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Abstract	14	

In	wine	fermentations,	the	metabolic	activity	of	both	Saccharomyces	cerevisiae	and	15	

non-Saccharomyces	organisms	impact	wine	chemistry.	Ribosomal	DNA	amplicon	16	

sequencing	of	grape	musts	has	demonstrated	that	microorganisms	occur	non-randomly	17	

and	are	associated	with	the	vineyard	of	origin,	suggesting	a	role	for	the	vineyard,	grape,	18	

and	wine	microbiome	in	shaping	wine	fermentation	outcomes.	We	used	ribosomal	DNA	19	

amplicon	sequencing	of	grape	must	and	RNA	sequencing	of	primary	fermentations	to	20	

profile	fermentations	from	15	vineyards	in	California	and	Oregon	across	two	vintages.	We	21	

find	that	the	relative	abundance	of	fungal	organisms	detected	by	ribosomal	DNA	amplicon	22	

sequencing	did	not	correlate	with	transcript	abundance	from	those	organisms	within	the	23	

RNA	sequencing	data,	suggesting	that	the	majority	of	the	fungi	detected	in	must	by	24	

ribosomal	DNA	amplicon	sequencing	are	not	active	during	these	inoculated	fermentations.	25	

Additionally,	we	detect	genetic	signatures	of	vineyard	site	and	region	during	fermentation	26	

that	are	predictive	for	each	vineyard	site,	identifying	nitrogen,	sulfur,	and	thiamine	27	

metabolism	as	important	factors	for	distinguishing	vineyard	site	and	region.		 	28	
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Importance	29	

The	wine	industry	generates	billions	of	dollars	of	revenue	annually,	and	economic	30	

productivity	is	in	part	associated	with	regional	distinctiveness	of	wine	sensory	attributes.	31	

Microorganisms	associated	with	grapes	and	wineries	are	influenced	by	region	of	origin,	32	

and	given	that	some	microorganisms	play	a	role	in	fermentation,	it	is	thought	that	microbes	33	

may	contribute	to	the	regional	distinctiveness	of	wine.	We	show	that	while	the	presence	of	34	

microbial	DNA	is	associated	with	wine	region	and	vineyard	site,	the	presence	of	microbial	35	

DNA	is	not	associated	with	gene	expression	of	those	microorganisms	during	fermentation.	36	

We	further	show	that	detected	gene	expression	signatures	associated	with	wine	region	and	37	

vineyard	site	provide	a	means	to	address	differences	in	fermentations	that	may	drive	38	

regional	distinctiveness.		 	39	
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Introduction	40	

During	vinification,	grape	musts	are	transformed	to	wine	through	microbial	41	

metabolism,	including	fermentation	of	grape	sugars	into	alcohols.	In	both	inoculated	and	42	

spontaneous	fermentations,	Saccharomyces	cerevisiae	often	becomes	the	dominant	43	

fermentative	organism	due	to	a	milieu	of	adaptations	that	support	the	rapid	consumption	44	

of	sugars	and	production	of	ethanol	(1).	However,	complex	microbial	communities	45	

consisting	of	other	eukaryotic	microorganisms	and	bacteria	are	present,	active,	and	make	46	

significant	contributions	to	the	wine	making	process	and	final	product	(2–6).	Referred	to	47	

collectively	as	non-Saccharomyces	organisms,	these	microbes	often	originate	from	the	48	

vineyard	or	the	winery	itself	(7,	8).	In	recognition	of	the	important	role	these	microbes	49	

have	in	wine	making,	select	non-Saccharomyces	yeasts	are	increasingly	inoculated	into	50	

commercial	fermentations	to	impart	beneficial	properties	(e.g.	bio-protection,	lower	51	

ethanol,	or	distinct	sensory	characteristics	(9)).	Grape	must	treatment	with	sulfur	dioxide	52	

(SO2)	is	also	commonly	used	to	control	microbial	populations,	including	spoilage	53	

organisms,	but	many	microorganisms	survive	SO2	treatment	and	contribute	to	54	

fermentation	outcomes	(6,	10,	11).		55	

The	persistence	of	vineyard	and	winery	derived	microorganisms	throughout	the	56	

winemaking	process,	as	well	as	the	potential	for	these	organisms	to	influence	grape	berry	57	

development	prior	to	harvest,	has	led	to	the	idea	that	select	microorganisms	unique	to	a	58	

region	or	vineyard	may	contribute	to	region-specific	wine	characteristics	(12,	13).	In	59	

support	of	a	role	of	microbial	biogeography	in	regional	wine	characteristics,	60	

microorganisms	in	vineyards,	wineries,	and	grape	musts	are	known	to	be	associated	with	61	
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their	region	of	origin	(4,	7,	8,	14–21).	Moreover,	the	abundance	of	some	organisms	in	grape	62	

must	correlates	with	metabolite	concentrations	in	finished	wine,	further	associating	63	

microbial	biogeography	to	fermentation	outcomes	and	wine	quality	(15,	22).	Still,	relatively	64	

little	is	known	about	the	influence	of	non-Saccharomyces	microorganisms	on	wine	65	

fermentation	outcomes,	but	an	increasing	number	of	studies	are	tackling	this	complex	66	

problem	(23,	24).	Recent	studies	have	documented	increased	glycerol	accumulation	and	67	

aroma	profiles	using	sequential-	or	co-inoculation	of	S.	cerevisiae	with	a	single	non-68	

Saccharomyces	yeast	species	under	enological	conditions	(25–34).	While	outcomes	are	69	

diverse,	which	may	be	expected	given	the	variety	of	starting	must	and	culture	conditions	70	

used	across	studies,	many	report	consistent	alterations	in	wine	such	as	a	higher	glycerol	71	

content	from	fermentations	inoculated	with	S.	cerevisiae	and	Starmerella	bacillaris	(29,	30,	72	

34).		73	

How	these	altered	fermentation	outcomes	occur	remains	a	difficult	question	to	74	

address,	as	a	given	outcome	may	be	the	direct	result	of	metabolism	by	the	non-75	

Saccharomyces	organism,	or	the	result	of	the	organism	altering	S.	cerevisiae	metabolism	via	76	

direct	or	indirect	interactions	(35–37).	In	support	of	the	latter,	the	presence	of	non-77	

Saccharomyces	organisms	has	been	shown	to	increase	the	rate	and	diversity	of	resource	78	

uptake	by	S.	cerevisiae	in	early	fermentation	(36–38).	In	controlled	steady-state	bioreactor	79	

fermentations,	the	presence	of	Lachancea	thermotolerans	was	found	to	increase	the	80	

expression	of	S.	cerevisiae	genes	important	for	iron	and	copper	acquisition	(39).	Such	81	

interactions	are	not	limited	to	fungi—lactic	acid	bacteria	can	induce	epigenetic	changes	82	

(e.g.	[GAR+]	prion)	in	S.	cerevisiae	that	alter	glucose	metabolism	(40–42).	Such	abilities	of	83	

non-Saccharomyces	organisms	to	impact	S.	cerevisiae	metabolism	and	fermentation	84	
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outcomes	raises	the	question	of	whether	microbial	biogeography	of	vineyard	sites	persists	85	

in	fermentations,	thereby	influencing	wine	outcomes	in	a	site-specific	manner.	In	addition,	86	

microbial	diversity	changes	as	primary	fermentation	progresses	and	S.	cerevisiae	becomes	87	

dominant	(43),	suggesting	a	changing	microbial	community	could	feedback	to	impact	88	

fermentation	progression	in	multiple	distinct	ways.	Currently,	we	know	relatively	little	89	

about	these	inter-species	interactions	and	how	this	influences	S.	cerevisiae,	which	as	a	field	90	

must	be	addressed	if	we	are	to	understand	how	microbial	community	dynamics	impact	91	

wine	fermentation	outcomes.		92	

Past	inquiries	into	the	microbial	communities	of	grape	must	and	wine	related	to	93	

regional	distinctiveness	have	focused	on	assaying	the	presence	of	specific	microbes	based	94	

on	ribosomal	DNA	amplicon	sequencing	(4,	8,	14–20,	44).	DNA	sequencing	has	the	95	

advantages	of	capturing	both	metabolically	active	and	inactive	organisms,	due	to	the	96	

relative	stability	of	the	DNA	molecule,	offering	evidence	of	a	rich	history	of	the	microbial	97	

community	prior	to	sampling.	Ribosomal	DNA	amplicon	data	further	provides	a	measure	of	98	

what	microbes	may	be	active	at	the	time	of	sampling	or	may	become	active	in	the	future.	99	

While	microbiome	DNA	sequencing	of	grape	musts	supports	regionally	distinct	microbial	100	

signatures,	what	microbes	are	metabolically	contributing	to	fermentation	outcomes	101	

remains	largely	unknown.	This	information	is	critical	when	considering	the	possibility	that	102	

a	particular	microbe	influences	a	wine	fermentation	outcome	via	metabolism	or	inter-103	

species	interactions.		104	

One	measure	of	metabolic	activity	that	is	relatively	accessible	and	can	be	applied	at	105	

scale	to	address	this	issue	is	the	measurement	of	gene	expression	in	both	S.	cerevisiae	and	106	
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other	non-Saccharomyces	organisms.	An	interrogation	of	the	genes	that	are	“on”	at	a	given	107	

time	using	RNA	sequencing	provides	important	information	about	the	activities	an	108	

organism	may	be	performing.	In	addition,	the	RNA	molecule	assessed	by	transcriptomics	is	109	

constantly	turned	over	within	cells	and	is	relatively	unstable	compared	to	DNA,	which	we	110	

propose	makes	transcriptomics	a	good	indicator	of	microbial	activity	at	the	time	of	111	

sampling.	For	example,	early	in	fermentation	S.	cerevisiae	turns	on	genes	required	for	112	

glucose	metabolism	and	represses	expression	of	genes	needed	for	the	metabolism	of	other	113	

carbon	sources;	a	pattern	that	reverses	towards	the	end	of	fermentation	when	glucose	is	114	

depleted	and	S.	cerevisiae	must	find	alternative	energy	sources	(45).	These	patterns	of	gene	115	

expression	are	easily	observed	using	transcriptomics	(45,	46),	which	is	increasingly	being	116	

applied	to	understanding	wine	fermentation	outcomes	(36–39,	47).	117	

	 Here,	we	characterize	microbial	populations	present	in	Pinot	noir	musts	from	118	

California	and	Oregon	in	multiple	vintages	using	both	ribosomal	DNA	amplicon	data	from	119	

grape	must	samples	and	gene	expression	data	from	multiple	fermentation	timepoints.	We	120	

demonstrate	that	genetic	signatures	(i.e.,	DNA	and	RNA	profiles)	of	vineyard	site	and	121	

region	are	captured	by	these	data,	with	total	precipitation	during	growing	season	being	one	122	

vineyard-associated	factor	identified	to	correlate	with	site-specific	genetic	signatures.	123	

While	DNA	profiles	reliably	predict	both	vineyard	site	and	region,	these	profiles	did	not	124	

correlate	with	the	RNA	profiles	of	the	primary	fermentations.	This	finding	suggests	other	125	

characteristics	influence	site-specific	gene	expression	signatures	more	than	the	grape	must	126	

microbiome	as	measured	by	ribosomal	DNA	amplicon	sequencing.	Importantly,	a	127	

comparison	of	DNA	sequencing	and	gene	expression	data	indicates	that	the	majority	of	128	

organisms	detected	by	ribosomal	DNA	sequencing	lack	detectable	gene	expression	during	129	
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the	primary	fermentation,	thus	limiting	the	likelihood	that	many	of	these	organisms	130	

significantly	impact	fermentation	outcomes	during	the	primary	stage	of	fermentation.	131	

Finally,	using	S.	cerevisiae	gene	expression	patterns	and	the	associated	functions	of	the	132	

genes	identified,	we	are	able	to	identify	candidate	factors	that	contribute	to	vineyard	133	

specific	fermentation	outcomes	and	wine	sensory	characteristics.	 	134	
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Results	and	Discussion	135	

To	investigate	associations	between	grape	must	microbial	communities	and	136	

regional	distinctiveness	of	resulting	wines,	we	performed	standardized	fermentations	of	137	

Pinot	noir	grapes	from	15	vineyard	sites	in	California	and	Oregon	across	multiple	vintages	138	

(Figure	S1A).	In	2016,	2017,	and	2019,	we	performed	four	inoculated	fermentations	per	139	

vineyard	site	using	the	wine	yeast	RC212,	taking	microbiome	samples	for	DNA	isolation	140	

and	ribosomal	DNA	amplicon	sequencing	prior	to	inoculation.	In	the	2017	and	2019	141	

vintages,	we	further	profiled	two	primary	fermentations	from	each	site	using	RNA	142	

sequencing	approaches	to	perform	gene	expression	analyses	at	multiple	fermentation	143	

timepoints.	We	performed	all	grape	processing	and	temperature-controlled	fermentations	144	

at	the	UC	Davis	Teaching	&	Research	Winery	to	standardize	vinification	and	minimize	145	

contributions	from	other	factors	(winery	and	winemaker)	to	the	microbiome	and	146	

transcriptome	(48–50).		147	

DNA	abundance	by	ribosomal	amplicon	sequencing	is	a	poor	predictor	of	detectable	148	

gene	expression	during	fermentation	149	

	 Using	ribosomal	DNA	amplicon	sequencing	of	bacteria	and	fungi,	we	detected	3254	150	

distinct	bacterial	sequences	and	2452	distinct	fungal	sequences	in	grape	must	(Figure	1A	151	

and	1B),	with	a	greater	mean	species	diversity	per	vineyard	site	for	bacteria	than	for	fungi	152	

(Figure	S1B).	However,	the	core	microbiome	–	i.e.,	the	species	present	in	90%	of	all	grape	153	

musts	across	all	vintages	with	at	least	1%	abundance	–	was	larger	for	fungi	than	bacteria.	154	

The	core	microbiome	consisted	of	11	bacterial	variants	classified	to	nine	taxonomic	ranks	155	

and	19	fungal	variants	classified	to	10	taxonomic	ranks.	All	bacteria	in	the	core	microbiome	156	
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belonged	to	the	phylum	Proteobacteria	and	were	dominated	by	the	genus	Tatumella.	157	

(Figure	S2).	Tatumella	has	previously	been	identified	as	a	dominant	genera	in	other	red	158	

wine	fermentations	where	it	correlated	with	total	acid	(by	titration)	in	grape	must	(51),	159	

however	these	associations	have	not	been	experimentally	validated.	Three	of	the	most	160	

abundant	bacterial	sequence	variants	identify	to	the	acetic	acid	producing	genus	161	

Gluconobacter	(Figure	S2).	Gluconobacter	is	one	of	three	genera	of	acetic	acid	bacteria	162	

associated	with	wine	spoilage	and	the	only	genus	we	identify	among	dominant	organisms	163	

(Figure	S2)	(52).	Gluconobacter	are	primarily	active	in	grape	must	as	the	wine	164	

environment	restricts	growth	of	organisms	in	this	genus	(52).	Fungi	in	the	core	165	

microbiome	belong	to	a	single	phylum,	Ascomycota,	with	all	fermentations	dominated	by	166	

the	genus	Hanseniaspora,	in	particular	Hanseniaspora	uvarum.	H.	uvarum	cannot	complete	167	

alcoholic	fermentation	alone,	but	participates	in	and	can	alter	the	quality	outcomes	of	wine	168	

fermentations	(53).	We	also	identified	the	fungal	genus	Botrytis	among	dominant	169	

organisms	(Figure	S2),	although	we	lacked	the	ability	to	resolve	whether	the	particular	170	

variant	we	detected	belongs	to	the	spoilage	organism	Botrytis	cinerea	or	another	species	in	171	

the	Botrytis	genus.	Through	this	work,	we	have	extended	microbiome	must	sequencing	to	172	

include	the	2019	vintage,	with	results	largely	matching	findings	from	previous	vintages	173	

across	these	same	vineyard	sites	(50).	The	observed	microbial	community	composition	174	

was	consistent	with	organisms	previously	shown	to	be	present	at	the	initial	stages	of	the	175	

wine	making	process	(4,	15–17,	51).		176	

Ribosomal	DNA	amplicon	sequencing	of	grape	must	is	expected	to	capture	cells	that	177	

are	metabolically	active,	inactive,	or	dead	due	to	the	stability	of	the	DNA	molecule.	In	178	

contrast,	gene	expression	profiling	via	RNA	sequencing	is	expected	to	be	biased	towards	179	
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living	cells.	Moreover,	the	identity	of	the	gene	transcripts	present	at	the	time	of	sampling	180	

further	provides	information	about	what	metabolic	activities	the	cell	may	be	performing.	181	

Using	3´	Tag	RNA	sequencing	(3´	Tag-seq),	we	profiled	eukaryotic	organisms	during	182	

fermentation	using	samples	taken	at	multiple	fermentation	timepoints	(i.e.,	16,	64,	and	112	183	

hours	after	inoculation	in	2017	and	2019,	plus	2	and	6	hours	post-inoculation	in	2019).	184	

While	traditional	RNA-sequencing	produces	sequencing	reads	from	an	entire	transcript,	3´	185	

Tag-seq	produces	one	molecule	per	transcript	by	sequencing	approximately	100	base	pairs	186	

upstream	of	the	3´-end	of	a	sequence	(54).	This	sequencing	chemistry	requires	a	poly(A)	187	

tail,	limiting	the	sequenced	fraction	of	the	transcriptome	almost	entirely	to	polyadenylated	188	

eukaryotic	mRNAs.		189	

	 From	the	resulting	3´	Tag-seq	data,	we	observed	that	relatively	few	eukaryotic	190	

microbes	were	detected	during	these	Pinot	noir	fermentations	(Figure	1C).	Considering	all	191	

15	sites	together,	only	18	eukaryotic	species	were	detected.	Further	reflecting	this	finding,	192	

S.	cerevisiae	transcripts	accounted	for	the	majority	of	sequences	across	all	fermentations	at	193	

all	time	points.	To	assess	whether	non-inoculated	S.	cerevisiae	strains	were	responsible	for	194	

some	fraction	of	sequence	reads,	we	compared	each	transcriptome	against	all	annotated	S.	195	

cerevisiae	genomes	in	GenBank,	as	well	as	a	genome	assembly	of	S.	cerevisiae	RC212.	While	196	

non-RC212	S.	cerevisiae	strains	were	detectable	in	every	fermentation,	this	fraction	197	

accounted	for	less	than	1%	of	uniquely	identifiable	sequences.	This	demonstrates	that	the	198	

inoculated	RC212	strain	dominated	fermentations	at	all	sampled	time	points.	Interestingly,	199	

we	also	identified	Vitis	vinifera	transcripts	in	all	samples	(Figure	1C).	The	presence	of	V.	200	

vinifera	transcripts	suggests	intact	grape	cells	persist	throughout	fermentation.		201	
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In	comparing	specific	organisms	detected	via	DNA	sequencing	and	3´	Tag-seq	RNA	202	

sequencing,	we	see	that	only	four	(Aureobasidium	pullulans,	Hanseniaspora	uvarum,	203	

Hanseniaspora	vineae,	and	S.	cerevisiae)	of	397	distinct	fungal	species	definitively	identified	204	

by	ribosomal	DNA	profiling	were	detected	using	gene	expression	data.	This	was	unchanged	205	

in	the	2019	transcriptome	profiling	samples	taken	at	2	and	6	hours	after	inoculation,	206	

suggesting	that	organisms	detected	by	amplicon	sequencing	had	lost	activity	prior	to	or	207	

concurrent	with	inoculation,	well	before	S.	cerevisiae	would	begin	to	produce	inhibitory	208	

concentrations	of	ethanol.	Of	the	four	detected	organisms	by	3´	Tag-seq,	ribosomal	DNA	209	

amplicon	sequencing	data	indicated	that	H.	uvarum	was	most	abundant	in	musts	prior	to	210	

inoculation	and	was	detected	in	every	vineyard	site	(Figure	2A).	Still,	the	relative	211	

abundance	of	H.	uvarum	in	grape	must	from	ribosomal	DNA	amplicon	sequencing	was	only	212	

weakly	correlated	with	relative	abundance	of	RNA	during	fermentation	(R2	=	0.14,	p	<	213	

0.01).	Importantly,	while	these	values	are	weakly	correlated,	H.	uvarum	had	almost	no	214	

detectable	gene	expression	in	fermentations	from	many	sites	where	it	dominated	the	DNA	215	

profile	of	the	grape	must	(Figure	2B).	Finally,	even	when	we	performed	this	analysis	using	216	

samples	from	the	first	hours	of	fermentation	after	inoculation,	relative	abundance	of	H.	217	

uvarum	DNA	in	grape	musts	remained	weakly	correlated	with	relative	abundance	of	RNA	218	

(two	hours:	R2	=	0.21,	p	<	0.05,	six	hours:	R2	=	0.28,	p	<	0.01).	In	the	case	of	A.	pullulans,	219	

DNA	in	grape	must	is	not	correlated	with	gene	expression	during	fermentation	(two	hours:	220	

R2	=	-0.03,	p	=	0.60,	six	hours:	R2	=	-0.025,	p	=	0.53).	These	results	indicate	that	most	221	

identified	eukaryotic	microorganisms	in	grape	must	by	DNA	profiling	likely	have	little	222	

metabolic	activity	in	inoculated	fermentations	even	when	the	organisms	are	detected	at	223	

high	abundance	and	are	detectable	via	both	sequencing	methods.		224	
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Given	these	findings,	it	is	important	to	consider	if	a	lack	of	detectable	gene	225	

expression	for	non-Saccharomyces	fungal	species	could	be	reflective	of	some	other	issue	226	

that	is	technical	or	biological	in	nature.	We	consider	this	highly	unlikely	for	two	reasons.	227	

First,	both	DNA	and	RNA	sequencing	require	similar	protocols	for	extraction	of	nucleic	228	

acids	from	cells	that	should	perform	approximately	equally	across	samples.	Second,	RNA	229	

sequencing	relies	on	a	highly	conserved	biological	processes	(mRNA	polyadenylation),	230	

hence	while	we	could	envision	RNA	sequencing	failing	for	one	or	a	few	organisms,	it	should	231	

not	fail	across	many	fermentations	for	the	large	majority	of	organisms	seen	in	this	work.	232	

Moreover,	of	the	16	non-Saccharomyces	fungi	detected	via	RNA-sequencing,	eight	of	these	233	

organisms	were	not	detected	at	the	genus	level	by	DNA	profiling	(Cladosporium	sp	SL-16,	234	

Lachancea	thermotolerans,	Metschnikowia	fructicola,	Metschnikowia	sp.	AWRI3582,	Pichia	235	

kudriavzevii,	Preussia	sp.	BSL10,	Rhizopus	stolonifer,	Starmerella	bacillaris).	This	suggests	236	

that	transcriptomic	profiling	is	a	sensitive	assay	able	to	detect	organisms	present	in	a	237	

population	that	are	missed	by	ribosomal	DNA	amplicon	sequencing,	which	is	likely	due	to	238	

an	inability	to	resolve	genus	or	species	using	ribosomal	DNA	sequences.		239	

Notably,	some	of	the	organisms	detected	by	RNA	sequencing	have	the	ability	to	240	

influence	fermentation	outcomes:	in	mixed	fermentations	with	S.	cerevisiae,	S.	bacillaris	has	241	

been	shown	to	lower	the	final	ethanol	concentration	and	increase	the	concentration	of	242	

glycerol	(55),	while	M.	fructicola	increased	the	concentration	of	esters	and	terpenes	(56).	243	

Therefore,	the	detection	of	these	organisms	by	RNA	sequencing	provides	valuable	244	

information	with	respect	to	the	potentially	active	microbial	population	in	these	245	

fermentations.	Our	findings	align	well	with	another	recent	report	that	showed	an	RNA-246	

based	sequencing	strategy	is	a	highly	sensitive	alternative	to	amplicon	sequencing	(57).	As	247	
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such,	it	may	be	appropriate	to	use	RNA	sequencing	as	a	general	method	to	capture	the	248	

metabolically	active	microbial	community	during	wine	fermentation,	especially	when	249	

drawing	a	connection	between	the	wine	microbiome	and	fermentation	outcomes.		250	

Genetic	signatures	differentiate	vineyard	site,	region,	and	vintage	251	

The	region	and	site	from	which	grapes	are	harvested	can	have	an	important	252	

influence	over	the	character	of	a	resulting	wine	based	by	on	a	variety	of	factors	(e.g.,	253	

climate,	soil	type,	grape	associated	microbes).	As	such,	we	considered	if	the	data	generated	254	

using	DNA	and	RNA	sequencing	strategies	during	these	Pinot	noir	fermentations	is	255	

reflective	of	vineyard	site	through	the	generation	of	unique	genetic	signatures.	To	256	

investigate	this	concept,	we	grouped	DNA	and	RNA	sequencing	samples	by	vineyard	site,	257	

region,	and	vintage	to	see	if	there	were	detectable	differences	among	these	groups.	Using	258	

analysis	of	similarities	(ANOSIM;	see	methods),	we	determined	that	all	three	factors	259	

explain	differences	among	groups	of	samples,	with	vineyard	site	explaining	the	most	group	260	

similarity	(Figure	3A-D).	This	supports	the	idea	that	fermentations	have	a	detectable	261	

genetic	signature	that	is	reflective	of	vineyard	site.		262	

To	understand	which	specific	organisms	and	genes	contribute	to	the	genetic	263	

signatures	of	both	vineyard	site	and	region,	we	built	machine	learning	classification	models	264	

using	random	forests.	These	models	weight	the	contribution	of	each	feature	to	predictive	265	

accuracy	of	the	model,	enabling	robust	identification	of	specific	genes	or	organisms	that	266	

differentiate	vineyard	sites	or	regions	among	fermentations.	When	we	used	data	from	all	267	

vintages	in	model	training	and	testing	to	predict	region,	we	achieved	87%-95%	accuracy	268	

(Table	S1-S3;	Figure	S3-S4).	When	we	instead	used	data	from	one	vintage	in	model	269	
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training	and	testing	to	predict	region,	accuracy	dropped	across	all	models,	but	ranged	from	270	

57%-75%	(Table	S1-S3;	Figure	S3-S4).	This	suggests	that	models	built	with	fermentations	271	

from	all	vintages	better	capture	cross-vintage	similarities	as	these	models	select	predictive	272	

variables	that	are	consistent	across	the	vintages	studied.	However,	the	accuracy	of	these	273	

models	may	decrease	if	the	same	set	of	predictive	variables	is	not	consistent	in	future	274	

vintages.	Conversely,	the	accuracy	of	a	model	built	from	a	single	vintage	and	trained	on	a	275	

separate	vintage	will	likely	remain	consistent	across	many	vintages.	From	this,	we	assumed	276	

that	models	trained	using	data	from	a	single	vintage	better	reflected	model	accuracy,	but	277	

that	models	trained	using	data	from	all	vintages	better	reflected	cross-vintage	similarities.	278	

As	we	aimed	to	identify	vintage-independent	factors,	we	analyzed	cross-vintage	models	279	

moving	forward.	280	

When	we	used	the	same	data	to	generate	vineyard-specific	models,	predictive	281	

accuracy	was	on	average	21.4%	less	than	region-specific	models	(Table	S1).	However,	it	is	282	

important	to	note	that	this	decrease	in	accuracy	was	driven	by	within-region	283	

misclassification	for	vineyards	in	Willamette	Valley	(31	km	separation),	Santa	Maria	Valley	284	

(5	km	separation),	and	Arroyo	Seco	(1	km	separation)	American	Viticultural	Areas	(AVA)	285	

(Figure	S5).	The	same	misclassifications	persisted	across	many	models,	highlighting	286	

potential	within-region	similarity	that	contributes	to	genetic	signatures,	which	fits	well	287	

with	the	concept	of	AVA	and	region-associated	wine	characteristics.		288	

Across	models,	we	were	surprised	to	find	that	bacterial	models	outperformed	or	289	

performed	as	well	as	fungal	models	for	classification	of	site	and	region,	as	bacterial	must	290	

samples	added	the	least	predictive	power	in	previous	models	for	region	prediction	(14),	291	
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including	for	Pinot	noir	grapes	grown	in	Australia	(8).	Bacterial	must	samples	have	been	292	

shown	to	be	predictive	of	region	in	Californian	Chardonnay,	but	not	Californian	Cabernet	293	

Sauvignon	(14),	suggesting	a	possible	cultivar-specific	effect.	In	previous	inquiries,	samples	294	

were	processed	in	vineyard-specific	wineries,	providing	another	variable	that	could	295	

potentially	alter	the	measured	microbiomes	and	the	contributions	attributed	to	bacteria	296	

and	fungi.		297	

Given	that	random	forests	models	estimate	the	importance	of	each	gene	in	298	

determining	vineyard	or	region	classification,	we	further	used	the	gene	expression	models	299	

to	gain	insight	into	biological	differences	between	vineyard	sites	and	regions.	For	this,	we	300	

calculated	the	percent	of	total	importance	attributable	to	each	gene	from	each	eukaryotic	301	

organism	detected	(Table	S2).	Vineyard-specific	models	weighted	non-Saccharomyces	302	

yeast	genes	as	a	whole	as	most	important	for	predictive	accuracy	(Figure	3E,	Figure	S6).	303	

In	particular,	genes	from	S.	bacillaris,	M.	fructicola,	Metschnikowia	sp.	AWRI3582,	and	L.	304	

thermotolerans	were	important	for	vineyard	site	classification.	The	ability	of	non-305	

Saccharomyces	gene	expression	to	distinguish	site	is	likely	related	to	the	unique	306	

combination	of	non-Saccharomyces	organisms	present	in	each	fermentation,	which	results	307	

in	these	organisms	having	strong	predictive	power	when	detected.	In	contrast,	regional	308	

models	weighted	S.	cerevisiae	and	V.	vinifera	genes	as	higher	importance	(Figure	3E,	309	

Figure	S6).	We	expect	that	this	may	result	from	changes	in	V.	vinifera	gene	expression	310	

across	more	diverse	geographical	environments,	which	leads	to	differences	in	the	grape	311	

must	and	associated	fermentations	as	detected	by	S.	cerevisiae	gene	expression.	312	
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To	more	directly	address	how	environmental	factors	and	grape	must	chemistry	313	

correlate	with	genetic	signatures,	we	correlated	initial	must	chemical	parameters	(pH,	314	

titratable	acidity,	malic	acid,	NOPA,	and	NH3)	and	vineyard	site	characteristics	(total	315	

precipitation,	growing	degree	days,	and	geographic	distance	between	sites)	with	DNA	and	316	

RNA	profiles	using	the	Mantel	test	(see	methods).	From	these	analyses,	we	found	317	

geographic	distance	between	vineyards	correlated	with	precipitation	and	growing	degree	318	

days,	indicating	that	sites	that	are	geographically	closer	experience	more	similar	weather	319	

patterns,	as	would	be	expected	(Figure	3F).	Amongst	the	factors	tested,	only	precipitation	320	

correlated	with	all	genetic	profiles	(Figure	3G).	Similar	to	geographic	distance,	initial	321	

chemical	profiles	of	vineyard	sites	were	more	similar	when	sites	are	geographically	closer.	322	

However,	we	found	surprisingly	few	correlates	between	genetic	profiles	and	initial	grape	323	

must	conditions	(Figure	3G).	While	fungal	profiles	correlate	with	initial	malic	acid,	NOPA,	324	

and	NH3	and	bacterial	profiles	correlate	with	initial	NOPA,	gene	expression	profiles	only	325	

correlate	with	initial	malic	acid	levels.	The	finding	that	gene	expression	profiles	do	not	326	

correlate	with	initial	nitrogen	concentration,	even	though	nitrogen	availability	is	central	to	327	

yeast	growth	and	linked	to	the	expression	of	hundreds	of	genes	(45),	may	reflect	nitrogen	328	

additions	at	~24	h	after	inoculation	during	winemaking	so	that	all	fermentations	had	a	329	

minimum	of	250	mg/L	(see	methods).	Overall,	the	poor	correlation	between	gene	330	

expression	patterns	and	the	factors	tested	suggest	that	other	unmeasured	factors	drive	331	

gene	expression	distinctiveness	in	these	fermentations.	This	raises	a	clear	need	for	future	332	

work	that	measures	many	factors	within	vineyards	and	fermentations	to	define	the	333	

organism-environment	interactions	responsible	for	driving	gene	expression	and	cellular	334	

activities	of	S.	cerevisiae	and	other	microbial	organisms.		335	
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S.	cerevisiae	gene	expression	provides	insight	into	vineyard	site	and	region	features	336	

S.	cerevisiae	is	likely	the	best	understood	eukaryote	based	on	the	use	of	this	337	

organism	as	a	model	system	for	biology,	which	has	provided	a	rich	set	of	genomic	338	

resources	and	databases	(58).	As	such,	S.	cerevisiae	gene	expression	can	be	used	as	a	339	

biosensor	to	provide	insight	into	the	fermentation	environment	based	on	activities	yeast	340	

perform.	The	utility	of	this	data	is	furthered	by	the	fact	that	S.	cerevisiae	gene	functions	are	341	

well	studied	in	the	context	of	wine	production,	S.	cerevisiae	is	ubiquitous	across	all	342	

fermentations,	and	the	transcriptomics	data	is	dominated	by	reads	from	S.	cerevisiae	(e.g.,	343	

data	completeness).	Consequently,	given	the	data	above	suggesting	unknown	factors	are	344	

directing	fermentation	outcomes,	we	queried	the	S.	cerevisiae	gene	expression	data	to	345	

assess	what	genes	were	important	for	predicting	region	and	vineyard	site	to	infer	what	346	

may	be	unique	about	musts	produced	by	grapes	from	each	vineyard	site	or	region.	Notably,	347	

random	forests	models	are	non-deterministic,	meaning	the	each	time	a	model	is	built	the	348	

specific	genes	important	for	predictive	accuracy	of	that	model	may	change,	especially	for	349	

genes	with	correlated	gene	expression	values	(59).	Therefore,	we	first	built	100	random	350	

forests	models	for	the	prediction	of	region	and	vineyard	site	and	investigated	the	genes	351	

that	were	shared	across	the	majority	models	(Table	S4).	As	discussed	above,	less	than	1%	352	

of	transcripts	in	any	fermentation	were	expressed	by	non-RC212	S.	cerevisiae	and	thus	the	353	

genetic	signatures	we	identified	are	likely	specific	to	this	strain.		354	

From	this	analysis,	important	predictors	of	both	site	and	region	included	flavor-355	

associated	genes	involved	in	the	formation	of	higher	alcohols	and	volatile	fatty	acids	356	

through	the	Ehrlich	pathway.	Each	site-specific	and	region-specific	model	included	an	357	
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average	of	16	(site	SD	=	2.9,	region	SD	=	2.4)	genes	associated	with	flavor	development	in	358	

wine	(Table	S5).	These	genes	were	mostly	associated	with	the	Ehrlich	pathway	(site	mean	359	

=	8.1	genes,	SD	=	2;	region	mean	=	9	genes,	SD	=	1.7)	and	with	volatile	sulfur	formation	(site	360	

mean	=	6.3	genes,	SD	=	1.6;	region	mean	=	5.1	genes,	SD	=	1.4).	Given	that	genes	in	these	361	

pathways	were	detectable	as	indicators	of	both	region	and	site,	site-variable	expression	of	362	

these	genes	could	contribute	to	region-	and	vineyard-specific	wine	flavor	profiles	detected	363	

in	wines	from	these	vineyards	in	previous	vintages	(48).	At	this	time,	it	remains	unknown	364	

what	factors	cause	these	flavor-associated	genes	to	differ	between	fermentations.		365	

In	addition	to	flavor-associated	genes,	many	S.	cerevisiae	genes	that	were	important	366	

for	predicting	vineyard	site	and	region	are	members	of	the	Com2	regulon	(Table	S4).	367	

Expression	of	genes	within	the	Com2	regulon	is	protective	against	SO2	stress	(60).	We	368	

treated	all	fermentations	with	an	equal	dose	of	SO2	at	the	beginning	of	vinification;	369	

however,	variable	application	of	sulfur-containing	fungicides	in	the	vineyard	may	lead	to	370	

disparate	SO2	stress	during	fermentation	underlying	the	signatures	of	site	and	region	that	371	

we	observe.	Wine	strains	of	S.	cerevisiae	are	more	tolerant	of	SO2	than	many	non-372	

Saccharomyces	species,	but	SO2	exposure	can	cause	inhibition	of	key	metabolic	enzymes	373	

like	alcohol	dehydrogenase,	as	well	as	other	processes	through	cleavage	of	disulfide	bonds	374	

(61,	62).	Of	the	511	genes	dependent	on	Com2	activation	during	SO2	stress	(60),	an	average	375	

of	105	genes	(SD	=	12.7)	were	important	for	differentiating	site	in	our	predictive	models,	376	

while	101	genes	(SD	=	11.6)	were	important	for	predicting	vineyard	region.	Within	these	377	

gene	lists	are	genes	involved	in	the	efflux	of	sulfite	and	bisulfite,	sulfate	assimilation,	sulfate	378	

assimilation,	biosynthesis	of	methionine,	cysteine,	arginine,	and	lysine,	and	biosynthesis	of	379	

the	sulfur-containing	vitamin	biotin	(Table	S6).	These	pathways,	and	their	site-specific	380	
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signatures,	are	potential	areas	of	future	study	given	that	sulfur	metabolism	can	have	a	381	

profound	impact	on	the	sensory	attributes	of	wine	(63).	In	addition,	while	the	molecular	382	

form	of	SO2	causes	S.	cerevisiae	stress	and	inactivation	of	wine	spoilage	microbes	(11,	60),	383	

this	form	is	in	equilibria	with	the	bisulfite	form	(HSO3-)	and	this	ratio	is	dependent	on	wine	384	

pH	(64).	The	bisulfite	form	interacts	with	anthocyanins	and	can	cause	color	bleaching	(64).	385	

This	suggests	that	the	SO2	stress	response	is	a	factor	that	would	need	to	be	considered	in	386	

the	context	of	pH	and	other	aspects	of	SO2	wine	chemistry.		387	

To	further	explore	connections	between	S.	cerevisiae	gene	expression	and	region	or	388	

vineyard	site,	we	identified	genes	that	were	predictive	for	a	specific	region	or	site	across	all	389	

models	(local	importance,	see	methods).	Only	one	gene	was	important	across	all	models	for	390	

predicting	the	site	OR1	(VIT_0003506001;	V.	vinifera	pathogenesis-related	protein	10.3).	391	

This	suggests	that	we	have	limited	resolution	into	the	specific	gene	expression	patterns	392	

that	differentiate	individual	sites	using	this	method.	Given	that	gene	expression	is	393	

inherently	noisy	(65),	increasing	observations	per	vineyard	site	may	improve	accuracy	and	394	

inference	from	site-specific	models	in	the	future.		395	

In	contrast	to	site-specific	models,	an	average	of	22.4	genes	per	region	(SD	=	13.5)	396	

were	predictive	across	all	models,	with	an	average	of	14.4	genes	(SD	=	8.4)	expressed	by	S.	397	

cerevisiae	(Table	S7).	Interestingly,	many	genes	that	were	important	for	predicting	one	398	

region	were	also	important	for	predicting	other	regions	(BET2,	BET3,	BIO4,	EXG2,	FAS2,	399	

HEM12,	LOH1,	MEP3,	MRX21,	NPT1,	PSA1,	SNZ3,	THI11,	THI13,	THI72,	TUB4),	suggesting	400	

that	expression	of	these	genes	differed	consistently	between	regions.	These	genes	encode	401	

proteins	involved	in	diverse	cellular	processes,	including	heme	biosynthesis,	cell	wall	402	
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assembly,	and	synthesis	and	transport	of	fatty	acids	and	nitrogen-containing	compounds.	403	

While	the	underlying	biochemical	processes	that	lead	to	consistent	expression	of	these	404	

genes	within	regions	remains	unknown,	we	investigated	whether	initial	nitrogen	content	in	405	

grape	must	was	related	to	the	importance	of	MEP3,	a	gene	that	encodes	an	ammonia	406	

permease,	in	predicting	a	region.	Interestingly,	MEP3	was	important	for	predicting	the	407	

three	regions	with	the	lowest	average	initial	yeast	assimilable	nitrogen	(OR,	AV,	RRV)	as	408	

well	as	the	region	with	the	second	highest	yeast	assimilable	nitrogen	(SMV)	across	vintages	409	

(Figure	S7).	Given	that	nitrogen	availability	plays	a	fundamental	role	in	shaping	410	

fermentations	(66),	this	relationship	was	expected.	We	also	noted	that	four	genes	411	

associated	with	thiamine	availability	were	important	for	predicting	multiple	regions.	This	412	

suggests	that	thiamine	availability	may	drive	regional	differences	in	wine	outcomes,	a	413	

postulate	that	could	be	measured	in	a	future	vintage.	414	

Taken	together,	these	results	identify	genes	directly	linked	to	wine	sensory	and	415	

chemistry	that	are	strong	indicators	of	vineyard	region	in	Pinot	noir	fermentations.	These	416	

findings	provide	a	concrete	starting	point	for	future	investigation	into	vineyard	specific	417	

factors	that	are	responsible	for	wine	fermentation	outcomes	and	wine	sensory	418	

characteristics.		419	

	 	420	
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Conclusion	421	

Microbial	biogeography	of	wine	has	been	documented	in	globally	distributed	422	

appellations	(4,	7,	8,	14–21),	and	has	been	correlated	with	wine	fermentation	outcomes	423	

(15,	22).	In	inoculated	co-cultures,	non-Saccharomyces	microorganisms	both	contribute	to	424	

fermentation	and	change	the	behavior	of	the	dominant	fermenter	S.	cerevisiae,	leading	to	425	

measurable	differences	in	wine	aroma	and	composition	(36–38).	Here,	we	show	that	grape	426	

must	ribosomal	DNA	profiles	do	not	correlate	with	detected	eukaryotic	gene	expression	427	

patterns	during	primary	fermentation.	Given	that	we	detected	little	to	no	correlation	428	

between	fungal	profiles	in	initial	grape	must	and	genes	expressed	by	those	organisms	429	

during	primary	fermentation,	DNA	profiles	may	not	be	a	robust	indicator	for	inferring	430	

contributions	from	these	organisms	in	wine	sensory	outcomes	in	inoculated	fermentations.	431	

However,	DNA	profiles,	in	particular	bacterial	profiles,	are	predictive	of	vineyard	site	and	432	

retain	signatures	of	site-specific	processes	such	as	total	precipitation	during	the	growing	433	

season.	These	profiles	are	rich	indicators	of	the	patterns	that	shape	the	microbial	ecology	434	

of	grapes,	and	reflect	differences	among	vineyard	sites	and	regions,	even	when	the	same	435	

clone	(e.g.,	Vitis	vinifera	L.	cv.	Pinot	noir	clone	667)	is	grown	on	each	site.	436	

In	contrast,	the	gene	expression	profiles	of	S.	cerevisiae	and	other	detected	437	

organisms,	retain	signatures	of	vineyard	site	and	region	as	well	as	the	metabolic	438	

transformations	that	occur	during	fermentation.	Using	S.	cerevisiae	gene	expression	as	a	439	

biosensor	for	differences	between	fermentations,	we	detected	site	and	region	specific	440	

signatures	linked	to	nitrogen,	sulfur,	and	thiamine	metabolism.	While	these	factors	are	441	

associated	with	vineyard-specific	differences	in	gene	expression	profiles,	few	vineyard	site	442	
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and	initial	grape	must	chemical	parameters	correlate	with	the	transcriptome,	which	443	

suggests	there	are	still	many	variables	to	discover	that	underlie	the	complex	metabolic	444	

activities	and	gene	expression	patterns	S.	cerevisiae	displays	throughout	fermentation.	In	445	

the	future,	more	comprehensive	sequencing	approaches	(e.g.,	deeper	sequencing	with	446	

methods	that	capture	the	full	transcriptome,	more	samples	per	site)	aimed	at	the	factors	447	

and	organisms	identified	in	this	work	would	allow	for	a	better	understanding	of	these	448	

systems.	This	will	need	to	be	accompanied	by	measurements	of	many	more	vineyard,	must,	449	

and	wine	characteristics	to	provide	further	predictive	power	and	insights	into	the	450	

complexities	and	subtleties	of	vineyard	specific	wine	fermentation	outcomes.		 	451	
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Methods	452	

Grape	preparation	and	fermentation	453	

The	winemaking	protocol	has	been	described	previously	(48,	49),	but	the	relevant	454	

parts	are	reproduced	with	some	added	details	below.	The	grapes	used	in	this	study	455	

originated	from	15	vineyards	in	eight	American	Viticultural	Areas	in	California	and	Oregon,	456	

U.S.A.	All	grapes	were	Vitis	vinifera	L.	cv.	Pinot	noir	clone	667,	with	either	rootstock	101-14	457	

(AV1,	RRV1,	SNC1,	SNC2,	CRN1,	AS1,	AS2,	SMV1,	SMV2,	SRH1),	Riparia	Gloire	(OR1,	OR2),	458	

or	3309C	(AV2,	RRV2,	RRV3).	Grapes	were	hand-harvested	grapes	at	approximately	24	459	

Brix	and	transported	to	the	University	of	California,	Davis	Teaching	&	Research	Winery	for	460	

fermentation.	Grapes	were	separated	into	half-ton	macrobins	on	harvest	day	and	Inodose	461	

SO2	was	added	to	40	ppm.	Upon	delivery	to	the	winery,	bins	were	stored	at	14°C	until	the	462	

fruit	was	destemmed		and	divided	into	temperature	jacket-controlled	tanks.	N2	sparging	of	463	

the	tank	headspace	was	performed	prior	to	fermentation	and	tanks	sealed	with	a	rubber	464	

gasket.	We	cold	soaked	the	must	at	7°C	for	three	days	and	adjusted	TSO2	to	40	ppm	on	the	465	

second	day.	After	three	days,	the	must	temperature	was	increased	to	21°C	and	466	

programmed	pump	overs	were	used	to	hold	the	tank	at	a	constant	temperature.	Grape	467	

must	microbiome	samples	were	taken	just	prior	to	the	increase	in	temperature.	For	468	

inoculation,	S.	cerevisiae	RC212	was	rehydrated	with	Superstart	Rouge	at	20	g/hL	and	469	

inoculated	in	the	must	at	25	g/hL.	At	approximately	24	hours	after	inoculation,	nitrogen	470	

content	in	the	fermentations	was	adjusted	using	DAP	(target	YAN	–	35	mg/L	–	initial	471	

YAN)/2),	and	Nutristart	(25	g/hL).	Nitrogen	was	adjusted	only	if	YAN	was	below	250	mg/L.	472	

Approximately	48	hours	after	fermentation,	fermentation	temperatures	were	permitted	to	473	
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increase	to	27°C,	and	again	added	DAP	using	the	formula	(target	YAN	-	35	mg/L	-	initial	474	

YAN)/2,	and	fermentation	were	then	continued	until	Brix	<	0.	Fermentation	samples	were	475	

taken	for	Brix	measurements	every	twelve	hours	relative	to	inoculation	and	with	RNA	476	

samples	at	2	hours,	6	hours	(2019	vintage),	16	hours,	64	hours,	and	112	hours	(2017	and	477	

2019	vintage).	To	ensure	uniform	sampling,	a	pumpover	was	performed	ten	minutes	prior	478	

to	sampling	each	tank.	For	RNA	samples,	12mL	of	juice	was	obtained,	centrifuged	at	4000	479	

RPM	for	5	minutes,	supernatant	was	discarded,	and	the	cell	pellet	snap	frozen	in	liquid	480	

nitrogen.		Samples	were	stored	at	-80°C	until	RNA	extraction.	481	

Amplicon	sequencing	data	processing	482	

DNA	was	extracted	for	amplicon	sequencing	and	library	preparation	following	(50)	483	

and	(67).	The	UC	Davis	DNA	Tech	Core	performed	sequencing	using	Illumina	MiSeq,	484	

producing	251	base	pair	paired-end	sequences.	We	demultiplexed	and	adapter	trimmed	485	

libraries	by	barcode	sequences	using	cutadapt	(68).	Taxonomically	annotated	amplicon	486	

sequence	variant	(ASV)	counts	were	generated	using	DADA2	with	the	Silva	NR	database	487	

(version	138)	for	16S	sequences	and	the	UNITE	general	FASTA	release	(version	8.2)	for	ITS	488	

sequences	(69).	All	ASVs	annotated	as	“Bacteria,Cyanobacteria,Cyanobacteriia,Chloroplast”	489	

and	“Bacteria,Proteobacteria,Alphaproteobacteria,Rickettsiales,Mitochondria”	were	490	

removed	as	these	represent	plant	mitochondria	and	chloroplast	16S	sequences	and	not	491	

bacterial	sequences.	492	

RNA	sequencing	data	processing	493	

Yeast	pellets	were	thawed	on	ice,	resuspended	in	5ml	Nanopure	water,	centrifuged	494	

at	2000g	for	5min,	and	aspirated	the	supernatant.	RNA	was	extracted	using	the	Quick	RNA	495	

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2021. ; https://doi.org/10.1101/2021.01.07.425830doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.07.425830
http://creativecommons.org/licenses/by-nc/4.0/


Fungal/Bacterial	Miniprep	kit	including	DNAsel	column	treatment	(cat#R2014,	Zymo	496	

Research).	RNA	was	eluted	in	30µL	of	molecular	grade	water	and	assessed	for	497	

concentration	and	quality	via	Nanodrop	and	RNA	gel	electrophoresis.	Sample	498	

concentrations	were	adjusted	to	200ng/µl	and	used	for	sequencing.	3´	Tag-seq	single-end	499	

sequencing	(Lexogen	QuantSeq)	was	applied	in	both	the	2017	and	2019	vintage,	with	the	500	

addition	of		UMI	barcodes	in	2019.		The	University	of	California,	Davis	DNA	Technologies	501	

Core	performed	all	library	preparation	and	sequencing.	502	

The	first	12	base	pairs	from	each	read	were	hard	trimmed	and	Illumina	TruSeq	503	

adapters	and	poly(A)	tails	were	removed.	Sourmash	gather	was	used	to	determine	the	504	

organisms	present	in	each	sample	using	parameters	-k	31	and	--scaled	2000	(70,	71).	The	505	

GenBank	microbial	database	(https://sourmash-databases.s3-us-west-506	

2.amazonaws.com/zip/genbank-k31.sbt.zip)	and	eukaryotic	RNA	database	507	

(https://osf.io/qk5th/)	was	used	for	these	queries.	508	

Using	results	from	sourmash,	a	set	of	reference	genomes	was	constructed	that	was	509	

representative	of	all	organisms	detected	within	the	samples.	When	different	strains	of	the	510	

same	species	were	detected,	the	one	species	detected	in	the	largest	number	of	samples	was	511	

used	as	a	representative	species	to	reduce	multi-mapping	conflicts.	Species	present	in	more	512	

than	two	samples	were	included	because	species	present	in	fewer	than	three	samples	513	

would	have	limited	predictive	power.	Species	of	genus	Saccharomyces	other	than	S.	514	

cerevisiae	S288C	were	removed	to	reduce	multi-mapping	conflicts.	Selected	genomes	were	515	

downloaded	from	NCBI	GenBank;	however,	if	no	GTF	annotation	file	was	available	for	the	516	

species,	the	genome	and	GFF3	file	was	taken	from	JGI	Mycocosm	(72),	and	the	GFF3	was	517	
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converted	to	GTF	using	the	R	package	rtracklayer	(73).	When	no	annotation	file	was	518	

available	on	GenBank	or	JGI	Mycocosm,	the	genome	of	the	closest	species-level	strain	with	519	

a	GTF	annotation	file	was	used.	To	find	closely	related	organisms,	NCBI	taxonomy	was	520	

searched,	selected	assemblies	were	downloaded	,	and	sourmash	compare	was	used	with	a	521	

k-size	of	31	(70,	71).	The	organisms	with	the	highest	Jaccard	similarity	were	considered	the	522	

most	similar.	When	no	annotation	file	was	available	for	similar	organisms,	an	annotation	523	

file	was	generated	using	WebAugustus	(74).	See	Table	S8	for	a	description	of	the	best	524	

matched	genome,	the	genome	used	for	count	generation,	and	the	source	of	genome	525	

annotations.	Reference	genome	FASTA	files	and	GTF	files	were	concatenated	together	to	526	

generate	a	single	reference.	STAR	was	then	used	to	align	reads	against	the	constructed	527	

reference	with	parameters	--outFilterType	BySJout,	--outFilterMultimapNmax	20,	--528	

alignSJoverhangMin	8,	--alignSJDBoverhangMin	1,	--outFilterMismatchNmax	999,	--529	

outFilterMismatchNoverLmax	0.6,	--alignIntronMin	20,	--alignIntronMax	1000000,	--530	

alignMatesGapMax	1000000,	--outSAMattributes	NH	HI	NM	MD	--outSAMtype	BAM,	531	

SortedByCoordinate	(75).	For	the	2019	vintage,	UMI	tools	was	used	to	deduplicate	532	

alignments	(76).	The	number	of	reads	mapping	to	each	gene	was	quantified	using	htseq	533	

count	using	the	constructed	reference	GTF	file	to	delineate	gene	regions	(77).	534	

RC212	genome	assembly	and	comparison	535	

The	S.	cerevisiae	RC212	genome	was	assembled	to	estimate	the	fraction	of	RNA-536	

sequencing	reads	in	each	fermentation	originating	from	non-RC212	S.	cerevisiae	strains.	537	

FASTQ	files	for	accession	SRR2967888	were	downloaded	from	the	European	Nucleotide	538	

Archive	(78).	Reads	were	k-mer	trimmed	using	the	khmer	trim-low-abund.py	command	with	539	
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parameter	-k	20	(79)	and	the	Megahit	assembler	was	used	with	default	parameters	to	540	

assemble	reads	(80).	541	

Estimation	of	non-inoculated	yeast	in	RNA-seq	samples	542	

Sourmash	gather	was	used	to	estimate	the	fraction	of	RNA	seq	reads	(k-mers)	543	

originating	from	non-inoculated	S.	cerevisiae.	Sourmash	gather	estimates	shared	sequence	544	

similarity	by	comparing	scaled	MinHash	signatures	derived	from	k-mer	profiles	(70,	71).	545	

The	sourmash	Eukaryotic	RNA	database	(https://osf.io/qk5th/)	was	used,	which	includes	546	

all	annotated	S.	cerevisiae	genomes	in	GenBank	(e.g.,	genomes	that	include	547	

*rna_from_genome.fna	annotations),	as	well	as	our	S.	cerevisiae	RC212	genomes	assembly.	548	

Correlation	between	ribosomal	DNA	amplicon	sequencing	data	and	3´	Tag-seq	data	549	

for	non-Saccharomyces	organisms	550	

Fermentations	with	fungal	ITS	amplicon	sequencing	data	and	3´	Tag-seq	were	551	

compared.		First,	ribosomal	DNA	amplicon	sequencing	read	counts	from	H.	uvarum	were	552	

regressed	against	total	3´	Tag-seq	counts	from	H.	uvarum	using	counts	from	16	hours,	64	553	

hours,	and	112	hours	of	fermentation.		3´	Tag-seq	counts	were	derived	from	STAR	and	554	

htseq	(see	RNA	sequencing	data	processing	above).	Counts	were	transformed	into	555	

compositional	counts	(relative	abundance)	prior	to	linear	regression	(81).	Linear	556	

regression	was	performed	using	the	lm()	function	in	R.	This	analysis	was	performed	again	557	

separately	for	H.	uvarum	and	A.	pullulans	using	counts	from	the	2	hour	and	6	hours	samples	558	

taken	in	the	2019	vintage.	Given	that	this	analysis	relied	on	reads	aligned	to	annotated	3´	559	

regions,	a	separate	regression	was	performed	a	using	proportion	of	reads	assigned	to	a	560	

given	organism	derived	from	sourmash	gather	(see	RNA	sequencing	data	processing	561	
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above).	Only	results	from	the	first	analysis	were	reported	as	R2	values	were	within	0.01	562	

between	both	analyses.	563	

ANOSIM	and	NMDS	564	

Compositional	data	analysis	was	used	for	amplicon	and	transcriptome	counts	(81).	565	

The	transform()	function	in	the	microbiome	bioconductor	package	was	used	to	transform	566	

counts	by	centered	log	ratio	(82,	83).	To	test	for	differences	among	groups,	Aitchinson	567	

distance	(Euclidean	distance	on	CLR-transformed	counts)	was	used	and	tested	with	the	568	

anosim()	function	in	the	vegan	package	using	parameters	distance	=	"euclidean"	and	569	

permutations	=	9999	(84,	85).		A	cut	off	of	p	=	0.05	was	used	for	statistical	significance.	To	570	

construct	NMDS	plots,	Aitchinson	distance	was	taken	using	the	metaMDS()	function	in	the	571	

vegan	package	with	parameter	distance	=	"euclidean".	Results	were	plotted	using	the	ggplot2	572	

package	(86).	573	

Amplicon	sequencing	random	forest	models	574	

Random	forest	classifiers	were	built	using	the	R	ranger	package	(87).	Using	ASV	575	

counts	produced	by	DADA2,	counts	were	normalized	by	dividing	by	total	number	of	aligned	576	

reads.	The	tuneRanger()	function	was	used	in	the	tuneRanger	package	to	optimize	each	577	

model	for	parameters	m.try,	sample.fraction,	and	min.node.size	(88).	The	ranger()	function	578	

was	then	used	to	build	each	model	with	parameters	from	tuneRanger	as	well	as	num.trees	=	579	

10000,	importance	=	"permutation",	and	local.importance	=	TRUE.	As	a	supervised	technique,	580	

random	forest	classifiers	are	trained	on	a	subset	of	data	and	tested	on	a	separate	subset	to	581	

calculate	predictive	accuracy.	For	models	built	with	samples	from	all	vintages,	the	582	

createDataPartition()	function	in	the	R	caret	package	was	used	to	randomly	but	equally	583	
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partition	training	and	testing	sets	with	a	70:30	split,	ensuring	that	all	class	labels	were	584	

equally	represented	in	both	sets	(89).	For	other	models,	the	classifier	was	built	using	all	585	

samples	from	two	vintages	and	validated	on	the	held-out	vintage.	Accuracy	and	kappa	586	

statistics	were	calculated	for	each	model.	587	

RNA	sequencing	random	forest	model	588	

Counts	were	imported	into	R	and	normalized	by	dividing	by	total	number	of	aligned	589	

reads	(e.g.,	library	size).	Given	that	random	forests	expects	independent	samples	and	RNA-590	

sequencing	was	conducted	in	time	series	over	the	course	of	primary	fermentation,	each	591	

gene	from	each	time	series	set	was	summarized	into	mean	count,	minimum	count,	592	

maximum	count,	total	count,	and	standard	deviation	of	counts.	Variable	selection	was	593	

performed	using	the	vita	method	(90)	and	models	were	built	using	the	same	methods	as	594	

with	amplicon	sequencing	models.	595	

To	estimate	vineyard-	and	region-specific	gene	importance,	variable	selection	and	596	

model	optimization	were	performed	with	100	different	seeds.	For	each	model,	gene	local	597	

importance	was	averaged	for	each	fermentation	from	a	vineyard	site	or	region	in	the	598	

training	set	and	genes	with	positive	average	local	permutation	importance	were	retained.	599	

The	intersection	of	genes	from	all	models	was	then	taken	to	determine	which	genes	were	600	

predictive	for	a	particular	site	or	region	in	all	models.	Although	random	forests	were	601	

trained	on	summarized	gene	attributes,	any	genes	that	were	predictive	across	any	attribute	602	

were	retained	as	these	attributes	were	often	highly	correlated.	603	

Mantel	tests	604	
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Mantel	tests	were	performed	to	assess	the	similarity	between	samples	across	605	

measurements	of	bacterial	abundance,	fungal	abundance,	transcriptome	abundance,	initial	606	

grape	must	chemistry,	and	vineyard	site	parameters	(91,	92).	The	Mantel	test	determines	607	

the	correlation	between	the	same	samples	in	different	matrices,	testing	whether	608	

similarities	between	samples	estimated	from	one	measurement	type	match	similarities	of	609	

the	same	samples	estimated	from	a	different	measurement	type	(91,	92).	These	tests	were	610	

performed	using	complete	cases,	with	microbiome	and	transcriptome	abundances	from	the	611	

2017	and	2019	vintages.	Vineyard	site	parameters	total	precipitation	and	growing	degree	612	

days	were	estimated	using	the	PRISM	climate	models	including	dates	April	1	-	September	613	

30	in	2017	and	2019	(93).	Distance	matrices	were	calculated	for	each	matrix	using	the	614	

dist()	function	in	R,	with	parameters	method		=	"euclidean",	with	the	exception	of	geographic	615	

distance	which	was	calculated	using	the	distm()	function	in	the	package	geosphere	with	616	

parameter	distHaversine	(94).	When	distances	for	disparate	measurement	types	were	617	

calculated	at	the	same	time,	values	were	first	scaled	and	centered	using	the	function	scale()	618	

with	parameters	center	=	TRUE	and	scale	=	TRUE.	Mantel	tests	were	performed	with	the	619	

mantel()	function	in	the	vegan	package	with	parameters	method	=	"spearman",	permutations	=	620	

9999,	and	na.rm	=	TRUE	(85,	92).	p	value	adjustment	were	applied	using	the	function	621	

p.adjust()	with	parameter	method	=	"fdr"	and		a	false	discovery	rate	of	p	=	0.1	used.	622	

Data	Availability		623	

RNA	sequencing	data	is	available	in	the	Sequence	Read	Archive	under	accession	number	624	

PRJNA680606.	Microbiome	data	is	available	under	accession	numbers	PRJNA642839	and	625	
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PRJNA682452.	All	analysis	code	is	available	at	626	

github.com/montpetitlab/Reiter_et_al_2020_SigofSite.	 627	

	628	

	 	629	
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Figure	Legends	918	

Figure	1:	Microbial	diversity	in	grape	must	and	fermentation	microbiomes	from	919	

different	vineyard	sites.	A,	B)	Relative	abundance	of	taxonomic	ranks	in	ribosomal	DNA	920	

amplicon	sequencing	data	capturing	A	Bacteria	and	B	Fungi.	Samples	taken	from	921	

fermentations	from	the	same	vineyard	site	and	vintage	are	combined	together	and	reflect	922	

relative	abundance	of	organisms	from	four	fermentation	tanks.	Only	three	tanks	were	923	

fermented	for	AV2	in	2019	due	to	a	smaller	harvest.	C)	Relative	abundance	of	all	genes	924	

expressed	by	a	detected	organism	during	fermentation	from	the	2017	and	2019	vintages.	925	

The	top	plots	show	all	organisms	and	bottom	plots	display	only	those	organisms	that	926	

account	for	less	than	3%	of	mapped	reads	in	each	sample.	Only	organisms	present	in	more	927	

than	one	fermentation	are	plotted.	928	

Figure	2:	H.	uvarum	ribosomal	DNA	amplicon	sequencing	data	does	not	strongly	929	

correlate	with	relative	abundance	in	RNA	sequencing	data.	A	Bar	chart	of	relative	930	

abundance	of	H.	uvarum	compared	to	other	non-Saccharomyces	species	across	931	

fermentations	from	each	site	based	on	amplicon	sequencing	data	of	ribosomal	DNA.	B	932	

Scatter	plots	relative	abundance	of	H.	uvarum	as	determined	by	amplicon	sequencing	of	933	

ribosomal	DNA	(x-axis)	vs.	RNA	sequencing	(y-axis).	934	

Figure	3:	Genetic	profiles	correlate	with	vineyard,	region,	and	vintage	as	well	as	some	935	

vineyard	site	and	initial	grape	must	characteristics.	A-C)	Non-metric	Multi-dimensional	936	

Scaling	plots	of	Aitchinson	dissimilarity	of	A	bacterial	communities,	B	fungal	communities,	937	

and	C	and	transcriptomes	across	vintages.	The	closer	two	points	are	on	the	graph,	the	more	938	

similar	their	genetic	profiles	are.	D)	Vineyard	site,	region,	and	vintage	account	for	genetic	939	
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diversity	patterns	in	Analysis	of	Similarity	(ANOSIM).	R	values	represent	strength	of	940	

association,	with	higher	R	values	indicating	stronger	grouping	according	to	the	parameter.	941	

All	values	are	significant	(p	<	0.001).	E)	Percent	of	accuracy	attributable	to	different	942	

organisms	in	random	forests	models.	A	higher	percentage	of	variable	importance	was	943	

attributable	to	S.	cerevisiae	and	V.	vinifera	in	models	that	predicted	region	than	vineyard	944	

site.	F,	G)	Correlograms	representing	similarities	between	fermentation	metrics.	F	Grape	945	

must	chemical	parameters	and	vineyard	site	characteristics	were	correlated	in	the	2017	946	

and	2019	vintages.	Squares	are	labelled	with	correlation	values	from	Pearson’s	correlation.	947	

Only	comparisons	with	p	<	0.05	are	displayed.	G	Bacterial,	fungal,	and	transcriptome	948	

profiles	correlated	with	some	vineyard	site	and	grape	must	chemical	characteristics.	949	

Squares	are	labelled	with	correlation	values	from	Mantel	tests.	Only	comparisons	with	an	950	

FDR	<	0.1	are	displayed.	PPT:	precipitation,	GDD:	growing	degree	days,	MA:	malic	acid,	TA:	951	

titratable	acidity.	952	

Figure	S1:	Diversity	of	vineyards	and	ribosomal	DNA	profiles	in	this	study.	A)	Map	953	

displaying	the	15	vineyard	locations	across	eight	American	Viticultural	Areas	(AVAs)	in	954	

California	and	Oregon.	B,	C)	Bacterial	and	fungal	ribosomal	DNA	amplicon	sequencing	Chao	955	

1	and	Shannon	alpha	diversity	for	mean	species	diversity	per	vineyard	site,	averaged	956	

across	vintages.	B	Bacteria.	C	Fungi.	957	

Figure	S2:	Some	ribosomal	sequencing	variants	were	detected	across	vineyards	and	958	

vintages.	Top	20	most	abundant	ribosomal	DNA	amplicon	sequencing	variants	across	959	

vintages.	Labelled	as	genus	or	the	next	lowest	taxonomic	rank	of	classification.	A	Bacteria.	960	

B	Fungi.	Tatumella	was	the	most	abundant	bacterial	amplicon	sequencing	variant	across	961	
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vineyards	and	vintages,	while	Hanseniaspora	was	the	most	abundant	fungal	amplicon	962	

sequencing	variant.	963	

Figure	S3:	Accuracy	of	random	forests	models	using	bacterial	ribosomal	DNA	profiles.	964	

Confusion	matrices	depicting	accuracy	of	random	forests	models	built	with	bacterial	965	

ribosomal	DNA	amplicon	sequencing	data	to	predict	A)	vineyard	site	and	B)	vineyard	966	

region.	The	models	depicted	were	trained	on	two	vintages	and	validated	on	the	third.	967	

Figure	S4:	Accuracy	of	random	forests	models	using	fungal	ribosomal	DNA	profiles.	968	

Confusion	matrices	depicting	accuracy	of	random	forests	models	built	with	fungal	969	

ribosomal	DNA	amplicon	sequencing	data	to	predict	A)	vineyard	site	and	B)	vineyard	970	

region.	The	models	depicted	were	trained	on	two	vintages	and	validated	on	the	third.	971	

Figure	S5:	Accuracy	of	random	forests	models	using	RNA	sequencing.	Confusion	972	

matrices	depicting	accuracy	of	random	forests	models	built	with	RNA	sequencing	data	to	973	

predict	A)	vineyard	site	and	B)	vineyard	region.	The	models	depicted	were	trained	on	one	974	

vintage	and	validated	on	the	other.	975	

Figure	S6:	Percent	of	accuracy	attributable	to	different	organisms	in	random	forests	976	

models.		Importance	of	genes	expressed	by	different	organisms	in	the	overall	model.	A	977	

higher	percentage	of	variable	importance	was	attributable	to	S.	cerevisiae	and	V.	vinifera	in	978	

models	that	predicted	region	than	vineyard	site.	979	

Figure	S7:	Initial	yeast	assimilable	nitrogen	(YAN)	in	grape	musts	across	vintages.	980	

Black	dots	mark	the	mean	initial	YAN	value	calculated	from	all	fermentations	in	the	2017	981	

and	2019	vintages.	MEP3,	which	encodes	an	ammonia	permease,	was	important	for	982	
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predicting	the	three	regions	with	the	lowest	average	initial	YAN	(OR,	AV,	RRV)	and	the	983	

region	with	the	second	highest	initial	YAN	(SMV).	 	984	
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Supplemental	Data	Tables	985	

For	Tables	S2	–	S7:	see	accompanying	supplemental	files.	986	

Table	S1:	Accuracy	of	random	forests	models	built	with	fungal	and	bacterial	ribosomal	DNA	987	

amplicon	sequencing	data	and	transcriptome	data.	Validation	set	“30”	indicates	models	988	

that	were	trained	with	70%	of	data	and	validated	on	the	held-out	30%.	989	

Data set Model type Validation set Accuracy 

bacteria AVA 2019 0.74 

bacteria AVA 2017 0.68 
bacteria AVA 2016 0.69 
bacteria AVA 30 0.93 
bacteria site 2019 0.53 
bacteria site 2017 0.5 
bacteria site 2016 0.54 
bacteria site 30 0.93 
fungi AVA 2019 0.67 
fungi AVA 2017 0.6 
fungi AVA 2016 0.67 
fungi AVA 30 0.95 
fungi site 2019 0.33 
fungi site 2017 0.23 
fungi site 2016 0.56 
fungi site 30 0.89 
transcriptome AVA 2019 0.57 
transcriptome AVA 2017 0.63 
transcriptome AVA 30 0.87 
transcriptome site 2019 0.43 
transcriptome site 2017 0.43 
transcriptome site 30 0.67 
	990	
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Table	S8:	Species	names	and	accession	numbers	for	genomes	used	in	this	study.		991	

species accession 
Aureobasidium pullulans GCA_004917305.1 
Aureobasidium pullulans GCA_000721785.1 
Botrytis cinerea GCA_000143535.4 
Botrytis cinerea GCA_000349525.1 
Cladosporium sp. SL-16 GCA_002921095.1 
Hanseniaspora opuntiae GCA_001749795.1 
Hanseniaspora uvarum GCA_000968475.1 
Lachancea thermotolerans GCF_000142805.1 
Metschnikowia fructicola GCA_000317355.2 
Metschnikowia sp. AWRI3582 GCA_002894445.1 
Pichia kudriavzevii GCA_003054445.1 
Rhizopus stolonifer GCA_003325415.1 
Saccharomyces cerevisiae GCA_000146045.2 
Starmerella bacillaris GCA_002024125.1 
Vitis vinifera GCA_000003745.2 
	992	
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Figure S3
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Figure S4
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Figure S5
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Starmerella bacillaris
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