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Abstract

An open-source Python library EMDA for cryo-EM map and model manipulation is
presented with a specific focus on validation. The use of several functionalities in the library
is presented through several examples. The utility of local correlation as a metric for
identifying map-model differences and unmodeled regions in maps, and how it is used as a
metric of map-model validation is demonstrated. The mapping of local correlation to
individual atoms, and its use to draw insights on local signal variations are discussed.
EMDA’s likelihood-based map overlay is demonstrated by carrying out a superposition of
two domains in two related structures. The overlay is carried out first to bring both maps
into the same coordinate frame and then to estimate the relative movement of domains.
Finally, the map magnification refinement in EMDA is presented with an example to
highlight the importance of adjusting the map magnification in structural comparison
studies.
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1. Introduction
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Single-particle cryo-electron microscopy (cryo-EM) has become an increasingly popular
structure determination tool among structural biologists (Farugi and McMullan, 2011;
Kihlbrandt, 2014; Lyumkis, 2019; Lyumkis et al., 2013; Scheres, 2014). The technique has
evolved at an unprecedented speed in the past few years as shown by the rapid growth of
cryo-EM structure depositions into the Electron Microscopy Data Bank — EMDB (Lawson et
al., 2020). As the number of depositions into EMDB increases, it is important to maintain
guality standards for both maps and atomic models not only to ensure their reliability, but
also to prevent accumulation of errors.

The EM validation task force 2010 (Henderson et al., 2012) has recognized the critical need
of validation standards to assess the quality of EM maps, models and their fits. The task
force’s recommendations for map validation included the tilt-pair experiments for the
absolute hand determination (Rosenthal and Henderson, 2003), the raw image to 3D
structure projection matching for validating reconstruction accuracy and the data coverage
(Orlova et al., 1996; Tang et al., 2007), statistical tests using map variances for assessing the
map quality and interpretability (Ménétret et al., 2007; Penczek et al., 2006), resolution
estimation through Fourier Shell Correlation (FSC) using fully independent half data sets
(Scheres and Chen, 2012), visual assessment of map features to the claimed resolution, and
the identification and validation of the map symmetry where applicable (Reboul et al.,
2020).

The task force has identified the model validation in cryo-EM as an area for further research,
mainly due to the fact that, at the time, there were few high resolution cryo-EM structures.
Thus, the recommendations for model validation included, among others, the assessment of
subunits and their interfaces according to the guidelines proposed by the PDB (Read et al.,
2011), the assessment of agreement between the model and the map utilizing chemical
measures such as chemical properties and atomic interactions and their clashes as
employed in EMFIT program (Rossmann, 2000; Rossmann et al., 2001) or statistical
measures such as correlation coefficient.

Since the first meeting in 2010, the field has grown by accumulating many methods and
tools to address the issue of map validation. Examples include the gold standard FSC to
monitor the map overfitting into noise during reconstruction (Rosenthal and Henderson,
2003; Scheres and Chen, 2012), tilt-pair validation to assess the accuracy of initial angle
assignment (Wasilewski and Rosenthal, 2014) and the false discovery maps for visual
assessment of map features (Beckers et al., 2019).

The progress in atomic model building, refinement and validation has also been substantial.
Resolution in cryo-EM reconstructions vary widely, however the progress made in the field
of atomic model building encapsulates modelling tools for low, medium to high resolution.
Examples include Chimera (Pettersen et al., 2004), DockEM (Roseman, 2000), FlexEM (Topf
et al., 2008), COOT(Brown et al., 2015) , DireX (Wang and Schréder, 2012), MDFF (Trabuco
et al., 2009), Cryo-Fit (Kim et al., 2019), Rosetta (Wang et al., 2016), MDeNM-EMfit (Costa et
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al., 2020). The atomic model refinement has also gained a significant progress. Unlike in
crystallography, cryo-EM maps contain both amplitudes and phases and the atomic model
refinement programs can use a phased likelihood target function as employed in REFMAC5
(Murshudov, 2016; Nicholls et al., 2018) or real space target functions as used in
phenix.real_space_refine (Afonine et al., 2018a), ISOLDE (Croll, 2018) and COOT (Brown et
al., 2015). There has also been a considerable progress in map and model validation.
Examples include various metrics for map-model fit validation (Afonine et al., 2018b; Barad
et al., 2015; Brown et al., 2015; Pintilie et al., 2020; Ramirez-Aportela et al., 2021), and
chemistry and geometry based tools for model validation (Emsley et al., 2010; Prisant et al.,
2020). The EM practitioners can access these methods and tools as parts of stand-alone
packages, separate tools in collaborative projects such as CCP-EM (Burnley et al., 2017), or
as web based tools such as EMDB validation server
(https://www.ebi.ac.uk/pdbe/emdb/validation/fsc/), Molprobity server
(http://molprobity.biochem.duke.edu/) etc.

Developing better validation methods and tools in cryo-EM is an active area of research
because the goal of validation in cryo-EM is a changing target (Lawson et al., 2020). The
metrics for validation should evolve as the field progresses towards the atomic resolution
because the methods that are applicable to low and medium resolution may not be equally
applicable to atomic resolution data and derived models.

In this paper we present Electron Microscopy Data Analytical toolkit (EMDA) - a new Python
package for post reconstruction/atomic model refinement analysis and validation of cryo-
EM maps and models. EMDA is a portable Python package with a command line and an
Application Programming Interface (API) for Python programmers.

While EMDA contains several useful functionalities for cryo-EM map and model
manipulation, we describe only three of them in detail in this paper. The local correlation in
real space is a metric for detecting the map signal and evaluating the degree of local
agreement between an atomic model and a cryo-EM map. We describe the mathematics
relevant to correlation calculation in section 3.1. Section 4.1 includes examples
demonstrating various uses of local correlation. Map superposition is an important
operation in cryo-EM. In structure comparison studies, it brings all maps into a common
coordinate frame for comparison. In the difference and average map calculations, the
superposition is an essential first step to align the input maps. The available tools for
superposing maps include Chimera’s Fit-in-map (Pettersen et al., 2004), TEMPy2 (Cragnolini
et al., 2021). EMDA map overlay is based on the maximisation of the likelihood function
described in section 3.2. An example demonstrating the overlay is given in section 4.2.
Magnification of an EM map is related to the microscope optics on which the data has been
collected. During merging of several data sets collected on different microscopes or on the
same microscopy with different optical alignments, their magnifications may need to be
adjusted to a reference (Wilkinson et al., 2019). The reference can be another map whose
accurate pixel size is already known or an atomic model derived independently of the map
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whose magnification is sought. The use of EMDA for map magnification correction is
demonstrated in section 4.3.

The rest of the paper is organised into three sections. The first section covers the design and
the infrastructure of EMDA with an introduction to the EMDA command line and
Application Programming Interface (API). The second section describes the mathematical
framework of EMDA behind those three functionalities. In the third section, we
demonstrate each functionality by examples. Lastly, the conclusions and outlook followed
by information about the package availability are given.

2. EMDA architecture

EMDA is written primarily in Python using Numpy (Harris et al., 2020), Scipy (Virtanen et al.,
2020) and Matplotlib (Hunter, 2007), however, numerically intensive tasks are written in
Fortran. F2PY (Peterson, 2009) mediates the communication between Python and Fortran.
This combination allows us to integrate powerful numerical calculations with abstraction
features in Python.

EMDA code is organized into three layers as shown in Fig. 1. The innermost layer (Layer 3)
consists of core and extension modules. The core modules provide basic services such as
read & write, format conversion, resampling, binning etc. All higher-level functionalities
such as rigid-body fitting, magnification refinement, difference map calculations are
provided through extensions. The extension modules use the basic services provided by the
core modules. Both core and extension modules are wrapped into another module to form
the EMDA API (Layer 2). APl abstracts the underlying complexity of the code into methods
and objects providing a simplified mechanism for other developers to gain advantage of
EMDA infrastructure. EMDA-API functions are further wrapped to form the EMDA
command-line-interface (Layer 1). The users can access the underlying functionalities
through the command line. Each functionality is callable with a keyword followed by a set of
arguments. A list of up-to-date functionalities with their arguments are given in
https://emda.readthedocs.io. In addition, a tutorial describing the presented examples in
this paper can be found in https://www2.mrc-Imb.cam.ac.uk/groups/murshudov/.

EMDA uses open-source, standalone Python library mrcfile (Burnley et al., 2017) for the
reading, writing and validating EM files in the standard MRC2014 format (Cheng et al.,
2015). Also, EMDA uses gemmi (https://gemmi.readthedocs.io) for reading and writing
atomic coordinate files, and ProSHADE (Nicholls et al., 2018; Tykac, 2018) for symmetry
detection in EM maps.
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Fig. 1. Architecture of EMDA library. The three Python code layers are shown in blue and the
layer of external libraries is shown in green. The black arrows show the data flow and the

functional dependencies.

3. Methods

In this section we outline the mathematical framework for local correlation and probability-
based methods in EMDA. The notations we use throughout this text and in the appendices

are summarised in Table 1.

Table 1: Table of notation

Notation Description
fullmap Map obtained by averaging half data
reconstructed maps
cov(X,Y) Covariance between random variables X
andY
var(X) Variance of the random variable X
xands 3D column vectors in real and Fourier
space
m(x) Convolution kernel
Pi(x) Cryo-EM map number i
vary, (¥;(x)) Local variance of 1;(x) calculated with the
kernel m(x)
CoV12 (Y1 ()P, (X)) Local covariance between 1, (x) and 1, (x)
calculated with the kernel m(x)
CCopm () = €OV13m (1 () (%)) Local correlation coefficient calculated
\/Wﬁ,m (11, () vars (3P, (2)) between 1, (x) and ¥, (x) with the kernel
m(x)
CChaipm(x) Local correlation calculated between
halfmaps
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cC (x) = _2CChapm () Local correlation in the fullmap (Rosenthal
- 1+ Conarm (@) and Henderson, 2003)
C Crmap,modet,m (X) Local correlation calculated between the

fullmap and the atomic model-based map

1, 1 pr
M (FojikiFoy 7o) = e
nj

2

_|Foj=kjF¢,l
2

Two-dimensional Gaussian distribution
. . 1 2 th
with mean k;F, j and variance > oy, ; of j

map. Since there is no correlation between real
and imaginary parts, a single variance is used to
describe this distribution.

1
Non (Fo; kFt'Ez)
1

=~ o~ (Fo-kF)TE7 (Fo—kFp)*
nNdet (Z)

2N dimensional Gaussian distribution with
mean kF, and covariance %Z. Since there
is no correlation between real and
imaginary parts NxN covariance matrix is

used to describe the 2N dimensional
random variable”®.

Fo(S) = (Fo,l(s)’Fo,z(S); ey Fo,N(S))

A column vector formed by complex
Fourier coefficients of observed maps

Ft(S) = (Ft,l(s)rFt,Z(S); N (S))

A column vector formed by complex
Fourier coefficients of unknown “true”
maps

FC(S) = (Fc,l(s)’Fc,z(S); e Fon (S))

A column vector formed by complex
Fourier coefficients calculated from models

Eo(S) = (Eo,l(s)’Eo,z(S); o Eo (S))

A column vector formed by normalized
complex Fourier coefficients of observed
maps

Fo,j(s)

J B (5) + 02 (5)

Eo,j(s) =

Normalized complex Fourier coefficients of
M map.

R; and tj

Transformation matrix and translational
vector in 3D to be applied for the map
number j

F(RS)eZTL'LSTt

= (Fl(Rls)ezmsTtl, o) FN(RNs)ezmsTtN)

N dimensional column vector of complex
Fourier coefficients after application of
transformation. Usually, but not
necessarily, (R; = I,t; = 0) is the identity
transformation.

D = diag(D,,..,Dy) Diagonal matrix formed by scale factors
between the true and calculated Fourier
coefficients

k = diag(ky, ..., ky) Diagonal matrix formed by blurring

parameters



https://doi.org/10.1101/2021.07.26.453750
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.26.453750; this version posted October 15, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

) N X N covariance matrix of “true” maps
without blurring

2,5 = k"TXk = kXk N X N covariance matrix of signals
calculated using observed maps

0% = diag(c5,,024, .., 0%n) Diagonal matrix formed by variances of
observational noise

<F >=(<F¢1 >,<Fi3>,...,<F.y>) | Acolumn vector formed by the expectation
values of the true maps

fsc =2fschar/(1 + fSChaif) FSC in the fullmap converted from halfmap
FSC (Rosenthal and Henderson, 2003)

JFsc =diag(y/fsci,\/fscz, i/fsen ) Diagonal matrix formed by square root of

fullmap FSC values. It is also an estimate

for FSC between fullmap and “true” signal
(Rosenthal and Henderson, 2003)

Ps N X N correlation matrix between true maps
Oy Correlation coefficient between true maps i
Psij = 22 andj. An element in p;.
Po N X N correlation matrix between observed
maps
Zo.s,ij Correlation coefficient between observed maps

Poij = iandj. An elementin
\/(Zo,s,ii + O-iz)(zo,s,jj + 0}‘2) J Po-

" It should be noted that the covariance matrix is £ ® I, i.e. Kronecker product of NxN

covariance and 2-dimensional identity matrices. The reason of such covariance matrix
structure is that there are not correlations between real and imaginary parts of Fourier
coefficients and the variance of real and imaginary parts of each Fourier coefficient are
equal to each other.

3.1. Local correlation in real space

Pearson’s product-moment sample correlation coefficient (CC) has been extensively used
for various purposes in X-ray crystallography (Karplus and Diederichs, 2012; Tickle, 2012)
and in cryo-EM (Van Heel, 1987). The CC depends on the signal and noise levels. If we
assume that the noise variance is constant within the masked map then for a given data the
CC will be an indicator of the signal in the data. Care should be exercised in its interpretation
as any systematic behaviour will be considered as signal. Since the CC is calculated using the
data, its variance depends on the volume of the data being used.

Local CC in real space can be calculated using the formula for the weighted Pearson’s
product moment sample correlation coefficient with weights equal to the kernel. The local
CC for two maps ¥, (x) and ¥, (x) is:
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COUlZ,m(lpl (X),ll)z (x))
Jva7"1,m (¢1(x))va7"2,m WP2(x))

CClZ,m(x) = (1).

COV1ym (gbl(x), ¢2(x)) and var; ., (¥;(x)) are the local covariance and variances for ¥, (x)

and Y, (x) calculated with a kernel m(x). The kernel is normalized such that
Jesm(x)dx = 1.

The expression for local covariance is,

CoV12m (WY1 (x), P2 (x)) = fRs m(x —y) Y1 (P (y)dy — fRs m(x —y) P, (y)dy fRs m(x —
V)2 (y)dy (2)

Similar expressions can be written for local variances vari,m(tpi(x)). Note that the eq. 2 can
be readily evaluated using the convolution theorem (see Appendix A).

Such correlations could be calculated for any pairs of maps. When it is calculated using half
maps (CCpqirm(x)) reconstructed from randomly chosen half of the particles, then it
indicates the local signal to noise ratio, whereas the local correlation between observed and
calculated maps (C Crap moder,m (X)) indicates local agreement between atomic model and
observed map. Similarly, the local correlation between two different observed maps
indicates local common signals between them.

The correlation calculated using half maps is converted to that of fullmap using the
following formula (Rosenthal and Henderson, 2003)

2CChatfm ()
CCryipm(x) = —hafm= (3),

1+CChaifm(x)
In the local correlation calculation, EMDA uses a spherically symmetric kernel defined as:
1
E' |X| < To
mx) = f(x) = i(1+COS<M>, o <|x|<n
2Z L — T,
0, otherwise

Where 1y and r; are the radii of inner and outer concentric spheres. Z is the coefficient that
makes sure that the total integral of m(x) is equal to 1.

The size of the kernel (i.e. ;) should be chosen such that the number of data points
included is sufficient to calculate a reliable statistic. Both too small or too large kernels lead
to inaccurate correlations due to insufficient data points or loss of locality, respectively. In
the current implementation of EMDA, r; should be chosen by trial-and-error. Both 1y and r;
are in pixel unit and by default 2 pixels are used to soften the edge of the mask, in other
words r; =1y + 2.

The CCpyy m(x) (hereafter CCryy;) depends on the local signal strength. It has two
implications: 1) it depends on the local variation of the signal, and hence different parts of
the map with different mobilities will have differing correlations; 2) it will depend on global
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sharpening/blurring parameters, i.e. maps sharpened with different B values will have
different local CCpyy;.

It should also be noted that the CCyap moder,m (X) (hereafter CCpyap moaer) calculated
between an atomic model and a given map (fullmap) depends on atomic coordinates,
occupancies and B values. Therefore, to obtain the best possible CCy,4p moger it should be
calculated using a refined model with optimized atomic B values.

In order to compare CCpapmoder With CCpryyy all maps should be weighted appropriately.
To achieve this, Fourier coefficients of all maps are normalized and weighted by FSC in
resolution bins. All correlation examples discussed in this paper used such normalized and
weighted maps. The details are in Appendix D.

Let us assume that errors in the observations are additive and they follow a Gaussian
distribution with zero mean. Also, assume that there is no correlation between the noise
and the calculated map from the atomic model. This is true only when there’s no overfitting.
Under these assumptions, a relationship between CCyqp moder and CCpryyy useful for
validation is given by eq. 4. The full derivation of eq. 4 is given in Appendix A as well as in
(Nicholls et al., 2018).

CCmap,model,m(x) = CCtruemap,model,m(x)\/ CCfull,m(x) (4)

According to eq. 4, the CCapmoder (X) is equal to /€ Cpyy m (x) only when
CCtruemapmoderm(x) = 1, i.e. perfect model. Since this situation is almost never realised,

the CCrapmoder,m (X) should always be less than \/CCryyy 1 (X). If CCrap moder,m (X) is
greater than \/CCryyy 1 (x), that could be an indication of overfitting.

3.2. Parameter estimation and map calculation: likelihood and posterior

distribution

As in any application of Bayesian computations to the data analysis we need two probability
distributions: 1) probability distribution of observations given parameters to be estimated —
likelihood function and 2) probability distribution of unknown signal given observations and
current model parameters — posterior probability distribution. The details are given in
Appendix C.

Likelihood function

The negative log likelihood function in the absence of atomic models and in the presence of
multiple related maps is (see Appendix C for details):

LL(Fo: R £,Z05) = Yo ((Fo(Rs)e?™™0) (o + 62) " (F, (Rs) e~2ms"t) +
log(det(z,s + %)) (5)
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Where F,(s) is a vector of Fourier coefficients of the observed maps, R and t are the
vectors formed by rotation and translation parameters for each map, respectively, X, s is
the covariance matrix between “true” maps calculated using observed maps and a2 is a
diagonal matrix of noise variances. In EMDA, the above likelihood function is implemented
to estimate parameters between a pair of maps where one map is static the other moves
onto it. In the case of estimation of transformation parameters, the only terms that depend
on adjustable parameters are the cross-terms in the eq. 5:

Ds,izj Wi jFoi(RiS)F, (st)eznlsT(ti_tj)-

F,; and F, ; are the Fourier transforms of i and j™ maps, R; and t; are the rotation and
translation parameters. w; ; is related to the corresponding term in the inverse of the
covariance matrix and is related to FSC between maps. For parameter estimation X, s and

o do not need to be estimated separately, their sum is used in eq . 5.

Note that if we relax the conditions that R is a rotation matrix, the same formula also allows
refining the magnification parameters. In cryo-EM, we assume that the magnification is a
scalar parameter and R becomes a diagonal matrix with the same magnification parameter
in magnification-only-refinements. The covariance matrices and transformation parameters
are estimated iteratively.

The algorithm in EMDA for transformation estimation includes following steps. 1) starting
with initial rotation and translation parameters the covariances are calculated and
converted them into weights to calculate the functional value. 2) the derivatives of
translation and rotation are calculated and the shifts are estimated. 3) the current
translation and rotation are updated and applied on maps. The covariances are recalculated
and the new functional value is evaluated. 5) the new functional value is compared with
that of the previous iteration, and if the convergence criterion is met the final maps are
output and the transformation is retained. Otherwise, the process continues at step 2 with
the next cycle of iteration.

Posterior distribution:

For map calculations we need the probability distribution of the unobserved “true” maps
given the current state of atomic models as well as observations. In the absence of atomic
models this distribution is a multivariate Gaussian with mean (see Appendix C for details):

<F,>=k1Z,,(Z,5+ 02)_10‘2F0 (6)

where k is the diagonal matrix formed by the blurring parameters, a2 is the diagonal matrix
formed with the variance of the noise in the observations, X, ; is the covariance matrix
between “true” maps calculated using observed maps, F, is a vector of Fourier coefficients
of observed maps, < F; > is a vector of expectation values of the “true” map Fourier
coefficients.

10
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Since k is unknown, we replace it with the standard deviation of the signal as explained in
(Yamashita et al., 2021). After some algebraic manipulation we get (see Appendix C):
<F,>=ps.fscp;' E, (7)

where p; is the correlation matrix between Fourier coefficients of “true” maps, p, is the
correlation matrix between Fourier coefficients of observed maps, E,, is a vector of
normalised Fourier coefficients of observed maps and < F; > is a vector of the expectation
values of the normalised Fourier coefficients of the “true” maps.

Note that if we know the blurring factor, it might be better to use them in the map
calculation. However, observations alone do not allow us to calculate these quantities, and
they need to be estimated using different methods.

4. Results and Discussion
In this section, we demonstrate the use of local correlation, map overlay and magnification
refinement implemented in EMDA package through examples.

4.1. Examples of use of local correlation

4.1.1. Model-map differences by local correlation

To demonstrate the use of local correlation to detect model-map differences, we used
archaeal 20S proteasome (EMD-5623) map with overall resolution 3.3 A and the
corresponding atomic model 3j9i (Li et al., 2013). The atomic model was refined against the
fullmap to a resolution of 3.3 A using REFMACS (Nicholls et al., 2018). Using the refined
model, an EM map to 3.3 A was computed in EMDA using gemmi
(https://gemmi.readthedocs.io). Local correlations were calculated within a kernel of radius
ri=4 pixels (pixel size = 1.22 A). The C Cryy wWas calculated using the normalized and
weighted halfmaps (see Appendix A). Similarly, the CCy,4p moder Was calculated between the
normalized and weighted fullmap and the normalized and weighted calculated map. Fig. 2a
shows the primary map density near residues Lys52-Val54 of chain U of the 3j9i model
coloured by the \/m and the superimposed model. One can appreciate a moderate
signal, but the model is outside the density. The same density coloured by CCp,qp moder (Fig-
2b) shows a low correlation resulting from the misplaced model. Fig. 2c shows the
corresponding part of the refined atomic model coloured by CCp,qp moaer and it also
highlights those residues with low correlation. Thus, CCy,4p moder €an highlight areas with
map-model discrepancies, while \/m can be used to validate the existence of a signal. A

comparison of CCpyap moder VErsus 1/ CCryy is useful not only to pinpoint map-model
differences, but also to identify viable ways to minimise them. Moreover, colouring the
atomic coordinates by CCy,qp moder is an effective way to identify misplaced regions in the
model.
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< 0.70
e i I 1 - 0.50

Fig. 2. Identifying model-map discrepancies by local correlation. a) EMD-5623 primary map
density near residues Lys52-Val54 of chain U of the 3j9i model coloured by /CCsyy;. b) the

same density coloured by C Cr,4p moder- €) cOrresponding atomic model coloured by

C Crmapmoder Showing low correlation residues Lys52-Val54 of chain U. The figure was made
with ChimeraX (Pettersen et al., 2021).

4.1.2. Unmodeled regions by local correlation

Next, we used SARS-CoV-2 spike protein structure EMD-11203 and the corresponding model
6zge (Wrobel et al., 2020) to demonstrate the use of local correlation to highlight an
unmodeled density. This density has been modelled as linoleic acid (LA) in the homology
model 6z5d (Toelzer et al., 2020).

First, we present the use of /CCryy; and CCrgp moder to identify the unmodeled density in
the map. Then, we compare those local correlations against the local correlation calculated
from the model with the ligand.

Using the normalized and weighted EMD-11203 halfmaps the CCr,,;; was calculated within a
kernel of radius r;=3 pixels (pixel size = 1.087 A). The size of the kernel was chosen to
maximize the variation of local correlation and minimize the leakage of correlation from the
surrounding (a comparison of correlations calculated using different kernel sizes is given in
Supplementary materials). The model 6zge was refined against the EMD-11203 fullmap
using REFMACS (Nicholls et al., 2018) to optimise atomic coordinates and the B values.
Using the refined model an EM map was computed to 2.6 A in EMDA using gemmi
(https://gemmi.readthedocs.io). The CCpap moaer Was calculated using the normalized and
weighted EMD-11203 fullmap and the normalized and weighted model-based map. EMD-
11203 primary map was coloured by,/CCpyy and € Crmgpmoder, and their comparison
highlighted an unmodeled structured densities located near all receptor binding domains.
One such density coloured by,/CCryy; and CCrmgpmoder are shown in Fig. 3a and 3b,

respectively. The high ,/CCr,y; implies the density is real, but low CCy,apmoaer implies there
is no corresponding model. Next, the homology model 6zb5 with LA was fitted on the EMD-
11203 fullmap and refined using REFMACS (Nicholls et al., 2018), and the CCr,apmoder Was
recalculated. The improved C Crqp moaer fOr the ligand region is shown in Fig. 3¢ and this
improvement is due to the presence of LA in the model.
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Fig. 3d shows the refined LA molecule whose atoms are coloured according to the atomic B
values. The overall trend shows that B values in the hydrophobic tail are relatively small, but
they gradually increase towards the hydrophilic carboxyl group. In Fig. 3e, atomic \/m
and CCrapmoder are plotted in blue and orange, respectively, along with the atomic B
values in grey. The atomic correlation values were obtained from correlation maps by
interpolating at atomic positions.

The \/m is close to 1 throughout the molecule, but largest variation is seen in the

carboxyl group. The CCrap moder 1S lower than the \/CCryy; in all atoms, and its variation is

larger than that of ,/C Cr,;;. The difference in atomic CCrqp moqer fOr carbonyl Ol and 02 is
significant despite their similar B values. The carbonyl group is anchored by the
neighbouring Arg408 and GIn409 residues through H-bonding with 02 atom (Toelzer et al.,
2020, Fig. 3c), but 01 atom does not seem to have close neighbours thus its atomic
correlation may be compromised by the surrounding noise. It should also be noted that at
some atoms there is a leakage of correlation. This effect is pronounced at atoms 02, C10,
C14 and C18 in Fig. 3b.
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Fig. 3. Use of local correlation to identify unmodeled linoleic acid (LA) in EMD-11203 map. a)
unmodeled ligand density in the primary map coloured by the \/m High correlation
indicates the presence of a strong signal. b) the same density coloured by CCr,4p modet
calculated between the fullmap and the refined 6zge model using normalized and weighted
densities. The correlation in this region is low compared to its surrounding. c) ligand density
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coloured by CCrpapmoder Calculated between the fullmap and the refined model with LA
using normalized and weighted densities. Densities in a, b and ¢ panels were contoured at
the same level. Those figures were made with Chimera (Pettersen et al., 2004). d)
distribution of atomic B values of refined LA where the atoms are coloured by the B values.
This figure was made with PyMOL (Schrodinger, 2020). e) distribution of atomic correlation
values at refined LA coordinates. CCp,qp moder and \/m are shown with orange and blue,

respectively. Also, the atomic B values are shown in grey.

A comparison of \/m versus CCrap moder €an highlight map-model differences as shown
by the previous examples. In model building and refinement, we aim at explaining the full
signal in the map by the model, and hence the chance of building model into the noise is
unavoidable. In such situations, the local correlation can be a helpful tool to monitor the
overfitting. According to eq. 4 the inequality CCpapmoder < \/m should hold when

there is no overfitting, and Fig. 3e shows such a situation.

4.2 Examples of use of map overlay

4.2.1. EMDA map overlay

To demonstrate the overlay method, we have used cryo-EM maps EMD-21997 and EMD-
21999 (Henderson et al., 2020) of SARS-CoV-2 spike protein, whose resolutions are 2.7 A
and 3.3 A, respectively. The former map is in rS2d locked state in which all three receptor
binding domains (RBDs) are down and locked, thus maintaining C3 symmetry. Whereas the
latter map is in u1S2q state in which one of the RBDs is open causing the whole structure to
be in C1. In this example, we estimate the movement of one of the down RBDs in EMD-
21999 map relative to one of the down RBDs in EMD-21997 map using EMDA overlay
operation. We kept the primary EMD-21997 map and the corresponding 6x29 atomic model
static, while the primary EMD-21999 map and the corresponding 6x2a atomic model
moving. First, we overlaid EMD-21999 map (Fig. 4a(ii)) on EMD-21997 map (Fig. 4a(i)) and
the resulting transformation (relative rotation = 8.35°, translation = 4.14 A) was applied on
the 6x2a atomic model. The overlaid maps are shown in Fig. 4a(iii), and they are the starting
maps for the subsequent domain overlay (shown by 4a(iv) and (v) for static and moving
maps, respectively). Next, a pair of RBDs located proximity to each other on 4a(iii) were
extracted within model generated masks. The extracted RBDs are shown in 4a(vi) and 4a(vii)
and their superposition before fit optimisation is shown in 4a(viii). Next, their relative fit was
optimized and at the convergence the relative rotation and translation values were 3.38°
and 1.76 A, respectively. The superposed domains after the fit optimisation is shown in
4a(ix). These rotation and translation values indicate the movement of the selected RBD of
EMD-21999 map relative to the corresponding RBD of EMD-21997 map in the same
coordinate frame. Finally, the estimated transformation between domains was applied on
the 6x2a RBD coordinates to bring it on the static model (6x29). Fig. 4a(x) and (xi) present
the superposition of models before and after the transformation has been applied,
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respectively. Fig. 4b shows the FSC curves calculated between the two domains before and
after the overlay optimisation.

(@)

EMD-21997

Superposed RBDs Superposed RBD
before fit models
optimization

—

7. Overlaid maps
* Rotation = 8.35°

EMD-21999
(xi)
|
Highlighted RBDs
in starting maps
(b) RBD overlay between EMD-21997 vs EMD-21999 maps

1.0 —— RBDs 21997 vs 21999
. —— RBDs 21997 vs 21999 fitted
g08
®
<4
£06
(@]
= RBDs after fit RBD models after
& 04 optimization applying
g Relative rotation = 3.38°  transformation
3 0.2 Translation = 1.76 A

0.0

127.8 14.2 7.52 5.11 3.87 3.12 2.61 2.24
Resolution (A)

Fig. 4. Map superposition in EMDA illustrated using EMD-21997 and EMD-21999 maps. (a)
keeping EMD-21997 map (i) static, EMD-21999 map (ii) was moved to obtain the optimal
overlay between them (iii). Starting from the overlaid maps (iv) and (v), RBDs were
extracted using masks. The extracted RBDs (vi) and (vii) were superposed (viii) and
optimized their overlay (ix) in EMDA. The final values of relative rotation and translation are
3.38°and 1.76 A, respectively. The same transformation was applied on the model 6x2a of
the moving map. The superposition of 6x29 (static, grey) and 6x2a (moving, cyan) RBD
models before (x) and after (xi) the domain transformation being applied. This figure was
made with Chimera (Pettersen et al., 2004). (b) FSC between static and moving RBDs before
(blue) and after (orange) the overlay optimization.

4.2.2. EMDA magnification refinement
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Magnification refinement in EMDA involves 1) resampling the target map on the reference
grid to make sure both maps refer to the same coordinate system, 2) superposition of the
target map on the reference and refining the magnification of the target map, iteratively. To
demonstrate the magnification refinement in EMDA, we intentionally introduced a -5%
magnification error in one of the half maps of Haemoglobin (halfl of EMD-3651; (Khoshouei
et al,, 2017)) to yield the initial map, and let EMDA to refine its magnification against the
half1 map (original map). The pixel sizes of the original and the magnification modified maps
(initial map, Fig. 5a) are 1.05 and 0.998 A, respectively. EMDA optimized the magnification
of the initial map relative to the original map to yield the magnification adjusted map (Fig.
5a) with the pixel size 1.05 A. Fig. 5b shows the FSC curves for the initial and the adjusted
maps calculated against the original map. The increase from initial map to adjusted map is
due to the correction in the magnification. To validate the accuracy of refinement, the FSC
for adjusted map is compared with the half data FSC (Fig. 5¢) and they are in very good
agreement.

Initial map (halfl with -5% mag. Mag. adjusted map
error) Original (halfl) map

Original (half1) map

(b) (c)
FSC before and after mag. adjustment FSC calculated against Half2 map
1.0 1.0 —— Initial vs Half2
—— Adjusted vs Half2
c C
©0.8 ©0.8 —— Original vs Half2
© ©
I °
50.6 5 0.6
o O
T 3
504 504
kol ko
S 0.2 =
§ ug_ 0.2
—— Initial vs Original
00 Adjusted N Original ................................. 00
42.0 8.4 4.67 3.23 2.47 42.0 8.4 4.67 3.23 2.47
Resolution (4) Resolution (4)

Fig. 5. The magnification refinement in EMDA using Haemoglobin data (EMD-3651). (a) the
superposition of the original (half1) map (in grey) on the initial map (in cyan) obtained by
introducing a -5% magnification error on the original map is improved after magnification
correction (adjusted map shown in cyan). This figure was made with Chimera (Pettersen et
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al., 2004). (b) FSC between initial and adjusted maps against the original map indicating
improvement in the superposition due to correction in magnification. (c) FSC curves for
initial and adjusted maps calculated against the half2 are shown in blue and orange,
respectively. The increase of FSC from blue to orange is due to the improved magnification.
The green curve is the FSC between the half maps and it serves as the ground truth.

In the next example, we illustrate the estimation of the relative magnification differences of
two cryo-EM maps of beta-galactosidase [EMD-7770 (Bartesaghi et al., 2018) and EMD-
10574 (Saur et al., 2020)] relative to an X-ray crystallography model 3dyp (Juers et al., 2009).
The resolution of EMD-7770 and EMD-10574 are 1.9 and 2.2 A, respectively. The model
3dyp has been derived from X-ray data with resolution 1.75 A. Both cryo-EM maps and the
crystallographic model possess D2 point-group symmetry. Since one of the cryo-EM primary
maps (i.e. EMD-10574) has been lowpass filtered, we used fullmaps generated from half
maps for both cryo-EM entries in this analysis. First, all non-polymer atoms of 3dyp model
were removed and just the polymers were fitted onto EMD-7770 map in Chimera (Pettersen
et al., 2004). Then the model-based map was calculated up to 1.9 A using REFMAC5
(Nicholls et al., 2018) and it was kept as the crystallographic reference for the subsequent
magnification analysis. Both the reference map and the EMD-7770 map have the same pixel
size 0.637 A, while EMD-10574 map has 0.68 A. Thus, the latter map was resampled on the
reference to bring all maps on the same coordinate system. Next, a principal component
analysis was performed on the variance-covariance matrices of the reference and
resampled maps to bring the orientation of the latter approximately matches that of the
reference.

Lastly, the fits and the magnifications of EMD-7770 and the resampled EMD-10574 maps
were optimized relative to the reference map, iteratively. This resulted in +0.3 % and +1.7 %
magnification differences in EMD-7770 and EMD-10574 maps relative to the reference,
respectively. Fig. 6a(i) and (ii) show the superpositions of EMD-7770 (yellow) and EMD-
10574 (cyan) maps on the reference (grey). Their magnified portions enclosed by red
rectangles are shown in Fig. 6b on the left two columns. The yellow density overlaid on the
grey density does not show an obvious offset discernible to human eye in both centre or
periphery regions. However, the cyan density shows an offset relative to the grey density.
Moreover, this offset increases from the centre to periphery; an indication of the
magnification problem. Fig. 6a(iii) and (iv) show the magnification corrected EMD-7770 and
EMD-10574 maps overlaid on the reference map, respectively. The magnified portions
marked by red rectangles are shown in Fig. 6b on the right two columns for centre and
periphery regions. Both yellow and cyan densities overlay on grey density, and the offset
seen in the cyan density before the correction has now disappeared confirming that EMD-
10574 map indeed suffers from magnification problem. Furthermore, Fig. 6a(v) and (vi)
present the masked FSC curves for EMD-7770 and EMD-10574, respectively, before (blue)
and after (orange) the magnification has been corrected. The increase in FSC, especially in
(vi) is attributed to the improved magnification.
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Fig. 6. Magnification correction in EMD-7770, EMD-10574 maps relative to the
crystallography model 3dyp. (a) the overlaid EMD-7770 (i, yellow) and EMD-10574 (ii, cyan)
maps on the reference map (grey) before the magnification optimisation. (iii) and (iv) are
the same maps after the optimisation. The magnification differences in EMD-7770 and
EMD-10574 relative to the reference are +0.3 % and +1.7 %, respectively. The FSC curves for
EMD-7770 and EMD-10574 maps against the reference before and after the magnification
adjustment are shown in (v) and (vi), respectively. The blue and orange curves correspond
to FSCs before and after the magnification refinement, respectively. The increase in FSC is
attributed to the corrected magnification. This figure was made with Chimera (Pettersen et
al., 2004). (b) comparison of EMD-7770 map (yellow) and EMD-10574 map (cyan) densities
against the reference map (grey) in different regions before and after the magnification
correction. See text for details.
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Even after the magnification correction, some discrepancies in density overlay were
apparent in both EMD-7770 and EMD-10574 maps relative to the reference map. We
focused on one monomer unit of EMD-7770 map and extracted it using a model generated
mask. The corresponding monomer unit of the reference map was also extracted in similar
manner. Fig. 7(i) shows the overlaid EMD-7770 map on the reference after the
magnification correction. The monomer units chosen is highlighted within the mask.
Extracted monomers are shown in Fig. 7(ii), and one can easily appreciate the rotation of
the yellow density relative to the reference grey density due to movements between
domains. We estimated the relative transformation between those monomer units and that
resulted in 1.02° rotation and 0.12 A translation (similar analysis was performed using
monomers from EMD-10574 map and the reference. That resulted in 0.28° rotation and
0.17 A translation). Fig. 7(iii) and (iv) show the optimized fit of the monomers and the FSCs
between them before (blue) and after (orange) the fit optimisation, respectively. The
increase in FSC is attributed to the improved fit.
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Fig. 7. Movement of one monomer unit of EMD-7770 (yellow) relative to the corresponding
monomer unit of the reference map (grey). Selected monomers are highlighted in (i) and
those extracted are shown in (ii) before the fit optimisation. (iii) the monomer units after
the fit optimisation. (iv) FSCs between monomer units before (blue) and after (orange) the
fit optimisation. This figure was made with Chimera (Pettersen et al., 2004).

As illustrated in this example, the map magnification is an important factor to consider
during structural comparison studies. It should be refined and make sure all structures have
the same magnification before comparing for other structural variations. Internal motions
such as domain movements should be estimated and compared to other similar structures
only if their magnifications are comparable.

5. Conclusions

We presented the EMDA Python package to serve the need of map and model validation in
cryo-EM. We showed the use of map-model local correlation to identify residues outside the
density or those poorly fitted. Since the fullmap local correlation gives an indication of the
signal level in the map, it can be used to draw insights about the presence of a signal.
Moreover, a comparison of map-model local correlation with fullmap local correlation can
be used for validating the model-to-map fit. In one of the examples, we used the local
correlation to identify an unmodeled ligand in a map, thereby demonstrating its
complementary nature to the difference map. The use of local correlation to identify ligands
has the advantage that the correlation naturally offers a way to validate the
presence/absence of the density as revealed by the half map local correlation. Also, we
showed that correlation values mapped into atoms are useful to study the local signal
variations.

Secondly, we presented the likelihood-based map-to-map fitting using an example, where
two SARS-CoV-2 structures were first fitted to bring them on the same coordinate frame.
Then two receptor binding domains were fitted in the same coordinate frame to estimate
their relative movement. The last example illustrated the use of likelihood-based
magnification adjustment where the magnifications of two cryo-EM maps relative to an X-
ray crystallography derived atomic model have been estimated. The importance of
correcting the relative magnification between structures in structure comparison studies
have been highlighted.

Software availability
EMDA is released under the Mozilla Public License Version 2.0 (MPL 2.0) and it is free and
open source. The source code is accessible at https://gitlab.com/ccpem/emda. EMDA is

distributed as a part of CCP-EM suite and also available via Python Package Installer (pip).
EMDA’s documentation is available at https://emda.readthedocs.io, and we encourage the
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reader to look at the documentation for most recent functionalities and up-to-date
instructions.
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Appendix A

Local correlation in real space
Let ¢ (x) and m(x) be two functions where the latter is normalized
Jesm(xX)dx =1 (A1)
Then the local averages of 1 (x) with the kernel m(x) can be written as a convolution
operation:
Y (%) = [ p(Imlx — y)dy (A2)

This can be calculated using the convolution theorem:

U (x) = FHEF))(F(m(x)] (A3)
where F is the Fourier transformation operator and F~1 is its inverse.
Similarly, the local covariance between ¥, (x) and ¥, (x) is given by
coVi2m(X) = [psm(x = V) Y1 MY, Mdy = [amx —y) Y1 (Wdy [pam(x — y) ¥, (y)dy (Ad)
The local correlation between the two functions can be written as

CCrpm () = —=22m® _ (5g)

Jvary m(x) vary m(x)
Now, let us assume that there are two noisy maps, each has
PYin(x) = ;(x) + n;(x) (A6)

where ¥;(x) and n;(x) are the signal and the noise components in i'" map.

If the noise components between the maps, and the noise and signal within as well as
between maps are uncorrelated, then the local variance and covariance can be written:

varm (¢i,n(x)) = var;, (Yi(x)) + var; , (n;(x)) (A7)
COV12,m(¢1,n(x);¢2,n(x)) = Covlz,m(¢1(x);¢2(x)) (A8)

And finally, the local correlation can be written

CC12 (x) — cov1z m (Y1 (%), P2 (%)) (Ag)
m = -
Jvam,m(l/h(x))+var1,m(n1(x)) vary m (P2 (x))+vary m(na (x))

If two maps are cryo-EM half maps, then they share a common signal. In addition, if the
noise components have the same variance for both halves then the following relationships
hold
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COV(¢1(X);¢2(X)) = var(l,l)l(x)) = var(l,l)z(x)) (A10)
var(n,(x)) = var(n,(x)) = 2var(n(x)) (A11)
where var(n(x)) is the noise variance in the averaged map.
Thus, the local correlation between half maps is:

_ varym(P1(x))
Cchalf'm(x) T vary m(W1(x)+2var(n(x)) (A12)
The corresponding local correlation in the full map (Rosenthal and Henderson, 2003) is

_ 2CChaifm(x)
CCrunm(x) = T+ CCharmen | A1)

Relationship between correlations
Let us assume that we have a map with the Fourier coefficients F, (s). The observation was
made for the true map with the Fourier coefficients F;(s). And we have a model describing
the true map with the Fourier coefficients F.(s). We assume that noise on the observations
E,(s) is additive as well noise and signal are uncorrelated::

F,(s) = F(s) + E,(s) (A14)

cov(Ft(s),Fn(s)) =0 (A15)
We also assume that noise in the observation is uncorrelated with the Fourier coefficients
from atomic model (cov(F,, E,) = 0). Correlation between observed and calculated Fourier
coefficients calculated within thin resolution shells is:

_ cov(Fy(s),Fc(S))
COT(FO (S)'E:(S)) - Jvar (Fy (s))var(Fe(s)) (A16)

Since we assume that the correlation between observed noise and atomic model is zero we

can write:

cor(Fy(s), Fu(s)) = Corl ) el (A17)
J(var (Fe(s))+var(Fy (s)))var (Fe())
Correlation between observed and “true” Fourier coefficients can be written as:

cor(E,(s),F.(s)) = cov(Fy(s),Fi(s)) _ var (F(s)) _
( o) Fil )) JvaT(Fo(S))var(Ft(s)) J(war (Fe(s))+var (Fn(s)))var (F(s))

\[ var (Fe(s)) (A18)

ar (Fe(s))+var(Fq(s))

If we multiply the numerator and denominator of A17 by /var(F:(s)) then we can write:

cor\E,(s),E.(s)) = cov(F(s).Fc(s)) \[ var(Fe(s)) _
( o(s), Fe( )) var(Fe(s))var(R(s) var(Fy(s))+var(Fn(s))

cor(Ft(s),E:(s))cor(Fo(s),Ft(s)) (A19)
In practice we do not know “true” Fourier coefficients. However, if we can assume that we

have two independent data sets (i.e. independent half data reconstructions) then we can
use the expression (Rosenthal and Henderson, 2003)
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ZCOT(Fo,halh ($).Fo,haif2 (S))

1+COT(Fo,half1 ($).Fo,haif2 (S))

cor(Fo (s), Ft(s)) =

(A20)

Therefore, we can write:

ZCOT(Fo,halh ($).Fo,haif2 (S))

1+COT(Fo,half1 ($).Fo,haif2 (S))

cor(Fo (s), E:(s)) = cor(Ft(s), E:(s)) (A21)

Although formulas are derived for correlations calculated in Fourier space, under above
assumptions (uncorrelatedness of the noise and true and the noise and model) they are
valid also for real space correlation.

Appendix B

Calculation of variances and covariances using the data
Let us assume that we have N observations and they are made for “true” maps. Noise is
additive and uncorrelated with each other and with the signals. We also have half data
reconstructed maps for each map. Thus:
Foj=kjF ; + F,; (B1)
Fojn, = kiFj + Fpjp, (B2)

1
Fo; = > (Fo,j,h1 + Fo,j,hz) (B3)

Fnj= %(Fn,j,hl + Fn,j,hz) (B4)
The noise components between half maps are uncorrelated, they have 0 mean and they
have the same variance (i.e 65 5, = 05 p.)-
Variances are calculated within resolution bins. This is described in a number of papers
(Murshudov, 2016; Rosenthal and Henderson, 2003). Covariances between different maps
within resolution bins are calculated using the formula:

Cov(Fo,j' Fo,l) = N%Zsebi Fo,j ;,l (B5)
Where N; is the number of Fourier coefficients within the resolution bin b;. Then the
covariances are:
cov(F,;,F,;) = 2o, forj#1 (B6)
var(F,;) = £, +02; (B7)
And using the half maps:
%0, = cov(Fyjn,Fojn,) (B8)
Using B7 and B8, variance of the noise for each map is calculated. It should be noted that
when maps are being fitted into each other, the covariance matrix should be recalculated at

every cycle. Also, the covariances should be adjusted to account for the effect of a mask
(Chen et al., 2013).

Appendix C
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Derivation of likelihood function and posterior probability distribution

Let us assume that we have N observed maps with Fourier coefficients - F,(s) =

(Fp,1(8), Fo2(S), ..., Fo n (). Each of F,, ;(s) is a complex number, i.e. it has two
components — real and imaginary. Let us assume that these observations have been made
for N “true” maps - Fy(s) = (Fp1(s), F2(s), ..., Fy y(s)). In practice, the number of “true”
maps could be less than the number of observed maps.

We assume that the underlying signals in those maps are related. For instance, those maps
can be liganded-unliganded protein complexes, molecules in slightly different
conformations, or related but not exactly the same macromolecules. Let us assume that for
each “true” map we have a model — usually an atomic model from which we can calculate
Fourier coefficients accounting for the nature of the experiment: F.(s) =

(Fe1(8),Fe5(s), ..., F y(s)). We further assume that noise in the observations is additive,
independent and with zero mean normal distribution.

We also assume that the conditional probability distributions of Fourier coefficients of the
maps given the Fourier coefficients of true signals are Gaussian. Because of the central limit
theorem this assumption holds in practice with sufficient accuracy.

1
P (Fo () Fo () = My (Fo,1(5)s kFey(s),502,) (C1)
where JV, denotes two-dimensional normal distribution with mean equal to k;(s)F ;(s) and
variance equal to %a,f_]-. k; is the scale parameter for the “true” map number j implying that

“true” signal is blurred with a position independent point spread function before/during
observations and/or data processing. Under an assumption that blurring is with an isotropic

Bjls|?
_Bjsi®
Gaussian kernel then k; can be expressed in a form of Gaussian with a B value, kg je™ +

We will further assume that the “true” signals are on the same coordinate frame, however,
observations may have been made for rotated and translated molecules. Then the

probability distribution of individual Fourier coefficients will have the form:

P(F,;(5); Fyj(s)) = No(F, ;(s); k;Fy, j(R]-TS)e_Z"iSTtJ',%Jﬁ_ ;) (C2)

To get the total conditional probability distribution of observed Fourier coefficients all
individual components are multiplied. Then, we can transfer transformations to the
observed Fourier coefficients. To do this, it is assumed that variances of noise are the same
on the surface of each sphere with a radius |s|. We also ignore correlation between different
Fourier coefficients after transformation:

P (Fo i (Rys)e?™"t; Fy j(5)) = N (Fo i (Rys)e?™ U kyF j(s), 302 ) (C3)
The probability distribution of the “true” Fourier coefficients given atomic model is also
Gaussian, justification of which can be found in (Luzzati, 1952). Since “true” maps are
related, we need to account for the relationship between different maps. We assume that
the distribution of all “true” maps given all atomic models is Gaussian. This form of the
distribution can be derived using the same technique used by Luzzati or the central limit
theorem:

P(Fy(s); Fc) = Nan (Fe(s); DF .- Z) (CA)
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Where the subscript 2N signifies 2N dimensional normal distribution. D is a diagonal matrix
formed by scale factors between calculated and “true” Fourier coefficients and X is the

matrix of covariances
Z"11 Z"12 Z"1N
go— | Z21 22 XN (C5)

2:'Nl 2:'NZ 2:'NN

with X;; =< (F.; — D;F.;)(Fj — D;F, ;)" > to be estimated using data and atomic model.
We also assume that observations are conditionally independent on model if the true map
is known. In other words, if we know the true map, then atomic models would not say
anything more about observations. Then the joint probability distribution of observed and
“true” Fourier coefficients can be written as (Murshudov, 2016):

P(Fo,Fi;F.) = P(F,; Fi,F)P(F; F.) = P(F,; F)P(F; F.) (C6)
Since both distributions on the right-hand side are Gaussian, their product also will be
Gaussian. In a multivariate Gaussian probability distribution, both marginal (integrating out
some of the random variables) and conditional probability distributions of one subset given
another subset of random variables are also Gaussian distributions (Eaton, 2007). To fully
specify a Gaussian distribution, we need its mean vector and the covariance matrix.

Likelihood function is derived by integrating out the “true” unknown Fourier coefficients
from the joint probability distribution of observations and “true” Fourier coefficients. l.e. it
is a marginal probability distribution of observed Fourier coefficients. Since we know that
the resultant probability distribution will be Gaussian with the mean and covariance matrix
equal to the corresponding terms of the joint probability distribution of observed and “true”
Fourier coefficients, we only need to find these terms. Since we know that:

Foj=kjF ;+ F,; (C7)
Therefore:

< Fo,j >=< k]Ft,] + Fn,j >=< k]Ft,] > = k]D]FCJ (C8)
var(Fo'j) = var(kthJ- + Fn,j) = kavar(FtJ-) + var(Fn'j) = k]zZ“ + O'g'j (Cg)
COU(FOJ',FOJ) = COU(kth'j + Fn,jflet,l + Fn,l) = kjklcov(Ft,j'Ft,l) = kjkle'l (ClO)

These fully specify the probability distribution of observed Fourier coefficients given
calculated one. In practice, we cannot estimate all kj without additional information.

Relative values, kikj‘l, can be estimated using pairs of observed maps.

Coming back to our matrix/vector form using short notations F,, F, F. for F,(s), F;(s), F.(s)
for clarity, we have

P(Fy(R$)e?™ "t F,) = [, P(Fo; F)P(Fy; Fo)dF, =

— Ty 1 1
Sy, Mon (Fo KFo(RTs)e2m ,20%) Now (Fi; DF,52) dF, =
Nyn (F, (Rs)e?™s"t; kDF.,~ (K"Zk + 62)) (C11)
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Where X is the covariance matrix of “true” map without blurring and £, ; = k"Zk = kXkis
the covariance matrix calculated using observed maps including half maps (Appendix B), k is
a diagonal matrix formed by the scale factors of “true” Fourier coefficient.

In the absence of models (D — 0), the probability distribution will have the form:

1 _((Fo (Rs)eZ”LSTt)T(Zo,ﬁaZ)_l(FZ (Rs)e—ZTL'LSTt)>

- (m)Ndet (2, s+02) € (C12)

P(FO (Rs)e?™s"t. atoms )

where atoms signifies that observations are made for a molecule that consists of atoms, but
we do not know their positions.
The negative log likelihood function including all Fourier coefficients has the form:

LL(Fo:R t,X,,) = Xs((F, (Rs)e'z’T‘ST‘)T(ZO_S + 02)_1(F’{, (Rs)e‘Z”‘ST‘) + log(det(Z, s +

0?)) + const. (C13)

The formula C13 is used in EMDA to estimate rotations and translations of maps into each
other as well as for magnification refinement. EMDA uses a special case of this, the two-
observation case to fit two maps into each other. In general, R is a rotation matrix.
However, if we relax this condition then we can also account for relative magnification of
maps. If the only difference between maps is the relative isotropic magnification, then R will
become a diagonal matrix where diagonal elements are relative magnification parameter.

Posterior probability of “true” Fourier coefficients given observations and atomic model is a
conditional probability distribution of “true” maps given observations and model

parameters:

P(Fo,Ft;Fc) _ P(Fo;F)P(Fg;F¢)
P(Fo;F¢) - P(Fo;F¢)

Again, the conditional probability distribution of a subset of random variables given another

P(Fy;F, F.) =

(C14)

subset of variables in multivariate Gaussian distribution is also a Gaussian distribution
(Eaton, 2007). So, we need to find the mean and covariance matrix. We know that the
logarithm of a Gaussian distribution is a quadratic function. Argument that maximises this
function is the mean of the random variable and the second derivative of this function with
respect to the random variable we are interested in is related to the covariance matrix:
argmaxpt(log(P(Ft; F, F)))) =<F,> (C15)

_ 22log(P(FtiFo F)) _ w1
OF OFT =z (Cl8)

We need to find the argument that maximises the following function and its second

derivative:

f(Fp) =log(Fy; Fo, F.) = log(Fo; Fy) + log(Fy; F) —log (Fo; Fc) (C17)
Since the third term on the RHS does not depend on F; it can be ignored. We can also
ignore normalisation coefficients in the probability distributions, because they depend on
covariances not on the “true” Fourier coefficients.
In the following treatment, we will use the fact that all involved matrices are symmetric. The
covariance matrix is symmetric by its nature, and the rest of the matrices are diagonal and
therefore symmetric.
So, we need to get the derivatives of (after ignoring terms independent on F,):
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2
Fo i—kiF¢ ;
fiF) = — 3, P "l (5, DF)TE(F, - DF)" (C18)

0,j

We can write:
fi(F) = —(F,— kF)"0"*(F, — kF,)* — (F, — DF.)"2"'(F, — DF )" (C19)
To find the maximum we need to solve:

L — —2ko~*(kF, — F,) — 257(F, — DF.) = 0 (C20)
t

It can be conveniently solved:
<F,>= (ko™ %k + X 1) Y (ko %F,+ X 1DF,) (C21)
It shows that the mean value of the posterior probability distribution is a linear combination
of observed and calculated Fourier coefficients with suitable weights.
Using the properties of matrices and their inverses we can write these formulas in a more
convenient way:
< F, >= k" *kXk(kXk + 6?)"'F, + k™ *0?(kXk + 0) *kDF, = k™' (kXk(kXk +
0?)"F, + 6*(kXk + 6?)"1kDF,) (C22)
A special case of this when there is one model and one observation is considered in
(Yamashita et al., 2021).
When there are no atomic models then D — 0 and the formula becomes:
< F, >= k" 'kXKk(kXk + 0?)"1F, (C23)
Further we denote X, ; = kXk that can be estimated using the observed data:

<Fy>=k 2, 4(Zo5 + 02) F, (C24)

For completeness we also give the covariance matrix of the posterior probability
distribution of the “true” Fourier coefficients (this can be used for estimation posterior
noise variance and covariances in the calculated maps):

_ (3210g(PFFoFON\ " _ 1,y 3 Cye1 11 St 21
= ( OF,OFT ) = (ko k + X277 = k' (KEK)(KZK + 0°) ' 0°k™! =

L1505 (Bos + 0%) 0%k (C25)

Since not all components of k can be estimated using the observations only, for current

calculations we replace the elements of k with the standard deviations of the observed
signal k; = /X, j; (explained in (Yamashita et al., 2021)). If k, is a diagonal matrix formed with

/ZO_]-HJI-Z then we can write:

<F >=k'%,,(Z0s + 02) kiki'F, = k1%, ok~ tkk ks (205 + 02) Ky E, (C26)

Fo,j

42
ZO,H+0'J-

correlation matrix between “true” maps, /fsc = kk;! is the diagonal matrix formed with

Here we used the notation E, ; = . We recognise that p; = k™'Z, k! is the

square root of fullmap FSCs, p, = ki'(Z, s + 6?)k;! is the correlation matrix between
observed maps. Now we can write:
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<F,>=ps.fscp;' E, (C27)

When there is only one map then this formula gives normalised and fsc weighted map.
Next, we consider the case when N = 2. Then we can write the formulas in an explicit form:

Jfsci —+/fsc —\/fsc +./fsc E
< Ft >= pg fSC PEIEO — 1_1 _ < f 1 f 2 PsPo f 1Po f 2,05> (Eo,l) (C28)
Po \Jfscips =\ fscapo =/ fsC1 pops ++/fsca/ \Fo2
And
1 (\/ fSC1 - fSCZ pspo)Eo,l + (_\/fsclpo + \/fsczps)Eo,Z
<F;>= 12 (C29)
Po (\/fsclps - \/fSCZ:DO)EO,l + (_ fSC1 PoPs + vV fSCZ)Eo,Z

It must be stressed that since correlations are calculated using observed maps and when
signal to noise ratio is very small then this estimation can vary dramatically. Therefore, for
accurate estimations we may need to improve the estimation of the correlations, especially
those between signal components, for example using smoothening or using prior
knowledge derived from the PDB.

Appendix D

Use of normalized and weighted maps in local correlation calculation

In order to compare local correlations calculated using various maps, they need to be
weighted appropriately in the same way.

The normalized expected map for a single map according to Bayesian interpretation is
< Fy >=w,F,. (D1)

. . .. z 1. .
F, is the observed Fourier coefficients, and w; = ﬁ; in which Z, s and o2 are the
0,sTO ’

covariance and the noise variance in the fullmap estimated using half maps in resolution
bins as explained in Appendix B. k is a scale factor that associated with distortions of the
true signal such as blurring. In the current implementation, k is replaced with the standard
deviation of the observed signal (i.e. k(s) = \/f_s) to yield

< FT > = FSCquEO (DZ)
FO

20's+02

While FSC-type weighting dampening down the noise, the normalisation works as a position

where E, =

independent deblurring operation.

Similar to D1, weights can be assigned on the calculated map as follows:

Fc,weighted = w,F; (D3)

where F are calculated Fourier coefficients. The weights on calculated Fourier coefficients
should be selected to dampen high resolution frequencies as in the weighted observed
maps. Otherwise, the variance contribution of calculated high-resolution Fourier coefficients
will reduce the correlation making it incomparable to that calculated for observed maps. We
would also like to remove overall B value effect as in (D2). This way correlation in observed
maps calculated using half maps will be comparable to that calculated between observed
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2:O,S

> = where o. is the standard

0,510 0¢

and calculated maps. To achieve this, we chose w, = .

deviation of calculated Fourier coefficients estimated in the same resolution bins as X, ;.
Choosing such weights is equivalent to scaling F. and F, by making their variances equal,
i.e.,

20's+02
Fc,scaled = o0 F. (D4)

and using the calculated map with the following weights

Zos i —

2
Losto” oc

Fc,weighted = FSC(fu”)Ec (D5).
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