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Abstract 
An open-source Python library EMDA for cryo-EM map and model manipulation is 
presented with a specific focus on validation. The use of several functionalities in the library 
is presented through several examples. The utility of local correlation as a metric for 
identifying map-model differences and unmodeled regions in maps, and how it is used as a 
metric of map-model validation is demonstrated. The mapping of local correlation to 
individual atoms, and its use to draw insights on local signal variations are discussed. 
EMDA’s likelihood-based map overlay is demonstrated by carrying out a superposition of 
two domains in two related structures. The overlay is carried out first to bring both maps 
into the same coordinate frame and then to estimate the relative movement of domains. 
Finally, the map magnification refinement in EMDA is presented with an example to 
highlight the importance of adjusting the map magnification in structural comparison 
studies.  
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1. Introduction 
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Single-particle cryo-electron microscopy (cryo-EM) has become an increasingly popular 
structure determination tool among structural biologists (Faruqi and McMullan, 2011; 
Kühlbrandt, 2014; Lyumkis, 2019; Lyumkis et al., 2013; Scheres, 2014). The technique has 
evolved at an unprecedented speed in the past few years as shown by the rapid growth of 
cryo-EM structure depositions into the Electron Microscopy Data Bank – EMDB (Lawson et 
al., 2020). As the number of depositions into EMDB increases, it is important to maintain 
quality standards for both maps and atomic models not only to ensure their reliability, but 
also to prevent accumulation of errors. 
 
The EM validation task force 2010 (Henderson et al., 2012) has recognized the critical need 
of validation standards to assess the quality of EM maps, models and their fits. The task 
force’s recommendations for map validation included the tilt-pair experiments for the 
absolute hand determination (Rosenthal and Henderson, 2003), the raw image to 3D 
structure projection matching for validating reconstruction accuracy and the data coverage 
(Orlova et al., 1996; Tang et al., 2007), statistical tests using map variances for assessing the 
map quality and interpretability (Ménétret et al., 2007; Penczek et al., 2006), resolution 
estimation through Fourier Shell Correlation (FSC) using fully independent half data sets 
(Scheres and Chen, 2012), visual assessment of map features to the claimed resolution, and 
the identification and validation of the map symmetry where applicable (Reboul et al., 
2020). 
 
The task force has identified the model validation in cryo-EM as an area for further research, 
mainly due to the fact that, at the time, there were few high resolution cryo-EM structures. 
Thus, the recommendations for model validation included, among others, the assessment of 
subunits and their interfaces according to the guidelines proposed by the PDB (Read et al., 
2011), the assessment of agreement between the model and the map utilizing chemical 
measures such as chemical properties and atomic interactions and their clashes as 
employed in EMFIT program (Rossmann, 2000; Rossmann et al., 2001) or statistical 
measures such as correlation coefficient.  
Since the first meeting in 2010, the field has grown by accumulating many methods and 
tools to address the issue of map validation. Examples include the gold standard FSC to 
monitor the map overfitting into noise during reconstruction (Rosenthal and Henderson, 
2003; Scheres and Chen, 2012), tilt-pair validation to assess the accuracy of initial angle 
assignment (Wasilewski and Rosenthal, 2014) and the false discovery maps for visual 
assessment of map features (Beckers et al., 2019).  
The progress in atomic model building, refinement and validation has also been substantial. 
Resolution in cryo-EM reconstructions vary widely, however the progress made in the field 
of atomic model building encapsulates modelling tools for low, medium to high resolution.  
Examples include Chimera (Pettersen et al., 2004), DockEM (Roseman, 2000), FlexEM (Topf 
et al., 2008), COOT(Brown et al., 2015) , DireX (Wang and Schröder, 2012), MDFF (Trabuco 
et al., 2009), Cryo-Fit (Kim et al., 2019), Rosetta (Wang et al., 2016), MDeNM-EMfit (Costa et 
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al., 2020). The atomic model refinement has also gained a significant progress. Unlike in 
crystallography, cryo-EM maps contain both amplitudes and phases and the atomic model 
refinement programs can use a phased likelihood target function as employed in REFMAC5 
(Murshudov, 2016; Nicholls et al., 2018) or real space target functions as used in  
phenix.real_space_refine (Afonine et al., 2018a), ISOLDE (Croll, 2018) and COOT (Brown et 
al., 2015). There has also been a considerable progress in map and model validation. 
Examples include various metrics for map-model fit validation (Afonine et al., 2018b; Barad 
et al., 2015; Brown et al., 2015; Pintilie et al., 2020; Ramírez-Aportela et al., 2021), and 
chemistry and geometry based tools for model validation (Emsley et al., 2010; Prisant et al., 
2020). The EM practitioners can access these methods and tools as parts of stand-alone 
packages, separate tools in collaborative projects such as CCP-EM (Burnley et al., 2017), or  
as web based tools such as EMDB validation server 
(https://www.ebi.ac.uk/pdbe/emdb/validation/fsc/), Molprobity server 
(http://molprobity.biochem.duke.edu/) etc.   
Developing better validation methods and tools in cryo-EM is an active area of research 
because the goal of validation in cryo-EM is a changing target (Lawson et al., 2020). The 
metrics for validation should evolve as the field progresses towards the atomic resolution 
because the methods that are applicable to low and medium resolution may not be equally 
applicable to atomic resolution data and derived models.  
In this paper we present Electron Microscopy Data Analytical toolkit (EMDA) - a new Python 
package for post reconstruction/atomic model refinement analysis and validation of cryo-
EM maps and models. EMDA is a portable Python package with a command line and an 
Application Programming Interface (API) for Python programmers.  
While EMDA contains several useful functionalities for cryo-EM map and model 
manipulation, we describe only three of them in detail in this paper. The local correlation in 
real space is a metric for detecting the map signal and evaluating the degree of local 
agreement between an atomic model and a cryo-EM map. We describe the mathematics 
relevant to correlation calculation in section 3.1. Section 4.1 includes examples 
demonstrating various uses of local correlation. Map superposition is an important 
operation in cryo-EM. In structure comparison studies, it brings all maps into a common 
coordinate frame for comparison. In the difference and average map calculations, the 
superposition is an essential first step to align the input maps. The available tools for 
superposing maps include Chimera’s Fit-in-map (Pettersen et al., 2004), TEMPy2 (Cragnolini 
et al., 2021). EMDA map overlay is based on the maximisation of the likelihood function 
described in section 3.2. An example demonstrating the overlay is given in section 4.2. 
Magnification of an EM map is related to the microscope optics on which the data has been 
collected. During merging of several data sets collected on different microscopes or on the 
same microscopy with different optical alignments, their magnifications may need to be 
adjusted to a reference (Wilkinson et al., 2019). The reference can be another map whose 
accurate pixel size is already known or an atomic model derived independently of the map 
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whose magnification is sought. The use of EMDA for map magnification correction is 
demonstrated in section 4.3. 
The rest of the paper is organised into three sections. The first section covers the design and 
the infrastructure of EMDA with an introduction to the EMDA command line and 
Application Programming Interface (API). The second section describes the mathematical 
framework of EMDA behind those three functionalities. In the third section, we 
demonstrate each functionality by examples. Lastly, the conclusions and outlook followed 
by information about the package availability are given. 
 
2. EMDA architecture  
EMDA is written primarily in Python using Numpy (Harris et al., 2020), Scipy (Virtanen et al., 
2020) and Matplotlib (Hunter, 2007), however, numerically intensive tasks are written in 
Fortran. F2PY (Peterson, 2009) mediates the communication between Python and Fortran. 
This combination allows us to integrate powerful numerical calculations with abstraction 
features in Python.  
EMDA code is organized into three layers as shown in Fig. 1. The innermost layer (Layer 3) 
consists of core and extension modules. The core modules provide basic services such as 
read & write, format conversion, resampling, binning etc. All higher-level functionalities 
such as rigid-body fitting, magnification refinement, difference map calculations are 
provided through extensions. The extension modules use the basic services provided by the 
core modules. Both core and extension modules are wrapped into another module to form 
the EMDA API (Layer 2). API abstracts the underlying complexity of the code into methods 
and objects providing a simplified mechanism for other developers to gain advantage of 
EMDA infrastructure. EMDA-API functions are further wrapped to form the EMDA 
command-line-interface (Layer 1). The users can access the underlying functionalities 
through the command line. Each functionality is callable with a keyword followed by a set of 
arguments. A list of up-to-date functionalities with their arguments are given in 
https://emda.readthedocs.io. In addition, a tutorial describing the presented examples in 
this paper can be found in https://www2.mrc-lmb.cam.ac.uk/groups/murshudov/. 
 
EMDA uses open-source, standalone Python library mrcfile (Burnley et al., 2017) for the 
reading, writing and validating EM files in the standard MRC2014 format (Cheng et al., 
2015). Also, EMDA uses gemmi (https://gemmi.readthedocs.io) for reading and writing 
atomic coordinate files, and ProSHADE (Nicholls et al., 2018; Tykac, 2018) for symmetry 
detection in EM maps. 
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Fig. 1. Architecture of EMDA library. The three Python code layers are shown in blue and the 
layer of external libraries is shown in green. The black arrows show the data flow and the 
functional dependencies. 
 
3. Methods 
In this section we outline the mathematical framework for local correlation and probability-
based methods in EMDA. The notations we use throughout this text and in the appendices 
are summarised in Table 1. 
 
Table 1: Table of notation 

Notation Description 
fullmap Map obtained by averaging half data 

reconstructed maps  
𝑐𝑜𝑣(𝑋, 𝑌) Covariance between random variables X 

and Y 
𝑣𝑎𝑟(𝑋) Variance of the random variable X 
𝑥 and 𝑠 3D column vectors in real and Fourier 

space 
𝑚(𝑥) Convolution kernel 
𝜓/(𝑥) Cryo-EM map number i 

𝑣𝑎𝑟/,0(𝜓/(𝑥)) Local variance of 𝜓/(𝑥) calculated with the 
kernel 𝑚(𝑥)  

𝑐𝑜𝑣12,0(𝜓1(𝑥)𝜓2(𝑥)) Local covariance between 𝜓1(𝑥) and 𝜓2(𝑥) 
calculated with the kernel 𝑚(𝑥) 

𝐶𝐶12,0(𝑥) =
𝑐𝑜𝑣12,0(𝜓1(𝑥)𝜓2(𝑥))

5𝑣𝑎𝑟1,06𝜓1(𝑥)7𝑣𝑎𝑟2,0(𝜓2(𝑥))
 Local correlation coefficient calculated 

between 𝜓1(𝑥) and 𝜓2(𝑥) with the kernel 
𝑚(𝑥) 

𝐶𝐶89:;,0(𝑥) Local correlation calculated between 
halfmaps 
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𝐶𝐶;<::,0(𝑥) =
2𝐶𝐶89:;,0(𝑥)
1 + 𝐶𝐶89:;,0(𝑥)

 Local correlation in the fullmap (Rosenthal 
and Henderson, 2003) 

𝐶𝐶09@,0ABC:,0(𝑥) Local correlation calculated between the 
fullmap and the atomic model-based map 

𝒩2 E𝐹A,G; 𝑘G𝐹J,G,
1
2 𝜎L,G

2 M =
1

𝜋𝜎L,G2
𝑒
P
QRS,TPUTRV,TQ

W

XY,T
W

 
Two-dimensional Gaussian distribution 
with mean 𝑘G𝐹J,G  and variance 1

2
𝜎L,G2  of jth 

map. Since there is no correlation between real 
and imaginary parts, a single variance is used to 
describe this distribution. 

𝒩2Z E𝑭𝒐; 𝒌𝑭𝒕,
1
2 𝚺M

=
1

𝜋Zdet	(𝚺) 𝑒
P(𝑭𝒐P𝒌𝑭𝒕)d𝚺ef(𝑭𝒐P𝒌𝑭𝒕)∗ 

2N dimensional Gaussian distribution with 

mean 𝒌𝑭J and covariance 1
2
𝚺. Since there 

is no correlation between real and 
imaginary parts NxN covariance matrix is 
used to describe the 2N dimensional 
random variable*. 

𝑭𝒐(𝑠) = (𝐹A,1(𝑠), 𝐹A,2(𝑠),… . , 𝐹A,Z(𝑠)) A column vector formed by complex 
Fourier coefficients of observed maps  

𝑭𝒕(𝑠) = (𝐹J,1(𝑠), 𝐹J,2(𝑠),… . , 𝐹J,Z	(𝑠)) A column vector formed by complex 
Fourier coefficients of unknown “true” 
maps 

𝑭𝒄(𝑠) = (𝐹k,1(𝑠), 𝐹k,2(𝑠),… . , 𝐹k,Z	(𝑠)) A column vector formed by complex 
Fourier coefficients calculated from models 

𝑬𝒐(𝑠) = (𝐸A,1(𝑠), 𝐸A,2(𝑠),… . , 𝐸A,Z	(𝑠)) A column vector formed by normalized 
complex Fourier coefficients of observed 
maps 

𝐸A,G(𝑠) =
𝐹A,G(𝑠)

5ΣA,o,GG(𝑠) + 𝜎G2(𝑠)
 Normalized complex Fourier coefficients of 

jth map. 

𝑅G	𝑎𝑛𝑑	𝑡G  Transformation matrix and translational 
vector in 3D to be applied for the map 
number 𝑗  

𝑭(𝑹𝑠)𝑒2vwxd𝒕

= (𝐹1(𝑅1𝑠)𝑒2vwo
dJf, … , 𝐹Z(𝑅Z𝑠)𝑒2vwo

dJy)	 

N dimensional column vector of complex 
Fourier coefficients after application of 
transformation. Usually, but not 
necessarily, (𝑅1 = 𝐼, 𝑡1 = 0) is the identity 
transformation.  

𝑫 = 𝑑𝑖𝑎𝑔(𝐷1, . . , 𝐷Z) Diagonal matrix formed by scale factors 
between the true and calculated Fourier 
coefficients 

𝒌 = 𝑑𝑖𝑎𝑔(𝑘1, … , 𝑘Z	) Diagonal matrix formed by blurring 
parameters 
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𝚺 𝑁 × 𝑁 covariance matrix of “true” maps 
without blurring 

𝚺A,o = 𝒌�𝚺𝒌 = 𝒌𝚺𝒌 𝑁 × 𝑁 covariance matrix of signals 
calculated using observed maps 

𝝈2 = 𝑑𝑖𝑎𝑔(𝜎A,12 , 𝜎A,22 , … , 𝜎A,Z	2 ) Diagonal matrix formed by variances of 
observational noise 

< 𝑭J >= (< 𝐹𝑡,1 >,< 𝐹𝑡,2 >,… . ,< 𝐹𝑡,𝑁 >) A column vector formed by the expectation 
values of the true maps 

𝑓𝑠𝑐 = 2𝑓𝑠𝑐89:;/(1 + 𝑓𝑠𝑐89:;) FSC in the fullmap converted from halfmap 
FSC (Rosenthal and Henderson, 2003) 

�𝒇𝒔𝒄 = 𝑑𝑖𝑎𝑔6�𝑓𝑠𝑐1, �𝑓𝑠𝑐2, … . , �𝑓𝑠𝑐Z	7 Diagonal matrix formed by square root of 
fullmap FSC values. It is also an estimate 
for FSC between fullmap and “true” signal 
(Rosenthal and Henderson, 2003)  

𝝆o 𝑁 × 𝑁	correlation matrix between true maps 

𝜌o,/G =
Σ/G

�Σ//ΣGG
 

Correlation coefficient between true maps i 
and j. An element in 𝝆o. 

𝝆A 𝑁 × 𝑁	correlation matrix between observed 
maps 

𝜌A,/G =
ΣA,o,/G

5(ΣA,o,// + 𝜎/2)(ΣA,o,GG + 𝜎G2)
 

Correlation coefficient between observed maps 
i and j. An element in 𝝆A. 

* It should be noted that the covariance matrix is 𝚺⨂𝑰2, i.e. Kronecker product of NxN 
covariance and 2-dimensional identity matrices. The reason of such covariance matrix 
structure is that there are not correlations between real and imaginary parts of Fourier 
coefficients and the variance of real and imaginary parts of each Fourier coefficient are 
equal to each other. 
 
3.1. Local correlation in real space 
Pearson’s product-moment sample correlation coefficient (CC) has been extensively used 
for various purposes in X-ray crystallography (Karplus and Diederichs, 2012; Tickle, 2012) 
and in cryo-EM (Van Heel, 1987). The CC depends on the signal and noise levels. If we 
assume that the noise variance is constant within the masked map then for a given data the 
CC will be an indicator of the signal in the data. Care should be exercised in its interpretation 
as any systematic behaviour will be considered as signal. Since the CC is calculated using the 
data, its variance depends on the volume of the data being used.  
Local CC in real space can be calculated using the formula for the weighted Pearson’s 
product moment sample correlation coefficient with weights equal to the kernel. The local 
CC for two maps 𝜓1(𝑥) and 𝜓2(𝑥) is: 
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𝐶𝐶12,0(𝑥) =
kA�fW,�(𝜓1(𝑥),𝜓2(𝑥))

5�9�f,�6�f(�)7�9�W,�(�W(�))
   (1). 

 

𝑐𝑜𝑣12,0 �𝜓1(𝑥), 𝜓2(𝑥)� and 𝑣𝑎𝑟/,06𝜓/(𝑥)7 are the local covariance and variances for 𝜓1(𝑥) 

and 𝜓2(𝑥) calculated with a kernel 𝑚(𝑥). The kernel is normalized such that 
∫ 𝑚(𝑥)𝑑𝑥 = 1�� .  
The expression for local covariance is, 
 

𝑐𝑜𝑣12,0(𝜓1(𝑥), 𝜓2(𝑥)) = ∫ 𝑚(𝑥 − 𝑦)�� 𝜓1(𝑦)𝜓2(𝑦)𝑑𝑦 −	∫ 𝑚(𝑥 − 𝑦)�� 𝜓1(𝑦)𝑑𝑦∫ 𝑚(𝑥 −��

𝑦)𝜓2(𝑦)𝑑𝑦   (2) 
 
Similar expressions can be written for local variances 𝑣𝑎𝑟/,0(𝜓𝑖(𝑥)). Note that the eq. 2 can 
be readily evaluated using the convolution theorem (see Appendix A). 
Such correlations could be calculated for any pairs of maps. When it is calculated using half 
maps (𝐶𝐶89:;,0(𝑥)) reconstructed from randomly chosen half of the particles, then it 
indicates the local signal to noise ratio, whereas the local correlation between observed and 
calculated maps (𝐶𝐶09@,0ABC:,0(𝑥)) indicates local agreement between atomic model and 
observed map. Similarly, the local correlation between two different observed maps 
indicates local common signals between them. 
The correlation calculated using half maps is converted to that of fullmap using the 
following formula (Rosenthal and Henderson, 2003) 

𝐶𝐶;<::,0(𝑥) =
2������,�(�)
1 ������,�(�)

   (3). 

In the local correlation calculation, EMDA uses a spherically symmetric kernel defined as: 

𝑚(𝑥) = 𝑓(𝑥) =

⎩
⎪
⎨

⎪
⎧

1
𝑍 , |𝑥| ≤ 𝑟

1
2𝑍 (1 + cos ¬

𝜋(|𝑥| − 𝑟 )
𝑟1 − 𝑟

­ , 𝑟 < |𝑥| < 𝑟1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	 

Where 𝑟  and 𝑟1 are the radii of inner and outer concentric spheres. 𝑍 is the coefficient that 
makes sure that the total integral of 𝑚(𝑥) is equal to 1. 
The size of the kernel (i.e. 𝑟1) should be chosen such that the number of data points 
included is sufficient to calculate a reliable statistic. Both too small or too large kernels lead 
to inaccurate correlations due to insufficient data points or loss of locality, respectively. In 
the current implementation of EMDA, 𝑟1 should be chosen by trial-and-error. Both 𝑟  and 𝑟1 
are in pixel unit and by default 2 pixels are used to soften the edge of the mask, in other 
words 𝑟1 = 𝑟 + 2. 
The 𝐶𝐶;<::,0(𝑥) (hereafter 𝐶𝐶;<:: )  depends on the local signal strength. It has two 
implications: 1) it depends on the local variation of the signal, and hence different parts of 
the map with different mobilities will have differing correlations; 2) it will depend on global 
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sharpening/blurring parameters, i.e. maps sharpened with different B values will have 
different local 𝐶𝐶;<::.   
It should also be noted that the 𝐶𝐶09@,0ABC:,0(𝑥) (hereafter 𝐶𝐶09@,0ABC: ) calculated 
between an atomic model and a given map (fullmap) depends on atomic coordinates, 
occupancies and B values. Therefore, to obtain the best possible 𝐶𝐶09@,0ABC:  it should be 
calculated using a refined model with optimized atomic B values.  
In order to compare 𝐶𝐶09@,0ABC:  with  𝐶𝐶;<::  all maps should be weighted appropriately. 
To achieve this, Fourier coefficients of all maps are normalized and weighted by FSC in 
resolution bins. All correlation examples discussed in this paper used such normalized and 
weighted maps. The details are in Appendix D. 
 
Let us assume that errors in the observations are additive and they follow a Gaussian 
distribution with zero mean. Also, assume that there is no correlation between the noise 
and the calculated map from the atomic model. This is true only when there’s no overfitting. 
Under these assumptions, a relationship between 𝐶𝐶09@,0ABC:  and 𝐶𝐶;<::  useful for 
validation is given by eq. 4. The full derivation of eq. 4 is given in Appendix A as well as in 
(Nicholls et al., 2018). 

𝐶𝐶09@,0ABC:,0(𝑥) = 𝐶𝐶J�<C09@,0ABC:,0(𝑥)�𝐶𝐶;<::,0(𝑥)   (4) 
 
According to eq. 4, the 𝐶𝐶09@,0ABC:(𝑥) is equal to �𝐶𝐶;<::,0(𝑥) only when 
𝐶𝐶J�<C09@,0ABC:,0(𝑥) = 1, i.e. perfect model. Since this situation is almost never realised, 

the 𝐶𝐶09@,0ABC:,0(𝑥) should always be less than �𝐶𝐶;<::,0(𝑥). If 𝐶𝐶09@,0ABC:,0(𝑥) is 

greater than �𝐶𝐶;<::,0(𝑥), that could be an indication of overfitting. 
 
 

3.2. Parameter estimation and map calculation: likelihood and posterior 
distribution 

As in any application of Bayesian computations to the data analysis we need two probability 
distributions: 1) probability distribution of observations given parameters to be estimated – 
likelihood function and 2) probability distribution of unknown signal given observations and 
current model parameters – posterior probability distribution. The details are given in 
Appendix C.  
Likelihood function 
The negative log likelihood function in the absence of atomic models and in the presence of 
multiple related maps is (see Appendix C for details): 

𝐿𝐿6𝑭𝒐: 𝑹, 𝒕, 𝚺A,o7 = ∑ (6𝑭A(𝑹𝑠)𝑒2vwo
d𝒕7

³
6𝚺´,x + 𝛔27

P1
(𝑭A(𝑹𝑠)∗𝑒P2vwo

d𝒕) +o

log6𝑑𝑒𝑡6𝚺o,s + 𝝈277   (5) 
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Where 𝑭𝒐(𝑠)	is a vector of Fourier coefficients of the observed maps, 𝑹 and 𝒕 are the 
vectors formed by rotation and translation parameters for each map, respectively, 𝚺´,x is 
the covariance matrix between “true” maps calculated using observed maps and 𝝈2 is a 
diagonal matrix of noise variances. In EMDA, the above likelihood function is implemented 
to estimate parameters between a pair of maps where one map is static the other moves 
onto it. In the case of estimation of transformation parameters, the only terms that depend 
on adjustable parameters are the cross-terms in the eq. 5: 

∑ 𝑤/,G𝐹A,/(o,/¸G 𝑅/𝑠)𝐹A,G∗ 6𝑅G𝑠7𝑒2vwo
d(J¹PJT).  

𝐹A,/  and 𝐹A,G  are the Fourier transforms of ith and jth maps, 𝑅G  and 𝑡G  are the rotation and 
translation parameters. 𝑤/,G  is related to the corresponding term in the inverse of the 
covariance matrix and is related to FSC between maps. For parameter estimation 𝚺´,x and 
𝝈2 do not need to be estimated separately, their sum is used in eq . 5.  
 
Note that if we relax the conditions that 𝑹 is a rotation matrix, the same formula also allows 
refining the magnification parameters. In cryo-EM, we assume that the magnification is a 
scalar parameter and  𝑹 becomes a diagonal matrix with the same magnification parameter 
in magnification-only-refinements. The covariance matrices and transformation parameters 
are estimated iteratively. 
The algorithm in EMDA for transformation estimation includes following steps. 1) starting 
with initial rotation and translation parameters the covariances are calculated and 
converted them into weights to calculate the functional value. 2) the derivatives of 
translation and rotation are calculated and the shifts are estimated. 3) the current 
translation and rotation are updated and applied on maps. The covariances are recalculated 
and the new functional value is evaluated. 5) the new functional value is compared with 
that of the previous iteration, and if the convergence criterion is met the final maps are 
output and the transformation is retained. Otherwise, the process continues at step 2 with 
the next cycle of iteration. 
 
Posterior distribution: 
For map calculations we need the probability distribution of the unobserved “true” maps 
given the current state of atomic models as well as observations. In the absence of atomic 
models this distribution is a multivariate Gaussian with mean (see Appendix C for details): 
 

< 𝑭J >		= 𝒌P1𝚺A,o6𝚺A,o + 𝝈27
P1
𝝈P2𝑭A    (6) 

 
where 𝒌 is the diagonal matrix formed by the blurring parameters, 𝝈2 is the diagonal matrix 
formed with the variance of the noise in the observations, 𝚺A,o  is the covariance matrix 
between “true” maps calculated using observed maps, 𝑭A is a vector of Fourier coefficients 
of observed maps, < 𝑭J > is a vector of expectation values of the “true” map Fourier 
coefficients.  
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Since 𝒌 is unknown, we replace it with the standard deviation of the signal as explained in 
(Yamashita et al., 2021). After some algebraic manipulation we get (see Appendix C): 
< 𝑭J >	= 𝝆o	�𝒇𝒔𝒄	𝝆AP1	𝑬A   (7) 
where 𝝆o is the correlation matrix between Fourier coefficients of “true” maps, 𝝆A is the 
correlation matrix between Fourier coefficients of observed maps, 𝑬A	is a vector of 
normalised Fourier coefficients of observed maps and < 𝑭J > is a vector of the expectation 
values of the normalised Fourier coefficients of the “true” maps. 
Note that if we know the blurring factor, it might be better to use them in the map 
calculation. However, observations alone do not allow us to calculate these quantities, and 
they need to be estimated using different methods. 
 
4. Results and Discussion 
In this section, we demonstrate the use of local correlation, map overlay and magnification 
refinement implemented in EMDA package through examples.  
 
4.1. Examples of use of local correlation 
4.1.1. Model-map differences by local correlation 
To demonstrate the use of local correlation to detect model-map differences, we used 
archaeal 20S proteasome (EMD-5623) map with overall resolution 3.3 Å and the 
corresponding atomic model 3j9i (Li et al., 2013). The atomic model was refined against the 
fullmap to a resolution of 3.3 Å using REFMAC5 (Nicholls et al., 2018). Using the refined 
model, an EM map to 3.3 A was computed in EMDA using gemmi 
(https://gemmi.readthedocs.io).  Local correlations were calculated within a kernel of radius 
r1=4 pixels (pixel size = 1.22 Å). The 𝐶𝐶;<::  was calculated using the normalized and 
weighted halfmaps (see Appendix A). Similarly, the 𝐶𝐶09@,0ABC:  was calculated between the 
normalized and weighted fullmap and the normalized and weighted calculated map. Fig. 2a 
shows the primary map density near residues Lys52-Val54 of chain U of the 3j9i model 
coloured by the �𝐶𝐶;<::  and the superimposed model. One can appreciate a moderate 
signal, but the model is outside the density. The same density coloured by 𝐶𝐶09@,0ABC:  (Fig. 
2b) shows a low correlation resulting from the misplaced model. Fig. 2c shows the 
corresponding part of the refined atomic model coloured by 𝐶𝐶09@,0ABC:  and it also 
highlights those residues with low correlation. Thus, 𝐶𝐶09@,0ABC:  can highlight areas with 
map-model discrepancies, while �𝐶𝐶;<::  can be used to validate the existence of a signal. A 

comparison of 𝐶𝐶09@,0ABC:  versus �𝐶𝐶;<::  is useful not only to pinpoint map-model 
differences, but also to identify viable ways to minimise them. Moreover, colouring the 
atomic coordinates by 𝐶𝐶09@,0ABC:  is an effective way to identify misplaced regions in the 
model.  
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Fig. 2. Identifying model-map discrepancies by local correlation. a) EMD-5623 primary map 
density near residues Lys52-Val54 of chain U of the 3j9i model coloured by �𝐶𝐶;<:: . b) the 
same density coloured by 𝐶𝐶09@,0ABC:. c) corresponding atomic model coloured by 
𝐶𝐶09@,0ABC:  showing low correlation residues Lys52-Val54 of chain U. The figure was made 
with ChimeraX (Pettersen et al., 2021). 
 
4.1.2. Unmodeled regions by local correlation  
Next, we used SARS-CoV-2 spike protein structure EMD-11203 and the corresponding model 
6zge (Wrobel et al., 2020) to demonstrate the use of local correlation to highlight an 
unmodeled density. This density has been modelled as linoleic acid (LA) in the homology 
model 6z5d (Toelzer et al., 2020).  
First, we present the use of  �𝐶𝐶;<::  and 𝐶𝐶09@,0ABC:  to identify the unmodeled density in 
the map. Then, we compare those local correlations against the local correlation calculated 
from the model with the ligand. 
Using the normalized and weighted EMD-11203 halfmaps the 𝐶𝐶;<::  was calculated within a 
kernel of radius r1=3 pixels (pixel size = 1.087 Å). The size of the kernel was chosen to 
maximize the variation of local correlation and minimize the leakage of correlation from the 
surrounding (a comparison of correlations calculated using different kernel sizes is given in 
Supplementary materials). The model 6zge was refined against the EMD-11203 fullmap 
using REFMAC5 (Nicholls et al., 2018) to optimise atomic coordinates and the B values. 
Using the refined model an EM map was computed to 2.6 Å in EMDA using gemmi 
(https://gemmi.readthedocs.io). The 𝐶𝐶09@,0ABC:  was calculated using the normalized and 
weighted EMD-11203 fullmap and the normalized and weighted model-based map. EMD-
11203 primary map was coloured by�𝐶𝐶;<::  and	𝐶𝐶09@,0ABC: , and their comparison 
highlighted an unmodeled structured densities located near all receptor binding domains. 
One such density coloured by�𝐶𝐶;<::   and 𝐶𝐶09@,0ABC:  are shown in Fig. 3a and 3b, 

respectively. The high �𝐶𝐶;<::  implies the density is real, but low 𝐶𝐶09@,0ABC:	implies there 
is no corresponding model. Next, the homology model 6zb5 with LA was fitted on the EMD-
11203 fullmap and refined using REFMAC5 (Nicholls et al., 2018), and  the 𝐶𝐶09@,0ABC:  was 
recalculated. The improved 𝐶𝐶09@,0ABC:  for the ligand region is shown in Fig. 3c and this 
improvement is due to the presence of LA in the model.  
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Fig. 3d shows the refined LA molecule whose atoms are coloured according to the atomic B 
values. The overall trend shows that B values in the hydrophobic tail are relatively small, but 
they gradually increase towards the hydrophilic carboxyl group. In Fig. 3e, atomic �𝐶𝐶;<::  
and 𝐶𝐶09@,0ABC:  are plotted in blue and orange, respectively, along with the atomic B 
values in grey. The atomic correlation values were obtained from correlation maps by 
interpolating at atomic positions.  
The �𝐶𝐶;<::  is close to 1 throughout the molecule, but largest variation is seen in the 

carboxyl group. The 𝐶𝐶09@,0ABC:  is lower than the �𝐶𝐶;<::  in all atoms, and its variation is 

larger than that of �𝐶𝐶;<::. The difference in atomic 𝐶𝐶09@,0ABC:  for carbonyl O1 and O2 is 
significant despite their similar B values. The carbonyl group is anchored by the 
neighbouring Arg408 and Gln409 residues through H-bonding with O2 atom (Toelzer et al., 
2020, Fig. 3c), but O1 atom does not seem to have close neighbours thus its atomic 
correlation may be compromised by the surrounding noise. It should also be noted that at 
some atoms there is a leakage of correlation. This effect is pronounced at atoms O2, C10, 
C14 and C18 in Fig. 3b. 
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Fig. 3. Use of local correlation to identify unmodeled linoleic acid (LA) in EMD-11203 map. a) 
unmodeled ligand density in the primary map coloured by the �𝐶𝐶;<::. High correlation 
indicates the presence of a strong signal. b) the same density coloured by 𝐶𝐶09@,0ABC:  
calculated between the fullmap and the refined 6zge model using normalized and weighted 
densities. The correlation in this region is low compared to its surrounding.  c) ligand density 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.07.26.453750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453750
http://creativecommons.org/licenses/by/4.0/


   
 

  
 

15 

coloured by 𝐶𝐶09@,0ABC:  calculated between the fullmap and the refined model with LA 
using normalized and weighted densities. Densities in a, b and c panels were contoured at 
the same level. Those figures were made with Chimera (Pettersen et al., 2004). d) 
distribution of atomic B values of refined LA where the atoms are coloured by the B values. 
This figure was made with PyMOL (Schrödinger, 2020). e) distribution of atomic correlation 
values at refined LA coordinates. 𝐶𝐶09@,0ABC:  and �𝐶𝐶;<:: 	are shown with orange and blue, 
respectively. Also, the atomic B values are shown in grey. 
 
A comparison of �𝐶𝐶;<::  versus 𝐶𝐶09@,0ABC:  can highlight map-model differences as shown 
by the previous examples. In model building and refinement, we aim at explaining the full 
signal in the map by the model, and hence the chance of building model into the noise is 
unavoidable. In such situations, the local correlation can be a helpful tool to monitor the 
overfitting. According to eq. 4 the inequality 𝐶𝐶09@,0ABC: ≤ �𝐶𝐶;<::  should hold when 
there is no overfitting, and Fig. 3e shows such a situation. 
 
4.2 Examples of use of map overlay 
4.2.1. EMDA map overlay 
To demonstrate the overlay method, we have used cryo-EM maps EMD-21997 and EMD-
21999 (Henderson et al., 2020) of SARS-CoV-2 spike protein, whose resolutions are 2.7 Å 
and 3.3 Å, respectively. The former map is in rS2d locked state in which all three receptor 
binding domains (RBDs) are down and locked, thus maintaining C3 symmetry. Whereas the 
latter map is in u1S2q state in which one of the RBDs is open causing the whole structure to 
be in C1. In this example, we estimate the movement of one of the down RBDs in EMD-
21999 map relative to one of the down RBDs in EMD-21997 map using EMDA overlay 
operation. We kept the primary EMD-21997 map and the corresponding 6x29 atomic model 
static, while the primary EMD-21999 map and the corresponding 6x2a atomic model 
moving. First, we overlaid EMD-21999 map (Fig. 4a(ii)) on EMD-21997 map (Fig. 4a(i)) and 
the resulting transformation (relative rotation = 8.35°, translation = 4.14 Å) was applied on 
the 6x2a atomic model. The overlaid maps are shown in Fig. 4a(iii), and they are the starting 
maps for the subsequent domain overlay (shown by 4a(iv) and (v) for static and moving 
maps, respectively). Next, a pair of RBDs located proximity to each other on 4a(iii) were 
extracted within model generated masks. The extracted RBDs are shown in 4a(vi) and 4a(vii) 
and their superposition before fit optimisation is shown in 4a(viii). Next, their relative fit was 
optimized and at the convergence the relative rotation and translation values were 3.38° 
and 1.76 Å, respectively. The superposed domains after the fit optimisation is shown in 
4a(ix). These rotation and translation values indicate the movement of the selected RBD of 
EMD-21999 map relative to the corresponding RBD of EMD-21997 map in the same 
coordinate frame. Finally, the estimated transformation between domains was applied on 
the 6x2a RBD coordinates to bring it on the static model (6x29). Fig. 4a(x) and (xi) present 
the superposition of models before and after the transformation has been applied, 
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respectively. Fig. 4b shows the FSC curves calculated between the two domains before and 
after the overlay optimisation.  

 
Fig. 4. Map superposition in EMDA illustrated using EMD-21997 and EMD-21999 maps. (a) 
keeping EMD-21997 map (i) static, EMD-21999 map (ii) was moved to obtain the optimal 
overlay between them (iii). Starting from the overlaid maps (iv) and (v), RBDs were 
extracted using masks. The extracted RBDs (vi) and (vii) were superposed (viii) and 
optimized their overlay (ix) in EMDA. The final values of relative rotation and translation are 
3.38° and 1.76 Å, respectively. The same transformation was applied on the model 6x2a of 
the moving map. The superposition of 6x29 (static, grey) and 6x2a (moving, cyan) RBD 
models before (x) and after (xi) the domain transformation being applied. This figure was 
made with Chimera (Pettersen et al., 2004). (b) FSC between static and moving RBDs before 
(blue) and after (orange) the overlay optimization. 
 
4.2.2. EMDA magnification refinement 
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Magnification refinement in EMDA involves 1) resampling the target map on the reference 
grid to make sure both maps refer to the same coordinate system, 2) superposition of the 
target map on the reference and refining the magnification of the target map, iteratively. To 
demonstrate the magnification refinement in EMDA, we intentionally introduced a -5% 
magnification error in one of the half maps of Haemoglobin (half1 of EMD-3651; (Khoshouei 
et al., 2017)) to yield the initial map, and let EMDA to refine its magnification against the 
half1 map (original map). The pixel sizes of the original and the magnification modified maps 
(initial map, Fig. 5a) are 1.05 and 0.998 Å, respectively. EMDA optimized the magnification 
of the initial map relative to the original map to yield the magnification adjusted map (Fig. 
5a) with the pixel size 1.05 Å. Fig. 5b shows the FSC curves for the initial and the adjusted 
maps calculated against the original map. The increase from initial map to adjusted map is 
due to the correction in the magnification. To validate the accuracy of refinement, the FSC 
for adjusted map is compared with the half data FSC (Fig. 5c) and they are in very good 
agreement. 

 
 
Fig. 5. The magnification refinement in EMDA using Haemoglobin data (EMD-3651). (a) the 
superposition of the original (half1) map (in grey) on the initial map (in cyan) obtained by 
introducing a -5% magnification error on the original map is improved after magnification 
correction (adjusted map shown in cyan). This figure was made with Chimera (Pettersen et 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.07.26.453750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453750
http://creativecommons.org/licenses/by/4.0/


   
 

  
 

18 

al., 2004). (b) FSC between initial and adjusted maps against the original map indicating 
improvement in the superposition due to correction in magnification. (c) FSC curves for 
initial and adjusted maps calculated against the half2 are shown in blue and orange, 
respectively. The increase of FSC from blue to orange is due to the improved magnification. 
The green curve is the FSC between the half maps and it serves as the ground truth. 
 
In the next example, we illustrate the estimation of the relative magnification differences of 
two cryo-EM maps of beta-galactosidase [EMD-7770 (Bartesaghi et al., 2018) and EMD-
10574 (Saur et al., 2020)] relative to an X-ray crystallography model 3dyp (Juers et al., 2009). 
The resolution of EMD-7770 and EMD-10574 are 1.9 and 2.2 Å, respectively. The model 
3dyp has been derived from X-ray data with resolution 1.75 Å. Both cryo-EM maps and the 
crystallographic model possess D2 point-group symmetry. Since one of the cryo-EM primary 
maps (i.e. EMD-10574) has been lowpass filtered, we used fullmaps generated from half 
maps for both cryo-EM entries in this analysis. First, all non-polymer atoms of 3dyp model 
were removed and just the polymers were fitted onto EMD-7770 map in Chimera (Pettersen 
et al., 2004). Then the model-based map was calculated up to 1.9 Å using REFMAC5 
(Nicholls et al., 2018) and it was kept as the crystallographic reference for the subsequent 
magnification analysis. Both the reference map and the EMD-7770 map have the same pixel 
size 0.637 Å, while EMD-10574 map has 0.68 Å. Thus, the latter map was resampled on the 
reference to bring all maps on the same coordinate system. Next, a principal component 
analysis was performed on the variance-covariance matrices of the reference and 
resampled maps to bring the orientation of the latter approximately matches that of the 
reference.  
Lastly, the fits and the magnifications of EMD-7770 and the resampled EMD-10574 maps 
were optimized relative to the reference map, iteratively. This resulted in +0.3 % and +1.7 % 
magnification differences in EMD-7770 and EMD-10574 maps relative to the reference, 
respectively. Fig. 6a(i) and (ii) show the superpositions of EMD-7770 (yellow) and EMD-
10574 (cyan) maps on the reference (grey). Their magnified portions enclosed by red 
rectangles are shown in Fig. 6b on the left two columns. The yellow density overlaid on the 
grey density does not show an obvious offset discernible to human eye in both centre or 
periphery regions. However, the cyan density shows an offset relative to the grey density. 
Moreover, this offset increases from the centre to periphery; an indication of the 
magnification problem. Fig. 6a(iii) and (iv) show the magnification corrected EMD-7770 and 
EMD-10574 maps overlaid on the reference map, respectively. The magnified portions 
marked by red rectangles are shown in Fig. 6b on the right two columns for centre and 
periphery regions. Both yellow and cyan densities overlay on grey density, and the offset 
seen in the cyan density before the correction has now disappeared confirming that EMD-
10574 map indeed suffers from magnification problem. Furthermore, Fig. 6a(v) and (vi) 
present the masked FSC curves for EMD-7770 and EMD-10574, respectively, before (blue) 
and after (orange) the magnification has been corrected. The increase in FSC, especially in 
(vi) is attributed to the improved magnification. 
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Fig. 6. Magnification correction in EMD-7770, EMD-10574 maps relative to the 
crystallography model 3dyp. (a) the overlaid EMD-7770 (i, yellow) and EMD-10574 (ii, cyan) 
maps on the reference map (grey) before the magnification optimisation. (iii) and (iv) are 
the same maps after the optimisation. The magnification differences in EMD-7770 and 
EMD-10574 relative to the reference are +0.3 % and +1.7 %, respectively. The FSC curves for 
EMD-7770 and EMD-10574 maps against the reference before and after the magnification 
adjustment are shown in (v) and (vi), respectively. The blue and orange curves correspond 
to FSCs before and after the magnification refinement, respectively. The increase in FSC is 
attributed to the corrected magnification. This figure was made with Chimera (Pettersen et 
al., 2004). (b) comparison of EMD-7770 map (yellow) and EMD-10574 map (cyan) densities 
against the reference map (grey) in different regions before and after the magnification 
correction. See text for details. 
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Even after the magnification correction, some discrepancies in density overlay were 
apparent in both EMD-7770 and EMD-10574 maps relative to the reference map. We 
focused on one monomer unit of EMD-7770 map and extracted it using a model generated 
mask. The corresponding monomer unit of the reference map was also extracted in similar 
manner. Fig. 7(i) shows the overlaid EMD-7770 map on the reference after the 
magnification correction. The monomer units chosen is highlighted within the mask. 
Extracted monomers are shown in Fig. 7(ii), and one can easily appreciate the rotation of 
the yellow density relative to the reference grey density due to movements between 
domains. We estimated the relative transformation between those monomer units and that 
resulted in 1.02° rotation and 0.12 Å translation (similar analysis was performed using 
monomers from EMD-10574 map and the reference. That resulted in 0.28° rotation and 
0.17 Å translation). Fig. 7(iii) and (iv) show the optimized fit of the monomers and the FSCs 
between them before (blue) and after (orange) the fit optimisation, respectively. The 
increase in FSC is attributed to the improved fit.  
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Fig. 7. Movement of one monomer unit of EMD-7770 (yellow) relative to the corresponding 
monomer unit of the reference map (grey). Selected monomers are highlighted in (i) and 
those extracted are shown in (ii) before the fit optimisation. (iii) the monomer units after 
the fit optimisation. (iv) FSCs between monomer units before (blue) and after (orange) the 
fit optimisation. This figure was made with Chimera (Pettersen et al., 2004). 
 
As illustrated in this example, the map magnification is an important factor to consider 
during structural comparison studies. It should be refined and make sure all structures have 
the same magnification before comparing for other structural variations. Internal motions 
such as domain movements should be estimated and compared to other similar structures 
only if their magnifications are comparable. 
 
 
5. Conclusions 
We presented the EMDA Python package to serve the need of map and model validation in 
cryo-EM. We showed the use of map-model local correlation to identify residues outside the 
density or those poorly fitted. Since the fullmap local correlation gives an indication of the 
signal level in the map, it can be used to draw insights about the presence of a signal. 
Moreover, a comparison of map-model local correlation with fullmap local correlation can 
be used for validating the model-to-map fit. In one of the examples, we used the local 
correlation to identify an unmodeled ligand in a map, thereby demonstrating its 
complementary nature to the difference map. The use of local correlation to identify ligands 
has the advantage that the correlation naturally offers a way to validate the 
presence/absence of the density as revealed by the half map local correlation. Also, we 
showed that correlation values mapped into atoms are useful to study the local signal 
variations. 
Secondly, we presented the likelihood-based map-to-map fitting using an example, where 
two SARS-CoV-2 structures were first fitted to bring them on the same coordinate frame. 
Then two receptor binding domains were fitted in the same coordinate frame to estimate 
their relative movement. The last example illustrated the use of likelihood-based 
magnification adjustment where the magnifications of two cryo-EM maps relative to an X-
ray crystallography derived atomic model have been estimated. The importance of 
correcting the relative magnification between structures in structure comparison studies 
have been highlighted.  
 
Software availability 
EMDA is released under the Mozilla Public License Version 2.0 (MPL 2.0) and it is free and 
open source. The source code is accessible at https://gitlab.com/ccpem/emda.  EMDA is 
distributed as a part of CCP-EM suite and also available via Python Package Installer (pip). 
EMDA’s documentation is available at https://emda.readthedocs.io, and we encourage the 
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reader to look at the documentation for most recent functionalities and up-to-date 
instructions.  
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Appendix A 
Local correlation in real space 
Let 𝜓(𝑥) and 𝑚(𝑥) be two functions where the latter is normalized 

∫ 𝑚(𝑥)𝑑𝑥 = 1��    (A1) 
Then the local averages of 𝜓(𝑥) with the kernel 𝑚(𝑥) can be written as a convolution 
operation: 

𝜓0(𝑥) = ∫ 𝜓(𝑦)𝑚(𝑥 − 𝑦)𝑑𝑦��    (A2) 
This can be calculated using the convolution theorem: 

𝜓0(𝑥) = ℱP1[(ℱ6𝜓(𝑥)76ℱ6𝑚(𝑥)7¼   (A3) 
where ℱ is the Fourier transformation operator and ℱP1 is its inverse. 
Similarly, the local covariance between 𝜓1(𝑥) and 𝜓2(𝑥) is given by 
𝑐𝑜𝑣12,0(𝑥) = ∫ 𝑚(𝑥 − 𝑦)�� 𝜓1(𝑦)𝜓2(𝑦)𝑑𝑦 −	∫ 𝑚(𝑥 − 𝑦)�� 𝜓1(𝑦)𝑑𝑦∫ 𝑚(𝑥 − 𝑦)�� 𝜓2(𝑦)𝑑𝑦   (A4) 

The local correlation between the two functions can be written as 

𝐶𝐶12,0(𝑥) =
kA�fW,�(�)

��9�f,�(�)	�9�W,�(�)
   (A5) 

Now, let us assume that there are two noisy maps, each has 
𝜓/,L(𝑥) = 𝜓/(𝑥) + 𝑛/(𝑥)   (A6) 

where 𝜓/(𝑥) and 𝑛/(𝑥) are the signal and the noise components in ith map.  
If the noise components between the maps, and the noise and signal within as well as 
between maps are uncorrelated, then the local variance and covariance can be written: 

𝑣𝑎𝑟/,0 �𝜓/,L(𝑥)� = 𝑣𝑎𝑟/,06𝜓/(𝑥)7 + 𝑣𝑎𝑟/,0(𝑛/(𝑥))   (A7) 

𝑐𝑜𝑣12,0(𝜓1,L(𝑥), 𝜓2,L(𝑥)) = 𝑐𝑜𝑣12,06𝜓1(𝑥),𝜓2(𝑥)7   (A8) 
And finally, the local correlation can be written 

𝐶𝐶12,0(𝑥) =
kA�fW,�(�f(�),�W(�))

5�9�f,�6�f(�)7 �9�f,�(Lf(�))5�9�W,�6�W(�)7 �9�W,�(LW(�))
   (A9). 

If two maps are cryo-EM half maps, then they share a common signal. In addition, if the 
noise components have the same variance for both halves then the following relationships 
hold 
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𝑐𝑜𝑣6𝜓1(𝑥),𝜓2(𝑥)7 = 𝑣𝑎𝑟6𝜓1(𝑥)7 = 𝑣𝑎𝑟6𝜓2(𝑥)7   (A10) 
𝑣𝑎𝑟6𝑛1(𝑥)7 = 𝑣𝑎𝑟6𝑛2(𝑥)7 = 2𝑣𝑎𝑟6𝑛(𝑥)7   (A11) 

where 𝑣𝑎𝑟6𝑛(𝑥)7 is the noise variance in the averaged map. 
Thus, the local correlation between half maps is: 

𝐶𝐶89:;,0(𝑥) =
�9�f,�6�f(�)7

�9�f,�6�f(�)7 2�9�6L(�)7
   (A12) 

The corresponding local correlation in the full map (Rosenthal and Henderson, 2003) is  

𝐶𝐶;<::,0(𝑥) =
2������,�(�)

1 ������,�(�)
 .  (A13) 

 
Relationship between correlations 
Let us assume that we have a map with the Fourier coefficients 𝐹A(𝑠). The observation was 
made for the true map with the Fourier coefficients 𝐹J(𝑠). And we have a model describing 
the true map with the Fourier coefficients 𝐹k(𝑠). We assume that noise on the observations 
𝐹L(𝑠) is additive as well noise and signal are uncorrelated:: 

𝐹A(𝑠) = 𝐹J(𝑠) + 𝐹L(𝑠)   (A14) 
𝑐𝑜𝑣6𝐹J(𝑠), 𝐹L(𝑠)7 = 0    (A15) 

We also assume that noise in the observation is uncorrelated with the Fourier coefficients 
from atomic model (𝑐𝑜𝑣(𝐹k, 𝐹L) = 0). Correlation between observed and calculated Fourier 
coefficients calculated within thin resolution shells is: 

𝑐𝑜𝑟(𝐹A(𝑠), 𝐹k(𝑠)) =
kA�(RS(o),R½(o))

��9�(RS(o))�9�(R½(o))
    (A16) 

Since we assume that the correlation between observed noise and atomic model is zero we 
can write: 

𝑐𝑜𝑟6𝐹A(𝑠), 𝐹k(𝑠)7 =
kA�6RV(o),R½(o)7

5��9�6RV(o)7 �9�6RY(o)7��9�6R½(o)7
   (A17) 

Correlation between observed and “true” Fourier coefficients can be written as: 

𝑐𝑜𝑟6𝐹A(𝑠), 𝐹J(𝑠)7 =
kA�6RS(o),RV(o)7

5�9�6RS(o)7�9�6RV(¾)7
= �9�6RV(o)7

�(�9�(RV(o)) �9�(RY(o)))�9�(RV(o))
=

5 �9�6RV(o)7
�9�6RV(o)7 �9�6RY(o)7

	   (A18) 

 

If we multiply the numerator and denominator of A17 by �𝑣𝑎𝑟(𝐹J(𝑠)) then we can write: 

𝑐𝑜𝑟6𝐹A(𝑠), 𝐹k(𝑠)7 =
kA�6RV(o),R½(o)7

5�9�6R½(o)7�9�6RV(o)7
	5 �9�6RV(o)7

�9�6RV(o)7 �9�6RY(o)7
=

𝑐𝑜𝑟6𝐹J(𝑠), 𝐹k(𝑠)7𝑐𝑜𝑟6𝐹A(𝑠),𝐹J(𝑠)7	  (A19) 
In practice we do not know “true” Fourier coefficients. However, if we can assume that we 
have two independent data sets (i.e. independent half data reconstructions) then we can 
use the expression (Rosenthal and Henderson, 2003)  
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𝑐𝑜𝑟6𝐹A(𝑠), 𝐹J(𝑠)7 = ¿
2kA��RS,����f(o),RS,����W(o)�

1 kA��RS,����f(o),RS,����W(o)�
   (A20) 

Therefore, we can write: 

𝑐𝑜𝑟6𝐹A(𝑠), 𝐹k(𝑠)7 = 𝑐𝑜𝑟6𝐹J(𝑠), 𝐹k(𝑠)7	¿
2kA��RS,����f(o),RS,����W(o)�

1 kA��RS,����f(o),RS,����W(o)�
   (A21) 

 
Although formulas are derived for correlations calculated in Fourier space, under above 
assumptions (uncorrelatedness of the noise and true and the noise and model) they are 
valid also for real space correlation. 
 
Appendix B 

Calculation of variances and covariances using the data 
Let us assume that we have N observations and they are made for “true” maps. Noise is 
additive and uncorrelated with each other and with the signals. We also have half data 
reconstructed maps for each map. Thus: 

𝐹A,G = 𝑘G𝐹J,G + 𝐹L,G   (B1) 
𝐹A,G,8À = 𝑘G𝐹J,G + 𝐹L,G,8À   (B2) 

𝐹A,G =
1
2
6𝐹A,G,8f + 𝐹A,G,8W7   (B3) 

𝐹L,G =
1
2
6𝐹L,G,8f + 𝐹L,G,8W7   (B4) 

The noise components between half maps are uncorrelated, they have 0 mean and they 
have the same variance (i.e 𝜎A,G,8f

2 = 𝜎A,G,8W
2 ). 

Variances are calculated within resolution bins. This is described in a number of papers 
(Murshudov, 2016; Rosenthal and Henderson, 2003). Covariances between different maps 
within resolution bins are calculated using the formula: 

𝑐𝑜𝑣6𝐹A,G, 𝐹A,:7 =
1
Z¹
∑ 𝐹A,G𝐹A,:∗o∈Â¹    (B5) 

Where 𝑁/ is the number of Fourier coefficients within the resolution bin 𝑏/. Then the 
covariances are: 

𝑐𝑜𝑣6𝐹A,G, 𝐹A,:7 = 	ΣA,G,: 			for	𝑗 ≠ 𝑙    (B6) 
𝑣𝑎𝑟6𝐹A,G	7 = 	ΣA,G,G + 𝜎A,G2    (B7) 

And using the half maps: 
ΣA,G,G = 𝑐𝑜𝑣6𝐹A,G,8f, 𝐹A,G,8W7   (B8) 

Using B7 and B8, variance of the noise for each map is calculated. It should be noted that 
when maps are being fitted into each other, the covariance matrix should be recalculated at 
every cycle. Also, the covariances should be adjusted to account for the effect of a mask 
(Chen et al., 2013). 
 
Appendix C 
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Derivation of likelihood function and posterior probability distribution 
Let us assume that we have 𝑁 observed maps with Fourier coefficients - 𝑭𝒐(𝑠) =
(𝐹A,1(𝑠), 𝐹A,2(𝑠),… . , 𝐹A,Z(𝑠)). Each of 𝐹A,G(𝑠) is a complex number, i.e. it has two 
components – real and imaginary. Let us assume that these observations have been made 
for 𝑁 “true” maps - 𝑭𝒕(𝑠) = (𝐹J,1(𝑠), 𝐹J,2(𝑠),… . , 𝐹J,Z(𝑠)). In practice, the number of “true” 
maps could be less than the number of observed maps.  
We assume that the underlying signals in those maps are related. For instance, those maps 
can be liganded-unliganded protein complexes, molecules in slightly different 
conformations, or related but not exactly the same macromolecules. Let us assume that for 
each “true” map we have a model – usually an atomic model from which we can calculate 
Fourier coefficients accounting for the nature of the experiment: 𝑭𝒄(𝑠) =
(𝐹k,1(𝑠), 𝐹k,2(𝑠),… . , 𝐹k,Z(𝑠)). We further assume that noise in the observations is additive, 
independent and with zero mean normal distribution. 
We also assume that the conditional probability distributions of Fourier coefficients of the 
maps given the Fourier coefficients of true signals are Gaussian. Because of the central limit 
theorem this assumption holds in practice with sufficient accuracy. 

𝑃 �𝐹A,G(𝑠); 𝐹J,G(𝑠)� = 𝒩2 �𝐹A,G(𝑠); 𝑘G𝐹J,G(𝑠),
1
2
𝜎L,G2 �   (C1) 

where 𝒩2 denotes two-dimensional normal distribution with mean equal to 𝑘G(𝑠)𝐹J,G(𝑠) and 

variance equal to 1
2
𝜎L,G2 .  𝑘G  is the scale parameter for the “true” map number j implying that 

“true” signal is blurred with a position independent point spread function before/during 
observations and/or data processing. Under an assumption that blurring is with an isotropic 

Gaussian kernel then 𝑘G  can be expressed in a form of Gaussian with a B value, 𝑘¨,G𝑒P
ÉT|¾|

W

Ê . 
We will further assume that the “true” signals are on the same coordinate frame, however, 
observations may have been made for rotated and translated molecules. Then the 
probability distribution of individual Fourier coefficients will have the form: 

𝑃6𝐹A,G(𝑠); 𝐹J,G(𝑠)7 = 𝑁2(𝐹A,G(𝑠); 𝑘G𝐹J,G6𝑅G�𝑠7𝑒P2v/o
dJT, 1

2
𝜎L,G2 )   (C2) 

To get the total conditional probability distribution of observed Fourier coefficients all 
individual components are multiplied. Then, we can transfer transformations to the 
observed Fourier coefficients. To do this, it is assumed that variances of noise are the same 
on the surface of each sphere with a radius |𝑠|. We also ignore correlation between different 
Fourier coefficients after transformation: 

𝑃 �𝐹A,G6𝑅G𝑠7𝑒2v/o
dJT; 𝐹J,G(𝑠)� = 𝒩2 �𝐹A,G6𝑅G𝑠7𝑒2v/o

dJT; 𝑘G𝐹J,G(𝑠),
1
2
𝜎L,G2 �   (C3) 

The probability distribution of the “true” Fourier coefficients given atomic model is also 
Gaussian, justification of which can be found in (Luzzati, 1952). Since “true” maps are 
related, we need to account for the relationship between different maps. We assume that 
the distribution of all “true” maps given all atomic models is Gaussian. This form of the 
distribution can be derived using the same technique used by Luzzati or the central limit 
theorem: 

𝑃(𝑭𝒕(𝑠); 𝑭𝒄) = 𝒩2Z(𝑭𝒕(𝑠); 𝑫𝑭𝒄,
1
2
𝚺)   (C4) 
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Where the subscript 2𝑁 signifies 2N dimensional normal distribution. D is a diagonal matrix 
formed by scale factors between calculated and “true” Fourier coefficients and 𝚺 is the 
matrix of covariances 

𝚺 = Ë

Σ11
Σ21
…
ΣZ1

			

Σ12
Σ22
…
ΣZ2

			

…
…
…
…
			

Σ1Z
Σ2Z
…
ΣZZ

Ì   (C5) 

with Σ/G =< (𝐹J,/ − 𝐷/𝐹k,/)(𝐹J,G − 𝐷G𝐹k,G)∗ > to be estimated using data and atomic model. 
We also assume that observations are conditionally independent on model if the true map 
is known. In other words, if we know the true map, then atomic models would not say 
anything more about observations. Then the joint probability distribution of observed and 
“true” Fourier coefficients can be written as (Murshudov, 2016): 

𝑃(𝑭𝒐, 𝑭J; 𝑭k) = 𝑃(𝑭𝒐; 𝑭𝒕, 𝑭𝒄)𝑃(𝑭𝒕; 𝑭𝒄) = 𝑃(𝑭𝒐; 𝑭J)𝑃(𝑭𝒕; 𝑭𝒄)   (C6) 
Since both distributions on the right-hand side are Gaussian, their product also will be 
Gaussian. In a multivariate Gaussian probability distribution, both marginal (integrating out 
some of the random variables) and conditional probability distributions of one subset given 
another subset of random variables are also Gaussian distributions (Eaton, 2007). To fully 
specify a Gaussian distribution, we need its mean vector and the covariance matrix. 
 
Likelihood function is derived by integrating out the “true” unknown Fourier coefficients 
from the joint probability distribution of observations and “true” Fourier coefficients. I.e. it 
is a marginal probability distribution of observed Fourier coefficients. Since we know that 
the resultant probability distribution will be Gaussian with the mean and covariance matrix 
equal to the corresponding terms of the joint probability distribution of observed and “true” 
Fourier coefficients, we only need to find these terms. Since we know that: 

𝐹A,G = 𝑘G𝐹J,G + 𝐹L,G   (C7) 
Therefore: 
 

< 𝐹A,G >=< 𝑘G𝐹J,G + 𝐹L,G >	=	< 𝑘G𝐹J,G >	= 𝑘G𝐷G𝐹k,G    (C8) 
𝑣𝑎𝑟6𝐹A,G7 = 𝑣𝑎𝑟6𝑘G𝐹J,G + 𝐹L,G7 = 𝑘G2𝑣𝑎𝑟6𝐹J,G7 + 𝑣𝑎𝑟6𝐹L,G7 = 	𝑘G2ΣG,G + 𝜎A,G2    (C9) 

𝑐𝑜𝑣6𝐹A,G, 𝐹A,:7 = 𝑐𝑜𝑣6𝑘G𝐹J,G + 𝐹L,G, 𝑘:𝐹J,: + 𝐹L,:7 = 𝑘G𝑘:𝑐𝑜𝑣6𝐹J,G, 𝐹J,:7 = 𝑘G𝑘:ΣG,:    (C10) 
 
These fully specify the probability distribution of observed Fourier coefficients given 
calculated one. In practice, we cannot estimate all 𝑘G without additional information. 
Relative values, 𝑘/𝑘GP1, can be estimated using pairs of observed maps. 
 
Coming back to our matrix/vector form using short notations 𝑭𝒐, 𝑭𝒕, 𝑭𝒄 for 𝑭𝒐(𝑠), 𝑭𝒕(𝑠), 𝑭𝒄(𝑠) 
for clarity, we have 

𝑃�𝑭A(𝑹𝒔)𝑒2vwo
d𝒕; 𝑭k� = ∫ 𝑃(𝑭𝒐; 𝑭𝒕)𝑃(𝑭𝒕; 𝑭𝒄)𝑑𝑭𝒕Rd

=

∫ 𝒩2Z �𝑭𝒐; 𝒌𝑭𝒕6𝑹𝑻𝑠7𝒆P2vwo
𝑻𝒕, 𝟏

𝟐
𝝈2�𝒩2Z �𝑭𝒕;𝑫𝑭𝒄,

1
2
𝚺� 𝑑𝑭𝒕RV

=

𝒩2Z(𝐹A(𝑹𝑠)𝒆2vwo
𝑻𝒕; 𝒌𝑫𝑭𝒄,

1
2
6𝐤𝐓𝚺𝐤+ 𝝈27)   (C11) 
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Where 𝚺 is the covariance matrix of “true” map without blurring and 𝚺A,o = 𝒌�𝚺𝒌 = 𝒌𝚺𝒌 is 
the covariance matrix calculated using observed maps including half maps (Appendix B), 𝒌 is 
a diagonal matrix formed by the scale factors of “true” Fourier coefficient. 
In the absence of models (𝑫 → 0), the probability distribution will have the form: 

𝑃�𝑭A(𝑅𝑠)𝑒2vwo
d𝒕; 𝑎𝑡𝑜𝑚𝑠	� = 1

(Ô)ÕÖ×Ø	(𝚺S,¾ 𝝈W)
𝑒
P¬(𝑭S(�o)CWÙÚ𝒔

d𝒕)d6𝚺𝒐,𝒔 𝝈W7
ef�𝑭S∗ (𝑹o)CeWÙÚ¾

d𝒕�­
   (C12) 

where atoms signifies that observations are made for a molecule that consists of atoms, but 
we do not know their positions. 
The negative log likelihood function including all Fourier coefficients has the form:  

𝐿𝐿(𝑭𝒐:𝑹, 𝒕, 𝚺𝑜,𝑠) = 	∑ ((𝑭A(𝑹𝑠)𝑒2vwo
𝑻𝒕)�6𝚺´,x + 𝝈27

P1�𝑭A∗ (𝑹𝑠)𝑒P2vwo
d𝒕� + log6𝑑𝑒𝑡6𝚺A,o +o

𝝈277 + 𝑐𝑜𝑛𝑠𝑡.   (C13) 
The formula C13 is used in EMDA to estimate rotations and translations of maps into each 
other as well as for magnification refinement. EMDA uses a special case of this, the two-
observation case to fit two maps into each other. In general, 𝑹 is a rotation matrix. 
However, if we relax this condition then we can also account for relative magnification of 
maps. If the only difference between maps is the relative isotropic magnification, then 𝑹 will 
become a diagonal matrix where diagonal elements are relative magnification parameter.  
 
Posterior probability of “true” Fourier coefficients given observations and atomic model is a 
conditional probability distribution of “true” maps given observations and model 
parameters: 

𝑃(𝑭𝒕; 𝑭𝒐, 𝑭k) =
Û(𝑭𝒐,𝑭𝒕;𝑭𝒄)
Û(𝑭𝒐;𝑭𝒄)

= Û(𝑭𝒐;𝑭𝒕)Û(𝑭𝒕;𝑭𝒄)
Û(𝑭𝒐;𝑭𝒄)

   (C14) 

Again, the conditional probability distribution of a subset of random variables given another 
subset of variables in multivariate Gaussian distribution is also a Gaussian distribution 
(Eaton, 2007). So, we need to find the mean and covariance matrix. We know that the 
logarithm of a Gaussian distribution is a quadratic function. Argument that maximises this 
function is the mean of the random variable and the second derivative of this function with 
respect to the random variable we are interested in is related to the covariance matrix: 

𝑎𝑟𝑔𝑚𝑎𝑥𝑭V6log6𝑃(𝑭𝒕; 𝑭𝒐, 𝑭𝒄)77 =< 𝑭𝒕 >   (C15) 

−ÜW Ý´Þ6Û(𝑭𝒕;𝑭𝒐,𝑭𝒄)7
Ü𝑭𝒕Ü𝑭𝒕𝑻

= 	𝚺JP1   (C16) 

We need to find the argument that maximises the following function and its second 
derivative: 

𝑓(𝑭𝒕) = log(𝑭𝒕; 𝑭𝒐, 𝑭𝒄) = log(𝑭𝒐; 𝑭𝒕) + log(𝑭𝒕; 𝑭𝒄) − log	(𝑭𝒐; 𝑭𝒄)   (C17) 
Since the third term on the RHS does not depend on 𝑭𝒕 it can be ignored. We can also 
ignore normalisation coefficients in the probability distributions, because they depend on 
covariances not on the “true” Fourier coefficients.  
In the following treatment, we will use the fact that all involved matrices are symmetric. The 
covariance matrix is symmetric by its nature, and the rest of the matrices are diagonal and 
therefore symmetric. 
So, we need to get the derivatives of (after ignoring terms independent on 𝑭J): 
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𝑓1(𝑭𝒕) = −∑ QRS,TPUTRV,TQ
W

XS,T
WG 	− (𝑭𝒕 − 𝑫𝑭𝒄)�𝚺P1(𝑭𝒕 − 𝑫𝑭𝒄)∗   (C18) 

We can write: 
𝑓1(𝑭𝒕) = −(𝑭𝒐 − 𝒌𝑭𝒕)�𝛔P2(𝑭𝒐 − 𝒌𝑭𝒕)∗ − (𝑭𝒕 − 𝑫𝑭𝒄)�𝚺P1(𝑭𝒕 − 𝑫𝑭𝒄)∗   (C19) 

To find the maximum we need to solve: 
Ü;f
Ü𝑭𝒕

= −2𝒌𝛔P2(𝒌𝑭𝒕 − 𝑭𝒐) − 2𝚺P1(𝑭𝒕 − 𝑫𝑭𝒄) = 0   (C20) 

It can be conveniently solved: 
< 𝑭𝒕 >= (𝒌𝝈P2𝒌 +	𝚺P1)P1(𝒌𝝈P2𝑭𝒐 + 𝚺P1𝑫𝑭𝒄)   (C21) 

It shows that the mean value of the posterior probability distribution is a linear combination 
of observed and calculated Fourier coefficients with suitable weights.  
Using the properties of matrices and their inverses we can write these formulas in a more 
convenient way: 

< 𝑭𝒕 >= 𝒌P1𝒌𝚺𝐤(𝒌𝚺𝒌 + 𝝈2)P1𝑭𝒐 + 𝒌P1𝝈2(𝒌𝚺𝒌 + 𝝈)P1𝒌𝑫𝑭𝒄 = 𝒌P1(𝒌𝚺𝐤(𝒌𝚺𝒌 +
𝝈2)P1𝑭𝒐 + 𝝈2(𝒌𝚺𝒌 + 𝝈2)P1𝒌𝑫𝑭𝒄)   (C22) 

A special case of this when there is one model and one observation is considered in 
(Yamashita et al., 2021). 
When there are no atomic models then 𝑫 → 0 and the formula becomes: 

< 𝑭𝒕 >= 𝒌P1𝒌𝚺𝐤(𝒌𝚺𝒌 + 𝝈2)P1𝑭𝒐   (C23) 
Further we denote 𝚺𝒐,𝒔 = 𝒌𝚺𝒌 that can be estimated using the observed data: 

< 𝑭𝒕 >= 𝒌P1𝚺𝐨,𝐬6𝚺𝒐,𝒔 + 𝝈27
P1
𝑭𝒐   (C24) 

 
For completeness we also give the covariance matrix of the posterior probability 
distribution of the “true” Fourier coefficients (this can be used for estimation posterior 
noise variance and covariances in the calculated maps): 

𝚺𝒕 = −�Ü
W Ý´Þ6Û(𝑭𝒕;𝑭𝒐,𝑭𝒄)7

Ü𝑭𝒕Ü𝑭𝒕𝑻
�
P1
= 1

2
(𝒌𝛔P2𝒌 + 𝚺P1)P1 = 1

2
𝒌P1(𝐤𝚺𝐤)(𝐤𝚺𝐤 + 𝝈2)P1𝝈2𝒌P1 =

1
2
𝒌P1𝚺𝒐,𝒔6𝚺𝐨,𝐬 + 𝝈27

P1
𝝈2𝒌P1   (C25) 

Since not all components of 𝒌 can be estimated using the observations only, for current 
calculations we replace the elements of  𝒌 with the standard deviations of the observed 
signal 𝑘G = �ΣA,GG  (explained in (Yamashita et al., 2021)). If 𝒌𝟏 is a diagonal matrix formed with 

5ΣA,GG 𝜎G2 then we can write: 

 

< 𝑭J >= 𝒌P1𝚺A,o6𝚺A,o + 𝝈27
P1
𝒌1𝒌1P1𝑭A = 𝒌P1𝚺A,o𝒌P1𝒌𝒌1P1𝒌16𝚺A,o + 𝝈27

P1
𝒌1𝑬A    (C26) 

Here we used the notation 𝐸A,G =
RS,T

5áS,TT XT
W
. We recognise that 𝝆o = 𝒌P1𝚺A,o𝒌P1 is the 

correlation matrix between “true” maps, �𝒇𝒔𝒄 = 𝒌𝒌1P1 is the diagonal matrix formed with 
square root of fullmap FSCs, 𝝆A = 𝒌1P1(𝚺A,o + 𝝈2)𝒌1P1 is the correlation matrix between 
observed maps. Now we can write: 
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< 𝑭J >	= 𝝆𝒔	�𝒇𝒔𝒄	𝝆AP1	𝑬A   (C27) 
 
When there is only one map then this formula gives normalised and fsc weighted map. 
Next, we consider the case when N = 2. Then we can write the formulas in an explicit form: 

< 𝑭𝒕 >	= 	𝝆𝒔	�𝒇𝒔𝒄	𝝆AP1𝑬𝒐 =
1

1PâSW
	¬
�𝑓𝑠𝑐1 − �𝑓𝑠𝑐2	𝜌o𝜌A
�𝑓𝑠𝑐1𝜌o − �𝑓𝑠𝑐2𝜌A	

				
−�𝑓𝑠𝑐1𝜌A + �𝑓𝑠𝑐2𝜌o
−�𝑓𝑠𝑐1	𝜌A𝜌o + �𝑓𝑠𝑐2

­ E
𝐸A,1
𝐸A,2

M   (C28) 

And  

< 𝑭𝒕 >	=
1

1PâSW
¬
6�𝑓𝑠𝑐1 − �𝑓𝑠𝑐2	𝜌o𝜌A7𝐸A,1 + 6−�𝑓𝑠𝑐1𝜌A + �𝑓𝑠𝑐2𝜌o7𝐸A,2
6�𝑓𝑠𝑐1𝜌o − �𝑓𝑠𝑐2𝜌A7𝐸A,1 + 6−�𝑓𝑠𝑐1	𝜌A𝜌o + �𝑓𝑠𝑐27𝐸A,2

­   (C29) 

It must be stressed that since correlations are calculated using observed maps and when 
signal to noise ratio is very small then this estimation can vary dramatically. Therefore, for 
accurate estimations we may need to improve the estimation of the correlations, especially 
those between signal components, for example using smoothening or using prior 
knowledge derived from the PDB. 
 
Appendix D 
Use of normalized and weighted maps in local correlation calculation 
In order to compare local correlations calculated using various maps, they need to be 
weighted appropriately in the same way.  
The normalized expected map for a single map according to Bayesian interpretation is  
< 𝐹� >	= 𝑤1𝐹A.   (D1) 

𝐹A is the observed Fourier coefficients, and 𝑤1 = 	
Σo,s

Σo,s+𝜎2
1
𝑘
 in which ΣA,o and 𝜎2 are the 

covariance and the noise variance in the fullmap estimated using half maps in resolution 
bins as explained in Appendix B. 𝑘 is a scale factor that associated with distortions of the 
true signal such as blurring. In the current implementation, 𝑘 is replaced with the standard 
deviation of the observed signal (i.e. 𝑘(𝑠) = �Σ𝑜,𝑠) to yield 

< 𝐹� >	= �𝐹𝑆𝐶;<::𝐸A   (D2) 

where 𝐸A =
RS

5Σo,s+𝜎2
.  

While FSC-type weighting dampening down the noise, the normalisation works as a position 
independent deblurring operation.  
Similar to D1, weights can be assigned on the calculated map as follows:	
𝐹k,äC/å8JCB 	= 𝑤2𝐹k   (D3) 
where 𝐹k are calculated Fourier coefficients. The weights on calculated Fourier coefficients 
should be selected to dampen high resolution frequencies as in the weighted observed 
maps. Otherwise, the variance contribution of calculated high-resolution Fourier coefficients 
will reduce the correlation making it incomparable to that calculated for observed maps. We 
would also like to remove overall B value effect as in (D2). This way correlation in observed 
maps calculated using half maps will be comparable to that calculated between observed 
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and calculated maps. To achieve this, we chose 𝑤2 =
Σo,s

Σo,s+𝜎2
1
𝜎𝑐

  where 𝜎k is the standard 

deviation of calculated Fourier coefficients estimated in the same resolution bins as ΣA,o. 
Choosing such weights is equivalent to scaling 𝐹k and 𝐹A by making their variances equal, 
i.e., 

𝐹k,ok9:CB = 	
5Σo,s+𝜎2

X½
𝐹k   (D4) 

and using the calculated map with the following weights 

𝐹k,äC/å8JCB 	= 5
Σ𝑜,𝑠

Σo,s+𝜎2
R½
X½
= �𝐹𝑆𝐶(𝑓𝑢𝑙𝑙)𝐸k   (D5). 
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