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Abstract 11 
Large, openly available datasets and current analytic tools promise the emergence of population 12 
neuroscience. The considerable diversity in personality traits and behaviour between individuals 13 
is reflected in the statistical variability of neural data collected in such repositories. This amount 14 
of variability challenges the sensitivity and specificity of analysis methods to capture the personal 15 
characteristics of a putative neural portrait. Recent studies with functional magnetic resonance 16 
imaging (fMRI) have concluded that patterns of resting-state functional connectivity can both 17 
successfully identify individuals within a cohort and predict some individual traits, yielding the 18 
notion of a neural fingerprint. Here, we aimed to clarify the neurophysiological foundations of 19 
individual differentiation from features of the rich and complex dynamics of resting-state brain 20 
activity using magnetoencephalography (MEG) in 158 participants. Akin to fMRI approaches, 21 
neurophysiological functional connectomes enabled the identification of individuals, with 22 
identifiability rates similar to fMRI’s. We also show that individual identification was equally 23 
successful from simpler measures of the spatial distribution of neurophysiological spectral signal 24 
power. Our data further indicate that identifiability can be achieved from brain recordings as 25 
short as 30 seconds, and that it is robust over time: individuals remain identifiable from 26 
recordings performed weeks after their baseline reference data was collected. Based on these 27 
results, we can anticipate a vast range of further research and practical applications of individual 28 
differentiation from neural electrophysiology in personalized, clinical, and basic neuroscience.    29 
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Introduction 30 
Understanding the biological nature of individual traits and behaviour is an overarching objective 31 
of neuroscience research (1–4). The increasing availability of large, openly available datasets and 32 
advanced computational tools propels the field toward this aim (5–7). Yet, with bigger and 33 
deeper data volumes, neuroscientists are confronted to a paradox: while big-data neuroscience 34 
approaches the realm of population neuroscience, we remain challenged by understanding how 35 
interindividual data variability echoes the singularity of the self (1, 3, 8, 9).   36 

This epistemological question has become particularly vivid with recent research showing that 37 
individuals can be identified from a cohort via their respective neural fingerprints derived from 38 
structural magnetic resonance imaging (MRI) (10, 11), functional MRI (fMRI) (12–16), 39 
electroencephalography (EEG) (17–19), or functional near-infrared spectroscopy (fNIRS) (20). 40 
Strikingly, neural fingerprints are associated with individual traits such as global intelligence, 41 
working memory, and attention abilities (21–24). Most published work so far is methodologically 42 
based on inter-individual similarity measures of functional connectivity—understood as statistical 43 
dependencies between ongoing signals across brain regions in task-free awake conditions (25, 44 
26)—as defining features of neural fingerprints. Yet, the indirect coupling between hemodynamic 45 
and neural brain signaling interrogates the neurophysiological nature of brain fingerprints.  46 

In electrophysiology, ongoing brain dynamics at rest are rich and complex (26) and have long been 47 
considered a nuisance, a by-product of neural noise (28–30). Recent experimental evidence, 48 
spurred by systems neuroscience models, indicates that spontaneous brain activity captured using 49 
electrophysiological techniques expresses similar resting-state connectomes as fMRI and 50 
influences conscious, sensory processes (31–33). Ongoing neurophysiological activity varies 51 
considerably between individuals and across the lifespan. One instance is the inter-individual 52 
variability of prominent features of human brain neurophysiological activity, such as the alpha 53 
rhythm (8-12 Hz) peak frequency (34, 35). Previous EEG fingerprinting work was restricted to scalp 54 
data, and therefore, provided limited neuroanatomical insight (17–19). Another distinctive aspect 55 
of electrophysiology is the contamination of recordings by artefacts of different natures including 56 
environment and instrument noise, muscle contractions, eye and head movements, which can be 57 
distinctive of individuals and can bias fingerprinting with non-neural signal features. Overall, the 58 
unique signature components of fast, neurophysiological brain dynamics across individuals remain 59 
unchartered. 60 

Here we used resting state recordings of magnetoencephalography (MEG; 27) from a large cohort 61 
of participants to identify neurophysiological features of individual differentiation. We derived 62 
both measures of functional organization (i.e., functional connectivity) inspired by fMRI neural 63 
fingerprinting approaches, and spectral signal markers that are proper to the wider frequency 64 
spectrum of brain signaling accessible to neurophysiological data.  65 
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Results 66 
We used MEG data from 158 participants available from the Open MEG Archives (OMEGA; 6). 67 
Data collected on multiple days were available for a subset of these participants (N=47; mean 68 
duration between consecutive sessions: 201.7 days; Figure 1). The participants were both 69 
healthy and patient volunteers (ADHD and chronic pain) spanning in age from 18 – 73 years-old 70 
(see Supplemental Material). T1-weigthed structural MRI volumes were available from OMEGA 71 
for all participants and were used to produce source maps of resting-state brain activity (36). We 72 
derived several neurophysiological signal features from MEG brain source time series 73 
summarized within the Desikan-Killiany atlas—68 regions of interest (ROIs) parcellating the 74 
entire cortical surface (37). The MEG features comprised power-spectral-density estimates (PSD) 75 
within each of the 68 ROIs (37), and 68x68 functional connectomes (FC) between these ROIs. 76 
The approach is illustrated in Figure 1 and the FC and PSD methodological details are provided in 77 
Materials and Methods. 78 
 79 
Participant identification was performed across pairs of MEG data segments taken from either 80 
the same (within-session identification) or a repeated session (between-session identification) 81 
using two distinct datasets (Figure 1a) and based either on FC or PSD features (referred as 82 
connectome and spectral fingerprinting, respectively). The within-session challenge with longer 83 
data segments was considered to assess the baseline performances of the MEG fingerprinting 84 
approaches proposed. The more challenging situations developed in the present report concern 85 
individual identification from shorter 30-s time segments within or between recording sessions. 86 
For each pair of participants, the Pearson’s correlation coefficient between their respective 87 
features (i.e., FC or PSD) was the corresponding entry in the group correlation matrix (see 88 
Supplemental Material). The identification procedure for each individual proceeded via a lookup 89 
operation through the corresponding row of the correlation matrix; the index of the column 90 
featuring the largest correlation coefficient determined the predicted identity of the individual in 91 
the cohort. Thus, if a given individual’s data features from the first dataset were most correlated 92 
to the data features from their second dataset, the individual would be correctly identified. Note 93 
that taking the maximum along the rows or columns simply switches which dataset is used for 94 
deriving the identification features (e.g., identifying individuals using dataset 1 from features 95 
derived from dataset 2; results for all possible combinations of datasets are in Supplemental 96 
Material). The overall accuracy of the identification procedure was computed as the proportion 97 
of participants correctly identified. We ran three types of identification challenges: within-98 
session identification consisted of the personal differentiation between 158 participants (i.e., the 99 
datasets were from same-day recordings split in half); a between-session identification challenge 100 
for a subset of 47 participants for whom the datasets were from two separate days; and a 101 
between-session identification using considerably shortened data segments (30 seconds) (Figure 102 
1a). We conducted the identification challenges using either broadband MEG data or band-103 
limited versions within the typical frequency bands used in neurophysiology. We also derived a 104 
self-identifiability score for every participant, which indicates the saliency of the identification of 105 
any given individual in the tested cohort (see Material and Methods).  106 
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 107 
Figure 1: Identification analysis pipeline and definition of self-identifiability  108 
(a) Schematic of exemplar MEG data divided into datasets used in each of the specified 109 
identification challenges. i) Within-session challenge: the session data was split in half segments 110 
of equal duration; ii) Between-sessions challenge: identification was performed using data 111 
recorded on two separate days; iii) Between-session shortened challenge: data recorded on two 112 
different days were split into three 30-s segments. (b) Schematic of the data analysis pipeline: 113 
source modeling was first performed before extracting features from each region of the Desikan-114 
Killiany atlas (37). These features were vectorized and subsequently used to fingerprint 115 
individuals, yielding a participant correlation matrix. (c) Features for the between-session 116 
challenge from an exemplar subject. Left panel depicts AEC functional connectivity matrices 117 
across two datasets; both matrices feature the Pearson correlation coefficients between all 68 118 
regions of the Desikan-Killiany atlas (37).  Right panel plots the power spectrum density 119 
estimates from two regions of the atlas, across two datasets. (d) Self-identifiability was derived 120 
for each participant as the z-score of their correlation to themselves, relative to the correlation 121 
between themselves and the rest of the cohort. A participant with a high correlation to 122 
themselves and low correlations to others was qualified as highly identifiable. An individual 123 
highly correlated to both themselves and many others in the cohort was qualified as less 124 
identifiable. 125 

Within-session connectome and spectral data differentiate individuals 126 
Within-session MEG connectome and spectral fingerprinting achieved 94.9% and 96.2% 127 
participant identification accuracy, respectively (Figure 2). This outcome was robust to switching 128 
datasets (Supplemental Material). While previous work (12) reported that data reduction 129 
strategies improved identification performances, this was not the case with our data. Data 130 
reduction strategies only marginally improved individual differentiation, as explained in 131 
Supplemental Material.  132 
 133 
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We also ran the identification procedure for each of the typical frequency bands of 134 
electrophysiology to understand whether the expression of certain ranges of brain rhythms 135 
would be more specific of individual differentiation. We bandpass filtered MEG signals in the 136 
delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz), gamma (30-50Hz) and high gamma 137 
(50-150Hz) frequency bands before running the same within-session fingerprinting procedure 138 
using the resulting narrowband signals. Narrowband connectome fingerprinting yielded 139 
identification accuracy scores of 98.7% for delta, 100% for theta, 99.4% for alpha, 100% for beta, 140 
98.7% for gamma, and 94.9% for high gamma. Narrowband spectral fingerprinting produced 141 
identification accuracies of 94.9% for delta, 95.6% for theta, 95.6% for alpha, 96.2% for beta, 142 
96.2% for gamma, and 97.5% for high gamma. These results are summarized Figure 2a.  143 

MEG fingerprinting is robust against physiological, artefactual, and demographics confounds  144 
We investigated the robustness of these results against variables of no interest and possible 145 
confounds. We first processed each individual session’s empty-room recordings in an identical 146 
fashion to participants brain data. In particular, we produced pseudo brain maps of empty-room 147 
sensor data using the same imaging kernels as those used for each session’s participant brain 148 
data. The implication is that imaging kernels designed based on information that are specific of 149 
each participant, such as their respective head positions in the MEG sensor array and individual 150 
anatomy brain features that constrain MEG source maps. We therefore tested whether such 151 
individual information unrelated to brain activity contributed substantially to individual 152 
identification from MEG source maps. We found that identification performances were 153 
considerably reduced using empty-room data (<20% across all tested models; Figure 2). These 154 
results based on source maps were corroborated by the low fingerprinting performances 155 
obtained by using empty-room sensor data only (<5% across all tested models; Supplemental 156 
Material).  157 
 158 
We then performed Pearson correlation analyses between identification scores and recording 159 
parameters, typical MEG artifacts and demographic variables. There was no association between 160 
the duration of scans and self-identifiability for connectome (r=-0.02, p=0.75) and spectral 161 
(r=0.02, p=0.8) fingerprinting (Supplemental Material). Further, none of the tested MEG artifacts 162 
due to eye movements, heartbeats, and head motion were related to individual identifiability 163 
from either connectome or spectral fingerprinting. Indeed, self-identifiability was not correlated 164 
to motion (connectome: r=0.06, p=0.5; spectral: r= -0.01, p= 0.9), cardiac (connectome: r=0.05, 165 
p=0.6; spectral: r= 0.07, p= 0.4), or ocular (connectome: r= -0.09, p = 0.3; spectral: r=-0.05, 166 
p=0.5) artifacts (Figure 2b).  167 
 168 
Lastly, we further hypothesized that fingerprinting performances may have been skewed by 169 
sample heterogeneity in terms of data from healthy vs. patient participants. Yet, there was less 170 
than 1% differences in identification accuracy after restricting fingerprinting to healthy 171 
participant data (Supplemental Material). We also verified that participant demographics such as 172 
age, sex, and handedness did not contribute to identifiability either (Supplemental Material).  173 
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 174 
Figure 2: Within-session identification is not related to recording artifacts 175 
(a) Identification accuracy of connectome and spectral fingerprinting based on broadband and 176 
narrowband brain signals. Horizontal grey bars indicate reference identification levels obtained 177 
from empty-room data recorded on the same days as participants (see Methods). (b) Self-178 
identifiability was not related to typical confounds such head motion, eye movements and 179 
heartbeats. Top row: using connectome fingerprinting; bottom row: spectral fingerprinting. 180 

MEG fingerprinting is robust over time 181 
We tested whether participants who underwent MEG sessions on separate days were 182 
identifiable from datasets collected weeks to months apart (with a range of 1 – 1029 days apart 183 
and an average of 201.7 days, SD=210.1). We applied the above fingerprinting procedures 184 
towards this between-session challenge on the subset of participants concerned (N=47). 185 
Connectome fingerprinting decreased in performance compared to the identification accuracy 186 
scores obtained from the within-session challenge (89.4%). Performance of connectome 187 
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fingerprinting from narrowband signals also decreased, with the greatest robustness obtained 188 
from using signals in the beta and theta bands (Figure 3a and Supplemental Material). In 189 
contrast, spectral fingerprinting was robust longitudinally, with identification accuracy scores of 190 
97.9% (broadband) and >90% (narrowband) that were similar to those obtained in the within-191 
session challenge (Figure 3 and Supplemental Material). Self-identifiability scores were not 192 
correlated with the number of days between MEG sessions (connectome: r= 0.09, p = 0.5; 193 
spectral: r= 0.08, p=0.65).  194 
 195 
We further challenged MEG individual differentiation between sessions days apart using shorter 196 
data segments. We extracted three 30-s segments from the between-session data on each day 197 
(Figure 1a) and ran the same fingerprinting procedures as above. Identification performance 198 
from connectome fingerprinting remained high across all 30-s segments tested (Figure 3c) using 199 
broadband MEG signals (identification accuracy 84.4%). Performance of spectral fingerprinting 200 
was decreased (identification accuracy: 65.2% Figure 3c). We observed similar discrepancies in 201 
performance robustness between connectome and spectral fingerprinting using narrowband 202 
signals (Figure 3), especially in the delta, theta, and alpha bands. We report results obtained 203 
from using sensor data only and for the within-session shortened challenge in Supplemental 204 
Material.  205 
 206 
 207 

 208 
Figure 3: Between-session identification accuracy 209 
(a) Identification accuracy for connectome and spectral between-session fingerprinting. 210 
Identification performances are similar to those from the within-session challenge. (b) Linear 211 
regression analyses did not reveal an association between self-identifiability and the delay 212 
between session recordings (connectome fingerprinting: r= 0.09, p = 0.5; spectral fingerprinting: 213 
r= 0.08, p=0.65).  (c) Between-session shortened identification accuracy using 30-s data segments 214 
collected days apart (average: 201.7 days). Each data point represents one combination of 215 
datasets used for fingerprinting (see Methods for details) (d) Scatter plot of all identification 216 
challenges (source and sensor level approaches) across frequency bands for both source and 217 
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sensor level identification (Supplemental Material details the results obtained for in all sensor 218 
data identification challenges.) 219 

 220 
 221 

Figure 4: Characteristic features of connectome and spectral fingerprinting 222 
Intraclass correlation (ICC) for connectome and spectral within-session fingerprinting. (a) ICC for 223 
connectome fingerprinting plotted for each tested frequency band, using network labels from 224 
Yeo et al. (2011). The most prominent networks for connectome fingerprinting were the Visual, 225 
Dorsal Attention and Limbic networks. (b) ICC for spectral fingerprinting plotted for each tested 226 
frequency band and mapped using the Desikan-Killiany cortical parcellation (37). The most 227 
salient features were the gamma and high-gamma band signals expressed in midline structures 228 
and the beta band across the cortex. 229 

Salient neurophysiological features for identification 230 
We identified the features which were the most characteristic of individuals for MEG 231 
fingerprinting. We derived measures of intraclass correlation (ICC) (12) to quantify how much 232 
each feature, such as an edge of the FC connectome or the signal power in a frequency band 233 
from an anatomical parcel, contributed to fingerprinting (see Methods). This metric was 234 
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reported in previous brain fingerprinting studies and captures the inter-rater reliability of each 235 
participant as their own rater, to identify the neurophysiological signal features that are the 236 
most consistent across individuals (12, 38). We performed this analysis for both the broadband 237 
connectome and the band-specific spectral fingerprinting within-session challenges. The data 238 
show that the dorsal attention and visual networks were the most specific across individuals for 239 
connectome fingerprinting, in all frequency bands (Figure 4). Beta-band connectivity of the 240 
limbic network was particularly distinctive of individuals. For spectral fingerprinting, beta, 241 
gamma, and high-gamma band signal power were the most salient identification features, 242 
especially across medial regions (Figure 4b). Particularly, signals in the theta, alpha, beta, and 243 
gamma bands discriminated individuals along midline, parietal, lateral temporal, and visual 244 
areas. These results are consistent with our narrowband analysis (see Figure 2a), which 245 
highlights beta activity as the most informative in identifying individuals. 246 

Neurophysiological identifying features are associated with demographics 247 
Beyond identifying individuals in a cohort, we tested whether resting-state neurophysiological 248 
features could also predict meaningful participant traits, using an exploratory partial-least-249 
squares (PLS) analysis (see Methods; (39)). Briefly, PLS explains the structure of the covariance 250 
between two observation matrices – here a demographic matrix and a neurophysiological signal 251 
matrix composed of ROI-specific connectome of spectral measures – with latent components. 252 
PLS analysis of our data revealed three significant latent components, which were distinct for 253 
connectome and spectral fingerprinting (Supplemental Material). The first latent component in 254 
connectome fingerprinting was related to clinical population (r= 0.2, 95% CI [0.160, 0.3]) and 255 
handedness (r= 0.2, 95% CI [0.1, 0.3]). This demographic profile was associated with reduced 256 
beta-band functional connectivity over the frontal parietal network (Figure 5). For spectral 257 
fingerprinting, the first salient latent component was related to a younger age (r= -0.3, 95% CI [-258 
0.1, -0.5]), female (r= 0.4, 95% CI [0.2, 0.5]) and clinical population (r= 0.5, 95% CI [0.2, 0.5]). This 259 
demographic profile was associated with stronger expressions of broadband neurophysiological 260 
signal power in superior parietal regions and the pericalcarine gyrus bilaterally, and reduced 261 
neurophysiological signals in the isthmus cingulate (Figure 5).   262 
 263 
 264 
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 265 
Figure 5: Partial Least-Squares analysis relates demographics to connectome and spectral 266 
features 267 
(a) and (b) from left to right, depicts the design saliency patterns for the first latent variables and 268 
their associated neural-data bootstrap ratios. Confidence Intervals (CI) were calculated through a 269 
bootstrapping procedure, and as such may not necessarily be symmetric. Bootstrap ratios 270 
computed for (a) connectome and (b) spectral features are plotted according to the resting-state 271 
networks labelled according to Yeo et al. (2011) and the Desikan-Killiany parcellation (37), 272 
respectively: Default Mode Network (DMN), Dorsal Attention (DA), Frontal-Parietal (FP), Limbic 273 
(L), Somato-Motor (SM), Ventral Attention (VA), and Visual (VIS). 274 

Discussion 275 
The recent leveraging of large, open fMRI datasets has brought empirical evidence that 276 
individuals may be identified within a cohort from their brain imaging functional connectome, 277 
inspiring the metaphor of a neural fingerprint. Unlike hand fingerprints, their cerebral 278 
counterpart predicts task performance and a variety of traits (14, 21–24). These intriguing 279 
findings require a better understanding of their neurophysiological foundations, which we 280 
sought to characterize from direct neural signals captured at a large scale with MEG. 281 
Our data show that individuals can be identified in a cohort of 158 unrelated participants from 282 
their respective resting-state connectomes and spectral profiles in a range of fast brain signals. 283 
MEG fingerprinting was successful using data lengths (30 seconds) much shorter than those 284 
reported for fMRI fingerprinting (14, 41). Brain electrophysiological signals are rich, complex and 285 
convey expressions of large-scale neural dynamics channeled by individual structural anatomy 286 
and physiology (42). Indeed, we also showed that MEG fingerprinting is robust across time, 287 
making individuals potentially identifiable from data collected days, months, or years apart. 288 
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Lastly, we characterized whether individual differences in resting-state neural dynamics are 289 
demographically meaningful through an exploratory PLS analysis. We showed that both resting-290 
state functional connectomes and spectra predict latent demographic components. Recent 291 
findings corroborate our results, demonstrating individual differences between functional 292 
connectomes derived from resting-state electrophysiology (43). Future work will be required to 293 
replicate and expand these findings in more samples of individuals. 294 

Connectome and spectral neurophysiological fingerprints 295 
Our results highlight two sets of brain-wide electrophysiological features that contributed to 296 
successful individual identification: connectome and spectral measures across the 297 
neurophysiological frequency spectrum. Overall, connectome and spectral fingerprinting with 298 
MEG performed equivalently to fMRI approaches, achieving overall identification rates above 299 
90%, with robust individual identification over time and against noise (12, 14, 44).  300 
We found that for connectome fingerprinting, the anatomical regions the most characteristic of 301 
individuals differed between MEG and fMRI. While fMRI highlighted the default-mode network 302 
and the fronto-parietal resting state networks, MEG connectome fingerprinting emphasized 303 
functional connectivity within limbic and visual networks as contributing to individual specific 304 
neurophysiological signatures. In contrast, both MEG and fMRI fingerprinting emphasize the 305 
importance of the dorsal attention network (14). These observations are not mutually exclusive, 306 
considering the different nature of brain signals captured by the respective modalities. One 307 
possible interpretation—requiring further investigation— is that the fast neurophysiological 308 
signals that contribute to identification with MEG have hemodynamic counterparts that are not 309 
as salient in fMRI as the identifying networks reported so far. Nevertheless, our data indicate 310 
that neurophysiological signals in the beta band contribute to the highest identification accuracy 311 
amongst all other typical bands. This finding is compatible with previous work reporting that 312 
correlated amplitude changes of MEG brain signals are related to the microstructure of white 313 
matter tracts and reveal, with the same amplitude envelope correlation method as used here, 314 
MEG resting-state brain networks that align with fMRI’s (45, 46). Beta-band activity also emerges 315 
from recent literature as a signalling vehicle of re-afferent “top-down” communications in brain 316 
circuits (47, 48). One can therefore speculate that beta-band signals would convey 317 
electrophysiological representations of internal cognitive models that are by essence intimately 318 
specific of each individual (27). 319 
Such brain signal amplitude signatures are further emphasized by the ability of simple spectral 320 
brain maps to enable MEG fingerprinting. Within- and between-session spectral identification 321 
were achieved with remarkable accuracy (>90%) with broadband MEG brain signals or restricted 322 
to the typical bands of electrophysiology. Spectral identification based on signals from the faster 323 
bands (gamma and high-gamma) was overall the most robust longitudinally and against using 324 
shorter data segments. This observation is consistent with the width of (high) gamma frequency 325 
bands spanning broader ranges (here between 30-50 Hz and 50-150 Hz) than slower bands such 326 
as delta (1-4 Hz), theta (4-8 Hz) and alpha (8-12 Hz). The spectral estimates averaged across the 327 
broader (high) gamma bands were therefore the most robust against using shorter data 328 
segments. The reduced number of sliding time windows available over shorter data durations 329 
increased the variance of the summary statistics extracted to derive the spectral fingerprints 330 
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from the signals defined over narrower bands. The higher frequency bands were less affected 331 
because the larger number of frequency bins involved in the extraction of their summary power 332 
statistics tended to compensate the higher empirical variance of spectral estimates from a lesser 333 
number of observations over time. Connectome fingerprinting was more immune against using 334 
shorter data durations. The underlying approach indeed did not require spectral transformations 335 
but resorted to a bank of narrowband filters applied over the original duration of MEG 336 
recordings, before the resulting filtered signals were segmented in shorter epochs for the 337 
identification challenges. The consequence is that the number of data points used for all 338 
narrowband signals was identical across all frequency bands, yielding moderate variability in 339 
identification performances compared to those obtained with the spectral approach. Another 340 
factor of robustness of the connectome approach is that connectivity weights between network 341 
nodes may fluctuate very slowly over time in task free brain activity: Florin and Baillet (31) 342 
reported fluctuation rates of 0.01Hz in MEG, indicating typical time cycles of 100s — a duration 343 
substantially longer than the 30-s shortest time window used here. Over longer periods of time 344 
though, such as in the between-session challenge, spectral fingerprinting outperformed its 345 
connectome counterpart. We note a slight increase of spectral identification accuracy in the 346 
between-session challenge (e.g., +1.6% for broadband fingerprinting) compared to within-347 
session, which was a statistical fluctuation due to using a smaller sample of participants.  348 
 349 
On average across all source fingerprinting challenges reported herein, and despite successful 350 
identification across lower frequency bands (delta 52.2%, theta 60.6%, alpha 65.3%), 351 
performances were markedly better using high-frequency signal components (beta 81.9%; 352 
gamma 81.7%; high gamma 76.2%). Gamma and faster activity have long been associated with 353 
concurrent and colocalized hemodynamic fluctuations (49, 50). Because they may be seen as 354 
dual manifestations of BOLD signaling used in fMRI fingerprinting, this may explain why these 355 
signals contributed robustly to MEG brain fingerprinting in our data. However, gamma-band and 356 
faster brain signals are on average weaker in amplitude and therefore may be masked by 357 
contamination from artifacts and noise (51–53). The preprocessing applied to our data 358 
attenuated such nuisance to a point where individuals were not identifiable from typical sources 359 
of signal contamination such as individual head motion behavior.  360 
 361 
Although a rhythm of prominent amplitude in humans during rest, alpha-band activity (8-12Hz) 362 
was not particularly specific to identify individuals in the cohort. In that respect, our data is 363 
aligned with previous MEG works on resting-state connectomes extracted from 364 
neurophysiological MEG signals, which did not report on a salient role of alpha activity in driving 365 
inter-regional connectivity (31, 45). We argue that the spatial topography of alpha resting 366 
activity may be relatively stereotypical across individuals, involving thalamo-cortical loops that 367 
project focally to the parieto-occipital junction, with limited variability across individuals (6). In 368 
task, alpha activity has been related to attention orienting, alertness and anticipation, and the 369 
registration of (multimodal) sensory information, thereby reflecting transient mental states (41, 370 
54–57) rather than individual traits.  371 
 372 
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The data also indicates that MEG fingerprinting is robust against typical recording artefacts that 373 
may be idiosyncratic of individuals and therefore, could have confounded identification. In 374 
particular, session environmental conditions captured by empty-room MEG recordings were not 375 
sufficient to identify individuals within or between sessions. The participant’s anatomical and 376 
head-position information embedded in their respective MEG source imaging kernels were also 377 
not sufficient to identify individuals. Note that head position changed between sessions. Further 378 
studies are required to clarify how these results may vary depending on the type of MEG source 379 
modelling adopted. We anticipate little influence of the type of source model used though, 380 
based on evidence that beamforming kernels are mathematically equivalently to other major 381 
classes of linear source estimation kernels, such as weighted minimum-norm estimators (58). 382 
Future work should corroborate these results with regards to fingerprinting. The choice of 383 
connectivity measure to derive electrophysiological connectomes may also influence 384 
identifiability (59). We look forward to current progress in electrophysiological brain 385 
connectomics to put forward measures of network connectivity informed by mechanistic 386 
principles and emerging as a standard metrics in the field to confirm and expand present 387 
fingerprinting results (60).     388 
 389 
While our present data show robust longitudinal fingerprinting performances, future work 390 
involving more participants with multiple MEG visits is required to both replicate these 391 
observations and investigate whether individual deviations from baseline fingerprints could be 392 
early signals of asymptomatic neuropathophysiology (27). We hope the remarkable ability to 393 
fingerprint individuals from the present electrophysiological features serves as a steppingstone 394 
for future investigation, which may include multimodal non-invasive assessments based on MEG, 395 
possibly combined with e.g., fMRI and/or EEG. 396 

Neural fingerprints of individual traits  397 
Our data suggests that individual differences in resting-state neurophysiological functional 398 
connectivity and spectral power relate to latent demographic clusters. These observations are in 399 
line with previous fMRI work that showed that connectomes are predictive of individual 400 
differences in attention, working memory and intelligence. For instance, connectivity patterns 401 
between the default mode and the dorsal attention networks predict attentional behaviour 402 
during task and self-reported mind wandering (22, 61, see 62 for review ). Overall, a possible 403 
conceptual framework is that task free neural dynamics are the signatures of an individual 404 
scaffold of brain functions that is predictive of task behaviour. This view is also that of the 405 
spontaneous trait reactivation hypothesis wherein the organization of the human cortex at rest 406 
(manifested e.g., by functional connectivity) is a window into the self’s unique traits and abilities 407 
(63). Early evidence indeed suggests that functional connectomes are associated with 408 
personality traits and even inter-personal closeness in social networks (64, 65). 409 
 410 
Yet, the mechanistic implementation of these intriguing observations remains elusive. Inter-411 
individual variability in the distribution of synaptic weights across the cerebrum, shaped through 412 
lifetime experiences according to Hebbian principles, may account — at least in part — for 413 
connectome fingerprinting (63). The heritability of the functional connectome has also been 414 
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discussed, especially for fronto-parietal networks (i.e., dorsal and ventral attention network and 415 
the default mode network) (66–68). Heritability of brain spectral characteristics is also actively 416 
discussed (69–71). This emerging literature and the empirical evidence of brain fingerprinting 417 
certainly motivates more research on new, fascinating questions about the biological nature of 418 
the self. 419 

Sampling population diversity for personalized interventions 420 
Robust individual signatures of brain activity may be transformative to neurophysiological 421 
phenotyping and population neuroscience. With the increasing availability of multi-omic data 422 
repositories, there is a research opportunity to span the diversity of statistical normative 423 
characteristics of brain fingerprints across the population in relation to behaviour, environmental 424 
and clinical variables (1, 3, 27). Our study highlights the utility of datasets of individuals who have 425 
been scanned on multiple occasions to capture and characterize interindividual variability as 426 
meaningful information. Ideally, large databanks of individual variants sampled across multiple 427 
dimensions of socio-economic, age, and geographic factors enable normative modeling 428 
approaches to establish the risk traits of developing syndromes of e.g., early cognitive decline, 429 
neurodegeneration or mental illness. Previous work has shown that mental disorders may affect 430 
the stability of individual fingerprints over time and therefore points at possible translational 431 
applications of the approach  (15, 72). We may also foresee that changes over time or lack 432 
thereof of a person’s brain fingerprint may also constitute a new class of non-invasive markers of 433 
responses to neurological and other treatment of a variety of chronic, neurodegenerative or 434 
acute (e.g., stroke) conditions. Brain fingerprints derived from relatively short, task-free sessions 435 
may play a leading role to realize this vision in practice.  436 
Brain fingerprinting may also contribute to future endeavours in establishing how oscillatory 437 
dynamics at rest support cognitive functions across the lifespan. MEG brain fingerprinting 438 
presents several potential advantages in terms of safety, shorter scan time, and immediate 439 
proximity of a care person during data collection, especially for special populations.  440 
The methodological approaches proposed herein can, in principle, transfer to EEG fingerprinting 441 
(17–19), which would be more readily available in clinics. Whether results would be as robust 442 
with EEG than with MEG remains to be demonstrated. Indeed, EEG source mapping is more 443 
prone to contamination from muscle artifacts and is more sensitive to approximations in the 444 
biophysical modeling of head tissues, which may compromise further fingerprinting capabilities 445 
(27). 446 
 447 
In sum, our study extends the concept of neural or brain fingerprint to fast and large-scale 448 
resting-state electrophysiological dynamics, which encapsulate meaningful individual differences 449 
in both functional connectivity and neuroanatomical maps of power spectrum characteristics. 450 
We are hopeful that the present contribution paves the way to replication and extension using 451 
larger open datasets. Many fascinating outstanding questions remain about the biological nature 452 
of inter-individual variability expressed via neural oscillations and brain network dynamics, and 453 
more specifically how these differences associate with behavior and diseases natural history. The 454 
research ahead is for future population neuroscience studies. 455 
  456 
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Material and Methods 457 

The Open MEG Archives (OMEGA) 458 
We used data from the Open MEG Archives (OMEGA;  6) consisting of resting-state MEG 459 
recordings acquired using the same MEG system (275 channels whole-head CTF; Port Coquitlam, 460 
British Columbia, Canada). The sampling rate was 2400 Hz, with an antialiasing filter applied at 461 
600 Hz cut-off, and built-in third-order spatial gradient noise cancellation (see 6 for details on 462 
data acquisition).  463 
We analysed MEG resting-state data from 158 unrelated OMEG participants (77 Females, 31.9 ± 464 
14.7 years old). Recordings were approximately 5-min long. Supplementary Table 1 provides 465 
details on scanning procedures and Supplementary Table 2 on demographics. A subset of these 466 
individuals (N=47) had recordings over multiple visits (different days) and were used in the 467 
between-session fingerprinting challenge. The OMEGA data management protocol was approved 468 
by the research ethics board of the Montreal Neurological Institute.  469 

MEG data preprocessing and feature extraction 470 
MEG data were preprocessed using Brainstorm (73; version Oct-12-2018) (following good-471 
practice guidelines (74). Unless specified, all steps below were performed using the Brainstorm 472 
toolkit, with default parameters. Line noise artifact (60 Hz) along with its 10 harmonics were 473 
removed using a notch filter bank. Slow-wave and DC-offset artifacts were removed using a high-474 
pass FIR filter with a 0.3-Hz cut-off. We derived Signal-Space Projections (SSPs) to remove cardiac 475 
and ocular artifacts. We used electro-cardiogram and -oculogram recordings to define signal 476 
projectors around identified artifact occurrences. We also applied SSPs to attenuate low-477 
frequency (1-7 Hz) and high-frequency noisy components (40-400Hz) due to saccades and 478 
muscle activity, respectively. Bandpass filtered duplicates of the cleaned data were produced for 479 
each frequency band of interest (delta: 1-4Hz, theta: 4-8Hz, alpha: 8-13Hz, beta: 13-30Hz, 480 
gamma: 30-50Hz, and high gamma: 50-150Hz). Distinct brain source models were then derived 481 
for all narrowband versions of the MEG sensor data.  482 
Each individual T1-weighted MRI data was automatically segmented and labelled with Freesurfer 483 
(75). Coregistration with MEG sensor locations was derived using dozens of digitized head points 484 
collected at each MEG session. We produced MEG forward head models for each participant 485 
using the overlapping spheres approach, and cortical source models with LCMV beamforming, all 486 
using Brainstorm with default parameters (2016 version for source estimation processes). We 487 
performed data covariance regularization. To reduce the effect of variable source depth, the 488 
estimated source variance was normalized by the noise covariance matrix. Elementary MEG 489 
source orientations were constrained normal to the surface at 15,000 locations of the cortex. 490 
Noise statistics for source modeling were estimated from two-minute empty-room recordings 491 
collected as close as possible in time to each participant’s MEG session. Source timeseries were 492 
clustered into 68 cortical regions of interest (ROIs) defined from the Desikan-Killiany atlas (37) 493 
and dimension-reduced via the first principal component of all signals within each ROI.  494 
Connectome and spectral identification features were computed from ROI source timeseries. 495 
Individual functional connectomes were derived in all frequency bands from the amplitude 496 
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envelope correlation (AEC) approach (76). ROI timeseries were Hilbert transformed and all 497 
possible pairs of resulting amplitude envelopes were used to derive the corresponding Pearson 498 
correlation coefficients, yielding a 68x68 symmetric connectome array. We used Welch’s 499 
method to derive power spectrum density (PSD) estimates for each ROI (77), using time windows 500 
of 2 seconds with 50% overlap sled over all ROI timeseries and averaged across all PSDs within 501 
each ROI. The resulting frequency range of PSDs was 0-150Hz, with a frequency resolution of 0.5 502 
Hz. 503 

Code Availability 504 
The connectome and spectral features were then exported to Python (3.7.6) for subsequent 505 
fingerprinting analyses. All codes for including preprocessing and data analysis can be found on 506 
the project’s GitHub (LINK). 507 

Data Availability 508 
The power spectra and connectomes derived from the preprocessed OMEGA samples and used 509 
to identify individuals in the present study are available upon request from corresponding 510 
authors.  511 

Fingerprinting and self-identifiability 512 
We used a fingerprinting approach directly adapted from fMRI connectome fingerprinting 513 
methods (12, 14), which relies on correlational scoring of individuals between datasets. A given 514 
probe participant is identified from a cohort by computing all Pearson correlation coefficients 515 
between the spectral or connectome features of said probe at one timepoint (e.g., dataset 1) 516 
and the entire cohort at a different timepoint (e.g., dataset 2). The entry presenting the highest 517 
correlation to the probe determined the probe’s estimated identity i.e., identified entry in the 518 
cohort. This approach is applied between all pairs of participants in the cohort, yielding an 519 
asymmetric correlation matrix spanning the cohort. We report scores of identification accuracy 520 
as the ratio between the number individuals correctly identified with the described procedure 521 
and the total number of individuals in the cohort. Identification accuracy scores are obtained 522 
from identification challenges from dataset 1 to dataset 2 and vice-versa, within- and between-523 
sessions. Figure 1 details the definition of the dataset labels used, and Supplemental Material 524 
contains the results from across all combinations of datasets/sessions.  525 
Amico and Goñi (2018) proposed an identifiability score to quantify, for a given participant, the 526 
reliability of its identification from others in the cohort. Here, we extend this notion with the 527 
introduction of a self-identifiability measure, Iself. Let A be the correlation matrix spanning the 528 
cohort (square, asymmetric) between dataset 1 and dataset 2, and N be the number of 529 
participants to identify. We define  Iself as the z-score of participant Pi ‘s correlation to themselves 530 
between dataset 1 and dataset 2, with respect to Pi’s  correlation to all other individuals in the 531 
cohort, noted: Iself (i) = (Corrii – μij) / σij , where Corrii is the Pi’s correlation between dataset 1 and 532 
dataset 2, μij is the mean correlation between participant Pi in dataset 1 and all other individuals 533 
in dataset 2 (i.e. the mean along the ith row of matrix A), and σi is the empirical standard 534 
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deviation of inter-individual features correlations. Thus, if a participant is easily identifiable, its 535 
self-identifiability increases; whereas small self-identifiability scores indicate a participant 536 
particularly difficult to identify from the rest of the cohort. 537 

Recording artifacts and self-identifiability 538 
To investigate the effects of recording parameters and artifacts on fingerprinting, we related 539 
each individual’s self-identifiability to several possible confounds. The duration of each scan was 540 
compared to self-identifiability to verify that longer recordings available from a subset of 541 
individuals did not make them easier to identify. We also correlated the root mean square (RMS) 542 
of signals that measured ocular, cardiac, and head movement artifacts over the duration of the 543 
entire recording to participants’ self-identifiability score. For cardiac artifacts for instance, we 544 
derived the RMS of ECG recordings; for ocular artifacts we used the HEOG and VEOG electrode 545 
recordings; and for motion artifact we extracted the RMS of all three head coil signals that 546 
measured 3-D head movements. These derivations were conducted for both the connectome 547 
and spectral broadband within-session fingerprinting challenge.  548 

Fingerprinting across frequency bands  549 
We replicated the above fingerprinting approach using data restricted to each frequency band of 550 
interest (delta 1-4Hz, theta 4-8Hz, alpha 8-13Hz, beta 13-30Hz, gamma 30-50Hz, and high 551 
gamma 50-150Hz). We report the identification accuracy obtained from each narrowband signal 552 
in both the spectral and connectome fingerprinting challenges in Figure 2 and Figure 3, for the 553 
within- and between-session fingerprinting challenges respectively.  554 
We also performed fingerprinting tests based on sensor data only. We used the same 555 
connectome and spectral approaches as the MEG source maps, considering the time series of 556 
each of the 275 MEG channels instead of the 68 ROI time series derived from the brain map 557 
parcels. We report the identification performances from both the sensor and source analyses in 558 
Figure 3 and in Supplemental Material. 559 

Between-session and shortened fingerprinting challenges 560 
We verified the robustness of MEG fingerprinting with respect to 1) the ability to identify 561 
participants over time and 2) from reduced data durations. We subdivided participants into 562 
three additional challenges: the within-session—shortened, between-session, and between-563 
session—shortened challenge. First, we used the participant data described in the within-session 564 
analysis and extracted connectome and spectral fingerprinting features over three 30-second 565 
non-overlapping time segments. This duration was based on the length of the shortest recording 566 
in the data sample (Figure 1aii). We applied the same fingerprinting procedure as described in 567 
Fingerprinting and self-identifiability across all possible combinations of the three 30-second 568 
datasets. Second, we assessed the stability of the fingerprinting outcomes using a subset of 569 
participants with consecutive MEG sessions separated by several days (N=47; separated on 570 
average by 201.7 days, see Supplemental Materials for details). Again, we applied the same 571 
fingerprinting procedure as described in Fingerprinting and self-identifiability for this between-572 
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session challenge. Lastly, we applied the same shortened analysis—described above—to the 573 
subset of individuals with multiple scans (i.e., the between-sessions data). We report all possible 574 
combinations of datasets (i.e., three 30s segments from day 1 and three 30s segments from day 575 
2; see Figure 1a for example) in Figure 3. 576 

Empty-room fingerprinting 577 
We tested whether environment and instrument noise daily conditions would bias individual 578 
identification using empty-room recordings collected from each MEG session. The empty-room 579 
data was processed identically to the participants data, using the same individual imaging 580 
kernels, and were used to identify participants. We ran all possible combinations of empty-room 581 
vs. participants datasets (e.g., empty-room 1 vs. participant dataset 1, empty-room 2 vs. 582 
participant dataset 1, etc.) and computed the sample mean of the identification accuracies 583 
across all dataset combinations. The identification accuracies obtained represent estimates of 584 
baseline reference performances that can be compared to each form of fingerprinting based on 585 
actual participant data (i.e., connectome or spectral, broadband or band-specific; see Figure 2 586 
and Supplemental Material). In a similar fashion, we also used sensor-level empty-room 587 
recordings of each participant for fingerprinting—attempting to identify individuals’ recordings 588 
from their empty-room features. The results of this analysis are reported in the Supplemental 589 
Material. 590 

Most characteristic features for fingerprinting  591 
We quantified the contribution of each feature (i.e., edges in the connectivity matrix or a 592 
frequency band in an anatomical parcel) towards identifying individuals using Intraclass 593 
Correlations (ICC). ICC is commonly used to measure the agreement between two observers 594 
(e.g., ratings vs. scores). The stronger the agreement, the higher the ICC (12, 38). ICC derives a 595 
random effects model whereby each item is rated by different raters from a pool of potential 596 
raters. We selected this measure to capture the inter-rater reliability of each participant as their 597 
own rater to identify which edges (e.g., connections in FC) are the most consistent (i.e., which 598 
features of a participant Pi in dataset 1 are most like dataset 2). Here, the higher the ICC, the 599 
more consistent a given feature was within individuals.  Additionally, we computed two other 600 
measures of edgewise contribution proposed by Finn and colleagues (14): group consistency and 601 
differential power (Supplemental Material). We applied all measures (i.e., ICC, group consistency, 602 
and differential power) in the context of the broadband within-session fingerprinting challenge. 603 
The source maps shown in Figure 4, Figure 5 and Supplemental material were generated using R 604 
(V 3.6.3; 74) with the ggseg package (79). 605 

Partial Least-Squares: MEG features of participant demographics 606 
We conducted a Partial Least-Squares (PLS) analysis with the Rotman-Baycrest PLS toolbox (80). 607 
PLS is a multivariate statistical method that relates two matrices of variables (e.g., neural activity 608 
and participant demographics) by estimating a weighted linear combination of variables from 609 
both data matrices to maximize their covariance. The associated weights can be interpreted 610 
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neural patterns (e.g., functional connections) and their associated demographic profiles. PLS 611 
used singular value decompositions of the z-scored neural activity-demographics covariance 612 
matrix. This decomposition yielded orthogonal latent variables (LV) associated to a pattern of 613 
neural activity (i.e., functional connectivity or spectral power) and demographics. To assess the 614 
significance of these multivariate patterns, we computed permutation tests (10,000 615 
permutations). Each permutation shuffled the order of the observations (i.e., the rows) of the 616 
demographic data matrix before running PLS on the resulting surrogate data under the null 617 
hypothesis that there was no relationship between the demographic and neural data. A p-value 618 
for the LVs was computed as the proportion of times the permuted singular values exceeded 619 
that of the original data. We explored the first significant LV from the broadband connectome 620 
and spectral fingerprinting features. We also assessed the contribution of each variable in the 621 
demographics and neural activity matrices by bootstrapping observations with replacement 622 
(10,000 bootstraps). We computed 95-% confidence intervals for the demographic weights and 623 
bootstrap ratios for the neural weights. The bootstrap ratio was computed as the ratio between 624 
each variable’s weight and the bootstrap-estimated standard error.  625 
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 830 
 831 

Supplemental material 832 
 833 
MEG fingerprinting is robust against sample demographics  834 

The OMEGA data repository contains 158 participants, with a subset (N=47) scanned at 835 
multiple occasions several days apart. OMEGA consists essentially of data from healthy controls 836 
with a 18-73-year age span (SD=14.7 years; Supplemental Table 1).  837 

One potential confound that could have inflated our ability to fingerprint individuals is the 838 
heterogeneity introduced by both healthy and clinical populations in the OMEGA cohort. To 839 
address this concern, we ran a secondary analysis where we performed the fingerprinting 840 
procedures described in the manuscript with only healthy controls (N=130). The results, reported 841 
in Supplemental Table 2, demonstrated that fingerprint performances were not biased by the 842 
patients/controls heterogeneity of the OMEGA sample. We observed a decrease of less than 1% 843 
in performance relative to fingerprinting from the entire cohort. Further, there was no clear 844 
relationship between self-identifiability and demographics (Figure S1)., using connectome (age: r= 845 
0.08, p = 0.2; gender: t= -0.27, p = 0.7; handedness: t= -0.51, p = 0.6; clinical status: t= -0.87, p = 0.3; 846 
two-tailed) and spectral fingerprinting (age: r= 0.10, p = 0.1; gender: t= 0.62, p = 0.5; handedness: t= 847 
0.13, p = 0.8; clinical status: t= 0.84, p = 0.3; two-tailed).  848 

 849 
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 850 
Figure S1: Self identifiability is not associated with demographics 851 
The plots depict demographic variables and corresponding self-identifiability scores across both 852 
(a) connectome and (b) spectral broadband within-session fingerprinting. Demographic variables 853 
included age, biological sex, dominant hand, and healthy vs. patient categories. There was no clear 854 
relationship between demographics and self-identifiability — i.e., differences in demographics did 855 
not drive self-identifiability. 856 

 857 
 858 
Acquisition parameters did not affect both fingerprinting performances (Figure S2). 859 

Participants with longer recordings (i.e., more data) were not more identifiable (connectome: r= -860 
0.02, p = 0.7; spectral: r= 0.02, p = 0.8). This observation is consistent with the within- & between- 861 
session shortened fingerprinting results, which demonstrate individuals were identifiable from 862 
shorter 30-second recordings (see below).  863 

Taken together, these supplemental results demonstrate that MEG fingerprinting is robust 864 
against data artifacts, heterogeneous sample demographics and acquisition parameters. 865 
 866 

 
  

Within-session data Between-session data 

Age 31.9 ± 14.7 26.7 ± 11.6 
Gender 77 Females 24 Females 

Dominant Hand 147 Right, 8 Left, 1 Other 44 Right, 3 Left 

Clinical Status 
130 Healthy Controls 

22 ADHD 
6 Chronic Pain 

25 Healthy Controls 
22 ADHD 
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 867 
Supplemental table 1: OMEGA participant demographics 868 
Demographic variables summarized for both subsets of the OMEGA data repository.  869 
 870 

 871 
 872 

Figure S2: Recording duration did not affect self-identifiability  873 
Scatter plots of self-identifiability vs. duration of data collections, for the broadband within-session 874 
challenge. There was no clear relationship between self-identifiability and the duration of the MEG 875 
recordings across participants.  876 
 877 
 878 

 All Participants Only Healthy Controls 

 
Dataset 1 to 

Dataset 2 
Dataset 2 to 

Dataset 1 
Dataset 1 to 

Dataset 2 
Dataset 2 to 

Dataset 1 
Connectome 94.9% 94.3% 93.8% 93.0% 

Spectral 96.2% 96.2% 95.3% 95.3% 
 879 
Supplemental table 2. Fingerprinting performances of healthy controls 880 
Identification performances of connectome and spectral broadband within-session fingerprinting 881 
obtained from for the entire repository (healthy controls and patients), and from healthy 882 
participants only. Each column reports fingerprinting performances from Dataset 1 to Dataset 2 883 
and vice-versa (see Figure 1 for details). Overall, identification accuracy decreased slightly by 884 
~0.9% when comprising healthy participants only. Consistent with our findings reported in Figure 885 
S2, clinical status did not play a major role in the identification of individuals. 886 
 887 
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 888 
Figure S3: Identification accuracy from within-session datasets 889 
Results from MEG within-session fingerprinting. Identification accuracy for (a) connectome and (b) 890 
spectral fingerprinting (broadband and narrowband data). The accuracy scores are reported for 891 
identification from dataset 1 to dataset 2 and vice-versa, as explained in Methods. 892 
 893 

 894 
Figure S4: Example participant correlation matrix for fingerprinting  895 
Exemplar participant correlation matrix derived from between-session data used for 896 
fingerprinting. The study-identity of participants was determined by the highest correlation 897 
statistics taken across rows (e.g., to identify dataset-2 from dataset-1) or columns (to identify 898 
dataset-1 from dataset-2). 899 
 900 
Data reduction from principal component analysis does not improve MEG fingerprinting 901 
substantially 902 

Amico and Goñi (1) previously reported improvements to participant differentiation when 903 
using data reduction techniques prior to identification, using e.g., principal component analysis 904 
(PCA). We reproduced their approach, using PCA to reduce the dimensionality of the connectome 905 
and spectral feature spaces prior to fingerprinting. Our results provided little support to PCA 906 
reconstruction improving identification accuracy, as shown Figure S5 and in Supplemental Table 907 
3. PCA increased self-identifiability by less than 1.5%. Data reduction had limited beneficial impact 908 
possibly because of high fingerprinting performances at baseline (without data reduction). We 909 
also emphasize that we conducted MEG source time series extraction via a PCA of all local time 910 
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series within each parcel. It is therefore likely that this dimension reduction procedure contributed 911 
to improve signal-to-noise ratio and limited the impact of subsequent PCA of features.  912 
 913 

 Original 
(un-reconstructed) 

PCA 
Reconstructed 

 
Dataset 1 to 

Dataset 2 
Dataset 2 to 

Dataset 1 
Dataset 1 to 

Dataset 2 
Dataset 2 to 

Dataset 1 
Connectome 94.9% 94.3% 96.2% 96.2% 

Spectral 96.2% 96.2% 96.2% 96.2% 
 914 
Supplemental Table 3: Limited contribution of data reduction from principal component analysis 915 
to MEG fingerprinting. 916 
Performances in identification accuracy for connectome and spectral broadband within-session 917 
fingerprinting, for both original and PCA-reconstructed data (1). PCA data reduction improved 918 
connectome fingerprinting performances only slightly (about 2%). It had virtually no effect on 919 
spectral fingerprinting performances.  920 
 921 

 922 
Figure S5: Limited benefit of PCA reconstruction to identification accuracy 923 
PCA reconstruction as proposed by Amico and Goñi (2018) had limited effect on (a) connectome 924 
and (b) spectral within-session fingerprinting. The original results (Figure 2) are plotted against 925 
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PCA-reconstructed results. From left to right, plots show i) PCA components plotted vs. their 926 
respective fractions of signal variance explained, ii) identification accuracy across PCA 927 
components, iii) average self-identifiability across PCA components, and iv) violin plots of self-928 
identifiability before and after PCA reconstruction. Overall, PCA reconstruction did not 929 
substantially improve identification accuracy.  930 
 931 
Fingerprinting with 30-second data segments  932 

We challenged MEG fingerprinting using short 30-second data segments (i.e., shortened 933 
within-session fingerprinting). We epoched participants’ MEG recordings into three datasets of 30 934 
second, where the first dataset was the first 30 seconds of the recording after having removed the 935 
initial five seconds, the second dataset was the 30 seconds immediately following the first dataset, 936 
and the last dataset was the last 30-second segment of the recording after having removed the 937 
last ten seconds (Figure 1). Cropping the initial and last few seconds from recordings excluded 938 
edge filtering and other session artifacts. The lengths of the short datasets and epochs were 939 
determined from the participant with the shortest available recording. This procedure yielded 940 
three data segments for fingerprinting purposes via 6 possible dataset pairs (i.e., dataset 1 and 2; 941 
dataset 2 and 3; and dataset 1 and 3 and vice-versa). Results for all possible combinations of 942 
datasets are reported in Figure S6.  943 

Connectome fingerprinting successfully identified individuals across all possible 944 
combinations of datasets (Figure S6). Identification from recordings collected closer in time (e.g., 945 
dataset-1 and dataset-2) outperformed identification from datasets collected further apart in time 946 
(e.g., between dataset-1 and dataset-3). Overall, spectral fingerprinting yielded lower 947 
identification accuracy than connectome fingerprinting, in particular from datasets further apart 948 
in time.  949 

In a similar fashion, we challenged MEG fingerprinting using short 30-second data 950 
segments from different sessions (i.e., between-session fingerprinting). This yielded 6 epochs of 951 
data for fingerprinting (i.e., three from both the first and second recording, see Figure 1a). 952 
Identification results averaged across all possible data pairs are reported Figure 3c. Connectome 953 
fingerprinting performances were greater than those from spectral fingerprinting. Identification 954 
from slower frequency data components performed worse in comparison to higher bands – see 955 
main article body for discussion. 956 

 957 
 958 
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959 
Figure S6: Identification accuracy from shortened within-session datasets 960 
Identification results from shortened within-session datasets (30 seconds) for (a) connectome and 961 
(b) spectral broadband and narrowband fingerprinting. The accuracy scored are reported for 962 
identification from all possible combinations of datasets, (i.e., dataset 1 to predict dataset 2, 963 
dataset 3 to predict dataset 2, etc.; see Methods for details). Identification accuracy increased as 964 
datasets were proximal in time (i.e., fingerprinting accuracy for dataset 1 to dataset 2 was greater 965 
than for dataset 1 to dataset 3). 966 
 967 
Fingerprinting across recording sessions 968 

We also report fingerprinting accuracy performances from all possible pairs of datasets for 969 
the between-session fingerprinting challenge in Figure S7. Overall, spectral fingerprinting 970 
outperformed connectome fingerprinting, as discussed in the main text.  971 
 972 

 973 
Figure S7: Between-session identification accuracy 974 
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Results from MEG between-session fingerprinting. Identification accuracy for both (a) connectome 975 
and (b) spectral broadband and narrowband fingerprinting. The accuracy scores are reported for 976 
identification from dataset 1 to dataset 2 and vice-versa (see Methods). 977 
 978 
Individuals cannot be identified from their respective imaging kernels 979 
We verified that the within-session identification of individuals was not possible from empty-room 980 
data (i.e., with no participant under the MEG sensor array) processed through their respective 981 
imaging kernel of beamformer weights. Indeed, these latter are defined from individual anatomy 982 
and head position under the MEG sensor array, which may have been sufficient information to 983 
drive identification. We therefore ran the same fingerprinting pipeline on each session’s empty-984 
room data transformed through the corresponding individual’s beamformer imaging kernel, which 985 
was identical for each of the within-session data segments used. Note that for the between-986 
session challenges, the imaging kernels were adjusted to the respective individual head positions 987 
measured during each session. These analyses demonstrated that the imaging kernel information 988 
did not contribute substantially to MEG fingerprinting (overall performance was below 20% on 989 
average, See Figure 2).  990 
 991 
We also ran the MEG fingerprinting pipeline directly from the sensor data of the empty-room 992 
recordings, without transformation through individual imaging kernels, to assess the floor level of 993 
identification performances from non-brain data only. The data confirmed substantially lower 994 
levels of identification (<5% accuracy on average; see Figure S8). 995 
  996 
 997 

 998 
Figure S8: Verification of failed fingerprinting from non-brain data (empty-room recordings) 999 
Results for the empty-room sensor fingerprinting challenge. As expected, identification accuracies 1000 
of connectome and spectral broadband and narrowband fingerprinting were substantially lower 1001 
than from actual MEG data with individuals present.  1002 
 1003 
Fingerprinting from scalp data only 1004 
We also performed MEG fingerprinting from individual sensor data, with no MEG source 1005 
reconstruction to assess the added value of source modeling. We replicated the above MEG 1006 
fingerprinting pipelines from the within-, within-shortened, and between- session analyses.  1007 
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Identification performances were less than with source modeling, especially from signal 1008 
components in higher frequency bands and for the shortened challenges (see Figure S9, S10, & 1009 
S11). Yet for other signal components and longer durations, individuals remain identifiable from 1010 
sensor-level data collected between sessions (>60% accuracy from broadband data), albeit with 1011 
lower accuracy than when using MEG source transformations, which explicitly account for 1012 
different head positions between sessions.  1013 
Taken together with the empty-room fingerprinting tests above, these results provide evidence 1014 
that brain signals, not environmental conditions, were crucial for individual identification. 1015 
 1016 
 1017 

 1018 
Figure S9: Within-session identification from MEG sensor data (no source modeling) 1019 
Results from MEG sensor data in the within-session fingerprinting challenge. The identification 1020 
accuracy statistics are shown for both connectome and spectral broadband and narrowband 1021 
fingerprinting. The average accuracy scores are reported across identifications from dataset-1 to 1022 
dataset-2 and vice-versa (see Methods). 1023 
 1024 

 1025 
Figure S10 Within-session identification from shortened (30-s) MEG sensor data (no source 1026 
modeling) 1027 
Results from MEG sensor data in the within-session shortened fingerprinting challenge. The 1028 
identification accuracy statistics are shown for both connectome and spectral broadband and 1029 
narrowband fingerprinting. The average accuracy scores are reported across identifications from 1030 
all possible pairs of datasets (see Methods). 1031 
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 1032 

 1033 
Figure S11: Between-session identification from MEG sensor data (no source modeling) 1034 
Results from MEG sensor data in the between-session fingerprinting challenge. The identification 1035 
accuracy statistics are shown for both connectome and spectral broadband and narrowband 1036 
fingerprinting. The average accuracy scores are reported across identifications from dataset-1 to 1037 
dataset-2 and vice-versa (see Methods). 1038 
 1039 
Salient neurophysiological features for fingerprinting  1040 

We reported in the main manuscript intraclass correlations (ICC) to determine which 1041 
features contributed to individual identification the most. We also performed two additional 1042 
analyses, deriving group consistency and differential power. These two metrics were proposed by 1043 
Finn and colleagues (2) to identify the features which were the most consistent across their cohort, 1044 
vs. The features which were the most consistent within individuals but different across participant, 1045 
respectively (2). Differential power measures the empirical probability that a given feature is more 1046 
likely to have a higher edgewise product vector across individuals than within the same individual. 1047 
Taking the sum of the natural log of this probability across subjects yields differential power (2). 1048 
The higher the differential power, the better a feature discriminates between individuals. Results 1049 
for differential power are plotted in Figures S7 and S9. We found that the most discriminant 1050 
connectome features were the visual and limbic networks across frequency bands, while the most 1051 
discriminant spectral features remained along midline structures for fast oscillatory signal 1052 
components. Overall, these results confirmed the ICC analysis results, with the addition of the 1053 
contributions of spectral power in the beta and gamma band along the supplementary motor, 1054 
motor, and somatosensory cortices.  1055 

 1056 
Figure S12: Differential power connectome fingerprinting 1057 
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Differential Power (DP) analysis for broadband connectome fingerprinting of the within-session 1058 
dataset (see Figure 1). Mean DP plotted within frequency bands and per resting-state network as 1059 
defined by (3): Default Mode Network (DMN), Dorsal Attention (DA), Frontal-Parietal (FP), Limbic 1060 
(L), Somato-Motor (SM), Ventral Attention (VA), and Visual (VIS). The higher the DP, the more the 1061 
corresponding functional connection was essential for fingerprinting. The outstanding 1062 
connections determined by DP for fingerprinting were the Visual network across all frequency 1063 
bands, and the Limbic network in the beta and gamma bands.  1064 
 1065 

Group consistency reflects edges that are consistent across individuals. Group consistency 1066 
was computed from the mean edgewise product vector across all subjects (2). Large values of 1067 
group consistency highlight features that are consistent both within participants and across the 1068 
cohort. Our analyses are shown Figures S8 and S10. The resulting most consistent connectome 1069 
features remained along the diagonal of the FC matrix (i.e., connections within the same networks) 1070 
specifically in the Dorsal Attention and Fronto-Parietal networks. The most consistent features for 1071 
spectral fingerprinting were in the lower frequency bands, specifically in the lateral frontal 1072 
cortices. This outcome was consistent with our ICC results (see Manuscript).  1073 
 1074 

 1075 
Figure S13: Group consistency connectome fingerprinting  1076 
Group Consistency (GC) analysis for broadband connectome fingerprinting of the within-session 1077 
dataset (see Figure 1). Mean GC plotted within frequency bands according to the labels from (3): 1078 
Default Mode Network (DMN), Dorsal Attention (DA), Frontal-Parietal (FP), Limbic (L), Somato-1079 
Motor (SM), Ventral Attention (VA), and Visual (VIS). The higher the GC, the more consistent was 1080 
a functional connection within an individual and across the cohort. The most consistent 1081 
connections were those along the diagonal, specifically for the Dorsal Attention and Frontal-1082 
Parietal networks across all frequency bands.  1083 

 1084 
Figure S14: Differential power spectral fingerprinting 1085 
Differential Power (DP) analysis for broadband spectral fingerprinting of the within-session dataset 1086 
(see Figure 1). Mean DP plotted within frequency bands according to the Desikan-Killiany atlas (4). 1087 
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The higher the DP, the more a given frequency band and ROI distinguished between individuals. 1088 
The most characteristic regions and frequencies were medial structures for the beta band, and 1089 
temporal and central regions for gamma band signals.  1090 
 1091 

1092 
Figure S15: Group consistency spectral fingerprinting 1093 
Group Consistency (GC) analyses for broadband spectral fingerprinting of the within recording 1094 
session dataset (see Figure 1). Mean GC plotted within frequency bands according to the Desikan-1095 
Killiany atlas (4). The higher the GC, the more a given frequency band and ROI remained consistent 1096 
within individuals and across the cohort. The most stable frequencies were the lower bands (delta 1097 
and theta) and the most consistent regions across individuals were lateral frontal areas.  1098 
 1099 
Partial Least Squares (PLS) analysis  1100 

We tested whether differences in resting-state neurophysiological signals related to 1101 
meaningful demographic features using an exploratory Partial Least Squares (PLS) analysis. PLS is 1102 
a multivariate statistical method that relates two data matrices based on latent variables (LV) that 1103 
explain the highest covariance between the two datasets. Here, our two datasets consist of a 1104 
demographic matrix (i.e., age, gender, handedness, and clinical status) and a neurophysiological 1105 
data matrix (i.e., spectral power or functional connectome). Latent variables (which explain the 1106 
most covariance between both matrices), and their corresponding variance explained are plotted 1107 
in Figure S16. Significance of each latent variable was assessed via permutation tests. Permuting 1108 
the rows of the data allowed us to compute an associate p-value for each latent variable (see 1109 
Manuscript). We chose to explore the first significant latent variable which explained the most 1110 
variance for each neurophysiological signal feature (i.e., the first component for connectomes and 1111 
spectral data). The resulting weights associated to the latent neural and demographic components 1112 
are depicted Figure 5 along with their bootstrapped ratios. These results corroborate how 1113 
neurophysiological signals at rest, in addition to identifying individuals, carry meaningful 1114 
information about participant demographics.  1115 
 1116 
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 1117 
Figure S16: PLS latent variables  1118 
Results for the PLS analysis conducted for both (a) connectome and (b) spectral fingerprinting 1119 
features. Each plot depicts the latent components obtained for each of the PLS analyses, their 1120 
corresponding variance explained, and permuted p-value (right axis). One significant latent 1121 
variable explained 43.1% of the variance for connectome fingerprinting and two latent variables 1122 
explained 44.7% and 28.3% of the variance for spectral fingerprinting, respectively. We explored 1123 
in the main Manuscript only the first significant component for each method (i.e., the circled 1124 
component).  1125 
 1126 
 1127 
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