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ABSTRACT

Introduction. Multidrug-resistant Mycobacterium tuberculosis (Mth) is a significant global
public health threat. Genotypic resistance prediction from Mtb DNA sequences offers an
alternative to laboratory-based drug-susceptibility testing. User-friendly and accurate
resistance prediction tools are needed to enable public health and clinical practitioners to

rapidly diagnose resistance and inform treatment regimens.

Methods. We present Translational Genomics platform for Tuberculosis (GenTB), a web-
based application to predict antibiotic resistance from next-generation sequence data. The
user can choose between two potential predictors, a Random Forest (RF) classifier and a
Wide and Deep Neural Network (WDNN) to predict phenotypic resistance to 13 and 10 anti-
tuberculosis drugs, respectively. We benchmark GenTB’s predictive performance along with
leading TB resistance prediction tools (Mykrobe and TB-Profiler) using a ground truth

dataset of 20,408 isolates with laboratory-based drug susceptibility data.

Results. All four tools reliably predicted resistance to first-line tuberculosis drugs but had
varying performance for second-line drugs. The mean sensitivities for GenTB-RF and
GenTB-WDNN across the nine shared drugs was 77.6% (95% CI 76.6 - 78.5%) and 75.4%
(95% CI 74.5 - 76.4%) respectively, and marginally higher than the sensitivities of TB-Profiler
at 74.4% (95% CI 73.4 - 75.3%) and Mykrobe at 71.9% (95% CI 70.9 - 72.9%). The higher
sensitivities were at an expense of <1.5% lower specificity: Mykrobe 97.6% (95% CI1 97.5 -
97.7%), TB-Profiler 96.9% (95% CI 96.7 to 97.0%), GenTB-WDNN 96.2% (95% CI 96.0 to
96.4%), and GenTB-RF 96.1% (95% CI 96.0 to 96.3%). Genotypic resistance sensitivity was
11% and 9% lower for isoniazid and rifampicin respectively, on isolates sequenced at low
depth (<10x across 95% of the genome) emphasizing the need to quality control input
sequence data before prediction. We discuss differences between tools in reporting results
to the user including variants underlying the resistance calls and any novel or indeterminate

variants

Conclusion. GenTB is an easy-to-use online tool to rapidly and accurately predict
resistance to anti-tuberculosis drugs. GenTB can be accessed online at

https://gentb.hms.harvard.edu, and the source code is available at https://github.com/farhat-

lab/gentb-site.
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34 INTRODUCTION

35 Human tuberculosis, a chronic infectious disease caused by members of the Mycobacterium
36  tuberculosis complex, is a leading cause of death from a bacterial infectious agent [1]. The
37  proliferation of multidrug-resistant tuberculosis (MDR-TB) is threatening TB prevention and
38  control activities worldwide [1]. Timely detection of antimicrobial resistance is vital to guide
39 therapeutic options and contain transmission. Antimicrobial resistance is conventionally
40 determined by in vitro drug susceptibility tests (DST) on solid or liquid antibiotic-containing
41  culture, which uses drug-specific testing breakpoints (‘critical concentration’) to classify the
42 infecting strain into drug-susceptible or drug-resistant [2]. Being contingent on
43  mycobacteria's slow growth rate, these phenotypic tests require days to weeks and often
44  deliver unreliable and poorly reproducible results for some drugs, such as ethambutol and
45  pyrazinamide [3,4]. In contrast, molecular methods have emerged as rapid resistance
46  prediction alternatives to complement and speed up traditional DST, leveraging known and
47  reliable genotype-phenotype relationships between variants in the M. tuberculosis genome
48  and in vitro drug resistance [5].

49

50 Over recent years, whole-genome sequencing (WGS) of M. tuberculosis has become an
51 affordable tool to provide genetic information for genotypic resistance prediction and high-
52  resolution outbreak reconstruction [6]. Large scale genotype-phenotype assessments have
53 demonstrated high diagnostic accuracy for clinical use to predict susceptibility to first-line
54  drugs based on WGS [7]. Following these results, public health authorities have begun to
55  discontinue phenotypic testing when pan susceptibility is predicted from the genotype, a step
56  with considerable cost- and time benefits [8]. Start-to-end applications which analyze
57 sequencing data to predict resistance phenotypes and are accessible to non-bioinformatic
58 experts are required as WGS based analyses become part of the standardized diagnostic
59  process in clinical laboratories. A range of published tools available for command-line [9,10]
60 or web-based/desktop use [11-13] or both [14,15] exists. These applications vary in quality

61 control and sequence preprocessing steps and rely on detecting pre-defined resistance-
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62 conferring mutations such as single nucleotide polymorphisms (SNPs) or small
63 insertions/deletions (indels) in the WGS data to predict the resistance phenotype. They also
64  vary in the type of information fed back to the user including error rates and specific variants
65  detected.

66

67 Here, we present GenTB (https://gentb.hms.harvard.edu), an open user-friendly start-to-end
68  application to predict drug resistance phenotypes to 13 drugs from WGS data. The GenTB
69 analysis pipeline is also available for command-line use wrapped in Snakemake [16]. The
70 online user interface allows users to interactively explore the sequencing data, prediction
71  results and geographic distributions. Resistance prediction is made based on a previously
72  observed set of variant positions spanning 18 resistance-associated genetic loci and a
73  validated random forest (RF) classifier [17] as well as a wide and deep neural network
74  (WDNN) combining a logistic regression model with a multilayer perceptron to predict the
75  resistance phenotype [18]. In this study, we benchmark these two classification models
76  implemented in GenTB along with two other tools with a command-line interface, TB-profiler,
77 and Mykrobe, on a large dataset of >20k clinical M. tuberculosis isolates starting from raw

78 lllumina sequence data.
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METHODS

Backend and website build

GenTB is a bespoke Django website hosted by the Harvard Medical School O2 high
performance computing environment and collaboratively developed on GitHub

(https://github.com/farhat-lab/gentb-site). The website uses off-the-shelf frontend

components; Bootstrap for styling and mobile-friendly delivery, nvd3 for plots and graphs,
resumable.js for robust uploading and supplements these with custom Javascript
functionality for integration. The backend is a Python-Django web service using a
PostgreSQL database which integrates with Dropbox for file uploading, and python-chore for
slurm cluster job submission and management. GenTB predict jobs are run by modular
programs organized into pipelines. The modularity allows for easy maintenance and
management of dependencies and outputs. Administration screens allow a non-expert
developer design new program calls and construct new pipelines and integrate them without
redeployment of the website. Further tools provide error tracking. GenTB predict results are
integrated into the PostgreSQL database allowing website generated plots to be populated
quickly. All generated files for the intermediary pipeline steps are provided for download by
the user. GenTB Map uses a PostGIS database to rapidly link strain mutation and lineage
information with geo-spatial objects; these are fed into the leaflet.js display to render strain
information to the user. Map allows users to display strain data groupings by country,
lineage, drug resistance phenotype or specific genetic mutation through tabs that can nest

the groups in any order.

Raw read processing
Upon uploading single-end or paired-end FastQ files, GenTB first validates the input using
fastQValidator (Fig. 1). Low-quality reads and sequencing adapters are then trimmed with

fastp [19]. Read mapping taxonomy is assessed with a custom-built Kraken database
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comprising M. tuberculosis complex reference sequences [20] followed by minimap2
alignment (parameters: default) of reads to the H37Rv reference genome (AL123456) [21].
Samtools is used for sorting the aligned reads, removing duplicates, and indexing [22].
Sequence read datasets with a coverage of <95% at 10x or less across the genome or that
had a mapping percentage of <90% to M. tuberculosis complex strains will not be further
processed, and an error message is displayed to the user. Variants are called with pilon
(parameters: default) [23] to obtain SNPs and indels in the variant calling format (VCF)
requiring that they have a PASS or Amb filter tags with read allele frequency >0.40. Fast-
Lineage-Caller then detects the M. tuberculosis lineage based on five lineage typing
schemes as implemented by Freschi et al. [24]. Subsequently, invariant sites in the VCF file
are removed, and a custom Perl script annotates each variant as frameshift, synonymous or
non-synonymous, stop codon, indel along with the H37Rv locus tag for each respective
gene. A custom python script generates a matrix file with all model features/variables in the
columns used as input to the two prediction steps specified below. These scripts are

available from Github (https://github.com/farhat-lab/gentb-site) and are open source

(AGPLv3 license). All intermediate sequence files are accessible to the user for download

and verification.

Operation

Users must create an account to run predictions and track uploaded datasets, intermediary
files and results. Users with low internet bandwidth can use the Dropbox integration to
upload files. Both raw sequence reads and variants in variant call format (VCF) can be
uploaded for resistance prediction. The user can select an option to delete uploaded source
data after prediction or otherwise to save it for their future access through GenTB. Files are

user specific and not shared or accessible by others.

GenTB online interface has been tested with batches of up to 300 isolates. For batch

processing of larger numbers of raw sequence data, we provide a command-line GenTB
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workflow based on Snakemake v5.20.1 [16] where dependent software will be sourced via
conda [25]. The Snakemake workflow can be accessed via Github (https://github.com/farhat-
lab/gentb-snakemake). The README file details how resistance prediction results on a

paired-end sample can be obtained.

Genotypic resistance prediction using two statistical models

Two multivariate models are used to predict the resistance phenotype, an RF model
(GenTB-RF) and a WDNN (GenTB-WDNN). GenTB-RF was trained on isolates with
available resistance phenotype data and was validated as previously described [17]. Briefly,
1,397 clinical isolates sampled as detailed in reference [17] underwent targeted sequencing
at 18 drug resistance loci using molecular inversion probes and in parallel underwent binary
drug culture-based DST to 13 drugs. One RF was built for each drug using the
randomForest R package (v. 4.6.7) with a subset of the total 992 SNPs/indels observed.
Variants of highest importance for resistance prediction to each drug were selected by
iteratively paring down the model and measuring loss of performance. Important variants are

shown in Suppl. Figure S1 for isoniazid and rifampicin.

Pyrazinamide resistance is known to rely on a large number of individually rare variants.
Given the large increase in published M. tuberculosis WGS and linked DST data as well as
the recent implication of novel resistance loci we retrained the pyrazinamide RF here using a
newer version of randomForest R package (v. 4.6.-14) on variants in the genes pncA, panD,
clpC1, clpP [26]. We used 75% (15,267 isolates) of the dataset to train the model and 25%
(5,098 isolates) to validate its performance. During retraining, we excluded silent variants,
those that occurred only in phenotypically susceptible isolates, or known phylogenetic
variants, and the final model was trained on 393 variants occurring in 3,262 phenotypically
pyrazinamide resistant isolates [24]. We chose the randomForest mtry variable that yielded
the smallest out-of-bag error and varied the classwt variable to maximize the sum of

sensitivity and specificity.
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GenTB-WDNN is a multitask logistic regression model combined with a multilayer
perceptron. It has been previously shown to have equal or higher performance than the RF
architecture when both are trained on the same data [18]. GenTB-WDNN was trained on
3,601 isolates (sampled as detailed in reference [18]) for 11 drugs using the Keras 2.2.4
library in Python 3.6 with a TensorFlow 1.8.0 backend. The model uses 222 features (i.e.,
SNPs or small insertions/deletions) along with derived variables (i.e., the number of non-
synonymous SNPs across all resistance-conferring genes) to predict the resistance

phenotype.

Validation sequencing and phenotype data

We collated a database of 20,408 Illlumina raw sequence read datasets for which laboratory-
based phenotypic DST data was available from public sources (Suppl. Table S1). Sequence
data was downloaded from NCBI nucleotide databases. Custom scripts were used to pool
the phenotype data from NCBI, Patric, ReseqTB, and the supplementary information from
published literature (detailed methods in https://github.com/farhat-lab/resdata-ng). Sequence
data was merged in case of multiple sequencing runs per isolate for downstream processing
and resistance prediction. In isolates where >10% of reads did not classify as M.
tuberculosis complex, we removed unclassified reads using seqtk

(https://github.com/lh3/seqtk).

Performance of GenTB and comparison with other tools

To assess the performance of GenTB for predicting resistance, all isolates were processed
through the GenTB pipeline. We compared the diagnostic accuracy with two leading
resistance prediction tools, TB-profiler 2.8.12 [14] and Mykrobe v0.9.0 [15], that were run
with default parameters. The two tools and two GenTB prediction models' predictive ability
were obtained by comparing the genotypic prediction to the phenotype data that was

considered the ground truth. We calculated the true positive rate (sensitivity), the true
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negative rate (specificity), and area under the receiver operating curve (AUC for short) to
measure test accuracy for each drug and tool. We evaluated 1,000 probability thresholds per
drug to call resistance or susceptibility for GenTB-RF while using the GenTB-WDNN

thresholds previously described [18] (Suppl. Fig S2 and S3).

Statistical Analyses and data visualization

Prediction files from all tools were parsed and analyzed in Jupyter Notebooks running
Python 3.7 using the Pandas [27] and JSON libraries. Receiver operating characteristic
curves were plotted using the Seaborn library [28]. The Vioplot package was used for violin
plots [29]. Summary tables were created in R version 3.6.3 [30] using the packages from the
tidyverse [31] and kable (https://cran.r-project.org/web/packages/kableExtra/index.html).
Sequencing depth in resistance loci was calculated and plotted using Mosdepth version
0.2.9 [32]. Confidence intervals were obtained by bootstrapping, comparing 5000 predictions

per tool and drug on a resampled dataset.

Code and Data Availability
Code is available here: https://github.com/farhat-lab-gentb-site. The snakemake

implementation is available here: https://github.com/farhat-lab/gentb-snakemake.

Comparison of output between tools

We collated the output files and information produced by the GenTB online application, the
webserver of TB-Profiler (https://tbdr.Ishtm.ac.uk, version 3.0.0), and the Desktop version of
Mykrobe (MacOS app v0.90) using one example raw sequence dataset (accession
ERR1664619). The tools' output was compared based on the following criteria: 1) Type and
accessibility of output data formats; 2) Communication of genotypic prediction results, i.e.
binary classification versus probability; 3) Disclosure of the prediction model's error rate; 4)
Description of known resistance conferring variants identified, 5) Reporting any novel

mutation not listed in the resistance variant database, 6) Detailed account of detected
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218 lineage variants and what lineage typing scheme was used, 7) Report quality metrics on the

219 input sequence data.

10
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RESULTS

A user-friendly application to analyze M. tuberculosis sequencing data

GenTB was developed as a free and benchmarked online application to help public health
and clinical practitioners deconvolute the complexity of M. tuberculosis WGS data. GenTB
Predict allows users to predict resistance to 13 anti-TB drugs from a clinical isolate’s raw
lllumina sequence data (FASTQ). Two validated machine learning models are used to make
predictions: GenTB-RF and GenTB-WDNN (Methods and [17,18]). GenTB-RF is the default
prediction model. In addition to the GenTB Predict function that we focus on here, the web-
application has additional features for sharing, mapping, and exploring M. tuberculosis
genetic and phenotypic data (Fig. 2). GenTB Data enables researchers to store, version, and
share M. tuberculosis sequence and phenotype data and is powered by the Dataverse
research data repository [33]. Users can select an option to delete source files upon
processing the prediction. GenTB Map enables users to geographically visualize genetic and
phenotype data. Users can explore the subset of 20,408 isolates with geographic tags (n=
12,547 isolates) used for GenTB predict validation (Methods), or can upload and explore

their own data in enriched-VCF format (https://gitlab.com/doctormo/evcf/-

[blob/master/docs/Enriched VCF Format.md). Raw data and results can be exported to a

tabular data format.

Dataset description

We curated a dataset of 20,408 M. tuberculosis isolates with known phenotypic resistance
status to benchmark GenTB Predict performance (Methods and Suppl. Table S1). We
excluded 29 isolates as they failed FastQ validation. Of the remaining, 1,339 isolates did not
pass our taxonomy filter criterion, and their non-M. tuberculosis complex reads were
removed. The GenTB pipeline identified an additional 499 isolates where more than 5% of
the genome was covered at depth <10x and these isolates were excluded from further

analysis. These isolates had a median depth of 21x (IQR 17 to 26). The remaining 19,880

11
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isolates with high quality sequencing data were majority lineage 4 (52%), with lesser
representation of lineage 2 (21%), lineage 3 (15%), lineage 1 (10%), M. bovis (0.6%),
lineage 6 (0.3%), and lineage 5 (0.2%). Completeness of phenotypic DST data varied by
drug and was highest for the first-line drugs rifampicin (98.3%), isoniazid (96.4%),
ethambutol (77.5%), and pyrazinamide (71.5%) (Suppl. Table S2). The second and third-line
drug phenotype data ranged from 35.1% completeness for streptomycin to 7.8% for
ethionamide. Of the 20,408 isolates, 13,817 were phenotypically susceptible to first line
drugs, 4,743 (23.3%) were phenotypically MDR (i.e., resistant to isoniazid and rifampicin)
and 396 (1.9%) were phenotypically XDR (MDR and resistant to fluoroquinolones and the
second-line injectables — amikacin, kanamycin or capreomycin). We ran GenTB-RF and
GenTB-WDNN to predict resistance on 19,880 isolates and compared the predictions to

phenotypic data.

Predictive performance of the GenTB-Random Forest

We assessed each tools' predictive performance by comparison with phenotypic culture-
based DST results. Overall, the four tools had comparable performance characterized by
varying sensitivities and high specificities (Tables 1 & 2, Fig 3A). Diagnostic performance
was better for first-line than second-line drugs. As sensitivity varied most widely, we discuss
it by drug class below. Specificities varied less by tool or by drug. GenTB-RF's diagnostic
specificity was >92% for all drugs including the second-line injectables and fluoroquinolones
with the exception ethionamide (specificity = 78% [95% CI 75-80]) and streptomycin
(specificity = 89% [95% CI 88-90]). GenTB-RF's specificities were similar or higher than the
other three tools with the exception of pyrazinamide (94% [95% CI 93-95]) and streptomycin
(89% [95% CI = 88-90]) compared to TB-Profiler (96% and 95%, respectively) as well as

Mykrobe (98% and 95%, respectively).

First-line drugs: Rifampicin resistance prediction by GenTB-RF was most accurate

compared to other tools: AUC 0.96 (95% CI = 0.95-0.96), sensitivity 93% (95% CI = 93-94),

12
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second highest sensitivity was for TB-Profiler at 92% (95% CI = 91-93) (Tables 1 & 2, Figure
4). The accuracy of isoniazid resistance prediction was high and comparable across three of
the four tools including GenTB-RF (sensitivity 91% [95% CI =91-92]). For ethambutol,
GenTB-RF and TB-Profiler had the best and comparable performance with sensitivity 86%

(95% C| =85-87).

GenTB-RF predictions for pyrazinamide using the original model (v1.0) had low sensitivity at
56% (95% CI 54-58) with adequate specificity (98% [95% CI = 98-99]) compared to the other
tools when evaluated on the 19,880 isolates (2,336 phenotypically resistant and 11,932
susceptible) [17]. Pyrazinamide resistance is known to be caused by a large number of
individually rare variants in the gene pncA [34]. Given the large interval increase in available
WGS data and recent implication of novel resistance loci (panD, clpC1, clpP) [26] since
GenTB-RF was last trained, we assessed the number of rare variants in the four
aforementioned genes linked to pyrazinamide resistance. In a random 75% subset of the
20,379 isolates, we detected a total of 393 different variants in pncA, panD, clpC1 and clpP
with 40% (158/393) occurring only once. The majority of these variants, i.e., 73% (285/393)
were not previously seen by the original model. As a result of these observations, we
retrained a GenTB-RFv2.0, on 75% of the data using all 393 non-synonymous variants
including singletons and insertion/deletion variants from pncA, panD, clpC1 and clpP. The
retrained model, when benchmarked on an independent validation dataset of 5,098 isolates,

offered a sensitivity similar to that of the other tools (79%, 76 to 83) (Table 1).

Second-line drugs: For second-line drugs, larger discrepancies between genotype and

resistance phenotype have been previously described compared with first-line drugs [14,15].
Resistance to the second-line injectable drugs amikacin and kanamycin ranged between 63-
68% across the four tools, with the exception of a sensitivity of 55% by TB-Profiler for
amikacin (Table 1). For the fluoroguinolone ofloxacin, sensitivity ranged from 62%-68%

across the four tools. Three drugs had too few isolates with known phenotypic resistance
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(ciprofloxacin [n = 63], levofloxacin [n =111], and para-aminosalicylic acid [n = 46]), and
hence the tool's predictions had wide confidence intervals for these drugs (Supplemental

Tables S3 and S4).

Predictive performance of GenTB-WDNN.

Similar to GenTB-RF, the overall GenTB-WDNN performance was marked by high prediction
accuracy of first-line drug resistance and lower accuracy of second-line resistance (Table 1).
AUC 95% CI overlapped for all drugs between the two models except for ofloxacin and
rifampicin for which the GenTB-RF AUC was higher (Table 2). For streptomycin the GenTB-
WDNN offered the best sensitivity and specificity of all four models (sensitivity 87%, 95% ClI
85-88%, specificity 87% (95%CI 86-88%). Specificities were >95% for all drugs except for

streptomycin (87%, 95% CI 85 to 88) and ethambutol (93%, 95% CI 93 to 94).

Predictive performance depends on sequencing depth

We evaluated the need for quality control on sequencing depth as several tools do not
currently implement this prior to resistance prediction [9,14,15]. We observed predictive
performance to be highly dependent on sequencing depth as indicated by lower sensitivity to
predict rifampicin or isoniazid resistance by all four tools for the 499 isolates that did not
meet the threshold of 210x depth across >95% of the genome (median depth of 21x, IQR 17
to 26, Figures 3E,3F). Using GenTB-RF, the mean sensitivity of isoniazid and rifampicin
prediction was 84.6% (SD 3.6) and 87.3% (SD 3.6) respectively among low-depth isolates,
compared with 91% and 93%, respectively, on high-depth isolates (Suppl. Table S5, Figures
3E, 3F). Loss of sensitivity due to low sequencing depth was comparable across the four

tools.

Discordant resistance predictions
To gain insight into model performance, we probed discrepancies between GenTB-RF's

genotype-based prediction and the resistance phenotype. We focused on this model as it
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had the highest overall sensitivity. We examined specifically rifampicin and isoniazid as
resistance to these two drugs defines MDR-TB, and their genetic resistance mechanisms
are well understood. We investigated isolates for which GenTB-RF predicted resistance
while the phenotype was reported as susceptible (false positives) and isolates for which
GenTB-RF predicted susceptibility with a resistant phenotype (false negatives). We
confirmed that false negative predictions were not due to low sequencing depth in relevant

drug resistance loci (i.e. that depth was =10x across all bases, Suppl. Figures S4 and S5).

Rifampicin false positives: Variants causative of rifampicin resistance are concentrated in a

81bp window in the rpoB gene a.k.a the rifampicin resistance determining region (RRDR,
H37Rv coordinates 761081 to 761162, accession AL123456) [35]. For rifampicin, we
observed 254 false positive predictions (phenotypically susceptible isolates predicted
resistant). GenTB-RF detected one or more non-silent RRDR variants in 198 of these 254
isolates (78%). The most common RRDR variants were S450L (occurred in 49/254 isolates),
L430P (in 33/254), and H445N (in 31/254) (Suppl. Table S6). The remaining 56 of 254
isolates, harbored non-RRDR variants, the two most common were rpoB [491F (occurred in
29/56) and rpoB V695L (occurred in 24/56). Twenty eight of the 56 isolates (50%) were

phenotypically resistant to isoniazid and a further 16 (29%) were resistant to ethambutol.

Rifampicin false negatives: Among the 333 false negative rifampicin predictions

(phenotypically resistant isolates predicted susceptible), 96 (29%) isolates harbored a
variant in rpoB and of these 75 (23% of the 333) were in the RRDR (Suppl. Table S6). These
included most commonly three base pair insertion in rpoB codon 433 (occurred in 14/333
isolates) and rpoB codon 443 (occurred in 9/333 isolates) and rpoB substitution Q432L (in
9/333) [36]. These rpoB variants were not previously seen by the GenTB-RF model when
initially trained. For the remaining 237 of 333 isolates (71%) phenotypic resistance remained

unexplained.
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Isoniazid false positives: For isoniazid, we observed 315 false positive predictions

(phenotypically susceptible isolates predicted resistant by GenTB-RF). Among these
isolates, 119/315 (38%) had a total of 40 unique non-silent non-lineage variants in genes
linked to isoniazid resistance (inhA, katG, ahpC, fabG1) (Suppl. Table S7). Most variants,
36/40, were rare, occurring in only 2 or fewer isolates. Five out of the 40 unique mutations
detected in 75/315 (24%) isolates are considered important for isoniazid resistance
prediction by GenTB-RF [17]. The most frequent INH resistance variants were the canonical
isoniazid resistance mutation katG S315T [37] (occurred in 56/315 isolates) and non-silent
variants at inhA codon 94 (occurred in 14/315 isolates). Seventy-six of the 315 (24%)
apparent false positive isolates were phenotypically resistant to rifampicin and 189 (60%)

isolates had a phenotypic resistance to at least one other drug.

Isoniazid false negatives: Among the 518 false negative isoniazid predictions (phenotypically

resistant isolates predicted susceptible by GenTB-RF), 194/518 (37%) harbored non-silent
variants in isoniazid resistance associated genes (Suppl. Table S7). Only 13 of the 139
unique variants observed in the 518 isolates were seen before by GenTB-RF and none of
these were considered important isoniazid resistance mutations. KatG W328L was the
variant detected most frequently (occurred in 10/518 isolates predicted false negative) and
although not previously seen by GenTB-RF was described to occur in 0.2% of isoniazid
resistance in one study [38]. Most variants linked to isoniazid resistance observed in these

isolates were rare, i.e., 134/139 (96%) occurred in < 3 isolates.

Output comparison across the three tools

All four tools are accessible to the non-experienced user via either an online interface
(GenTB, TB-Profiler) or via a Desktop application. We compared each tool's output using the
criteria specified in Methods (Table 3). GenTB-RF provides a heatmap indicating the
probability of resistance including the models' error rate with all prediction and intermediary

files available for download. TB-Profiler and Mykrobe present binary (resistant or
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susceptible) predictions in overview tables with download options in CSV or JSON formats,
respectively. TB-Profiler and GenTB present resistance causing variants and variants not
associated with resistance. All tools provide the lineage call made but GenTB also specifies

the lineage typing schemes used.
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DISCUSSION

The increasing affordability of WGS and our improving comprehension of mycobacterial drug
resistance mechanisms has placed sequencing at the forefront of M. tuberculosis resistance
diagnosis in clinical and public health laboratories (e.g. Public Health England in the United
Kingdom and the Centers for Disease Control and Prevention in the United States) [7,39].
Yet, the complexity of resistance biology is such that large and diverse bacterial isolate
datasets are needed to confirm the accuracy of genotype-based resistance prediction and its
generalizability. Further, the required computational resources and knowledge to conduct
sequencing analysis prohibit both the access to and confidence in WGS based resistance
prediction in clinics in both low- and high-incidence settings. High confidence automated
tools that are systematically benchmarked on diverse datasets are needed to facilitate
adoption, and to act as the standard for future tool development and regulation by oversight

agencies such as the World Health Organization (WHO).

GenTB is an automated open tool for resistance prediction from WGS. Here we
benchmarked its two prediction models against two other leading TB prediction tools. Both
GenTB models predicted resistance and susceptibility against first-line drugs with high
accuracy. Predictive performance for second line drugs showed lower sensitivity, although
with high specificity for some of those drugs, i.e., capreomycin, kanamycin, and ofloxacin.
This high specificity may be used to rule out resistance when no resistance conferring
variant for these drugs was found. A detailed analysis of discrepant predictions made by
GenTB-RF illustrated that a number of false positive predictions were supported by
canonical resistance variants, e.g., non-silent mutation in the rpoB RRDR in case of
rifampicin, suggesting that their phenotypes were erroneously labeled as susceptible.
Similarly, nearly half (48%) of the variants found in isoniazid false positive predictions are
canonical resistance variants. These isoniazid resistance variants, the large proportion

(60%) of phenotypic resistance to another drug among these isolates, and the knowledge
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that isoniazid is usually a gateway drug resistance, suggest that some phenotypes were
erroneously characterized as susceptible [40]. Accordingly, specificity of genotype-based

prediction in practice maybe even higher than reported here (Table 1).

For isolates with a resistant rifampicin phenotype that were predicted susceptible by GenTB-
RF, we found a mutation in the rpoB RRDR in a nearly a quarter (23%) of isolates that
reasonably accounts for the resistance phenotype, but had not been seen by the model
previously. For the remaining majority of false negatives (71% for rifampicin) no relevant
resistance variant was found. In these cases, phenotypic resistance remained unexplained
and could be due to erroneous phenotypes or yet unknown resistance mechanisms. For
isolates with a resistant isoniazid phenotype predicted susceptible, no important resistance
conferring mutations were found. In these cases, phenotypic resistance could be due to rare
and yet undescribed resistance variants. A substantial proportion of false negative
predictions to isoniazid or rifampicin had genotypic resistance to at least another drug (48%
of rifampicin false negatives and 40% of isoniazid false negatives). These observations
overall suggest that a viable option to reduce false negative predictions by current models
would be to leverage genotypic predictions to other drugs and flag such isolates for
complementary phenotypic DST. In the future as new larger datasets of paired genotype and
resistance phenotype are curated, e.g. by efforts sponsored by the WHO [41], retraining

existing resistance prediction models will improve diagnostic sensitivity.

The final output produced by the four tools varies in terms of detail and type of variants
reported with GenTB providing the most detail. GenTB's output reports novel variants not
linked to resistance in addition to those that are resistance associated. The phylogenetic
lineage calling procedure implemented in GenTB [24] uses currently available typing
schemes, including the spoligotype nomenclature, to facilitate comparisons across lineage

schemes.
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Unlike other published resistance prediction tools that rely on a curated list of resistance
conferring mutations that call resistance when a specific variant is present, GenTB-RF and
GenTB-WDNN use multivariable statistical models to predict resistance phenotype. These
models are better suited to account for the complex relationships between resistance
genotype and phenotype. Among the advantages of multivariate prediction models is that
relationships between variables are taken into account as both individual variants and gene-
gene interactions cause phenotypic drug resistance. As such, the two models provide a
probability value that a given isolate is resistant or susceptible rather than a binary
classification. This is relevant in case of variants that, if present alone, confer only weak to
no resistance, but may confer complete resistance if present in combination. Also, each
variable in a multivariable model has different weights depending on the strength of
association with resistance in the training data, reflecting the biological reality where variants
cause differing levels of resistance. The benchmarking data presented here confirm that
these multivariate models offer gains in sensitivity over the other two tools that use curated
mutation lists, however this comes at a small decrease in specificity overall. Seen its higher
overall performance GenTB-RF is currently implemented as the default prediction model. As
larger and more diverse data will become available for model training, especially for
prediction of resistance more quantitatively, i.e., to predict minimum inhibitory concentrations
or MICs, we anticipate multivariate models including the more complex GenTB-WDNN

architecture to have an even bigger advantage over direct association of mutation lists.

This study was not without limitations. An important prerequisite for reliable genotypic
resistance prediction is the quality of the raw sequencing data. Variants and small indels in
resistance conferring genes can be accurately and confidently called from Illumina raw
sequence data if the genes are adequately covered at an acceptable sequencing depth
[Marin et al., in preparation]. However, short-read sequencing data is recognized to have
lower sensitivity for detecting more complex genomic variants including long indels or

structural variation and these may have been missed in this study. But these latter types of
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variants are expected to be rare. Our finding of ‘apparent’ false positive predictions (i.e.,
resistance call by GenTB-RF while susceptible phenotype) in isolates harboring canonical
resistance variants portends some erroneous phenotypes in our ground truth dataset. Due to
the scale and public nature of the dataset used for benchmarking in this study, we were
unable to retest the laboratory-based drug susceptibility profiles of isolates with discordant
predictions, but hope that it provides a test closer to a ‘real-world’ scenario for these tool's

application.

CONCLUSION

The rapid emergence and affordability of sequencing of M. tuberculosis along with the herein
confirmed high accuracy of several genotypic resistance prediction tools supports the use of
informatically assisted treatment design in the clinical setting. Independent benchmarking
efforts will facilitate regulatory reviews and assessments and build confidence in the tools'
performances. As genotypic resistance predictions will accompany and increasingly replace
laboratory-based resistance phenotyping performance criteria will need to be defined to
guide clinical and public health laboratories in their use. Lastly, it will be important to
communicate the confidence and uncertainty that is inherent to all genotypic predictions to
clinicians, and provide clear diagnostic algorithms in case of genotype-phenotype

discordances.
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Figure 1. Schematic overview of the GenTB pipeline. Raw sequence data is quality
checked and adapter trimmed before alignment to the H37Rv reference strain (accession
AL123456). Variants are called with Pilon, and a variant matrix used by the prediction
models are prepared using custom scripts available on Github. The analysis will fail if quality
criteria are not met (blunt end arrows). Numbers represent the three moments in the pipeline

where users can upload their data to predict resistance for their isolate.
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Figure 2. GenTB online user interface. A) The user is presented with the three main
features offered by GenTB, i.e., to run predictions from user input data, to upload, share, and
cite their data with the GenTB project, and to geographically map resistance frequencies or
phenotype data. B) Example of a resistance prediction output where boxes are colored in
the function of the prediction model’'s output probability. C) Mutation plot that appears when
clicked on one of the drugs heatmaps in (B). Mutations will be shown when hovering the
mouse over the genetic loci. INH = isoniazid, RIF = rifampicin, PZA = pyrazinamide, STR =
streptomycin, EMB = ethambutol, ETH = ethionamide, KAN = kanamycin, CAP =
capreomycin, AMK = amikacin, LEVO = levofloxacin, OFL = ofloxacin, PAS = Para-

aminosalicylic acid.
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Figure 3: Diagnostic performance of the four prediction tools across antituberculosis

drugs. Paired violin plots displaying sensitivity and specificity to predict drug resistance for

A) GenTB-Random Forest, B) GenTB-Wide and Deep Neural Network, C) TB-Profiler and

D) Mykrobe. E) Violinplot of diagnostic performance to predict rifampicin resistance

comparing isolates passing depth filters (in black) to isolates that failed the depth-filters (in

grey) arranged by prediction tool. F) Violinplot of diagnostic performance to predict isoniazid

resistance comparing isolates passing depth filters (in black) to isolates that failed the depth-

filters (in grey) arranged by prediction tool.

AMK = amikacin, CAP = capreomycin, EMB = ethambutol, ETH = ethionamide, INH =

isoniazid, KAN = kanamycin, OFL = ofloxacin, PZA = pyrazinamide, RIF = rifampicin, STR =

streptomycin.
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Figure 4: ROC performance curve of the GenTB-RF and GenTB-WDNN prediction
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predictive performance on the study dataset for first line (A) and C)) and second line drugs
(B) and D)).
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Table 1: Diagnostic accuracy of GenTB RandomForest and GenTB Wide and Deep Neural Network compared with two other leading

prediction tools on a depth filtered dataset.

DrugName

GenTB - RF

GenTB - WDNN

Mykrobe

TB-Profiler

isoniazid

rifampicin

ethambutol

pyrazinamide

amikacin

capreomycin

ethionamide

kanamycin

streptomycin

ofloxacin

Isolates sequenced with high depth (n = 19.880)

Sensitivity (95%
Cl)

Specificity (95%
Cl)

Sensitivity (95%
Cl)

Specificity (95%

cl)

Sensitivity
(95% CI)

Specificity (95%
Cl)

Sensitivity (95%
Cl)

Specificity (95%
Cl)

Phenotype
R (n) S(n)
6,043 13,112
5,068 14,474
2,936 12,362

508 1,544

618 3,458

648 3,733

502 1,094

576 3,707
2,126 4,968

743 4,038

919% (91 to 92)

93% (93 to 94)

86% (85 to 87)

79% (76 to 83)

67% (63 to 71)

639% (59 to 67)

67% (63 to 72)

68% (64 to 72)

82% (80 to 83)

689% (65 to 72)

989% (97 to 98)

989% (98 to 98)

92% (92 to 93)

94% (93 to 95)

99% (99 to 100)

97% (97 to 98)

78% (75 to 80)

999 (98 to 99)

899% (88 to 90)

999% (98 to 99)

90% (89 to 91)

88% (88 to 89)

82% (80 to 83)

80% (79 to 82)

66% (62 to 70)

57% (53 to 61)

66% (62 to 70)

87% (85 to 88)

62% (58 to 66)

99% (99 to 99)

999% (99 to 99)

93% (93 to 94)

95% (94 to 95)

99% (99 to 100)

98% (98 to 99)

100% (99 to 100)

87% (86 to 88)

96% (95 to 96)

87% (86 to 88)

90% (89 to 91)

79% (77 to 80)

72% (71 to 74)

63% (60 to 67)

60% (56 to 64)

66% (63 to 70)

68% (66 to 70)

62% (58 to 65)

989% (98 to 98)

98% (98 to 99)

93% (93 to 94)

98% (97 to 98)

99% (99 to 100)

98% (98 to 99)

99 (99 to 100)

95% (95 to 96)

999% (98 to 99)

91% (90 to 92)

92% (91 to 93)

86% (85 to 88)

83% (80 to 86)

559% (51 - 59)

56% (52 to 60)

70% (66 to 74)

68% (64 to 71)

71% (70 to 73)

67% (63 to 70)

989% (97 to 98)

989% (98 to 99)

92% (92 to 93)

969% (96 to 97)

99% (99 to 100)

969% (95 to 96)

73% (70 to 76)

989% (98 to 99)

95% (95 to 96%)

98 (98 to 99)
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Table 2: Area under the Receiver Operating Characteristic curve for GenTB-RF and GenTB-

WDNN

Drug

GenTB-RF

GenTB-WDNN

isoniazid
rifampicin
ethambutol
pyrazinamide
amikacin
capreomycin
ethionamide
kanamycin
streptomycin

ofloxacin

Area under the ROC curve (95% CI)

0.94 (0.94 to 0.95)
0.96 (0.95 to 0.96)
0.89 (0.88 t0 0.9)
0.90 (0.88 to 91)
0.83 (0.81 to 0.85)
0.80 (0.78 t0 0.82)
0.73 (0.7 t0 0.75)
0.83 (0.81 to 0.85)
0.85 (0.84 to 0.86)

0.83 (0.82 to 0.85)

0.94 (0.94 to 0.95)
0.94 (0.93 to 0.94)
0.87 (0.87 to 0.87)
0.88 (0.87 to 0.88)
0.83 (0.81 to 0.84)

0.78 (0.76 to 0.80)

0.83 (0.81 to 0.85)
0.87 (0.86 to 0.88)

0.79 (0.77 to 0.81)

RF = Random Forest, WDNN = Wide and Deep Neural Network
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Table 3: Output comparison across tools

Criteria GenTB TB-Profiler Mykrobe
1) Output

Type Heatmap and barplot Overview tables Overview table

all intermediate and

Download output files (JSON) yes (CSV) Yes (JSON)
2) Genotypic Probability Binary Binary
predictions
3) Error rate es N.A. N.A.

4) Resistance
variants

5) Unknown
variants

6) M. tuberculosis
Lineage

Lineage

Typing
scheme

7) Quality metrics

Variant by drug

Yes, in all genes

Yes

Yes

Trimming and Kraken
report downloadable

Variant by drug
incl. fraction of mutant /
wild-type allele
Yes, in candidate
resistance genes

Yes

No

No. of reads,
Percentage of reads
mapped

Variant by drug incl.
depth of mutant and
wild-type alleles

No

Yes

No

No
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