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Abstract

Balancing selection, an evolutionary force that retains genetic diversity, has been detected in
multiple genes and organisms, such as the sexual mating loci in fungi. However, to quantify
the strength of balancing selection and define the mating-related genes require a large number
of specimens. In tetrapolar basidiomycete fungi, sexual type is determined by two unlinked
loci, MATA and MATB. Genes in both loci defines mating type identity, control successful
mating and completion of the life cycle. These loci are usually highly diverse. Previous studies
have speculated, based on culture crosses, that species of the non-model genus Trichaptum
(Hymenochaetales, Basidiomycota) possess a tetrapolar mating system, with multiple alleles.
Here, we sequenced a hundred and eighty specimens of three Trichaptum species. We
characterized the chromosomal location of MATA and MATB, the molecular structure of MAT
regions and their allelic richness. Our sequencing effort was sufficient to molecularly
characterize multiple MAT alleles segregating before the speciation event of Trichaptum
species. Our analyses suggested that long-term balancing selection has generated trans-
species polymorphisms. Mating sequences were classified in different allelic classes based on
an amino acid identity (AAI) threshold supported by phylogenetics. The inferred allelic
information mirrored the outcome of in vitro crosses, thus allowing us to support the degree of
allelic divergence needed for successful mating. Even with the high amount of divergence, key
amino acids in functional domains are conserved. The observed allelic classes could
potentially generate 14,560 different mating types. We conclude that the genetic diversity of
mating in Trichaptum loci is due to long-term balancing selection, with limited recombination
and duplication activity. Our large number of sequenced specimens highlighted the importance
of sequencing multiple individuals from different species to detect the mating-related genes,

the mechanisms generating diversity and the evolutionary forces maintaining them.

Keywords: Balancing selection, mating loci, comparative genomics, fungi, Trichaptum
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Author summary

Fungi have complex mating systems, and basidiomycete fungi can encode thousands of
mating types. Individuals with the same mating type cannot mate. This sexual system has
evolved to facilitate sexual mating, increasing the chances to recombine into advantageous
allelic combination and prune deleterious alleles. We explored the genomes of hundred and
eighty specimens, combined with experimental mating studies of selected specimens, from a
non-model organism (Trichaptum). We characterized the genomic regions controlling sex. The
mating ability of the specimens confirmed the role of the mating alleles observed in the
genomic data. The detailed analyses of many specimens allowed us to observe gene
duplication and rearrangements within the mating loci, increasing the diversity within these
loci. We supported previous suggestions of balancing selection in this region, an evolutionary
force that maintains genomic diversity. These results supports that our fungal specimens are

prone to outcross, which might facilitate the adaptation to new conditions.
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Introduction

Balancing selection is an evolutionary force that maintains genetic diversity [1]. Due to the
importance of balancing selection to generate diversity, it has received long-term attention in
evolutionary biology [2]. Heterozygote advantage [1], pleiotropy [3], negative frequency-
dependent selection [4], rapid temporal fluctuations in climate [5], and segregation distortion
balanced by negative selection [6,7] are modes of balancing selection. These different modes
of balancing selection leave similar genomic signatures, such as an increased number of
polymorphic sites around the region under balancing selection, and sometimes an enrichment
of intermediate-frequency alleles around the selected genomic region [1]. When balancing
selection has persisted for a long period, coalescent time of alleles may predate speciation
events, and polymorphisms can become shared among distinct species, leading to trans-
species polymorphisms [8]. Phylogenetic trees for balanced regions are characterized by the
presence of long internal branches [9], and clades with a mixture of species caused by trans-
species polymorphisms [10]. The development of methods to detect the genomic footprints of
balancing selection [11-13] has unraveled, also with a low number of individuals due to
sequencing costs, multiple loci under this type of selection. Well-known examples include: the
major histocompatibility locus (MHC) in vertebrates [8]; the ABO histo-blood [14]; hon-MHC
genes, such as TRIM5 and ZC3HAV1 in humans [15,16]; self-incompatibility (Sl) loci in plants
[17,18] and self/nonself-recognition during vegetative growth in fungi [19]; multilocus metabolic
gene networks, such as the GAL network in Saccharomyces [20,21]; and sexual mating loci in
fungi [22].

In basidiomycete fungi, there are numerous examples of balancing selection acting on loci
regulating the sexual cycle [22-26]. In this phylum, the sexual cycle involves fusion
(plasmogamy) of two genetically distinct monokaryotic hyphae (n or one set of chromosomes),
generating a dikaryotic (n+n) hyphae [27-29]. The dikaryon is considered a more stable and
long-lived state than the monokaryotic phase, but there are controversies about this
assumption due to limited studies [30,31]. Due to this dikaryotic state, plasmogamy is normally
separated in time from karyogamy, the fusion of both parental nuclei [32]. In basidiomycetes,
karyogamy and meiosis normally occur in specialized structures, the fruit bodies [32]. Mating
between two monokaryotic hyphae is determined by one or two sets of multiple allelomorphic
genes in the mating (MAT) loci. Two different mating systems have evolved among
basidiomycetes, referred to as bipolar or tetrapolar mating systems [33]. Mating-type identity
in some basidiomycetes, such as Cryptococcus neoformans, and members of the sister
phylum Ascomycota i.e. Saccharomyces cerevisiae, is governed by a single MAT locus [34].
This case corresponds to the bipolar system, resembling the sexual system (male or female)
in metazoans [35]. However, the ancestor of basidiomycetes developed an evolutionary

innovation, the tetrapolar mating system, where two MAT loci regulate mating [36]. This new
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94  system hinders inbreeding more effectively, since only 25% of the spores from the same

95 individual can mate, compared to 50% for the bipolar species [37]. At the same time, having

96  multiple mating alleles in each MAT locus enables extremely effective outcrossing, where most

97  monokaryotic spores or mycelia (derived from different individuals) can establish a dikaryotic

98  mycelium when a compatible partner is found [38].

99 In strict tetrapolar organisms, the MATA locus (syn. b or HD) contains a series of linked
100 pairs of homeodomain-type transcription factor genes (HD1-HD2, syn. bW-bE), whereas the
101  MATB locus (syn. a or P/R) is composed of tightly linked G-pheromone receptors (STE3, syn.
102 Rcb, pra) and pheromones (Phe3, syn. Ph, mfa) [23,39-46]. These genes define mating type
103 identity [34], which controls successful mating and completion of the life cycle [32]. Nucleotide
104  differences in mating-related genes, without sufficient amino acid changes in key functional
105 domains, belong to the same allelic class [22]. These allelic classes define the mating type in
106 MATA and MATB. When monokaryotic (haploid) hyphae of compatible allelic classes, different
107 MATA and MATB types, conjugate, a structure involved in transferring one of the nuclei during
108 cell division can be observed, called clamp connection, indicating a successful mating [47].
109 Proteins encoded by MATA genes initiate the pairing of the two parental nuclei within
110 dikaryons, they promote clamp development, synchronize nuclear division and septum
111 formation. Proteins encoded by MATB genes coordinate the completion of clamp fusion with
112  the subapical cell after synchronized nuclear division and the release of the nucleus, which
113  was initially trapped within the unfused clamp cell [48,49]. Once monokaryons have fused, the
114  MATB proteins facilitate septum dissolution and nuclear migration [39]. Experimental crossings
115 in various basidiomycetes, such as Coprinopsis and Schizophyllum, have been used to infer
116  the number of MATA and MATB alleles, and results suggest that 12,800-57,600 mating types
117  may exist in some species [50].

118 However, the molecular confirmation and the knowledge of the diversity of such genomic
119 regions are far behind, as multiple specimens must be sequenced. One of the reasons to this
120 delay, is the high nucleotide divergence among MAT alleles, which has complicated the study
121  of molecular evolution of the fungal mating systems, where e.g. primer design has been a
122  challenge. Moreover, until now, only a limited number of specimens from different species have
123  been analyzed, mainly due to sequencing costs, limiting the quantification of the strength of
124  balancing selection, the presence of trans-species polymorphisms and the detection of mating
125 and non-mating related genes. Due to limited availability of sequenced specimens, how each
126  genes within mating loci are involved in mating is unknown.

127 Speculations about the mating system in two non-model Trichaptum sister species,
128  Trichaptum abietinum and Trichaptum fuscoviolaceum (Hymenochaetales, Basidiomycota),
129 have been done in the past, likely because their fruit bodies readily produce monokaryotic

130 spores that germinates and grows in vitro, making it easy to conduct crossing experiments in
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131 the lab [51]. Trichaptum abietinum and T. fuscoviolaceum are wood-decay fungi with
132  circumboreal distributions [52]. Although, we know their life cycle (Figure 1A), details about
133 how long these organisms spend in monokaryotic or dikaryotic states are still unknown.
134  Previous mating studies have suggested a tetrapolar mating system for Trichaptum with an
135 inferred number of 385 MATA and 140 MATB alleles in T. abietinum [53]. The mating studies
136 have also revealed that three intersterility groups (ISGs) occur in T. abietinum [50-54].
137 However, so far we have no information about the underlying genomic architecture and
138  molecular divergence of Trichaptum mating genes.

139 Here, we study the molecular evolution of the MAT genes in tetrapolar basidiomycetes,
140 using a non-model organism. By combining, full genome sequencing of a large set of new
141  established monokaryotic cultures from sporulating fruit bodies, collected at different
142  circumboreal locations, bioinformatics and in vitro crosses, we want to: i) unravel the genomic
143 location and the structure of the mating-related genes; ii) assess the allelic richness of MAT
144  genes; iii) the divergence needed among the alleles in order for the fungi to recognize different
145  mating types, then test whether the genotypic information mirrors phenotypic outcomes of in
146  vitro sexual mating; iv) and reveal molecular signals of balancing selection.

147

148 Results

149  Mating regions are highly dynamic in Trichaptum species

150 To locate the chromosomal position of MATA and MATB and the genes delimiting the
151 mating regions, we generated PacBio assembly genomes (Table 1) for one T. abietinum and
152  one . fuscoviolaceum specimen. These two species genomes differed with an average 15.7%
153 in a converted ANI (average nucleotide identity) value to divergence value (Figure 1B).

154 Both species potentially contained twelve chromosomes. The genome size of T. abietinum
155 and T. fuscoviolaceum was 49 Mbp and 59 Mbp, respectively. Both genomes were highly
156  syntenic with a few small inversions (Supplementary Figure 2). The MATA and MATB loci were
157 located on chromosomes 2 and 9, respectively. MATA homeodomains genes were flanked by
158 bfg, GLGEN on one end and MIP1 coding sequences on the other (Figure 2). The MATA
159 region, defined from bfg to MIP1, was 17.9 and 19.6 Kbp long in T. abietinum and
160 T. fuscoviolaceum, respectively. Both reference genomes contained two homeodomain
161 complexes: alpha- (aHD) and beta-complexes (bHD). In the reference T. fuscoviolaceum
162 MATA region, one homeodomain pair, the bHD1, was lost, bHD2 was inverted, and between
163 the alpha and beta-complexes there was a gene encoding an ARM-repeat containing protein
164  (Figure 2). MATB pheromone receptors and pheromones were flanked by PAK, RSM19,
165 DML1, RIC1 and SNF2 genes. All these genes together were defined as the MATB region,

166  which was 30.3 Kbp long in both species. Four putative pheromone receptors and two
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167 pheromone genes were annotated. The MATB region was syntenic between both species,
168 except an inverted block containing STE3.2 and Phe3.2 genes in the T. fuscoviolaceum
169 reference (Figure 2).

170

171  MAT genes displayed multiple alleles

172  The annotated mating genes in the reference genomes were used to search for those genes
173 in the 178 lllumina sequenced specimens, collected at circumboreal regions (Figure 3) and a
174  T. abietinum assembly downloaded from JGI (Supplementary Table 1). Trichaptum abietinum
175 was the most diverse species (average converted ANI 5.4%) (Figure 1B). MATA genes were
176 assembled in one contig for 75 T. abietinum, 25 T. fuscoviolaceum and 1 T. biforme. In the
177  case of MATB genes, genes in that region were found in one contig for 116 T. abietinum, 27
178 T. fuscoviolaceum and 1 T. biforme. For these specimens, the mating genes have potentially
179 the same chromosomal location than in our reference specimens. For the rest of the
180 sequenced specimens, the mating genes were found in multiple contigs due to assembly
181 limitations using short reads. Most of those fragmented mating regions might be organized as
182 in our reference specimens; however, we observed unexpected coding sequences for 6
183  specimens in the MATA region and 2 specimens in the MATB region, which could suggest that
184  these regions have split and were translocated to different chromosomes or positioned in a
185 new chromosomal location (Supplementary Table 2).

186 An initial analysis of nucleotide conservation of the mating regions indicated that flanking
187  genes were conserved, as well as STE3.1 and STE3.3. However, the rest of putative mating
188 genes were highly diverse (Figure 4). Gene order comparison among specimens highlighted
189 that the most common MATA and MATB syntenic blocks were both present in T. abietinum
190 andT. fuscoviolaceum, and the frequent MATB syntenic block was present in the three species
191  (Figure 5). Trichaptum biforme and five other Trichaptum specimens, differentiated from the
192  most frequent MATA configuration by the presence of a hypothetical protein (Figure 5A). All
193 this suggest that the most frequent MATA and MATB gene configurations, represented in
194  Figure 2 for T. abietinum, were present in the ancestor of these three Trichaptum species. The
195 gene order of HDs in the alpha complex was conserved among all Trichaptum specimens.
196 However, frequent inversions of the bHD2 gene and absence of one of the two bHD genes
197  were detected. An interesting observation was the presence of an additional HD2 gene (xHD2)
198 upstream the alpha complex in six T. abietinum specimens (Figure 5A). The coding sequence
199 of xHD2 looks truncated, indicating an ongoing process of pseudogenization. In the MATB
200 region, all specimens contained two pheromones, one located between STE3.1 and STES3.2,
201 and a second between STE3.3 and STE3.4. The orientation of STE3.2, STE3.4 and

202  pheromone genes varied among specimens (Figure 5B).
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203 We were able to infer several domains and motifs in mating genes. HD1 and HD2
204 homeodomain genes contained three and four exons, respectively, whereas STE3 genes,
205 characterized by the presence of seven transmembrane domains, included 4 to 6 exons.
206 Homeodomain genes were characterized by the presence of the typical homeobox domain
207  (Figure 2). In each homeodomain protein alignment, we found conserved amino acid
208 sequences in at least 75% of the protein sequences. aHD1l homeobox contained
209  WLX3XNPYPX4KX2JXsKXsWFSX,RRR and bHD1 WLXsHXPYPXKX2JX1sWFVX:RRR,
210 showing highly conserved amino acids between both proteins (underlined amino acids).
211  Similar results were found for aHD2 homeobox domains
212 WX7AX20ENX2YXPXLEXFFXEEQFPSRADKX:LAXKXGMXYRQIHVWEQNRR and  bHD2
213 WX2aFENX4PXLEXsPX2AX4LAX2SXMX3QXsWEFQNXRXR. In all four types of proteins, it was
214  common to find a tryptophan (W) at the start of the homeobox and two arginines (R) at the
215 end. Inside the homeobox domain, a conservation of a proline (P), a tryptophan and a
216  phenylalanine (F) is likely essential for the activation of the expression of target genes. The
217 nuclear localization signal was detected in HD1 proteins, with the presence of bipartite
218 sequences, KRX>SXgKR in aHD1 and KRRJX12KR in bHD1. Regions enriched in prolines are
219 indicative of putative activation domains (AD), which were conserved in HD2 proteins. The
220 potential AD region contains PXKYPPBFDX3;DP amino acids in aHD2 and PXsPX;YPPXsFP
221 in bHDZ2. Itis important to note an additional conserved region at the C-terminal of these highly
222  divergent HD1 proteins, where aHD1 contained KLXRINXLLXEAAXLQXEVF amino acids and
223 bHD1 contained KLERLX;LXEEX3JXZZEX,L. Coiled coils related with heterodimerization
224  were likely located at the N-terminal (Figure 2).

225 Using the pheromone_seeker.pl script, we were able to detect most of the pheromones.
226  However, some pheromones were not detected due to unexpected amino acids in the CaaX
227  motif (Supplementary Figure 3). We found multiple examples in both pheromones (Phe3.2 and
228 Phe3.4), where the canonical CaaX motif contained a polar amino acid (threonine), displaying
229 an uncommon CpaX motif. Most of the pheromones contained an aspartic acid amino acid
230 following the starting methionine. The presence of both aspartic and glutamic amino acids in
231 the maturation site was highly conserved in Trichaptum pheromones.

232 These results highlight that despite the dynamic nature of both mating regions (Figure 5),
233  where rearrangements and gene losses were frequent, and a high nucleotide diversity (Figure
234  4), the conservation of functional domains was essential for the activity of mating proteins.
235

236  Phylogenetic analyses demonstrate long-term balancing selection in HDs and two STE3 genes
237 To infer the evolutionary history of mating genes and the flanking genes, and to test whether
238 they agree with our species tree (Figure 1B, Supplementary Figure 1), we reconstructed

239  Maximum Likelihood (ML) individual protein trees (Supplementary Figure 4). For most proteins
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240 encoded in flanking genes and for both STE3.1 and STE3.3 proteins, phylogenetic trees
241  clustered specimens according to their species designation (Figure 6A,B, Supplementary
242 Figure 4A,B,H-L,N). However, protein trees for homeodomains (aHDs and bHDs), two
243  pheromone receptors (STE3.2 and STE3.4), MIP1 and SNF2 disagreed with the species tree
244  (Figure 6C, Supplementary Figure 4C-G,M,P,0). These trees were characterized by long
245  internal branches and a mixture of species-specific sequences in different clades. All these
246  results pointed to the presence of trans-species polymorphisms due to long-term balancing
247  selection.

248 To define mating types, we first quantified the number of clades in each phylogenetic tree
249  (see the Material and Methods section for details). The number of clades in the phylogenetic
250 trees varied from 5 to 28. Each clade was considered as a different allelic class for our mating
251  experiments (Supplementary Table 2). Sequences in the same allelic class encoded for
252  proteins with an AAI higher than 86% (Supplementary Figure 5). The highest number of allelic
253 classes was found among alpha complex homeodomain genes where we detected evidence
254  of recombination (Supplementary Table 3). Additionally, once we defined the mating types of
255  our samples, we calculated the AAI by pairwise comparisons of protein sequences of
256  specimens containing the same mating type. We detected high conservation within species for
257  all proteins (AAl = 100%), and higher conservation of pheromone receptors between species
258  (AAl > 95-98%) than for homeodomain genes (AAl > 78-83%), suggesting pheromone
259  receptors were more constrained to accumulate non-synonymous mutations compared to
260  homeodomains (Supplementary Figure 6).

261 Two alleles were found for the xHD2 protein. A ML phylogenetic tree of all HD2 sequences
262  clustered xHD2 proteins in two aHD2 allelic classes, aHD2.8 and aHD2.10. The limited
263 presence of xHD2 genes in other specimens and the high similarity of the proteins with two
264 aHD2 proteins points to two recent aHD2 gene duplications (Supplementary Figure 7).
265  Phylogenetic analyses with other fungal sequences indicated that beta complex HD proteins
266  were much older than Hymenochaetales (Supplementary Figure 8A), which was in accordance
267  with the lower identity values observed for pairwise comparisons within bHD than within aHD
268  (Supplementary Figure 5). Except alpha complex aHD1.12, the rest of aHD proteins were
269  Trichaptum-specific. A similar result can be observed for pheromone receptors, where most
270  Trichaptum pheromone receptor proteins were closely related, except two proteins, encoded
271 in STE3.2 and STE3.4 genes, which were related to pheromone receptor proteins from other
272  fungal species (Supplementary Figure 8B).

273 The geographic distribution of MATA and MATB alleles did not suggest a bias towards a
274  particular continent (Supplementary Figure 4, 9), supporting an evolutionary scenario of long-
275  term balancing selection for mating genes.

276
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277  Long-term balancing selection left footprints in the mating regions

278 To further test whether long-term balancing selection is acting on the mating regions, we
279 quantified nucleotide statistics and performed a multilocus HKA test using the mating genes
280 and a collection of universal single-copy orthologs (BUSCO) genes. We first tested the
281  reciprocal monophyletic nature of our BUSCO collection. As expected from the species tree
282  (Supplementary Figure 1B), most of our annotated BUSCO genes (eighty-three percent)
283  showed reciprocal monophyly for both species, T. abietinum and T. fuscoviolaceum, and
284  98.64% of the rest of genes (174 genes of 1026 BUSCO genes) showed complete monophyly
285 for one of the two species. This BUSCO dataset suggests a clear diversification of both
286  Trichaptum species, and supports the utility of our dataset to set the neutral evolution values
287  of the next analyzed nucleotide statistics.

288 We observed an elevated number of the average number of synonymous substitutions per
289  synonymous sites (median dS > 1.71) and non-synonymous substitutions per non-
290 synonymous sites (median dN > 0.22) for the mating genes compared to the flanking and
291 BUSCO genes (Supplementary Figure 10, median dS < 0.55, median dN < 0.10). dS and dN
292 values in mating genes were more than 20x and 3x higher than values for BUSCO genes,
293  respectively (Supplementary Table 4). This was an additional support that balancing selection
294  acts on the mating regions. Moreover, similar levels of dS and dN (Supplementary Figure 10,
295 ratio comparison of 0.95-1.03) were observed within and between species in pairwise
296  comparisons of mating genes, indicating that these polymorphisms were not species-specific
297  and recent introgressions were not involved in the generation of trans-species polymorphisms.
298 This was coherent with a scenario where alleles segregated before the diversification of the
299  species. It is important to note that dS and dN values for two putative receptors, STE3.1 and
300 STE3.3, differed from the other mating genes and that they displayed similar low values as
301 mostflanking and BUSCO genes (Supplementary Figure 10). In addition, for these two putative
302 non-mating pheromone receptor genes, the dS and dN values were 1.41-3.17 times higher
303 between than within species pairwise comparisons, as we would expect if most of the
304 mutations accumulated after the speciation of T. abietinum and T. fuscoviolaceum. MIP1 and
305 SNF2 dS values were slightly more elevated than BUSCO genes (Supplementary Table 4),
306 but values from between species comparisons were more elevated than within pairwise
307 comparisons (Supplementary Figure 9). This indicates that the elevated dS values are caused
308 by linkage disequilibrium, where the effects of balancing selection in the closest mating gene
309 are not completely broken by recombination.

310 To infer whether other nucleotide statistics supported balancing selection, we explored gene
311  values deviating from the rest of the genome (Figure 7). Homeodomain (HD1s and HD2s) and
312 pheromone receptor genes (STE3.2 and STE3.4) deviated from the distribution of 99% of

313 values in at least four nucleotide statistics (elevated pi/dxy ratio, high dS values, low Fst and

10
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314  high Tajima’s D), all in agreement with a balancing selection scenario maintaining trans-
315  species polymorphisms for multiple alleles (Figure 7).

316 Five BUSCO genes were detected in at least two statistics, deviating from the rest of the
317 genome (Figure 7). Those five genes were also detected to show a phylogenetic topology
318 incongruent with a complete reciprocal monophyly, except 18163at155619 where only
319 T. fuscoviolaceum specimens were monophyletic (Supplementary Figure 11). The detected
320 genes encoded for an acetolactate synthase (27296at155619), a ribosomal protein L38e
321  (52145at155619), a non-specific serine/threonine protein kinase (6755at155619), a protein
322  kinase-domain-containing protein (18163at155619) and a NF-kappa-B inhibitor-like protein 1
323 (41864at155619).

324

325 Distinct mating allelic classes generate compatible mating crosses within species

326 Based on our allelic class classification (Supplementary Figure 4, Supplementary Table 2,
327  Material and Methods section) we defined the mating types. We tested the outcome of crosses
328 between selected monokaryons from the same species and between species (Supplementary
329 Table 6). We assumed a successful mating when clamp connections were formed
330 (Supplementary Figure 12). Our expectations, based on the molecular characterization, were
331 confirmed in all the performed within species crosses. Crosses using monokaryons with
332 identical MATA alleles did not generate clamps when MATB alleles were expected to be
333 compatible, and vice versa. These results demonstrate that identical (AAI > 86%) MAT alleles
334  generate the first mating barrier. We also included some monokaryons derived from the same
335 dikaryotic isolate (Supplementary Table 2), where most of them showed at least a pair of
336  compatible MATA alleles and/or MATB. These monokaryons helped us to unfold the original
337 allelic class composition of the parental dikaryon (Supplementary Table 2). Due to the unlinked
338 nature of MATA and MATB regions and limited number of studied monokaryons from the same
339 dikaryon, some monokaryons had identical mating types, thus did not reveal the original mating
340 type composition of the parental dikaryon.

341 No clamps were observed in crosses between species with compatible mating types
342  suggesting other mechanisms are involved in the generation of pre-zygotic barriers between
343  Trichaptum species.

344

345 Discussion

346  Mating genes diversity was maintained by balancing selection

347 Retaining multiple mating alleles appears to be beneficial as it promotes outcrossing [36].
348  The multiallelic character of mating types promotes a potential outcross event to occur in 98%

349  of crosses [36,55]. How this mating diversity originated is not clear, but we demonstrated that
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350 some levels of recombination and duplications might play a role. Fifteen recombinant variants
351 in the alpha complex and two recent aHD2 duplications were detected in Trichaptum. It was
352  previously thought that recombination was suppressed or limited in the mating regions [56],
353 and that duplication and diversification events were limited to Agaricales [42]. Recombination
354 is suppressed by the presence of inversions and/or gene losses, which might generate
355  hemizygous specimens, observed in mating loci and genomic regions under balancing
356  selection [57]. The rearrangements observed in our Trichaptum beta complex brings another
357 layer of complexity to MATA region, which is comparable to the complexity previously
358  described for MATB genes [36]. Rearrangements in both MAT loci might be an important factor
359  suppressing recombination in these genes. On the contrary, the gene order conservation of
360 the alpha complex does not completely suppress recombination, in accordance with evidence
361 of ongoing recombination between mating genes [58] and their flanking genes in other fungal
362  organisms [59]. Our observations highlight how studying a high number of specimens of the
363 same species, as we have done here for the first time in fungal literature, can unravel
364  previously underestimated mechanisms that generate diversity in mating genes.

365 We have demonstrated that balancing selection is likely the main force retaining genetic
366 diversity in the mating genes. Evidence of balancing selection has been proposed for
367 homeodomain genes in the pathogenic root decay fungus Heterobasidion (Russulales) [26],
368 as well as in pheromone receptors of Mycrobotryum species (Mycrobotryales) [24]. The action
369 of balancing selection in Trichaptum and in other fungi appears to have occurred before the
370  speciation event, generating multiple cases of trans-species polymorphisms [26]. The genetic
371 signatures of balancing selection highlighted that two pheromone receptors in Trichaptum
372  specimens are likely non-mating genes, this could only have been unraveled by including
373  multiple specimes as we have done here. In Agaricomycotina, it is frequent to detect multiple
374  pheromone receptors, some of them not involved in mating functions [40,42,60]. The role of
375 these non-mating pheromone receptors will deserves further investigation.

376 It has long been speculated about the action of balancing selection in the MATA flanking
377 gene, MIP1 [25,59]. MIP1 encodes a mitochondrial intermediate peptidase 1, which is a thiol-
378 dependent metallopeptidase involved in the last step of protein maturation targeted to the
379  mitochondria, where MIP1 cleaves off an octapeptide of immature proteins [61]. The genomic
380 footprints detected in MIP1 are likely due to the action of linkage disequilibrium, as MIP1 is
381 close to the beta complex HD genes. It has been speculated that MIP1 signals of balancing
382  selection might be due to a role in mating, such as MIP1 involvement in mitochondrial
383 inheritance, functioning as a suppressor of selfish mtDNA [62]. However, this function is not
384  well-supported. Other genes encoding proteins involved in mitochondrial functions have been
385  found linked to mating genes [59]. In T. abietinum and T. fuscoviolaceum, we found RSM19, a

386  37S ribosomal protein S19, linked to MATB. However, we did not detect signals of balancing
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387  selection in this gene. In addition, some signals of balancing selection were detected in SNF2,
388 a gene located in the MATB region, encoding a DNA-dependent ATPase protein. The
389 analogous signals of balancing selection between SNF2 and MIP1 might support that the
390 balancing selection signal in both genes is due to linkage disequilibrium, and the signal is just
391 aconsequence of the action of balancing selection in the neighbor mating genes [59].

392

393 Mating genes and organization resembles other basidiomycetes suggesting similar origin

394 Sampling and studying the genomes of a wide collection of Trichaptum specimens have
395 unraveled the dynamic nature of mating gene architectures. With two homeodomain
396 complexes, Trichaptum MATA gene organization is similar to other Hymenochaetales, such
397 as Phellinus lamaoensis, Phellinus sulphurascens (both species from the Phyrrhoderma
398 genus) and Schizopora paradoxa [63]. In other Hymenochaetales species, such as
399 F. mediterranea and Porodaedalea pini, the location of GLGEN gene is more distant and
400 interrupted by multiple ORFs [63,64]. Notably, the Phyrrhoderma species and F. mediterranea
401 [63,65] are bipolar, in contrasts to the tetrapolar Trichaptum specimens. Trichaptum and other
402 Hymenochaetales species, such as Hypodontia and S. paradoxa, have conserved the
403 ancestral tetrapolar system of basidiomycetes [36]. According to mating studies, the formation
404  of clamp connections is facilitated by the presence of at least one different allele at one of the
405  multiple MATA HD complexes and one at the MATB P/R loci. Here, we demonstrated by
406  mating experiments and genomic analyses that protein identity must be lower than 86% to
407  function as different mating type, although important protein domains and motifs are
408 conserved.

409 We inferred that around 224 MATA types (28 alpha x 8 beta) and 65 MATB types (5 STE3.2
410 x 13 STE3.4) are present in Trichaptum species, which indicates around 14,560 mating types.
411  These numbers are close to the estimated number of alleles, 20,000 mating-types, in a
412  previous study of T. abietinum [50], suggesting that our sequencing efforts molecularly
413  characterized most of the Trichaptum mating alleles. In other tetrapolar basidiomycete species,
414  such as the model species Coprinopsis cinerea and Schizophyllum commune, the number of
415  mating types is also similar, around 12,800 (160 MATA x 81 MATB) and 23,328 (288 MATA x
416 81 MATB), respectively [51]. We inferred that beta complex HD alleles were segregating in
417  other Agaricomycetes, suggesting that these HD proteins are much older than alpha HD, a
418  result that is supported by the ongoing recombination events in the alpha HD. Moreover, we
419 cannot discard that alpha complex alleles may be exclusively specific of Trichaptum. Allele
420 aHD1.12 points to potential alpha complex alleles segregating in other Hymenochaetales, but
421  just thirteen Hymenochaetales species have been genome sequenced, and usually only one
422  representative of each species, except for the three sequenced Pyrrhoderma noxium

423  specimens. Thus, there are few available genomes to compare.
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424 A new pheromone motif containing a polar amino acid in CaaX motifs was detected by our
425  sequencing efforts. We are not aware of CpaX motifs in other Basidiomycetes, although this
426  motif was observed in pheromones of some Ascomycetes species [66,67]. The whole genome
427  sequence of other Hymenochaetales and other fungal orders, and the increased number of
428  specimens from multiple species, will clarify the evolutionary history of the alpha complex and
429  protein patterns observed here.

430

431  Trichaptum - a candidate model system for genomics

432 Using whole genome sequencing, we confirmed the sister species relationship between
433  T. fuscoviolaceum and T. abietinum, as suggested in previous studies using few molecular
434  markers [68—70]. Trichaptum biforme is an early divergent species. Our dataset contributes
435  with a large number of genome assemblies from two non-model species.

436 The existence of at least two North American intersterility groups (ISGs) that are partially
437  compatible with a third European group in T. abietinum indicates three potential differentiated
438 lineages [52-54]. Even though we did not perform a population genomic analysis in this study,
439  multiple well-differentiated clades can be inferred in our ANl and BUSCO phylogenetic species
440  trees, supporting some population structure in our specimen collection. The presence of ISG
441  in T. fuscoviolaceum is not previously confirmed based on mating studies [52,54]. However,
442  we hypothesize that there are at least two potential lineages due to the presence of two well-
443  differentiated T. fuscoviolaceum clades, as suggested by Seierstad et al. [52]. ANI dissimilarity
444  values between these lineages were nearly as high as values detected in T. abietinum,
445  supporting the hypothesis about population structure in T. fuscoviolaceum. However, the
446  difference in the levels of populations and the presence of clear ISG in one species and not in
447  the other might be the reason of the differences in the distribution of Tajima’s D values, with
448  more BUSCO genes with negative Tajima’s D values in T. abietinum than in T. fuscoviolaceum.
449  These results highlight how Trichaptum species are suitable for population genomic studies
450 and has the potential to offer new insights into mechanisms of speciation in fungi and how
451  evolutionary mechanisms shape the genome.

452

453  Conclusion

454  We have demonstrated the importance of sequencing several specimens of fungal species to
455  detect mating-related genes, and to unravel the strength and footprints of long-term balancing
456  selection in mating genes. Events previously thought of as uncommon in mating genes, such
457 as recombination and duplications, have been detected in mating-related genes with
458  conserved gene order. Our Trichaptum dataset highlights how diverse and dynamic the mating

459 loci are. These mating genes play a fundamental role in promoting outcrossing events and
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460 have consequently been targets of long-term balancing selection. The action of balancing
461  selection leaves signatures of multiple trans-species polymorphisms beyond the genus level.
462  Comparative genomics and phylogenomics were important tools to locate mating genes and
463  characterize the number of alleles retained by balancing selection. Mating proteins with less
464  than 86% identity generated compatible mating types, as we demonstrated by experimental
465  crosses. Despite the number of alleles and the high diversity among them, important domains
466  and motifs are still conserved due to their critical role during the life cycle. Questions regarding
467 the effects of mutations in the interaction between homedomain proteins or receptors and
468 pheromones, especially the presence of non-aliphatic amino acids in the CaaX motif (i.e. a
469  CapX motif), and which role the linked mating genes, such as MIP1, are playing during the life
470 cycle are exciting areas of research. Our new sequenced collection of T. abietinum and
471  T. fuscoviolaceum makes a step-forward to re-establish these fungal organisms as a model
472  system in evolutionary research.

473

474  Material and Methods

475  Trichaptum collection

476 A total of 180 Trichaptum specimens from the northern hemisphere were included in the
477  study: 138 T. abietinum, 41 T. fuscoviolaceum and one T. biforme (Supplementary Table 6).
478  Specimen GPS coordinate format conversion was generated with GMScale 0.5.1 to plot the
479  specimen geographic distribution in R, using ggmap 3.0.0, ggplot2, ggrepel 0.8.2,and
480 mapdata 2.3.0. These specimens were dikaryons (n+n) due to the ability to form fruiting
481  bodies. This result suggest these Trichaptum specimens spend most of the time in a dikaryotic
482  state.

483

484  Monokaryon generation and genomic DNA isolation

485 To facilitate the study of highly diverse regions, such as the mating loci, and to rid out of
486  heterozygosity issues in other genomic regions we established monokaryotic cultures.
487  Monokaryotic cultures were made by hydrating dried field collected specimens in the lab, and
488  collecting single spores that were ejected from these moist fruit bodies onto 3% malt extract
489  agar plates with 10 mg/L tetracyclin, 100 mg/L ampicillin, 25 mg/L streptomycin and 1 mg/L
490 benomyl. Germinated single spores were transferred to new 3% malt extract agar plates with
491 identical mixture of antibiotics and benomyl. Before DNA extraction, monokaryon cultures were
492  grown for 2-3 weeks on nitex nylon (Sefar AG, Heiden, Switzerland) on 3% malt extract agar
493 plates. Two different DNA extraction protocols were used depending on the sequencing
494  protocol. For lllumina sequencing, tissue from 1/4" plate was scraped off the nylon and directly

495  homogenized in 2 ml Lysing Matrix E tubes (MP Biomedicals, Santa Ana, CA, USA) on a
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496 FastPrep-24 (MP Biomedicals, Santa Ana, CA, USA) for 2 x 20 seconds at 4.5 m/s?. Genomic
497  DNA was extracted using the E.Z.N.A HP Fungal DNA kit (Omega Bio-Tek, Norcross, GA,
498  USA) supplemented with 30 pl RNaseA (Qiagen, Hilden, Germany). For PacBio sequencing,
499  tissue from 10 plates were scraped off the nylon and directly homogenized in a mortar with
500 liquid N2. Genomic DNA was extracted using a phenol-chloroform protocol followed by a macro
501 (500 pg) Genomic tip (Qiagen, Hilden Germany) protocol, as described in Skrede et al [71].
502

503 Genome sequencing and assembly

504 In order to get the chromosome location and sequences of mating genes, we first lllumina
505 sequenced and provided the first PacBio sequences for the Trichaptum genus. We sequenced
506 one specimen from T. abietinum (TA-1010-6-M1) and one from T. fuscoviolaceum (TF-1002-
507 10-M3) (Supplementary Table 1).

508 lllumina libraries were generated by the Norwegian Sequencing Centre using the following
509 protocol: 1 ug of genomic DNA was sheared using 96 microTUBE-50 AFA Fiber plates (Covaris
510 Inc., Woburn, MA, USA) on a Covaris E220 system (Covaris Inc., Woburn, MA, USA). The
511 target fragment size was 300-400 bp. gDNA samples were cleaned on a small volume
512  Mosquito liquid handler (TTP labtech) with a 1:1 ratio of Kapa Pure beads (Roche, Basel,
513  Switzerland) and eluted in Tris-Cl, pH 8.0. Library preparation was carried out with 500 ng
514  sheared DNA using Kapa Hyper library prep kit (Roche, Basel, Switzerland). Barcodes were
515 added using the lllumina UD 96 index kit (Illumina). Final libraries were PCR-amplified during
516 5 cycles with Kapa HIFI PCR kit (Roche, Basel, Switzerland) before standard library quality
517 control with standard sensitivity NGS Fragment kit (Agilent, Santa Clara, CA, USA).
518 Quantification was performed in a gPCR with Kapa Library quantification kit (Roche, Basel,
519  Switzerland). The first batch of library specimens were sequenced with HiSeq 4000 system,
520 and the second with NovaSeq | (Supplementary Table 1). 2x150 paired-end lllumina reads
521  were generated by both systems. Barcodes and adapters were trimmed from final lllumina
522  sequences using Trim galore 0.6.5 [72].

523 PacBio libraries were prepared by the Norwegian Sequencing Centre using Pacific
524  Biosciences Express library preparation protocol (Pacific Biosciences of California, Inc, USA)
525  without any prior fragmentation. Size selection of the final PacBio libraries was performed using
526  BluePippin (Sage Science, Beverly, USA) and 15 Kbp cut-off. PacBio libraries were sequenced
527 onone 1M SMRT cell using Sequel Polymerase v3.0 and sequencing chemistry v3.0. Loading
528 was performed by diffusion and movie time was 600 min for T. abietinum and 900 min for both
529 T. fuscoviolaceum runs.

530 We assembled the genome of T. abietinum using PacBio reads by different assemblers:
531 Flye 2.6 [73],Canu 1.9 [74], MECAT2 [75], SMARTdenovo 1.0.0 [76] and wtdbg2 2.5

532  [77]. Quality of the draft PacBio genome and percentage of consensus between draft genome
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533 and lllumina reads were quantified by quast 5.0.2 [78] and polca [79], respectively. The
534  best draft PacBio assembly based on the previous quality statistics was selected and lllumina-
535 corrected using HyPo [80]. Scaffolds with less than 100 PacBio reads of support and less than
536 10 Kbp of length were removed from the final corrected genome assembly. T. abietinum
537 ultrascaffolding was done using a Hymenochaetales species, P. noxium KPN91 PacBio
538 genome assembly, as reference (Accession number GCA002287475, [81]. We first checked
539 chromosome correspondence using D-Genies [82] and manually ultrascaffolded in
540 Geneious 6.1.6 [83]. Chromosomes were named according to P. noxium chromosome
541  similarity. We applied the same pipeline to the T. fuscoviolaceum PacBio assembly, except
542  that ultrascaffolding was performed using RaGOO [84], and the T. abietinum PacBio genome
543 assembly as reference. Visual inspection of syntenic comparisons were performed using
544 mummer 3.23 [85] and D-Genies. This approach allowed us to correct the order of the
545  ultrascaffolded chromosome 3 of T. abietinum. We assumed that the chromosome 3 order
546  must be more similar between sister-species T. abietinum and T. fuscoviolaceum than
547  between T. abietinum and P. noxium. In both Trichaptum assemblies, ultrascaffolded
548 chromosomes contain artificial 10,000 Ns separating joined scaffolds. Assembly statistics of
549 the final genomes, such as N50, genome size, and completeness of universal single copy
550 orthologous genes, were assessed using quast and BUSCO 4.1.2 [86]. The training BUSCO
551 database was agaricomycetes odbl0, which contains 2898 genes.

552 Genomes of the 178 specimens, sequenced by the Illumina platform, were assembled with
553  iWGS wrapper [87]. We selected sPAdes 3.14 [88] assemblies based on quast quality
554  reports. Genome completeness was assessed with BUSCO. In addition, we included a DOE
555 Joint Genome Institute (JGI) MycoCosm lllumina-sequenced and assembled T. abietinum
556  specimen (L15831, [89].

557

558  Trichaptum species classification and species tree reconstruction

559 Species designation of our specimens was first supported based on a fast method,
560 fastANI 1.1 [90]. With fastANI, we calculated the pairwise average nucleotide identity
561 (ANI) among genome assemblies, whose values were then converted to a percentage
562  dissimilarity matrix by subtracting ANI from a value of 100%. The dissimilarity data was used
563 as distance to reconstruct a Neighbor-Joining (NJ) phylogenetic tree in MEGA v5 [91].

564 The utilization of gene nucleotide and amino acid sequences of universal single copy
565  orthologs annotated with BUSCO assessed the species designation by fastANT. Individual
566  BUSCO protein alignments were generated with MAFFT 7.455 [92]. Amino acid alignments
567  were back translated to nucleotides using pal2nal v14 [93]. Codon columns with gaps were

568 removed from the alignments using trimal 1.4.1 [94]. Gene sequences present in all
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569  specimens that retained at least 30% of positions and with more than 300 nucleotides (100
570 amino acids) were selected for additional analyses. In total, 1026 BUSCO genes (35% of the
571 genes) passed our filters. Maximum Likelihood (ML) phylogenetic trees of trimmed genes were
572  reconstructed using IQTree 2.0.3 [95]. The best fitted evolutionary nucleotide model for
573 each gene was estimated by ModelFinder [96] implemented in TQTree. Individual gene
574  trees were pooled in a unique file, which was the input to reconstruct the species tree by
575 applying a coalescent model implemented in ASTRAL 5.7.4 [97]. Species tree branch
576  support was assessed by calculating the gene concordance factor implemented in IQTree.
577  To assess reciprocal monophyly of BUSCO genes, ML phylogenetic trees were read in R using
578 treeio v1.12[98]and convertedto ape v5.4 format [99]. Once species designation were
579 associated to phylogenetic tip labels, the trees were rooted using T. biforme specimen as an
580 outgroup. Monophyly test was performed using spider v1.5 [100]. ML phylogenetic trees
581 of BUSCO genes detected as top 1% in at least two nucleotide diversity statistics (see below)
582  were drawn to a pdf using ggtree v2.2.4 [101].

583

584  Mating gene annotation, alignments and phylogenetics

585 Mating regions encoding the genes involved in the sexual cycle are conserved among
586  basidiomycetes [36]. We first searched for conserved flanking genes to delimit the mating sites
587 in our new PacBio genomes. Mating A (MATA) region was located using MIP1 (mtDNA
588 intermediate peptidase), bfg (beta-flanking gene) and GLGEN (Glycogenin-1) gene
589  sequences. Mating B (MATB) region was delimited using PAK (syn. CLA4, serine/threonine
590 protein kinase). We found both mating regions by performing a blast search in Geneious
591 [102] using P. noxium flanking gene sequences as subject. Delimitation of genes and coding
592  sequences in mating regions were performed using FGENESH and the P. noxium gene-finding
593 parameters [103]. Some annotated open reading frames (ORFs) required manual curation.
594 ORFs were blastx in NCBI to confirm the gene designation. An additional annotation
595 comparison to infer the number of exons in different ORFs was done using MAKER2 [104],
596  where we included the transcriptome dataset of L15831 T. abietinum as input [89].

597 The annotation of domains and motifs was performed using different strategies. Typical
598 homeodomain/homeobox domains in HD proteins were annotated with CD-search using the
599 CDD v3.18 — 55570 PSSMs database [105]. To differentiate HD1 and HD2 genes, we first
600 screened the nuclear localization signal (NLS) domain using NLS Mapper [106]. NLS is
601 characteristic of HD1 proteins [39,107,108]. Conserved regions enriched in proline amino acids
602  were suggested as potential regions for activation domains (AD) for homeodomain proteins
603 [109]. Coiled coil regions involved in the dimerization of the two homeodomain proteins were

604  detected with Coiled coils wv1.1.1 Geneious plugin. Proteins with seven-
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605 transmembrane G protein-coupled receptor superfamily domains are usually indicative of
606  STE3 pheromone receptors [110]. The 7 transmembrane domains of the pheromone receptor
607  protein were annotated with PredictProtein [111]. Pheromones were screened in close
608  proximity to the detected pheromone receptors using pheromone seeker.pl script [112].
609  Briefly, the perl script searches common aminoacid features in pheromones, such as the CaaX
610 (C, cysteine; aa, two aliphatic amino acids; X is any amino acid) motif in the C-terminal of the
611 pheromone [40,60]. Hits with a length shorter than 100 bp or longer than 200 bp, and/or distant
612 to STE3 genes were considered as false positives. Consequently, we removed those hits from
613 the annotations. Additionally, pheromones in specimens missing at least one hit close to
614 STE3.2 or STE3.4 were manually searched using pheromone amino acid sequences of
615 specimens in the same clade for STE3.2 or STE3.4 phylogenetic trees. Pheromone maturation
616  sites were located by searching glutamic/arginine (ER) or aspartic acid/arginine (DR) amino
617  acid motifs [39].

618 Once we had annotated the mating regions in our PacBio reference specimens, we were
619 able to search for these genes in the lllumina sequenced and assembled genomes of the rest
620 of specimens. We first generated local blast databases for our lllumina genomes. We BLASTed
621 the reference flanking genes to pull out the mating regions. In case a mating region (MATA or
622 MATB) was not contiguous (<44% and <20% of specimens for MATA and MATB, respectively),
623  but split on different contigs, we assumed those regions kept the same gene order as in the
624  PacBio reference genomes, and we ultrascaffolded the contigs for each mating region
625 accordingly. 999 Ns were added between joined contigs. Similar to the PacBio genome
626  assemblies, we defined the mating regions to the scaffold/ultrascaffolded segment containing
627  sequences from bfg to MIP1 for MATA region, and from PAK to SNF2 for MATB. Once regions
628  were located and/or ultrascaffolded, we used the previous FGENESH pipeline for annotating
629 ORFs. Gene identification was performed by BLASTing the genes from our reference genomes
630 against the mating regions. Additional identification was performed by searching family
631 matches in the InterPro-5-RC6 database [113]. All annotations were stored in gff3 files
632 generated by Geneious. Due to limitations of our lllumina sequencing some genes in the
633  mating regions were not detected probably because they were not covered by the lllumina
634 reads.

635 For calculating the frequency of each unique gene block for each region, we followed a
636  conservative approach. We took into account only mating regions that were assembled
637  contiguously by spAdes and did not need an ultrascaffolding step. The criteria applies from
638 bfg to MIP1 (MATA) and from RIC1 to SNF2 (MATB) genes. Gff3 files were the input to plot
639 MAT gene order in R using dplyr 1.0.2, gggenes 3.3.2, ggplot2 3.3.2, and
640 rtracklayer 1.48.0.
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641 To calculate the nucleotide identity conservation of mating regions, we first aligned MATA
642 and MATB sequence regions independently using FFT-NS-1 algorithm, 200PAM/k=2 score
643 matrix and default gap opening penalty and offset value with the MAFFT 7.017 version
644  implemented in Geneious. Gaps present in more than 20% of specimens were removed with
645 trimal. Identity plots for each region was generated in Geneious.

646 For phylogenetics, we first generated amino acid sequence alignments using MAFFT and
647  back translated to nucleotides with pal2nal. Again, we were conservatives and codon
648  columns with gaps were removed from the alignments using trimal. The trimmed alignment
649 was converted to amino acid for ML phylogenetic tree reconstruction with 1QTree. An
650 evolutionary protein model for each protein was estimated by ModelFinder. Homeodomain
651 and pheromone receptors were classified in clades/alleles according to visual inspection of ML
652  phylogenetic trees and pairwise amino acid identity percentages calculated in Geneious. Note
653  here that alleles/allelic classes refer to similar protein sequences enclosed in a clade and not
654  to haplotype sequences.

655 Mating genes, flanking genes and the species tree were plotted with iTOL, 5.7 [114]. T.
656  biforme was used as the outgroup to root the trees when possible. To detect whether a mating
657 related gene was segregating before the speciation event, we selected a random protein
658 sequence of each allelic class to infer the phylogenetic relationship with proteins from other
659 Hymenochaetales species, two reference species of Agaricales and one species from
660 Polyporales.

661

662  Nucleotide statistics, tests to detect balancing selection and recombination

663 Trimmed codon-based sequence alignments of mating genes, their flanking genes and
664 BUSCO genes were the input for the calculation of nucleotide statistics. Pairwise sequence
665  estimation of synonymous and nonsynonymous substitution rates were calculated using the
666 model of Yang and Nielsen [115] implemented in the yn00 program of PAMI. 4.9 [116]. We
667  calculated nucleotide statistics, absolute nucleotide divergence (dxy) and relative divergence
668  (Fst) using the PopGenome 2.7.5 package in R 4.0.2 [117]. Sequences were split in
669  different alignments based on the species designation inferred from the species tree
670 phylogeny. Each species-specific alignment was the input to calculate nucleotide diversity (1,
671 Pi)and Tajima’s D using PopGenome. A multilocus test for detecting balancing selection was
672 performed with HKAdirect 0.70b [13]. We generated species-specific input tables for
673 HKAdirect using PopGenome. The input tables consisted of the number of samples (nsam),
674  segregating sites (S), absolute divergence (Divergence) and length for each species-specific
675 gene (length_pol and length_div). We set factor_chrm to 1 because our genes are encoded in

676 the nuclear genome. The input tables were necessary to run the multilocus test.
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677 dS and dN boxplots, and genome-wide gene nucleotide statistic plots were generated in R
678 using cowplot 1.0.0, dplyr, ggplot2, ggrepel, PopGenome, reshape2 1.4.4, and
679 rtracklayer.

680 To detect evidence of recombination, homeodomain and pheromone receptor individual
681 nucleotide alignments were analyzed in RDPv4 [118]. Recombination events significantly
682  detected by all seven methods (RDP, GENECONV, Bootscan, Maxchi, Chimaera, SiSscan
683 and 3Seq) were reported.

684

685  Monokaryon specimen crosses

686 To test the compatibility of allelic classes designation for MATA and MATB alleles, we
687  designed putative compatible and incompatible mating type crosses (Supplementary Table 5).
688 MATA mating type is defined by the allelic class classification of the two complexes. HD1 and
689 HDZ2 genes of the MATA complex were highly linked, so they can be treated as a unique unit.
690 For example, aHD1.9 and aHD2.1 defined alphaMATA-1. Now, the combination of
691 alphaMATA-1 with a beta complex can give different MATA mating types. For example, MATA-
692 2 was defined by alphaMATA-1 plus betaMATA-2. There are 28 alpha and 8 beta complex
693  allelic classes generating around 224 MATA types. Similarly, MATB mating type is defined by
694 the allelic classes of the pheromone receptors, i.e MATB-52 is defined by STE3.2-5 and
695 STE3.4-10. There are 5 and 13 STE3.2 and STE3.4 pheromone receptor allelic classes,
696  respectively, generating around 65 MATB types. Finally, a mating type MAT-2 is generated by
697 the combination of MATA-2 and MATB-52. Due to the presence of 224 MATA and 65 MATB,
698  this suggest around 14,560 mating types. The mating classification numbering is arbitrary. For
699 that reason, for simplicity, our selected candidates were described as having or not having a
700 compatible alpha/beta complex and STE3.2/STE3.4 (Supplementary Table 6). We expected a
701  compatible cross when one of the MATA complexes and one of the pheromone receptors were
702  from distinct allelic classes among the selected specimens.

703 A total of 21 and 10 crosses were designed for crosses within T. abietinum and T.
704  fuscoviolaceum, respectively, and 10 crosses between both species. Crosses were performed
705 by plating monokaryons on 3% malt extract agar plates at 4 cm distance between the two
706  monokaryons. After 2-4 weeks, hyphal growth generated contact zones between both
707  monokaryons. Then, a small piece from the middle area of the contact zone was extracted and
708 re-plated on a new 3% malt extract agar plate. After one week of growth, we examined clamp
709  connections by placing a sample of the culture on a slide under a Nikon Eclipse 50i (Nikon
710 Instruments Europe BV, Amsterdam Netherlands). Images of the microscopic slides were
711 acquired under a Zeiss Axioplan-2 imaging with Axiocam HRc microscope camera (Zeiss,

712  Oberkochen Germany). All crosses were performed in triplicates.
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713
714  Bioinformatic tools
715 All bioinformatic tools, programs and most scripts were implemented in UNINETT Sigma2

716  SAGA High-Performance Computing system (technical details here: https://bit.ly/2VKIXM2),

717 except most R steps. R analyses were performed in Windows 10 operative system,
718 implemented in RStudio 1.3.1073 withan R version 4.0.2. Bioinformatic tools were
719 installed through conda [119] under the SAGA module Anaconda2/2019.03. Non-
720 computational demanding and/or simple python steps were implemented in Jupyter
721 notebooks using python modules installed through conda under Windows 10 Anaconda
722 1.9.12 version.
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1063  Figure 1. Trichaptum abietinum and T. fuscoviolaceum are sister-species.
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1065 A) Schematic representation of the Trichaptum life cycle. As an example, allelic classes, for
1066 MATA and MATB, generating two compatible mating types are indicated. B) Schematic
1067  Neighbor-Joining (NJ) phylogenetic tree reconstructed using 100 - ANI values. More detailed
1068 (uncollapsed species clades) NJ and ASTRAL phylogenetic trees can be found in
1069  Supplementary Figure 1 and in iTOL: https://itol.embl.de/shared/Peris_ D. The number of

1070  specimens (n) and the average 100 - ANI within species are indicated for each species clade.
1071 The L15831 genome is included increasing the T. abietinum collection to 139 specimens.
1072 Dashed arrows indicate the average 100 - ANI of pairwise specimen comparisons for the
1073 compared species. Colors highlight the species designation after the whole genome
1074  sequencing analysis.
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1080 Figure 2. Two homeodomain complexes in MATA and four putative pheromone receptors in MATB were detected in T. abietinum and

1081 T. fuscoviolaceum.
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1082
1083  Schematic representation of the gene composition and direction in both PacBio reference genomes. Homeodomain, pheromone and pheromone

1084  receptors genes are represented as indicated in the legend. The rest of the genes were colored in black, and the gene names were indicated
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inside the arrows. aHD: alpha-complex homeodomain; ARM: ARM-repeated containing protein; bfg beta-flanking gene; bHD: beta-complex

homeodomain; DML1: mtDNA inheritance protein; GLGEN: glycogenin-1; HP: hypothetical protein; MIP1: mtDNA intermediate peptidase; PAK:

serine/threonine protein kinase; RSM19: 37S ribosomal protein S19; RIC1: RIC1-domain containing protein; SNF2: Snf2 family dna-dependent

ATPase; STE3: GPCR fungal pheromone mating factor.
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1091  Figure 3. Circumboreal distribution of Trichaptum specimens.
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1093  Geographic distribution of our Trichaptum specimens.
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1095 Figure 4. High nucleotide diversity among mating genes.
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1096
1097 lIdentity values of nucleotide alignments for MATA and MATB regions are displayed. Gene arrows indicate the coding direction; however, when

1098 gene direction was different (Figure 5) in specimens, we represented a green rectangle. Bar colors represented the level of identity according to

1099 the legend.
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1101

1102

Figure 5. Mating regions are highly dynamic and show multiple rearrangements among Trichaptum specimens.
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Panel A) MATA gene order representations for Trichaptum specimens with MATA genes assembled in one contig. Panel B) MATB gene order

representations for Trichaptum specimens with MATB genes assembled in one contig. In the MATB case, we considered assembled in one contig

when region was assembled contiguously from RIC1 to SNF2. For that reason GAP label is also drawn in this panel B). The percentage of
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specimens containing a specific MAT block order is indicated in the left. Genes were colored according to the legend. Species containing a

particular MAT block are represented by colored stars at the right of the MAT block and were colored according to the legend. Coding sequence

direction is represented by the arrows.
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1111  Figure 6. ML phylogenetic tree topology of mating proteins suggests balancing selection and trans-species polymorphisms.
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1112
1113 ML phylogenetic protein trees of GLGEN (a flanking gene), STE3.1 (a potential non-mating pheromone protein) and STE3.2 (a mating pheromone

1114  receptor protein) are represented in panel A, B and C, respectively. Species designations are indicated by colored bars according to the legend.
1115 Branch support was assessed using the ultrafast bootstrap (UF bootstrap) method. UF bootstrap is indicated in each branch by a gradient color
1116  according to the legend. Scale bar is represented in number of amino acid substitutions per site. The rest of phylogenetic protein trees and more
1117  detailed trees for the represented here are found in Supplementary Figure 4.
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Figure 7. Multiple nucleotide statistics support long-term balancing selection in genes located in the mating region.
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Nucleotide diversity (Pi), Tajima’s D, average number of synonymous substitutions per synonymous sites (dS), absolute divergence (dxy) and
relative divergence (Fst) values are reported in panels A), B), C), E) and F), respectively. Gene contribution to the significance of a HKA test
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(partial HKA) are represented in panel D). Gene names containing 1% of the highest values (A, B, C, D) or 1% of the lowest values (E, F) are
displayed in each panel. T. fuscoviolaceum gene names with the highest partial HKA values are displayed due to the significant result of the HKA
test (p-value = 3.13 x 10-*%). Each dot represents a gene. Dots were colored according to within species calculations (green or purple for

T. abietinum and T. fuscoviolaceum, respectively) or between species comparison (cyan).
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Table 1. PacBio assembly stats.

Before ultrascaffolding

After correction & ultrascaffolding

Article

Specimen name
TA10106M1
TF100210M3

Descended from
TA-1010-6
TF-1002-10

Species
T. abietinum
T. fuscoviolaceum

Assembler
Canu
Canu

Contigs N50 (Kb) L50
26 4,268.52 5
118 2,011.66 10

Scaffolds N50 (Kb)
12 4,354.20
12 5,547.79

Bases (Mb)
49.43
59.09
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1136  Supporting information captions

1137

1138 Supplementary Figure 1. Phylogenetic trees suggest some population structure in
1139  Trichaptum species.

1140

1141  A) Neighbor-Joining tree using the 100 — ANI values as distances to reconstruct the tree. Scale
1142  bar represents 100 — ANI / 100. B) Coalescent species tree using 1026 BUSCO ML
1143  phylogenetic trees. Scale bar represents coalescent units. Bar colors represent the species
1144  designation according to the legend. Circles in branches represent the concordance factor
1145  support (0: none ML tree agrees — 100: all 1028 ML trees agree).

1146

1147  Supplementary Figure 2. Genomes of T. abietinum and T. fuscoviolaceum are mostly
1148 syntenic.

1149

1150 D-Genies dot-plot of our two reference PacBio genomes. Alignment matches are represented
1151 by dots and the identity values are colored according to the legend. MAT region locations are
1152  indicated.

1153

1154  Supplementary Figure 3. Non-common CpaX motifs were detected in Trichaptum
1155 pheromone proteins.

1156

1157 Phe3.2 and Phe3.4 sequence alignments of unique pheromone proteins are represented in
1158 panel A) and B). Sequence logo is represented at the top of each alignment to highlight
1159  conserved amino acids. Polar amino acids in the CaaX motif are squared in red.

1160

1161 Supplementary Figure 4. ML phylogenetic trees reconstruction of individual proteins
1162 shows signals of balancing selection in mating genes and linked genes.

1163

1164 ML phylogenetic trees of individual proteins from the MATA and MATB regions are
1165 represented. Species designation and continental isolation are indicated by colored bars
1166 according to the legend. Branch support was assessed using the ultrafast bootstrap (UF
1167  bootstrap) method. UF bootstrap is indicated in each branch by a gradient color according to
1168 the legend. Scale bar is represented in number of amino acid substitutions per site.

1169

1170  Supplementary Figure 5. Pairwise amino acid identity within mating proteins.

1171
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1172  Pairwise amino acid identity was calculated for protein sequences within a clade/allele and
1173  between protein sequences from different clades (allelic classes). Dots represent the average
1174  value for within or between pairwise comparisons. Median values for all proteins are
1175 represented by horizontal lines inside the boxes, and the upper and lower whiskers represent
1176  the highest and lowest values of the 1.5 * IQR (inter-quartile range), respectively. Box plots
1177  and dots were colored according to the species where the pairwise comparison was performed.
1178  Horizontal dashed line represents the maximum value of 100 - % amino acid identity. We
1179  considered 86% amino acid identity a threshold to classify sequences in an allelic class.
1180

1181 Supplementary Figure 6. Pairwise amino acid identity of mating proteins from
1182 specimens with identical mating types.

1183

1184  Pairwise amino acid identity was calculated for protein sequences within an allelic class of the
1185 same species (2 pairwise comparison for T. fuscoviolaceum) and between species (2 pairwise
1186 comparisons between 2 T. abietinum and 2 T. fuscoviolaceum). Dots represent the average
1187  value for within or between pairwise comparisons. Horizontal dashed line represents the 86%
1188 amino acid identity threshold detected in Supplementary Figure 5.

1189

1190 Supplementary Figure 7. Two recent duplications of aHD2 genes generated xHD2
1191  proteins.

1192

1193 ML phylogenetic trees of a protein sequence alignment containing xHD2, aHD2 and bHD2.
1194 xHD2 sequences are highlighted with red arrows. Branch support was assessed using the
1195 ultrafast bootstrap (UF bootstrap) method. UF bootstrap is indicated in each branch by a
1196  gradient color according to the legend. Scale bar is represented in number of amino acid
1197  substitutions per site.

1198

1199 Supplementary Figure 8. Some mating alleles are older than Trichaptum genus.

1200

1201  Selected regions of ML phylogenetic trees of trimmed (trimal —-gt 0.8) protein sequence
1202  alignments containing HD2-HD1 and STE3 are displayed in panel A) and B), respectively.
1203 Branch support was assessed using the ultrafast boostrap (UF bootstrap) method. UF
1204  bootrstrap is indicated in each branch by a gradient color according to the legend. Scale bar is
1205 represented in number of amino acid substitutions per site. Trichaptum proteins are highlighted
1206 by red arrows or enclosed in a red bar.

1207  Protein sequences were retrieved from DOE-JGI MycoCosm and download from NCBI as
1208 indicated:
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1209 1. Hymneochaetales JGI protein list: Fomme: Fomitiporia mediterranea (MF3/22), Onnsc:
1210 Onnia scaura (P-53A), Phefer: Phellinidium ferrugineofuscum (SpK3Pheferl4),
1211 Pheign: Phellinus ignarius (CCBS575), Phevit: Phellinus viticola (PhevitSig-SM15),
1212 Pheni: Phellopilus (Phellinus) nigrolimitatus (SigPhenig9), Porchr: Porodaedalea
1213 chrysoloma (FP-135951), Pornie: Porodaedalea niemelaei (PN71-100-1P13), Resbic:
1214 Resinicium bicolor (OMC78), Ricfib: Rickenella fibula (HBK330-10), Ricmel: Rickenella
1215 mellea (SZMC22713), Schpa: Schizopora paradoxa (KUC8140), Sidvul: Sidera
1216 vulgaris (OMC1730).
1217 2. Downloaded from NCBI: [HYMENOCHAETALES] Fomitiporia mediterranea (MF3/22),
1218 Pyrrhoderma noxium (KPN91), Shanghuangporus baumii (Bpt 821), Rickenella mellea
1219 (SZMC22713); [AGARICALES] Laccaria bicolor (S238N-H82), Coprinopsis cinerea
1220 (Okayama7#130); [POLYPORALES] Rhodonia (Postia) placenta (Mad-698-R).

1221 To remove protein redundancy in protein collection of species retrieved from JGI, a blastp
1222 using the downloaded NCBI protein sequences and our HDs and STE3s protein
1223 representatives of each clade/allele was performed. For each input sequence two hits were
1224  used for sequence alignments, a protein sequence with the lowest e-value and the protein
1225 sequence with the highest coverage value. Complete ML phylogenetic trees are deposited in
1226  ashared iTOL folder: https://itol.embl.de/shared/Peris_D

1227

1228  Supplementary Figure 9. Geographic distribution of mating alleles supports long-term
1229  segregation.

1230

1231  Stacked bar plots are represented for each mating gene. Bars were colored according to their
1232  geographic location.

1233

1234  Supplementary Figure 10. dS and dN values for mating, flanking and BUSCO genes
1235 supports balancing selection in mating genes.

1236

1237 Panels A), C) reports the pairwise dS within each species (colored according to the legend) or
1238 between species (black) for each gene in the MATA and MATB regions, respectively. Similarly,
1239 panels B), D) reports the pairwise dN. Median values for all genes are represented by
1240 horizontal lines inside the boxes, and the upper and lower whiskers represent the highest and
1241 lowest values of the 1.5 * IQR (inter-quartile range), respectively. Median values for BUSCO
1242  genes are represented by horizontal dashed lines and they are colored according to the
1243 legend, green and purple for within T. abietinum and T. fuscoviolaceum comparisons,
1244  respectively, and black between species comparisons.

1245
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1246  Supplementary Figure 11. Detected BUSCO genes are shown to have some signal of
1247  non-reciprocal monophyly.

1248

1249  Maximume-Likelihood phylogenetic trees of five detected BUSCO genes based on nucleotide
1250  statistics (Figure 7) are represented. Scale bar is represented in number of nucleotide
1251  substitutions per site.

1252

1253 Supplementary Figure 12. Allelic class classification based on phylogenetics and
1254  protein identity generated compatible and incompatible crosses.

1255

1256  Example plate and microscope pictures of the specimen cross experiments are displayed. The
1257 rest of the pictures indicated in Supplementary Table 5 can be found in

1258  https://perisd.qgithub.io/TriMAT/. When types were distinct in both mating loci clamp

1259 connections are observed in septae.
1260
1261
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