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Abstract10

Optimality analysis of value-based decisions in binary and multi-alternative choice settings predicts11

that reaction times should be sensitive only to differences in stimulus magnitudes, but not to overall12

absolute stimulus magnitude. Yet experimental work in the binary case has shown magnitude13

sensitive reaction times, and theory shows that this can be explained by switching from linear14

to geometric time costs, but also by nonlinear subjective utility. Thus disentangling explanations15

for observed magnitude sensitive reaction times is difficult. Here for the first time we extend the16

theoretical analysis of geometric time-discounting to ternary choices, and present novel experi-17

mental evidence for magnitude-sensitivity in such decisions, in both humans and slime moulds.18

We consider the optimal policies for all possible combinations of linear and geometric time costs,19

and linear and nonlinear utility; interestingly, geometric discounting emerges as the predominant20

explanation for magnitude sensitivity.21

Introduction22

While the normative, optimal policy, approach to understanding decision-making is now well23

established for perceptual decisions (e.g. Bogacz et al. (2006)), it has only recently been applied to24

value-based decisions (Fudenberg et al., 2018; Tajima et al., 2016, 2019); such decisions differ from25

perceptual decisions because decision makers are rewarded by the value of the selected option,26

rather than whether or not they selected the best option (e.g. Pirrone et al. (2014); Tajima et al.27

(2016, 2019); Krajbich et al. (2010)). Recently researchers have analysed multi-alternative value-28

based decision-making (Tajima et al., 2019), building on earlier work in optimal decision policies29
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for binary value-based choices (Tajima et al., 2016). Through sophisticated analysis based on the30

standard tool for solving such decision problems, stochastic dynamic programming (Mangel and31

Clark, 1988; Houston and McNamara, 1999), the authors also present neurally-plausible decision32

mechanisms that may implement or approximate the optimal decision policies (Tajima et al.,33

2016, 2019). These policies turn out to be described by rather simple and well-known decision34

mechanisms, such as drift-diffusion models with decision thresholds that collapse over time for the35

binary case (Tajima et al., 2016), and nonlinear time-varying thresholds that interpolate between36

best-vs-average and best-vs-next in the multi-alternative case (Tajima et al., 2019).37

Interestingly, the theoretically optimal policy for the binary decision case (Tajima et al., 2016) is38

inconsistent with empirical observations of magnitude-sensitive reaction-times (Teodorescu et al.39

(2016); Pirrone et al. (2018a); Steverson et al. (2019); Zajkowski et al. (2019); Turner et al. (2019),40

but see Bhui (2019)), unless assumptions are made that subjective utilities for decision-makers41

are nonlinear, or decisions are embedded in a fixed-length time period with known or learnable42

distributions of trial option values, so that a variable opportunity cost arises from decision time43

(Tajima et al., 2016). Furthermore, even single-trial dynamics lead to magnitude sensitive reaction44

times (Pirrone et al., 2018b).45

Previous analyses made an assumption that appears widespread in psychology and neuro-46

science, that decision-makers should optimise their Bayes Risk from such decisions (Tajima et al.,47

2016, 2019); this is equivalent to maximising the expected value of decisions in which there is a48

linear cost for the time spent deciding (Bogacz et al., 2006; Pirrone et al., 2014). For a lab subject in49

a pre-defined and known experimental design this may appear appropriate, for example because50

there may be a fixed time duration within which a number of decision trials will occur and the51

subject can learn the value distribution of the trials (e.g. Bogacz et al. (2006); Pirrone et al. (2014)).52

However, an alternative and standard formulation of the Bellman equation, the central equation53

in constructing a dynamic program, accounts for the cost of time by discounting future rewards54

geometrically, so a reward one time step in the future is discounted by rate γ < 1, two time steps55

in the future by γ2
, and so on (see Materials and Methods). This is a standard assumption in56

behavioural ecology (Mangel and Clark, 1988; Houston and McNamara, 1999), in which discount-57

ing the future means that future rewards are not guaranteed but are uncertain, due to factors58

such as interruption, consumption of a food item by a competitor, mortality, and so on. Thus59

discounting the future represents the inherent uncertainty that animals must make decisions60

under in their natural environments, in which their brains evolved. The appropriate discount is61

then the probability that future rewards are realised, hence geometric discounting is optimal since62

probabilities multiply. Indeed there is extensive evidence of such reward discounting in humans63

and other animals (e.g. Sellitto et al. (2010), although this frequently suggests hyperbolic rather64

than geometric discounting, a fact that in itself merits an explanation based on optimality theory65

(McNamara and Houston, 2009)).66
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Rederiving optimal policies to account for geometric (Marshall, 2019) or general multiplicative67

(Steverson et al., 2019) costs of time qualitatively changes them in the binary decision case, in-68

troducing magnitude-sensitive reaction times (Marshall, 2019; Steverson et al., 2019). However,69

disentangling these from nonlinear subjective utility is challenging, and cannot be excluded as70

an explanation for previous results (Teodorescu et al., 2016; Pirrone et al., 2018a; Steverson et al.,71

2019; Zajkowski et al., 2019; Turner et al., 2019; Bhui, 2019; Smith and Krajbich, 2019; Pirrone and72

Gobet, 2021).73

Here for the first time we extend the theoretical and experimental study of magnitude-sensitivity74

to three-alternative decisions. We first present evidence for magnitude-sensitive reaction times in75

three-way equal-alternative decisions. We then present optimal policy analyses and novel numerical76

simulations for such ternary decisions, both in human subjects undertaking a psychophysical task,77

and unicellular organisms engaged in foraging. Importantly, for a wide variety of utility functions,78

strong magnitude-sensitivity is only observed when there is a multiplicative cost for time, rather79

than the previously assumed linear time cost. Thus magnitude-sensitivity is revealed as genuinely80

diagnostic for multiplicative time costing, as all other assumptions either do not generate this81

phenomenon, or can be discounted.82

Results83

As we were testing theory developed to explain decision-making by animals with brains, we con-84

ducted psychophysical experiments with human subjects. However, we also conducted foraging85

experiments with a unicellular slime mould; testing theory across multiple species and behavioural86

tasks increases confidence when multiple agreements with theory are observed (Pirrone et al.,87

2018a), and slime moulds have become a model system, with multiple experiments seeking to88

reproduce behavioural predictions from neuroscience and psychology (Latty and Beekman, 2011;89

Reid et al., 2016; Dussutour et al., 2019).90

Multi-Alternative Decisions in Human Psychophysical Trials are Magnitude-Sensitive91

Here we provide strong empirical evidence for magnitude sensitivity with multiple alternatives in92

humans, using an experimental paradigm similar to the one used to show magnitude sensitivity93

for two-alternative decision making (Teodorescu et al., 2016; Pirrone et al., 2018a). Details of the94

experiment (methods, participants, etc.) are reported in Materials and Methods. Participants had to95

choose which of three above-threshold grey patches was brighter in an online experiment. Although96

the experiment included conditions for which a brighter alternative existed, conditions of interest97

were equal alternatives of different magnitude, that is, conditions for which the three patches had98

the same brightness that could vary across magnitude conditions. Equal alternatives allow us to test99

hypotheses regarding magnitude sensitivity, by keeping differences in evidence constant (Pirrone100

et al., 2018a,b; Pirrone and Gobet, 2021).101
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As previously done for binary decisions (Pirrone et al., 2018a,b), here we focused our analyses102

exclusively on equal alternatives. For the analyses, we did not censor any datapoints.103
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Figure 1. Empirical results from the behavioural online experiment. Decreasing reaction times as a function of
the magnitude of the equal alternatives. X-axis presents mean brightness of equal alternatives (0.3, 0.4, 0.5, 0.6),

on a scale of brightness from 0 to 1 in PsychoPy. Y-axis presents mean reaction times, in seconds. Bars show

95% confidence intervals. Participants experienced equal alternative conditions, interleaved with unequal

alternative trials in pseudo-randomised order. Participants that performed the whole experiment experienced

each equal alternative presentation ten times.

As shown in Figure 1, the data show strong magnitude sensitivity, given that choices for equal104

alternatives of higher magnitude conditions (higher brightness on a scale from 0 to 1 on Python)105

were made faster.106

To assess if reaction times decreased as a function of the mean brightness of the equal al-107

ternatives, we used a linear mixed model in R. The model was fitted by specifying as fixed effect108

(explanatory variable) the brightness of equal alternatives as a continuous predictor. The partici-109

pant ID was also added to the model as a factor for random effects. Reaction times significantly110

decreased as a function of the mean brightness of the alternatives (b = -1.95, p< .001, CI -2.14 -1.75).111

Further details for the mixed-effect regression are presented in the supplementary information112

(Table S1).113

As the COVID-19 pandemic necessitated an online experiment we could not collect or control114

information on a number of possible confounds (viewer position, motivation, room luminosity, etc.),115

and there are multiple sources of unaccounted variability in our online experiment; however there116

is no a priori reason to expect these to act as consistent confounds in the magnitude-sensitive117

reaction times observed. Furthermore, the very large sample size for our study (N = 117; compared118

to N = 8 and N = 9 for previous similar investigations (Teodorescu et al., 2016; Pirrone et al.,119

2018a)) should minimise effects due to randomly-distributed confounds.120
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Multi-Alternative Decisions in Foraging Trials by Unicellular Organisms are Magnitude-121

Sensitive122

Here, using slime moulds of the species Physarum polycephalum, we also observed strong empirical123

evidence for magnitude sensitivity with three alternative foraging tasks. Details of the experiment124

are reported in Materials and Methods. Slime moulds were confronted with a choice offering three125

equal food sources. We increased the magnitude of the options by increasing the quality of the food126

sources. As shown in Figure 2, the latency to reach one of the alternatives depends on the quality of127

the food sources; the higher the quality the faster the slime mould. This was confirmed by a linear128

mixed model similar to the one applied to the human data, in which reaction times significantly129

decreased as a function of food quality (b = -0.03, p < .001, CI -0.03 -0.02; further details, Table S2 in130

the supplementary information).131
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Figure 2. Empirical results from the slime mould experiment. Decreasing latencies to reach a food source as a
function of the magnitude of the equal alternatives. X-axis presents the concentration in egg yolk of equal food

sources (20, 40, 60, 80 g.L-1). Y-axis presents mean latency to reach a food source, in minutes. Bars show 95%

confidence intervals. 50 slime moulds were tested for each magnitude for a total of 200 slime moulds.

Optimal Policies132

For our theoretical analysis we begin by re-deriving optimal policies for decisions when the change133

is made from linear costing of time, or Bayes Risk, to geometric discounting of future reward. Note134

that geometric discounting of future rewards is similar to, but not the same as, non-linear utility. As135

remarked in the introduction above, for binary decisions magnitude-sensitive reaction times can be136

explained by optimal decision policies for either multiplicative (e.g. geometric) time discounting137

(Marshall, 2019; Steverson et al., 2019) or nonlinear subjective utility with linear time costs (Tajima138

et al., 2016). In the multi-alternative case, on the other hand, the picture is more nuanced; moving139

from linear costing of time to geometric discounting of future rewards changes complicated time-140
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dependent non-linear decision thresholds ((Tajima et al., 2019) Fig. 7) into either simple linear ones141

that collapse over time for lower-value option sets (Fig. 3), or nonlinear boundaries that evolve142

over time similarly to the Bayes Risk-optimising case for higher-value option sets (Marshall (2019);143

Fig. 3). As Tajima et al. note, the simpler linear decision boundaries implement the ‘best-vs-average’144

decision strategy, whereas the more complex boundaries interpolate between ‘best-vs-average’145

and ‘best-vs-next’ decision strategies (Tajima et al., 2019); interestingly simply moving to nonlinear146

subjective utility with linear time costs simplifies the decision strategy to the ‘best-vs-next’ strategy147

(Fig. 3; see Tajima et al. (2019), Fig. 6C).148

Figure 3. Linear time costs lead to weakly magnitude-sensitive optimal policies (top row), while geometric
discounting of reward leads to strongly magnitude-sensitive optimal policies (bottom row). In the linear time

cost (Bayes Risk) case nonlinear subjective utility changes complex time and value-dependent decision

boundaries in estimate space into a simple mostly magnitude-insensitive ‘best-vs-next‘ strategy (top row; see

Tajima et al. (2019), Fig. 6C). For geometric discounting of rewards over time, optimal decision boundaries are
strongly magnitude-sensitive and interpolate between simple ‘best-vs-average’ and ‘best-vs-next’ strategies (see

Tajima et al. (2019), Fig. 6). Triangles are low dimensional projections of the 3-dimensional evidence estimate
space onto a plane moving along the equal value line, at value v (Tajima et al., 2019). Dynamic programming
parameters were: prior mean x̄p,i = 1.5 and variance σ2

p,i = 5, waiting time tw = 1, temporal costs c = 0,

γ = 0.2, and utility function parametersm = 4, s = 0.25 (for the linear time cost) andm = 4, s = 3.5 (for the
geometric time cost).

Multi-Alternative Decisions: Optimal Policies are Weakly Magnitude-Sensitive for Nonlin-149

ear Subjective Utility Under Bayes Risk-Optimisation150

Under Bayes Risk-optimisation it is known that, for binary decisions, optimal policies are magnitude-151

insensitive when subjective utility is linear, whereas they are magnitude-sensitive when subjective152

utility is nonlinear (Tajima et al., 2016, 2019).153

For ternary decisions, however, even with nonlinear subjective utility, policies exhibit very weak154

magnitude-sensitivity early in decisions, becoming magnitude-insensitive as decisions progress155

(Fig. 3, row ‘linear‘). Sensitivity analysis shows that magnitude-insensitivity is a general pattern. An156

informal understanding of this can be arrived at by appreciating that sigmoidal functions have157
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two extremes of parameterisation; in one extreme they are almost linear, hence will be mostly158

magnitude insensitive due to the known result (Tajima et al., 2016). At the other extreme, the159

function becomes step-like; in this case options are either good or bad, and the optimal policy160

rapidly becomes ‘choose the best‘ (Fig. 4), since under such a scenario sampling is of minimal benefit161

as early information quickly indicates whether an option is good or bad, and choosing the first162

option that appears to be good is optimal.163

Figure 4. Optimal policies for linear time cost (Bayes Risk) rapidly transition from approximately linear
subjective utility, and hence weakly magnitude-sensitive, decision boundaries in estimate space (Fig. 3, top row

for s = 0.25; present figure, top row for s = 0.5, to more step-like subjective utility where immediate ‘choose the
best‘ decision-boundaries are necessarily magnitude-insensitive (bottom row for s = 0.75, and higher values of
s). Triangles are low dimensional projections of the 3-dimensional evidence estimate space onto a plane moving
along the equal value line, at value v (Tajima et al., 2019). Dynamic programming parameters were: prior mean
x̄p,i = 1.5 and variance σ2

p,i = 5, and utility function parametersm = 4, s ∈ {0.5, 0.75}.

Multi-Alternative Decisions: Optimal Policies Become Magnitude-Sensitive Under Geo-164

metric Discounting165

As previously shown (Marshall, 2019; Steverson et al., 2019), assuming geometric temporal dis-166

counting, the optimal policy for binary decisions is magnitude-sensitive. In ternary decisions,167

geometric discounting has the same effect; regardless of utility function linearity, the optimal policy168

is magnitude-sensitive (Fig. 3, row ‘geometric‘).169

Numerical Simulations170

Since noise-processing is fundamental in determining reaction times, we confirmed the results on171

magnitude sensitivity from our optimal policy analysis via numerical simulation of Bayes-optimal172

evidence-accumulating agents using those policies (see Materials and Methods). These numerical173

simulations confirmed the qualitative results from the optimal policy analysis; reaction times for174

ternary decisions under linear time costing are only weakly magnitude sensitive even for nonlinear175
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subjective utility functions, while under geometric time costing reaction times become strongly176

magnitude sensitive for most utility functions examined.177

Multi-Alternative Decisions: Simulated Reaction Times are Weakly Magnitude-Sensitive178

for Nonlinear Subjective Utility Under Bayes Risk-Optimisation179

Across all nonlinear subjective utility functions considered, linear time costing resulted in weakly180

magnitude-sensitive simulated reaction times (Fig. 5). This agrees with the weak magnitude-181

sensitivity observed in the optimal policies derived above (Fig. 3). Note, however, that this contrasts182

with the binary decision case in which optimal policies, and hence reaction times, becomemagnitude183

sensitive under linear time cost when subjective utility is nonlinear (Tajima et al., 2016). An informal184

justification for this is given above in analysis the optimal decision boundaries computed via185

dynamic programming.186
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Figure 5. Linear time costs lead to weakly magnitude-sensitive simulated reaction times across a range of
nonlinear subjective utility functions for equal value option sets. Simulation parameters were: prior mean

x̄p,i = 1.5 and variance σ2
p,i = 5, observation noise variance σ2

a,i = 2, temporal cost c = 0, waiting time tw = 1,

and simulation timestep dt = 5× 10−3. Lines are the mean reaction time for 104 simulations, 95% confidence
intervals are shown as red shading (mostly invisible because smaller than the linewidth).

Multi-Alternative Decisions: Simulated Reaction Times Become Magnitude-Sensitive Un-187

der Geometric Discounting188

In contrast to linear time costing, across all nonlinear subjective utility functions considered, ge-189

ometric time costing resulted in strongly magnitude sensitive simulated reaction times (Fig. 6),190

with longer reaction times for lower value equal-value option sets; this strategy was previously191

hypothesised to be optimal (Pais et al., 2013). The strong magnitude-sensitivity in the numerical192

simulations corresponds with the strong magnitude-sensitivity observed in the optimal policies193

derived above (Fig. 3).194
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Figure 6. Geometric discounting of reward leads to strongly magnitude-sensitive simulated reaction times
across a range of nonlinear subjective utility functions, with decisions postponed for low equal-value option

sets. Simulation parameters were: prior mean x̄p,i = 1.5 and variance σ2
p,i = 5, observation noise variance

σ2
a,i = 2, temporal cost γ = 0.1, and simulation timestep dt = 5× 10−3. Lines are the mean reaction time for

104 simulations, 95% confidence intervals are shown as red shading (mostly invisible because smaller than the
linewidth).

Discussion195

In understanding behaviour, which is a product of evolution, searching for optimal algorithms for196

typical decision problems can provide great insight. This normative approach can explain observed197

behaviours, and predict new behavioural patterns, based on evolutionary advantage. Yet the198

assumptions underlying such model analyses can prove crucial. Recently it has been asked what199

optimal decision algorithms look like for multi-alternative value-based choices, in which subjects are200

rewarded not by whether their decision was correct or not, but by the value to them of the selected201

option (Tajima et al., 2019). The resulting algorithms correspond to earlier simple models for202

perceptual and value-based decision-making. These findings, however, rest on an assumption that203

time is a linear cost for subjects. Here we have shown that deciding human subjects and foraging204

unicellular organisms do, however, exhibit marked magnitude sensitivity in ternary decisions, as205

previously shown for binary decisions (Pirrone et al., 2018a; Dussutour et al., 2019). We have also206

shown that optimality theory that discounts future rewards multiplicatively based on time is the207

foremost explanation for such observations of magnitude-sensitivity; nonlinear subjective utility208

alone is not sufficient to give rise to strongly magnitude-sensitive decision times when time is209

treated as a linear cost.210

Behavioural Predictions211

The Bayes Risk optimal policy is approximated by a neural model that is consistent with observations212

of economic irrationality (Tajima et al., 2019), hence it will be important to see if a revised neural213
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model based on the revised optimal policy still shows such agreement. For example, while in the214

binary case magnitude-sensitive reaction times can be explained both by nonlinear subjective utility215

functions, and by multiplicative discounting rather than Bayes Risk, in the multi-alternative case our216

analysis suggests that the same phenomenon is explained primarily by multiplicative discounting of217

future rewards and not by nonlinear utility.218

Optimality Criteria219

Practitioners of behavioural ecology have established principles to deal with empirically-observed220

deviations from the predictions of optimality theory (Parker and Smith, 1990); two of the most221

useful are to consider that the optimisation criterion has been misidentified, or the behaviour in222

question is not really adaptive. Tajima and colleagues employ an exemplary approach, attempting223

to combine the best of the approaches of normative and mechanistic modelling (McNamara and224

Houston, 2009); yet it bears remembering that subjects may not be trying optimally to solve the225

simple decision problem they are presented in the lab, but rather making use of mechanisms that226

evolved to solve the problem of living in their natural environment (Fawcett et al., 2014); indeed227

the experimental data presented here were produced by subjects who received no reward, yet228

nevertheless acted as if they were making an economic, value-based, decision rather than a purely229

perceptual, accuracy-based one.230

Materials and Methods231

Psychophysical Experiment232

Participants233

This experiment was conducted during the COVID-19 pandemic, from May 13th – June 1st 2020..234

Given that it was not possible to recruit participants for a laboratory experiment, we instead235

recruited them online using Pavlovia (Peirce et al., 2019; Peirce, 2007), an online platform for236

psychophysical experiments implemented in PsychoPy.237

Running a perceptual experiment online has a number of limitations: first, there is no way to238

ensure that participants are focused on the task and minimising distractions - to mitigate this we239

kept the task short and participants were instructed to concentrate on it; second, Pavlovia (as of240

March-May 2020) only allows stimuli to be drawn in units relative to window size (i.e., the window in241

which the experiment is displayed) or in pixels, hence their size and position relative to the fixation242

cross will vary across devices, depending on specific window sizes. However, even if the size and243

location of stimuli could be kept constant across participants, participants’ distance from the screen244

cannot be controlled during an online experiment.245

While in previous two-alternative experiments (Teodorescu et al., 2016; Pirrone et al., 2018a)246

a limited number of participants (N < 10) performed a large number of trials, for our online247

experiment we aimed at a large number of participants performing a limited number of trials.248
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Figure 7. (A) Stimuli example for human psychophysical experiments: Participants were requested to decide as
fast and accurately as possible which of the three stimuli was brighter; they were asked to maintain fixation on

the cross at the centre of the screen and minimise distraction for the short duration of the experiment.

Unknown to participants, conditions of interest were conditions for which the stimuli had equal mean

brightness. (B) Photograph showing a slime mould that chose one food alternative among three equal ones.

The slime mould was placed in the centre of a petri dish (6cm �) filled with agar gel (10 g/l) at a distance of 2cm
from each food alternative.

This strategy is beneficial for online studies since the large number of participants helps ensure249

that variation in participants’ motivation or viewing arrangements is averaged out. We therefore250

recruited 117 participants via external advertisement on Twitter, and internal email lists at the251

University of Sheffield (mean age = 40.4, SD = 11.2774, range 23 -77; 79 females, 37 males, 1 did252

not indicate their gender). We requested participants to follow the link to the experiment only if253

aged 18 years or older. The experiment lasted about 5 minutes and participation was voluntary;254

participants did not receive any reward for their participation.255

After reading the instructions, participants were informed that by continuing they were confirm-256

ing that they understood the nature of the experiment and consented to participate. Participants257

were also informed that they could leave the experiment at any time by closing the browser. For this258

experiment, all procedures were approved by the University of Sheffield, Department of Computer259

Science Ethics Committee.260

Experimental setup261

Similarly to previous studies (Teodorescu et al., 2016; Pirrone et al., 2018a), stimuli consisted of262

three homogeneous, round, white patches in a triangular arrangement on a grey background, as263

depicted in Figure 7. Throughout the task participants were presented with a central fixation cross264

that they were requested to fixate on.265

On a scale from 0 to 1 in PsychoPy, the patches could have a brightness of 0.3, 0.4, 0.5 or 0.6.266

There were 43
= 64 possible trial combinations, of which 4 were equal alternatives (i.e., alternatives267

having a brightness of [0.3,0.3,0.3], [0.4,0.4,0.4], [0.5,0.5,0.5] or [0.6,0.6,0.6]). We selected 10 equal268

trial repeats, and only one trial repeat for all possible unequal alternatives, for a total of 100269
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trials per participant. On each frame, a Gaussian random variable with mean 0 and standard270

deviation of 0.25 × (mean brightness of the alternative) was added separately to the brightness271

level of each patch; the signal-to-noise ratio was thus kept constant across equal alternatives of272

different magnitude. The order of presentation of the alternatives was pseudo-randomised across273

participants and there was no systematic link between patch position and best option.274

Three grey patches were presented simultaneously on the screen and subjects were asked to275

decide which of the three was brighter by pressing ‘left’, ‘right’ or ‘up’ on a keyboard using their276

second, fourth or third right-hand fingers, via a line-drawn diagram of a hand over a keyboard277

presented before the experiment began; specific instructions for left-handed participants were not278

provided, and we did not record handedness. The inter-trial interval, during which participants279

were presented with only the fixation cross, was selected at random between 0.5 seconds, 1 second280

or 1.5 seconds for each trial. Subjects were instructed to be as fast and accurate as possible and to281

maintain their fixation on the cross at the centre of the screen throughout the experiment. Before282

the experiment they were presented with 6 training trials (unequal alternatives) to familiarise283

themselves with the task. Participants were not provided with any feedback after each trial and284

were not informed about the presence of the equal-alternatives conditions.285

Slime Mould Experiment286

Physarum polycephalum, also known as the acellular slime mould, is a giant polynucleated single cell287

organism that inhabits shady, cool, and moist areas. In the wild, P. polycephalum eats bacteria and288

dead organic matter. In the presence of chemical stimuli in the environment, slime moulds show289

directional movements (i.e. chemotaxis).290

Slime moulds of strain LU352 kindly provided by Professor Dr Wolfgang Marwan (Max Planck291

Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany) were used for the292

experiments. Slime moulds were initiated with a total of 10 sclerotia which are encysted resting293

stages. The sclerotia were soaked in water and placed in petri dishes (140 mm �) on agar gel294

(1%). Once revived, slime moulds start to explore the agar gel, usually 24h after the reactivation of295

the sclerotia. The slime moulds were then reared for a month on a 1% agar medium with rolled296

oat flakes (Quaker Oats Company R©) in Petri dishes (140 mm �). They were kept in the dark in a297

thermoregulated chamber at a temperature of 20 degrees Celsius and a humidity of 80%. The day298

before the experiment the slime moulds were transferred on a 10% oat medium (powdered oat299

in a 1% agar solution) in Petri dishes (diameter 140 mm). The experiments were carried out in a300

thermoregulated chamber and pictures were taken with a Canon 70D digital camera.301

Slime moulds were presented with a choice between three equal food sources in an arena302

consisting of 60 mm diameter Petri dish filled with plain 1% agar. We punched three holes (10mm303

�) in the arena and filled them with a food source (10mm �). We used four different food patches304

varying in quality: 2% w/v powdered oat mixed with either 2, 4, 6 or 8% w/v egg yolk. Once the305
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food sources were set in each hole, we placed a slime mould (10mm �) in the centre of the arena306

2cm away from each food. We replicated the experiment 50 times for each food quality. For each307

replicate, we measured the time taken by the slime mould to reach either one of the three food308

sources.309

To assess the difference in the latency to reach the food as a function of the food quality, we310

used a linear mixed model (function lmer, Package lme4) in R (RStudio Version 1.2.1335). The311

models were fitted by specifying the fixed effects (explanatory variables) the concentration in yolk312

(continuous predictor). The sclerotia identity was also added to the model as a random factor. We313

transformed the dependant variable using the “bestNormalize” function (“bestNormalize” package).314

The outcome of the model is presented in the supplementary information (Table S2).315

Optimal policies316

Optimal policy computations were performed in Matlab (MathWorks, 2020), and were adapted317

from the dynamic program of Tajima et al. (2019). Optimal policies were computed for Bayes Risk318

and geometric discounting, for linear utility (r := x), and for non-linear utility functions having the319

form320

r := m

(
1

1 + e−sx
− 1

)
(1)

wherem and s are shape parameters for the logistic function determining the interval of utilities321

and steepness of the slope respectively, and x is the raw input value. We systematically varied the322

m and s parameters to test magnitude-sensitivity under Bayes Risk optimisation and geometric323

discounting, under a range of utility function shapes ranging from almost linear, to almost stepwise.324

Note that a sigmoid curve includes an interval in which subjective utility is an accelerating function325

of input value when the latter is negative, and an interval in which it is a decelerating function when326

the latter is positive; thus testing for magnitude-sensitivity over the full interval of raw input values327

tests a variety of utility function shapes over sub-intervals.328

The Bellman equation used in the dynamic programming analysis for the Bayes Risk-optimisation329

case was330

V (t, x̂(t)) = max {maxi{ri(t, x̂(t))} − ρtw, 〈V (t+ δt, x̂(t+ δt))〉 − (c+ ρ)δt} , (2)

where V (t, x̂(t)) is the value of the state estimates vector x̂(t) at time t, ri(t, x̂(t)) is similarly the331

expected reward from choosing the i-th reward, δt is the time interval to the next decision point, c332

is the linear cost per unit time, ρ is the reward rate per unit time based on optimal decision-making333

over a sequence of trials, tw is the inter-trial waiting time, and 〈. . .〉 is expectation over the next time334

interval (δt) (Tajima et al., 2019). For the results presented here we set c = 0, tw = 1 and found the335

optimal ρ > 0 using the methods of Tajima et al. (2019); note, however, that since the prior was not336

varied this reward-rate optimisationcould not induce magnitude-sensitive reaction times in itself.337

13 of 16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.05.05.442775doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442775
http://creativecommons.org/licenses/by/4.0/


For the geometric discounting case the Bellman equation becomes338

V (t, x̂(t)) = max {maxi{ri(t, x̂(t))}, 〈V (t+ δt, x̂(t+ δt))〉γ} , (3)

where 0 < γ < 1 is a discount factor for rewards received in future timesteps; this discount factor is339

per-unit-time, hence to discount a reward δt < 1 timesteps in the future the appropriate factor is340

γδt/1 = γδt.341

Stochastic simulations342

Since noise processing is important in determining reaction times, we derived optimal decision343

policies as above, then tested them through numerical analysis of stochastic models. To test for344

magnitude-sensitive decision-making we examined the case of n = 3 equal-quality alternatives, in345

which we varied the magnitude of the (equal) stimuli values. Through these stochastic simulations,346

we tested the impact of the different temporal discount methods—linear or geometric—and of347

different utility functions—linear or nonlinear—on the decision speed (reaction time RT). The348

stochastic models simulate the sequential accumulation of evidence for the three alternatives349

i ∈ {1, 2, 3} that are used to compute the expected rewards 〈x̂i(t)〉. The three evidence estimates350

can be represented, with a little abuse of notation, as a vector x̂(t) denoting a point in a cube that351

represents the estimate space. In that cube, we also include the decision boundaries computed352

as above, indicating the separation of the estimate space into decision regions; in one region353

continuing to sample is expected to maximise utility, and in the other region taking a decision for354

the leading option is expected to be the best action.355

In our simulations, each time step of length dt the decision-maker accumulates three pieces of356

evidence, one for each option. Evidence for an option i is sampled from the normal distribution357

Xi ∼ N (x̄i dt, σ
2
a,i dt), where each sample xτ,i is a piece of momentary evidence at a small timestep358

of length dt and with sequential index τ , x̄i is the true raw value (before any nonlinear utility359

transformation) of option i and σ2
a,i is the variance in accumulation of evidence for i (Tajima et al.,360

2016). Before observing any evidence, the decision maker has prior mean and variance, x̄p,i and361

σ2
p,i for the distribution of Xi. Each new piece of accumulated evidence is used by the decision362

maker to update the posterior expected reward as363

〈x̂i(t)〉 =
x̄p,i σ

2
a,i +

∑t
τ=1 dxτ,i

σ2
a,i + σ2

p,i t
. (4)

Code and Data Availability364

Optimisation codes for the results presented here can be downloaded from365

https://github.com/DiODeProject/MultiAlternativeDecisions/tree/stochastic-sim366

Experimental code and data for the results presented here can be downloaded from367

https://osf.io/8jumk/368
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