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25  Abstract

26 Perception of pathogen-derived ligands by corresponding host receptors is a pivotal strategy
27  in eukaryotic innate immunity. In plants, this is complemented by circadian anticipation of
28  infection timing, promoting basal resistance even in the absence of pathogen threat. Here, we
29  report that trichomes, hair-like structures on the epidermis, directly sense external
30  mechanical forces caused by raindrops to anticipate waterborne infections in Arabidopsis
31  thaliana. Exposure of leaf surfaces to mechanical stimuli initiates the concentric propagation
32 of intercellular calcium waves away from trichomes to induce defence-related genes.
33 Propagating calcium waves enable effective immunity against pathogenic microbes through
34  the calmodulin-binding transcription activator 3 (CAMTAZ3) and mitogen-activated protein
35  kinases. We propose a novel layer of plant immunity in which trichomes function as
36 mechanosensory cells to detect potential risks.

37
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38 Introduction

39  Innate immunity is an evolutionarily conserved front line of defence across the plant and
40  animal kingdoms. In plants, pattern-recognition receptors (PRRs), such as leucine-rich repeat
41  receptor-like kinases (LRR-RLKs) and LRR receptor proteins (LRR-RPs), specifically
42 recognize microbe-associated molecular patterns (MAMPs) as non-self molecules, leading
43 to the activation of pattern-triggered immunity (PTI) to limit pathogen proliferation'*. While
44  adapted pathogens have evolved virulence effectors that can circumvent PTI, plants also
45  deploy disease resistance (R) genes, primarily encoding nucleotide-binding LRR proteins,
46  which mount effector-triggered immunity (ETI)*. ETI often culminates in a hypersensitive
47  response as well as acute and localized cell death induced at the site of infection and
48  accompanied by profound transcriptional changes of defence-related genes to retard
49  pathogen growth*’. These ligand-receptor systems are largely dependent on a transient
50 increase in intracellular calcium concentration ([Ca?'];), followed by the initiation of
51  phosphorylation-dependent signalling cascades, including mitogen-activated protein kinases
52 (MAPKs) and calcium-dependent protein kinases, that orchestrate a complex transcriptional

53  network and the activity of immune mediators®’.

54 In addition to PTI and ETI, plant immunity can be induced periodically in the
55  absence of pathogen threat, a process that is under the control of the circadian clock and
56  driven by daily oscillations in humidity as well as light-dark cycles®!°. Such responses enable
57  plants to prepare for the potential increased risk of infection at the time when microbes are
58 anticipated to be most infectious. Therefore, the anticipation of potentially pathogenic
59  microorganisms through sensing of climatological changes on the one hand and their specific

60  detection on the other constitute two distinct layers of the plant immune system.
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61 Among the climatological factors that affect the outcome of plant-microbe
62  interactions, rain is a major cause of devastating plant diseases, as fungal spores and bacteria
63  are spread through rain-dispersed aerosols or ballistic particles splashed from neighbouring
64 infected plants. In addition, raindrops contain plant pathogens, including Pseudomonas
65  syringae and Xanthomonas campestris, and negatively regulate stomatal closure, which
66  facilitates pathogen entry into leaf tissues'!"'*>. High humidity, which is usually associated
67  with rain, enhances the effects of bacterial pathogen effectors, such as HopMIl, and
68  establishes an aqueous apoplast for aggressive host colonization'*. These findings suggest
69 that it would be beneficial for plants to recognize rain as an early risk factor for infectious

70  diseases.

71 How do plants respond to rain? Rain induces the expression of mechanosensitive
72 TOUCH (TCH) genes in plants'>. Mechanostimulation may affect a variety of plant
73 physiological processes mediated by hormones such as auxin, ethylene, and gibberellin'®"°.
74 Arabidopsis thaliana seedlings exposed to rain-simulating water spray accumulate the
75  immune phytohormone jasmonic acid (JA) to promote the expression of JA-responsive
76  genes®. Thus, rain modulates both mechanotransduction and hormone-signalling pathways
77  that could affect the growth and development of plants as well as environmental responses.

78  However, the regulatory mechanisms underpinning the rain-activated signalling pathway

79  have not been fully elucidated.

80 Here, we report a novel layer of the plant immune system evoked by sensing
81  mechanostimulation of falling raindrops: trichomes, hair-like cells on the leaf surface,
82  function as mechanosensory cells that mount an effective immune response against both
83  biotrophic and necrotrophic pathogens. When trichomes are mechanically stimulated,

84  intercellular calcium waves are concentrically propagated away from them, and this is
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85  followed by the activation of MAPKSs and initiation of the calcium- and calmodulin-binding
86  transcription activator (CAMTA)-regulated immune response. We propose that plants
87  directly recognize rain as a risk factor and evoke a rapid immune response that substantially

88  contributes to early detection of, and protection from, potential pathogens.

89

90  Results and discussion

91  Rain and mechanical stimuli induce mechanosensitive genes involved in plant immunity

92  To investigate the effect of rain on transcriptional changes in Arabidopsis leaves, we
93  performed transcriptome deep sequencing (RNA-seq) of wild-type Columbia (Col-0)
94  Arabidopsis treated with artificial raindrops (Supplementary Fig. la; Methods). After
95  applying only 10 falling droplets, we detected the marked induction of 1,050 genes 15 min
96  after treatment (Supplementary Table 1). Gene Ontology (GO) analysis of these genes
97  revealed a striking enrichment in categories associated with plant immunity, as evidenced by
98  the expression of major immune regulators including WRKY DNA-BINDING PROTEIN
99  (WRKY) genes, CALMODULIN BINDING PROTEIN 60-LIKE g (CBP60g), MYB DOMAIN
100  PROTEIN (MYB) genes, ETHYLENE RESPONSE FACTOR (ERF) genes, and MAP KINASE
101 (MPK) genes*?? (Fig. 1a, Supplementary Table 1, Supplementary Table 2). The touch-
102 induced genes TCH2 and TCH4 were also highly upregulated in response to one falling
103 raindrop (falling) compared to a water droplet placed directly on the leaf surface (static)
104 (Supplementary Fig. 1b). These results suggested that mechanosensation is involved in

105  altering transcriptional activity.

106 To validate this hypothesis, we mechanically stimulated rosette leaves by gently
107 brushing them one to ten times along the main veins with a small paint brush (Supplementary

108  Fig. lc; Methods) and analysed the expression profile of the immune regulator WRKY33,
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109  which was responsive to raindrops. WRKY33 expression was maximally induced 15 min after
110  brushing the leaves one to four times (Supplementary Fig. 1d). Next, we compared gene
111  expression patterns between leaves that were brushed once and those that received 10 falling
112 raindrops. Both raindrops and brushing strongly upregulated TCH2, TCH4, WRKY33,
113 WRKY40, WRKY53, CBP60g, MYBS51, ERF'1, and JASMONATE-ZIM-DOMAIN PROTEIN
114 ] (JAZI) expression '>?122 (Fig. 1b, c), suggesting that raindrops are likely recognized as a

115  mechanical stimulus.

116 Then, to comprehensively identify mechanosensitive genes, we performed an RNA-
117  seq analysis of leaves brushed once. We identified 1,241 genes that were significantly
118  induced 15 min after this treatment relative to control plants (Supplementary Table 3). These
119  mechanical stimuli (MS)-induced genes were primarily categorized as plant immune
120 responses, such as response to chitin, defence response, and immune system response (Fig.
121 1d, Supplementary Table 4). We found that 87.3% of raindrop-induced genes and 73.9% of
122 MS-induced genes overlapped (Fig. 1e): this set of 917 genes expressed upon both treatments
123 was enriched in GO categories associated with stress responses (Supplementary Fig. le).
124 Furthermore, the expression levels of these 917 genes, including major immune regulators,
125  were strongly positively correlated between the two treatments (Pearson correlation
126 coefficient r = 0.917) (Fig. 1f). These transcriptome analyses indicated that falling raindrops
127 stimulate the expression of mechanosensitive genes involved in environmental stress

128  responses, including plant immunity.
129
130  Rain and MS rapidly activate plant immune responses

131 To further characterize raindrop-induced genes, we conducted a comparative analysis with

132 published transcriptome datasets. Many raindrop- and MS-induced genes were also
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133 expressed during major plant immune responses, such as those triggered by the immune
134  phytohormones salicylic acid (SA), which is effective against biotrophic pathogens (21%;
135  193/917 genes), and JA, which mounts immune responses to necrotrophic pathogens (11.8%;
136 108/917 genes); the bacterial-derived peptide flg22, which activates PTI (37%; 339/917
137  genes); and the bacterial pathogen Pseudomonas syringae pathovar maculicola ES4326 (Psm
138 ES4326) (25.8%; 237/917 genes)'***25 (Fig. 2a, b). In total, 58.6% (537/917 genes) of
139  raindrop- and MS-induced genes overlapped with those induced in response to different

140  immune elicitors, suggesting that raindrops activate mechanosensitive immune responses.

141 Since stress-responsive gene expression is either positively or negatively regulated
142 by phytohormones, we determined the changes in the accumulation levels of six
143 phytohormones [SA, JA, JA-isoleucine (JA-Ile), abscisic acid (ABA), gibberellic acid 4
144  (GA4), and indole-3-acetic acid (IAA)] in leaves treated with 10 falling droplets and in those
145  brushed once. No significant changes in the levels of the phytohormones, except JA and JA-
146  Ile, were observed 5 min after treatment (Fig. 2c), consistent with the previous report that
147 water spray induces JA-mediated transcriptional changes®’. The slight increase in JA and JA-
148  Ile could explain the observation that only 11.8% of raindrop- and MS-induced genes are JA-
149  responsive (Fig. 2a). Although 21% of raindrop- and MS-induced genes overlap with SA-
150  responsive genes (Fig. 2a), SA levels were not significantly increased in response to
151  raindrops and MS (Fig. 2¢). Therefore, most mechanosensitive genes, whose expression is
152  induced 5 min after treatment with raindrops, are presumably regulated independently of
153  phytohormonal responses. A previous report demonstrated that GA accumulation is reduced
154 by “bending” leaves twice per day for 2 weeks!®. Here, significant changes in GA levels were
155  not detected upon transient application of raindrops or MS (data not shown). These results

156  indicated that plants differentially respond to MS depending on their intensity and duration.
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157 Activation of MAPKs is one of the earliest cellular events and a hallmark of plant
158  immune responses. In particular, PRRs promptly activate a phosphorylation cascade
159  involving MPK3 and MPK6 in response to MAMPs, whereby the downstream immune
160  components of PTI are phosphorylated to promote transcriptional reprogramming'%7-%,
161  Because 37% of raindrop- and MS-induced genes were also upregulated by flg22 treatment
162  (Fig. 2a), we examined whether a MAPK cascade is activated in responses to raindrops and
163  MS by immunoblot analysis with the anti-p44/p42 antibody, which detects phosphorylated
164  MPK3/MPK6*2, Upon treatment of rosette leaves with 4 falling raindrops or MS (1
165  brushing), phosphorylation of MPK3/MPK6 was induced within 3 min and remained high
166  for 10 min after each treatment (Fig. 2d, e), indicating that MPK3/MPK®6 activation precedes
167  the expression of mechanosensitive genes detected 10 min after MS application
168  (Supplementary Fig. 1d). The kinetics of MS-activated MPK3/MPK6 were reminiscent of
169  those observed upon activation of the PRR protein FLS2 and its coreceptor BRI1-
170  ASSOCIATED RECEPTOR KINASE 1 (BAK1), which are responsible for recognition of
171  the bacterial flg22 epitope'?%. Wild-type, fIs2, and bak] mutant plants displayed comparable
172 levels of phosphorylated MPK3/MPKG6 in response to MS (Fig. 2f), however, suggesting that

173 FLS2 and BAKI1 are not positively involved in raindrop-elicited mechanotransduction.

174 We then performed a comparative analysis of raindrop- and MS-induced genes
175  against published transcriptome datasets describing the specific and conditional activation of
176 MPK3/MPKG6 in transgenic Arabidopsis plants carrying a constitutively active variant of
177  tobacco (Nicotiana tabacum) MAP KINASE Cab 2 (NtMEK?2) under the control of the
178  dexamethasone-inducible promoter®®. Approximately 27.5% (252/917 genes) of both
179  raindrop- and MS-induced genes were upregulated by MPK3/MPK6?® (Supplementary Fig.

180  2a, Supplementary Table 5), and these upregulated genes were highly enriched in categories
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181  associated with plant immunity (Supplementary Fig. 2b, Supplementary Table 6), suggesting

182  that MAPKSs play a critical role in mechanotransduction.
183
184  Rain and MS confer resistance to both biotrophic and necrotrophic pathogens

185  We then investigated whether raindrops and MS confer resistance to pathogenic microbes.
186  Raindrops containing the spores of the necrotrophic pathogen Alternaria brassicicola Ryo-1
187  were placed on fully expanded leaves after pretreatment with raindrops or MS for 3 h at an
188 interval of 15 min. Both stimuli significantly suppressed lesion development compared to
189  control plants without pretreatment (Fig. 2g, h). Pretreatment of leaves with MS for 3 h also
190  efficiently protected plants from infection with the biotrophic pathogen Psm ES4326 (Fig.
191  2i). These results confirmed that mechanostimulation induces a PTI-like response to confer
192 abroad spectrum of resistance to both biotrophic and necrotrophic pathogens, as MS activate
193  immune MAPKSs and upregulate a large subset of flg22-induced genes. In support of this
194  argument, exposure to the fungal cell wall, chitin, also upregulated 42.1% (386/917 genes)

195  of raindrop-induced genes (Supplementary Fig. 2c).
196
197  Mechanosensitive genes are regulated by calmodulin-binding transcription activator 3

198  To dissect rain-induced mechanotransduction, we searched for a conserved cis-regulatory
199  element in the promoter sequences of mechanosensitive genes. From an unbiased promoter
200  analysis of the top 300 genes among 917 differentially expressed genes, we obtained the
201  highest enrichment for the CGCG box (CGCGT or CGTGT), which is recognized by
202 calmodulin (CaM)-binding transcription activators (CAMTAs) that are conserved from

203 plants to mammals®**-3* (Fig. 3a). The Arabidopsis transcription factor CAMTAZ3 (also named
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204  SIGNAL RESPONSIVEI1 [SR1]) is a negative regulator of plant immunity because camta3
205  null mutants exhibit constitutive expression of defence-related genes and enhanced resistance
206  to virulent P. syringae infection®**>. CAMTA transcription factors possess a CaM-binding
207  (CaMB) domain and an IQ domain to which CaM binds in a calcium-dependent manner to
208  negate their function (Supplementary Fig. 3a). Mutation of the 1Q domain, such as in
209  CAMTA3%85Y suppresses the constitutive expression of defence-related genes seen in the
210 camta?2 camta3 double mutant when expressed in this background but is no longer regulated
211 by calcium-mediated responses®®’. In agreement with our promoter analysis, 28.7% of
212 constitutively upregulated genes (309/1,075 genes) in the camtal camta? camta3 triple
213 mutant overlapped with raindrop- and MS-induced genes detected in wild-type plants®
214 (Supplementary Fig. 3b, Supplementary Table 7). Upon application of raindrops and MS,
215  WRKY33 and CBP60g transcript levels were significantly reduced in plants expressing the
216  CAMTA34%%" variant compared to a CAMTA3-GFP transgenic line expressing a transgene
217  that complemented the phenotype of the camta2 camta3 mutant (Fig. 3b, c), suggesting that

218 CAMTAS3 is involved in mechanotransduction.

219 To confirm whether CAMTA3 directly targets mechanosensitive genes, we
220  investigated the genome-wide distribution of CAMTA3-binding sites by chromatin
221  immunoprecipitation followed by deep sequencing (ChIP-seq) using CAMTA3%"-GFP
222 plants, as the mutant protein stably represses the transcription of CAMTA3-regulated genes.
223 With the aid of model-based analysis of ChIP-seq (MACS2) software, we identified 2,641
224  and 2,728 CAMTA3-binding genes, respectively, in two replicates (P < 0.05); about 40% of
225  these peaks are located in the promoter regions and another 30% in gene bodies
226  (Supplementary Fig. 3c, Supplementary Table 8). The overlap between the two replicates
227  highlighted 2,011 CAMTA3-targeted genes that included 272 raindrop- and 297 MS-induced
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228  genes such as TCH2, TCH4, and CBP60g (Fig. 3d), consistent with our hypothesis that

229  CAMTA3 regulates the transcription of mechanosensitive genes.

230 To validate the results from the promoter analysis of mechanosensitive genes, we
231  nextinvestigated specific DNA sequences to which CAMTA3 selectively binds by analysing
232 CAMTA3-binding peaks by Multiple EM for Motif Elicitation (MEME)-ChIP (Methods).
233 We again identified the CGCG box (CGCGT or CGTGT) as the motif with the highest
234 enrichment score (3.4 x 10*) (Fig. 3e). The subsequent visualization of ChIP-seq profiles
235  via the Integrative Genomics Viewer (IGV)*® demonstrated that CAMTAS3 is primarily
236  enriched at the CGCG boxes of mechanosensitive genes, including TCH2, TCH4, CAM2,
237  CBP60g, CALMODULIN LIKE 23 (CML23), and WRKY40 (Fig. 3f). GO analysis on 314
238  CAMTA-targeted genes (Fig. 3d, shown in red) to define the biological functions of these
239 genes showed a significant enrichment in categories related to immune and environmental
240  responses (Supplementary Fig. 3d, e). We thus investigated whether CAMTA3 is required
241  for the immune responses. camta? camta3 CAMTA3-GFP transgenic plants effectively
242 mounted an enhanced disease resistance against P. syringae in response to MS, while camta?2
243 camta3 CAMTA3"3V-GFP plants were significantly compromised in resistance (Fig. 3g).
244  These results demonstrate that CAMTAZ3 negatively regulates the plant immune responses
245 by binding to the CGCG box in raindrop- and MS-induced gene promoters and represses the

246  expression of these genes.

247 Since mechanostimulation rapidly activates MPK3/MPK6 (Fig. 2d, e), we
248  investigated whether CAMTA3 mediates the activation of these MPKs. Using camta?2
249 camta3 CAMTA3-GFP and camta2 camta3 CAMTA3*>"-GFP, we detected the
250  phosphorylation of MPK3/MPK6 independently of CAMTAS3 activity (Supplementary Fig.

251  3f). In addition, the calcium ionophore A23187 clearly induced the phosphorylation of MPK3
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252 and MPK6 (Supplementary Fig. 3g). These results suggested that the mechanotransduction
253 initiated by raindrops and MS may cause a Ca®" influx that negates the repressive effect of

254  CAMTA3 and concomitantly activates the MAPK cascade, as previously proposed?.
255
256 MS initiates intercellular calcium waves concentrically away from trichomes

257  To visualize how mechanostimulation induces the expression of immune genes in planta, we
258  generated Arabidopsis transgenic lines with the promoter sequences of WRKY33 and
259  CBP60g driving the expression of nucleus-targeted enhanced YELLOW FLUORESCENT
260  PROTEIN (YFP-NLS) (WRKY33pro:EYFP-NLS and CBP60gpro:EYFP-NLS). WRKY33
261  expression is regulated by both MPK3/MPK6 and CAMTA3 (Supplementary Table 5,
262 Supplementary Table 8), while CBP60g is not mediated by MPK3/MPK6 (Supplementary
263  Table 5). When half leaves were gently brushed (Supplementary Fig. 1c), we detected YFP
264  fluorescence in the WRKY33pro:EYFP-NLS and CBP60gpro: EYFP-NLS transgenic lines as
265  localized, clustered groups of cells only in the brushed half (Fig. 4a, Supplementary Fig. 4a).
266  Closer inspection of the stimulated regions revealed that both genes were induced in cells
267  surrounding trichomes, hair-like structures projecting outward from the epidermal surface
268  (Fig. 4b, c, Supplementary Fig. 4b, c).

269 Trichomes function as chemical and physical barriers against insect feeding and are
270  likely involved in drought tolerance and protection against ultraviolet irradiation***!,
271 Mechanostimulation of a single trichome induces Ca?* oscillations within the proximal skirt
272 cells that surround the base of trichomes*?, suggesting that the mechanical force could be
273 focused on only skirt cells (Supplementary Fig. 5). However, since mechanostimulation by
274  raindrops and MS confers resistance to pathogens in whole leaves, we hypothesized that

275  trichomes activate a Ca>" signal in a large area of leaves, as shown in Figure 4a.
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276 To visualize changes in cytosolic Ca*" concentrations ([Ca?]ey) induced by MS on
277  the leaf surface, we used transgenic Arabidopsis expressing the GFP-based [Ca? ]yt indicator
278  GCaMP3**. Leaf brushing induced a marked increase of [Ca?]ey in the surrounding leaf
279  area of trichomes 1 min after stimulation (Fig. 4d, Supplementary Video 1). Flicking a single
280  trichome with a silver chloride wire triggered an intercellular calcium wave that propagated
281  concentrically away from the trichome and surrounding skirt cells at a speed of 1.0 pm/s (Fig.
282  4e, f, Supplementary Video 2). This pattern showed striking consistency with the area of
283  induction observed with the WRKY33pro:EYFP-NLS and CBP60gpro:EYFP-NLS reporters
284  (Fig. 4a, b; Supplementary Fig. 4a, b). The base of trichomes exhibited a rapid and transient
285 increase in [Ca®']eyt before the concentric propagation of calcium waves was initiated (Fig.

286  4g, Supplementary Video 3).
287
288  Trichomes are mechanosensory cells activating plant immunity

289  To investigate the possible involvement of trichomes in mechanosensation in Arabidopsis
290  leaves and activation of the immune response, we observed calcium waves using the
291  knockout mutant of GLABROUSI (GL1)*, which lacks trichomes. The g// mutant exhibits
292  effective basal resistance comparable to that of wild-type Col-0 plants*, and its local
293  resistance to Psm ES4326 and A. brassicicola Ryo-1 is similar to the levels of Col-0 plants
294  (Supplementary Fig. 6). The mechanostimulation-induced propagation of concentric calcium
295  waves was compromised in the g// mutant (Fig. 5a, b), confirming that trichomes are true
296  MS sensors and initiate calcium waves (Supplementary Videos 4, 5). Furthermore,
297  approximately 70.5% of mechanosensitive genes were expressed in a trichome-dependent
298  manner (Fig. 5S¢, Supplementary Fig. 7a, Supplementary Table 9), and transcript levels of 18

299  representative mechanosensitive immune genes were markedly lower at all time points in the


https://doi.org/10.1101/2021.06.13.448005
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.13.448005; this version posted June 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

300 g/l mutant than they were in the wild type in RNA-seq analysis of leaves brushed 4 times
301  (Fig. 5d), suggesting that trichomes serve as the main sensor of MS. Similarly, compared to
302 wild-type plants, the transcription of raindrop-induced WRKY33, WRKY40, and CBP60g, as
303  well as the activation of MPK3/MPK6 by MS, was also significantly reduced in the g//
304 mutant (Fig. Se, f, Supplementary Fig. 7b). Moreover, MS-induced resistance against Psm
305 ES4326 infection was abrogated in the g// mutant (Fig. 5g). As with Psm ES4326, the
306  application of MS to wild-type plants prior to inoculation with 4. brassicicola significantly
307  limited lesion development, whereas the g// mutant did not show enhanced disease resistance

308 inresponse to MS (Fig. Sh).

309 Our work highlights a novel layer of plant immunity that is triggered by an
310  unexpected function of trichomes as mechanosensory cells. When trichomes are
311  mechanically stimulated, intercellular calcium waves are concentrically propagated away
312 from the trichomes, followed by the activation of CAMTAZ3-dependent immune responses
313  (Fig. 6). Rapid phosphorylation of MAPKs also is a prerequisite for mechanosensitive gene
314  expression, as MPK3/MPK6 mediate the phosphorylation of mechanosensitive WRKY33 for
315 its activation**®. This notion is supported by the finding that the expression of 252 genes
316  among 917 raindrop- and MS-induced genes is regulated by MPK3/MPK6 (Supplementary
317  Fig. 2a), and their promoter sequences possess the W-box (TTGACC) for WRKYs as the
318  most enriched cis-regulatory elements (Supplementary Fig. 8). The molecular mechanism by

319  which calcium mediates the activation of MPK3/MPK6 has yet to be elucidated.

320 Mechanostimulation by repeatedly bending leaves confers resistance to the
321  necrotrophic pathogen Botrytis cinerea via JA accumulation®. In addition, a subset of JA-
322 responsive genes upregulated by water spray is mediated by MYC2/MYC3/MYC4

323  transcription factors?®. These observations strongly indicate that mechanosensation causes
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324  profound JA-dependent changes in gene transcription, promoting plant immune responses to
325  necrotrophic pathogens. The JA- and MY C-dependent pathway does not play a major role in
326 the expression of mechanosensitive 7CH genes, however, indicating that
327  mechanotransduction is regulated by other signaling pathways. Our work demonstrated that
328  raindrops and MS only partially activate the JA signal but rather strongly induce a PTI-like
329  response via the Ca?*- and CAMTA3-dependent pathway, which is highly effective against
330  both necrotrophs and biotrophs (Fig. 2g-1). Because rain disseminates diverse pathogens with

50,51

331  different parasitic strategies, including fungi, bacteria, and virus”", it is highly reasonable

332 that plants perceive raindrops as a risk factor and activate broad-spectrum resistance.

333 Plants possess mechanosensory cells with a variety of functions, such as flower
334  antennas of Catasetum species for pollination, tentacles of Drosera rotundifolia for insect
335  trapping, root hairs of Arabidopsis for water tracking, and red cells of Mimosa pudica for
336 evading herbivores®’. The carnivorous Venus flytrap (Dionaea muscipula) captures insects
337 by sensing mechanostimulation via sensory hairs on leaf lobes®>. To monitor diverse MS
338  applied to plants, several sensing mechanisms have been proposed that include the detection
339  of cell wall components, distortion of the plasma membrane, and the displacement of the
340  plasma membrane against the cell wall**. In all these systems, a transient increase in [Ca? eyt
341  is thought to play a pivotal role in short- and long-term responses. Indeed, two successive
342 stimulations of sensory hairs of the flytrap are required to meet the threshold of [Ca?"]cy: for
343 rapid closure of the leaf blade®*-*>. As the trichome on the leaf surface is widely conserved
344  among many land plants, there may be a common and novel intercellular network of cell-cell

345  communication that initiates calcium waves for activating immune responses.
346
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347  Contact for reagents and subject details

348  Further information and requests for reagents may be directed to and will be fulfilled by the
349  corresponding authors Yasuomi Tada (ytada@gene.nagoya-u.ac.jp) and Mika Nomoto

350  (nomoto@gene.nagoya-u.ac.jp).

351  Experimental model and subject details

352 Plants

353  Arabidopsis thaliana accession Columbia-0 (Col-0) was the background for all plants used
354  in this study. WRKY33pro:EYFP-NLS (Col-0) and CBP60gpro:EYFP-NLS (Col-0) were
355  generated as previously described®s. 35Spro:GCaMP3 (Col-0), gll [Col(gll)], camta2
356  camta3 CAMTA3pro:CAMTA3-GFP, and camta2 camta3 CAMTA3pro:CAMTA3%°V_.GFP
357  were previously reported®®3®. The Arabidopsis mutants fIs2 (SALK_093905) and bakl-3
358 (SALK 034523) were obtained from the Arabidopsis Biological Resource Center (ABRC).
359  35Spro.GCaMP3 was introduced into the g// mutant background by crossing. The selection
360  of homozygous lines was performed by genotyping using primers listed in Supplementary
361  Table 10. Plants were grown on soil (peat moss; Super Mix A and vermiculite mixed 1:1) at
362  22°C under diurnal conditions (16-h-light/8-h-dark cycles) with 50-70% relative humidity.
363  WRKY33pro:EYFP-NLS (Col-0) and CBP60gpro: EYFP-NLS (Col-0) were sown on soil and
364  grown in a growth room at 23°C in constant light as previously described®¢. 35Spro:GCaMP3
365 (Col-0) and 35Spro:GCaMP3 (gl1) were grown on Murashige and Skoog (MS) plates [1%
366  (w/v) sucrose, 0.01% (w/v) myoinositol, 0.05% (w/v) MES, and 0.5% (w/v) gellan gum pH

367  5.8] as previously described**’.

368  Artificial raindrop treatment
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369  Reverse osmosis (RO) water was kept in a 500 mL beaker until the water temperature reached
370  room temperature (22°C). A transfusion set (NIPRO Infusion Set TI-U250P, Nipro, Osaka,
371  Japan) was installed on a steel stand with the beaker at a height of 1.2 m (H-type Stand I3,
372 As One, Osaka, Japan) and was adjusted to release 13 pL water droplets (Supplementary Fig.
373 la). In this setting, the applied mechanical energy to the leaf surface is equivalent to one in
374  which 5.8 uL of raindrops reach a terminal velocity of 6.96 m/s>®. This size raindrop is
375  frequently observed in nature; thus, the impact of simulated rain is comparable with that of
376  true rain®®. The adaxial side of leaves from 4-week-old plants was treated with 10 droplets
377  for RNA-seq, and 1, 4 or 10 droplets for quantitative RT-PCR (RT-qPCR). The adaxial side
378 of leaves from 4-week-old plants was treated with one falling or static droplet
379  (Supplementary Fig. 1b). Sample leaves were collected 15 min after treatment and stored at

380  -80 °C until use.

381 Brush treatment

382  The adaxial side of leaves from 4-week-old plants was brushed once for RNA-seq and 4 for
383  RT-gPCR along the main veins at an angle of 30-40° (KOWA nero nylon drawing pen flat
384 12, Kowa, Aichi, Japan) (Supplementary Fig. 1c). Sample leaves were collected 15-, 30- and

385 60 min after treatment for RNA-seq and 15 min for RT-qPCR, and stored at -80°C until use.

386  RNA-seq library construction

387  Total RNA was extracted from 80-100 mg frozen samples using Sepasol-RNA I Super G
388  (Nacalai Tesque, Kyoto, Japan) and the TURBO DNase free kit (Thermo Fisher Scientific,
389 IL, USA) according to the manufacturers’ protocols. Total RNA was further purified with
390  the RNeasy RNA Isolation Kit (QIAGEN, Hilden, Germany) and assessed for quality and

391  quantity with a Nanodrop spectrophotometer (Thermo Fisher Scientific). We used 1 pg total
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392 RNA for mRNA purification with NEBNext Oligo d(T)>s (NEBNext poly(A) mRNA
393  Magnetic Isolation Module; New England Biolabs, MA, USA), followed by first-strand
394  cDNA synthesis with the NEBNext Ultra DNA Library Prep Kit for [llumina (New England
395  Biolabs) and NEBNext Multiplex Oligo for Illumina (New England Biolabs) according to
396  the manufacturer’s protocols. For the analysis of raindrop- and MS-induced gene expression,
397  the amount of cDNA was determined on an Agilent 4150 TapeStation System (Agilent, CA,
398 USA). cDNA libraries were sequenced as single-end reads for 81 nucleotides on an Illumina
399  Nextseq 550 (Illumina, CA, USA). The reads were mapped to the Arabidopsis thaliana
400  reference genome (TAIR10, http://www.arabidopsis.org/) online (BaseSpace, Illumina,
401  https://basespace.illumina.com/). Pairwise comparisons between samples were performed
402  with the EdgeR> package on the web (Degust, https://degust.erc.monash.edu/). For the
403  comparative analysis of differentially expressed genes between leaves in the g// mutant and
404  Col-0, the amount of cDNA was determined by the QuantiFluor dSDNA System (Promega,
405  WI, USA). cDNA libraries were sequenced as single-end reads for 36 nucleotides on an
406  Illumina Nextseq 500 (Illumina). The reads were mapped to the Arabidopsis thaliana
407  reference genome (TAIR10) via Bowtie®® with the options "--all --best --strata". Pairwise
408  comparisons between samples were performed with the EdgeR package in the R program™.
409  Enrichment of GO categories for biological processes was determined using BiNGO

410  (http://www.psb.ugent.be/cbd/papers/BINGO/Home.html) (P < 0.05)°!.

411  Re-analysis of immune-related transcriptome datasets

412 We used the following public transcriptome datasets for the comparative analysis with the
413  RNA-seq data obtained in this study: 10-day-old Arabidopsis seedlings treated with 1 uM
414 f1g22 (Array Express; E-NASC-76)%, 8-day-old Arabidopsis seedlings treated with 40 uM

415  chitin (Gene Expression Omnibus GSE74955), leaves from 4-week-old Arabidopsis plants
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416  inoculated with Pseudomonas syringae pv. maculicola (Psm) ES4326 (24 h post inoculation)
417  (GSE18978), 2-week-old Arabidopsis seedlings treated with 0.5 mM SA or 50 uM JA (DNA
418  Data Bank of Japan DRA003119), 12-day-old Arabidopsis GVG-NtMEK2PP seedlings
419  treated with 2 uM DEX for 0 and 6 h (NCBI Sequence Read Archive SRP111959), and 4-
420  week-old Arabidopsis camtal camta? camta3 triple mutant (GSE43818). The overlaps
421  between differentially expressed genes in each transcriptome dataset were evaluated as Venn

422 diagrams (http://bioinformatics.psb.ugent.be/webtools/Venn/).

423 RT-qPCR

424  Total RNA was extracted from 30-40 mg leaf tissues with Sepasol-RNA I Super G and the
425  TURBO DNase free kit (Thermo Fisher Scientific) according to the manufacturer's protocols,
426  followed by reverse transcription with the PrimeScript RT reagent kit (Takara Bio, Shiga,
427  Japan) using oligo dT primers. RT-qPCR was performed on the first-strand cDNAs diluted
428  20-fold in water using KAPA SYBR FAST qPCR Master Mix (2x) kit (Roche, Basel,
429  Switzerland) and gene-specific primers in a LightCycler 96 (Roche). Primer sequences are

430  listed in Supplementary Table 10.

431  Quantification of plant hormones

432 The adaxial side of leaves from 4-week-old plants was treated with 10 raindrops (raindrop),
433 brushed once (MS), and cut (wounding). Sample leaves (0.07-0.1 g) were collected 5 min
434 after treatment and stored at -80°C until use. SA, JA, JA-Ile, ABA, IAA, and GA4 were
435  extracted and purified by solid-phase extraction. The contents of these hormones were
436  quantified using liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-
437  MS/MS) (triple quadrupole mass spectrometer with 1260 high-performance LC, G6410B;

438  Agilent Technologies Inc., CA, USA), as previously reported®.
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439  ChIP assay

440  Approximately 0.7 g of 2-week-old camta2 camta3 CAMTA3pro:CAMTA3%V-GFP
441  seedlings was fixed in 25 mL 1% formaldehyde under vacuum for three cycles of 2 min ON/2
442  min OFF using an aspirator (SIBATA, Tokyo, Japan). Subsequently, 1.5 mL of 2 M glycine
443  was added to quench the cross-linking reaction under vacuum for 2 min. The samples were
444  then washed with 50 mL double-distilled water and stored at -80°C until use. Frozen samples
445  were ground to a fine powder with a mortar and pestle in liquid nitrogen and dissolved in 2.5
446  mL nuclei extraction buffer (10 mM Tris-HCI pH 8.0, 0.25 M sucrose, 10 mM MgCl,, 40
447  mM B-mercaptoethanol, protease inhibitor cocktail)®*. Samples were filtered through two
448  layers of Miracloth (Calbiochem, CA, USA) and centrifuged at 17,700 g at 4°C for 5 min.
449  The pellets were resuspended in 75 pL nuclei lysis buffer [SO mM Tris-HCI pH 8.0, 10 mM
450 EDTA, 1% (w/v) SDS]. After incubation first at room temperature for 20 min and then on
451  ice for 10 min, the samples were mixed with 225 pL. ChIP dilution buffer without Triton
452 [16.7 mM Tris-HCI pH 8.0, 167 mM NacCl, 1.2 mM EDTA, 0.01% (w/v) SDS]. Chromatin
453  samples were sonicated for 35 cycles of 30 sec ON/30 sec OFF using a Bioruptor UCW-201
454  (Cosmo Bio, Tokyo, Japan) to produce DNA fragments, followed by the addition of 375 uL
455  ChIP dilution buffer without Triton, 200 uLL ChIP dilution buffer with Triton [16.7 mM Tris-
456  HCI pH 8.0, 167 mM NacCl, 1.2 mM EDTA, 0.01% (w/v) SDS, 1.1% (w/v) Triton X-100],
457  and 35 pL 20% (w/v) Triton X-100. After centrifugation at 17,700 g at 4°C for 5 min, 900
458  pL solubilized sample was split into two 2.0 mL PROKEEP low-protein-binding tubes
459  (Watson Bio Lab USA, CA, USA) and incubated with 0.75 puL anti-GFP antibody (for
460  immunoprecipitation [IP]) (ab290; Abcam, Cambridge, UK) or Rabbit IgG-Isotype Control
461  (Input) (ab37415; Abcam) for 4.5 h with gentle rocking, and an 18 pL aliquot was used as
462  the input control. Then, samples from camta2 camta3 CAMTA3pro:CAMTA343"_-GFP were

463  mixed with 50 pL of a slurry of Protein A agarose beads (Upstate, Darmstadt, Germany) and
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464  incubated at 4°C for 1 h with gentle rocking. Beads were washed twice with 1 mL low-salt
465  wash buffer [20 mM Tris-HCI pH 8.0, 150 mM NaCl, 2 mM EDTA, 0.1% (w/v) SDS, 1%
466  (w/v) Triton X-100], twice with 1 mL high-salt wash buffer [20 mM Tris-HCI pH 8.0, 500
467 mM NaCl, 2 mM EDTA, 0.1% (w/v) SDS, 1% (w/v) Triton X-100], twice with 1 mL LiCl
468  wash buffer [10 mM Tris-HCl pH 8.0, 0.25 M LiCl, 1 mM EDTA, 1% (w/v) sodium
469  deoxycholate, 1% (w/v) Nonidet P-40], and twice with 1 mL TE bufter [10 mM Tris-HC] pH
470 8.0, 1 mM EDTA]. After washing, beads were resuspended in 100 pL elution buffer [1%
471  (w/v) SDS, 0.1 M NaHCO3] and incubated at 65°C for 30 min. For the input controls, 41.1
472 pL TE buffer, 8.7 uL 10% (w/v) SDS, and 21 pL elution buffer were added to 18 pL of each
473  solubilized sample. Both supernatant and input samples were mixed with 4 pL. of 5 M NacCl
474  and incubated at 65°C overnight to reverse the cross-linking, followed by digestion with 1
475  pL Proteinase K (20 mg/ml) (Invitrogen, CA, USA) at 37°C for 1 h. ChIP samples were
476  mixed with 500 pL. Buffer NTB and purified using the PCR clean-up gel extraction kit

477  following the manufacturer’s instructions (MACHEREY-NAGEL, Diiren, Germany).

478  ChlIP-seq library construction

479  ChIP-seq libraries for the input and two biological replicates were constructed from 2 ng
480  purified DNA samples with the NEB Ultra I DNA Library Prep Kit for [llumina (New
481  England Biolabs) according to the manufacturer’s instructions. The amount of DNA was
482  determined on an Agilent 4150 TapeStation System (Agilent). All ChIP-seq libraries were

483  sequenced as 81-nucleotide single-end reads using an Illumina NextSeq 550 system.
484  Analysis of ChIP-seq

485 Reads were mapped to the Arabidopsis thaliana reference genome (TAIRIO,

486  http://www.arabidopsis.org/) using Bowtie2 with default parameters®®. The Sequence
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487  Alignment/Map (SAM) file generated by Bowtie2 was converted to a Binary Alignment/Map
488  (BAM) format file by SAMtools®’. To visualize mapped reads, Tiled Data Files (TDF) file
489  were generated from each BAM file using the igvtools package in the Integrative Genome
490  Browser (IGV)*. ChIP-seq peaks were called by comparing the IP with the Input using
491  Model-based Analysis of ChIP-Seq (MACS2) with the “-p 0.05 -g 1.19e8” option (P <
492 0.05)%. The peaks were annotated using the nearest gene using the Bioconductor and the
493  ChlIPpeakAnno packages in the R program, from which we identified 2,011 genes detected
494  inboth biological replicates. Enrichment of GO categories of the set of 314 genes overlapping
495  between raindrop- and MS-induced genes for biological processes was determined using
496  BiNGO (http://www.psb.ugent.be/cbd/papers/BINGO/Home.html)®!. Sequences of the
497  peaks were extracted from the Arabidopsis thaliana genome as FASTA files with Bedtools®’.
498  To identify the candidates of CAMTAZ3-binding motifs, the FASTA files were subjected to
499  MEME (Multiple EM for Motif Elicitation)-ChIP with the default parameter (-meme-minw
)8

500  6-meme-maxw 10)°, and a density plot of the distribution of the motifs was generated.

501 Immunoblot analysis for detection of MPK3 and MPK6 phosphorylation

502  The adaxial side of leaves from 4-week-old plants was brushed four times or treated with
503  four raindrops, and samples (0.1-0.15 g) were snap-frozen in liquid nitrogen. Total proteins
504  were extracted in protein extraction buffer [SO mM Tris-HCI pH 7.5, 150 mM NaCl, 2 mM
505 DTT, 2.5 mM NaF, 1.5 mM Na3zVOs, 0.5% (w/v) Nonidet P-40, 50 mM B-glycerophosphate,
506  and proteinase inhibitor cocktail] and centrifuged once at 6,000 g, 4°C, for 20 min and twice
507 at 17,000 g, 4°C for 10 min. The supernatant was mixed with SDS sample buffer [S0 mM
508  Tris-HCI pH 6.8, 2% (w/v) SDS, 5% (w/v) glycerol, 0.02% (w/v) bromophenol blue, and
509 200 mM DTT] and heated at 70°C for 20 min. The protein samples were subjected to SDS-

510  PAGE electrophoresis and transferred onto a nitrocellulose membrane (GE Healthcare, IL,
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511 USA). The membrane was incubated with an anti-phospho-p44/42 MAPK polyclonal
512 antibody (Cell Signalling Technology, MA, USA) (1:1,000 dilution) and goat anti-rabbit
513  IgG(H+L)-HRP secondary antibody (BIO-RAD, CA, USA) (1:2,000 dilution). The bands for
514  MPK3/6 were visualized using chemiluminescence solution mixed 5:1 with ImmunoStar
515  Zeta (FUJIFILM Wako Chemicals, Osaka, Japan) and SuperSignal West Dura Extended
516  Duration Substrate (Thermo Fisher Scientific). The Rubisco bands were stained with
517 Ponceau S (Merck Sharp & Dohme Corp., NJ, USA) as a loading control. The
518  phosphorylation levels of MPK3 and MPK6 were quantified with the blot analysis plug-in in
519  Imagel (https://imagej.nih.gov/ij/).

520  Treatment with the calcium ionophore A23187

521  Twelve-day-old Col-0 seedling was treated with 50 uM calcium ionophore A23187 for 15-,
522 30- and 60 min. Samples were processed for the phosphorylation of MPK3 and MPK6 as
523  described in the “Immunoblot analysis for detection of MPK3 and MPK6 phosphorylation”

524  section. The leaf tissue was stored at -80°C until use.

525  Promoter-reporter imaging

526 The 3.0-kbp promoters for WRKY33 and CBP60g, both of which covered the previously
527  analyzed respective regulatory sequences, were amplified from Col-0 genomic DNA by PCR
528 and cloned into the pENTR/D-TOPO vector (Invitrogen). The promoter regions were
529  recombined using Gateway technology into the binary vector pBGYN. The resulting
530 pBGYN-pWRKY33-YFP-NLS and pPBGYN-pCBP60g-YFP-NLS vectors were introduced
531  into Agrobacterium tumefaciens GV3101 (pMP90) and then into Arabidopsis Col-0 plants
532 using the floral dip method. A representative homozygous line was selected for each

533  construct for further detailed analyses.
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534 Promoter-reporter imaging was performed using an MA205FA automated
535  stereomicroscope (Leica Microsystems, Wetzlar, Germany) and DFC365FX CCD camera
536  (Leica Microsystems) in 12-bit mode. Chlorophyll autofluorescence and YFP fluorescence
537  were detected through Texas Red (TXR) (excitation 560/40 nm, extinction 610 nm) and YFP
538  (excitation 510/20 nm, extinction 560/40 nm) filters (Leica Microsystems). To image
539  fluorescence emanating from the WRKY33pro:EYFP-NLS (Col-0) and CBP60gpro:EYFP-
540  NLS (Col-0) plants®, the leaves of 3-week-old Arabidopsis plants were brushed 10 times at

541 an interval of 15 min for 2 h or left untreated.

542  Promoter analysis

543  The statistical analysis for overrepresented transcriptional regulatory elements across
544  transcriptome datasets described above was calculated using a prediction program as
545  previously reported®’. The P values were calculated using Statistical Motif Analysis in
546  Promoter or Upstream Sequences
547  (https://www.arabidopsis.org/tools/bulk/motiffinder/index.jsp). Figures of promoter motif

548  sequences are generated with WebLogo (https://weblogo.berkeley.edu/logo.cgi).

549  Real-time [Ca?']cyt imaging

550 We used 4-week-old and 3-week-old plants expressing the GFP-based cytosolic Ca**
551  concentration ([Ca*']eyr) indicator GCaMP3**!. To image the fluorescence from the
552  GCaMP3 reporter (in Col-0 and g/7) in whole leaves, the adaxial sides of leaves from 4-
553  week-old plants were brushed. To monitor the calcium waves propagating from trichomes, a
554  single trichome from a 2-week-old seedling was flicked with a silver chloride wire. Samples
555 were imaged with a motorized fluorescence stereomicroscope (SMZ-25; Nikon, Tokyo,

556  Japan) equipped with a 1x objective lens (NA = 0.156, P2-SHR PLAN APO; Nikon) and an
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557 sCMOS camera (ORCA-Flash 4.0 V2; Hamamatsu Photonics, Shizuoka, Japan) as

558  described*.

559  Propidium iodide staining

560 A stock solution of 10 mM propidium iodide (PI) was prepared with phosphate-buffered
561  saline (PBS). Rosette leaves of 4-week-old Col-0 plants were cut into 5 mm squares, floated
562  in a glass petri dish with 20 uM PI solution, and incubated for 1 h at room temperature.
563  Stained tissues were observed under the all-in-one fluorescence microscope (BZ-X800;
564 KEYENCE CORPORATION, Osaka, Japan) equipped with a 20x objective lens (CFI S Plan
565  Fluor LWD ADM 20XC, Nikon) and TRITC dichroic mirror (excitation 545/25 nm,
566  extinction 605/70 nm) (KEYENCE).

567 Bacterial infection

568  MS were applied to the adaxial leaf surface of 4-week-old plants by brushing 4 times at an
569 interval of 15 min for 3 h. Sample leaves were then inoculated by infiltration, using a plastic
570  syringe (Terumo Tuberculin Syringe 1 mL; TERUMO), with Psm ES4326 (ODsoo = 0.001)
571  resuspended in 10 mM MgCl,. Bacterial growth was measured 2 days after inoculation as

572 described previously®.

573  Fungal infection

574  Alternaria brassicicola strain Ryo-1 was cultured on 3.9% (w/v) potato dextrose agar plates
575  (PDA; Becton, Dickinson and Company, NJ, USA) for 4-20 days at 28°C in the dark. After
576  incubation of the agar plates for 3-7 days under ultraviolet C light, a conidial suspension of
577  A. brassicicola was obtained by mixing with RO water’’. The adaxial side of leaves from 4-
578  week-old plants was treated with 10 droplets or MS by brushing at an interval of 15 min for

579 3 h, followed by spotting with 5 uL conidia suspension (2 x 10> per mL) of A. brassicicola
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580  on the adaxial side of leaves. Inoculated plants were placed at 22°C under diurnal conditions
581  (16-h-light/8-h-dark cycles) with 100% relative humidity. The lesion size of fungal infection

582  was measured with ImageJ 3 days after inoculation.

583  Statistics and reproducibility

584  GraphPad Prism 9 (GraphPad software, CA, USA) was used for all statistical analyses. Two-
585  sided one-way analysis of variance (one-way ANOVA) or two-way analysis of variance
586  (two-way ANOVA) was used for multiple comparisons. Unless stated otherwise, sample size
587  n represents technical replicates. In RT-qPCR, n > 3; in bacterial growth assays, n = 8; in
588  real-time [Ca®"]cy imaging assays of 35Spro:GCaMP3 (Col-0) and 35Spro:GCaMP3 (gl1),
589 n =14 and 9, respectively; and in fungal disease propagation assays, n = 29 (Fig. 2g) and n
590 = 15 (the other figures). All experiments were performed at least three times with similar
591  results (biological replicates). In all graphs, asterisks indicate statistical significance tested

592 by Student’s ¢ test (two groups) or one/two-way ANOVA (multiple groups).

593  Reporting summary

594  Further information on research design is available in the Nature Research Reporting

595  Summary linked to this article.

596  Date availability

597  The authors declare that all data supporting the findings of this study are available within this
598 article and its Supplementary Information files. RNA-seq and ChIP-seq data have been
599  deposited in the DDBJ Sequence Read Archive (DRA) at the DNA Data Bank (DDBJ;
600  http://www.ddbj.nig.ac.jp/) through the accession numbers DRA011970, DRA009248 and
601  DRAO11123.
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Fig. 1 | Raindrop-induced gene expression highly correlates with mechanical stimuli
(MS)-induced gene expression in Arabidopsis. a Enriched Gene Ontology (GO) categories
of 1,050 raindrop (10 droplets)-induced genes in the wild type (Col-0). The top 10 categories
are shown in ascending order of P values. b, ¢ Transcript levels of MS-induced and defence-
related genes in 4-week-old Col-0 plants 15 min after being treated with 10 falling droplets
(raindrop, b) or 1 brushing (MS, ¢), determined by RT-qPCR and normalized to UBIQUITIN
5 (UBQY). Data are presented as mean + SD. d Enriched GO categories of 1,241 MS (1
brushing)-induced genes in Col-0. The top 10 categories are shown in ascending order of P
values. e Venn diagram of the overlap between transcriptome datasets from raindrop- and
MS-induced genes (P < 0.05). f Radar chart of intensity compared with mock (logoFC) and
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803  Pearson correlation coefficient (r = 0.917288423) of 917 raindrop- and MS-induced genes
804  (left). Intensities of major immune regulator genes induced by raindrops and MS in RNA-
805  seq analysis (log2FC) (right).
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808  Fig. 2 | Raindrop-induced mechanosensation triggers defence responses in Arabidopsis.
809  a, b Venn diagram (a) and the upset plot (b) between 917 raindrop- and MS-induced genes
810  and transcriptome datasets obtained from salicylic acid (SA), jasmonic acid (JA), and flg22
811  (PAMP) treatment and Psm ES4326 infection (P < 0.05). Overlap with raindrop- and MS-
812  induced genes: SA, 21%, 193/917 genes; JA, 11.8%, 108/917 genes; flg22, 37%, 339/917
813  genes; Psm ES4326, 25.8%, 237/917 genes; any of the four factors, 58.6%, 537/917 genes.
814 ¢ Fresh weight (ng/g) of plant hormones SA, JA, JA-isoleucine (JA-Ile), abscisic acid (ABA),
815 and indole-3-acetic acid (IAA) 5 min after 10 falling droplets (raindrop), 1 brushing (MS),
816  and cutting (wounding). d, e Raindrop (4 droplets)- (d) and MS (4 brushing)-induced (e)
817  MAPK activation in Col-0. Total proteins were extracted from 4-week-old plants treated with
818  raindrops and detected by immunoblot analysis with anti-p44/42 MAPK antibodies. Relative
819  phosphorylation levels are shown below each blot. f MS-induced MAPK activation in Col-
820 0, fIs2, and bakl-3. Total proteins were extracted from 4-week-old plants after 5 min of MS
821  treatment (1 brushing) and detected by immunoblot analysis with anti-p44/42 MAPK
822  antibodies. Relative phosphorylation levels are shown below each blot. g, h Disease
823  progression of Alternaria brassicicola in Col-0 leaves 3 days after inoculation with (+) or
824  without () raindrop (10 droplets) pretreatment (g) or with (+) or without (—) MS (4 brushing)
825  pretreatment (h). Error bars represent SE. Asterisks indicate significant difference (one-way
826  ANOVA; ****P <(.0001). i Growth of Psm ES4326 in Col-0 leaves 2 days after inoculation
827  with (+) or without (-) MS (4 brushing) pretreatment. An outline of the experiment is
828  provided at left. Error bars represent SE. Asterisks indicates significant difference (one-way
829  ANOVA; ****P <(.0001). Cfu, colony-forming units.

830
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832  Fig. 3 | MS-induced genes are regulated by CAMTAS3. a Promoter analysis of the top 300
833  (among 917 genes) raindrop- and MS-induced genes in terms of expression levels revealed
834  thatthe CAMTA-binding CGCG box [CGC(/T)GT] were overrepresented among these genes.
835 b, ¢ Transcript levels of WRKY33 and CBP60g in 4-week-old camta? camta3
836  CAMTA3pro:CAMTA3-GFP (CAMTA3) and camta2 camta3 CAMTA3pro:CAMTA348%7-
837  GFP[CAMTA3(A855V)] plants 15 min after the plants were treated with 1 falling droplet (b)
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838  or brushed 4 times (¢), determined by RT-qPCR and normalized to UBQS5 transcript levels.
839  Data are presented as mean + SD. d Venn diagram depicting the overlap between genes with
840  CAMTA3-binding sites in their promoters, as determined by ChIP-seq, and raindrop- and
841  MS-induced genes as determined by RNA-seq. A total of 314 genes, shown in red, were
842  identified as CAMTA3-target genes. e The CGCG box was identified as an overrepresented
843  motif among the sequence peaks of 314 genes by MEME-ChIP. f Localization of CAMTA3
844  on the promoters of the MS-induced genes TCH2, TCH4, CAM2, CBP60g, CML23, and
845  WRKY40, as representative of the 314 genes shown in (d). Blue and red lines indicate
846 CGCGT and CGTGT, respectively. g Growth of Psm ES4326 in camta? camta3
847  CAMTA3pro:CAMTA3-GFP (CAMTA3) and camta2 camta3 CAMTA3pro:CAMTA3487-
848  GFP [CAMTA3(A855V)] plants 2 days after inoculation with (+) or without (—) MS (4
849  brushing) pretreatment. Error bars represent SE. Asterisks indicate significant difference
850  (one- and two-way ANOVA; ****P <(.0001). Cfu, colony-forming units. NS, not significant.
851
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852
853  Fig. 4 | Trichomes initiate intercellular calcium waves. a—c YFP fluorescence in a whole

854  leaf from WRKY33pro:EYFP-NLS (Col-0) with (MS, bottom half) or without brushing
855  (untreated, top half) (a), along with zoomed-in views of brushed (b) and untreated (c) areas.
856  Arrowheads indicate trichomes (b, ¢). Scale bars, 0.5 mm (a), 0.3 mm (b, ¢). d Ca*" imaging
857  using 35Spro:GCaMP3 (Col-0). The leaf surface of a 4-week-old plant was treated with MS

858 by brushing. MS-induced intercellular calcium waves propagated concentrically from
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859  trichomes. Scale bar, 1.0 mm. See also Supplementary Video 1. e Ca’" imaging using
860  35Spro:GCaMP3 (Col-0). A single trichome from a 2-week-old seedling was flicked with a
861  silver chloride wire. MS-induced intercellular calcium waves propagated concentrically from
862  the trichome (dashed outline). Scale bar, 0.2 mm. See also Supplementary Video 2. f [Ca? eyt
863  changes at sites indicated by numbers in (e). g Side view of a trichome whose neck was
864  flicked with a silver chloride wire. MS-induced intercellular Ca*" influx was transiently
865  observed in the trichome base (arrowheads) followed by the formation of circular waves.
866  Scale bar, 0.1 mm. See also Supplementary Video 3.

867
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868

869  Fig. 5| Trichomes are mechanosensory cells. a Ca’>" imaging using 355pro.GCaMP3 (Col-
870  0) and 35Spro:GCaMP3 (gll). Leaf surfaces were exposed to MS by brushing. MS-induced
871  calcium waves were compromised in the g// mutant. See also Supplementary Videos 4 and

872 5. Scale bars, 0.5 mm. b [Ca*"]cy: signature of (a). ¢ Venn diagram of transcriptome datasets
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873  for MS-induced genes in Col-0 and g// (P < 0.05). NS, not significant. Lower, fold change
874  (FC) (gll)/FC (Col-0) < 0.5. High, MS (gl//)/Mock (gl1), logo2FC > 1 in g/l. P < 0.05. d
875 Heatmap of differentially expressed defence-related genes obtained from transcriptome
876  datasets from Col-0 and g// plants treated with MS (4 brushing). e Transcript levels of
877  WRKY33, WRKY40, and CBP60g in 4-week-old Col-0 and g// plants 15 min after treatment
878  with 4 falling droplets, determined using RT-qPCR and normalized to UBQS5. Data are
879  presented as mean + SD. Asterisks indicate significant difference (one- and two-way
880  ANOVA; *P < 0.05). f MS-induced MAPK activation in Col-0 and g//. Total proteins were
881  extracted from 4-week-old leaves 5 min after MS treatment and detected by immunoblot
882  analysis with anti-p44/42 MAPK antibodies. Relative phosphorylation levels are shown
883  below each blot. g Growth of Psm ES4326 in Col-0 and g// leaves 2 days after inoculation
884  with (+) or without (=) MS (4 brushing) pretreatment. Error bars represent SE. Asterisks
885 indicate significant difference (one- and two-way ANOVA; ***P < (0.001). Cfu, colony-
886  forming units. NS, not significant. h Disease progression of Alternaria brassicicola in Col-0
887  and g/l leaves 3 days after inoculation with (+) or without (—) MS (4 brushing) pretreatment.
888  Error bars represent SE. Asterisks indicate significant difference (one- and two-way ANOVA;
889  *#¥*kP <(.0001). NS, not significant.
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912 Fig. 6 | Trichomes activate broad-spectrum disease resistance. Model showing how
913  trichomes directly sense the mechanical impact of raindrops as an emergency signal in
914  anticipation of possible infections. Mechanosensory trichome cells initiate intercellular
915  calcium waves in response to MS. [Ca?]ey initiates the de-repression of Ca*"/CaM-
916  dependent CAMTA3 and activates the phosphorylation of MPK3 and MPK6, thereby
917  inducing WRKY-dependent transcription.
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