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ABSTRACT 1 

Introduction. Multidrug-resistant Mycobacterium tuberculosis (Mtb) is a significant global 2 

public health threat. Genotypic resistance prediction from Mtb DNA sequences offers an 3 

alternative to laboratory-based drug-susceptibility testing. User-friendly and accurate 4 

resistance prediction tools are needed to enable public health and clinical practitioners to 5 

rapidly diagnose resistance and inform treatment regimens. 6 

  7 

Methods. We present Translational Genomics platform for Tuberculosis (GenTB), a web-8 

based application to predict antibiotic resistance from next-generation sequence data. The 9 

user can choose between two potential predictors, a Random Forest (RF) classifier and a 10 

Wide and Deep Neural Network (WDNN) to predict phenotypic resistance to 13 and 10 anti-11 

tuberculosis drugs, respectively. We benchmark GenTB’s predictive performance along with 12 

leading TB resistance prediction tools (Mykrobe and TB-Profiler) using a ground truth 13 

dataset of 20,408 isolates with laboratory-based drug susceptibility data.  14 

  15 

Results. All four tools reliably predicted resistance to first-line tuberculosis drugs but had 16 

varying performance for second-line drugs. The mean sensitivities for GenTB-RF and 17 

GenTB-WDNN across the nine shared drugs was 77.6% (95% CI 76.6 - 78.5%) and 75.4% 18 

(95% CI 74.5 - 76.4%) respectively, and marginally higher than the sensitivities of TB-Profiler 19 

at 74.4% (95% CI 73.4 - 75.3%) and Mykrobe at 71.9% (95% CI 70.9 - 72.9%). The higher 20 

sensitivities were at an expense of ≤1.5% lower specificity: Mykrobe 97.6% (95% CI 97.5 - 21 

97.7%), TB-Profiler 96.9% (95% CI 96.7 to 97.0%), GenTB-WDNN 96.2% (95% CI 96.0 to 22 

96.4%), and GenTB-RF 96.1% (95% CI 96.0 to 96.3%). Genotypic resistance sensitivity was 23 

11% and 9% lower for isoniazid and rifampicin respectively, on isolates sequenced at low 24 

depth (<10x across 95% of the genome) emphasizing the need to quality control input 25 

sequence data before prediction. We discuss differences between tools in reporting results 26 

to the user including variants underlying the resistance calls and any novel or indeterminate 27 

variants 28 

  29 

Conclusion. GenTB is an easy-to-use online tool to rapidly and accurately predict 30 

resistance to anti-tuberculosis drugs. GenTB can be accessed online at 31 

https://gentb.hms.harvard.edu, and the source code is available at https://github.com/farhat-32 

lab/gentb-site.  33 
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INTRODUCTION 34 

Human tuberculosis, a chronic infectious disease caused by members of the Mycobacterium 35 

tuberculosis complex, is a leading cause of death from a bacterial infectious agent [1]. The 36 

proliferation of multidrug-resistant tuberculosis (MDR-TB) is threatening TB prevention and 37 

control activities worldwide [1]. Timely detection of antimicrobial resistance is vital to guide 38 

therapeutic options and contain transmission. Antimicrobial resistance is conventionally 39 

determined by in vitro drug susceptibility tests (DST) on solid or liquid antibiotic-containing 40 

culture, which uses drug-specific testing breakpoints (‘critical concentration’) to classify the 41 

infecting strain into drug-susceptible or drug-resistant [2]. Being contingent on 42 

mycobacteria's slow growth rate, these phenotypic tests require days to weeks and often 43 

deliver unreliable and poorly reproducible results for some drugs, such as ethambutol and 44 

pyrazinamide [3,4]. In contrast, molecular methods have emerged as rapid resistance 45 

prediction alternatives to complement and speed up traditional DST, leveraging known and 46 

reliable genotype-phenotype relationships between variants in the M. tuberculosis genome 47 

and in vitro drug resistance [5].  48 

 49 

Over recent years, whole-genome sequencing (WGS) of M. tuberculosis has become an 50 

affordable tool to provide genetic information for genotypic resistance prediction and high-51 

resolution outbreak reconstruction [6]. Large scale genotype-phenotype assessments have 52 

demonstrated high diagnostic accuracy for clinical use to predict susceptibility to first-line 53 

drugs based on WGS [7].  Following these results, public health authorities have begun to 54 

discontinue phenotypic testing when pan susceptibility is predicted from the genotype, a step 55 

with considerable cost- and time benefits [8]. Start-to-end applications which analyze 56 

sequencing data to predict resistance phenotypes and are accessible to non-bioinformatic 57 

experts are required as WGS based analyses become part of the standardized diagnostic 58 

process in clinical laboratories. A range of published tools available for command-line [9,10] 59 

or web-based/desktop use [11–13] or both [14,15] exists. These applications vary in quality 60 

control and sequence preprocessing steps and rely on detecting pre-defined resistance-61 
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conferring mutations such as single nucleotide polymorphisms (SNPs) or small 62 

insertions/deletions (indels) in the WGS data to predict the resistance phenotype. They also 63 

vary in the type of information fed back to the user including error rates and specific variants 64 

detected. 65 

 66 

Here, we present GenTB (https://gentb.hms.harvard.edu), an open user-friendly start-to-end 67 

application to predict drug resistance phenotypes to 13 drugs from WGS data. The GenTB 68 

analysis pipeline is also available for command-line use wrapped in Snakemake [16]. The 69 

online user interface allows users to interactively explore the sequencing data, prediction 70 

results and geographic distributions. Resistance prediction is made based on a previously 71 

observed set of variant positions spanning 18 resistance-associated genetic loci and a 72 

validated random forest (RF) classifier [17] as well as a wide and deep neural network 73 

(WDNN) combining a logistic regression model with a multilayer perceptron to predict the 74 

resistance phenotype [18]. In this study, we benchmark these two classification models 75 

implemented in GenTB along with two other tools with a command-line interface, TB-profiler, 76 

and Mykrobe, on a large dataset of >20k clinical M. tuberculosis isolates starting from raw 77 

Illumina sequence data.   78 
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METHODS 79 

 80 

Backend and website build 81 

GenTB is a bespoke Django website hosted by the Harvard Medical School O2 high 82 

performance computing environment and collaboratively developed on GitHub 83 

(https://github.com/farhat-lab/gentb-site). The website uses off-the-shelf frontend 84 

components; Bootstrap for styling and mobile-friendly delivery, nvd3 for plots and graphs, 85 

resumable.js for robust uploading and supplements these with custom Javascript 86 

functionality for integration. The backend is a Python-Django web service using a 87 

PostgreSQL database which integrates with Dropbox for file uploading, and python-chore for 88 

slurm cluster job submission and management. GenTB predict jobs are run by modular 89 

programs organized into pipelines. The modularity allows for easy maintenance and 90 

management of dependencies and outputs. Administration screens allow a non-expert 91 

developer design new program calls and construct new pipelines and integrate them without 92 

redeployment of the website. Further tools provide error tracking. GenTB predict results are 93 

integrated into the PostgreSQL database allowing website generated plots to be populated 94 

quickly. All generated files for the intermediary pipeline steps are provided for download by 95 

the user. GenTB Map uses a PostGIS database to rapidly link strain mutation and lineage 96 

information with geo-spatial objects; these are fed into the leaflet.js display to render strain 97 

information to the user. Map allows users to display strain data groupings by country, 98 

lineage, drug resistance phenotype or specific genetic mutation through tabs that can nest 99 

the groups in any order. 100 

 101 

Raw read processing 102 

Upon uploading single-end or paired-end FastQ files, GenTB first validates the input using 103 

fastQValidator (Fig. 1). Low-quality reads and sequencing adapters are then trimmed with 104 

fastp [19]. Read mapping taxonomy is assessed with a custom-built Kraken database 105 
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comprising M. tuberculosis complex reference sequences [20] followed by minimap2 106 

alignment (parameters: default) of reads to the H37Rv reference genome (AL123456) [21]. 107 

Samtools is used for sorting the aligned reads, removing duplicates, and indexing [22]. 108 

Sequence read datasets with a coverage of <95% at 10x or less across the genome or that 109 

had a mapping percentage of <90% to M. tuberculosis complex strains will not be further 110 

processed, and an error message is displayed to the user. Variants are called with pilon 111 

(parameters: default) [23] to obtain SNPs and indels in the variant calling format (VCF) 112 

requiring that they have a PASS or Amb filter tags with read allele frequency >0.40. Fast-113 

Lineage-Caller then detects the M. tuberculosis lineage based on five lineage typing 114 

schemes as implemented by Freschi et al. [24]. Subsequently, invariant sites in the VCF file 115 

are removed, and a custom Perl script annotates each variant as frameshift, synonymous or 116 

non-synonymous, stop codon, indel along with the H37Rv locus tag for each respective 117 

gene. A custom python script generates a matrix file with all model features/variables in the 118 

columns used as input to the two prediction steps specified below. These scripts are 119 

available from Github (https://github.com/farhat-lab/gentb-site) and are open source 120 

(AGPLv3 license). All intermediate sequence files are accessible to the user for download 121 

and verification.  122 

 123 

Operation 124 

Users must create an account to run predictions and track uploaded datasets, intermediary 125 

files and results. Users with low internet bandwidth can use the Dropbox integration to 126 

upload files. Both raw sequence reads and variants in variant call format (VCF) can be 127 

uploaded for resistance prediction. The user can select an option to delete uploaded source 128 

data after prediction or otherwise to save it for their future access through GenTB. Files are 129 

user specific and not shared or accessible by others. 130 

   131 

GenTB online interface has been tested with batches of up to 300 isolates. For batch 132 

processing of larger numbers of raw sequence data, we provide a command-line GenTB 133 
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workflow based on Snakemake v5.20.1 [16] where dependent software will be sourced via 134 

conda [25]. The Snakemake workflow can be accessed via Github (https://github.com/farhat-135 

lab/gentb-snakemake). The README file details how resistance prediction results on a 136 

paired-end sample can be obtained.  137 

 138 

Genotypic resistance prediction using two statistical models  139 

Two multivariate models are used to predict the resistance phenotype, an RF model 140 

(GenTB-RF) and a WDNN (GenTB-WDNN). GenTB-RF was trained on isolates with 141 

available resistance phenotype data and was validated as previously described [17]. Briefly, 142 

1,397 clinical isolates sampled as detailed in reference [17] underwent targeted sequencing 143 

at 18 drug resistance loci using molecular inversion probes and in parallel underwent binary 144 

drug culture-based DST to 13 drugs. One RF was built for each drug using the 145 

randomForest R package (v. 4.6.7) with a subset of the total 992 SNPs/indels observed. 146 

Variants of highest importance for resistance prediction to each drug were selected by 147 

iteratively paring down the model and measuring loss of performance. Important variants are 148 

shown in Suppl. Figure S1 for isoniazid and rifampicin.  149 

 150 

Pyrazinamide resistance is known to rely on a large number of individually rare variants. 151 

Given the large increase in published M. tuberculosis WGS and linked DST data as well as 152 

the recent implication of novel resistance loci we retrained the pyrazinamide RF here using a 153 

newer version of randomForest R package (v. 4.6.-14) on variants in the genes pncA, panD, 154 

clpC1, clpP [26]. We used 75% (15,267 isolates) of the dataset to train the model and 25% 155 

(5,098 isolates) to validate its performance. During retraining, we excluded silent variants, 156 

those that occurred only in phenotypically susceptible isolates, or known phylogenetic 157 

variants, and the final model was trained on 393 variants occurring in 3,262 phenotypically 158 

pyrazinamide resistant isolates [24]. We chose the randomForest mtry variable that yielded 159 

the smallest out-of-bag error and varied the classwt variable to maximize the sum of 160 

sensitivity and specificity.  161 
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 162 

GenTB-WDNN is a multitask logistic regression model combined with a multilayer 163 

perceptron. It has been previously shown to have equal or higher performance than the RF 164 

architecture when both are trained on the same data [18]. GenTB-WDNN was trained on 165 

3,601 isolates (sampled as detailed in reference [18]) for 11 drugs using the Keras 2.2.4 166 

library in Python 3.6 with a TensorFlow 1.8.0 backend. The model uses 222 features (i.e., 167 

SNPs or small insertions/deletions) along with derived variables (i.e., the number of non-168 

synonymous SNPs across all resistance-conferring genes) to predict the resistance 169 

phenotype.  170 

 171 

Validation sequencing and phenotype data 172 

We collated a database of 20,408 Illumina raw sequence read datasets for which laboratory-173 

based phenotypic DST data was available from public sources (Suppl. Table S1). Sequence 174 

data was downloaded from NCBI nucleotide databases. Custom scripts were used to pool 175 

the phenotype data from NCBI, Patric, ReseqTB, and the supplementary information from 176 

published literature (detailed methods in https://github.com/farhat-lab/resdata-ng). Sequence 177 

data was merged in case of multiple sequencing runs per isolate for downstream processing 178 

and resistance prediction. In isolates where >10% of reads did not classify as M. 179 

tuberculosis complex, we removed unclassified reads using seqtk 180 

(https://github.com/lh3/seqtk). 181 

 182 

Performance of GenTB and comparison with other tools  183 

To assess the performance of GenTB for predicting resistance, all isolates were processed 184 

through the GenTB pipeline. We compared the diagnostic accuracy with two leading 185 

resistance prediction tools, TB-profiler 2.8.12 [14] and Mykrobe v0.9.0 [15], that were run 186 

with default parameters. The two tools and two GenTB prediction models' predictive ability 187 

were obtained by comparing the genotypic prediction to the phenotype data that was 188 

considered the ground truth. We calculated the true positive rate (sensitivity), the true 189 
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negative rate (specificity), and area under the receiver operating curve (AUC for short) to 190 

measure test accuracy for each drug and tool. We evaluated 1,000 probability thresholds per 191 

drug to call resistance or susceptibility for GenTB-RF while using the GenTB-WDNN 192 

thresholds previously described [18] (Suppl. Fig S2 and S3). 193 

 194 

Statistical Analyses and data visualization 195 

Prediction files from all tools were parsed and analyzed in Jupyter Notebooks running 196 

Python 3.7 using the Pandas [27] and JSON libraries. Receiver operating characteristic 197 

curves were plotted using the Seaborn library [28]. The Vioplot package was used for violin 198 

plots [29]. Summary tables were created in R version 3.6.3 [30] using the packages from the 199 

tidyverse [31] and kable (https://cran.r-project.org/web/packages/kableExtra/index.html). 200 

Sequencing depth in resistance loci was calculated and plotted using Mosdepth version 201 

0.2.9 [32]. Confidence intervals were obtained by bootstrapping, comparing 5000 predictions 202 

per tool and drug on a resampled dataset.  203 

 204 

Code and Data Availability  205 

Code is available here: https://github.com/farhat-lab-gentb-site. The snakemake 206 

implementation is available here: https://github.com/farhat-lab/gentb-snakemake. 207 

 208 

Comparison of output between tools  209 

We collated the output files and information produced by the GenTB online application, the 210 

webserver of TB-Profiler (https://tbdr.lshtm.ac.uk, version 3.0.0), and the Desktop version of 211 

Mykrobe (MacOS app v0.90) using one example raw sequence dataset (accession 212 

ERR1664619). The tools' output was compared based on the following criteria: 1) Type and 213 

accessibility of output data formats; 2) Communication of genotypic prediction results, i.e. 214 

binary classification versus probability; 3) Disclosure of the prediction model's error rate; 4) 215 

Description of known resistance conferring variants identified, 5) Reporting any novel 216 

mutation not listed in the resistance variant database, 6) Detailed account of detected 217 
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lineage variants and what lineage typing scheme was used, 7) Report quality metrics on the 218 

input sequence data.   219 
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RESULTS 220 

 221 

A user-friendly application to analyze M. tuberculosis sequencing data 222 

GenTB was developed as a free and benchmarked online application to help public health 223 

and clinical practitioners deconvolute the complexity of M. tuberculosis WGS data. GenTB 224 

Predict allows users to predict resistance to 13 anti-TB drugs from a clinical isolate’s raw 225 

Illumina sequence data (FASTQ). Two validated machine learning models are used to make 226 

predictions: GenTB-RF and GenTB-WDNN (Methods and [17,18]). GenTB-RF is the default 227 

prediction model. In addition to the GenTB Predict function that we focus on here, the web-228 

application has additional features for sharing, mapping, and exploring M. tuberculosis 229 

genetic and phenotypic data (Fig. 2). GenTB Data enables researchers to store, version, and 230 

share M. tuberculosis sequence and phenotype data and is powered by the Dataverse 231 

research data repository [33]. Users can select an option to delete source files upon 232 

processing the prediction. GenTB Map enables users to geographically visualize genetic and 233 

phenotype data. Users can explore the subset of 20,408 isolates with geographic tags (n= 234 

12,547 isolates) used for GenTB predict validation (Methods), or can upload and explore 235 

their own data in enriched-VCF format (https://gitlab.com/doctormo/evcf/-236 

/blob/master/docs/Enriched_VCF_Format.md). Raw data and results can be exported to a 237 

tabular data format. 238 

 239 

Dataset description  240 

We curated a dataset of 20,408 M. tuberculosis isolates with known phenotypic resistance 241 

status to benchmark GenTB Predict performance (Methods and Suppl. Table S1). We 242 

excluded 29 isolates as they failed FastQ validation. Of the remaining, 1,339 isolates did not 243 

pass our taxonomy filter criterion, and their non-M. tuberculosis complex reads were 244 

removed. The GenTB pipeline identified an additional 499 isolates where more than 5% of 245 

the genome was covered at depth <10x and these isolates were excluded from further 246 

analysis. These isolates had a median depth of 21x (IQR 17 to 26). The remaining 19,880 247 
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isolates with high quality sequencing data were majority lineage 4 (52%), with lesser 248 

representation of lineage 2 (21%), lineage 3 (15%), lineage 1 (10%), M. bovis (0.6%), 249 

lineage 6 (0.3%), and lineage 5 (0.2%). Completeness of phenotypic DST data varied by 250 

drug and was highest for the first-line drugs rifampicin (98.3%), isoniazid (96.4%), 251 

ethambutol (77.5%), and pyrazinamide (71.5%) (Suppl. Table S2). The second and third-line 252 

drug phenotype data ranged from 35.1% completeness for streptomycin to 7.8% for 253 

ethionamide. Of the 20,408 isolates, 13,817 were phenotypically susceptible to first line 254 

drugs, 4,743 (23.3%) were phenotypically MDR (i.e., resistant to isoniazid and rifampicin) 255 

and 396 (1.9%) were phenotypically XDR (MDR and resistant to fluoroquinolones and the 256 

second-line injectables – amikacin, kanamycin or capreomycin). We ran GenTB-RF and 257 

GenTB-WDNN to predict resistance on 19,880 isolates and compared the predictions to 258 

phenotypic data.  259 

 260 

Predictive performance of the GenTB-Random Forest 261 

We assessed each tools' predictive performance by comparison with phenotypic culture-262 

based DST results. Overall, the four tools had comparable performance characterized by 263 

varying sensitivities and high specificities (Tables 1 & 2, Fig 3A). Diagnostic performance 264 

was better for first-line than second-line drugs. As sensitivity varied most widely, we discuss 265 

it by drug class below. Specificities varied less by tool or by drug. GenTB-RF's diagnostic 266 

specificity was >92% for all drugs including the second-line injectables and fluoroquinolones 267 

with the exception ethionamide (specificity = 78% [95% CI 75-80]) and streptomycin 268 

(specificity = 89% [95% CI 88-90]). GenTB-RF's specificities were similar or higher than the 269 

other three tools with the exception of pyrazinamide (94% [95% CI 93-95]) and streptomycin 270 

(89% [95% CI = 88-90]) compared to TB-Profiler (96% and 95%, respectively) as well as 271 

Mykrobe (98% and 95%, respectively). 272 

 273 

First-line drugs: Rifampicin resistance prediction by GenTB-RF was most accurate 274 

compared to other tools: AUC 0.96 (95% CI = 0.95-0.96), sensitivity 93% (95% CI = 93-94), 275 
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second highest sensitivity was for TB-Profiler at 92% (95% CI = 91-93) (Tables 1 & 2, Figure 276 

4). The accuracy of isoniazid resistance prediction was high and comparable across three of 277 

the four tools including GenTB-RF (sensitivity 91% [95% CI =91-92]). For ethambutol, 278 

GenTB-RF and TB-Profiler had the best and comparable performance with sensitivity 86% 279 

(95% CI =85-87). 280 

 281 

GenTB-RF predictions for pyrazinamide using the original model (v1.0) had low sensitivity at 282 

56% (95% CI 54-58) with adequate specificity (98% [95% CI = 98-99]) compared to the other 283 

tools when evaluated on the 19,880 isolates (2,336 phenotypically resistant and 11,932 284 

susceptible) [17]. Pyrazinamide resistance is known to be caused by a large number of 285 

individually rare variants in the gene pncA [34]. Given the large interval increase in available 286 

WGS data and recent implication of novel resistance loci (panD, clpC1, clpP) [26] since 287 

GenTB-RF was last trained, we assessed the number of rare variants in the four 288 

aforementioned genes linked to pyrazinamide resistance. In a random 75% subset of the 289 

20,379 isolates, we detected a total of 393 different variants in pncA, panD, clpC1 and clpP 290 

with 40% (158/393) occurring only once. The majority of these variants, i.e., 73% (285/393) 291 

were not previously seen by the original model. As a result of these observations, we 292 

retrained a GenTB-RFv2.0, on 75% of the data using all 393 non-synonymous variants 293 

including singletons and insertion/deletion variants from pncA, panD, clpC1 and clpP. The 294 

retrained model, when benchmarked on an independent validation dataset of 5,098 isolates, 295 

offered a sensitivity similar to that of the other tools (79%, 76 to 83) (Table 1).  296 

 297 

Second-line drugs: For second-line drugs, larger discrepancies between genotype and 298 

resistance phenotype have been previously described compared with first-line drugs [14,15]. 299 

Resistance to the second-line injectable drugs amikacin and kanamycin ranged between 63-300 

68% across the four tools, with the exception of a sensitivity of 55% by TB-Profiler for 301 

amikacin (Table 1). For the fluoroquinolone ofloxacin, sensitivity ranged from 62%-68% 302 

across the four tools. Three drugs had too few isolates with known phenotypic resistance 303 
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(ciprofloxacin [n = 63], levofloxacin [n =111], and para-aminosalicylic acid [n = 46]), and 304 

hence the tool's predictions had wide confidence intervals for these drugs (Supplemental 305 

Tables S3 and S4).  306 

 307 

Predictive performance of GenTB-WDNN.  308 

Similar to GenTB-RF, the overall GenTB-WDNN performance was marked by high prediction 309 

accuracy of first-line drug resistance and lower accuracy of second-line resistance (Table 1). 310 

AUC 95% CI overlapped for all drugs between the two models except for ofloxacin and 311 

rifampicin for which the GenTB-RF AUC was higher (Table 2). For streptomycin the GenTB-312 

WDNN offered the best sensitivity and specificity of all four models (sensitivity 87%, 95% CI 313 

85-88%, specificity 87% (95%CI 86-88%). Specificities were >95% for all drugs except for 314 

streptomycin (87%, 95% CI 85 to 88) and ethambutol (93%, 95% CI 93 to 94).  315 

 316 

Predictive performance depends on sequencing depth  317 

We evaluated the need for quality control on sequencing depth as several tools do not 318 

currently implement this prior to resistance prediction [9,14,15]. We observed predictive 319 

performance to be highly dependent on sequencing depth as indicated by lower sensitivity to 320 

predict rifampicin or isoniazid resistance by all four tools for the 499 isolates that did not 321 

meet the threshold of ≥10x depth across >95% of the genome (median depth of 21x, IQR 17 322 

to 26, Figures 3E,3F). Using GenTB-RF, the mean sensitivity of isoniazid and rifampicin 323 

prediction was 84.6% (SD 3.6) and 87.3% (SD 3.6) respectively among low-depth isolates, 324 

compared with 91% and 93%, respectively, on high-depth isolates (Suppl. Table S5, Figures 325 

3E, 3F). Loss of sensitivity due to low sequencing depth was comparable across the four 326 

tools.  327 

 328 

Discordant resistance predictions 329 

To gain insight into model performance, we probed discrepancies between GenTB-RF's 330 

genotype-based prediction and the resistance phenotype. We focused on this model as it 331 
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had the highest overall sensitivity. We examined specifically rifampicin and isoniazid as 332 

resistance to these two drugs defines MDR-TB, and their genetic resistance mechanisms 333 

are well understood. We investigated isolates for which GenTB-RF predicted resistance 334 

while the phenotype was reported as susceptible (false positives) and isolates for which 335 

GenTB-RF predicted susceptibility with a resistant phenotype (false negatives). We 336 

confirmed that false negative predictions were not due to low sequencing depth in relevant 337 

drug resistance loci (i.e. that depth was ≥10x across all bases, Suppl. Figures S4 and S5).  338 

 339 

Rifampicin false positives: Variants causative of rifampicin resistance are concentrated in a 340 

81bp window in the rpoB gene a.k.a the rifampicin resistance determining region (RRDR, 341 

H37Rv coordinates 761081 to 761162, accession AL123456) [35]. For rifampicin, we 342 

observed 254 false positive predictions (phenotypically susceptible isolates predicted 343 

resistant). GenTB-RF detected one or more non-silent RRDR variants in 198 of these 254 344 

isolates (78%). The most common RRDR variants were S450L (occurred in 49/254 isolates), 345 

L430P (in 33/254), and H445N (in 31/254) (Suppl. Table S6). The remaining 56 of 254 346 

isolates, harbored non-RRDR variants, the two most common were rpoB I491F (occurred in 347 

29/56) and rpoB V695L (occurred in 24/56). Twenty eight of the 56 isolates (50%) were 348 

phenotypically resistant to isoniazid and a further 16 (29%) were resistant to ethambutol.  349 

 350 

Rifampicin false negatives: Among the 333 false negative rifampicin predictions 351 

(phenotypically resistant isolates predicted susceptible), 96 (29%) isolates harbored a 352 

variant in rpoB and of these 75 (23% of the 333) were in the RRDR (Suppl. Table S6). These 353 

included most commonly three base pair insertion in rpoB codon 433 (occurred in 14/333 354 

isolates) and rpoB codon 443 (occurred in 9/333 isolates) and rpoB substitution Q432L (in 355 

9/333) [36]. These rpoB variants were not previously seen by the GenTB-RF model when 356 

initially trained. For the remaining 237 of 333 isolates (71%) phenotypic resistance remained 357 

unexplained. 358 

 359 
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Isoniazid false positives: For isoniazid, we observed 315 false positive predictions 360 

(phenotypically susceptible isolates predicted resistant by GenTB-RF). Among these 361 

isolates, 119/315 (38%) had a total of 40 unique non-silent non-lineage variants in genes 362 

linked to isoniazid resistance (inhA, katG, ahpC, fabG1) (Suppl. Table S7). Most variants, 363 

36/40, were rare, occurring in only 2 or fewer isolates. Five out of the 40 unique mutations 364 

detected in 75/315 (24%) isolates are considered important for isoniazid resistance 365 

prediction by GenTB-RF [17]. The most frequent INH resistance variants were the canonical 366 

isoniazid resistance mutation katG S315T [37] (occurred in 56/315 isolates) and non-silent 367 

variants at inhA codon 94 (occurred in 14/315 isolates). Seventy-six of the 315 (24%) 368 

apparent false positive isolates were phenotypically resistant to rifampicin and 189 (60%) 369 

isolates had a phenotypic resistance to at least one other drug.  370 

 371 

Isoniazid false negatives: Among the 518 false negative isoniazid predictions (phenotypically 372 

resistant isolates predicted susceptible by GenTB-RF), 194/518 (37%) harbored non-silent 373 

variants in isoniazid resistance associated genes (Suppl. Table S7).  Only 13 of the 139 374 

unique variants observed in the 518 isolates were seen before by GenTB-RF and none of 375 

these were considered important isoniazid resistance mutations. KatG W328L was the 376 

variant detected most frequently (occurred in 10/518 isolates predicted false negative) and 377 

although not previously seen by GenTB-RF was described to occur in 0.2% of isoniazid 378 

resistance in one study [38]. Most variants linked to isoniazid resistance observed in these 379 

isolates were rare, i.e., 134/139 (96%) occurred in ≤ 3 isolates.  380 

 381 

Output comparison across the three tools  382 

All four tools are accessible to the non-experienced user via either an online interface 383 

(GenTB, TB-Profiler) or via a Desktop application. We compared each tool's output using the 384 

criteria specified in Methods (Table 3). GenTB-RF provides a heatmap indicating the 385 

probability of resistance including the models' error rate with all prediction and intermediary 386 

files available for download. TB-Profiler and Mykrobe present binary (resistant or 387 
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susceptible) predictions in overview tables with download options in CSV or JSON formats, 388 

respectively. TB-Profiler and GenTB present resistance causing variants and variants not 389 

associated with resistance. All tools provide the lineage call made but GenTB also specifies 390 

the lineage typing schemes used.  391 
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DISCUSSION 392 

 393 

The increasing affordability of WGS and our improving comprehension of mycobacterial drug 394 

resistance mechanisms has placed sequencing at the forefront of M. tuberculosis resistance 395 

diagnosis in clinical and public health laboratories (e.g. Public Health England in the United 396 

Kingdom and the Centers for Disease Control and Prevention in the United States) [7,39]. 397 

Yet, the complexity of resistance biology is such that large and diverse bacterial isolate 398 

datasets are needed to confirm the accuracy of genotype-based resistance prediction and its 399 

generalizability. Further, the required computational resources and knowledge to conduct 400 

sequencing analysis prohibit both the access to and confidence in WGS based resistance 401 

prediction in clinics in both low- and high-incidence settings. High confidence automated 402 

tools that are systematically benchmarked on diverse datasets are needed to facilitate 403 

adoption, and to act as the standard for future tool development and regulation by oversight 404 

agencies such as the World Health Organization (WHO).  405 

 406 

GenTB is an automated open tool for resistance prediction from WGS. Here we 407 

benchmarked its two prediction models against two other leading TB prediction tools. Both  408 

GenTB models predicted resistance and susceptibility against first-line drugs with high 409 

accuracy. Predictive performance for second line drugs showed lower sensitivity, although 410 

with high specificity for some of those drugs, i.e., capreomycin, kanamycin, and ofloxacin. 411 

This high specificity may be used to rule out resistance when no resistance conferring 412 

variant for these drugs was found. A detailed analysis of discrepant predictions made by 413 

GenTB-RF illustrated that a number of false positive predictions were supported by 414 

canonical resistance variants, e.g., non-silent mutation in the rpoB RRDR in case of 415 

rifampicin, suggesting that their phenotypes were erroneously labeled as susceptible. 416 

Similarly, nearly half (48%) of the variants found in isoniazid false positive predictions are 417 

canonical resistance variants. These isoniazid resistance variants, the large proportion 418 

(60%) of phenotypic resistance to another drug among these isolates, and the knowledge 419 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2021. ; https://doi.org/10.1101/2021.03.27.437319doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.27.437319
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19

that isoniazid is usually a gateway drug resistance, suggest that some phenotypes were 420 

erroneously characterized as susceptible [40]. Accordingly, specificity of genotype-based 421 

prediction in practice maybe even higher than reported here (Table 1).  422 

 423 

For isolates with a resistant rifampicin phenotype that were predicted susceptible by GenTB-424 

RF, we found a mutation in the rpoB RRDR in a nearly a quarter (23%) of isolates that 425 

reasonably accounts for the resistance phenotype, but had not been seen by the model 426 

previously. For the remaining majority of false negatives (71% for rifampicin) no relevant 427 

resistance variant was found. In these cases, phenotypic resistance remained unexplained 428 

and could be due to erroneous phenotypes or yet unknown resistance mechanisms. For 429 

isolates with a resistant isoniazid phenotype predicted susceptible, no important resistance 430 

conferring mutations were found. In these cases, phenotypic resistance could be due to rare 431 

and yet undescribed resistance variants. A substantial proportion of false negative 432 

predictions to isoniazid or rifampicin had genotypic resistance to at least another drug (48% 433 

of rifampicin false negatives and 40% of isoniazid false negatives). These observations 434 

overall suggest that a viable option to reduce false negative predictions by current models 435 

would be to leverage genotypic predictions to other drugs and flag such isolates for 436 

complementary phenotypic DST. In the future as new larger datasets of paired genotype and 437 

resistance phenotype are curated, e.g. by efforts sponsored by the WHO [41], retraining 438 

existing resistance prediction models will improve diagnostic sensitivity.  439 

 440 

The final output produced by the four tools varies in terms of detail and type of variants 441 

reported with GenTB providing the most detail. GenTB's output reports novel variants not 442 

linked to resistance in addition to those that are resistance associated. The phylogenetic 443 

lineage calling procedure implemented in GenTB [24] uses currently available typing 444 

schemes, including the spoligotype nomenclature, to facilitate comparisons across lineage 445 

schemes.  446 

 447 
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Unlike other published resistance prediction tools that rely on a curated list of resistance 448 

conferring mutations that call resistance when a specific variant is present, GenTB-RF and 449 

GenTB-WDNN use multivariable statistical models to predict resistance phenotype. These 450 

models are better suited to account for the complex relationships between resistance 451 

genotype and phenotype. Among the advantages of multivariate prediction models is that 452 

relationships between variables are taken into account as both individual variants and gene-453 

gene interactions cause phenotypic drug resistance. As such, the two models provide a 454 

probability value that a given isolate is resistant or susceptible rather than a binary 455 

classification. This is relevant in case of variants that, if present alone, confer only weak to 456 

no resistance, but may confer complete resistance if present in combination. Also, each 457 

variable in a multivariable model has different weights depending on the strength of 458 

association with resistance in the training data, reflecting the biological reality where variants 459 

cause differing levels of resistance. The benchmarking data presented here confirm that 460 

these multivariate models offer gains in sensitivity over the other two tools that use curated 461 

mutation lists, however this comes at a small decrease in specificity overall. Seen its higher 462 

overall performance GenTB-RF is currently implemented as the default prediction model. As 463 

larger and more diverse data will become available for model training, especially for 464 

prediction of resistance more quantitatively, i.e., to predict minimum inhibitory concentrations 465 

or MICs, we anticipate multivariate models including the more complex GenTB-WDNN 466 

architecture to have an even bigger advantage over direct association of mutation lists.  467 

 468 

This study was not without limitations. An important prerequisite for reliable genotypic 469 

resistance prediction is the quality of the raw sequencing data. Variants and small indels in 470 

resistance conferring genes can be accurately and confidently called from Illumina raw 471 

sequence data if the genes are adequately covered at an acceptable sequencing depth 472 

[Marin et al., in preparation]. However, short-read sequencing data is recognized to have 473 

lower sensitivity for detecting more complex genomic variants including long indels or 474 

structural variation and these may have been missed in this study. But these latter types of 475 
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variants are expected to be rare. Our finding of ‘apparent’ false positive predictions (i.e., 476 

resistance call by GenTB-RF while susceptible phenotype) in isolates harboring canonical 477 

resistance variants portends some erroneous phenotypes in our ground truth dataset. Due to 478 

the scale and public nature of the dataset used for benchmarking in this study, we were 479 

unable to retest the laboratory-based drug susceptibility profiles of isolates with discordant 480 

predictions, but hope that it provides a test closer to a ‘real-world’ scenario for these tool’s 481 

application.  482 

 483 

CONCLUSION 484 

 485 

The rapid emergence and affordability of sequencing of M. tuberculosis along with the herein 486 

confirmed high accuracy of several genotypic resistance prediction tools supports the use of 487 

informatically assisted treatment design in the clinical setting. Independent benchmarking 488 

efforts will facilitate regulatory reviews and assessments and build confidence in the tools' 489 

performances. As genotypic resistance predictions will accompany and increasingly replace 490 

laboratory-based resistance phenotyping performance criteria will need to be defined to 491 

guide clinical and public health laboratories in their use. Lastly, it will be important to 492 

communicate the confidence and uncertainty that is inherent to all genotypic predictions to 493 

clinicians, and provide clear diagnostic algorithms in case of genotype-phenotype 494 

discordances.  495 
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Figure 1. Schematic overview of the GenTB pipeline. Raw sequence data is quality 

checked and adapter trimmed before alignment to the H37Rv reference strain (accession 

AL123456). Variants are called with Pilon, and a variant matrix used by the prediction 

models are prepared using custom scripts available on Github. The analysis will fail if quality 

criteria are not met (blunt end arrows). Numbers represent the three moments in the pipeline 

where users can upload their data to predict resistance for their isolate.  
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Figure 2. GenTB online user interface. A) The user is presented with the three main 

features offered by GenTB, i.e., to run predictions from user input data, to upload, share, and 

cite their data with the GenTB project, and to geographically map resistance frequencies or 

phenotype data. B) Example of a resistance prediction output where boxes are colored in 

the function of the prediction model’s output probability. C) Mutation plot that appears when 

clicked on one of the drugs heatmaps in (B). Mutations will be shown when hovering the 

mouse over the genetic loci. INH = isoniazid, RIF = rifampicin, PZA = pyrazinamide, STR = 

streptomycin, EMB = ethambutol, ETH = ethionamide, KAN = kanamycin, CAP = 

capreomycin, AMK = amikacin, LEVO = levofloxacin, OFL = ofloxacin, PAS = Para-

aminosalicylic acid. 
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Figure 3: Diagnostic performance of the four prediction tools across antituberculosis 

drugs. Paired violin plots displaying sensitivity and specificity to predict drug resistance for 

A) GenTB-Random Forest, B) GenTB-Wide and Deep Neural Network, C) TB-Profiler and 

D) Mykrobe. E) Violinplot of diagnostic performance to predict rifampicin resistance 

comparing isolates passing depth filters (in black) to isolates that failed the depth-filters (in 

grey) arranged by prediction tool. F) Violinplot of diagnostic performance to predict isoniazid 

resistance comparing isolates passing depth filters (in black) to isolates that failed the depth-

filters (in grey) arranged by prediction tool.  

AMK = amikacin, CAP = capreomycin, EMB = ethambutol, ETH = ethionamide, INH = 

isoniazid, KAN = kanamycin, OFL = ofloxacin, PZA = pyrazinamide, RIF = rifampicin, STR = 

streptomycin. 
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Figure 4: ROC performance curve of the GenTB-RF and GenTB-WDNN prediction 

models. A ROC plot of the GenTB-Random Forest (top) and GenTB-WDNN (bottom) 

predictive performance on the study dataset for first line (A) and C)) and second line drugs 

(B) and D)). 
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Table 1: Diagnostic accuracy of GenTB RandomForest and GenTB Wide and Deep Neural Network compared with two other leading 

prediction tools on a depth filtered dataset. 

DrugName Phenotype GenTB - RF GenTB - WDNN Mykrobe TB-Profiler 

  Isolates sequenced with high depth (n = 19.880) 

 R (n) S (n) Sensitivity (95% 
CI) 

Specificity (95% 
CI) 

Sensitivity (95% 
CI) 

Specificity (95% 
CI) 

Sensitivity 
(95% CI) 

Specificity (95% 
CI) 

Sensitivity (95% 
CI) 

Specificity (95% 
CI) 

isoniazid 6,043 13,112 91% (91 to 92) 98% (97 to 98) 90% (89 to 91) 99% (99 to 99) 87% (86 to 88) 98% (98 to 98) 91% (90 to 92) 98% (97 to 98) 

rifampicin 5,068 14,474 93% (93 to 94) 98% (98 to 98) 88% (88 to 89) 99% (99 to 99) 90% (89 to 91) 98% (98 to 99) 92% (91 to 93) 98% (98 to 99) 

ethambutol 2,936 12,362 86% (85 to 87) 92% (92 to 93) 82% (80 to 83) 93% (93 to 94) 79% (77 to 80) 93% (93 to 94) 86% (85 to 88) 92% (92 to 93) 

pyrazinamide 508 1,544 79% (76 to 83) 94% (93 to 95) 80% (79 to 82) 95% (94 to 95) 72% (71 to 74) 98% (97 to 98) 83% (80 to 86) 96% (96 to 97) 

amikacin 618 3,458 67% (63 to 71) 99% (99 to 100) 66% (62 to 70) 99% (99 to 100) 63% (60 to 67) 99% (99 to 100) 55% (51 - 59) 99% (99 to 100) 

capreomycin 648 3,733 63% (59 to 67) 97% (97 to 98) 57% (53 to 61) 98% (98 to 99) 60% (56 to 64) 98% (98 to 99) 56% (52 to 60) 96% (95 to 96) 

ethionamide 502 1,094 67% (63 to 72) 78% (75 to 80) - - - - 70% (66 to 74) 73% (70 to 76) 

kanamycin 576 3,707 68% (64 to 72) 99% (98 to 99) 66% (62 to 70) 100% (99 to 100) 66% (63 to 70) 99 (99 to 100) 68% (64 to 71) 98% (98 to 99) 

streptomycin 2,126 4,968 82% (80 to 83) 89% (88 to 90) 87% (85 to 88) 87% (86 to 88) 68% (66 to 70) 95% (95 to 96) 71% (70 to 73) 95% (95 to 96%) 

ofloxacin 743 4,038 68% (65 to 72) 99% (98 to 99) 62% (58 to 66) 96% (95 to 96) 62% (58 to 65) 99% (98 to 99) 67% (63 to 70) 98 (98 to 99) 
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Table 2: Area under the Receiver Operating Characteristic curve for GenTB-RF and GenTB-

WDNN 

Drug GenTB-RF GenTB-WDNN 

 
Area under the ROC curve (95% CI) 

isoniazid 0.94 (0.94 to 0.95) 0.94 (0.94 to 0.95) 

rifampicin 0.96 (0.95 to 0.96) 0.94 (0.93 to 0.94) 

ethambutol 0.89 (0.88 to 0.9) 0.87 (0.87 to 0.87) 

pyrazinamide 0.90 (0.88 to 91) 0.88 (0.87 to 0.88) 

amikacin 0.83 (0.81 to 0.85) 0.83 (0.81 to 0.84) 

capreomycin 0.80 (0.78 to 0.82) 0.78 (0.76 to 0.80) 

ethionamide 0.73 (0.7 to 0.75) - 

kanamycin 0.83 (0.81 to 0.85) 0.83 (0.81 to 0.85) 

streptomycin 0.85 (0.84 to 0.86) 0.87 (0.86 to 0.88) 

ofloxacin 0.83 (0.82 to 0.85) 0.79 (0.77 to 0.81) 

RF = Random Forest, WDNN = Wide and Deep Neural Network  
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Table 3: Output comparison across tools 

Criteria GenTB TB-Profiler Mykrobe 

1) Output 
 

  

    Type Heatmap and barplot Overview tables Overview table 

    Download all intermediate and 
output files (JSON) yes (CSV) Yes (JSON) 

2) Genotypic 
predictions 

Probability 
 

Binary 
 

Binary 
 

3) Error rate Yes 
 N.A. N.A. 

4) Resistance 
variants  

Variant by drug 
 

Variant by drug  
incl. fraction of mutant / 

wild-type allele 

Variant by drug incl. 
depth of mutant and 

wild-type alleles 
5) Unknown 
variants 

Yes, in all genes 
 

Yes, in candidate 
resistance genes 

No 

6) M. tuberculosis 
Lineage  

 
 

  

    Lineage  Yes Yes Yes 

    Typing    
scheme Yes No No 

7) Quality metrics  
Trimming and Kraken 
report downloadable 

 

No. of reads, 
Percentage of reads 

mapped 
No 
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