

1 Article Type: Letter

2 Article Title: **Thermal tolerance and preference are both consistent with the clinal
3 distribution of house fly proto-Y chromosomes**

4 Pablo J Delclos^{†,1}, Kiran Adhikari^{†,1}, Oluwatomi Hassan¹, Jessica E Cambric¹, Anna G Matuk¹,
5 Rebecca I Presley¹, Jessica Tran¹, Vyshnika Sriskantharajah^{1,2}, Richard P Meisel¹

6 [†]Co-first author/equal contribution

7 Affiliation: ¹Department of Biology & Biochemistry, University of Houston, Houston, TX, USA

8 Current affiliations:

9 ²University of Texas Health Science Center School of Biomedical Informatics

10 Running Title: Genotypic control of concordant thermal traits

11 Keywords: Thermoregulation, polygenic sex determination, sex chromosomes, *Musca domestica*,
12 genotype-by-environment effects

13

14 **Abstract**

15 Selection pressures can vary within localized areas and across massive geographical
16 scales. Temperature is one of the best studied ecologically variable abiotic factors that can affect
17 selection pressures across multiple spatial scales. Organisms rely on physiological (thermal
18 tolerance) and behavioral (thermal preference) mechanisms to thermoregulate in response to
19 environmental temperature. In addition, spatial heterogeneity in temperatures can select for local
20 adaptation in thermal tolerance, thermal preference, or both. However, the concordance between
21 thermal tolerance and preference across genotypes and sexes within species and across
22 populations is greatly understudied. The house fly, *Musca domestica*, is a well-suited system to
23 examine how genotype and environment interact to affect thermal tolerance and preference.
24 Across multiple continents, house fly males from higher latitudes tend to carry the male-
25 determining gene on the Y chromosome, whereas those from lower latitudes usually have the
26 male-determiner on the third chromosome. We tested whether these two male-determining
27 chromosomes differentially affect thermal tolerance and preference as predicted by their
28 geographical distributions. We identify effects of genotype and developmental temperature on
29 male thermal tolerance and preference that are concordant with the natural distributions of the
30 chromosomes, suggesting that temperature variation across the species range contributes to the
31 maintenance of the polymorphism. In contrast, female thermal preference is bimodal and largely
32 independent of congener male genotypes. These sexually dimorphic thermal preferences suggest
33 that temperature-dependent mating dynamics within populations could further affect the
34 distribution of the two chromosomes. Together, the differences in thermal tolerance and
35 preference across sexes and male genotypes suggest that different selection pressures may affect
36 the frequencies of the male-determining chromosomes across different spatial scales.

37 **Impact Statement**

38 Genetic variation within species can be maintained by environmental factors that vary
39 across the species' range, creating clinal distributions of alleles responsible for ecologically
40 important traits. Some of the best examples of clinal distributions come from temperature-
41 dependent phenotypes, such as thermal tolerance and preference. Although genotype and
42 developmental temperature strongly affect physiological and behavioral traits in ectotherms, the
43 correlation between these traits across genotypes and sexes within species is greatly understudied.
44 We show that two different male-determining chromosomes found in natural populations of
45 house flies affect both thermal tolerance and preference in a way that is concordant with their
46 clinal distributions across latitudes. This provides strong evidence that temperature variation
47 across the species range contributes to the maintenance of the polymorphism. Furthermore, we
48 find evidence that thermal preference is sexually dimorphic, suggesting that temperature-
49 dependent mating dynamics could further affect the distribution of genetic variation in this
50 system. Therefore, at a macro-geographical scale, the differences in thermal tolerance and
51 preference across male genotypes likely contributes to the maintenance of the cline. Within
52 populations, differences in thermal preference likely affect sexual selection dynamics, which may
53 further affect the frequencies of the chromosomes.

54 **Introduction**

55 Ecological variation across a species' range can select for local adaptation within
56 populations, which can contribute to the maintenance of genetic variation by favoring different
57 alleles across the range (Levene, 1953; Felsenstein, 1976; Hedrick *et al.*, 1976; Kawecki & Ebert,
58 2004). In addition, heterogeneous selection pressures that are distributed as a gradual continuum
59 from one end of the species' range to another can create a cline of genetic variation responsible
60 for phenotypes under selection (Slatkin, 1973; Endler, 1977). Some of the best examples of
61 latitudinal clines come from temperature-dependent phenotypes (e.g., body size, developmental
62 rate, and thermal tolerance) that have been well-documented in flies (Partridge *et al.*, 1994;
63 Eanes, 1999; Robinson & Partridge, 2001; Hoffmann *et al.*, 2002). Moreover, heterogeneous
64 selection pressures across a cline may affect males and females differently (Connallon, 2015;
65 Connallon *et al.*, 2019), although the empirical evidence for such variation in sex-specific
66 selection across geographic ranges is mixed (Delcourt *et al.*, 2009; Delph *et al.*, 2011; Allen *et*
67 *al.*, 2017; Lasne *et al.*, 2018).

68 Thermal adaptation within populations and across a species range can occur via selection
69 on physiological, anatomical, or behavioral traits. For example, north-south gradients in heat and
70 cold tolerance have been observed in *Drosophila* (Hoffmann *et al.*, 2002), suggesting
71 physiological adaptation to thermal environments. In addition, ectotherms, such as flies, rely on
72 behavioral mechanisms of thermoregulation by avoiding suboptimal temperatures in search of
73 more optimal ones (Dillon *et al.*, 2009; Kearney *et al.*, 2009), and thermal preference may be
74 correlated with optimal thermal performance (Dawson, 1975; Angilletta *et al.*, 2002).

75 Concordance across genotypes between different thermal traits could reinforce the
76 response to selection, whereas negative correlations could constrain adaptation (Etterson & Shaw,

77 2001). However, it is not clear if physiological and behavioral thermal traits are genetically
78 correlated within a species, between sexes, or across populations (Dawson, 1975; Angilletta *et*
79 *al.*, 2002; Gilbert & Miles, 2017). For example, experiments in *Drosophila subobscura* identified
80 individual chromosomes that affected thermal tolerance or temperature preference, but no single
81 chromosome affected both physiological and behavioral phenotypes (Dolgova *et al.*, 2010; Rego
82 *et al.*, 2010; Castañeda *et al.*, 2019). Furthermore, temperature-dependent traits can affect
83 assortative mating and male reproductive success (Dolgin *et al.*, 2006; Keller & Seehausen,
84 2012), suggesting inter-sexual differences in thermoregulation could affect genetic variation
85 within populations via sexual selection. These sex-specific selection pressures could also
86 contribute to the maintenance of genetic variation via inter-sexual conflict or context-dependent
87 selection (Kotiaho *et al.*, 2001; Rostant *et al.*, 2015; Meisel, 2018). Despite the importance of
88 inter-sexual differences, previous work did not test for differences in the genetic correlation of
89 thermal traits between males and females.

90 We used a sex chromosome polymorphism in the house fly, *Musca domestica*, to
91 investigate the concordance of thermal tolerance and preference across clinally distributed male
92 genotypes. House fly has a polygenic sex determination system, in which a male-determining
93 gene has been mapped to all six chromosomes, some males can carry multiple male-determining
94 chromosomes, and a female-determining allele segregates on one chromosome (McDonald *et al.*,
95 1978; Inoue & Hiroyoshi, 1986; Dübendorfer *et al.*, 2002; Hediger *et al.*, 2010). The *M.*
96 *domestica male determiner* (*Mdmd*) gene is most commonly found on either the third
97 chromosome (III^M) or what was historically referred to as the Y chromosome (Y^M) (Hamm *et al.*,
98 2014; Sharma *et al.*, 2017). Both III^M and Y^M are very young proto-Y chromosomes that are
99 minimally differentiated from their homologous proto-X chromosomes (Meisel *et al.*, 2017; Son

100 *et al.*, 2019; Son & Meisel, 2020). Y^M and III^M are distributed along latitudinal clines on multiple
101 continents in the Northern Hemisphere (Tomita & Wada, 1989; Hamm *et al.*, 2005; Kozielska *et*
102 *al.*, 2008). Y^M is most frequently found at northern latitudes, and III^M is more common at
103 southern latitudes (Figure 1A). This distribution suggests that the Y^M chromosome confers higher
104 fitness in colder climates, and, conversely, III^M confers higher fitness in hotter climates.
105 Therefore, variation in temperature across the species range may create heterogeneous selection
106 pressures that maintain the proto-Y chromosome cline in house fly. Consistent with this
107 hypothesis, seasonality in temperature is the best predictor of the frequencies of the proto-Y
108 chromosomes across natural populations (Feldmeyer *et al.*, 2008).

109 We tested the hypothesis that the Y^M chromosome confers cold-adaptive phenotypes and
110 III^M confers heat-adaptive phenotypes in house fly males, which would be consistent with their
111 latitudinal distributions (Tomita & Wada, 1989; Hamm *et al.*, 2005; Feldmeyer *et al.*, 2008;
112 Kozielska *et al.*, 2008). To those ends, we first evaluated if males carrying the III^M chromosome
113 (hereafter III^M males) have greater tolerance to extreme heat and if males carrying the Y^M
114 chromosome (Y^M males) have greater cold tolerance. Second, we tested if III^M males prefer
115 warmer temperatures than Y^M males, and if males and females differ in their thermal preference.
116 We performed all experiments using flies raised at multiple developmental temperatures because
117 thermal acclimation strongly affects temperature-dependent phenotypes in flies and other
118 ectotherms (Krstevska & Hoffmann, 1994; Dillon *et al.*, 2009). Together, we evaluated if thermal
119 preference and tolerance are aligned for sex-linked genetic variants, tested if this alignment is
120 consistent with the geographic distribution of the proto-Y chromosomes, and then discuss how
121 these temperature-dependent phenotypes could affect the access of males to female mates.

122 **Materials and methods**

123 ***Fly strains and rearing***

124 We performed our experiments using five nearly isogenic house fly strains, three with
125 III^M males and two with Y^M males (Supplementary Methods). All five strains have a common
126 genetic background from an inbred III^M strain that was produced from a mixture of flies collected
127 across the United States (Scott *et al.*, 1996; Hamm *et al.*, 2005). Each of the three III^M strains
128 carries a different III^M chromosome from a separate wild-derived line, and, likewise, the two Y^M
129 strains carry different Y^M chromosomes. Each strain is fixed for its proto-Y chromosome (either
130 III^M or Y^M), and no other sex determiners, such as the female-determining *Md-tra^D* allele
131 (Hediger *et al.*, 2010), segregate within these strains.

132 We reared each strain at 18°C, 22°C, and 29°C for two generations in order to evaluate
133 how thermal acclimation affects thermal tolerance (Chown & Terblanche, 2006) and thermal
134 preference (Krstevska & Hoffmann, 1994; Dillon *et al.*, 2009). Flies from each developmental
135 temperature were assayed at equivalent physiological ages estimated by accumulated degree days
136 (Barnard & Geden, 1993; Wang *et al.*, 2018). For our heat and cold tolerance assays, we used
137 flies 22–50 total degree days after eclosion. For thermal preference assays, we used flies 96–115
138 total degree days after eclosion. Additional details and calculations are provided in the
139 Supplementary Methods.

140 ***Thermal tolerance***

141 We measured heat and cold tolerance in individual male and female house flies. To
142 measure heat tolerance, lightly anaesthetized individual flies were transferred to a 1.5 ml
143 centrifuge tube that was sealed with fabric. We placed the 1.5 ml tube in a heat block set to 53°C.

144 This temperature was selected because it is the lowest at which heat tolerance could be measured
145 in a reasonable period of time. The time at which a fly fell to the bottom of the tube and could not
146 make its way back to the top was considered the knockdown time. To measure cold tolerance,
147 lightly anaesthetized flies were transferred to a fabric-sealed 20 ml glass vial individually, and the
148 vials were placed in a 4°C refrigerator with a transparent door. Knockdown occurred when a fly
149 fell on its back to the bottom of the vial. We gently tapped the assay vial every 2–3 minutes to
150 ensure flies were active.

151 For both heat and cold tolerance assays, we performed an analysis of variance (ANOVA)
152 using the `lmer()` function in the `lme4` (v1.1) R package (Bates *et al.*, 2015) to model the effect of
153 genotype (G: Y^M vs III^M), developmental temperature (T: 18°C or 29°C), and their interaction on
154 knockdown time (K):

155
$$K \sim G + T + G \times T + B + S,$$

156 with experimental batch (B) and strain (S) treated as random effects. We also constructed another
157 model excluding the interaction term:

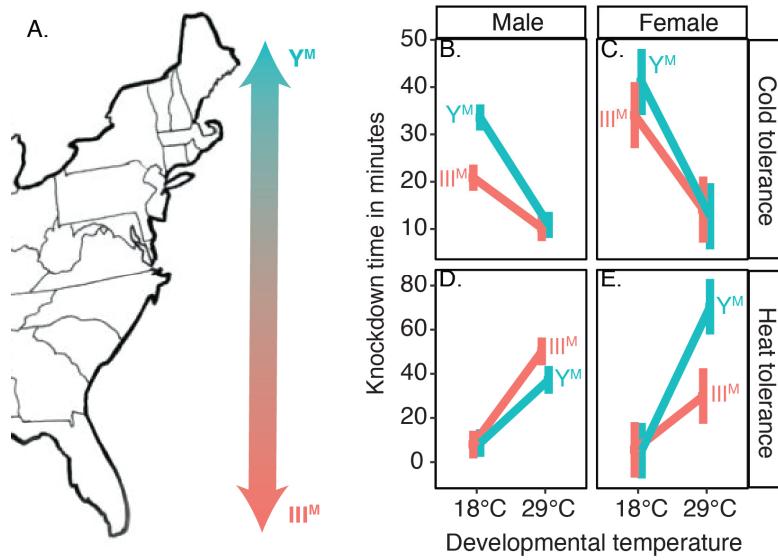
158
$$K \sim G + T + B + S.$$

159 We then used a drop in deviance test to compare the fit of the models with and without the
160 interaction term using the `anova()` function in R. We also compared heat and cold tolerance
161 between males raised at 22°C and 29°C, using the same approaches as described above. As the
162 thermal tolerance comparisons between flies raised at 18°C and 29°C and between flies raised at
163 22°C and 29°C were conducted in separate experimental batches, we analyzed each comparison
164 separately. Additional details are provided in the Supplementary Methods.

165 ***Thermal preference***

166 We measured thermal preference as the position of individual flies along a 17–37°C
167 thermal gradient (Figure S1), following a slightly modified version of previous protocols
168 (Anderson *et al.*, 2013; Lynch *et al.*, 2018). For each individual fly, we report mean thermal
169 preference (T_{pref}) as the average position during a 10 minute assay window (measured once per
170 minute). We also report thermal breadth, T_{breadth} (Carrascal *et al.*, 2016), as the coefficient of
171 variation of individual-level T_{pref} during the assay window. T_{breadth} provides an estimate of how
172 individuals utilize thermal space within their environment (Slatyer *et al.*, 2013). Choosier
173 individuals show a lower T_{breadth} value and, thus, would be expected to occupy a narrower range
174 of temperatures within a given thermal habitat.

175 To determine the effects of developmental temperature (18°C, 22°C, and 29°C), genotype
176 (Y^M and III^M), and their interaction on mean T_{pref} across sexes, we created a mixed-effects model
177 using the lme4 package (v1.1) in R (Bates *et al.*, 2015). Developmental temperature, genotype,
178 and their interaction were included as fixed effects, and strain, batch, and lane in the thermal
179 gradient (L) were included as random effects:


$$180 \quad T_{\text{pref}} \sim G + T + G \times T + B + S + L.$$

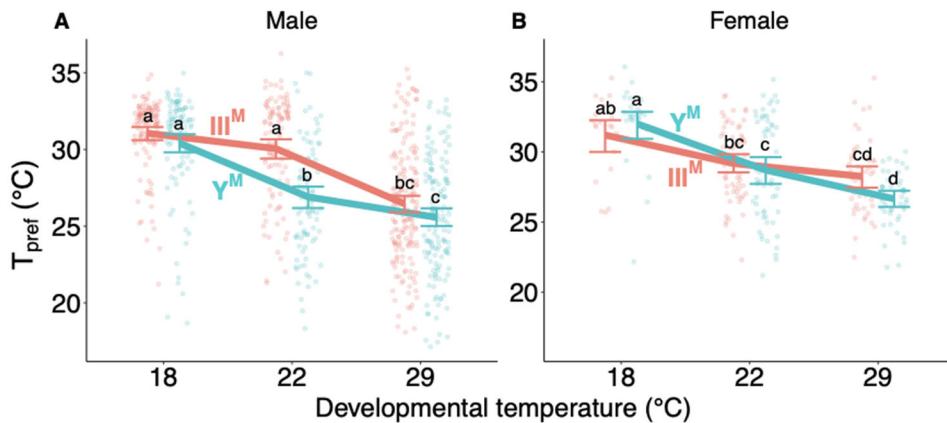
181 We did the same for T_{breadth} . We then determined whether groups significantly differed in T_{pref} or
182 T_{breadth} using Tukey contrasts with the multcomp package (v1.4) in R (Hothorn *et al.*, 2008).
183 Within developmental temperature treatments, we used Bayesian information criterion (BIC)
184 scores from the mclust (v5.4.5) package in R (Scrucca *et al.*, 2016) to determine whether the
185 distribution of individual measures of T_{pref} within a group are best explained by one or multiple
186 normal distributions.

187 **Results**

188 ***Thermal tolerance depends on developmental temperature and male genotype***

189 We measured extreme heat (53°C) and cold (4°C) tolerance as a readout of differences in
190 physiological thermal adaptation between Y^M and III^M house fly males. We observed the
191 expected effect of acclimation on both heat and cold tolerance (Chown & Terblanche, 2006): flies
192 raised at 18°C tolerate cold longer than the flies raised at 29°C, and flies raised at 29°C tolerate
193 heat longer than flies raised at 18°C (Figure 1). We also find that Y^M males are more cold
194 tolerant, and III^M males are more heat tolerant, consistent with the latitudinal distributions of Y^M
195 and III^M males in nature (Tomita & Wada, 1989; Hamm *et al.*, 2005; Feldmeyer *et al.*, 2008;
196 Kozielska *et al.*, 2008). However, the effect of genotype on thermal tolerance depends on
197 acclimation temperature. Specifically, a linear model with an interaction between genotype (Y^M
198 or III^M) and developmental temperature fits the cold tolerance data significantly better than a
199 model without the interaction term ($\chi^2_1 = 19.3, p = 1.1 \times 10^{-5}$). This provides evidence for a G×T
200 effect on cold tolerance—Y^M males are more cold tolerant than III^M males, but only if they are
201 raised at 18°C (Figure 1B). There is also a significant G×T interaction affecting heat tolerance
202 ($\chi^2_1 = 4.71, p = 0.030$ comparing models with and without the interaction term): III^M males are
203 more heat tolerant than Y^M males, but only if raised at 29°C (Figure 1D).

204


205 **Figure 1** - Thermal tolerance in males and females. (A) Map of the eastern United States,
206 showing the cline of Y^M (more common in the north) and III^M (more common in the south). (B–
207 E) Graphs show the effect of developmental temperature on knockdown time at either 4°C (cold
208 tolerance) or 53°C (heat tolerance) for Y^M (turquoise) and III^M (salmon) male flies. Proto-Y
209 chromosome labels for females reflect whether males from the strain carry the Y^M or III^M
210 chromosome. Mean knockdown time is plotted for each combination of genotype and
211 temperature. Error bars represent standard error.

212

213 We next attempted to identify a threshold temperature for the genotype-specific benefits
214 of acclimation by comparing heat and cold tolerance of flies raised at 22°C and 29°C (instead of
215 18°C and 29°C). We did not observe a significant effect of the interaction between developmental
216 temperature and male genotype on extreme cold tolerance ($\chi^2_1 = 0.947, p = 0.331$ comparing
217 models with and without an interaction term) (Figure S2). We therefore hypothesize that there is
218 a threshold temperature between 18°C and 22°C, below which Y^M males experience a greater

219 benefit of cold acclimation than III^M males. In contrast, there is a significant interaction between
220 genotype and developmental temperature on heat tolerance when comparing males raised at 22°C
221 and 29°C ($\chi^2_1 = 11.02, p = 9.0 \times 10^{-4}$ comparing models with and without the interaction term)
222 (Figure S2). Therefore, the threshold for a genotype-specific benefit from heat acclimation lies
223 between 22°C and 29°C.

224 We do not expect any difference in heat or cold tolerance across females from our
225 different strains because all females have the same genotype, regardless of the male genotype in
226 the strain. Indeed, a model with an interaction between developmental temperature and male
227 genotype does not fit the female cold tolerance data better than a model without the interaction
228 term ($\chi^2_1 = 1.46, p = 0.23$) (Figure 1C). There is a significant effect of developmental temperature
229 on cold tolerance in females ($\chi^2_1 = 43.5, p = 4.3 \times 10^{-11}$ comparing a model with and without
230 developmental temperature), demonstrating that females benefit from cold acclimation regardless
231 of male genotype (Figure 1C). Surprisingly, there is a significant interaction between male
232 genotype and developmental temperature on heat tolerance in females ($\chi^2_1 = 10.4, p = 0.0013$
233 comparing a model with and without the interaction term). In general, females raised at warmer
234 temperatures are more heat tolerant (Figure 1E). However, the interaction of male genotype and
235 developmental temperature is in the opposite direction from what would be expected based on the
236 latitudinal distribution of Y^M and III^M: females from strains with Y^M males that are raised at 29°C
237 are more heat tolerant than females from III^M strains raised at 29°C (Figure 1E). We thus
238 conclude that the heat and cold tolerance differences between Y^M and III^M males are specific to
239 males and/or the proto-Y chromosomes (i.e., not genetic background) because we do not observe
240 the same heat or cold tolerance differences in females from those strains (who do not carry the
241 proto-Y chromosomes).

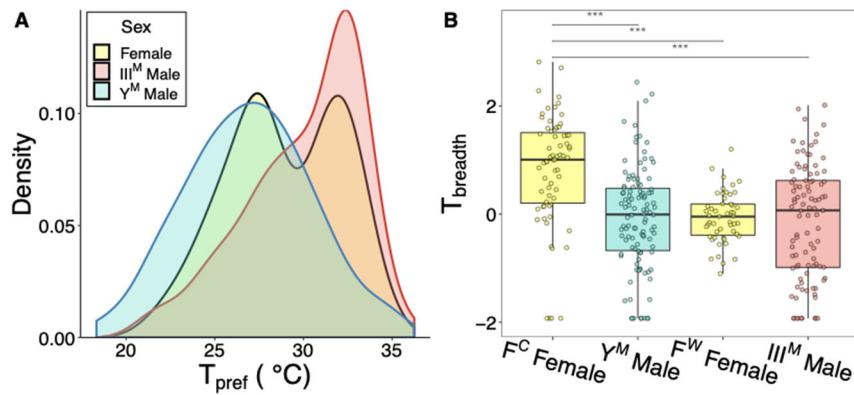
242

243 **Figure 2** - Thermal preference (T_{pref}) of (A) male and (B) female house flies according to male
244 genotype (III^M = salmon points and line, Y^M = turquoise points and line) and developmental
245 temperature. Each point depicts the mean thermal preference for an individual fly, with lines and
246 error bars denoting means within groups and standard errors of the mean, respectively.
247 Significant differences between groups are denoted by letters, with differing letters highlighting
248 significantly different mean thermal preferences within each graph (Tukey's *post hoc* test, $p <$
249 0.05).

250 ***Thermal preference depends on developmental temperature and male genotype***

251 We next tested if genotype and developmental temperature affect thermal preference
252 (T_{pref}). First, we find that T_{pref} is inversely proportional to developmental temperature (Figure 2),
253 with house flies that develop at a warmer temperature preferring cooler temperatures (and *vice
254 versa*), regardless of sex (male: $F_{2, 742.7} = 138.4, p < 1.0 \times 10^{-5}$; female: $F_{2, 245.3} = 37.1, p = 1.19 \times
255 10^{-4}$; Figure 2). This is consistent with how developmental acclimation affects T_{pref} in *Drosophila*
256 (Dillon *et al.*, 2009).

257 We also find that male proto-Y chromosome genotype (Y^M vs III^M) affects T_{pref} ($F_{1, 756.2} = 44.5, p < 1.0 \times 10^{-5}$). There is also a significant interaction effect between developmental


259 temperature and genotype on T_{pref} in males ($F_{2, 756.3} = 8.47, p = 2.31 \times 10^{-4}$, Figure 2A). Male T_{pref}
260 is similar across genotypes when they develop at either 18°C or 29°C. However, when reared at
261 22°C, III^M males prefer warmer temperatures than Y^M males (Tukey's *post hoc* test, $p < 0.001$).
262 This is consistent with III^M males being more common at lower latitudes (where average
263 temperatures are warmer), and Y^M males more common at higher latitudes (Tomita & Wada,
264 1989; Hamm *et al.*, 2005; Feldmeyer *et al.*, 2008; Kozielska *et al.*, 2008). We do not expect
265 differences in T_{pref} in females across strains because all females have the same genotype. Indeed,
266 the genotype of males in a strain (Y^M vs III^M) and the interaction between male genotype and
267 female developmental temperature showed no significant effect on T_{pref} in females (ANOVA, all
268 $p > 0.1$ in Figure 2B). We assayed more males than females in our thermal preference
269 experiments, and so we repeated our analysis by down-sampling the data to have equal numbers
270 of individuals across treatments. The down-sampled data give equivalent results to the full data
271 set (Supplementary Results).

272 ***Thermal breadth depends on sex and thermal preference***

273 We used thermal breadth (T_{breadth}) as a measure of the specificity of T_{pref} . Male T_{breadth} was
274 not significantly affected by either developmental temperature, genotype, or the interaction
275 between genotype and developmental temperature (ANOVA, all $p > 0.1$, Figure S3A). In
276 contrast, developmental temperature ($F_{2, 236.9} = 16.5, p < 1.0 \times 10^{-5}$), as well as the interaction
277 between developmental temperature and male genotype ($F_{2, 243.6} = 5.35, p = 0.005$), had
278 significant effects on T_{breadth} in females. However, the significant interaction is of small effect, as
279 females from strains with differing male genotypes do not significantly differ in T_{breadth} within
280 any developmental temperature treatment (Figure S3B).

281

282

283 **Figure 3** - Thermal breadth (T_{breadth}) depends on male genotype and sex. (A) Distribution of
284 individual-level mean thermal preferences (T_{pref}) of III^M males, Y^M males, and pooled females
285 that developed at 22°C. Y-axis represents relative density of data points and is analogous to
286 frequency of data points for a given T_{pref} value. (B) T_{breadth} of individuals raised at 22°C according
287 to group (F^C = cold-preferring females, F^W = warm-preferring females). Boxplots denote median
288 values and lower- and upper- quartiles. Asterisks denote significant differences in T_{breadth} between
289 groups (***: Tukey's *post hoc* test, $p < 0.01$).
290

291 The effect of developmental temperature on T_{breadth} in females is driven by increased
292 variance in T_{pref} when females develop at 22°C. The increased variance in female T_{pref} can be
293 explained by a mixture of two normal distributions (Figure 3A, see Table S1 for statistics). This
294 bimodal distribution is not a result of differences across strains because the same pattern was
295 observed among females separately analyzed based on male genotype (Figure S4). In
296 comparison, a single normal distribution best fit Y^M male T_{pref} when developed at 22°C, and two
297 normal distributions best explained the III^M male T_{pref} when developed at 22°C. Upon inspection,
298 however, the two distributions representing III^M male T_{pref} likely correspond to the tail (mean of

299 28.7°C and large variance of 10.4°C) and peak (mean of 32.6°C and small variance of 0.4°C) of a
300 single skewed distribution, which we are unable to detect using the mclust package we used to fit
301 distributions to our data.

302 We used our model-based clustering analysis of T_{pref} to classify individuals that developed
303 at 22°C into one of four groups: Y^M males (lower T_{pref}), III^M males (higher T_{pref}), females with
304 cooler T_{pref} (F^C females, 59.3% of females tested), and females with warmer T_{pref} (F^W females,
305 40.7% of females tested). The mean T_{pref} of F^C females (26.90°C) is nearly equal to the mean T_{pref}
306 of Y^M males (26.87°C; Figure 3A). Similarly, the mean T_{pref} of F^W females (32.2°C) is near the
307 mode of the T_{pref} of III^M males (32.0–32.5°C; Figure 3A).

308 We further find that T_{pref} is predictive of T_{breadth} for flies that develop at 22°C. We
309 considered flies from our four T_{pref} groups (Y^M males, III^M males, F^C females, and F^W females),
310 and we found a significant effect of group on T_{breadth} ($F_{3, 32.9} = 9.40, p = 1.24 \times 10^{-4}$). Specifically,
311 F^C females have significantly greater T_{breadth} than all other groups (Tukey's *post hoc* test, all $p <$
312 1.0×10^{-5} , Figure 3B). Therefore, if we consider T_{breadth} as a measure of the strength of T_{pref} , adult
313 house flies can be summarized by one of three phenotypes related to thermal behavior when
314 developed at 22°C: a relatively strong preference for warm temperatures (III^M males and F^W
315 females, which have high T_{pref} and low T_{breadth}), a strong preference for cooler temperatures (Y^M
316 males, with low T_{pref} and low T_{breadth}), and a relatively weak preference for cooler temperatures
317 (F^C females, with low T_{pref} and high T_{breadth}). Down-sampling the data gives similar results as the
318 full data set (Supplementary Material).

319 **Discussion**

320 We tested if thermal tolerance and preference depend on sex and male genotype in house
321 flies. We find that males carrying the Y^M chromosome (which is common in the northern end of
322 the species' range) are more cold tolerant and prefer colder temperatures. Conversely, males
323 carrying the III^M chromosome (which is common in the southern end of the species' range) are
324 more heat tolerant and prefer warmer temperatures. Our results are therefore consistent with the
325 general trend that temperate populations are typically more cold-tolerant than (sub-) tropical ones
326 (Gibert & Huey, 2001; Hoffmann *et al.*, 2002). The differences in thermal preference are
327 consistent with the idea that behavioral thermoregulation can weaken selection for thermal
328 tolerance, as predicted by the “Bogert Effect” (Huey *et al.*, 2003; Huey & Pascual, 2009;
329 Castañeda *et al.*, 2013). However, the fact that thermal preference and tolerance are both
330 predicted by male genotype provides evidence that these traits are responsive to selection,
331 suggesting any Bogert effects are not sufficient to overwhelm thermal adaptation. These
332 differences in thermal tolerance and preference in males depend on developmental temperature,
333 and they are not observed in congener females from the same strains (who do not carry the Y^M or
334 III^M chromosome). However, females exhibit a bimodal T_{pref} , with females from each of the two
335 subgroups overlapping with one of the male genotypes.

336 ***Thermal tolerance and preference depend on developmental temperature, genotype, and sex***

337 Our results demonstrate, to the best of our knowledge, the first documented example of
338 concordant temperature preference, cold tolerance, and heat tolerance across genotypes within a
339 species. We find that Y^M males both have greater cold tolerance and prefer colder temperatures,
340 whereas III^M males have greater heat tolerance and prefer warmer temperatures (Figures 1 and 2),

341 consistent with their latitudinal distributions (Tomita & Wada, 1989; Hamm *et al.*, 2005;
342 Feldmeyer *et al.*, 2008; Kozielska *et al.*, 2008). Previous work has identified concordant T_{pref} and
343 heat tolerance differences across species (Qu *et al.*, 2011), or found no clear relationship between
344 thermal tolerance and preference across genotypes within species (Yang *et al.*, 2008; Rego *et al.*,
345 2010; Castañeda *et al.*, 2019). Body size is also predicted to vary with thermal traits (Leiva *et al.*,
346 2019). In our study, we did not measure insect body size. While we did not observe any obvious
347 differences between strains, it is possible that some of the genotypic effect on thermal tolerance
348 or preference we observed is due to (temperature-dependent) morphological differences between
349 Y^M and III^M males. Future studies should directly test this hypothesis.

350 We observed strong effects of developmental temperature on both thermal tolerance and
351 preference that depend on both genotype and sex. Acclimation effects on heat and cold tolerance
352 (Figure 1) are well-documented for ectotherms, including flies and other insects (Bowler &
353 Terblanche, 2008). An inverse relationship between developmental temperature and thermal
354 preference has also been observed in other flies (Dillon *et al.*, 2009; Castañeda *et al.*, 2013).
355 Behaviorally navigating towards compensatory temperatures could serve as a means of mitigating
356 the costs of thermally suboptimal development (i.e., too hot or too cold). The observed
357 relationships between thermal tolerance and developmental temperatures are likely to be caused
358 by acclimation and unlikely to be the result of natural selection within our experiment for two
359 reasons. First, there is unlikely to be sufficient genetic variation in these inbred strains for
360 selection to generate these results within 2 generations. Second, prior attempts at selecting for
361 thermal tolerance in house flies resulted in negligible differences in tolerance across
362 developmental temperatures (Geden *et al.*, 2019) However, it is worth noting that the males used
363 by Geden et al. (2019) were likely all III^M based on their geographic origin. Had the experimental

364 population consisted of both III^M and Y^M males, a response to tolerance may have been detected.
365 We conclude that the differences in thermal tolerance (and preference) between Y^M and III^M
366 males have evolved across the natural populations from which we sampled the Y^M and III^M
367 chromosomes.

368 There are important methodological implications for our observation that variation in
369 thermal preference across genotypes depends on developmental temperature. We only observe
370 warmer (colder) thermal preferences in III^M (Y^M) males when developed at 22°C; thermal
371 preference did not differ between male genotypes when raised at more extreme (18°C, 29°C)
372 temperatures (Figure 2A). Previous studies attempting to estimate genetic variance in thermal
373 preference within or among populations of *Drosophila* have had mixed results. While some
374 studies identified genetic variance among populations within species (Good, 1993; Castañeda *et*
375 *al.*, 2013), others did not detect substantial variance within (Krstevska & Hoffmann, 1994) or
376 among species (MacLean *et al.*, 2019). Our results show that the phenotypic presentation of
377 genetic variation for thermal preference can depend on the environmental conditions experienced,
378 which could explain why this variance was not detected in other experiments. In addition, while
379 the genetic mechanisms that regulate thermal tolerance in other systems have been extensively
380 studied (Svetec *et al.*, 2011; Königer & Grath, 2018; Königer *et al.*, 2019), it is possible that
381 some of the molecular pathways involved will only be revealed through experiments conducted
382 across developmental temperatures.

383 We identify multiple differences between males and females in their thermal tolerance
384 and preferences. The strain differences we observed are primarily limited to males, which is
385 expected because the males differ in genotypes (Y^M and III^M) but females are isogenic (Meisel *et*
386 *al.*, 2015). However, there is a difference in heat tolerance between females from strains with Y^M

387 males and females from strains with III^M males (Figure 1). While we can rule out certain
388 genotypic explanations for this difference (i.e., all females are isogenic and do not carry *Md-*
389 *tra*^D), we do not yet have a mechanistic explanation on why females show the opposite
390 developmental heat tolerance from males. Nevertheless, the difference in heat tolerance observed
391 between females from different strains is in the opposite direction as between Y^M and III^M males
392 from those strains. This helps us to conclude that differences between Y^M and III^M males are
393 indeed a result of different proto-Y chromosomes rather than their genetic backgrounds. In other
394 words, the difference in heat tolerance between females is an exception that proves the rule with
395 respect to the effects of proto-Y chromosomes on male thermal tolerance and preference.

396 We identified a female-specific plasticity for thermal preference that does not map to male
397 genotype. In females, we found that neither thermal tolerance nor thermal preference differ
398 predictably between strains where males carry different proto-Y chromosomes (Figures 1C, E and
399 2B). However, there is a bimodal thermal preference for females that develop at 22°C (Figure
400 3A), regardless of congener male genotype. In addition, females that had colder T_{pref} when
401 developed at 22°C also had a larger T_{breadth} (Figure 3B). In small ectotherms with little thermal
402 inertia, measures of movement along a thermal gradient (such as T_{breadth}) are predicted to be
403 positively correlated with environmental temperature (Anderson *et al.*, 2007). However, we
404 observe the opposite relationship between mean environmental temperature (T_{pref}) and T_{breadth} in
405 females (Figure 3), suggesting that the difference in T_{breadth} cannot be explained by thermal
406 inertia. Our results suggest that, in nature, females with colder temperature preferences may
407 occupy a wider range of temperatures than females with warmer temperature preferences.
408 Because all females in our experiment are expected to have the same genotype, we hypothesize
409 that these differences in T_{pref} and T_{breadth} are conferred by a plastic response to some yet to be

410 characterized factor (e.g., microclimates within larval rearing containers). Alternatively, this
411 plasticity could have a stochastic origin that is intrinsic to the development of thermal preference
412 (Honegger & de Bivort, 2018; Jensen, 2018).

413 The correlation between thermal preference and thermal breadth at 22°C is female-
414 specific: Y^M and III^M males have similar $T_{breadth}$ values when raised at 22°C despite their
415 differences in T_{pref} . Although general sex differences in thermal tolerance (Hoffmann et al. 2005)
416 and thermal preference (Krstevska and Hoffmann 1994) have been documented, this is the first
417 study, to our knowledge, to identify sex differences in the relationship between thermal
418 preference and thermal breadth. Our results suggest that male and female house flies exhibit
419 different thermoregulatory behavioral patterns which may further be influenced by genotype.
420 Directly identifying a sex-by-genotype-by-environment interaction is beyond the scope of this
421 study because sex and genotype are confounded in our experimental design (the females in our
422 experiment have a different genotype from either male, characterized by a lack of either the III^M
423 or Y^M chromosome). Nonetheless, the house fly is a tractable system for directly testing for sex-
424 specific genotype-by-environment interactions on thermoregulation. For example, future work
425 could test for sex-specific effects of Y^M and III^M by measuring phenotypes in females carrying a
426 proto-Y chromosome along with the epistatic female-determining *Md-tra^D* allele (Hediger et al.,
427 2010; Hamm et al., 2014).

428 ***Environmental heterogeneity and the maintenance of polygenic sex determination***

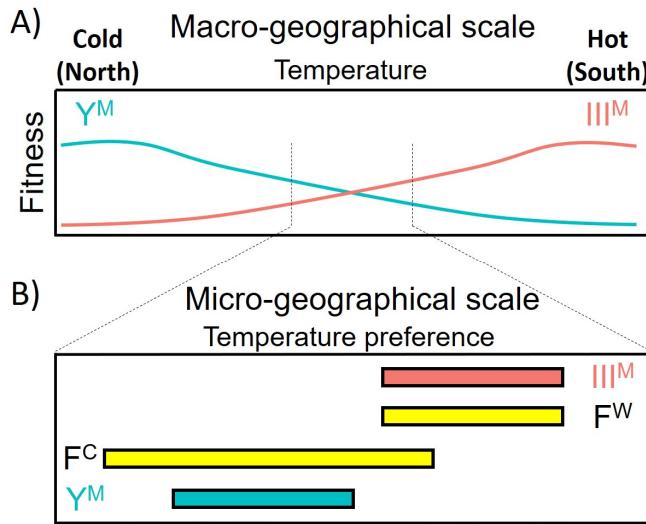
429 Sex determination pathways rapidly diverge across species, driving evolutionary turnover
430 of sex chromosomes (Bull, 1983; Beukeboom & Perrin, 2014). Polygenic sex determination
431 systems, in which more than one master sex determining locus segregate independently on

432 different chromosomes, have been observed in multiple animal species (Moore & Roberts, 2013).
433 Most population genetic models that attempt to explain the stable maintenance of polygenic sex
434 determination focus on sexually antagonistic effects of sex determining loci or linked alleles on
435 sex chromosomes (Rice, 1986; van Doorn & Kirkpatrick, 2007; Kozielska *et al.*, 2010; Meisel *et*
436 *al.*, 2016). Less attention has been given to ecological factors that can maintain polygenic sex
437 determination (Pen *et al.*, 2010; cf. Bateman & Anholt, 2017).

438 Our results demonstrate how spatially variable ecological factors can maintain polygenic
439 sex determination. Specifically, thermal tolerance and preference phenotypes conferred by the Y^M
440 and III^M chromosomes (Figures 1 and 2) are consistent with the clinal and temperature-dependent
441 distributions of the Y^M and III^M chromosomes (Tomita & Wada, 1989; Hamm *et al.*, 2005;
442 Feldmeyer *et al.*, 2008; Kozielska *et al.*, 2008). Previous experiments identified multiple fitness
443 advantages conferred by the III^M chromosome over Y^M at warmer temperatures, including an
444 increase in frequency of III^M over generations in a laboratory population (Hamm *et al.*, 2009).
445 However, these fitness differences can only explain the invasion or fixation of the III^M
446 chromosome, not the maintenance of the polymorphism. In contrast, differences in thermal
447 tolerance and preference could maintain proto-Y chromosome polymorphism across the species'
448 range, similar to how selection maintains other clinal variation (Slatkin, 1973; Endler, 1977).

449 The house fly system reveals how temperature variation can contribute to the maintenance
450 of polygenic sex determination independently of selection on the sex-determination pathway
451 itself. Temperature is an important contributor to the evolution of sex determination pathways in
452 vertebrates (Bull & Vogt, 1979; Holleley *et al.*, 2015). However, the effects of the house fly
453 proto-Y chromosomes on thermal tolerance and preference likely act independently of the sex
454 determination pathway because there are not differences in the expression of sex determination

455 genes across house fly male genotypes raised at different temperatures in a way that is consistent
456 with their clinal distribution (Adhikari *et al.*, n.d.). This suggests that the effects of the Y^M and
457 III^M chromosomes on thermal phenotypes is a result of alleles on proto-Y chromosomes that are
458 genetically linked to the male-determining locus, as opposed to the male-determiner itself.
459 Therefore, our results highlight how temperature can be important for the evolution of sex
460 determination independently of temperature-dependent activity of the sex determination pathway.
461 Future theoretical work should consider the effect of spatially heterogeneous selection pressures
462 on the maintenance of polygenic sex determination, similar to how temporal heterogeneity can
463 create fluctuating selection pressures that maintain polygenic sex determination (Bateman &
464 Anholt, 2017).


465 ***Selection on thermal phenotypes may depend on geographical scale***

466 Our results suggest that selection on thermal traits differs between macro-geographic
467 species ranges and at a micro-geographical scale within populations. Similar differences in
468 selection pressures according to geographic scale have been documented before in other species
469 (Richter-Boix *et al.*, 2010; De Block *et al.*, 2013; Tüzün *et al.*, 2017). Thermal tolerance and
470 preference in male house flies depend on proto-Y chromosomes genotype in a way that is
471 consistent with the latitudinal distribution of the Y^M and III^M chromosomes (Figures 1 and 2).
472 This suggests that, at the macro-geographic scale, selection is operating on male physiology and
473 behavior to create or maintain the clinal distribution of Y^M and III^M (Figure 4A). It is also worth
474 noting that our study focuses on only two male genotypes (III^M and Y^M). While these are the most
475 prevalent genotypes in the eastern United States, other genotypes exist (including males with
476 multiple proto-Y chromosomes, and females with proto-Y and proto-W chromosomes) and are

477 common in other populations (Franco *et al.*, 1982; Feldmeyer *et al.*, 2008; Hamm & Scott, 2009;
478 Hamm *et al.*, 2014). Future studies should characterize thermal tolerance and preference of these
479 other genotypes in order to determine whether their geographical distribution is similarly
480 explained by thermal biology.

481 At an intermediate developmental temperature (22°C), female thermal preference is
482 bimodal for a reason that we have yet to determine (Figure 3A). This raises the possibility that
483 within populations near the center of the cline (i.e., at a micro-geographic scale), where Y^M and
484 III^M both segregate (e.g., Hamm & Scott, 2008; Meisel *et al.*, 2016), sexual selection may favor
485 males that can preferentially obtain access to the two different female phenotypes. While
486 differences in thermal preference probably did not evolve in response to sexual selection, these
487 differences do likely have important consequences on the reproductive success of III^M and Y^M
488 males where they co-occur. III^M males may disproportionately benefit from differences in T_{pref}
489 and $T_{breadth}$ between males and females. F^C females that prefer colder temperatures have greater
490 $T_{breadth}$ than warm preferring F^W females and both male genotypes (Figure 3B), suggesting that F^C
491 females occupy a wider range of thermal habitats. Thus, III^M males may gain an advantage by
492 having greater access to F^W females, as well as occasional access to F^C females, in contrast to Y^M
493 males who would only be likely to encounter F^C females (Figure 4B). This raises the possibility
494 that differences in thermal preference across genotypes and sexes could affect the dynamics of
495 sexual selection.

496

497

498 **Figure 4** - Selection on the III^M and Y^M chromosomes likely differs across geographic scales. (A)
499 At the macro-geographical scale, selection for thermal tolerance and/or thermal preference results
500 in the clinal distribution of the Y^M (turquoise) and III^M (salmon) chromosomes. (B) At
501 intermediate developmental temperatures, male genotypes (Y^M vs III^M) differ in thermal
502 preference, which may create asymmetrical mating opportunities because of variation in female
503 thermal preference and breadth (F^C vs F^W). The asymmetry of the overlap of males and females at
504 the intermediate developmental temperature could affect sexual selection in populations where
505 Y^M and III^M both segregate.

506

507 **Acknowledgements**

508 Tin Nguyen, Chantalle Vincent, and Mandy Cao assisted with experiments. This material
509 is based upon work supported by the National Science Foundation under Grant No. DEB-
510 1845686. Any opinions, findings, and conclusions or recommendations expressed in this material
511 are those of the authors and do not necessarily reflect the views of the National Science
512 Foundation.

513 **Author Contributions**

514 PD, KA, and RM conceived and designed the study. KA, OH, VS, and JC collected, and
515 KA analyzed, all thermal tolerance data. PD, RP, JT, and AM collected, and PD analyzed, all
516 thermal preference data. PD, KA, and RM wrote the manuscript, and all authors reviewed the
517 manuscript prior to submission.

518 **Data Accessibility**

519 All data files used for analyses described in this manuscript have been deposited in Dryad
520 (doi:10.5061/dryad.n2z34tmvs). Raw video and image files from thermal preference assays are
521 available from the authors upon request.

522

523 **References**

524 Adhikari, K., Son, J.H., Rensink, A.H., Jaweria, J., Bopp, D., Beukeboom, L.W., *et al.* (n.d.) Temperature-
525 dependent effects of house fly proto-Y chromosomes on gene expression act independently of the sex
526 determination pathway.

527 Allen, S.L., Bonduriansky, R., Sgro, C.M. & Chenoweth, S.F. (2017) Sex-biased transcriptome divergence
528 along a latitudinal gradient. *Molecular ecology*, **26**, 1256–1272.

529 Anderson, J.L., Albergotti, L., Proulx, S., Peden, C., Huey, R.B. & Phillips, P.C. (2007) Thermal
530 preference of *Caenorhabditis elegans*: a null model and empirical tests. *The Journal of experimental
531 biology*, **210**, 3107–3116.

532 Anderson, R.D., Blanford, S. & Thomas, M.B. (2013) House flies delay fungal infection by fevering: at a
533 cost. *Ecol. Entomol.*, **38**, 1–10.

534 Angilletta, M.J., Hill, T. & Robson, M.A. (2002) Is physiological performance optimized by
535 thermoregulatory behavior?: a case study of the eastern fence lizard, *Sceloporus undulatus*. *J. Therm.
536 Biol.*, **27**, 199–204.

537 Barnard, D.R. & Geden, C.J. (1993) Influence of larval density and temperature in poultry manure on
538 development of the house fly (Diptera: Muscidae). *Environmental entomology*, **22**, 971–977.

539 Bateman, A.W. & Anholt, B.R. (2017) Maintenance of polygenic sex determination in a fluctuating
540 environment: an individual-based model. *Journal of evolutionary biology*, **30**, 915–925.

541 Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015) Fitting linear mixed-effects models using lme4. *J.
542 Stat. Soft.*, **67**, 1–48.

543 Beukeboom, L.W. & Perrin, N. (2014) *The Evolution of Sex Determination*. Oxford University Press, New
544 York, NY.

545 Bowler, K. & Terblanche, J.S. (2008) Insect thermal tolerance: what is the role of ontogeny, ageing and
546 senescence? *Biological reviews of the Cambridge Philosophical Society*, **83**, 339–355.

547 Bull, J.J. (1983) *Evolution of Sex Determining Mechanisms*. Benjamin/Cummings, Menlo Park, CA.

548 Bull, J.J. & Vogt, R.C. (1979) Temperature-dependent sex determination in turtles. *Science*, **206**, 1186–
549 1188.

550 Carrascal, L.M., Villén-Pérez, S. & Palomino, D. (2016) Preferred temperature and thermal breadth of
551 birds wintering in peninsular Spain: the limited effect of temperature on species distribution. *PeerJ*, **4**,
552 e2156.

553 Castañeda, L.E., Balanyà, J., Rezende, E.L. & Santos, M. (2013) Vanishing chromosomal inversion clines
554 in *Drosophila subobscura* from Chile: is behavioral thermoregulation to blame? *The American naturalist*,
555 **182**, 249–259.

556 Castañeda, L.E., Romero-Soriano, V., Mesas, A., Roff, D.A. & Santos, M. (2019) Evolutionary potential
557 of thermal preference and heat tolerance in *Drosophila subobscura*. *Journal of evolutionary biology*, **32**,
558 818–824.

559 Chown, S.L. & Terblanche, J.S. (2006) Physiological diversity in insects: ecological and evolutionary
560 contexts. *Adv. Insect Physiol.*, **33**, 50–152.

561 Connallon, T. (2015) The geography of sex-specific selection, local adaptation, and sexual dimorphism.
562 *Evolution; international journal of organic evolution*, **69**, 2333–2344.

563 Connallon, T., Sharma, S. & Olioto, C. (2019) Evolutionary consequences of sex-specific selection in
564 variable environments: four simple models reveal diverse evolutionary outcomes. *The American
565 naturalist*, **193**, 93–105.

566 Dawson, W.R. (1975) On the physiological significance of the preferred body temperatures of reptiles.
567 *Persp. of Biophys. Ecol.*, 443–473.

568 De Block, M., Pauwels, K., Van Den Broeck, M., De Meester, L. & Stoks, R. (2013) Local genetic
569 adaptation generates latitude-specific effects of warming on predator-prey interactions. *Global change
570 biology*, **19**, 689–696.

571 Delcourt, M., Blows, M.W. & Rundle, H.D. (2009) Sexually antagonistic genetic variance for fitness in an

572 ancestral and a novel environment. *Proceedings. Biological sciences / The Royal Society*, **276**, 2009–2014.

573 Delph, L.F., Andicoechea, J., Steven, J.C., Herlihy, C.R., Scarpino, S.V. & Bell, D.L. (2011)

574 Environment-dependent intralocus sexual conflict in a dioecious plant. *The New phytologist*, **192**, 542–

575 552.

576 Dillon, M.E., Wang, G., Garrity, P.A. & Huey, R.B. (2009) Review: Thermal preference in *Drosophila*.

577 *Journal of thermal biology*, **34**, 109–119.

578 Dolgin, E.S., Whitlock, M.C. & Agrawal, A.F. (2006) Male *Drosophila melanogaster* have higher mating

579 success when adapted to their thermal environment. *Journal of evolutionary biology*, **19**, 1894–1900.

580 Dolgova, O., Rego, C., Calabria, G., Balanyà, J., Pascual, M., Rezende, E.L., *et al.* (2010) Genetic

581 constraints for thermal coadaptation in *Drosophila subobscura*. *BMC evolutionary biology*, **10**, 363.

582 Doorn, G.S. van & Kirkpatrick, M. (2007) Turnover of sex chromosomes induced by sexual conflict.

583 *Nature*, **449**, 909–912.

584 Dübendorfer, A., Hediger, M., Burghardt, G. & Bopp, D. (2002) *Musca domestica*, a window on the

585 evolution of sex-determining mechanisms in insects. *The International journal of developmental biology*,

586 **46**, 75–79.

587 Eanes, W.F. (1999) Analysis of selection on enzyme polymorphisms. *Annu. Rev. Ecol. Syst.*, **30**, 301–326.

588 Endler, J.A. (1977) *Geographic Variation, Speciation, and Clines*. Princeton University Press.

589 Etterson, J.R. & Shaw, R.G. (2001) Constraint to adaptive evolution in response to global warming.

590 *Science*, **294**, 151–154.

591 Feldmeyer, B., Kozielska, M., Kuijper, B., Weissing, F.J., Beukeboom, L.W. & Pen, I. (2008) Climatic

592 variation and the geographical distribution of sex-determining mechanisms in the housefly. *Evolutionary*

593 *ecology research*, **10**, 797–809.

594 Felsenstein, J. (1976) The theoretical population genetics of variable selection and migration. *Annual*

595 *review of genetics*, **10**, 253–280.

596 Franco, M.G., Rubini, P.G. & Vecchi, M. (1982) Sex-determinants and their distribution in various

597 populations of *Musca domestica* L. of Western Europe. *Genetical research*, **40**, 279–293.

598 Geden, C.J., Biale, H., Chiel, E. & Johnson, D.M. (2019) Effect of fluctuating high temperatures on house

599 flies (Diptera: Muscidae) and their principal parasitoids (*Muscidifurax* spp. and *Spalangia* spp.

600 [Hymenoptera: Pteromalidae]) from the United States. *Journal of medical entomology*, **56**, 1650–1660.

601 Gibert, P. & Huey, R.B. (2001) Chill-coma temperature in *Drosophila*: effects of developmental

602 temperature, latitude, and phylogeny. *Physiological and biochemical zoology: PBZ*, **74**, 429–434.

603 Gilbert, A.L. & Miles, D.B. (2017) Natural selection on thermal preference, critical thermal maxima and

604 locomotor performance. *Proceedings. Biological sciences / The Royal Society*, **284**.

605 Good, D.S. (1993) Evolution of behaviours in *Drosophila melanogaster* in high temperatures: Genetic and

606 environmental effects. *J. Ins. Physiol.*, **39**, 537–544.

607 Hamm, R.L., Gao, J.-R., Lin, G.G.-H. & Scott, J.G. (2009) Selective advantage for IIIM males over YM

608 males in cage competition, mating competition, and pupal emergence in *Musca domestica* L. (Diptera:

609 Muscidae). *Environmental entomology*, **38**, 499–504.

610 Hamm, R.L., Meisel, R.P. & Scott, J.G. (2014) The evolving puzzle of autosomal versus Y-linked male

611 determination in *Musca domestica*. *G3*, **5**, 371–384.

612 Hamm, R.L. & Scott, J.G. (2008) Changes in the frequency of YM versus IIIM in the housefly, *Musca*

613 *domestica* L., under field and laboratory conditions. *Genetics research*, **90**, 493–498.

614 Hamm, R.L. & Scott, J.G. (2009) A high frequency of male determining factors in male *Musca domestica*

615 (Diptera: Muscidae) from Ipswich, Australia. *Journal of medical entomology*, **46**, 169–172.

616 Hamm, R.L., Shono, T. & Scott, J.G. (2005) A cline in frequency of autosomal males is not associated

617 with insecticide resistance in house fly (Diptera: Muscidae). *Journal of economic entomology*, **98**, 171–

618 176.

619 Hediger, M., Henggeler, C., Meier, N., Perez, R., Saccone, G. & Bopp, D. (2010) Molecular

620 characterization of the key switch *F* provides a basis for understanding the rapid divergence of the sex-

621 determining pathway in the housefly. *Genetics*, **184**, 155–170.

622 Hedrick, P.W., Ginevan, M.E. & Ewing, E.P. (1976) Genetic polymorphism in heterogeneous
623 environments. *Annual review of ecology and systematics*, **7**, 1–32.

624 Hoffmann, A.A., Anderson, A. & Hallas, R. (2002) Opposing clines for high and low temperature
625 resistance in *Drosophila melanogaster*. *Ecol. Letters*, **5**, 614–618.

626 Holleley, C.E., O'Meally, D., Sarre, S.D., Marshall Graves, J.A., Ezaz, T., Matsubara, K., *et al.* (2015)
627 Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. *Nature*, **523**, 79–82.

628 Honegger, K. & Bivort, B. de. (2018) Stochasticity, individuality and behavior. *Current biology: CB*, **28**,
629 R8–R12.

630 Hothorn, T., Bretz, F. & Westfall, P. (2008) Simultaneous inference in general parametric models. *Biom.*
631 *J*, **50**, 346–363.

632 Huey, R.B., Hertz, P.E. & Sinervo, B. (2003) Behavioral drive versus behavioral inertia in evolution: a
633 null model approach. *The American naturalist*, **161**, 357–366.

634 Huey, R.B. & Pascual, M. (2009) Partial thermoregulatory compensation by a rapidly evolving invasive
635 species along a latitudinal cline. *Ecology*, **90**, 1715–1720.

636 Inoue, H. & Hiroyoshi, T. (1986) A maternal-effect sex-transformation mutant of the housefly, *Musca*
637 *domestica* L. *Genetics*, **112**, 469–482.

638 Jensen, G. (2018) Behavioral Stochasticity. In *Encyclopedia of Animal Cognition and Behavior* (ed. by
639 Vonk, J. & Shackelford, T.). Springer International, Cham, Switzerland, pp. 1–5.

640 Kawecki, T.J. & Ebert, D. (2004) Conceptual issues in local adaptation. *Ecology letters*, **7**, 1225–1241.

641 Kearney, M., Shine, R. & Porter, W.P. (2009) The potential for behavioral thermoregulation to buffer
642 “cold-blooded” animals against climate warming. *Proceedings of the National Academy of Sciences of the*
643 *United States of America*, **106**, 3835–3840.

644 Keller, I. & Seehausen, O. (2012) Thermal adaptation and ecological speciation. *Molecular ecology*, **21**,
645 782–799.

646 Königer, A., Arif, S. & Grath, S. (2019) Three quantitative trait loci explain more than 60% of variation

647 for chill coma recovery time in a natural population of *Drosophila ananassae*. *G3*
648 *Genes|Genomes|Genetics*.

649 Königer, A. & Grath, S. (2018) Transcriptome analysis reveals candidate genes for cold tolerance in
650 *Drosophila ananassae*. *Genes*, **9**.

651 Kotiaho, J.S., Simmons, L.W. & Tomkins, J.L. (2001) Towards a resolution of the lek paradox. *Nature*,
652 **410**, 684–686.

653 Kozielska, M., Feldmeyer, B., Pen, I., Weissing, F.J. & Beukeboom, L.W. (2008) Are autosomal sex-
654 determining factors of the housefly (*Musca domestica*) spreading north? *Genetics research*, **90**, 157–165.

655 Kozielska, M., Weissing, F.J., Beukeboom, L.W. & Pen, I. (2010) Segregation distortion and the evolution
656 of sex-determining mechanisms. *Heredity*, **104**, 100–112.

657 Krstevska, B. & Hoffmann, A.A. (1994) The effects of acclimation and rearing conditions on the response
658 of tropical and temperate populations of *Drosophila melanogaster* and *D. simulans* to a temperature
659 gradient (Diptera: Drosophilidae). *J. Ins. Behav.*, **7**, 279–288.

660 Lasne, C., Hangartner, S.B., Connallon, T. & Sgrò, C.M. (2018) Cross-sex genetic correlations and the
661 evolution of sex-specific local adaptation: Insights from classical trait clines in *Drosophila melanogaster*.
662 *Evolution; international journal of organic evolution*, **72**, 1317–1327.

663 Leiva, F.P., Calosi, P. & Verberk, W.C.E.P. (2019) Scaling of thermal tolerance with body mass and
664 genome size in ectotherms: a comparison between water- and air-breathers. *Philosophical transactions of*
665 *the Royal Society of London. Series B, Biological sciences*, **374**, 20190035.

666 Levene, H. (1953) Genetic equilibrium when more than one ecological niche is available. *The American*
667 *naturalist*, **87**, 331–333.

668 Lynch, K.E., White, T.E. & Kemp, D.J. (2018) The effect of captive breeding upon adult thermal
669 preference in the Queensland fruit fly (*Bactrocera tryoni*). *Journal of thermal biology*, **78**, 290–297.

670 MacLean, H.J., Overgaard, J., Kristensen, T.N., Lyster, C., Hessner, L., Olsvig, E., *et al.* (2019)
671 Temperature preference across life stages and acclimation temperatures investigated in four species of

672 *Drosophila. Journal of thermal biology*, **86**, 102428.

673 McDonald, I. c., Evenson, P., Nickel, C.A. & Johnson, O.A. (1978) House fly genetics: isolation of a
674 female determining factor on chromosome 4. *Annals of the Entomological Society of America*, **71**, 692–
675 694.

676 Meisel, R.P. (2018) Sexual conflict and the maintenance of genetic variation in natural populations.
677 *Molecular ecology*, **27**, 3569–3571.

678 Meisel, R.P., Davey, T., Son, J.H., Gerry, A.C., Shono, T. & Scott, J.G. (2016) Is multifactorial sex
679 determination in the house fly, *Musca domestica* (L.), stable over time? *The Journal of heredity*, **107**, 615–
680 625.

681 Meisel, R.P., Gonzales, C.A. & Luu, H. (2017) The house fly Y chromosome is young and minimally
682 differentiated from its ancient X chromosome partner. *Genome research*, **27**, 1417–1426.

683 Meisel, R.P., Scott, J.G. & Clark, A.G. (2015) Transcriptome differences between alternative sex
684 determining genotypes in the house fly, *Musca domestica*. *Gen. Biol. and Evol.*, **7**, 2051–2061.

685 Moore, E.C. & Roberts, R.B. (2013) Polygenic sex determination. *Current biology: CB*, **23**, R510–2.

686 Partridge, L., Barrie, B., Fowler, K. & French, V. (1994) Evolution and development of body size and cell
687 size in *Drosophila melanogaster* in response to temperature. *Evolution; international journal of organic*
688 *evolution*, **48**, 1269–1276.

689 Pen, I., Uller, T., Feldmeyer, B., Harts, A., While, G.M. & Wapstra, E. (2010) Climate-driven population
690 divergence in sex-determining systems. *Nature*, **468**, 436–438.

691 Qu, Y., Li, H., Gao, J., Xu, X. & Ji, X. (2011) Thermal preference, thermal tolerance and the thermal
692 dependence of digestive performance in two *Phrynocephalus* lizards (Agamidae), with a review of species
693 studied. *Curr. Zool.*, **57**, 684–700.

694 Rego, C., Balanyà, J., Fragata, I., Matos, M., Rezende, E.L. & Santos, M. (2010) Clinal patterns of
695 chromosomal inversion polymorphisms in *Drosophila subobscura* are partly associated with thermal
696 preferences and heat stress resistance. *Evolution; international journal of organic evolution*, **64**, 385–397.

697 Rice, W.R. (1986) On the instability of polygenic sex determination: the effect of sex-specific selection.

698 *Evolution; international journal of organic evolution*, **40**, 633–639.

699 Richter-Boix, A., Teplitsky, C., Rogell, B. & Laurila, A. (2010) Local selection modifies phenotypic

700 divergence among *Rana temporaria* populations in the presence of gene flow. *Molecular ecology*, **19**,

701 716–731.

702 Robinson, S.J.W. & Partridge, L. (2001) Temperature and clinal variation in larval growth efficiency in

703 *Drosophila melanogaster*. *Journal of evolutionary biology*, **14**, 14–21.

704 Rostant, W.G., Kay, C., Wedell, N. & Hosken, D.J. (2015) Sexual conflict maintains variation at an

705 insecticide resistance locus. *BMC biology*, **13**, 34.

706 Scott, J.G., Sridhar, P. & Liu, N. (1996) Adult specific expression and induction of cytochrome P450lpr in

707 house flies. *Archives of insect biochemistry and physiology*, **31**, 313–323.

708 Scrucca, L., Fop, M., Murphy, T.B. & Raftery, A.E. (2016) mclust 5: clustering, classification and density

709 estimation using Gaussian finite mixture models. *The R journal*, **8**, 289–317.

710 Sharma, A., Heinze, S.D., Wu, Y., Kohlbrenner, T., Morilla, I., Brunner, C., *et al.* (2017) Male sex in

711 houseflies is determined by *Mdmd*, a paralog of the generic splice factor gene. *Science*, **356**, 642–645.

712 Slatkin, M. (1973) Gene flow and selection in a cline. *Genetics*, **75**, 733–756.

713 Slatyer, R.A., Hirst, M. & Sexton, J.P. (2013) Niche breadth predicts geographical range size: a general

714 ecological pattern. *Ecol. Letters*, **16**, 1104–1114.

715 Son, J.H., Kohlbrenner, T., Heinze, S., Beukeboom, L.W., Bopp, D. & Meisel, R.P. (2019) Minimal

716 effects of proto-Y chromosomes on house fly gene expression in spite of evidence that selection maintains

717 stable polygenic sex determination. *Genetics*, **213**, 313–327.

718 Son, J.H. & Meisel, R.P. (2020) Gene-level, but not chromosome-wide, divergence between a very young

719 house fly proto-Y chromosome and its homologous proto-X chromosome. *Molecular biology and*

720 *evolution*.

721 Svetec, N., Werzner, A., Wilches, R., Pavlidis, P., Alvarez-Castro, J.M., Broman, K.W., *et al.* (2011)

722 Identification of X-linked quantitative trait loci affecting cold tolerance in *Drosophila melanogaster* and
723 fine mapping by selective sweep analysis. *Molecular ecology*, **20**, 530–544.

724 Tomita, T. & Wada, Y. (1989) Multifactorial sex determination in natural populations of the housefly
725 (*Musca domestica*) in Japan. *The Japan. J. of Gen.*, **64**, 373–382.

726 Tüzün, N., Op de Beeck, L., Brans, K.I., Janssens, L. & Stoks, R. (2017) Microgeographic differentiation
727 in thermal performance curves between rural and urban populations of an aquatic insect. *Evolutionary
728 applications*, **10**, 1067–1075.

729 Wang, Y., Yang, L., Zhang, Y., Tao, L. & Wang, J. (2018) Development of *Musca domestica* at constant
730 temperatures and the first case report of its application for estimating the minimum postmortem interval.
731 *Forensic science international*, **285**, 172–180.

732 Yang, J., Sun, Y.-Y., An, H. & Ji, X. (2008) Northern grass lizards (*Takydromus septentrionalis*) from
733 different populations do not differ in thermal preference and thermal tolerance when acclimated under
734 identical thermal conditions. *J. Comp. Physiol. B*, **178**, 343–349.