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Abstract

In wine fermentations, the metabolic activity of both Saccharomyces cerevisiae and
non-Saccharomyces organisms impact wine chemistry. Ribosomal DNA amplicon
sequencing of grape musts has demonstrated that microorganisms occur non-randomly
and are associated with the vineyard of origin, suggesting a role for the vineyard, grape,
and wine microbiome in shaping wine fermentation outcomes. We used ribosomal DNA
amplicon sequencing of grape must and RNA sequencing of primary fermentations to
profile fermentations from 15 vineyards in California and Oregon across two vintages. We
find that the relative abundance of fungal organisms detected by ribosomal DNA amplicon
sequencing did not correlate with transcript abundance from those organisms within the
RNA sequencing data, suggesting that the majority of the fungi detected in must by
ribosomal DNA amplicon sequencing are not active during these inoculated fermentations.
Additionally, we detect genetic signatures of vineyard site and region during fermentation
that are predictive for each vineyard site, identifying nitrogen, sulfur, and thiamine

metabolism as important factors for distinguishing vineyard site and region.
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Importance

The wine industry generates billions of dollars of revenue annually, and economic
productivity is in part associated with regional distinctiveness of wine sensory attributes.
Microorganisms associated with grapes and wineries are influenced by region of origin,
and given that some microorganisms play a role in fermentation, it is thought that microbes
may contribute to the regional distinctiveness of wine. We show that while the presence of
microbial DNA is associated with wine region and vineyard site, the presence of microbial
DNA is not associated with gene expression of those microorganisms during fermentation.
We further show that detected gene expression signatures associated with wine region and
vineyard site provide a means to address differences in fermentations that may drive

regional distinctiveness.
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Introduction

During vinification, grape musts are transformed to wine through microbial
metabolism, including fermentation of grape sugars into alcohols. In both inoculated and
spontaneous fermentations, Saccharomyces cerevisiae often becomes the dominant
fermentative organism due to a milieu of adaptations that support the rapid consumption
of sugars and production of ethanol (1). However, complex microbial communities
consisting of other eukaryotic microorganisms and bacteria are present, active, and make
significant contributions to the wine making process and final product (2-6). Referred to
collectively as non-Saccharomyces organisms, these microbes often originate from the
vineyard or the winery itself (7, 8). In recognition of the important role these microbes
have in wine making, select non-Saccharomyces yeasts are increasingly inoculated into
commercial fermentations to impart beneficial properties (e.g. bio-protection, lower
ethanol, or distinct sensory characteristics (9)). Grape must treatment with sulfur dioxide
(S02) is also commonly used to control microbial populations, including spoilage
organisms, but many microorganisms survive SO treatment and contribute to

fermentation outcomes (6, 10, 11).

The persistence of vineyard and winery derived microorganisms throughout the
winemaking process, as well as the potential for these organisms to influence grape berry
development prior to harvest, has led to the idea that select microorganisms unique to a
region or vineyard may contribute to region-specific wine characteristics (12, 13). In
support of a role of microbial biogeography in regional wine characteristics,

microorganisms in vineyards, wineries, and grape musts are known to be associated with
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their region of origin (4, 7, 8, 14-21). Moreover, the abundance of some organisms in grape
must correlates with metabolite concentrations in finished wine, further associating
microbial biogeography to fermentation outcomes and wine quality (15, 22). Still, relatively
little is known about the influence of non-Saccharomyces microorganisms on wine
fermentation outcomes, but an increasing number of studies are tackling this complex
problem (23, 24). Recent studies have documented increased glycerol accumulation and
aroma profiles using sequential- or co-inoculation of S. cerevisiae with a single non-
Saccharomyces yeast species under enological conditions (25-34). While outcomes are
diverse, which may be expected given the variety of starting must and culture conditions
used across studies, many report consistent alterations in wine such as a higher glycerol
content from fermentations inoculated with S. cerevisiae and Starmerella bacillaris (29, 30,

34).

How these altered fermentation outcomes occur remains a difficult question to
address, as a given outcome may be the direct result of metabolism by the non-
Saccharomyces organism, or the result of the organism altering S. cerevisiae metabolism via
direct or indirect interactions (35-37). In support of the latter, the presence of non-
Saccharomyces organisms has been shown to increase the rate and diversity of resource
uptake by S. cerevisiae in early fermentation (36-38). In controlled steady-state bioreactor
fermentations, the presence of Lachancea thermotolerans was found to increase the
expression of S. cerevisiae genes important for iron and copper acquisition (39). Such
interactions are not limited to fungi—Iactic acid bacteria can induce epigenetic changes
(e.g. [GAR+] prion) in S. cerevisiae that alter glucose metabolism (40-42). Such abilities of

non-Saccharomyces organisms to impact S. cerevisiae metabolism and fermentation
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85  outcomes raises the question of whether microbial biogeography of vineyard sites persists
86 in fermentations, thereby influencing wine outcomes in a site-specific manner. In addition,
87  microbial diversity changes as primary fermentation progresses and S. cerevisiae becomes
88  dominant (43), suggesting a changing microbial community could feedback to impact

89 fermentation progression in multiple distinct ways. Currently, we know relatively little

90 about these inter-species interactions and how this influences S. cerevisiae, which as a field
91 must be addressed if we are to understand how microbial community dynamics impact

92 wine fermentation outcomes.

93 Past inquiries into the microbial communities of grape must and wine related to

94 regional distinctiveness have focused on assaying the presence of specific microbes based

95  onribosomal DNA amplicon sequencing (4, 8, 14-20, 44). DNA sequencing has the

96 advantages of capturing both metabolically active and inactive organisms, due to the

97  relative stability of the DNA molecule, offering evidence of a rich history of the microbial

98 community prior to sampling. Ribosomal DNA amplicon data further provides a measure of

99  what microbes may be active at the time of sampling or may become active in the future.
100  While microbiome DNA sequencing of grape musts supports regionally distinct microbial
101  signatures, what microbes are metabolically contributing to fermentation outcomes
102  remains largely unknown. This information is critical when considering the possibility that
103  aparticular microbe influences a wine fermentation outcome via metabolism or inter-

104  species interactions.

105 One measure of metabolic activity that is relatively accessible and can be applied at

106  scale to address this issue is the measurement of gene expression in both S. cerevisiae and
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107  other non-Saccharomyces organisms. An interrogation of the genes that are “on” at a given
108 time using RNA sequencing provides important information about the activities an

109  organism may be performing. In addition, the RNA molecule assessed by transcriptomics is
110  constantly turned over within cells and is relatively unstable compared to DNA, which we
111  propose makes transcriptomics a good indicator of microbial activity at the time of

112  sampling. For example, early in fermentation S. cerevisiae turns on genes required for

113  glucose metabolism and represses expression of genes needed for the metabolism of other
114  carbon sources; a pattern that reverses towards the end of fermentation when glucose is
115 depleted and S. cerevisiae must find alternative energy sources (45). These patterns of gene
116  expression are easily observed using transcriptomics (45, 46), which is increasingly being

117  applied to understanding wine fermentation outcomes (36-39, 47).

118 Here, we characterize microbial populations present in Pinot noir musts from

119 California and Oregon in multiple vintages using both ribosomal DNA amplicon data from
120  grape must samples and gene expression data from multiple fermentation timepoints. We
121  demonstrate that genetic signatures (i.e., DNA and RNA profiles) of vineyard site and

122  region are captured by these data, with total precipitation during growing season being one
123  vineyard-associated factor identified to correlate with site-specific genetic signatures.

124  While DNA profiles reliably predict both vineyard site and region, these profiles did not
125  correlate with the RNA profiles of the primary fermentations. This finding suggests other
126  characteristics influence site-specific gene expression signatures more than the grape must
127  microbiome as measured by ribosomal DNA amplicon sequencing. Importantly, a

128 comparison of DNA sequencing and gene expression data indicates that the majority of

129  organisms detected by ribosomal DNA sequencing lack detectable gene expression during


https://doi.org/10.1101/2021.01.07.425830
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.07.425830; this version posted February 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

130  the primary fermentation, thus limiting the likelihood that many of these organisms
131  significantly impact fermentation outcomes during the primary stage of fermentation.
132 Finally, using S. cerevisiae gene expression patterns and the associated functions of the
133  genes identified, we are able to identify candidate factors that contribute to vineyard

134  specific fermentation outcomes and wine sensory characteristics.
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135 Results and Discussion

136 To investigate associations between grape must microbial communities and

137  regional distinctiveness of resulting wines, we performed standardized fermentations of
138  Pinot noir grapes from 15 vineyard sites in California and Oregon across multiple vintages
139  (Figure S1A).In 2016, 2017, and 2019, we performed four inoculated fermentations per
140  vineyard site using the wine yeast RC212, taking microbiome samples for DNA isolation
141  and ribosomal DNA amplicon sequencing prior to inoculation. In the 2017 and 2019

142  vintages, we further profiled two primary fermentations from each site using RNA

143  sequencing approaches to perform gene expression analyses at multiple fermentation
144  timepoints. We performed all grape processing and temperature-controlled fermentations
145 atthe UC Davis Teaching & Research Winery to standardize vinification and minimize

146  contributions from other factors (winery and winemaker) to the microbiome and

147  transcriptome (48-50).

148 DNA abundance by ribosomal amplicon sequencing is a poor predictor of detectable

149 gene expression during fermentation

150 Using ribosomal DNA amplicon sequencing of bacteria and fungi, we detected 3254
151  distinct bacterial sequences and 2452 distinct fungal sequences in grape must (Figure 1A
152 and 1B), with a greater mean species diversity per vineyard site for bacteria than for fungi
153  (Figure S1B). However, the core microbiome - i.e., the species present in 90% of all grape
154  musts across all vintages with at least 1% abundance - was larger for fungi than bacteria.
155  The core microbiome consisted of 11 bacterial variants classified to nine taxonomic ranks

156 and 19 fungal variants classified to 10 taxonomic ranks. All bacteria in the core microbiome
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157  belonged to the phylum Proteobacteria and were dominated by the genus Tatumella.

158  (Figure S2). Tatumella has previously been identified as a dominant genera in other red
159  wine fermentations where it correlated with total acid (by titration) in grape must (51),
160  however these associations have not been experimentally validated. Three of the most

161 abundant bacterial sequence variants identify to the acetic acid producing genus

162  Gluconobacter (Figure S2). Gluconobacter is one of three genera of acetic acid bacteria

163  associated with wine spoilage and the only genus we identify among dominant organisms
164  (Figure S2) (52). Gluconobacter are primarily active in grape must as the wine

165  environment restricts growth of organisms in this genus (52). Fungi in the core

166  microbiome belong to a single phylum, Ascomycota, with all fermentations dominated by
167  the genus Hanseniaspora, in particular Hanseniaspora uvarum. H. uvarum cannot complete
168 alcoholic fermentation alone, but participates in and can alter the quality outcomes of wine
169 fermentations (53). We also identified the fungal genus Botrytis among dominant

170  organisms (Figure S2), although we lacked the ability to resolve whether the particular
171  variant we detected belongs to the spoilage organism Botrytis cinerea or another species in
172 the Botrytis genus. Through this work, we have extended microbiome must sequencing to
173  include the 2019 vintage, with results largely matching findings from previous vintages
174  across these same vineyard sites (50). The observed microbial community composition
175  was consistent with organisms previously shown to be present at the initial stages of the

176  wine making process (4, 15-17, 51).

177 Ribosomal DNA amplicon sequencing of grape must is expected to capture cells that
178  are metabolically active, inactive, or dead due to the stability of the DNA molecule. In

179  contrast, gene expression profiling via RNA sequencing is expected to be biased towards
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180  living cells. Moreover, the identity of the gene transcripts present at the time of sampling
181  further provides information about what metabolic activities the cell may be performing.
182  Using 3" Tag RNA sequencing (3" Tag-seq), we profiled eukaryotic organisms during

183 fermentation using samples taken at multiple fermentation timepoints (i.e., 16, 64, and 112
184  hours after inoculation in 2017 and 2019, plus 2 and 6 hours post-inoculation in 2019).
185  While traditional RNA-sequencing produces sequencing reads from an entire transcript, 3°
186  Tag-seq produces one molecule per transcript by sequencing approximately 100 base pairs
187  upstream of the 3’-end of a sequence (54). This sequencing chemistry requires a poly(A)
188  tail, limiting the sequenced fraction of the transcriptome almost entirely to polyadenylated

189  eukaryotic mRNAs.

190 From the resulting 3" Tag-seq data, we observed that relatively few eukaryotic

191 microbes were detected during these Pinot noir fermentations (Figure 1C). Considering all
192 15 sites together, only 18 eukaryotic species were detected. Further reflecting this finding,
193 S cerevisiae transcripts accounted for the majority of sequences across all fermentations at
194  all time points. To assess whether non-inoculated S. cerevisiae strains were responsible for
195 some fraction of sequence reads, we compared each transcriptome against all annotated S.
196 cerevisiae genomes in GenBank, as well as a genome assembly of S. cerevisiae RC212. While
197 non-RC212 S. cerevisiae strains were detectable in every fermentation, this fraction

198 accounted for less than 1% of uniquely identifiable sequences. This demonstrates that the
199 inoculated RC212 strain dominated fermentations at all sampled time points. Interestingly,
200  we also identified Vitis vinifera transcripts in all samples (Figure 1C). The presence of V.

201  vinifera transcripts suggests intact grape cells persist throughout fermentation.
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202 In comparing specific organisms detected via DNA sequencing and 3" Tag-seq RNA
203  sequencing, we see that only four (Aureobasidium pullulans, Hanseniaspora uvarum,

204  Hanseniaspora vineae, and S. cerevisiae) of 397 distinct fungal species definitively identified
205 by ribosomal DNA profiling were detected using gene expression data. This was unchanged
206  inthe 2019 transcriptome profiling samples taken at 2 and 6 hours after inoculation,

207  suggesting that organisms detected by amplicon sequencing had lost activity prior to or
208  concurrent with inoculation, well before S. cerevisiae would begin to produce inhibitory
209  concentrations of ethanol. Of the four detected organisms by 3" Tag-seq, ribosomal DNA
210 amplicon sequencing data indicated that H. uvarum was most abundant in musts prior to
211  inoculation and was detected in every vineyard site (Figure 2A). Still, the relative

212 abundance of H. uvarum in grape must from ribosomal DNA amplicon sequencing was only
213  weakly correlated with relative abundance of RNA during fermentation (R2 = 0.14, p <

214  0.01). Importantly, while these values are weakly correlated, H. uvarum had almost no

215  detectable gene expression in fermentations from many sites where it dominated the DNA
216  profile of the grape must (Figure 2B). Finally, even when we performed this analysis using
217  samples from the first hours of fermentation after inoculation, relative abundance of H.
218  uvarum DNA in grape musts remained weakly correlated with relative abundance of RNA
219  (two hours: R?2 =0.21, p < 0.05, six hours: R2 = 0.28, p < 0.01). In the case of A. pullulans,
220 DNA in grape must is not correlated with gene expression during fermentation (two hours:
221 R?2=-0.03,p=0.60, six hours: R2 =-0.025, p = 0.53). These results indicate that most

222  identified eukaryotic microorganisms in grape must by DNA profiling likely have little

223  metabolic activity in inoculated fermentations even when the organisms are detected at

224  high abundance and are detectable via both sequencing methods.
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225 Given these findings, it is important to consider if a lack of detectable gene

226  expression for non-Saccharomyces fungal species could be reflective of some other issue
227  thatis technical or biological in nature. We consider this highly unlikely for two reasons.
228  First, both DNA and RNA sequencing require similar protocols for extraction of nucleic
229  acids from cells that should perform approximately equally across samples. Second, RNA
230 sequencing relies on a highly conserved biological processes (mRNA polyadenylation),
231  hence while we could envision RNA sequencing failing for one or a few organismes, it should
232 not fail across many fermentations for the large majority of organisms seen in this work.
233 Moreover, of the 16 non-Saccharomyces fungi detected via RNA-sequencing, eight of these
234  organisms were not detected at the genus level by DNA profiling (Cladosporium sp SL-16,
235  Lachancea thermotolerans, Metschnikowia fructicola, Metschnikowia sp. AWRI3582, Pichia
236  kudriavzevii, Preussia sp. BSL10, Rhizopus stolonifer, Starmerella bacillaris). This suggests
237  that transcriptomic profiling is a sensitive assay able to detect organisms present in a

238  population that are missed by ribosomal DNA amplicon sequencing, which is likely due to

239  aninability to resolve genus or species using ribosomal DNA sequences.

240 Notably, some of the organisms detected by RNA sequencing have the ability to

241 influence fermentation outcomes: in mixed fermentations with S. cerevisiae, S. bacillaris has
242 been shown to lower the final ethanol concentration and increase the concentration of

243  glycerol (55), while M. fructicola increased the concentration of esters and terpenes (56).
244  Therefore, the detection of these organisms by RNA sequencing provides valuable

245  information with respect to the potentially active microbial population in these

246  fermentations. Our findings align well with another recent report that showed an RNA-

247  based sequencing strategy is a highly sensitive alternative to amplicon sequencing (57). As
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248  such, it may be appropriate to use RNA sequencing as a general method to capture the
249  metabolically active microbial community during wine fermentation, especially when

250 drawing a connection between the wine microbiome and fermentation outcomes.

251 Genetic signatures differentiate vineyard site, region, and vintage

252 The region and site from which grapes are harvested can have an important

253  influence over the character of a resulting wine based by on a variety of factors (e.g.,

254  climate, soil type, grape associated microbes). As such, we considered if the data generated
255  using DNA and RNA sequencing strategies during these Pinot noir fermentations is

256  reflective of vineyard site through the generation of unique genetic signatures. To

257  investigate this concept, we grouped DNA and RNA sequencing samples by vineyard site,
258 region, and vintage to see if there were detectable differences among these groups. Using
259  analysis of similarities (ANOSIM; see methods), we determined that all three factors

260  explain differences among groups of samples, with vineyard site explaining the most group
261  similarity (Figure 3A-D). This supports the idea that fermentations have a detectable

262  genetic signature that is reflective of vineyard site.

263 To understand which specific organisms and genes contribute to the genetic

264  signatures of both vineyard site and region, we built machine learning classification models
265 using random forests. These models weight the contribution of each feature to predictive
266  accuracy of the model, enabling robust identification of specific genes or organisms that
267  differentiate vineyard sites or regions among fermentations. When we used data from all
268  vintages in model training and testing to predict region, we achieved 87%-95% accuracy

269 (Table S1-S3; Figure S3-S4). When we instead used data from one vintage in model
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270  training and testing to predict region, accuracy dropped across all models, but ranged from
271  57%-75% (Table S1-S3; Figure S3-S4). This suggests that models built with fermentations
272  from all vintages better capture cross-vintage similarities as these models select predictive
273  variables that are consistent across the vintages studied. However, the accuracy of these
274  models may decrease if the same set of predictive variables is not consistent in future

275  vintages. Conversely, the accuracy of a model built from a single vintage and trained on a
276  separate vintage will likely remain consistent across many vintages. From this, we assumed
277  that models trained using data from a single vintage better reflected model accuracy, but
278  that models trained using data from all vintages better reflected cross-vintage similarities.
279  As we aimed to identify vintage-independent factors, we analyzed cross-vintage models

280  moving forward.

281 When we used the same data to generate vineyard-specific models, predictive

282  accuracy was on average 21.4% less than region-specific models (Table S1). However, it is
283  important to note that this decrease in accuracy was driven by within-region

284  misclassification for vineyards in Willamette Valley (31 km separation), Santa Maria Valley
285 (5 km separation), and Arroyo Seco (1 km separation) American Viticultural Areas (AVA)
286  (Figure S5). The same misclassifications persisted across many models, highlighting

287  potential within-region similarity that contributes to genetic signatures, which fits well

288  with the concept of AVA and region-associated wine characteristics.

289 Across models, we were surprised to find that bacterial models outperformed or
290 performed as well as fungal models for classification of site and region, as bacterial must

291 samples added the least predictive power in previous models for region prediction (14),
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292  including for Pinot noir grapes grown in Australia (8). Bacterial must samples have been
293  shown to be predictive of region in Californian Chardonnay, but not Californian Cabernet
294  Sauvignon (14), suggesting a possible cultivar-specific effect. In previous inquiries, samples
295  were processed in vineyard-specific wineries, providing another variable that could

296  potentially alter the measured microbiomes and the contributions attributed to bacteria

297  and fungi.

298 Given that random forests models estimate the importance of each gene in

299  determining vineyard or region classification, we further used the gene expression models
300 to gain insight into biological differences between vineyard sites and regions. For this, we
301 calculated the percent of total importance attributable to each gene from each eukaryotic
302 organism detected (Table S2). Vineyard-specific models weighted non-Saccharomyces
303 yeast genes as a whole as most important for predictive accuracy (Figure 3E, Figure S6).
304 In particular, genes from S. bacillaris, M. fructicola, Metschnikowia sp. AWRI3582, and L.
305 thermotolerans were important for vineyard site classification. The ability of non-

306  Saccharomyces gene expression to distinguish site is likely related to the unique

307 combination of non-Saccharomyces organisms present in each fermentation, which results
308 inthese organisms having strong predictive power when detected. In contrast, regional
309 models weighted S. cerevisiae and V. vinifera genes as higher importance (Figure 3E,

310 Figure S6). We expect that this may result from changes in V. vinifera gene expression
311 across more diverse geographical environments, which leads to differences in the grape

312 mustand associated fermentations as detected by S. cerevisiae gene expression.
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313 To more directly address how environmental factors and grape must chemistry
314  correlate with genetic signatures, we correlated initial must chemical parameters (pH,
315 titratable acidity, malic acid, NOPA, and NH3) and vineyard site characteristics (total

316  precipitation, growing degree days, and geographic distance between sites) with DNA and
317  RNA profiles using the Mantel test (see methods). From these analyses, we found

318 geographic distance between vineyards correlated with precipitation and growing degree
319 days, indicating that sites that are geographically closer experience more similar weather
320 patterns, as would be expected (Figure 3F). Amongst the factors tested, only precipitation
321  correlated with all genetic profiles (Figure 3G). Similar to geographic distance, initial

322  chemical profiles of vineyard sites were more similar when sites are geographically closer.
323  However, we found surprisingly few correlates between genetic profiles and initial grape
324  must conditions (Figure 3G). While fungal profiles correlate with initial malic acid, NOPA,
325 and NHsz and bacterial profiles correlate with initial NOPA, gene expression profiles only
326  correlate with initial malic acid levels. The finding that gene expression profiles do not
327  correlate with initial nitrogen concentration, even though nitrogen availability is central to
328 yeast growth and linked to the expression of hundreds of genes (45), may reflect nitrogen
329  additions at ~24 h after inoculation during winemaking so that all fermentations had a
330 minimum of 250 mg/L (see methods). Overall, the poor correlation between gene

331 expression patterns and the factors tested suggest that other unmeasured factors drive
332 gene expression distinctiveness in these fermentations. This raises a clear need for future
333  work that measures many factors within vineyards and fermentations to define the

334  organism-environment interactions responsible for driving gene expression and cellular

335  activities of S. cerevisiae and other microbial organisms.
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336 8. cerevisiae gene expression provides insight into vineyard site and region features

337 S. cerevisiae is likely the best understood eukaryote based on the use of this

338 organism as a model system for biology, which has provided a rich set of genomic

339 resources and databases (58). As such, S. cerevisiae gene expression can be used as a

340 biosensor to provide insight into the fermentation environment based on activities yeast
341  perform. The utility of this data is furthered by the fact that S. cerevisiae gene functions are
342  well studied in the context of wine production, S. cerevisiae is ubiquitous across all

343  fermentations, and the transcriptomics data is dominated by reads from S. cerevisiae (e.g.,
344  data completeness). Consequently, given the data above suggesting unknown factors are
345 directing fermentation outcomes, we queried the S. cerevisiae gene expression data to

346  assess what genes were important for predicting region and vineyard site to infer what
347  may be unique about musts produced by grapes from each vineyard site or region. Notably,
348 random forests models are non-deterministic, meaning the each time a model is built the
349  specific genes important for predictive accuracy of that model may change, especially for
350 genes with correlated gene expression values (59). Therefore, we first built 100 random
351 forests models for the prediction of region and vineyard site and investigated the genes
352  that were shared across the majority models (Table S4). As discussed above, less than 1%
353  oftranscripts in any fermentation were expressed by non-RC212 S. cerevisiae and thus the

354  genetic signatures we identified are likely specific to this strain.

355 From this analysis, important predictors of both site and region included flavor-
356 associated genes involved in the formation of higher alcohols and volatile fatty acids

357  through the Ehrlich pathway. Each site-specific and region-specific model included an
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average of 16 (site SD = 2.9, region SD = 2.4) genes associated with flavor development in
wine (Table S5). These genes were mostly associated with the Ehrlich pathway (site mean
= 8.1 genes, SD = 2; region mean = 9 genes, SD = 1.7) and with volatile sulfur formation (site
mean = 6.3 genes, SD = 1.6; region mean = 5.1 genes, SD = 1.4). Given that genes in these
pathways were detectable as indicators of both region and site, site-variable expression of
these genes could contribute to region- and vineyard-specific wine flavor profiles detected
in wines from these vineyards in previous vintages (48). At this time, it remains unknown

what factors cause these flavor-associated genes to differ between fermentations.

In addition to flavor-associated genes, many S. cerevisiae genes that were important
for predicting vineyard site and region are members of the Com2 regulon (Table S4).
Expression of genes within the Com2 regulon is protective against SO stress (60). We
treated all fermentations with an equal dose of SO at the beginning of vinification;
however, variable application of sulfur-containing fungicides in the vineyard may lead to
disparate SO; stress during fermentation underlying the signatures of site and region that
we observe. Wine strains of S. cerevisiae are more tolerant of SOz than many non-
Saccharomyces species, but SOz exposure can cause inhibition of key metabolic enzymes
like alcohol dehydrogenase, as well as other processes through cleavage of disulfide bonds
(61, 62). Of the 511 genes dependent on Com2 activation during SO; stress (60), an average
of 105 genes (SD = 12.7) were important for differentiating site in our predictive models,
while 101 genes (SD = 11.6) were important for predicting vineyard region. Within these
gene lists are genes involved in the efflux of sulfite and bisulfite, sulfate assimilation, sulfate
assimilation, biosynthesis of methionine, cysteine, arginine, and lysine, and biosynthesis of

the sulfur-containing vitamin biotin (Table S6). These pathways, and their site-specific
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381 signatures, are potential areas of future study given that sulfur metabolism can have a

382  profound impact on the sensory attributes of wine (63). In addition, while the molecular
383  form of SOz causes S. cerevisiae stress and inactivation of wine spoilage microbes (11, 60),
384 this form is in equilibria with the bisulfite form (HSO3-) and this ratio is dependent on wine
385 pH (64). The bisulfite form interacts with anthocyanins and can cause color bleaching (64).
386  This suggests that the SO stress response is a factor that would need to be considered in

387  the context of pH and other aspects of SO2 wine chemistry.

388 To further explore connections between S. cerevisiae gene expression and region or
389 vineyard site, we identified genes that were predictive for a specific region or site across all
390 models (local importance, see methods). Only one gene was important across all models for
391 predicting the site OR1 (VIT_0003506001; V. vinifera pathogenesis-related protein 10.3).
392  This suggests that we have limited resolution into the specific gene expression patterns
393 that differentiate individual sites using this method. Given that gene expression is

394 inherently noisy (65), increasing observations per vineyard site may improve accuracy and

395 inference from site-specific models in the future.

396 In contrast to site-specific models, an average of 22.4 genes per region (SD = 13.5)
397  were predictive across all models, with an average of 14.4 genes (SD = 8.4) expressed by S.
398 cerevisiae (Table S7). Interestingly, many genes that were important for predicting one
399 region were also important for predicting other regions (BETZ2, BET3, BI04, EXGZ2, FASZ,
400 HEM1Z2, LOH1, MEP3, MRX21, NPT1, PSA1, SNZ3, THI11, THI13, THI72, TUB4), suggesting
401 that expression of these genes differed consistently between regions. These genes encode

402  proteins involved in diverse cellular processes, including heme biosynthesis, cell wall
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403 assembly, and synthesis and transport of fatty acids and nitrogen-containing compounds.
404  While the underlying biochemical processes that lead to consistent expression of these

405  genes within regions remains unknown, we investigated whether initial nitrogen content in
406  grape must was related to the importance of MEP3, a gene that encodes an ammonia

407  permease, in predicting a region. Interestingly, MEP3 was important for predicting the

408 three regions with the lowest average initial yeast assimilable nitrogen (OR, AV, RRV) as
409  well as the region with the second highest yeast assimilable nitrogen (SMV) across vintages
410  (Figure S7). Given that nitrogen availability plays a fundamental role in shaping

411 fermentations (66), this relationship was expected. We also noted that four genes

412  associated with thiamine availability were important for predicting multiple regions. This
413  suggests that thiamine availability may drive regional differences in wine outcomes, a

414  postulate that could be measured in a future vintage.

415 Taken together, these results identify genes directly linked to wine sensory and
416  chemistry that are strong indicators of vineyard region in Pinot noir fermentations. These
417  findings provide a concrete starting point for future investigation into vineyard specific
418 factors that are responsible for wine fermentation outcomes and wine sensory

419  characteristics.

420
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421  Conclusion

422 Microbial biogeography of wine has been documented in globally distributed

423  appellations (4, 7, 8, 14-21), and has been correlated with wine fermentation outcomes
424 (15, 22).In inoculated co-cultures, non-Saccharomyces microorganisms both contribute to
425 fermentation and change the behavior of the dominant fermenter S. cerevisiae, leading to
426  measurable differences in wine aroma and composition (36-38). Here, we show that grape
427  must ribosomal DNA profiles do not correlate with detected eukaryotic gene expression
428  patterns during primary fermentation. Given that we detected little to no correlation

429  between fungal profiles in initial grape must and genes expressed by those organisms

430  during primary fermentation, DNA profiles may not be a robust indicator for inferring

431  contributions from these organisms in wine sensory outcomes in inoculated fermentations.
432  However, DNA profiles, in particular bacterial profiles, are predictive of vineyard site and
433 retain signatures of site-specific processes such as total precipitation during the growing
434  season. These profiles are rich indicators of the patterns that shape the microbial ecology
435  of grapes, and reflect differences among vineyard sites and regions, even when the same

436  clone (e.g., Vitis vinifera L. cv. Pinot noir clone 667) is grown on each site.

437 In contrast, the gene expression profiles of S. cerevisiae and other detected

438  organisms, retain signatures of vineyard site and region as well as the metabolic

439 transformations that occur during fermentation. Using S. cerevisiae gene expression as a
440 biosensor for differences between fermentations, we detected site and region specific
441  signatures linked to nitrogen, sulfur, and thiamine metabolism. While these factors are

442  associated with vineyard-specific differences in gene expression profiles, few vineyard site
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and initial grape must chemical parameters correlate with the transcriptome, which
suggests there are still many variables to discover that underlie the complex metabolic
activities and gene expression patterns S. cerevisiae displays throughout fermentation. In
the future, more comprehensive sequencing approaches (e.g., deeper sequencing with
methods that capture the full transcriptome, more samples per site) aimed at the factors
and organisms identified in this work would allow for a better understanding of these
systems. This will need to be accompanied by measurements of many more vineyard, must,
and wine characteristics to provide further predictive power and insights into the

complexities and subtleties of vineyard specific wine fermentation outcomes.
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452  Methods

453  Grape preparation and fermentation

454 The winemaking protocol has been described previously (48, 49), but the relevant
455  parts are reproduced with some added details below. The grapes used in this study

456  originated from 15 vineyards in eight American Viticultural Areas in California and Oregon,
457  U.S.A. All grapes were Vitis vinifera L. cv. Pinot noir clone 667, with either rootstock 101-14
458 (AV1, RRV1,SNC1,SNC2, CRN1, AS1, AS2, SMV1, SMV2, SRH1), Riparia Gloire (OR1, OR2),
459  or 3309C (AV2, RRV2, RRV3). Grapes were hand-harvested grapes at approximately 24
460 Brix and transported to the University of California, Davis Teaching & Research Winery for
461 fermentation. Grapes were separated into half-ton macrobins on harvest day and Inodose
462 SOz was added to 40 ppm. Upon delivery to the winery, bins were stored at 14°C until the
463  fruit was destemmed and divided into temperature jacket-controlled tanks. N2 sparging of
464  the tank headspace was performed prior to fermentation and tanks sealed with a rubber
465  gasket. We cold soaked the must at 7°C for three days and adjusted TSO2 to 40 ppm on the
466 second day. After three days, the must temperature was increased to 21°C and

467  programmed pump overs were used to hold the tank at a constant temperature. Grape

468 must microbiome samples were taken just prior to the increase in temperature. For

469 inoculation, S. cerevisiae RC212 was rehydrated with Superstart Rouge at 20 g/hL and

470  inoculated in the must at 25 g/hL. At approximately 24 hours after inoculation, nitrogen
471  content in the fermentations was adjusted using DAP (target YAN - 35 mg/L - initial

472  YAN)/2), and Nutristart (25 g/hL). Nitrogen was adjusted only if YAN was below 250 mg/L.

473  Approximately 48 hours after fermentation, fermentation temperatures were permitted to
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474  increase to 27°C, and again added DAP using the formula (target YAN - 35 mg/L - initial

475  YAN)/2, and fermentation were then continued until Brix < 0. Fermentation samples were
476  taken for Brix measurements every twelve hours relative to inoculation and with RNA
477  samples at 2 hours, 6 hours (2019 vintage), 16 hours, 64 hours, and 112 hours (2017 and
478 2019 vintage). To ensure uniform sampling, a pumpover was performed ten minutes prior
479  to sampling each tank. For RNA samples, 12mL of juice was obtained, centrifuged at 4000
480 RPM for 5 minutes, supernatant was discarded, and the cell pellet snap frozen in liquid

481 nitrogen. Samples were stored at -80°C until RNA extraction.

482 Amplicon sequencing data processing

483 DNA was extracted for amplicon sequencing and library preparation following (50)
484  and (67). The UC Davis DNA Tech Core performed sequencing using [llumina MiSeq,

485  producing 251 base pair paired-end sequences. We demultiplexed and adapter trimmed
486 libraries by barcode sequences using cutadapt (68). Taxonomically annotated amplicon
487  sequence variant (ASV) counts were generated using DADA2 with the Silva NR database
488 (version 138) for 16S sequences and the UNITE general FASTA release (version 8.2) for ITS
489 sequences (69). All ASVs annotated as “Bacteria,Cyanobacteria,Cyanobacteriia,Chloroplast”
490 and “Bacteria,Proteobacteria,Alphaproteobacteria,Rickettsiales,Mitochondria” were

491 removed as these represent plant mitochondria and chloroplast 16S sequences and not

492  bacterial sequences.

493 RNA sequencing data processing

494 Yeast pellets were thawed on ice, resuspended in 5ml Nanopure water, centrifuged

495  at 2000g for 5min, and aspirated the supernatant. RNA was extracted using the Quick RNA
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496  Fungal/Bacterial Miniprep kit including DNAsel column treatment (cat#R2014, Zymo
497  Research). RNA was eluted in 30uL of molecular grade water and assessed for

498 concentration and quality via Nanodrop and RNA gel electrophoresis. Sample

499  concentrations were adjusted to 200ng/ul and used for sequencing. 3" Tag-seq single-end
500 sequencing (Lexogen QuantSeq) was applied in both the 2017 and 2019 vintage, with the
501 addition of UMI barcodes in 2019. The University of California, Davis DNA Technologies

502  Core performed all library preparation and sequencing.

503 The first 12 base pairs from each read were hard trimmed and [llumina TruSeq
504 adapters and poly(A) tails were removed. Sourmash gather was used to determine the
505 organisms present in each sample using parameters -k 31 and --scaled 2000 (70, 71). The
506 GenBank microbial database (https://sourmash-databases.s3-us-west-

507  2.amazonaws.com/zip/genbank-k31.sbt.zip) and eukaryotic RNA database

508 (https://osfio/qk5th/) was used for these queries.

509 Using results from sourmash, a set of reference genomes was constructed that was
510 representative of all organisms detected within the samples. When different strains of the
511 same species were detected, the one species detected in the largest number of samples was
512  used as a representative species to reduce multi-mapping conflicts. Species present in more
513 than two samples were included because species present in fewer than three samples

514  would have limited predictive power. Species of genus Saccharomyces other than S.

515  cerevisiae S288C were removed to reduce multi-mapping conflicts. Selected genomes were
516 downloaded from NCBI GenBank; however, if no GTF annotation file was available for the

517  species, the genome and GFF3 file was taken from JGI Mycocosm (72), and the GFF3 was
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518 converted to GTF using the R package rtracklayer (73). When no annotation file was

519 available on GenBank or JGI Mycocosm, the genome of the closest species-level strain with
520 a GTF annotation file was used. To find closely related organisms, NCBI taxonomy was
521 searched, selected assemblies were downloaded , and sourmash compare was used with a
522  k-size 0of 31 (70, 71). The organisms with the highest Jaccard similarity were considered the
523  most similar. When no annotation file was available for similar organisms, an annotation
524 file was generated using WebAugustus (74). See Table S8 for a description of the best
525 matched genome, the genome used for count generation, and the source of genome

526  annotations. Reference genome FASTA files and GTF files were concatenated together to
527  generate a single reference. STAR was then used to align reads against the constructed
528 reference with parameters --outFilterType BySJout, --outFilterMultimapNmax 20, --

529  alignSJoverhangMin 8, --alignSJDBoverhangMin 1, --outFilterMismatchNmax 999, --

530  outFilterMismatchNoverLmax 0.6, --alignIntronMin 20, --alignIntronMax 1000000, --

531 alignMatesGapMax 1000000, --outSAMattributes NH HI NM MD --outSAMtype BAM,

532  SortedByCoordinate (75). For the 2019 vintage, UMI tools was used to deduplicate

533 alignments (76). The number of reads mapping to each gene was quantified using htseq

534  count using the constructed reference GTF file to delineate gene regions (77).

535 RC212 genome assembly and comparison

536 The S. cerevisiae RC212 genome was assembled to estimate the fraction of RNA-
537  sequencing reads in each fermentation originating from non-RC212 S. cerevisiae strains.
538 FASTQ files for accession SRR2967888 were downloaded from the European Nucleotide

539  Archive (78). Reads were k-mer trimmed using the khmer trim-low-abund.py command with
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540  parameter -k 20 (79) and the Megahit assembler was used with default parameters to

541  assemble reads (80).

542  Estimation of non-inoculated yeast in RNA-seq samples

543 Sourmash gather was used to estimate the fraction of RNA seq reads (k-mers)

544  originating from non-inoculated S. cerevisiae. Sourmash gather estimates shared sequence
545  similarity by comparing scaled MinHash signatures derived from k-mer profiles (70, 71).
546  The sourmash Eukaryotic RNA database (https://osf.io/qk5th/) was used, which includes
547  all annotated S. cerevisiae genomes in GenBank (e.g., genomes that include

548  *rna_from_genome.fna annotations), as well as our S. cerevisiae RC212 genomes assembly.

549  Correlation between ribosomal DNA amplicon sequencing data and 3” Tag-seq data

550 for non-Saccharomyces organisms

551 Fermentations with fungal ITS amplicon sequencing data and 3" Tag-seq were

552  compared. First, ribosomal DNA amplicon sequencing read counts from H. uvarum were
553  regressed against total 3" Tag-seq counts from H. uvarum using counts from 16 hours, 64
554  hours, and 112 hours of fermentation. 3" Tag-seq counts were derived from STAR and

555  htseq (see RNA sequencing data processing above). Counts were transformed into

556  compositional counts (relative abundance) prior to linear regression (81). Linear

557  regression was performed using the Im() function in R. This analysis was performed again
558 separately for H. uvarum and A. pullulans using counts from the 2 hour and 6 hours samples
559 taken in the 2019 vintage. Given that this analysis relied on reads aligned to annotated 3"
560 regions, a separate regression was performed a using proportion of reads assigned to a

561 given organism derived from sourmash gather (see RNA sequencing data processing
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562  above). Only results from the first analysis were reported as R values were within 0.01

563 between both analyses.

564 ANOSIM and NMDS

565 Compositional data analysis was used for amplicon and transcriptome counts (81).
566  The transform() function in the microbiome bioconductor package was used to transform
567  counts by centered log ratio (82, 83). To test for differences among groups, Aitchinson

568 distance (Euclidean distance on CLR-transformed counts) was used and tested with the
569 anosim() function in the vegan package using parameters distance = "euclidean" and

570  permutations = 9999 (84, 85). A cut off of p = 0.05 was used for statistical significance. To
571  construct NMDS plots, Aitchinson distance was taken using the metaMDS() function in the
572  vegan package with parameter distance = "euclidean”. Results were plotted using the ggplot2

573  package (86).

574  Amplicon sequencing random forest models

575 Random forest classifiers were built using the R ranger package (87). Using ASV

576  counts produced by DADA2, counts were normalized by dividing by total number of aligned
577  reads. The tuneRanger() function was used in the tuneRanger package to optimize each

578 model for parameters m.try, sample.fraction, and min.node.size (88). The ranger() function
579  was then used to build each model with parameters from tuneRanger as well as num.trees =
580 10000, importance = "permutation”, and local.importance = TRUE. As a supervised technique,
581 random forest classifiers are trained on a subset of data and tested on a separate subset to
582  calculate predictive accuracy. For models built with samples from all vintages, the

583  createDataPartition() function in the R caret package was used to randomly but equally
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584  partition training and testing sets with a 70:30 split, ensuring that all class labels were
585 equally represented in both sets (89). For other models, the classifier was built using all
586  samples from two vintages and validated on the held-out vintage. Accuracy and kappa

587  statistics were calculated for each model.

588 RNA sequencing random forest model

589 Counts were imported into R and normalized by dividing by total number of aligned
590 reads (e.g., library size). Given that random forests expects independent samples and RNA-
591 sequencing was conducted in time series over the course of primary fermentation, each
592  gene from each time series set was summarized into mean count, minimum count,

593 maximum count, total count, and standard deviation of counts. Variable selection was

594  performed using the vita method (90) and models were built using the same methods as

595  with amplicon sequencing models.

596 To estimate vineyard- and region-specific gene importance, variable selection and
597  model optimization were performed with 100 different seeds. For each model, gene local
598 importance was averaged for each fermentation from a vineyard site or region in the

599 training set and genes with positive average local permutation importance were retained.
600 The intersection of genes from all models was then taken to determine which genes were
601 predictive for a particular site or region in all models. Although random forests were

602 trained on summarized gene attributes, any genes that were predictive across any attribute

603  were retained as these attributes were often highly correlated.

604  Mantel tests
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605 Mantel tests were performed to assess the similarity between samples across

606  measurements of bacterial abundance, fungal abundance, transcriptome abundance, initial
607  grape must chemistry, and vineyard site parameters (91, 92). The Mantel test determines
608 the correlation between the same samples in different matrices, testing whether

609  similarities between samples estimated from one measurement type match similarities of
610 the same samples estimated from a different measurement type (91, 92). These tests were
611 performed using complete cases, with microbiome and transcriptome abundances from the
612 2017 and 2019 vintages. Vineyard site parameters total precipitation and growing degree
613  days were estimated using the PRISM climate models including dates April 1 - September
614 30in 2017 and 2019 (93). Distance matrices were calculated for each matrix using the

615  dist() function in R, with parameters method = "euclidean", with the exception of geographic
616  distance which was calculated using the distm() function in the package geosphere with
617  parameter distHaversine (94). When distances for disparate measurement types were

618 calculated at the same time, values were first scaled and centered using the function scale()
619  with parameters center = TRUE and scale = TRUE. Mantel tests were performed with the

620  mantel() function in the vegan package with parameters method = "spearman", permutations =
621 9999, and na.rm = TRUE (85, 92). p value adjustment were applied using the function

622  p.adjust() with parameter method = "fdr" and a false discovery rate of p = 0.1 used.

623  Data Availability

624  RNA sequencing data is available in the Sequence Read Archive under accession number

625 PRJNA680606. Microbiome data is available under accession numbers PRINA642839 and
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PRINA682452. All analysis code is available at

github.com/montpetitlab/Reiter_et_al_2020_SigofSite.
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918 Figure Legends

919  Figure 1: Microbial diversity in grape must and fermentation microbiomes from

920 different vineyard sites. A, B) Relative abundance of taxonomic ranks in ribosomal DNA
921 amplicon sequencing data capturing A Bacteria and B Fungi. Samples taken from

922  fermentations from the same vineyard site and vintage are combined together and reflect
923 relative abundance of organisms from four fermentation tanks. Only three tanks were

924  fermented for AV2 in 2019 due to a smaller harvest. C) Relative abundance of all genes
925  expressed by a detected organism during fermentation from the 2017 and 2019 vintages.
926  The top plots show all organisms and bottom plots display only those organisms that

927  account for less than 3% of mapped reads in each sample. Only organisms present in more

928  than one fermentation are plotted.

929  Figure 2: H. uvarum ribosomal DNA amplicon sequencing data does not strongly
930 correlate with relative abundance in RNA sequencing data. A Bar chart of relative
931 abundance of H. uvarum compared to other non-Saccharomyces species across

932 fermentations from each site based on amplicon sequencing data of ribosomal DNA. B
933  Scatter plots relative abundance of H. uvarum as determined by amplicon sequencing of

934  ribosomal DNA (x-axis) vs. RNA sequencing (y-axis).

935  Figure 3: Genetic profiles correlate with vineyard, region, and vintage as well as some
936 vineyard site and initial grape must characteristics. A-C) Non-metric Multi-dimensional
937  Scaling plots of Aitchinson dissimilarity of A bacterial communities, B fungal communities,

938 and C and transcriptomes across vintages. The closer two points are on the graph, the more

939  similar their genetic profiles are. D) Vineyard site, region, and vintage account for genetic
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940  diversity patterns in Analysis of Similarity (ANOSIM). R values represent strength of

941  association, with higher R values indicating stronger grouping according to the parameter.
942  All values are significant (p < 0.001). E) Percent of accuracy attributable to different

943  organisms in random forests models. A higher percentage of variable importance was

944  attributable to S. cerevisiae and V. vinifera in models that predicted region than vineyard
945  site. F, G) Correlograms representing similarities between fermentation metrics. F Grape
946  must chemical parameters and vineyard site characteristics were correlated in the 2017
947 and 2019 vintages. Squares are labelled with correlation values from Pearson’s correlation.
948  Only comparisons with p < 0.05 are displayed. G Bacterial, fungal, and transcriptome

949  profiles correlated with some vineyard site and grape must chemical characteristics.

950 Squares are labelled with correlation values from Mantel tests. Only comparisons with an
951 FDR < 0.1 are displayed. PPT: precipitation, GDD: growing degree days, MA: malic acid, TA:

952 titratable acidity.

953  Figure S1: Diversity of vineyards and ribosomal DNA profiles in this study. A) Map

954  displaying the 15 vineyard locations across eight American Viticultural Areas (AVAs) in
955  C(California and Oregon. B, C) Bacterial and fungal ribosomal DNA amplicon sequencing Chao
956 1 and Shannon alpha diversity for mean species diversity per vineyard site, averaged

957  across vintages. B Bacteria. C Fungi.

958 Figure S2: Some ribosomal sequencing variants were detected across vineyards and
959  vintages. Top 20 most abundant ribosomal DNA amplicon sequencing variants across
960 vintages. Labelled as genus or the next lowest taxonomic rank of classification. A Bacteria.

961 B Fungi. Tatumella was the most abundant bacterial amplicon sequencing variant across
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vineyards and vintages, while Hanseniaspora was the most abundant fungal amplicon

sequencing variant.

Figure S3: Accuracy of random forests models using bacterial ribosomal DNA profiles.
Confusion matrices depicting accuracy of random forests models built with bacterial
ribosomal DNA amplicon sequencing data to predict A) vineyard site and B) vineyard

region. The models depicted were trained on two vintages and validated on the third.

Figure S4: Accuracy of random forests models using fungal ribosomal DNA profiles.
Confusion matrices depicting accuracy of random forests models built with fungal
ribosomal DNA amplicon sequencing data to predict A) vineyard site and B) vineyard

region. The models depicted were trained on two vintages and validated on the third.

Figure S5: Accuracy of random forests models using RNA sequencing. Confusion
matrices depicting accuracy of random forests models built with RNA sequencing data to
predict A) vineyard site and B) vineyard region. The models depicted were trained on one

vintage and validated on the other.

Figure S6: Percent of accuracy attributable to different organisms in random forests
models. Importance of genes expressed by different organisms in the overall model. A
higher percentage of variable importance was attributable to S. cerevisiae and V. vinifera in

models that predicted region than vineyard site.

Figure S7: Initial yeast assimilable nitrogen (YAN) in grape musts across vintages.
Black dots mark the mean initial YAN value calculated from all fermentations in the 2017

and 2019 vintages. MEP3, which encodes an ammonia permease, was important for
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983  predicting the three regions with the lowest average initial YAN (OR, AV, RRV) and the

984  region with the second highest initial YAN (SMV).
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Supplemental Data Tables
For Tables S2 - S7: see accompanying supplemental files.
Table S1: Accuracy of random forests models built with fungal and bacterial ribosomal DNA
amplicon sequencing data and transcriptome data. Validation set “30” indicates models
that were trained with 70% of data and validated on the held-out 30%.

Data set Model type | Validation set | Accuracy

bacteria AVA 2019 0.74

bacteria AVA 2017 0.68

bacteria AVA 2016 0.69

bacteria AVA 30 0.93

bacteria site 2019 0.53

bacteria site 2017 0.5

bacteria site 2016 0.54

bacteria site 30 0.93

fungi AVA 2019 0.67

fungi AVA 2017 0.6

fungi AVA 2016 0.67

fungi AVA 30 0.95

fungi site 2019 0.33

fungi site 2017 0.23

fungi site 2016 0.56

fungi site 30 0.89

transcriptome | AVA 2019 0.57

transcriptome | AVA 2017 0.63

transcriptome | AVA 30 0.87

transcriptome | site 2019 0.43

transcriptome | site 2017 0.43

transcriptome | site 30 0.67
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991 Table S8: Species names and accession numbers for genomes used in this study.

992

species

accession

Aureobasidium pullulans

GCA_004917305.1

Aureobasidium pullulans

GCA_000721785.1

Botrytis cinerea

GCA_000143535.4

Botrytis cinerea

GCA_000349525.1

Cladosporium sp. SL-16

GCA_002921095.1

Hanseniaspora opuntiae

GCA_001749795.1

Hanseniaspora uvarum

GCA_000968475.1

Lachancea thermotolerans

GCF_000142805.1

Metschnikowia fructicola

GCA_000317355.2

Metschnikowia sp. AWRI3582

GCA_002894445.1

Pichia kudriavzevii

GCA_003054445.1

Rhizopus stolonifer

GCA_003325415.1

Saccharomyces cerevisiae

GCA_000146045.2

Starmerella bacillaris

GCA_002024125.1

Vitis vinifera

GCA_000003745.2
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Figure S5
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Figure S6
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