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Abstract

Large, openly available datasets and current analytic tools promise the emergence of population
neuroscience. The considerable diversity in personality traits and behaviour between individuals
is reflected in the statistical variability of neural data collected in such repositories. This amount
of variability challenges the sensitivity and specificity of analysis methods to capture the personal
characteristics of a putative neural portrait. Recent studies with functional magnetic resonance
imaging (fMRI) have concluded that patterns of resting-state functional connectivity can both
successfully identify individuals within a cohort and predict some individual traits, yielding the
notion of a neural fingerprint. Here, we aimed to clarify the neurophysiological foundations of
individual differentiation from features of the rich and complex dynamics of resting-state brain
activity using magnetoencephalography (MEG) in 158 participants. Akin to fMRI approaches,
neurophysiological functional connectomes enabled the identification of individuals, with
identifiability rates similar to fMRI’s. We also show that individual identification was equally
successful from simpler measures of the spatial distribution of neurophysiological spectral signal
power. Our data further indicate that identifiability can be achieved from brain recordings as
short as 30 seconds, and that it is robust over time: individuals remain identifiable from
recordings performed weeks after their baseline reference data was collected. Based on these
results, we can anticipate a vast range of further research and practical applications of individual
differentiation from neural electrophysiology in personalized, clinical, and basic neuroscience.
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Introduction

Understanding the biological nature of individual traits and behaviour is an overarching objective
of neuroscience research (1—4). The increasing availability of large, openly available datasets and
advanced computational tools propels the field toward this aim (5—7). Yet, with bigger and
deeper data volumes, neuroscientists are confronted to a paradox: while big-data neuroscience
approaches the realm of population neuroscience, we remain challenged by understanding how
interindividual data variability echoes the singularity of the self (1, 3, 8, 9).

This epistemological question has become particularly vivid with recent research showing that
individuals can be identified from a cohort via their respective neural fingerprints derived from
structural magnetic resonance imaging (MRI) (10, 11), functional MRI (fMRI) (12-16),
electroencephalography (EEG) (17-19), or functional near-infrared spectroscopy (fNIRS) (20).
Strikingly, neural fingerprints are associated with individual traits such as global intelligence,
working memory, and attention abilities (21-24). Most published work so far is methodologically
based on inter-individual similarity measures of functional connectivity—understood as statistical
dependencies between ongoing signals across brain regions in task-free awake conditions (25,
26)—as defining features of neural fingerprints. Yet, the indirect coupling between hemodynamic
and neural brain signaling interrogates the neurophysiological nature of brain fingerprints.

In electrophysiology, ongoing brain dynamics at rest are rich and complex (26) and have long been
considered a nuisance, a by-product of neural noise (28—30). Recent experimental evidence,
spurred by systems neuroscience models, indicates that spontaneous brain activity captured using
electrophysiological techniques expresses similar resting-state connectomes as fMRI and
influences conscious, sensory processes (31-33). Ongoing neurophysiological activity varies
considerably between individuals and across the lifespan. One instance is the inter-individual
variability of prominent features of human brain neurophysiological activity, such as the alpha
rhythm (8-12 Hz) peak frequency (34, 35). Previous EEG fingerprinting work was restricted to scalp
data, and therefore, provided limited neuroanatomical insight (17—19). Another distinctive aspect
of electrophysiology is the contamination of recordings by artefacts of different natures including
environment and instrument noise, muscle contractions, eye and head movements, which can be
distinctive of individuals and can bias fingerprinting with non-neural signal features. Overall, the
unique signature components of fast, neurophysiological brain dynamics across individuals remain
unchartered.

Here we used resting state recordings of magnetoencephalography (MEG; 27) from a large cohort
of participants to identify neurophysiological features of individual differentiation. We derived
both measures of functional organization (i.e., functional connectivity) inspired by fMRI neural
fingerprinting approaches, and spectral signal markers that are proper to the wider frequency
spectrum of brain signaling accessible to neurophysiological data.


https://doi.org/10.1101/2021.02.18.431803
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.18.431803; this version posted July 3, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

66  Results

67  We used MEG data from 158 participants available from the Open MEG Archives (OMEGA; 6).

68  Data collected on multiple days were available for a subset of these participants (N=47; mean

69  duration between consecutive sessions: 201.7 days; Figure 1). The participants were both

70  healthy and patient volunteers (ADHD and chronic pain) spanning in age from 18 — 73 years-old

71  (see Supplemental Material). T1-weigthed structural MRI volumes were available from OMEGA

72 forall participants and were used to produce source maps of resting-state brain activity (36). We

73 derived several neurophysiological signal features from MEG brain source time series

74  summarized within the Desikan-Killiany atlas—68 regions of interest (ROls) parcellating the

75  entire cortical surface (37). The MEG features comprised power-spectral-density estimates (PSD)

76  within each of the 68 ROIs (37), and 68x68 functional connectomes (FC) between these ROIs.

77  The approach is illustrated in Figure 1 and the FC and PSD methodological details are provided in

78  Materials and Methods.

79

80  Participant identification was performed across pairs of MEG data segments taken from either

81  the same (within-session identification) or a repeated session (between-session identification)

82  using two distinct datasets (Figure 1a) and based either on FC or PSD features (referred as

83  connectome and spectral fingerprinting, respectively). The within-session challenge with longer

84  data segments was considered to assess the baseline performances of the MEG fingerprinting

85  approaches proposed. The more challenging situations developed in the present report concern

86 individual identification from shorter 30-s time segments within or between recording sessions.

87  For each pair of participants, the Pearson’s correlation coefficient between their respective

88  features (i.e., FC or PSD) was the corresponding entry in the group correlation matrix (see

89  Supplemental Material). The identification procedure for each individual proceeded via a lookup

90 operation through the corresponding row of the correlation matrix; the index of the column

91 featuring the largest correlation coefficient determined the predicted identity of the individual in

92  the cohort. Thus, if a given individual’s data features from the first dataset were most correlated

93  tothe data features from their second dataset, the individual would be correctly identified. Note

94  that taking the maximum along the rows or columns simply switches which dataset is used for

95  deriving the identification features (e.g., identifying individuals using dataset 1 from features

96  derived from dataset 2; results for all possible combinations of datasets are in Supplemental

97  Material). The overall accuracy of the identification procedure was computed as the proportion

98  of participants correctly identified. We ran three types of identification challenges: within-

99  session identification consisted of the personal differentiation between 158 participants (i.e., the
100  datasets were from same-day recordings split in half); a between-session identification challenge
101  for asubset of 47 participants for whom the datasets were from two separate days; and a
102  between-session identification using considerably shortened data segments (30 seconds) (Figure
103  1a). We conducted the identification challenges using either broadband MEG data or band-

104  limited versions within the typical frequency bands used in neurophysiology. We also derived a
105  self-identifiability score for every participant, which indicates the saliency of the identification of
106  any given individual in the tested cohort (see Material and Methods).
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108  Figure 1: Identification analysis pipeline and definition of self-identifiability

109  (a) Schematic of exemplar MEG data divided into datasets used in each of the specified

110 identification challenges. i) Within-session challenge: the session data was split in half segments
111  of equal duration; ii) Between-sessions challenge: identification was performed using data

112 recorded on two separate days; iii) Between-session shortened challenge: data recorded on two
113 different days were split into three 30-s segments. (b) Schematic of the data analysis pipeline:
114  source modeling was first performed before extracting features from each region of the Desikan-
115  Killiany atlas (37). These features were vectorized and subsequently used to fingerprint

116  individuals, yielding a participant correlation matrix. (c) Features for the between-session

117  challenge from an exemplar subject. Left panel depicts AEC functional connectivity matrices
118  across two datasets; both matrices feature the Pearson correlation coefficients between all 68
119  regions of the Desikan-Killiany atlas (37). Right panel plots the power spectrum density

120  estimates from two regions of the atlas, across two datasets. (d) Self-identifiability was derived
121  for each participant as the z-score of their correlation to themselves, relative to the correlation
122 between themselves and the rest of the cohort. A participant with a high correlation to

123 themselves and low correlations to others was qualified as highly identifiable. An individual

124 highly correlated to both themselves and many others in the cohort was qualified as less

125  identifiable.

126  Within-session connectome and spectral data differentiate individuals

127  Within-session MEG connectome and spectral fingerprinting achieved 94.9% and 96.2%

128  participant identification accuracy, respectively (Figure 2). This outcome was robust to switching
129  datasets (Supplemental Material). While previous work (12) reported that data reduction

130  strategies improved identification performances, this was not the case with our data. Data

131  reduction strategies only marginally improved individual differentiation, as explained in

132 Supplemental Material.

133
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134 We also ran the identification procedure for each of the typical frequency bands of

135  electrophysiology to understand whether the expression of certain ranges of brain rhythms

136  would be more specific of individual differentiation. We bandpass filtered MEG signals in the
137  delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz), gamma (30-50Hz) and high gamma
138 (50-150Hz) frequency bands before running the same within-session fingerprinting procedure
139  using the resulting narrowband signals. Narrowband connectome fingerprinting yielded

140  identification accuracy scores of 98.7% for delta, 100% for theta, 99.4% for alpha, 100% for beta,
141  98.7% for gamma, and 94.9% for high gamma. Narrowband spectral fingerprinting produced

142 identification accuracies of 94.9% for delta, 95.6% for theta, 95.6% for alpha, 96.2% for beta,

143 96.2% for gamma, and 97.5% for high gamma. These results are summarized Figure 2a.

144  MEG fingerprinting is robust against physiological, artefactual, and demographics confounds

145  We investigated the robustness of these results against variables of no interest and possible

146  confounds. We first processed each individual session’s empty-room recordings in an identical
147  fashion to participants brain data. In particular, we produced pseudo brain maps of empty-room
148  sensor data using the same imaging kernels as those used for each session’s participant brain
149  data. The implication is that imaging kernels designed based on information that are specific of
150  each participant, such as their respective head positions in the MEG sensor array and individual
151  anatomy brain features that constrain MEG source maps. We therefore tested whether such
152  individual information unrelated to brain activity contributed substantially to individual

153  identification from MEG source maps. We found that identification performances were

154  considerably reduced using empty-room data (<20% across all tested models; Figure 2). These
155  results based on source maps were corroborated by the low fingerprinting performances

156  obtained by using empty-room sensor data only (<5% across all tested models; Supplemental
157  Material).

158

159  We then performed Pearson correlation analyses between identification scores and recording
160  parameters, typical MEG artifacts and demographic variables. There was no association between
161  the duration of scans and self-identifiability for connectome (r=-0.02, p=0.75) and spectral

162  (r=0.02, p=0.8) fingerprinting (Supplemental Material). Further, none of the tested MEG artifacts
163  due to eye movements, heartbeats, and head motion were related to individual identifiability
164  from either connectome or spectral fingerprinting. Indeed, self-identifiability was not correlated
165  to motion (connectome: r=0.06, p=0.5; spectral: r=-0.01, p= 0.9), cardiac (connectome: r=0.05,
166  p=0.6; spectral: r=0.07, p= 0.4), or ocular (connectome: r=-0.09, p = 0.3; spectral: r=-0.05,

167  p=0.5) artifacts (Figure 2b).

168

169  Lastly, we further hypothesized that fingerprinting performances may have been skewed by

170  sample heterogeneity in terms of data from healthy vs. patient participants. Yet, there was less
171  than 1% differences in identification accuracy after restricting fingerprinting to healthy

172  participant data (Supplemental Material). We also verified that participant demographics such as
173 age, sex, and handedness did not contribute to identifiability either (Supplemental Material).
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Figure 2: Within-session identification is not related to recording artifacts

(a) Identification accuracy of connectome and spectral fingerprinting based on broadband and
narrowband brain signals. Horizontal grey bars indicate reference identification levels obtained
from empty-room data recorded on the same days as participants (see Methods). (b) Self-
identifiability was not related to typical confounds such head motion, eye movements and
heartbeats. Top row: using connectome fingerprinting; bottom row: spectral fingerprinting.

MEG fingerprinting is robust over time

We tested whether participants who underwent MEG sessions on separate days were
identifiable from datasets collected weeks to months apart (with a range of 1 — 1029 days apart
and an average of 201.7 days, SD=210.1). We applied the above fingerprinting procedures
towards this between-session challenge on the subset of participants concerned (N=47).
Connectome fingerprinting decreased in performance compared to the identification accuracy
scores obtained from the within-session challenge (89.4%). Performance of connectome
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188  fingerprinting from narrowband signals also decreased, with the greatest robustness obtained
189  from using signals in the beta and theta bands (Figure 3a and Supplemental Material). In

190  contrast, spectral fingerprinting was robust longitudinally, with identification accuracy scores of
191  97.9% (broadband) and >90% (narrowband) that were similar to those obtained in the within-
192 session challenge (Figure 3 and Supplemental Material). Self-identifiability scores were not

193  correlated with the number of days between MEG sessions (connectome: r=0.09, p = 0.5;

194  spectral: r=0.08, p=0.65).

195

196  We further challenged MEG individual differentiation between sessions days apart using shorter
197  data segments. We extracted three 30-s segments from the between-session data on each day
198  (Figure 1a) and ran the same fingerprinting procedures as above. |dentification performance
199  from connectome fingerprinting remained high across all 30-s segments tested (Figure 3c) using
200  broadband MEG signals (identification accuracy 84.4%). Performance of spectral fingerprinting
201  was decreased (identification accuracy: 65.2% Figure 3c). We observed similar discrepancies in
202  performance robustness between connectome and spectral fingerprinting using narrowband
203  signals (Figure 3), especially in the delta, theta, and alpha bands. We report results obtained
204  from using sensor data only and for the within-session shortened challenge in Supplemental

205  Material.
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209  Figure 3: Between-session identification accuracy

210  (a) Identification accuracy for connectome and spectral between-session fingerprinting.

211  Identification performances are similar to those from the within-session challenge. (b) Linear
212 regression analyses did not reveal an association between self-identifiability and the delay

213 between session recordings (connectome fingerprinting: r= 0.09, p = 0.5; spectral fingerprinting:
214 r=0.08, p=0.65). (c) Between-session shortened identification accuracy using 30-s data segments
215  collected days apart (average: 201.7 days). Each data point represents one combination of

216  datasets used for fingerprinting (see Methods for details) (d) Scatter plot of all identification

217  challenges (source and sensor level approaches) across frequency bands for both source and


https://doi.org/10.1101/2021.02.18.431803
http://creativecommons.org/licenses/by-nc-nd/4.0/

218
219

220
221

222
223
224
225
226
227
228
229

230
231
232
233
234

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.18.431803; this version posted July 3, 2021. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

sensor level identification (Supplemental Material details the results obtained for in all sensor
data identification challenges.)

(a) Intraclass correlation analysis for within-session connectome fingerprinting
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Figure 4: Characteristic features of connectome and spectral fingerprinting

Intraclass correlation (ICC) for connectome and spectral within-session fingerprinting. (a) ICC for
connectome fingerprinting plotted for each tested frequency band, using network labels from
Yeo et al. (2011). The most prominent networks for connectome fingerprinting were the Visual,
Dorsal Attention and Limbic networks. (b) ICC for spectral fingerprinting plotted for each tested
frequency band and mapped using the Desikan-Killiany cortical parcellation (37). The most
salient features were the gamma and high-gamma band signals expressed in midline structures
and the beta band across the cortex.

Salient neurophysiological features for identification

We identified the features which were the most characteristic of individuals for MEG
fingerprinting. We derived measures of intraclass correlation (ICC) (12) to quantify how much
each feature, such as an edge of the FC connectome or the signal power in a frequency band
from an anatomical parcel, contributed to fingerprinting (see Methods). This metric was
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235  reported in previous brain fingerprinting studies and captures the inter-rater reliability of each
236  participant as their own rater, to identify the neurophysiological signal features that are the
237  most consistent across individuals (12, 38). We performed this analysis for both the broadband
238  connectome and the band-specific spectral fingerprinting within-session challenges. The data
239  show that the dorsal attention and visual networks were the most specific across individuals for
240  connectome fingerprinting, in all frequency bands (Figure 4). Beta-band connectivity of the
241  limbic network was particularly distinctive of individuals. For spectral fingerprinting, beta,

242 gamma, and high-gamma band signal power were the most salient identification features,

243  especially across medial regions (Figure 4b). Particularly, signals in the theta, alpha, beta, and
244  gamma bands discriminated individuals along midline, parietal, lateral temporal, and visual
245  areas. These results are consistent with our narrowband analysis (see Figure 2a), which

246  highlights beta activity as the most informative in identifying individuals.

247  Neurophysiological identifying features are associated with demographics

248  Beyond identifying individuals in a cohort, we tested whether resting-state neurophysiological
249  features could also predict meaningful participant traits, using an exploratory partial-least-

250  squares (PLS) analysis (see Methods; (39)). Briefly, PLS explains the structure of the covariance
251  between two observation matrices — here a demographic matrix and a neurophysiological signal
252  matrix composed of ROI-specific connectome of spectral measures — with latent components.
253 PLS analysis of our data revealed three significant latent components, which were distinct for
254  connectome and spectral fingerprinting (Supplemental Material). The first latent component in
255  connectome fingerprinting was related to clinical population (r= 0.2, 95% Cl [0.160, 0.3]) and
256  handedness (r=0.2, 95% CI [0.1, 0.3]). This demographic profile was associated with reduced
257  beta-band functional connectivity over the frontal parietal network (Figure 5). For spectral

258  fingerprinting, the first salient latent component was related to a younger age (r=-0.3, 95% Cl [-
259 0.1, -0.5]), female (r= 0.4, 95% CI [0.2, 0.5]) and clinical population (r= 0.5, 95% Cl [0.2, 0.5]). This
260  demographic profile was associated with stronger expressions of broadband neurophysiological
261  signal power in superior parietal regions and the pericalcarine gyrus bilaterally, and reduced
262  neurophysiological signals in the isthmus cingulate (Figure 5).

263

264
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Figure 5: Partial Least-Squares analysis relates demographics to connectome and spectral
features

(a) and (b) from left to right, depicts the design saliency patterns for the first latent variables and
their associated neural-data bootstrap ratios. Confidence Intervals (Cl) were calculated through a
bootstrapping procedure, and as such may not necessarily be symmetric. Bootstrap ratios
computed for (a) connectome and (b) spectral features are plotted according to the resting-state
networks labelled according to Yeo et al. (2011) and the Desikan-Killiany parcellation (37),
respectively: Default Mode Network (DMN), Dorsal Attention (DA), Frontal-Parietal (FP), Limbic
(L), Somato-Motor (SM), Ventral Attention (VA), and Visual (VIS).
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Discussion

The recent leveraging of large, open fMRI datasets has brought empirical evidence that
individuals may be identified within a cohort from their brain imaging functional connectome,
inspiring the metaphor of a neural fingerprint. Unlike hand fingerprints, their cerebral
counterpart predicts task performance and a variety of traits (14, 21-24). These intriguing
findings require a better understanding of their neurophysiological foundations, which we
sought to characterize from direct neural signals captured at a large scale with MEG.

Our data show that individuals can be identified in a cohort of 158 unrelated participants from
their respective resting-state connectomes and spectral profiles in a range of fast brain signals.
MEG fingerprinting was successful using data lengths (30 seconds) much shorter than those
reported for fMRI fingerprinting (14, 41). Brain electrophysiological signals are rich, complex and
convey expressions of large-scale neural dynamics channeled by individual structural anatomy
and physiology (42). Indeed, we also showed that MEG fingerprinting is robust across time,
making individuals potentially identifiable from data collected days, months, or years apart.
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289  Lastly, we characterized whether individual differences in resting-state neural dynamics are
290  demographically meaningful through an exploratory PLS analysis. We showed that both resting-
291  state functional connectomes and spectra predict latent demographic components. Recent

292  findings corroborate our results, demonstrating individual differences between functional

293  connectomes derived from resting-state electrophysiology (43). Future work will be required to
294  replicate and expand these findings in more samples of individuals.

295  Connectome and spectral neurophysiological fingerprints

296  Our results highlight two sets of brain-wide electrophysiological features that contributed to
297  successful individual identification: connectome and spectral measures across the

298  neurophysiological frequency spectrum. Overall, connectome and spectral fingerprinting with
299  MEG performed equivalently to fMRI approaches, achieving overall identification rates above
300  90%, with robust individual identification over time and against noise (12, 14, 44).

301  We found that for connectome fingerprinting, the anatomical regions the most characteristic of
302  individuals differed between MEG and fMRI. While fMRI highlighted the default-mode network
303 and the fronto-parietal resting state networks, MEG connectome fingerprinting emphasized

304  functional connectivity within limbic and visual networks as contributing to individual specific
305 neurophysiological signatures. In contrast, both MEG and fMRI fingerprinting emphasize the
306 importance of the dorsal attention network (14). These observations are not mutually exclusive,
307 considering the different nature of brain signals captured by the respective modalities. One

308 possible interpretation—requiring further investigation— is that the fast neurophysiological

309 signals that contribute to identification with MEG have hemodynamic counterparts that are not
310 assalient in fMRI as the identifying networks reported so far. Nevertheless, our data indicate
311 that neurophysiological signals in the beta band contribute to the highest identification accuracy
312  amongst all other typical bands. This finding is compatible with previous work reporting that
313  correlated amplitude changes of MEG brain signals are related to the microstructure of white
314  matter tracts and reveal, with the same amplitude envelope correlation method as used here,
315  MEG resting-state brain networks that align with fMRI’s (45, 46). Beta-band activity also emerges
316 from recent literature as a signalling vehicle of re-afferent “top-down” communications in brain
317  circuits (47, 48). One can therefore speculate that beta-band signals would convey

318 electrophysiological representations of internal cognitive models that are by essence intimately
319  specific of each individual (27).

320  Such brain signal amplitude signatures are further emphasized by the ability of simple spectral
321  brain maps to enable MEG fingerprinting. Within- and between-session spectral identification
322  were achieved with remarkable accuracy (>90%) with broadband MEG brain signals or restricted
323  tothe typical bands of electrophysiology. Spectral identification based on signals from the faster
324  bands (gamma and high-gamma) was overall the most robust longitudinally and against using
325  shorter data segments. This observation is consistent with the width of (high) gamma frequency
326  bands spanning broader ranges (here between 30-50 Hz and 50-150 Hz) than slower bands such
327 asdelta (1-4 Hz), theta (4-8 Hz) and alpha (8-12 Hz). The spectral estimates averaged across the
328  broader (high) gamma bands were therefore the most robust against using shorter data

329  segments. The reduced number of sliding time windows available over shorter data durations
330 increased the variance of the summary statistics extracted to derive the spectral fingerprints
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331 from the signals defined over narrower bands. The higher frequency bands were less affected
332 because the larger number of frequency bins involved in the extraction of their summary power
333  statistics tended to compensate the higher empirical variance of spectral estimates from a lesser
334  number of observations over time. Connectome fingerprinting was more immune against using
335  shorter data durations. The underlying approach indeed did not require spectral transformations
336 butresorted to a bank of narrowband filters applied over the original duration of MEG

337  recordings, before the resulting filtered signals were segmented in shorter epochs for the

338 identification challenges. The consequence is that the number of data points used for all

339  narrowband signals was identical across all frequency bands, yielding moderate variability in
340 identification performances compared to those obtained with the spectral approach. Another
341  factor of robustness of the connectome approach is that connectivity weights between network
342  nodes may fluctuate very slowly over time in task free brain activity: Florin and Baillet (31)

343  reported fluctuation rates of 0.01Hz in MEG, indicating typical time cycles of 100s — a duration
344  substantially longer than the 30-s shortest time window used here. Over longer periods of time
345  though, such as in the between-session challenge, spectral fingerprinting outperformed its

346 connectome counterpart. We note a slight increase of spectral identification accuracy in the
347  between-session challenge (e.g., +1.6% for broadband fingerprinting) compared to within-

348  session, which was a statistical fluctuation due to using a smaller sample of participants.

349

350  On average across all source fingerprinting challenges reported herein, and despite successful
351 identification across lower frequency bands (delta 52.2%, theta 60.6%, alpha 65.3%),

352  performances were markedly better using high-frequency signal components (beta 81.9%;

353  gamma 81.7%; high gamma 76.2%). Gamma and faster activity have long been associated with
354  concurrent and colocalized hemodynamic fluctuations (49, 50). Because they may be seen as
355  dual manifestations of BOLD signaling used in fMRI fingerprinting, this may explain why these
356  signals contributed robustly to MEG brain fingerprinting in our data. However, gamma-band and
357  faster brain signals are on average weaker in amplitude and therefore may be masked by

358 contamination from artifacts and noise (51-53). The preprocessing applied to our data

359  attenuated such nuisance to a point where individuals were not identifiable from typical sources
360  of signal contamination such as individual head motion behavior.

361

362  Although a rhythm of prominent amplitude in humans during rest, alpha-band activity (8-12Hz)
363  was not particularly specific to identify individuals in the cohort. In that respect, our data is

364  aligned with previous MEG works on resting-state connectomes extracted from

365 neurophysiological MEG signals, which did not report on a salient role of alpha activity in driving
366 inter-regional connectivity (31, 45). We argue that the spatial topography of alpha resting

367  activity may be relatively stereotypical across individuals, involving thalamo-cortical loops that
368  project focally to the parieto-occipital junction, with limited variability across individuals (6). In
369  task, alpha activity has been related to attention orienting, alertness and anticipation, and the
370  registration of (multimodal) sensory information, thereby reflecting transient mental states (41,
371  54-57) rather than individual traits.

372
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373  The data also indicates that MEG fingerprinting is robust against typical recording artefacts that
374  may be idiosyncratic of individuals and therefore, could have confounded identification. In

375  particular, session environmental conditions captured by empty-room MEG recordings were not
376  sufficient to identify individuals within or between sessions. The participant’s anatomical and
377  head-position information embedded in their respective MEG source imaging kernels were also
378  not sufficient to identify individuals. Note that head position changed between sessions. Further
379  studies are required to clarify how these results may vary depending on the type of MEG source
380 modelling adopted. We anticipate little influence of the type of source model used though,

381 based on evidence that beamforming kernels are mathematically equivalently to other major
382  classes of linear source estimation kernels, such as weighted minimum-norm estimators (58).
383  Future work should corroborate these results with regards to fingerprinting. The choice of

384  connectivity measure to derive electrophysiological connectomes may also influence

385 identifiability (59). We look forward to current progress in electrophysiological brain

386  connectomics to put forward measures of network connectivity informed by mechanistic

387  principles and emerging as a standard metrics in the field to confirm and expand present

388  fingerprinting results (60).

389

390  While our present data show robust longitudinal fingerprinting performances, future work

391 involving more participants with multiple MEG visits is required to both replicate these

392  observations and investigate whether individual deviations from baseline fingerprints could be
393  early signals of asymptomatic neuropathophysiology (27). We hope the remarkable ability to
394  fingerprint individuals from the present electrophysiological features serves as a steppingstone
395  for future investigation, which may include multimodal non-invasive assessments based on MEG,
396  possibly combined with e.g., fMRI and/or EEG.

397  Neural fingerprints of individual traits

398  Our data suggests that individual differences in resting-state neurophysiological functional

399  connectivity and spectral power relate to latent demographic clusters. These observations are in
400 line with previous fMRI work that showed that connectomes are predictive of individual

401  differences in attention, working memory and intelligence. For instance, connectivity patterns
402  between the default mode and the dorsal attention networks predict attentional behaviour

403  during task and self-reported mind wandering (22, 61, see 62 for review ). Overall, a possible
404  conceptual framework is that task free neural dynamics are the signatures of an individual

405  scaffold of brain functions that is predictive of task behaviour. This view is also that of the

406  spontaneous trait reactivation hypothesis wherein the organization of the human cortex at rest
407  (manifested e.g., by functional connectivity) is a window into the self’s unique traits and abilities
408  (63). Early evidence indeed suggests that functional connectomes are associated with

409  personality traits and even inter-personal closeness in social networks (64, 65).

410

411  Yet, the mechanistic implementation of these intriguing observations remains elusive. Inter-
412  individual variability in the distribution of synaptic weights across the cerebrum, shaped through
413  lifetime experiences according to Hebbian principles, may account — at least in part — for

414  connectome fingerprinting (63). The heritability of the functional connectome has also been
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415  discussed, especially for fronto-parietal networks (i.e., dorsal and ventral attention network and
416  the default mode network) (66—68). Heritability of brain spectral characteristics is also actively
417  discussed (69—71). This emerging literature and the empirical evidence of brain fingerprinting
418  certainly motivates more research on new, fascinating questions about the biological nature of
419  the self.

420  Sampling population diversity for personalized interventions

421  Robust individual signatures of brain activity may be transformative to neurophysiological

422  phenotyping and population neuroscience. With the increasing availability of multi-omic data
423  repositories, there is a research opportunity to span the diversity of statistical normative

424  characteristics of brain fingerprints across the population in relation to behaviour, environmental
425  and clinical variables (1, 3, 27). Our study highlights the utility of datasets of individuals who have
426  been scanned on multiple occasions to capture and characterize interindividual variability as

427  meaningful information. Ideally, large databanks of individual variants sampled across multiple
428  dimensions of socio-economic, age, and geographic factors enable normative modeling

429  approaches to establish the risk traits of developing syndromes of e.g., early cognitive decline,
430  neurodegeneration or mental illness. Previous work has shown that mental disorders may affect
431  the stability of individual fingerprints over time and therefore points at possible translational

432  applications of the approach (15, 72). We may also foresee that changes over time or lack

433  thereof of a person’s brain fingerprint may also constitute a new class of non-invasive markers of
434  responses to neurological and other treatment of a variety of chronic, neurodegenerative or

435  acute (e.g., stroke) conditions. Brain fingerprints derived from relatively short, task-free sessions
436  may play a leading role to realize this vision in practice.

437  Brain fingerprinting may also contribute to future endeavours in establishing how oscillatory

438  dynamics at rest support cognitive functions across the lifespan. MEG brain fingerprinting

439  presents several potential advantages in terms of safety, shorter scan time, and immediate

440  proximity of a care person during data collection, especially for special populations.

441  The methodological approaches proposed herein can, in principle, transfer to EEG fingerprinting
442  (17-19), which would be more readily available in clinics. Whether results would be as robust
443  with EEG than with MEG remains to be demonstrated. Indeed, EEG source mapping is more

444  prone to contamination from muscle artifacts and is more sensitive to approximations in the

445  biophysical modeling of head tissues, which may compromise further fingerprinting capabilities
446  (27).

447

448  In sum, our study extends the concept of neural or brain fingerprint to fast and large-scale

449  resting-state electrophysiological dynamics, which encapsulate meaningful individual differences
450  in both functional connectivity and neuroanatomical maps of power spectrum characteristics.
451  We are hopeful that the present contribution paves the way to replication and extension using
452  larger open datasets. Many fascinating outstanding questions remain about the biological nature
453  of inter-individual variability expressed via neural oscillations and brain network dynamics, and
454  more specifically how these differences associate with behavior and diseases natural history. The
455  research ahead is for future population neuroscience studies.

456
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457  Material and Methods

458  The Open MEG Archives (OMEGA)

459  We used data from the Open MEG Archives (OMEGA; 6) consisting of resting-state MEG

460  recordings acquired using the same MEG system (275 channels whole-head CTF; Port Coquitlam,
461  British Columbia, Canada). The sampling rate was 2400 Hz, with an antialiasing filter applied at
462 600 Hz cut-off, and built-in third-order spatial gradient noise cancellation (see 6 for details on
463  data acquisition).

464  We analysed MEG resting-state data from 158 unrelated OMEG participants (77 Females, 31.9 +
465  14.7 years old). Recordings were approximately 5-min long. Supplementary Table 1 provides
466  details on scanning procedures and Supplementary Table 2 on demographics. A subset of these
467  individuals (N=47) had recordings over multiple visits (different days) and were used in the

468  between-session fingerprinting challenge. The OMEGA data management protocol was approved
469 by the research ethics board of the Montreal Neurological Institute.

470  MEG data preprocessing and feature extraction

471  MEG data were preprocessed using Brainstorm (73; version Oct-12-2018) (following good-

472  practice guidelines (74). Unless specified, all steps below were performed using the Brainstorm
473  toolkit, with default parameters. Line noise artifact (60 Hz) along with its 10 harmonics were

474  removed using a notch filter bank. Slow-wave and DC-offset artifacts were removed using a high-
475  pass FIR filter with a 0.3-Hz cut-off. We derived Signal-Space Projections (SSPs) to remove cardiac
476  and ocular artifacts. We used electro-cardiogram and -oculogram recordings to define signal

477  projectors around identified artifact occurrences. We also applied SSPs to attenuate low-

478  frequency (1-7 Hz) and high-frequency noisy components (40-400Hz) due to saccades and

479  muscle activity, respectively. Bandpass filtered duplicates of the cleaned data were produced for
480  each frequency band of interest (delta: 1-4Hz, theta: 4-8Hz, alpha: 8-13Hz, beta: 13-30Hz,

481  gamma: 30-50Hz, and high gamma: 50-150Hz). Distinct brain source models were then derived
482  for all narrowband versions of the MEG sensor data.

483  Each individual T1-weighted MRI data was automatically segmented and labelled with Freesurfer
484  (75). Coregistration with MEG sensor locations was derived using dozens of digitized head points
485  collected at each MEG session. We produced MEG forward head models for each participant
486  using the overlapping spheres approach, and cortical source models with LCMV beamforming, all
487  using Brainstorm with default parameters (2016 version for source estimation processes). We
488  performed data covariance regularization. To reduce the effect of variable source depth, the

489  estimated source variance was normalized by the noise covariance matrix. Elementary MEG

490  source orientations were constrained normal to the surface at 15,000 locations of the cortex.
491  Noise statistics for source modeling were estimated from two-minute empty-room recordings
492  collected as close as possible in time to each participant’s MEG session. Source timeseries were
493  clustered into 68 cortical regions of interest (ROIs) defined from the Desikan-Killiany atlas (37)
494  and dimension-reduced via the first principal component of all signals within each ROI.

495  Connectome and spectral identification features were computed from ROl source timeseries.
496  Individual functional connectomes were derived in all frequency bands from the amplitude
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497  envelope correlation (AEC) approach (76). ROl timeseries were Hilbert transformed and all

498  possible pairs of resulting amplitude envelopes were used to derive the corresponding Pearson
499  correlation coefficients, yielding a 68x68 symmetric connectome array. We used Welch'’s

500 method to derive power spectrum density (PSD) estimates for each ROI (77), using time windows
501  of 2 seconds with 50% overlap sled over all ROl timeseries and averaged across all PSDs within
502  each ROI. The resulting frequency range of PSDs was 0-150Hz, with a frequency resolution of 0.5
503  Hz

504  Code Availability

505  The connectome and spectral features were then exported to Python (3.7.6) for subsequent
506 fingerprinting analyses. All codes for including preprocessing and data analysis can be found on
507  the project’s GitHub (LINK).

508  Data Availability

509  The power spectra and connectomes derived from the preprocessed OMEGA samples and used
510 toidentify individuals in the present study are available upon request from corresponding

511  authors.

512 Fingerprinting and self-identifiability

513  We used a fingerprinting approach directly adapted from fMRI connectome fingerprinting

514  methods (12, 14), which relies on correlational scoring of individuals between datasets. A given
515  probe participant is identified from a cohort by computing all Pearson correlation coefficients
516  between the spectral or connectome features of said probe at one timepoint (e.g., dataset 1)
517 and the entire cohort at a different timepoint (e.g., dataset 2). The entry presenting the highest
518  correlation to the probe determined the probe’s estimated identity i.e., identified entry in the
519  cohort. This approach is applied between all pairs of participants in the cohort, yielding an

520  asymmetric correlation matrix spanning the cohort. We report scores of identification accuracy
521  asthe ratio between the number individuals correctly identified with the described procedure
522  and the total number of individuals in the cohort. Identification accuracy scores are obtained
523  from identification challenges from dataset 1 to dataset 2 and vice-versa, within- and between-
524 sessions. Figure 1 details the definition of the dataset labels used, and Supplemental Material
525  contains the results from across all combinations of datasets/sessions.

526  Amico and Gofii (2018) proposed an identifiability score to quantify, for a given participant, the
527  reliability of its identification from others in the cohort. Here, we extend this notion with the
528 introduction of a self-identifiability measure, lseir. Let A be the correlation matrix spanning the
529  cohort (square, asymmetric) between dataset 1 and dataset 2, and N be the number of

530  participants to identify. We define lseif as the z-score of participant P; ‘s correlation to themselves
531 between dataset 1 and dataset 2, with respect to P/’s correlation to all other individuals in the
532 cohort, noted: lseif i) = (Corrii — i) / 0, where Corrii is the P{’s correlation between dataset 1 and
533  dataset 2, yjjis the mean correlation between participant Pi in dataset 1 and all other individuals
534  indataset 2 (i.e. the mean along the i" row of matrix A), and oi is the empirical standard
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535  deviation of inter-individual features correlations. Thus, if a participant is easily identifiable, its
536  self-identifiability increases; whereas small self-identifiability scores indicate a participant
537  particularly difficult to identify from the rest of the cohort.

538  Recording artifacts and self-identifiability

539  Toinvestigate the effects of recording parameters and artifacts on fingerprinting, we related
540  each individual’s self-identifiability to several possible confounds. The duration of each scan was
541  compared to self-identifiability to verify that longer recordings available from a subset of

542  individuals did not make them easier to identify. We also correlated the root mean square (RMS)
543  of signals that measured ocular, cardiac, and head movement artifacts over the duration of the
544  entire recording to participants’ self-identifiability score. For cardiac artifacts for instance, we
545  derived the RMS of ECG recordings; for ocular artifacts we used the HEOG and VEOG electrode
546  recordings; and for motion artifact we extracted the RMS of all three head coil signals that

547  measured 3-D head movements. These derivations were conducted for both the connectome
548  and spectral broadband within-session fingerprinting challenge.

549  Fingerprinting across frequency bands

550  We replicated the above fingerprinting approach using data restricted to each frequency band of
551 interest (delta 1-4Hz, theta 4-8Hz, alpha 8-13Hz, beta 13-30Hz, gamma 30-50Hz, and high

552 gamma 50-150Hz). We report the identification accuracy obtained from each narrowband signal
553  in both the spectral and connectome fingerprinting challenges in Figure 2 and Figure 3, for the
554  within- and between-session fingerprinting challenges respectively.

555  We also performed fingerprinting tests based on sensor data only. We used the same

556  connectome and spectral approaches as the MEG source maps, considering the time series of
557  each of the 275 MEG channels instead of the 68 ROl time series derived from the brain map

558  parcels. We report the identification performances from both the sensor and source analyses in
559  Figure 3 and in Supplemental Material.

560 Between-session and shortened fingerprinting challenges

561  We verified the robustness of MEG fingerprinting with respect to 1) the ability to identify

562  participants over time and 2) from reduced data durations. We subdivided participants into

563  three additional challenges: the within-session—shortened, between-session, and between-

564  session—shortened challenge. First, we used the participant data described in the within-session
565  analysis and extracted connectome and spectral fingerprinting features over three 30-second
566  non-overlapping time segments. This duration was based on the length of the shortest recording
567 inthe data sample (Figure 1aii). We applied the same fingerprinting procedure as described in
568  Fingerprinting and self-identifiability across all possible combinations of the three 30-second
569  datasets. Second, we assessed the stability of the fingerprinting outcomes using a subset of

570  participants with consecutive MEG sessions separated by several days (N=47; separated on

571  average by 201.7 days, see Supplemental Materials for details). Again, we applied the same

572  fingerprinting procedure as described in Fingerprinting and self-identifiability for this between-
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573  session challenge. Lastly, we applied the same shortened analysis—described above—to the
574  subset of individuals with multiple scans (i.e., the between-sessions data). We report all possible
575  combinations of datasets (i.e., three 30s segments from day 1 and three 30s segments from day
576  2;see Figure 1a for example) in Figure 3.

577  Empty-room fingerprinting

578  We tested whether environment and instrument noise daily conditions would bias individual
579  identification using empty-room recordings collected from each MEG session. The empty-room
580  data was processed identically to the participants data, using the same individual imaging

581  kernels, and were used to identify participants. We ran all possible combinations of empty-room
582  vs. participants datasets (e.g., empty-room 1 vs. participant dataset 1, empty-room 2 vs.

583  participant dataset 1, etc.) and computed the sample mean of the identification accuracies

584  across all dataset combinations. The identification accuracies obtained represent estimates of
585  baseline reference performances that can be compared to each form of fingerprinting based on
586  actual participant data (i.e., connectome or spectral, broadband or band-specific; see Figure 2
587  and Supplemental Material). In a similar fashion, we also used sensor-level empty-room

588  recordings of each participant for fingerprinting—attempting to identify individuals’ recordings
589  from their empty-room features. The results of this analysis are reported in the Supplemental
590  Material.

591  Most characteristic features for fingerprinting

592  We quantified the contribution of each feature (i.e., edges in the connectivity matrix or a

593  frequency band in an anatomical parcel) towards identifying individuals using Intraclass

594  Correlations (ICC). ICC is commonly used to measure the agreement between two observers

595  (e.g., ratings vs. scores). The stronger the agreement, the higher the ICC (12, 38). ICC derives a
596 random effects model whereby each item is rated by different raters from a pool of potential
597  raters. We selected this measure to capture the inter-rater reliability of each participant as their
598  own rater to identify which edges (e.g., connections in FC) are the most consistent (i.e., which
599  features of a participant Piin dataset 1 are most like dataset 2). Here, the higher the ICC, the
600  more consistent a given feature was within individuals. Additionally, we computed two other
601  measures of edgewise contribution proposed by Finn and colleagues (14): group consistency and
602  differential power (Supplemental Material). We applied all measures (i.e., ICC, group consistency,
603  and differential power) in the context of the broadband within-session fingerprinting challenge.
604  The source maps shown in Figure 4, Figure 5 and Supplemental material were generated using R
605  (V 3.6.3; 74) with the ggseg package (79).

606  Partial Least-Squares: MEG features of participant demographics

607  We conducted a Partial Least-Squares (PLS) analysis with the Rotman-Baycrest PLS toolbox (80).
608  PLSis a multivariate statistical method that relates two matrices of variables (e.g., neural activity
609  and participant demographics) by estimating a weighted linear combination of variables from
610  both data matrices to maximize their covariance. The associated weights can be interpreted
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611 neural patterns (e.g., functional connections) and their associated demographic profiles. PLS
612  used singular value decompositions of the z-scored neural activity-demographics covariance
613  matrix. This decomposition yielded orthogonal latent variables (LV) associated to a pattern of
614  neural activity (i.e., functional connectivity or spectral power) and demographics. To assess the
615  significance of these multivariate patterns, we computed permutation tests (10,000

616  permutations). Each permutation shuffled the order of the observations (i.e., the rows) of the
617 demographic data matrix before running PLS on the resulting surrogate data under the null

618  hypothesis that there was no relationship between the demographic and neural data. A p-value
619 forthe LVs was computed as the proportion of times the permuted singular values exceeded
620  that of the original data. We explored the first significant LV from the broadband connectome
621  and spectral fingerprinting features. We also assessed the contribution of each variable in the
622  demographics and neural activity matrices by bootstrapping observations with replacement
623 (10,000 bootstraps). We computed 95-% confidence intervals for the demographic weights and
624  bootstrap ratios for the neural weights. The bootstrap ratio was computed as the ratio between
625  each variable’s weight and the bootstrap-estimated standard error.
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32 Supplemental material

833

834  MEG fingerprinting is robust against sample demographics

835 The OMEGA data repository contains 158 participants, with a subset (N=47) scanned at

836  multiple occasions several days apart. OMEGA consists essentially of data from healthy controls
837  with a 18-73-year age span (SD=14.7 years; Supplemental Table 1).

838 One potential confound that could have inflated our ability to fingerprint individuals is the
839  heterogeneity introduced by both healthy and clinical populations in the OMEGA cohort. To
840  address this concern, we ran a secondary analysis where we performed the fingerprinting
841  procedures described in the manuscript with only healthy controls (N=130). The results, reported
842  in Supplemental Table 2, demonstrated that fingerprint performances were not biased by the
843  patients/controls heterogeneity of the OMEGA sample. We observed a decrease of less than 1%
844  in performance relative to fingerprinting from the entire cohort. Further, there was no clear
845  relationship between self-identifiability and demographics (Figure S1)., using connectome (age: r=
846  0.08, p =0.2; gender: t=-0.27, p = 0.7; handedness: t=-0.51, p = 0.6; clinical status: t=-0.87, p = 0.3;
847  two-tailed) and spectral fingerprinting (age: r=0.10, p =0.1; gender: t= 0.62, p = 0.5; handedness: t=
848  0.13, p=0.8; clinical status: t=0.84, p = 0.3; two-tailed).

849
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851  Figure S1: Self identifiability is not associated with demographics

852  The plots depict demographic variables and corresponding self-identifiability scores across both
853  (a) connectome and (b) spectral broadband within-session fingerprinting. Demographic variables
854  included age, biological sex, dominant hand, and healthy vs. patient categories. There was no clear
855  relationship between demographics and self-identifiability — i.e., differences in demographics did
856  not drive self-identifiability.

857

858

859 Acquisition parameters did not affect both fingerprinting performances (Figure S2).
860  Participants with longer recordings (i.e., more data) were not more identifiable (connectome: r=-
861  0.02, p =0.7; spectral: r=0.02, p = 0.8). This observation is consistent with the within- & between-
862  session shortened fingerprinting results, which demonstrate individuals were identifiable from
863  shorter 30-second recordings (see below).

864 Taken together, these supplemental results demonstrate that MEG fingerprinting is robust
865  against data artifacts, heterogeneous sample demographics and acquisition parameters.

866

Within-session data Between-session data
Age 31.9+14.7 26.7+11.6
Gender 77 Females 24 Females
Dominant Hand 147 Right, 8 Left, 1 Other 44 Right, 3 Left
130 Healthy Controls 25 Healthy Controls
Clinical Status 22 ADHD 22 ADHD

6 Chronic Pain
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867
868  Supplemental table 1: OMEGA participant demographics

869  Demographic variables summarized for both subsets of the OMEGA data repository.
870

(a) Functional Connectivity (b) Power Spectral Density
8
6
6 5
2
= 4
e —m=Fem=oowl==) | | _Llem 4 — = =
£ 3
5
S 2 2
& 1
0 0
_2 —1
100 200 300 400 500 600 100 200 300 400 500 600
871 Duration of Recording (in Sec) Duration of Recording (in Sec)

872

873  Figure S2: Recording duration did not affect self-identifiability

874  Scatter plots of self-identifiability vs. duration of data collections, for the broadband within-session
875  challenge. There was no clear relationship between self-identifiability and the duration of the MEG
876  recordings across participants.

877
878

All Participants Only Healthy Controls

Dataset 1to Dataset2to Datasetlto Dataset 2 to
Dataset 2 Dataset 1 Dataset 2 Dataset 1

Connectome 94.9% 94.3% 93.8% 93.0%

Spectral 96.2% 96.2% 95.3% 95.3%
879

880  Supplemental table 2. Fingerprinting performances of healthy controls

881 Identification performances of connectome and spectral broadband within-session fingerprinting
882  obtained from for the entire repository (healthy controls and patients), and from healthy
883  participants only. Each column reports fingerprinting performances from Dataset 1 to Dataset 2
884  and vice-versa (see Figure 1 for details). Overall, identification accuracy decreased slightly by
885  ~0.9% when comprising healthy participants only. Consistent with our findings reported in Figure
886  S2, clinical status did not play a major role in the identification of individuals.

887
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889  Figure S3: Identification accuracy from within-session datasets

890  Results from MEG within-session fingerprinting. Identification accuracy for (a) connectome and (b)
891  spectral fingerprinting (broadband and narrowband data). The accuracy scores are reported for

892  identification from dataset 1 to dataset 2 and vice-versa, as explained in Methods.
893

(a) within-session fingerprinting: connectome (b) within-session fingerprinting: spectral

Identification accuracy (%)
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894
895  Figure S4: Example participant correlation matrix for fingerprinting

896  Exemplar participant correlation matrix derived from between-session data used for
897  fingerprinting. The study-identity of participants was determined by the highest correlation
898  statistics taken across rows (e.g., to identify dataset-2 from dataset-1) or columns (to identify
899  dataset-1 from dataset-2).

900

901 Data reduction from principal component analysis does not improve MEG fingerprinting
902  substantially

903 Amico and Gofii (1) previously reported improvements to participant differentiation when
904  using data reduction techniques prior to identification, using e.g., principal component analysis
905  (PCA). We reproduced their approach, using PCA to reduce the dimensionality of the connectome
906 and spectral feature spaces prior to fingerprinting. Our results provided little support to PCA
907  reconstruction improving identification accuracy, as shown Figure S5 and in Supplemental Table
908 3. PCAincreased self-identifiability by less than 1.5%. Data reduction had limited beneficial impact
909  possibly because of high fingerprinting performances at baseline (without data reduction). We
910 also emphasize that we conducted MEG source time series extraction via a PCA of all local time
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series within each parcel. It is therefore likely that this dimension reduction procedure contributed

to improve signal-to-noise ratio and limited the impact of subsequent PCA of features.
Original PCA
(un-reconstructed) Reconstructed

Dataset 1to Dataset2to Datasetlto Dataset 2 to

Dataset 2 Dataset 1 Dataset 2 Dataset 1
Connectome 94.9% 94.3% 96.2% 96.2%
Spectral 96.2% 96.2% 96.2% 96.2%

Supplemental Table 3: Limited contribution of data reduction from principal component analysis
to MEG fingerprinting.

Performances in identification accuracy for connectome and spectral broadband within-session
fingerprinting, for both original and PCA-reconstructed data (1). PCA data reduction improved
connectome fingerprinting performances only slightly (about 2%). It had virtually no effect on
spectral fingerprinting performances.
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Figure S5: Limited benefit of PCA reconstruction to identification accuracy
PCA reconstruction as proposed by Amico and Gofii (2018) had limited effect on (a) connectome
and (b) spectral within-session fingerprinting. The original results (Figure 2) are plotted against
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926  PCA-reconstructed results. From left to right, plots show i) PCA components plotted vs. their
927  respective fractions of signal variance explained, i) identification accuracy across PCA
928 components, iii) average self-identifiability across PCA components, and iv) violin plots of self-
929 identifiability before and after PCA reconstruction. Overall, PCA reconstruction did not
930  substantially improve identification accuracy.

931
932  Fingerprinting with 30-second data segments
933 We challenged MEG fingerprinting using short 30-second data segments (i.e., shortened

934  within-session fingerprinting). We epoched participants’ MEG recordings into three datasets of 30
935  second, where the first dataset was the first 30 seconds of the recording after having removed the
936 initial five seconds, the second dataset was the 30 seconds immediately following the first dataset,
937 and the last dataset was the last 30-second segment of the recording after having removed the
938 last ten seconds (Figure 1). Cropping the initial and last few seconds from recordings excluded
939  edge filtering and other session artifacts. The lengths of the short datasets and epochs were
940 determined from the participant with the shortest available recording. This procedure yielded
941 three data segments for fingerprinting purposes via 6 possible dataset pairs (i.e., dataset 1 and 2;
942  dataset 2 and 3; and dataset 1 and 3 and vice-versa). Results for all possible combinations of
943  datasets are reported in Figure S6.

944 Connectome fingerprinting successfully identified individuals across all possible
945  combinations of datasets (Figure S6). Identification from recordings collected closer in time (e.g.,
946  dataset-1 and dataset-2) outperformed identification from datasets collected further apart in time
947 (e.g., between dataset-1 and dataset-3). Overall, spectral fingerprinting vyielded lower
948 identification accuracy than connectome fingerprinting, in particular from datasets further apart
949  intime.

950 In a similar fashion, we challenged MEG fingerprinting using short 30-second data
951 segments from different sessions (i.e., between-session fingerprinting). This yielded 6 epochs of
952  data for fingerprinting (i.e., three from both the first and second recording, see Figure 1a).
953  Identification results averaged across all possible data pairs are reported Figure 3c. Connectome
954  fingerprinting performances were greater than those from spectral fingerprinting. Identification
955  from slower frequency data components performed worse in comparison to higher bands — see
956  main article body for discussion.

957

958
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Figure S6: Identification accuracy from shortened within-session datasets

Identification results from shortened within-session datasets (30 seconds) for (a) connectome and
(b) spectral broadband and narrowband fingerprinting. The accuracy scored are reported for
identification from all possible combinations of datasets, (i.e., dataset 1 to predict dataset 2,
dataset 3 to predict dataset 2, etc.; see Methods for details). Identification accuracy increased as
datasets were proximal in time (i.e., fingerprinting accuracy for dataset 1 to dataset 2 was greater
than for dataset 1 to dataset 3).

Fingerprinting across recording sessions

We also report fingerprinting accuracy performances from all possible pairs of datasets for
the between-session fingerprinting challenge in Figure S7. Overall, spectral fingerprinting
outperformed connectome fingerprinting, as discussed in the main text.

(a) between-session connectome (b) between-session spectral
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Figure S7: Between-session identification accuracy
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975  Results from MEG between-session fingerprinting. Identification accuracy for both (a) connectome
976  and (b) spectral broadband and narrowband fingerprinting. The accuracy scores are reported for
977 identification from dataset 1 to dataset 2 and vice-versa (see Methods).

978

979 Individuals cannot be identified from their respective imaging kernels

980  We verified that the within-session identification of individuals was not possible from empty-room
981 data (i.e., with no participant under the MEG sensor array) processed through their respective
982  imaging kernel of beamformer weights. Indeed, these latter are defined from individual anatomy
983  and head position under the MEG sensor array, which may have been sufficient information to
984  drive identification. We therefore ran the same fingerprinting pipeline on each session’s empty-
985 room data transformed through the corresponding individual’s beamformer imaging kernel, which
986  was identical for each of the within-session data segments used. Note that for the between-
987  session challenges, the imaging kernels were adjusted to the respective individual head positions
988  measured during each session. These analyses demonstrated that the imaging kernel information
989  did not contribute substantially to MEG fingerprinting (overall performance was below 20% on
990 average, See Figure 2).

991

992  We also ran the MEG fingerprinting pipeline directly from the sensor data of the empty-room
993  recordings, without transformation through individual imaging kernels, to assess the floor level of
994  identification performances from non-brain data only. The data confirmed substantially lower
995 levels of identification (<5% accuracy on average; see Figure S8).

996
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999  Figure S8: Verification of failed fingerprinting from non-brain data (empty-room recordings)
1000  Results for the empty-room sensor fingerprinting challenge. As expected, identification accuracies
1001  of connectome and spectral broadband and narrowband fingerprinting were substantially lower
1002  than from actual MEG data with individuals present.
1003
1004  Fingerprinting from scalp data only
1005 We also performed MEG fingerprinting from individual sensor data, with no MEG source
1006  reconstruction to assess the added value of source modeling. We replicated the above MEG
1007  fingerprinting pipelines from the within-, within-shortened, and between- session analyses.
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1008  Identification performances were less than with source modeling, especially from signal
1009  components in higher frequency bands and for the shortened challenges (see Figure S9, S10, &
1010  S11). Yet for other signal components and longer durations, individuals remain identifiable from
1011  sensor-level data collected between sessions (>60% accuracy from broadband data), albeit with
1012 lower accuracy than when using MEG source transformations, which explicitly account for
1013 different head positions between sessions.

1014  Taken together with the empty-room fingerprinting tests above, these results provide evidence

1015  that brain signals, not environmental conditions, were crucial for individual identification.
1016
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1019  Figure S9: Within-session identification from MEG sensor data (no source modeling)

1020  Results from MEG sensor data in the within-session fingerprinting challenge. The identification
1021  accuracy statistics are shown for both connectome and spectral broadband and narrowband
1022  fingerprinting. The average accuracy scores are reported across identifications from dataset-1 to
1023  dataset-2 and vice-versa (see Methods).
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1026  Figure S10 Within-session identification from shortened (30-s) MEG sensor data (no source
1027  modeling)

1028  Results from MEG sensor data in the within-session shortened fingerprinting challenge. The
1029 identification accuracy statistics are shown for both connectome and spectral broadband and
1030  narrowband fingerprinting. The average accuracy scores are reported across identifications from
1031  all possible pairs of datasets (see Methods).
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1034  Figure S11: Between-session identification from MEG sensor data (no source modeling)

1035  Results from MEG sensor data in the between-session fingerprinting challenge. The identification
1036  accuracy statistics are shown for both connectome and spectral broadband and narrowband
1037  fingerprinting. The average accuracy scores are reported across identifications from dataset-1 to
1038  dataset-2 and vice-versa (see Methods).

1039
1040  Salient neurophysiological features for fingerprinting
1041 We reported in the main manuscript intraclass correlations (ICC) to determine which

1042  features contributed to individual identification the most. We also performed two additional
1043  analyses, deriving group consistency and differential power. These two metrics were proposed by
1044  Finnand colleagues (2) to identify the features which were the most consistent across their cohort,
1045  vs.The features which were the most consistent within individuals but different across participant,
1046  respectively (2). Differential power measures the empirical probability that a given feature is more
1047  likely to have a higher edgewise product vector across individuals than within the same individual.
1048  Taking the sum of the natural log of this probability across subjects yields differential power (2).
1049  The higher the differential power, the better a feature discriminates between individuals. Results
1050 for differential power are plotted in Figures S7 and S9. We found that the most discriminant
1051  connectome features were the visual and limbic networks across frequency bands, while the most
1052  discriminant spectral features remained along midline structures for fast oscillatory signal
1053  components. Overall, these results confirmed the ICC analysis results, with the addition of the
1054  contributions of spectral power in the beta and gamma band along the supplementary motor,
1055  motor, and somatosensory cortices.
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1056
1057  Figure S12: Differential power connectome fingerprinting
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1058  Differential Power (DP) analysis for broadband connectome fingerprinting of the within-session
1059  dataset (see Figure 1). Mean DP plotted within frequency bands and per resting-state network as
1060  defined by (3): Default Mode Network (DMN), Dorsal Attention (DA), Frontal-Parietal (FP), Limbic
1061 (L), Somato-Motor (SM), Ventral Attention (VA), and Visual (VIS). The higher the DP, the more the
1062  corresponding functional connection was essential for fingerprinting. The outstanding
1063  connections determined by DP for fingerprinting were the Visual network across all frequency
1064  bands, and the Limbic network in the beta and gamma bands.

1065

1066 Group consistency reflects edges that are consistent across individuals. Group consistency
1067  was computed from the mean edgewise product vector across all subjects (2). Large values of
1068  group consistency highlight features that are consistent both within participants and across the
1069  cohort. Our analyses are shown Figures S8 and S10. The resulting most consistent connectome
1070  features remained along the diagonal of the FC matrix (i.e., connections within the same networks)
1071  specifically in the Dorsal Attention and Fronto-Parietal networks. The most consistent features for
1072  spectral fingerprinting were in the lower frequency bands, specifically in the lateral frontal
1073 cortices. This outcome was consistent with our ICC results (see Manuscript).

1074
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1075
1076  Figure S13: Group consistency connectome fingerprinting

1077  Group Consistency (GC) analysis for broadband connectome fingerprinting of the within-session
1078  dataset (see Figure 1). Mean GC plotted within frequency bands according to the labels from (3):
1079  Default Mode Network (DMN), Dorsal Attention (DA), Frontal-Parietal (FP), Limbic (L), Somato-
1080  Motor (SM), Ventral Attention (VA), and Visual (VIS). The higher the GC, the more consistent was
1081 a functional connection within an individual and across the cohort. The most consistent
1082  connections were those along the diagonal, specifically for the Dorsal Attention and Frontal-
1083  Parietal networks across all frequency bands.
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1085  Figure S14: Differential power spectral fingerprinting
1086  Differential Power (DP) analysis for broadband spectral fingerprinting of the within-session dataset
1087  (see Figure 1). Mean DP plotted within frequency bands according to the Desikan-Killiany atlas (4).
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1088  The higher the DP, the more a given frequency band and ROI distinguished between individuals.
1089  The most characteristic regions and frequencies were medial structures for the beta band, and
1090  temporal and central regions for gamma band signals.

1091
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1093  Figure S15: Group consistency spectral fingerprinting

1094  Group Consistency (GC) analyses for broadband spectral fingerprinting of the within recording
1095  session dataset (see Figure 1). Mean GC plotted within frequency bands according to the Desikan-
1096  Killiany atlas (4). The higher the GC, the more a given frequency band and ROl remained consistent
1097  within individuals and across the cohort. The most stable frequencies were the lower bands (delta
1098  and theta) and the most consistent regions across individuals were lateral frontal areas.

1099

1100  Partial Least Squares (PLS) analysis

1101 We tested whether differences in resting-state neurophysiological signals related to
1102  meaningful demographic features using an exploratory Partial Least Squares (PLS) analysis. PLS is
1103  a multivariate statistical method that relates two data matrices based on latent variables (LV) that
1104  explain the highest covariance between the two datasets. Here, our two datasets consist of a
1105  demographic matrix (i.e., age, gender, handedness, and clinical status) and a neurophysiological
1106  data matrix (i.e., spectral power or functional connectome). Latent variables (which explain the
1107  most covariance between both matrices), and their corresponding variance explained are plotted
1108 in Figure S16. Significance of each latent variable was assessed via permutation tests. Permuting
1109  the rows of the data allowed us to compute an associate p-value for each latent variable (see
1110  Manuscript). We chose to explore the first significant latent variable which explained the most
1111  variance for each neurophysiological signal feature (i.e., the first component for connectomes and
1112  spectral data). The resulting weights associated to the latent neural and demographic components
1113  are depicted Figure 5 along with their bootstrapped ratios. These results corroborate how
1114  neurophysiological signals at rest, in addition to identifying individuals, carry meaningful
1115 information about participant demographics.
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Figure S16: PLS latent variables

Results for the PLS analysis conducted for both (a) connectome and (b) spectral fingerprinting
features. Each plot depicts the latent components obtained for each of the PLS analyses, their
corresponding variance explained, and permuted p-value (right axis). One significant latent
variable explained 43.1% of the variance for connectome fingerprinting and two latent variables
explained 44.7% and 28.3% of the variance for spectral fingerprinting, respectively. We explored
in the main Manuscript only the first significant component for each method (i.e., the circled
component).
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