Overall, we provide a high-resolution temporal map of gene expression programs of individual cells
276  as they respond to TGFf signaling and undergo EMT. More generally, our data suggests that most
277  transcriptional changes occur at early time points (also Fig. 2D, Lower panel), followed by further
278  adaptations driven predominantly by post-transcriptional mechanisms.
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279

280  Spatial regulation of proteins and inter-cellular communication during EMT

281  Regulation of protein distribution is a crucial signaling mechanism (Ferrell, 1998), but remains
282  insufficiently understood in EMT. The average Pearson’s correlation between proteins quantified in
283  multiple cellular compartments (CCs) ranged between r = 0.12 to 0.58 indicating fine-tuned
284  regulation of protein distributions (Fig. 5A). We found 3,965 proteins localizing to =2 CCs (Fig. S5A),
285  which we categorized into 2 classes as follows: Class I proteins (1,424) displayed a correlated trend
286  (r=0.4) consistently across all CC pairs suggesting regulation primarily at or before the translation
287  step (Fig. 5B, C; Table S5). Class II proteins (1,205) displayed anti-correlated trend (r < -0.4)
288  between any two CCs, implying active post-translational control of their asymmetric distributions
289  (Fig. 5D, E; Table S5).

290 The Bromodomain and ExtraTerminal (BET) cofactors, BRD2 and BRD4, were identified as Class II
291  proteins (Fig. 5F). Using TF-binding arrays, we verified enhanced global recruitment of BRD4, but
292 not two other cofactors, p300 and LSD1, (Fig. 5G) indicating its specific role during EMT. Indeed,
293  treatment with a selective BET inhibitor JQ-1 suppressed EMT (Fig. 5H). Another notable Class II
294  protein was SCRIB (Fig. 5I), which regulates apical-basal polarity and directional migration by acting
295  asamolecular scaffold through protein-protein interactions (PPIs) (Bonello and Peifer, 2019). Using
296  anin vivo proximity ligation (BioID) screen of SCRIB ((Fig. S5B, see STAR Methods), we identified
297  multiple novel interactors (Table S6) of which many have known roles in EMT (Fig. 5]). Using
298  immunoprecipitation, we verified interactions of SCRIB with SNAP23 and ARHGEF7 (Fig. 5K).

299  Subtypes within a cell population can differ in their capacity to send and receive signals, with
300  implications for metastasis and drug resistance (Kim et al., 2018; Tabassum and Polyak, 2015). To
301  map the inter-cellular communication between subgroups of cells during TGFf-induced EMT, we
302  integrated proteomics and scRNAseq data to perform a systems-wide survey of ligand-receptor (L-
303  R)pair mediated crosstalk (Fig. 5L). First, using a database of >2,500 curated binary L-R interactions
304  (Ramilowski et al,, 2015), we searched for pairs of L and R in our Sec and Mem/Glyco datasets,
305  respectively, assuming that co-directional expression changes in L and/or R of a pair (FDR adj. p-
306  value < 0.05 and combined L-R |log2FC| =1) can indicate biological role. Currently, at least two L-R
307  pairsare implicated in TGFB-induced EMT (Heldin et al., 2012). Our analysis detected 67 upregulated
308 and 12 downregulated L-R pairs at any given time point following TGFf treatment (Fig. 5M, Table
309  S7). Notably, none of these pairs have been directly implicated in TGFf3 signaling or EMT, although
310  individually many of the identified L or R occur frequently in the context of EMT and/or cancer. For
311  instance, LAMC2 with its 7 receptors (CD151, COL17A1, ITGA2, ITGA3, ITGA6, ITGB1, ITGB4) exhibit
312  significant alteration during EMT. LAMC2 is overexpressed in cancers (Garg et al., 2014) and its
313  silencing can reverse EMT (Pei et al., 2019). The cognate receptors, CD151, ITGA3, ITGA6 and ITGB1
314  synergize with TGF@ signaling to promote metastatic behavior (Pellinen et al,, 2018; Sadej et al.,
315 2010; Shirakihara et al., 2013; Zhang et al., 2017).

316  Next, by systematically comparing the expression patterns of L & R (identified above) among the 16
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317  clusters (identified in our scRNAseq dataset), we obtained cell-cell communication networks (sender
318  — receiver) (Fig. 5N, Fig. S5C, Table S7). For example, C13 cells, which appeared at day 3 and
319  showed highest M genes expression (Fig. 4C), produced the receptor CD44 to its cognate ligand
320 MMP7 expressed by C17 (Fig. S5D). Together, this suggests that communication between cell
321  subgroups (C17:MMP7 — C13:CD44) may exist during EMT which might have potential ramifications
322  for tumor growth. Interestingly, our analysis suggests a global switch in cell surface proximal
323  signaling cascades at day 2, corresponding to E—>E/M transition, and likely modulating processes
324  characteristic of E/M cells, e.g., migration (e.g.,, FN1-ITGB6) and stemness (e.g., TIMP2-ITGA3).

325  As independent corroboration, several identified L-R pairs showed strong correlation (Fig. 50) in
326 human breast invasive carcinoma samples (Cancer Genome Atlas Network, 2012; Cerami et al,,
327  2012). Notably, a slightly stronger correlation between the L-R pairs was observed with CPTAC
328  proteomics data than with TCGA mRNA datasets.

329  Our study provides a comprehensive analysis of TGFB-triggered subcellular trafficking as cells
330  undergo EMT. Such translocations, potentially driven by differential PPI, could mediate the tight
331  coordination between functional modules (e.g., SCRIB complex) and EMT phenotypes such as
332 cytoskeletal rearrangement. We also uncovered novel cell-cell communication pathways via L-R
333 interactions in driving EMT, representing an untapped clinical opportunity.

334

335 Modeling phosphoproteome dynamics during EMT reveals Kinase susceptibilities

336  Phosphoregulatory mechanisms are a key aspect of TGFf signaling and EMT. We confidently
337  quantified 8,741 phosphosites (p-sites; 6,975 Ser, 962 Thr and 140 Tyr residues) (Fig. S6A-C) over a
338  dynamic range of 106 orders of magnitude (Fig. S6D), and phospho-STY frequencies (Fig. S6E) in
339  line with previous reports (D’Souza et al., 2014) mapping to 2,254 proteins (Fig. S6F). Of all p-sites,
340 3,138 (35.8%) were differentially regulated in at least one time point (Fig. S6G). At protein level,
341 different patterns of regulation were noted; some proteins, such as DEK, VIM and MISP, were
342 regulated at ~90% of detected sites, some proteins, such as CAV1, CAMK2 and GOLGA1, showed a
343  ~50% mixture of regulated and unregulated sites, while others such as AHNAK, PML and BCLAF1
344  showed ~2% differential sites (Fig. 6A). Interestingly, the fraction of regulated p-sites in several
345  proteins, e.g., VIM, increased with EMT progression (Fig. 6B).

346  We observed that in ~50%, p-sites dynamics were not explained (r < 0.4) by a corresponding change
347  at the protein level (Fig. 6C, D). Interestingly, for ~26%, a directionally opposite change between
348  phosphorylation and the corresponding protein abundance was noted (r < -0.1), suggesting effects
349  on protein stability. Phospho-regulated proteins were enriched for ‘nucleus’, ‘cytoskeleton’ and ‘focal
350  adhesion’ annotations (Fig. 6E) reflecting the importance of CC remodeling during EMT.

351  We also computed correlations between nuclear localization profiles (Nuc) and phosphorylation
352  Kkinetics (Phos) of individual proteins (Fig. 6F, G). For instance, phosphorylation of MICAL3 at T684
353  and S685 regulates CSCs by promoting symmetric division (Tominaga et al,, 2019). The pattern of
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354  phosphorylation of MICAL3 at residues T684, S685 and S687 (Fig. 6D, MICAL3) which are located at
355  the consensus NLS motif suggests a role in regulating nuclear translocation of MICAL3 at E->E/M
356  transition. Indeed, the bipartite NLS motif of MICAL3 interacts with Importin-a and the p-sites T684,
357  S685, S687 are directly adjacent to the binding interface (Fig. 6H).

358  To analyze stage-specific kinase activities we generated a ternary model which distinguishes active
359  kinases into 3 broad stages (i.e., E, E/M, and M) of EMT (Fig. 61). An example that illustrates the utility
360  of this model are AKT isoforms that have distinct and opposing roles during cancer development
361 (Hinz and Jiicker, 2019). We predict AKT1 is strongly associated with the E-stage, which is consistent
362  with its role in maintaining the E phenotype (Li et al., 2016). In fact, depletion of AKT1 in MCF10A
363  cells promoted TGFB-induced E—-E/M transition (Iliopoulos et al., 2009). Our model further predicts
364  key roles for AKT2 and AKT3 at E/M—M transition. Indeed, AKT2 and AKT3 were associated with
365  tumorinvasiveness, stemness and sensitivity to drug treatment (Chin et al., 2014), key characteristics
366  of the E/M populations (Dongre and Weinberg, 2019). Among several other kinases (Fig. 6], Fig.
367  S6H), our ternary model predicted key roles for PRKCA and AURKB at the junction of E->E/M and
368  E/M—M transitions. PRKCA is reportedly a hub and therapeutic target for EMT-induced breast CSCs
369  (Tametal, 2013). Similarly, inhibition of AURKB was found to reverse EMT and reduce breast cancer
370  metastasis in vivo (Zhang et al., 2020).

371  Overall, we reveal the rich intricacies of the phosphoregulome during EMT, identified functional p-
372  sites, predict novel kinase susceptibilities, and provide a mechanistic framework to enhance
373  understanding of the signaling mechanisms during EMT.

374

375 Integrative systems causal model of EMT identifies mechanistic vulnerabilities

376  Systems biology approaches that combine multiple molecular types (proteins, mRNAs, miRNAs,
377  metabolites) into a framework of established knowledge allow for a rich assessment of a biological
378  context (Hawe et al, 2019). Using experimentally validated functional priors (compiled from
379  ENCODE, PhosphoSitePlus, SignaLink 2.0, SIGNOR 2.0, HINT, miRTarBase and MetaBridge), we
380  combined causal inference and PCSF (Prize Collecting Steiner Forest) (Akhmedov et al., 2017) to
381  construct hierarchical mechanistic models of the EMT program (Fig. 7A, see STAR Methods). The
382  final ‘EMT network’ comprised of 3,255 edges connecting 2,217 molecules, including 723
383  kinase/phosphatase-substrate, 1,407 TF-target, 746 miRNA-target and 31 metabolite-gene
384  interactions.

385  One of the potential applications of the EMT network is to discover signaling paths from TGFBR1/2
386  to any gene(s) of interest within the network. As a demonstration, we queried several EMT-
387  associated genes (FN1, MMP7, CD44, SCRIB, TWISTNB, ZEB1, SNAI2) and recovered previously
388  known and unknown paths to them putatively active at multiple stages of EMT (Fig. S7A). Next, to
389  identify key factors driving EMT, we performed ‘controllability’ analysis (Vinayagam et al., 2016) to
390  identify controllers (nodes) exerting a significant influence on EMT network topology. Not
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391  surprisingly, a few of them are established key regulators of metastasis (Fig. 7B). Unlike controllers,
392  however, the non-controller nodes were poorly represented in EMT literature (Fig. 7C), again
393  highlighting gaps, and potentially identifying new regulatory processes. Survival analysis against a
394  large publicly available dataset of primary breast cancers with long-term patient outcomes (Cancer
395  Genome Atlas Network, 2012) showed a significant association between tumors with altered
396  expression of these controllers and shortened overall survival (Fig. 7D).

397  We queried the EMT network to identify signaling contexts in which these controllers are active at
398  various key stages of EMT, which could also provide clues into mechanistic vulnerabilities (Fig. 7E).
399  As cells are stimulated with TGFf3, the TFs SMAD2 and SMAD3 are activated, as expected. Another
400  earlyresponder was RHO GTPase RAC1, an effector of both KRAS (Wu et al.,, 2014) and TGFf signaling
401 (Ungefroren et al., 2018), suggesting potential crosstalk. The downstream effector of RAC1, MAPK14
402  (p38 MAPK), was also regulated early in EMT, suggesting cooperation between RAC1 and MAPK
403  pathways (Santibafiez et al., 2010). Our model suggests SMAD3 regulates two other TF hubs, CEBPB
404  (CCAAT/enhancer-binding protein ) and FOXA1. Loss of CEBPB reportedly switches TGFf signaling
405  from growth-inhibiting to EMT-inducing (Johansson et al., 2013), while FOXA1 is reportedly a key TF
406  during EMT (Wang et al,, 2013). We observed that STAT3 is suppressed at later stages of EMT. A
407  recentstudy in KRAS-driven lung and pancreatic cancer found that STAT3 is required for maintaining
408  the E state and is lost during acquisition of M phenotypes (D’Amico et al., 2018).

409  The EMT network directly predicts novel avenues for blocking EMT. To assess this, we performed a
410  morphometry-based screening where we treated MCF10A cells with TGFf3 in combination with drugs
411  which were predicted to inhibit several of the controllers active at E>E/M transition (Fig. 7F, see
412  STAR Methods). Our analysis using a custom-built (Ochs et al., 2019) and publicly accessible image
413  analysis software GENIMASEG (Fig. 7F) showed significant efficacy of LB100+Barasertib,
414  LB100+PP1 and Sonidegib+Autocamtide in reverting the elongated phenotype of EMT-induced cells
415  (Fig. 7G), thus providing direct experimental evidence to our predictions. Using a biomimetic 3D
416  mammary duct-on-a-chip platform (Kutys et al., 2020), we further observed that combinatorically
417  inhibiting SMO and CAMK-II (Sonidegib+Autocamtide) inhibits invasion driven by the PI3K variant,
418  PIK3Cat1047R, which is associated with chemo-refractoriness in a subset of triple negative BrCa
419  patients (Janku et al,, 2013).

420  Overall, our EMT network recapitulates known signaling pathways, uncovers novel routes of
421  information flow to known regulators of EMT, identifies new signaling players and pathways, makes
422  substantial and provocative novel predictions and reveals cohesive time-resolved regulatory
423  patterns and mechanistic links between both controllers and non-controllers.

424
425 DISCUSSION

426  EMT and cancer are emergent systems (Sigston and Williams, 2017) wherein progression through
427  various stages is regulated by intricate networks of intra- and extra-cellular signaling within and
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428  between cells. The key to understanding such complex biological phenomena are establishing
429  experimental workflows that integrate multiple tiers of biological information (Karczewski and
430  Snyder, 2018).

431  Discussions on EMT are often guided by the Waddington metaphor of a ball (=cell) rolling over a
432 phenotypic landscape, which is dynamically shaped by multiple parameters: topologies of signaling
433 networks, molecular stochasticity, extraneous cooperating and opposing forces (e.g, EMT inducing
434  and/or inhibitory ligands, interaction with other cells) (Li and Balazsi, 2018). By integrating several
435  molecular layers, SOMs and ‘neighbor joining’ approaches revealed the Kkinetics of cell-fate
436  transitions and major phenotypic switch points driven by TGFf. Several studies have indicated
437  molecular and phenotypic granularity in EMT continuum and suggested existence of discrete
438  metastable E/M (Sha et al,, 2019). Many current EMT markers are biased toward the later stages of
439  EMT, when the process is approaching completion (Song et al., 2019). Consequently, the molecular
440  nature of E/M is still poorly understood. Our time-course integrative SOM allowed us to trace the

441  temporal unfolding and uncover the molecular nature of the E—>M transition.

442  While previous omics studies have measured either one or two molecular layers to describe EMT,
443  our multi-tiered datasets enabled the discovery of several new aspects of EMT which were not
444 captured by previous approaches. For example, the correlation between mRNA and proteins were
445  weak. Strikingly, correlations between the various proteomics layers were also found to be quite poor,
446  indicating that systems behavior cannot readily be extrapolated by any single layer (e.g., mRNA or
447  total proteome), but instead needs an integrated analysis of several molecular layers. We show that
448  TGFB-induced EMT is only partially driven by transcription, where several E genes are repressed
449  only post-transcriptionally, while transcripts of M genes are upregulated but mostly during earlier
450  time points. At later stages, post-translational mechanisms become more prominent in driving the
451  process, suggesting that the regulatory control of EMT may be more flexible than previously
452  appreciated. Similarly, our results also predict the mechanistic importance of protein subcellular
453  localization during EMT. A comparison of proteins detected in EV, Sec, Glyco, Mem and Nuc indicated
454  extensive regulation of protein localizations. Further, previous studies on EMT have largely focused
455  on cell-autonomous signaling, whereas multiple inter-cellular signaling mechanisms are evident
456  from our integrative analysis. Indeed, we found both EV and Sec to be extensively regulated during
457  EMT. Once considered as cellular ‘garbage bins’, their active participation in signaling and crosstalk
458 s increasingly recognized (H. Rashed et al, 2017). Our results demonstrating limited qualitative
459  overlap between EV and Sec hint at a potentially overlooked mechanistic distinction and provides
460  opportunities for new biological insights. We utilized our Mem, Glyco and Sec datasets to provide a
461  repertoire of 79 putative new L-R pairs with potential roles during EMT, which should be validated
462  in future studies. By combining these results with the scRNAseq profiles, we were able to define an
463  extensive network of inter-cellular communications.

464 In conclusion, we have established a comprehensive multi-tiered molecular landscape of TGFf-
465  induced EMT. This study aims to provide a valuable resource which is accessible through an
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466 interactive website (https://www.bu.edu/dbin/cnsb/emtapp/) (Fig. S7) and will strongly
467  complement hypothesis-driven research with direct implications for epithelial cancers.
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62 Main figure legends

683  Figure 1. A multi-dimensional resource on TGFB-induced EMT

684 (A) MCF10A cells exposed to TGFf for indicated time points were used to study the molecular
685 landscapes during EMT.

686 (B) Samples from 3 biological replicates were aliquoted and multiple technologies were
687 employed to quantify various molecular layers.

688 (C) An overview of numbers of molecules quantified in various layers.

689 (D) Expression snapshots of some well-known EMT markers. Heatmaps show log2FC values
690 (relative to Control, adj. p-value < 0.05).

691 (E) Variance explained by each layer over 4 principal components.

692 (F) Ridge plot showing differential molecules, as % of total quantified, for each layer.

693 (G) Pie chart showing the overall fraction (in %) of differential molecules (yellow portion)
694 relative to all molecules quantified in each layer.

695 (H) Overlap between established EMT databases (MSigDB, www.gsea-msigdb.org; dbEMT?2.0,
696 http://dbemt.bioinfo-minzhao.org) and differential proteins and miRNAs (adj. p-value < 0.05;
697 r2 2 0.6 & |log2FC| = 1) from this study.

698 (I) Differential molecules (proteins, miRNAs, metabolites) were used to assess the number of
699 coherent functional modules, i.e., known interactions between molecules, by employing the
700 Prize-Collecting Steiner Forest algorithm on a network compiled from PathwayCommons,
701 miRTarBase and STITCH.

702 Figure 2. The topological architecture of EMT

703 (A) Phylogenetic neighbor-joining tree reveals similarities (=distances) between time points.
704 (B) Combined pseudo-eigenvalues space of all datasets, indicating the contribution of each
705 dataset to the eigenvalue (variance).

706 (C) Matrix correlations between each pair of datasets.

707 (D) Line plots show the distribution of adjusted coefficient of determination (R?) values between
708 layers as a function of time points.

709 (E) Left panel. SOM portraits. Color gradient refers to over- or under-expression of metagenes in
710 each time-point compared to the mean expression level of the metagene in the pool of all time
711 points: red = high, yellow/green = intermediate levels and blue = low (see STAR Methods for
712 details). Middle panel. Representative examples that appeared among the highest-ranking
713 features (top 1%) in each time-point. Right panel. Barplot shows the number of features that
714 were contributed by each layer among the highest-ranking features (top 1%) in time-point.
715 (F) Heatmap depicts sample-wise pathway scores, which were derived from enrichment analysis
716 of active subnetworks using the highest-ranking molecules (top 1%) for each SOM.

717  Figure 3. Dynamics of TGF@-induced metabolic adaptations

718 (A) Barplot showing the ‘class’ distribution of quantified metabolite features in HMBD. Also
719 shown are the relative proportions of differentially expressed features for each class (p-value
720 < 0.01, absolute log2FC = 1).
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721 (B) Neighbor-joining tree for the Metabol dataset.

722 (C) SOM analysis of the Metabol dataset.

723 (D) Top 10% of metabolite features of each SOM were grouped based on clusters in 'B* and used
724 for “Network analysis” using MetaboAnalyst (https://www.metaboanalyst.ca).

725 (E) Identified metabolites of AAM pathway in SOM for 4 hours to day 1 were taken and Pearson’s
726 correlation computed with known metabolic enzymes (KEGG) quantified in the Phos & WC
727 datasets.

728 (F) The plot shows enzymes ranked according to their Pearson’s correlation with metabolites of
729 AAM pathway, as detected in this study.

730 (G) Schematics of information flow from TGFf signaling to AAM pathway, mediated by known
731 enzymes. Heatmaps and line plots display ‘standardized’ expression values.

732 Figure 4. scRNAseq analysis reveals cellular dynamics and novel TFs for EMT

733 (A) Violin plots showing expression of well-known EMT hallmarks in each time point.

734 (B) UMAP of scRNAseq by Monocle3. Dots represent single cells and are colored by inferred
735 clusters, while trajectories depict cells during EMT.

736 (C) Heatmap showing the number of cells (in log2 scale) in each cluster of partition P2. Mean
737 expression of some well-known E and M markers in each cluster are also shown.

738 (D) The plot shows all TFs ranked according to their SCENIC score. TF names are shown for the
739 5 TFs with the highest scores and some well-known EMT associated TFs.

740 (E) Tree displays unique TFs identified by SCENIC for each subtype. TFs highlighted in ‘bold’ are
741 known players in EMT. The genes in the outer circle are representative examples used by
742 SCENIC to infer TF activity.

743 (F) Barplot shows the inferred activities of top 15 TFs based on SCENIC scores in each subtype.
744 (G) Schematics of the human TF-binding array workflow (see STAR Methods for details).

745 (H) & (I) Density plots of dB-scores of indicated TFs. Two-sided Kolmogorov-Smirnov test was
746 performed to evaluate the significance of distribution differences between Control and TGFf3
747 treated conditions.

748  Figure 5. Spatial regulation of proteins and intercellular communication

749 (A) The schematic summarizes Pearson’s coefficients between overlapping proteins of the
750 indicated layers. Each pie chart depicts the fraction of differential proteins (orange slice) with
751 respect to all proteins quantified in the layer.

752 (B) The plot displays top 25 Class I proteins. Each pair is represented by a different shape.

753 (C) Expression profiles of top 3 Class I proteins. Each colored line represents a molecular layer.
754 (D) The plot displays top 25 Class II proteins. Each pair is represented by a different shape.

755 (E) Expression profiles of top 3 Class Il proteins. Each colored line represents a molecular layer.
756 (F) Expression profiles of BRD2 and BRD4 in various layers. Legend as in E.

757 (G) Density plots of dB-scores of indicated co-factors. Two-sided Kolmogorov-Smirnov test was
758 performed to evaluate the significance of difference in distributions.

759 (H) Phase-contrast images after 6 days of TGF[} treatment in presence or absence of active JQ-1
760 (100 nM) or its inactive analogue.

761 (I) Expression profile of SCRIB in various layers. Legend as in E.
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762 () PPI network of SCRIB interactors identified using BiolD.

763 (K) Immunoblots showing interactions of a few SCRIB partners identified using BiolD.

764 (L) Schematics of analysis pipeline for discovering active L-R pairs (see STAR Methods).

765 (M)Heatmap showing combined log2FCs of L-R pairs in the Sec and Mem/Glyco datasets.

766 (N) Network plot showing L-R interactions detected between different P2 cell clusters.

767 (O) Scatter plot of correlations between indicated gene-pairs in Breast invasive carcinoma
768 samples. Regression line is shown in red.

769  Figure 6. Phosphoproteome dynamics during EMT

770 (A) Fraction of detected p-sites on a protein that are regulated during EMT.

771 (B) Detected p-sites on VIM and their expression during EMT. The gray lines indicate all p-sites
772 that are catalogued in PhosphoSitePlus database.

773 (C) Distribution of Pearson’s correlation between expression of proteins and p-sites detected on
774 them.

775 (D) Schematic showing two examples each where expression of proteins and p-sites showed
776 either low (<-0.1; CDS2, CBX1) or high (20.4; MISP, MICAL3) correlation.

777 (E) Gene ontology enrichment of genes with at least a single regulated p-site at any time point.
778 (F) Distribution of Pearson’s correlation between expression of proteins detected in Nuc layer
779 and the p-sites detected on them in the Phos layer. A few EMT hallmarks are highlighted.
780 (G) Heatmaps of expression profiles of indicated molecules in Nuc and Phos layers.

781 (H) Structural model of MICAL3 p-sites, NLS and Importin-a.

782 (I) Ternary plot of kinase activity scores binned into 3 broad stages of EMT, i.e, E, ICS, and M.
783 (J) and (K) Top. Expression of PRKCA or AURKB as detected in various layers. Bottom. Pathway
784 enrichment of all differential substrates of PRKCA or AURKB detected in our dataset.

785  Figure 7. Integrative systems causal model of EMT

786 (A) Schematics of causal modeling workflow. Non-redundant genes with most significant
787 expression profiles (Hotelling’s T2 statistic) were used. CausalPath-estimated logical
788 networks were used to augment a custom-built confidence-weighted scaffold interactome
789 which was then used to solve the Steiner Forest problem using the OmicsIntegrator software.
790 Only differential molecules (relative to Control, FDR adj.p-value < 0.05, [log2FC| = 1) were
791 considered as ‘prizes’.

792 (B) Overlap between EMT databases and ‘controllers’ identified in this study.

793 (C) Overlap between EMT databases and ‘non-controllers’ identified in this study.

794 (D) Kaplan-Meier plots comparing prognostic performance of MSigDB hallmarks and
795 ‘controllers’ identified in this study.

796 (E) A simplified schematic showing the hierarchical relationships between several bottleneck
797 genes at different stages of EMT, as indicated.

798 (F) Workflow for morphometric screening of drug combinations.

799 (G) Barplot of results of above experiment indicates varying degrees of synergy or antagonism
800 between inhibitors, in influencing EMT-associated changes in cell shape (eccentricity). Error
801 bars indicate spread of datapoints across all quantified cells in each condition.
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802 (H) 3D ducts were seeded with stable MCF10APIK3CA-H1047R ce]ls and treated with Sonidegib and
803 Autocamtide for 3 days. Area of invading cells and average distance traveled away from the
804 ducts as compared to DMSO treated controls were quantified using Image]J (n=6 devices).

s0s  Supplementary figure legends

806  Figure S1. Related to Figure 1. A multi-dimensional resource on TGFf-induced EMT

807 (A) TGFB treatments were staggered, at defined time periods, such that all plates were harvested
808 at the same time. Cells were serum starved for 16 hours before harvesting.

809 (B) Phase-contrast images of MCF10A cells at different time points. Scale bar = 100 pm.

810 (C) For maximizing efficiency while maintaining compatibility with technology-specific
811 protocols, after harvesting cells were collected in 4 aliquots per replicate, as shown.
812 Conditioned media were also collected.

813 (D) Upper panel - barplot showing percentage of quantified proteins with annotation in the
814 ‘Cellular Component’ category. Lower panel - boxplot showing intensity values (log2) of
815 proteins (=markers) commonly used to assess sub-cellular fractionation purity. Box edges
816 correspond to 25th and 75th percentiles, whiskers include extreme data points.

817 (E) Cumulative distribution (%) of Pearson’s coefficients across the samples (= time points).
818 Significant overlap between the 3 biological replicates, shown as 3 colors, indicates high
819 reproducibility.

820 (F) Heatmaps of molecular expression profiles of indicated layers. The mean of all quantified
821 molecules across the 3 replicates was used.

822 (G) Violin plots showing the spread of log2FCs of molecules at each time point (relative to
823 Control) for each layer.

824  Figure S2. Related to Figure 2. The topological architecture of EMT

825 (A) PCA of the various molecular layers. Time points are shown with different shapes and

826 colors. Points with similar shape/color indicate biological replicates.

827 (B) The population map presents the number of genes mapped to each individual metagene.
828 (C) The plot summarizes co-variance structure of datasets at the metagene level.

829 (D) The plot shows correlation of expression patterns of individual genes and the metagenes in
830 which they are contained.

831 (E) Temporal expression profiles of a few example genes identified in SOM analysis. Each colored
832 line represents a molecular layer, as shown.

833 (F) Temporal expression profiles of a few example genes enlisted as ‘EMT hallmarks’ in MSigDB
834 database. Each colored line represents a molecular layer, as shown.

835  Figure S3. Related to Figure 3. Dynamics of TGFf-induced metabolic adaptations

836 (A) The heatmap displays the results of active subnetwork analysis using differential molecules
837 in WC and Phos datasets.

838 (B) - (D) Metabolite-metabolite interaction networks, using MetaboAnalyst, for indicated
839 clusters. High connectivity indicates co-regulation of functionally related metabolites.
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840  Figure S4. Related to Figure 4. scRNAseq analysis reveals cellular dynamics and novel TFs for
841 EMT

842 (A) An outline of the QC pipeline employed for scRNAseq data analysis.

843 (B) The plot shows top 25 most expressed genes. Each row corresponds to a gene and each bar
844 corresponds to the expression of the gene in single cells.

845 (C) Expression of indicated genes in mRNA layer.

846 (D) Developmental trajectories of MCF10A cells in response to TGF(, inferred by Monocle3.
847 Clusters are indicated by colors.

848 (E) Heatmap showing aggregate expression of groups of genes (=Modules) with similar
849 expression pattern across the partitions, by Monocle3. Modules 9/12 were highly expressed
850 in P1/P3 and were enriched for ‘Cell cycle’ related GO annotations.

851  Figure S5. Related to Figure 5. Spatial regulation of proteins and intercellular communication

852 (A) The plot shows number of common genes (intersection size, y axis) between layers as
853 indicated. Only differential genes in each layer (‘Set size’, FDR < 0.05; adj. p-value < 0.05; r2 2
854 0.6 & [log2FC]|, relative to Control, of = 1) were considered for the analysis.

855 (B) Schematics of the BiolD experiment performed to discover novel SCRIB partners induced by
856 TGFp signaling.

857 (C) Circos plot showing L-R interactions between the P2 clusters.

858 (D) UMAP plots of scRNAseq data highlighting the co-expression patterns of MMP7 and CD44.

859  Figure S6. Related to Figure 6. Phosphoproteome dynamics during EMT

860 (A) An outline of QC pipeline for Phos data analysis.

861 (B) Enrichment efficiency for TiO; workflow employed for the study.

862 (C) About 74% of all detected p-sites were reliably localized (=Class I) by MaxQuant.

863 (D) Quantifications of p-sites were achieved with a dynamic range of 10¢ orders of magnitude.
864 (E) Proportions of number of phosphate moieties in each detected p-site.

865 (F) Number of phosphoproteins regulated over the time course.

866 (G) Magnitudes of log2FC values for p-sites over the time course.

867 (H) The plot shows all kinases ranked according to their KSEA enrichment. Mean of |z-score
868 values over all time points were taken.

869  Figure S7. Related to Figure 7. Integrative systems causal model of EMT

870 (A) A subgraph showing the signaling context of well-known EMT players ‘queried’ on the EMT
871 network.

872 (B) A snapshot of the companion website which can be interactively and freely accessed at
873 https://www.bu.edu/dbin/cnsb/emtapp/.
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Figure 4
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CDH1 EPCAM

KRT14

MUC1

B Differentiation trajectory

Control 4 hours

300 1004
4 100 -
10.0 10.0
3.0+ 304 10 109
104 1.0 1 4
c
S
2
3 FAP FN1 LOX VIM
5‘ 30.0
- - 304
1004 100 300
10.0 104
307 107 3.0+
104 1.0 *]
1-@@ h 14
0.3 03
Time points Clusters: @3 ®4 ©5 @6 @8 @12 ®13 ®14 ©16 ©17 ®18 ®19 ©20
Cell dynamics Unique TFs for each subtype
oD~
20 @@00 0000 £5388, .
17 0000 0000 e N S F RET R
129090 000 o 22332 TTTTEELESS
1 Rk Fedsdde
120000 0000 6%"@?’.-' FPESOS
190000 Q000 1 SR N REL AN
18 0000 0000 ipsgy 4'94,9‘\%’07.’. > '%‘ 2 _ Sy -Y.Y@ N
16 0000 0000 X PR S R SRS &
0000 0000 10y A 2293888 SES8Fs, S
0000 0000 ;s e, ® B2 062 ec ]  TINFELSL S
RN SRR STELS o S50
50000 0000 s Or,° w28 TSE e
4700000000 | & ot s e
6. 0000 0000 ;’qq e &5’05& .\’9‘,\“0‘1
3 0000 0000 NED $C R et
SETOTOO®Y D SY g LD X3S st ?%S::"o,' ‘i’qﬁ%@; '“Eg\—\@\
E3zzrrrEe SXCS ££0C%S O, W te ‘ 5 e AN
§£000000% 0RE = PaLpy s ?N/caas B 13 qeiAt
< o i} Luzp; o Vog.* oW F100 goLItA
X KLHLs o TRpg; . 'll‘:m_na Ciort228
Mean expression :TNAU . SOX7+ ¢ < ZNF264 CHCHD3
;R;A‘ . NCOR1 e S2 - LZNFaTA +CSTF1
. P 1Le -
D Cumulative TF activity across all cell clusters DSEe Laﬁ;ﬁ_’ :;zgm
ousrz: oz i
GOLAF1® KD"“‘D‘; " *ZNFgs ::;?:isrw
7o
“TT);‘:« . \"““1\:. S5 *Cre »Cnory
K o, & Gy GRg,
P38 ' Sz N
o N R o Ll “tyy, 98> 'TSEDD"L
g N 1‘*‘1;@' " % 03 .‘zp,,')’é U
S} 2B o oh, 'cﬂ)‘:““r
& TS R, w04
il & or RN o S
N ORI 4
3 K& N S,
Y OSSEs e iyl BARE e
QLR X 3
EPAS1 —y D59 SNAI2 Msx1ZNFZGS Ny ES f;tu £2 ;'5 g8% %0’ N .L"?Q:;,
GLIS2 D2 [ % %
! ZEB1 ! ( — Known EMT-associated . RS
200 300 40 . TFs in dbEMT 2.0 Lhbt e A
\ <
Ranked TFs .2(-%@%%%;3%’%)
12849
F G % ~3v
Top 15 enriched TFs in each subtype g
ATF3  BCLAF1 BHLHE40 CEBPB CEBPG  EGR1 ELF1 ELK3 . Lo
075 Schematic of human TF-binding array
0.50 4
| | Lol m f
0.00 I I {
ELK4 ENO1  ESRRA  ETS2 FOS  GTF2F1  HDAC2  JUNB X
0.75 )
Apply
© 0504 nuclear
S 025 II II I I Cells extract
8 0.00- | to array
= KDM5B MAZ MXI1 MYC NR3C1 PML  POLR2A  RAD21 TGFB
L
O 0754 treatment
D os0d I I I II for 24 hours
0.254 I I
L. g
RCOR1  RELA SMARCA4  SP1 TAF7  UQCRB _ YBX1 ZMIZ1 Prepare y : 5
0.754 Nuclear extract
0.50 COF recruitment motif
025 ] | il | M
0.00 Infer TF-binding using database
(=dB-scores)
dB-score distributions dB-score distributions
a0 B 20
o A kol A
Hoo A4 BVREGR G f “os -val < 0.001 50 M=l 8"
g W A 1‘2.-ACA/_~,‘.~AAAA‘N.\AAAA g B3 20 ceyivl ‘%;c L‘i
g : 8 :
£ ZNF263 - C - < paxi 4 b TGcGeT -
§ p-val0.007 §z: C.. ‘;CCCCCQ CCC 210 5 §oo 2 VCUSCa, T o
3 D=034 ” v QQ QQQ =S Lt o A C I
8 SP14 00 ES S GCM2 4 0 ok 2L XY -
% ‘[71-:96542'000 a0 20 g p-val <0.092 40 bad
= fo CCCC& I = I CVCQC CA.T.M H
GLis2- 5 L cehrach) 80 EGR1 o Al A
- AYAR & w0 00 k=C! c X
25 00 25 Recovered Consensus 5 o N 3 Recovered Consensus
dB-scores dB-scores


https://doi.org/10.1101/2021.06.01.446492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446492; this version posted June 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 5

Spatial 4 o Class | (top 25) c Expression Class Il (top 25) Expression
regulation = Selat g r
25 ~ FAP x CALD1 EIF4G1{® PLOD3
of Y SERPINH1 o DIAPH1 4 v
,70.20 . $100A8-{ = 2 cuLa e 1
4 N CALD1{ + 1 TMEM131 X
MAOA-| x o4 ACTBH & 04
3 29% PLOD2 + P MRPLi2+ v ~-14
FN1 x N -1 TIPRL{ O Y
TGM1 | ° S -24 LDHAH © S 21
TAGLN © = EIFAG24 =
FNDC3B-| ° s FAP OLA1{ © s SND1
GALNT2- o 2 24 VPS26A4{ & 2
CDH2 " o 44 RCC1 3 o 11
S100A9- ] g ] TEX10 x S o
SOATH | ° 3 GLUL ° 3]
- CYBRD1 x o -1+ EPRS v o~
P4HA2+ + 8 24 LsM2 [} g 2
IGF1R + k<] PTRF ° °
Glycos\ylated / LARP1+ x g S100A8 PGK1 a g
/ PADI2 o 2 2 RRBP1 o 2
\0'26,’ Membrane PDIASH o g A FSCN1 a S 14
i CALU-  + @ SLC25A3 © D o4
058N MCAM-  + 0 FARSB °
S TeM2 ¢ -1 SND1 - o -1
L Ci20ri75- © - PLOD3 - o 2
FLNA-{& T T T T T T T UFL1 | 9| T T T T T T T
— T T SPrNOTLO®N T T T SerumTLODN
096 0.97 098 099 Z3RFFIFRA 5 090 -0.93 -0.96 -0.99 E3FFFRFERR =
Pearson's correlation gseeeeaeng Pearson's correlation gseeeecnag
o EV-Mem °EV-Nuc AEV-Sec  +Glyco-Mem X Glyco-Nuc ©Mem-Nuc VYMem-Sec  ®Nuc-Sec
EV Sec == Glyco mmMem wmAcet == Phos Pep wmNuc ==WC ==mRNA
F Expression profiles G hTF array of 3 major co-factors H BRD proteins regulate EMT
JQ1 inactive
BRD2 BRD4
M Untreated
& 27 Pearson'sr=0.48 Pearson's r= —0.42 W +TGFB
g
b= p-val<0.018
5 1 D <0.017
2 £ p300
14 s’
g S
5 °7 b
o Q
1 o 4
E] Lso1 - SP1__KLFi4
S -1 PLAG1 KLF16
3 GLIS2 EGR1
€ SP4  ZNF263
b BRD4 -
T T T T T T T T T T T T T T T T T T
EfLS2rasaT EELS222%Y T T T T T T T
6288888888 §28888888¢% -3 -2 -1 o 1 2 3
(S Q O« =}

Expression of SCRIB

dB-scores

J BiolD'ed SCRIB interactors with known role in EMT

K

IP of SCRIB interactors

— Pearson's r=-0.21 SCRIB  — - + +
] TGFp  — +
1 SCRIB i i £
B I Y
2 -]
<4 ARHGEF7 e =%
I3 | E l 13
H N SNAP23| i
° \ 1
8 SCRIB — -
2 E
fu] g
@ ; . - GAPDH | e s e s—| |
T T T T T T T T T { === SCRIB BiolD (this study) — —
SeTY2ITLOQYN Enriched pathways value | = = Known PPI
ESREEEEZEE 5 P y " P { O Up-regulated (Mem layer)
383 8 Cell-Cell communication 2.55E-24 | © Down-regulated (Mem layer,
Integrin cell surface interactions 2.94E-18 |
Cell junction organization 6.60E-15 | O Not detected (Mem layer)
Analysis pipeline Ligand-Receptor (L—-R) pairs (Sec, Mem and Glyco datasets)
Database of o
LRpas %?B EE 2 5 NNy N o o
(>2500) PP et Lo = RN >~ -~ C 5 2 .8 Y < 290 ~Fap logFC
: aEERIL0a >000ps — < _or o <Dm Lotz mnb = = m_ 0 <_ ¥ << PoY il d
H T 1@ T rfor _ CooIIIILTE <2 A-Fo a_g I <2 _op ~LR6T5- 4
P i ELAGI00IGEEa0aE, 2 -8t a0l ad6EEro8snylathionel 5 O0r SE-Pa0haP0s502 8 ]
roteomics LULEWOTUE << pE0TPG0 Lo TR0 I THWHYYE R 0T 0E0Q0SpE000 L 2En 1o ENe 156 I 71057170 F
Mo oen 920 $ET;a08Ed3E vpd T ndrTao T 08T DS Thadhddda T E s 0 2 tlaTOL EO88TIE0E8L -2
MemlGlyco —Hecenor scanaseq  SEEBESSESSSESICSStondE S Rene R nd Rt ot eaann S SEd S FEROh R EOEZ SRe0ETEsE
Ewmhwijmowwﬁ)‘ﬁEEEEEuEEEEEEEjuJEuJu.l<§§<§p:o§n_n_u_n_(_5EEEE<ﬁ&:ﬁ)’miom‘f—':\:oﬁ;w355ii:5mﬂo
Day 12
| | Day 8
- Day 6
| | I Day 5
— Day 4
Day 3
] Day 2
Day 1
I TT TP PTTTTTT 11 11 11 4 hours
Crosstalk o Expression correlation in BrCa clinical samples
< . MMP7-CD44 = 1 15 : l
Time points / 2 o0s 1
H . 0.5 -
i . 29 [ o 0 : E/M
i i LAMC2-ITGB4 Q .05 - . -0.5 i
ﬁ I 4| ?"'Pearson: 0.21 -1
Select LA oai I3 P =0.0698 15 8.8 i
elect L-R pairs . R
(combined log2FC = £1) 321012 2 1 0 1 compare
£ i 53 z ' 10 4 i
4 ./ — MMP9-CD44 . B o | i
5 < Q s(- 2 i
aL - £ 5 ______ 4
Time points . < o
3 " ‘Pearson: 0.5
= P =22e-16
. 5 10
ITGB4



https://doi.org/10.1101/2021.06.01.446492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446492; this version posted June 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 6

A

Regulated p-sites (%)

D

F

Fraction of regulated p-sites

Regulation of VIM p-sites

Correlation: Prot and Phos

4hours Day1 Day2 Day3 Day4 Day5 Day6 Day8 Dayi2 50%
AJ ~ o 14
. [ ~26% —)|
754 1010 Quantified
> [ Regulated
: 2
50 2 g 3 0.5 _/
S 0.0
04 1 50 100 150 200 250 300 350 400 450 1o s 00 05 A
Proteins (ranked by fraction of p-site regulation) ["E_] [E/V] [ININ Down @ 0@ Up B IFrod M [IL]-x-C-x-x~[DE] motif Correlation
Regulation of Prot and Phos E Enriched "Cellular components"
5 85 Prot 5agee 22k
3 & 3 cos2 Phos misp RB5ED 88 8 nuclear chromosome part
J } chromosome, telomeric regltlmch romatl n
| f - 1 o O I \HV\" """ i n UC eatr ?Pf‘mmmmmmm
T T J T T T T oskele
S:OGYF 1000 0 300 600 YIOSK ‘h eterochromatin
"o can I"IUC|eo|US.n.cass:;r;w.:gz‘x:‘s;;za ~Cytoskeleton
B3 =t 3
cBX1 MICAL3
&8 g nufolcaar eslon
_MI" IC [ i h 1l Al \‘u N 71 HW'V b d
e —— Ch romatin
0 100 6" T T Tsdo T T T T T Teoo! 5 gosomal complex

M Chromo 1 B Chromo 2

Correlation: Nuc and Phos

@ CH domain @ LIM Zn-binding M bMERB B Nuclear localization signal

G Nuc and Phos

EEEEEHE

r=0.4

r<-0.1

08+
| EMT hallmarks
0.6+ /
/ T~
04+ PVR
L SDC1
1 VCAN
02 VIM TNC
TOPORS COL4A2 VCAN
/4 CD44 ITGAV DST BASP1  FLNA MICAL3
0od I | | | | ]
T T T T T
-10 -05 00 05 1.0
Correlation

MARK4

1
RPS6KA2
RPS6KB2

2

ATR

[Em]
‘oo A caviken A\ AKT3
DK( CAMK2B
CLk2 CDK2
3 CSNK1A1 CHUK
3 a0 EIF2AK2 ?A%SE
IKBKB 2K5
CSNK1G3 At MAPKS MAPK13
; MAPK9 MAPK14
%AAPZKG GRK1 MAPKAPK3 PDHK4
CAMK1 PDK2 PKD1
oy e
PRKCB
ATM PLK4 % PRKCT PRKCG
\\ - .-'PRKCA TTK PRKCH
/P AURKB PRKCI
|CSNK1G2 NEK2 CDCAZBPA I ARAF ROCK1
AURKA MAK PRIQC GAMKaG Egg KKZB
6KB1
NEK4 pLK1: CSNKIE ggm‘gﬁ\z
: \2° PDK1
CDK7 1 RAF1
GSNK2AT! CLK1
PAK1} RPSBKA3 . ‘
B & & S Il

H Structural model of MICALS p-sites, NLS and Importin-a

MICAL3_T684

MICAL3_S685
MICAL3_S687
MICAL3_Nuc
VCAN_S1129
VCAN_Nuc
FLNA_S2131
FLNA_Nuc
TNC_S72
TNC_Nuc
TOPORS_S98
TOPORS_S567
TOPORS_S570
TOPORS_Nuc

Z-scores
5
=
s

-

Expression profiles

MICAL3 NLS

A

Expression profiles

PRKCA

AURKB

Standardized expression (log2)

Standardized expression (log2)

— T T T T T T T T — T T T T T T T T T
T g T 3 O T B o oo T L - N O T Lo o W
E 3 R T F BT IR > £ 3 R F BT IR T >
§ 2444838 adada g s 2484004848848 48¢F
O « o O « o
PLC beta mediated events
Acetylcholine regulates insulin secretion RHO GTPases activate IQGAPs
Apoptotic cleavage of cellular proteins The NLRP3 inflammasome.
Initiation of Nuclear Enve\ope Reformation
—dependent events CASP-mediated cleavage of cytoskeletal proteins
NOSTRIN medlaled eNOS trafficking
DAG and IP3 signaling Sema3A PAK dependent Axon repulsion
XBP1 (S) activates chaperone genes
Plat Inflammasomes
Regulation of insulin secretion Cell Cycle, Mitotic
Synthesis of IP3 and IP4 in the cytosol Cell Cycle
CaM pathway B
VEGFR2 mediated vascular permeability at‘fm,ﬁy S gstsrof’ated H
Effects of PIP2 hydrolysis substrates  : CR-N-3-1
T T 883
ocgg9o9og9 ) -
&8RE Enrichment score

Enrichment score


https://doi.org/10.1101/2021.06.01.446492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446492; this version posted June 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 7

A An overview of network analysis pipeline

B Overlap with C Overlap with
@ 27 controllers 2,191 non-controllers
dbEMT2 controllers
MSigDB,
dbEMT2
Feature selection = @
Hotelling's T2 877
statistic @
Controllers \
- . !
e MEF2A  SPI1 CSNK2A1  ABL1
prvalue < 0.05 BCLAF1  GATA2  CDK1

CausalPath
Causal modeling

using prior mechanistic
knowledge Determine Prizes

Augmentation of the Omicslntegrator
scaffold network
Generates forest of trees

absolute log2FC = 1

EMT network-derived signatures predict patient survival

» Increases expression +TF — Gene/miRNA

(=biological networks)
with highly 1.00
connected branches z
(=signaling pathways) "_E“ 0.75-
%‘ g 0.50
] 5 0.50—
Time 2 gime 10 S
N 2 0.25-
5
@
0.00 T T T T T T 17T
EMT network Sidddbotos ooobotoos oosoosooe LR A Y
A hierarchical causal Time: 88888888 88888888 88888888 88888888
Signa”ngnelwork T AN®M T OO~ TN M WO~ TN M T OO~ T AN®M T OO~
“i \
E ! Legend '
A simplified schematic of links between several controllers during EMT Upregulated == miRNA - Gene i
Downregulated c—}(De)Phosphorylation

E2F4 ---> INCENP ---> AURKB
A

o RUNX1535, T29
> 5Pt

—| Decreases expression —essj-Signaling interaction

:
i
MAPK3
&) ] !
y \ i
! > STAT3--—-, i
SHC1 : ! H - 7 NFKBI1
MAPK14 i | \---> TP6354% > PERP
V i e > SAAT
! ]
_ miR- s STAT3 =<
------------------------- > cespe-cespess N M > BCL3
TGFBR1 e ¥\ CAMK2G PRKCA -------- > EGFR ._
--»SPI1 Y FN1 EBF1 ---» miR-142-5p “
cvp A HIP1 ---» REST
sMo
> ITGB5 ---» PTK2
,—Y P|4K2A547, $51, S460 PR 15505
A ACPA - s126 TAL1
ACP1---->AKT1 AL
CDK2T14. Y15

F Workflow for morphometric

analysis of inhibitor screen

Exposed combinatorial vulnerabilities

Controllers I Experiment Analysis
\ ) s
=
S 54 2. GENIMASEG 2, 5 e
nhibitor arge o o
s G = 2
EMT inhibitor 1 Known EMT blocker T 3 33 * . *
Sonidegib SMO inhibitor Generic Image Segmentation Tool = *
e TGFB i - i
LB-100 PP2A inhibitor 0.00 o £l
b romo P s e
Autocamtide CAM}_(-II_ ir_|hibitor permutations Sonidegib ++++++
PP1 SRC inhibitor LY LB-100 +++++ +
APCP NTS5E inhibitor Barasertib +4+++ + +
> *Original Segmented, a Autocamtide +++ + + +
+ +++ +
Control Day 3 Measured: Circularity of cells Aggll + + + + o+
H 3D biomimetic mammary duct-on-a-chip platform
DMSO Soni + Auto Day 3
Day 0 Day 3 DMSO Soni + Auto Invasion Area Invasion Distance
6a+05-] pvalue=| & 250 p-value =
0.0342 E 0.0177
s 2 500
E 40405 g 200
2 B
8 a 150+
< 26405-] 4
g
Z 100
T T T T
g 13 g 23
H1047R e E’g e g%
PigKat1047! £ s
hZ nZ


https://doi.org/10.1101/2021.06.01.446492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446492; this version posted June 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure S1. Related to Figure 1
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Figure S2. Related to Figure 2
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Figure S3. Related to Figure 3
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Figure S4. Related to Figure 4

A scRNAseq QC pipeline Cc Bulk mRNA expression
Data matrices @ 26,364 genes * 2125 cells CDH1 EPCAM
a 11
S o
Genes not expressed in any cell @ 16,666 genes * 2125 cells = ;
S 11
Outlier cells (MAD = 3) @ 16,666 genes * 1913 cells g
I o FAP FN1
o
R
Cells with < 200 genes @ 16,666 genes + 1913 cells '_g 1
I .g N
8 14
Genes detected in < 4 cells I 14,442 genes » 1913 cells * .
Genes with average UMI count < 0.1 @ 9785 genes * 1913 cells
Top 25 expressing genes
TGFBI | 0 00000 0 O RN 000 000000000 1
TPT1 0 1 0 O S0 000 0000 MO 0000
KRT6A 1111 S Me:an expression|i Wi 1l 10 FEii 1l I
KRT17 4 LU T T T T T T T e T E T T BT S T TR P | |
TMSB10 LTI I b
MT2A A L T R T N T I R N | | |
S100A2 A LU T R R Ty R |
KRT5 S W SO IR LR 01
RPLP1 4 11 0 S MMM MM 11 010 00
S100A10 4 L T I |
KRT81 LT TR AT BTN (AR} | [N
RPS14 4 R I
FTH1 L e T T T A SR i
RPS12 4 1l
SERPINE1 1 L e TR A (e
ERP 4 | | SRR R |
RPSG g | N RO 10|
CD24 1 RS 0 00 0O 0 OO0 00 00000
RPS11 4 110 S O R | |
LAMC?2 A NN TS 0 B0 00000011 | |
RPS8 4 110N 0 R BH O 111111
RPLS |1 SN AR |
S100A6 1 [ Y b
RPS18 1 L0 . IR TR
RPS4X 4 11 S 01
Distribution of expression across cells
D Differentiation trajectory
5.0
254
o
o
< o0
=}
o 1
L)
25 4 ol
15 GO Biological process
Mitotic cell cycle - I |
Cell division
T T T T Microtubule cytoskeleton organization =
-5 0 5 10 Chromosome segregation
UMAP 1 Mitotic nuclear division =

Organelle localization -

DNA metabolic process -

Cellular response to DNA damage stimulus =
Meiotic cell cycle -

Positive regulation of transferase activity -
amete generatiol

Cillary basal body-plasma membrane dockin
catabolic proces:
Retrograde vesicle-mediated transport, Golgi o El

Antigen ing and of peptide antigen via MHC class
Protein localization to chromosome, centromeric region -

Nuclear envelope organization

Regulation of ubiquitin protein ligase activity -

E

\4

Module and pathway
enrichment of the partitions

Module 12 ----==-===-=-=-- ’
Module 9 DNA metabolic process
Module 4 Chromosome organization
Module 1 DNA repair
Response to radiation
Module 7 } DNA repl -
Module 3 DNA replication-independent nucleosome assembly
Module 6 Telomere maintenance via semi-conservative replication
Module 2 Ciliary basal body-plasma membrane docking
Deoxvri y .
Module 10

Module 11
Module 8
[V T e —

-

Positive regulation of biological process
Organonitrogen compound metabolic process

System development -

Immune system process |

Tissue development -

Locomotion -

Cell proliferation

Response to cytokine -

| >» Gell adhesion -
Cell migration

Leukocyte activation

Cytokine-mediated signaling pathway -

Regulation of endopeptidase activity -

Partition 3
Partition 2

Partition 1

Extracellular malrix crgamzanon 4
g of peptidyl-ty!

Comnification
Negative regulation of viral life cycle

200
Overlap size (%)


https://doi.org/10.1101/2021.06.01.446492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446492; this version posted June 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure S5. Related to Figure 5
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Figure S6. Related to Figure 6
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Figure S7. Related to Figure 7

A PathLinks: TGFBR1 to key EMT players
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' g A multi-tiered map of EMT defines major transition points and identifies vulnerabilities
Epithelial to mesenchymal transition (EMT) is a complex cellular program proceeding through a hybrid E/M state linked to i igration and ct istance. Deeper

molecular understanding of this dynamic physiological landscape is needed to define events which regulate the transition and entry into and exit from the E/M state. Here, we quantified >60,000
molecules across ten time points and twelve omic layers in human mammary epithelial cells undergoing TGFB-induced EMT. Deep proteomic profiles of whole cells, nuclei, extracellular vesicles,

and phosphop! defined state-specific sit and major transition points. Parallel i ics showed i pi changes in other
layers, while single-cell RNA sequencing identified transcription factors controlling entry into E/M. Covariance analysis exposed unexpected discordance between the molecular layers. Integrative
causal ing revealed co- ies governing entry into E/M that were verified experimentally using combinatorial inhibition. Overall, this dataset provides an unprecedented resource on

TGFB signaling, EMT and cancer.
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