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Abstract 23 

Neural oscillations, or brain rhythms, fluctuate in a manner reflecting ongoing behavior. 24 

Whether these fluctuations are instrumental or epiphenomenal to the behavior remains 25 

elusive. Attempts to experimentally manipulate neural oscillations exogenously using non-26 

invasive brain stimulation have shown some promise, but difficulty with tailoring stimulation 27 

parameters to individuals has hindered progress in this field. We demonstrate here using 28 

electroencephalography (EEG) neurofeedback in a brain-computer interface that human 29 

participants (n=44) learned over multiple sessions across a 6-day period to self-regulate their 30 

Beta rhythm (13-20 Hz) over the right inferior frontal cortex (rIFC). The modulation was evident 31 

only during neurofeedback task performance but did not lead to offline alteration of Beta 32 

rhythm characteristics at rest, nor to changes in subsequent cognitive behavior. Likewise, a 33 

control group (n=38) who underwent training of the Alpha rhythm (8-12 Hz) did not exhibit 34 

behavioral changes. Although the right frontal Beta rhythm has been repeatedly implicated as 35 

a key component of the brain’s inhibitory control system, the present data suggest that its 36 

manipulation offline prior to cognitive task performance does not result in behavioral change. 37 

Thus, this form of neurofeedback training of the tonic Beta rhythm would not serve as a useful 38 

therapeutic target for disorders with dysfunctional inhibitory control as their basis.  39 
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1 Introduction 40 

The synchronous firing of large populations of neurons across distributed brain networks 41 

produces rhythmic electric field fluctuations large enough to be detected at the scalp. The role 42 

– either causal or epiphenomenal – of the observed neural oscillations (‘brain rhythms’) for 43 

human behavior has been a topic of intense debate for decades. Traditionally, researchers 44 

have recorded neural oscillations from the scalp while participants perform cognitive tasks, 45 

thus investigating the correlation between brain signals and behavior. However, experimental 46 

manipulation is necessary in order to specify a causal role for neural oscillations (Herrmann 47 

et al., 2016; Vosskuhl et al., 2018). 48 

Exogenous modulation of neural oscillations has previously been achieved using non-49 

invasive brain stimulation techniques like transcranial alternating current stimulation (tACS, 50 

see Vosskuhl et al., 2018 for a review), oscillatory transcranial direct current stimulation  51 

(o-tDCS; e.g., Marshall et al., 2006), and repetitive transcranial magnetic stimulation (rTMS, 52 

e.g., Chung et al., 2015; Thut & Miniussi, 2009) (for reviews, see Dayan et al., 2013; Thut et 53 

al., 2011). These methods have generated mixed results with regards to effectiveness of 54 

neural modulation (for reviews, see Demirtas-Tatlidede et al., 2013; Enriquez-Geppert et al., 55 

2013; Polanía et al., 2018; Thut et al., 2011) and impact upon cognitive behavior (Bestmann 56 

et al., 2015) with a key issue being heterogenous responses to the same stimulation across 57 

individuals (Adeyemo et al., 2012; Bergmann & Hartwigsen, 2020; Kasten et al., 2019). 58 

Individuals exhibit subtle idiosyncratic features of brain rhythms even within the commonly 59 

described bandwidths (Benwell et al., 2019; Haegens et al., 2014), however, methods like 60 

rTMS, tACS or o-tDCS typically target specific frequencies. 61 

In addition to neuromodulation methods, brain-computer interface (BCI)-based 62 

neurofeedback can be used to endogenously train volitional modulation of brain signals. This 63 

approach enables participants to self-regulate brain rhythms which are intrinsic to the 64 

individual brain (Ros et al., 2010). Neurofeedback has been frequently tested and used as a 65 

therapeutic tool and studies have shown behavioral improvements in disorders such as 66 
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attention-deficit/hyperactivity disorder (ADHD; Jean Arthur Micoulaud-Franchi et al., 2014; 67 

Sonuga-Barke et al., 2013). However, to date there has been wide heterogeneity in research 68 

designs for neurofeedback protocols and it is difficult to draw conclusions regarding the 69 

effectiveness of neurofeedback to modify behavior (Omejc et al., 2019; Simon et al., 2021; 70 

Sitaram et al., 2017). As well as targeting individually tailored neural oscillation frequencies, it 71 

is important to target brain regions that are directly instrumental to the behavior under 72 

investigation. For example, electroencephalography (EEG)-neurofeedback from brain signals 73 

recorded over sensorimotor areas has shown some evidence of motor-skill improvement in 74 

healthy participants as well as clinical motor symptoms in ADHD or stroke patients (Jeunet et 75 

al., 2019). In addition, Hsueh et al. (2016) showed that neurofeedback of the frontoparietal 76 

Alpha rhythm improved working memory. Neurofeedback training of the Beta (13-20 Hz) 77 

rhythm in the past has predominantly targeted sensorimotor areas (e.g., Boulay et al., 2011; 78 

Vernon et al., 2003; Witte et al., 2013). 79 

Inhibitory control is a core component of healthy executive function, and deficiencies 80 

with this aspect of cognition manifest in disorders such as ADHD (e.g., Lijffijt et al., 2005) or 81 

addiction (e.g., Luijten et al., 2011). Inhibitory control is believed to rely on fast and flexible 82 

command of the brain’s Beta rhythm (Enz et al., 2021; Jana et al., 2020; Schaum et al., 2021; 83 

Swann et al., 2009; Wagner et al., 2017; Wessel, 2020), primarily in a pathway connecting 84 

right inferior frontal cortex (rIFC) and basal ganglia (Aron et al., 2014; Wessel & Aron, 2017). 85 

The Stop Signal Task (SST) measures this cognitive process (Logan & Cowan, 1984) by 86 

requiring the participant to cancel an already initiated motor response following an infrequent 87 

Stop cue. The Stop Signal Reaction Time (SSRT) is an estimation of the covert latency of the 88 

action cancellation process (Verbruggen et al., 2019). 89 

In order to test whether selective self-regulation of specific brain rhythms could 90 

modulate specific cognitive processes, we designed a protocol whereby 82 participants 91 

learned over a 6-day period to either upregulate or downregulate the amplitude of their Beta 92 

or Alpha rhythm using direct neurofeedback in a BCI. We measured two distinct aspects of 93 

cognitive function; speed of proactive response inhibition (conditional SST [cSST]) and 94 
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working memory (2-Back Task). In a double-blinded mixed design with between-subject 95 

(neurofeedback types) and repeated measures (pre-post neurofeedback cognitive measures) 96 

factors, we tested the theory that causal manipulation of brain rhythms following 97 

neurofeedback training would have an observable impact upon behavior. Specifically, we 98 

hypothesized that learning to modulate the Beta rhythm over rIFC would impact positively 99 

upon speed of response inhibition, but not upon working memory. By contrast, we predicted 100 

that the control group undertaking Alpha neurofeedback would demonstrate no improvement 101 

in response inhibition. 102 
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2 Method 103 

2.1 Participants 104 

82 healthy adult human volunteers (age: 24.27 ± 7.74 years [mean ± SD]; 44 female; 69 right 105 

handed) participated in the study. Participants were reimbursed with either €5/hour and a 106 

completion bonus of €60 or with ECTS points. Inclusion criteria were: aged over 18, no history 107 

of traumatic brain injury and not currently experiencing any psychiatric disorder (self-reported). 108 

All participants provided written informed consent prior to participation. The experimental 109 

procedures were approved by the School of Psychology ethics committee of Trinity College 110 

Dublin and conducted in accordance with the Declaration of Helsinki. 111 

2.2 Study design 112 

Participants were allocated at random into four groups: ‘Beta UP’ (n=26), ‘Beta DOWN’ (n=18), 113 

‘Alpha UP’ (n=23) and ‘Alpha DOWN’ (n=15). ‘Beta’ groups were trained to either increase 114 

(‘UP’) or decrease (‘DOWN’) their Beta (13-20 Hz) rhythm over the rIFC whereas ‘Alpha’ 115 

groups were trained to either increase (‘UP’) or decrease (‘DOWN’) their Alpha (8-12 Hz) 116 

rhythm over the same region. Each participant was trained over six sessions (‘S1-6’). Where 117 

possible, sessions were scheduled for a similar time of the day.  118 

The study design is illustrated in Figure 1. Each session consisted of one calibration 119 

(‘Cal S1-6’) and four neurofeedback training blocks (‘B1-6.1-4’) and each block lasted three 120 

minutes. Resting EEG was recorded in each session before (‘Rest S1-6 Pre’) and after (‘Rest 121 

S1-6 Post’) the four neurofeedback blocks. During S1 and S6, participants additionally 122 

performed two behavioral tasks, the cSST (experimental task) and the 2-Back Task (control 123 

task). The cSST was performed twice in S1, once before (‘cSST S1 Pre’) and once after 124 

(‘cSST S1 Post’) neurofeedback training whereas the 2-Back Task was only performed once 125 

(‘2-Back S1 Pre’). In S6, both tasks were performed once after neurofeedback training (‘cSST 126 

S6 Post’, ‘2-Back S6 Post’). For all sessions and tasks, the participants were seated 127 

comfortably in a chair in front of a computer screen in a soundproof, darkened room. 128 
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Figure 1: Study design. Behavioral tasks, baseline EEG measurements and neurofeedback training 129 

blocks are shown in sequential order for each of the six sessions. Each session was performed on a 130 

separate day. Abbreviations: cSST: conditional stop signal task. 131 

 

 

 

2.2.1 EEG recording 132 

During S1 and S6, 128-channel EEG data in the 10-5 system format were recorded using a 133 

128-channel BioSemi headcap connected to an ActiveTwo Biosemi system. During S2-S5, 134 

EEG was recorded from four active Ag/AgCl electrodes over the individual rIFC locus (see 135 

‘Functional rIFC localization’) with the same hardware. A reference electrode recorded data 136 

from Cz. For all sessions, three additional electrodes recorded the electrooculogram (right 137 

outer canthi for horizontal eye movements and ~2 cm below the left eye for vertical eye 138 

movements) as well as the right masseter muscle to detect facial movements.  139 

2.2.2 Resting EEG 140 

To record resting EEG, participants were instructed to fixate upon a black cross for 3 minutes 141 

with their eyes open and in a relaxed and stable body position. 142 
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2.2.3 Conditional Stop Signal Task (cSST) 143 

The cSST was performed using Presentation (Version 18.0, Neurobehavioral Systems, Inc., 144 

Berkeley, CA, www.neurobs.com) and EEG was recorded during the task. Each trial lasted 145 

1000 ms and was preceded by a fixation cross (1000 ms duration). During Go trials, 146 

participants were presented with black arrows pointing either to the right or left (Go signal; 750 147 

ms duration) and they were instructed to respond with their right or left index finger, 148 

respectively, as fast as possible via an Xbox 360 game controller. In one of four Go trials, the 149 

Go signal was followed by a black arrow pointing upwards (Stop signal; 250 ms duration) after 150 

a varying stop-signal delay (SSD). The participants were instructed to inhibit their button press 151 

on these Stop trials, but only if the Go signal was pointing in the critical direction. If a Stop 152 

signal appeared after a Go signal pointing in the non-critical direction, the participants were 153 

instructed to ignore the Stop signal and respond with a button press. The task was divided 154 

into four blocks; for the first two blocks the critical direction was right and for the last two blocks 155 

the critical direction was left. Each block consisted of 24 trials (18 Go trials and 6 Stop trials). 156 

The number of right and left pointing Go signals was equal in each block and presented in a 157 

randomized manner. The SSD was adjusted by a tracking algorithm, aiming to achieve a task 158 

difficulty resulting in 50% successful and 50% failed Stop trials. After a successful critical Stop 159 

trial (ignoring non-critical Stop trials), the SSD was increased, making the task harder and 160 

after a failed critical Stop trial (ignoring non-critical Stop trials), the SSD was decreased, 161 

making the task easier. The initial SSD was 250 ms and was subsequently adjusted using a 162 

double-limit algorithm (see Richards et al., 1999). The SSD could vary between 50 ms and 163 

450 ms. Following a Stop trial, the subsequent SSD value was chosen randomly between the 164 

current SSD and a pair of limits (higher or lower, as appropriate). These limits were designed 165 

to converge on the SSD that produced a 50% success rate and to be robust to fluctuations on 166 

individual trials. If a participant responded to the Go signal before Stop signal presentation, 167 

then the SSD was decreased for subsequent trials. All participants completed one block of 168 

fifteen practice trials where they received feedback before the real task. 169 
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2.2.4 2-Back Task 170 

The 2-Back Task was programmed in Presentation and no EEG was recorded. Participants 171 

were serially presented with randomized letters (500 ms duration each) with an interstimulus 172 

interval of 1000 ms. Participants were instructed to press the keyboard button number 1 if the 173 

current letter matched the letter presented 2 letters ago. Each block contained 10 targets (i.e., 174 

matches) with the target frequency balanced across the block. The task consisted of two 175 

blocks and each block contained 50 letters. 176 

2.2.5 Functional rIFC localization 177 

After completion of the cSST S1 Pre, the raw EEG data recorded during the task was 178 

subjected to an immediate analysis in order to localize the rIFC region on the participant’s 179 

topography. While scalp EEG cannot identify the source generator, studies using 180 

electrocorticography (Swann et al., 2009; Swann et al., 2012), 181 

magnetoencephalography/functional magnetic resonance imaging (fMRI; Schaum et al., 182 

2020) and fMRI-guided repetitive transcranial magnetic stimulation (Sundby et al., 2021) have 183 

empirically demonstrated the link between right frontal scalp activity and rIFC. EEG data from 184 

the cSST were epoched into 2500 ms epochs with respect to the Go/Stop signal for Go trials 185 

and Stop trials, respectively. A short version of the Fully Automated Statistical Thresholding 186 

for EEG artefact Rejection plug-in (FASTER; Nolan et al., 2010; 187 

https://sourceforge.net/projects/faster/) was used to identify the most significant artefacts 188 

(e.g., eyeblinks and idiosyncratic muscle movements). EEG data were filtered at 13-20 Hz 189 

(Beta rhythm) and the amplitude was squared to obtain power estimates. Preprocessed EEG 190 

data were epoched into 100 ms to 300 ms after the Stop signal for successful and failed Stop 191 

trials. Additionally, a baseline (resting EEG data) was extracted from 1800 ms to 2000 ms 192 

after the Stop signal. These data were averaged over all trials for each channel and illustrated 193 

using topoplots. Four topoplots were shown; successful Stop trials, failed Stop trials, 194 

successful minus failed Stop trials and successful Stop trials minus baseline. The topoplots 195 

were then visually inspected and four right frontal electrodes showing the largest right frontal 196 
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power increase in the Beta range were identified as the individual participant’s rIFC region. 197 

This four-electrode cluster was used subsequently to provide signals for the neurofeedback.  198 

2.2.6 Calibration and neurofeedback blocks (B1-4) 199 

The OpenViBE Acquisition Server (OpenViBE, Renard et al., 2010, www.openvibe.inria.fr) 200 

received the EEG stream, and data were processed in real time using a custom OpenViBE 201 

Designer script. Data were processed using a 100-ms sliding window. First, the four individual 202 

rIFC channels as well as the reference channel (Cz) were selected. The selected data was 203 

then spatially (averaged over four rIFC channels) and temporally (13-20 Hz for ‘Beta’ groups, 204 

8-12 Hz for ‘Alpha‘ groups) filtered. The data were then epoched into 100 ms windows and a 205 

power estimate of each 100 ms epoch was calculated by squaring the amplitude. Using 206 

LabStreamingLayer (https://github.com/sccn/labstreaminglayer), the resulting power 207 

estimates were then exported to MATLAB (R2017b, Mathworks, USA). Using a custom 208 

MATLAB script, the power estimates were visualized using the Psychophysics Toolbox 209 

(PsychToolbox; Brainard, 1997; http://psychtoolbox.org).  210 

Calibration 211 

During the calibration block, the participants were instructed to first rest and fixate upon a red 212 

cross for 2 minutes and when the fixation cross turned green after 2 minutes, they were 213 

instructed to open and close their left hand for another 2 minutes. EEG was measured during 214 

the whole duration of the calibration block. This calibration procedure was performed in order 215 

to measure the participant’s full power range of the respective frequency band (Beta or Alpha). 216 

The median power of the entire block was calculated. 217 

Neurofeedback training (B1-4) 218 

During the four neurofeedback blocks, an avatar (bird for UP groups, fish for DOWN groups) 219 

was visualized on the screen and represented the participant’s real-time power estimate 220 

output from OpenViBE. The avatar moved horizontally from left to right of the screen and either 221 

upwards or downwards depending on whether the power estimates increased or decreased, 222 
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respectively. The screen was separated horizontally by the median power from the calibration 223 

block into sky (above median) and sea (below median) (Figure S2). The top of the screen 224 

was equal to the maximum power of the calibration block and the bottom of the screen was 225 

equal to the minimum power of the calibration block. The UP groups were instructed to keep 226 

the bird in the sky (i.e., increase the power estimates) whereas the DOWN groups were 227 

instructed to keep the fish in the sea (i.e., decrease the power estimates). If the avatar deviated 228 

into the wrong environment (i.e., sky or sea), the environment turned red to give negative 229 

feedback and immediately turned back to normal when they returned into the desired zone. 230 

When participants were frequently reaching the top (UP groups) or bottom (DOWN groups) of 231 

the screen, the minimum and maximum limits were expanded by the X*standard deviation of 232 

the power estimates of the calibration block. The game thus had 4 difficulty levels (X=0-4) and 233 

the level was increased if the participant was able to stay in the correct area (sky or sea) for 234 

more than 95% in a block. The participants were instructed to develop a mental strategy that 235 

does not involve movements, clenching teeth or tensing muscles. Participants were instructed 236 

to not close their eyes and to fixate upon the screen at all times. 237 

2.3 Data offline processing 238 

2.3.1 EEG offline preprocessing 239 

EEG data were digitized with a sampling rate of 512 Hz. EEG data preprocessing was carried 240 

out using the EEGLAB toolbox (Delorme and Makeig, 2004; http://sccn.ucsd.edu/eeglab) in 241 

conjunction with FASTER. The data were initially bandpass filtered between 1 Hz and 95 Hz, 242 

notch filtered at 50 Hz and average referenced across all scalp electrodes. Resting data and 243 

data from the calibration and neurofeedback blocks were subsequently epoched into windows 244 

of 1000 ms. Data from the cSST were epoched from 500 ms prior to Go/Stop signal onset to 245 

2000 ms after Go/Stop signal onset for Go trials and Stop trials, respectively. FASTER 246 

identified and removed artefactual (i.e., non-neural) independent components, removed 247 

epochs containing large artefacts (e.g., muscle twitches) and interpolated channels with poor 248 

signal quality. The remaining EEG data were then visually inspected by trained raters to 249 
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ensure good quality and that any remaining noisy data were removed. Specifically, trained 250 

raters identified any remaining artefacts in independent components (e.g., eyeblinks) and 251 

epochs containing idiosyncratic muscle/movement or transient electrode artifacts, and 252 

interpolated any channels that were noisy throughout all epochs of a participant. After 253 

preprocessing, EEG data were transformed using the current source density method (CSD; 254 

https://psychophysiology.cpmc.columbia.edu/software/CSDtoolbox/index.html; Kayser and 255 

Tenke, 2006) which is a reference-free montage to attenuate the effect of volume conduction 256 

in scalp EEG. 257 

2.3.2 Time-frequency transformation 258 

For all epochs, 2-dimensional representations of each electrode’s time-frequency were 259 

estimated using a complex Morlet wavelet (range of logarithmically spaced 4-10 cycles for 39 260 

linearly spaced frequencies across 1-40 Hz). The squared magnitude of the convolved data 261 

was calculated to obtain power estimates. The power estimates were subsequently 262 

transformed to relative power. Power values of each given band from 1-28 Hz (Delta = 1-4 Hz, 263 

Theta = 5-7 Hz, Alpha = 8-12 Hz, Beta = 13-28 Hz) were expressed as a percentage of the 264 

total power within the spectrum (per channel and per given epoch). Beta bursts were extracted 265 

from non-relative time-frequency power estimates. 266 

2.3.3 Beta burst detection 267 

Beta burst detection was performed according to the method described in Enz et al. (2021). 268 

For each time-frequency power matrix, local maxima were detected using the MATLAB 269 

function imregionalmax. Beta bursts were then defined as local maxima that exceeded a 270 

defined threshold of 2x median power of the entire time-frequency matrix (across all trials per 271 

participant). Time-frequency matrices were then divided into ~25.39 ms time bins (also for 272 

analysis of relative power). The first and last time bins were removed from all trials due to an 273 

edge artefact that can occur when applying the MATLAB function imregionalmax (it detects 274 

artefactual local maxima on the edges of the time-frequency matrix). Beta burst rate (the sum 275 
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of the number of supra-threshold bursts) and Beta burst volume (the area under the curve of 276 

supra-threshold datapoints; see Enz et al., 2021) were then extracted per time bin. We also 277 

extracted the timing of the first Beta burst after the Stop/Go signal in the cSST EEG data. 278 

2.3.4 Selection of brain regions 279 

For the statistical analysis, EEG data were averaged over clusters of four electrodes from 280 

different regions of the brain. To interrogate EEG data from the rIFC, data were averaged over 281 

the four individually selected electrodes over the right frontal scalp area that were used during 282 

the neurofeedback training. Further, we also averaged clusters of four electrodes over the left 283 

motor cortex (D19/C3, D20, D12, D11), the right motor cortex (B22/C4, B23, B31, B30) and 284 

the occipital cortex (A23/Oz, A24, A28, A27) to test the specificity or generalization of effects 285 

beyond the trained region. 286 

2.4 Statistical analysis 287 

2.4.1 Behavioral analysis 288 

Means and standard deviations were extracted for each participant for the following behavioral 289 

cSST measures: SSRT, intraindividual coefficient of variation (ICV), Go trial reaction time 290 

(RT), failed Stop trial RT, SSD, number of successful Stop trials, number of failed Stop trials, 291 

probability of successful stopping, probability of Go omissions, probability of choice errors. 292 

The SSRT was calculated using the integration method with replacement of Go omissions by 293 

the maximum RT (Verbruggen et al., 2019). All Go trials were included in the Go RT 294 

distribution, including Go trials with choice errors. Premature responses on failed Stop trials 295 

were included when calculating the probability of responding on a Stop trial and mean SSD. 296 

Participants with SSRT < 75 ms were excluded from all analyses. The ICV was calculated by 297 

dividing Go RT standard deviation by the mean Go RT. 298 

 For the 2-Back Task, the absolute number of target hits were calculated across both 299 

blocks (i.e., the maximum absolute number of target hits was 20).  300 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.10.07.463487doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.07.463487
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

2.4.2 Neurofeedback training statistical analysis 301 

For resting EEG and for the calibration and neurofeedback blocks, data were averaged over 302 

37 x 25.39 ms time bins. For the cSST, 3 x 25.39 ms time bins were averaged to create ~75 303 

ms time bins (6 time bins from -75 ms to 375 ms with respect to the Stop/Go signal). R (R 304 

Core Team, 2020) was used for all statistical analyses.  305 

We first tested whether the neurofeedback training was effective. For this, we fit a 306 

linear mixed-effects model (LMM) using restricted maximum likelihood with relative Beta 307 

power over the rIFC as the outcome variable, with fixed effects of Direction (UP or DOWN) 308 

and Timepoint (Pre to Post neurofeedback training) and their two-way interaction, and with a 309 

random effect of Participant. We also calculated Cohen’s D for each effect. The models were 310 

fit for the Beta and Alpha groups separately. We then also conducted the same analysis with 311 

relative Alpha power as outcome variable. We also looked at the same outcome variables 312 

from the other three brain regions (left motor cortex, right motor cortex, occipital cortex). This 313 

analysis was repeated with Beta burst rate and Beta burst volume as outcome variables. We 314 

ran a post-hoc test for significant interactions using the emmeans function in R. All post-hoc 315 

tests are Bonferroni corrected at 0.05/2=0.025, correcting for the two directions (UP and 316 

DOWN). 317 

Next, we looked at the effects of neurofeedback training on inhibitory control behavior. 318 

We again fit a LMM using restricted maximum likelihood with SSRT as the outcome variable, 319 

with fixed effects of Direction (UP or DOWN), Timepoint (Pre to Post neurofeedback training), 320 

Rhythm (Beta or Alpha) and their two- and three-way interactions, and with a random effect 321 

of Participants. We also calculated Cohen’s D for each effect. 322 

We then interrogated the relationship between the magnitude of the Pre-Post change 323 

in SSRT and the extent to which relative Beta power was modulated during neurofeedback 324 

training. For this we fit a linear model by robust regression using an M-estimator, with change 325 

in SSRT being the dependent variable and change in relative Beta power being the 326 

independent variable. We repeated this analysis with N-Back score, Go RT and ICV as 327 

outcome variables. 328 
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Next, we looked at the effects of neurofeedback training on resting EEG data collected 329 

before and after. We fit the same three-way LMM with relative Beta power, Beta burst rate 330 

and Beta burst volume over the rIFC as outcome variables. 331 

Last, we looked at the effect of neurofeedback training on the brain activity while 332 

engaging inhibitory control behavior. Again, the same three-way LMM was fit for the time bins 333 

around the average SSRT with relative Beta power, Beta burst rate, Beta burst volume and 334 

timing of first Beta burst over the rIFC as outcome variables. 335 

2.5 Code and data accessibility 336 

Custom written scripts and data summary files can be downloaded on the Open Science 337 

Framework at [URL to be inserted after acceptance].  338 
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3 Results 339 

3.1 Spectral power in the Beta band over rIFC was modulated by Beta neurofeedback 340 

training 341 

We first tested whether Beta and Alpha band spectral power was successfully modulated over 342 

rIFC by 6 days of neurofeedback in the trained directions (UP or DOWN), when quantified 343 

offline using optimal artefact rejection procedures. Linear mixed effects models were 344 

performed on EEG data recorded during BCI performance comparing spectral power at resting 345 

baseline on the first Day (Rest S1 Pre) to that at the end of the final (6th) Day (Block 6.4), 346 

within the two Beta subgroups. Beta power was significantly modulated from resting baseline 347 

on Day 1 to the final block of neurofeedback on Day 6, in a manner that differed depending 348 

on trained direction (Figure 2A). This was revealed by a Direction*Timepoint interaction 349 

(F[1,40.04]=5.98, p=0.019, d=0.77, n=44). N.B.: All following post-hoc tests are Bonferroni 350 

corrected at 0.05/2=0.025 and all means are shown as estimated marginal means (EMM) ± 351 

standard error. Beta power modestly increased for the UP group (Pre 62.0±3.03 %, Post 352 

64.2±3.03 %; post-hoc test: t[39.1]=0.80, p=0.43) and significantly decreased for the DOWN 353 

group (Pre 59.5±3.65 %, Post 50.5±3.89 %; post-hoc test: t[41.5]=–2.47, p=0.018). The same 354 

pattern was evident when comparing data averaged within the calibration block performed 355 

immediately before training on Day 1 (Cal S1) to performance in the final block on Day 6 356 

(F[1,38.18]=13.99, p=0.001, d=1.21, n=41; Figure 2B). Beta power modestly increased for 357 

the UP group (Pre 62.0±2.70 %, Post 64.2±2.67 %; post-hoc test: t[38.5]=0.99, p=0.33) and 358 

significantly decreased for the DOWN group (Pre 64.1±3.51 %, Post 52.3±3.51 %; post-hoc 359 

test: t[38.0]=–3.96, p=0.0003). The calibration block data was used to establish the midline of 360 

the on-screen display in the neurofeedback game, which participants were required to keep 361 

an avatar above (UP) or below (DOWN). In this block, participants rested for two minutes, 362 

then conducted a left-hand finger tapping movement for two minutes in order to establish the 363 

full range of raw values associated with synchronization and desynchronization of the 364 

individual participant’s Beta rhythm. Figure 2A-B show the time course of Beta power for S1 365 
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and S6 compared to resting baseline (Figure 2A) and calibration baseline (Figure 2B). See 366 

Supplementary Results 1 for acute within session modulation for Day 1 and Day 6. 367 

Figure 2: Neurofeedback training performance of Beta groups. Performance of first and last session 368 

blocks is shown for Beta UP and Beta DOWN groups separately. Time course of relative power is 369 

corrected to the respective baseline. The boxplots show the medians and quartiles of the data, the 370 

whiskers extend to the rest of the distribution, except for points that are determined to be outliers. The 371 

swarm plots show individual datapoints and the line plots connect the means of each block. A) Relative 372 

Beta power is shown relative to the resting baseline before the first training block on Day 1. B) Relative 373 

Beta power is shown relative to the calibration baseline before the first training block on Day 1. C) 374 

Relative Alpha power is shown relative to the resting baseline before the first training block on Day 1. 375 

D) Relative Alpha power is shown relative to the calibration baseline before the first training block on 376 

Day 1. 377 

 

Spectral power in the Beta band over rIFC was not significantly modulated from resting 378 

baseline during Alpha BCI training (Direction*Timepoint interaction: F[1,31.94]=1.42, p=0.24, 379 

d=0.42, n=37; Figure 3C). When comparing end of training (B6.4) to the calibration block on 380 
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Day 1, the Direction*Timepoint interaction was significant (F[1,33.10]=4.38, p=0.044, d=0.73, 381 

n=36) but post-hoc tests revealed that neither the UP nor DOWN groups showed significant 382 

modulation of the Beta rhythm from the calibration baseline (all p>0.13; Figure 3D).  Power in 383 

the Alpha band was similarly not modulated during Alpha neurofeedback (all 384 

Direction*Timepoint interactions p>0.42; Figure 3A-B), suggesting that training Alpha over 385 

rIFC was not achieved using this protocol. 386 

 

Figure 3: Neurofeedback training performance of Alpha groups. Performance of first and last 387 

session blocks is shown for Alpha UP and Alpha DOWN groups separately. Time course of relative 388 

power is corrected to the respective baseline. The boxplots show the medians and quartiles of the data, 389 

the whiskers extend to the rest of the distribution, except for points that are determined to be outliers. 390 

The swarm plots show individual datapoints and the line plots connect the means of each block. A) 391 

Relative Alpha power is shown relative to the resting baseline before the first training block on Day 1. 392 

B) Relative Alpha power is shown relative to the calibration baseline before the first training block on 393 

Day 1. C) Relative Beta power is shown relative to the resting baseline before the first training block 394 

on Day 1. D) Relative Beta power is shown relative to the calibration baseline before the first training 395 

block on Day 1.  396 
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3.2 Cross frequency effects and modulation of neural oscillations beyond rIFC 397 

We first investigated whether power in the Alpha band was modulated during neurofeedback 398 

targeting the Beta rhythm (Figure 2C-D). When comparing calibration baseline Alpha power 399 

on Day 1 to Alpha power during neurofeedback attempting to regulate Beta, significant 400 

modulation was detected at the end of Day 6 (F[1,38.33]=4.78, p=0.035, d=–0.71, n=41). 401 

Alpha power modestly decreased for the UP group (Pre 16.1±1.26 %, Post 15.8±1.24 %; post-402 

hoc test: t[38.5]=–0.21, p=0.83) and significantly increased for the DOWN group (Pre 403 

17.0±1.64 %, Post 20.5±1.64 %; post-hoc test: t[38.0]=2.60, p=0.013). It is notable however 404 

that although this demonstrates that Alpha was modulated during training based upon 405 

neurofeedback of the Beta rhythm, the direction of change was opposite (Alpha decreased in 406 

the Beta UP training and vice versa). Also, the absolute effect sizes for Alpha modulation 407 

during Beta training range from 0.23-0.71, whereas Beta modulation absolute effect sizes 408 

were substantially larger (0.61-1.21). On the final Day of training, Alpha power was not 409 

modulated acutely (i.e., within session) during Beta training when comparing power during the 410 

final neurofeedback block to the resting baseline on the same day (F[1,38.75]=3.16, p=0.08, 411 

d=–0.57, n=41), nor to the calibration block (F[1,37.06]=1.35, p=0.25, d=–0.38, n=41). Thus, 412 

the effects of Beta training were largely selective to the Beta rhythm. 413 

To investigate effects spanning beyond the trained cluster of electrodes over rIFC, we 414 

tested whether Beta Power at three other scalp sites was modulated during neurofeedback of 415 

Beta signals recorded from rIFC. We chose clusters of four electrodes over right and left motor 416 

cortex and occipital cortex for comparison and performed mixed effects models testing for 417 

Direction*Timepoint interactions, as before. No significant interactions in any of the three 418 

regions were detected when comparing resting baseline Beta power to Beta power during the 419 

final neurofeedback block on Day 6 (all p>0.12). However, when comparing Beta power from 420 

the initial calibration block on Day 1 to power during the final block on Day 6, significant 421 

Direction*Timepoint interactions were revealed for both right (F[1,38.45]=8.46, p=0.006, 422 

d=0.94, n=41) and left (F[1,38.36]=6.58, p=0.014, d=0.83, n=41) motor regions, but no 423 

modulation was evident in the occipital region (F[1,35.03]=0.29, p=0.59, d=–0.18, n=41). For 424 
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the right motor region, Beta power modestly increased for the UP group (Pre 56.9±2.34 %, 425 

Post 58.9±2.31 %; post-hoc test: t[38.5]=0.92, p=0.36) and significantly decreased for the 426 

DOWN group (Pre 59.4±3.04 %, Post 51.3±3.04 %; post-hoc test: t[38.0]=–2.96, p=0.005). 427 

For the left motor region, Beta power modestly increased for the UP group (Pre 57.6±2.29 %, 428 

Post 59.5±2.27 %; post-hoc test: t[38.4]=1.13, p=0.26) and significantly decreased for the 429 

DOWN group (Pre 57.4±2.99%, Post 52.3±2.99 %; post-hoc test: t[38.0]=–2.37, p=0.023). 430 

Topoplots for post-training minus pre-training are shown for each training group for both Beta 431 

power (Figure 4) and Alpha power (Figure S1). 432 

 

 

Figure 4: Change in Beta power pre- to post-neurofeedback training. Topoplots show relative Beta 433 

power for the last block of neurofeedback training (Post B6.4) minus resting EEG before first block of 434 

neurofeedback training (Pre Rest) as well as for the last block of neurofeedback training (Post B6.4) 435 

minus calibration block (Pre Calibration). Topoplots are shown separately for each group (Beta UP, 436 

Beta DOWN, Alpha UP, Alpha DOWN). 437 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.10.07.463487doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.07.463487
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

3.3 Change in inhibitory control behavior modulated by neurofeedback training 438 

Behavioral data of the cSST are displayed in Table S1. To assess whether neurofeedback 439 

training had any effect upon inhibitory control behavior in the cSST (i.e., upon SSRT, the 440 

speed of inhibitory control), we performed a mixed effects model with three fixed effects; 441 

Rhythm (Alpha or Beta), Direction (UP or DOWN) and Timepoint (pre or post training). There 442 

was no 3-way Rhythm*Direction*Timepoint interaction (F[1,54.88]=2.32, p=0.13, d=0.41, 443 

n=71). There was a fixed effect of Timepoint (F[1,54.88]=4.35, p=0.042, d=0.28, n=71), 444 

revealing that SSRTs generally improved over time regardless of BCI training type (EMMs 445 

averaged over levels of Rhythm and Direction: Pre 166±7.86 ms, Post 147±8.54 ms). Figure 446 

5 shows the mean pre and post SSRTs for each group.  447 

 

Figure 5: SSRTs of each training group. The SSRTs are shown for each training group for pre (Day 448 

1) and post (Day 6) neurofeedback training. The boxplots show the median and quartiles of the data, 449 

the whiskers extend to the rest of the distribution, except for points that are determined to be outliers. 450 

The swarm plots show individual datapoints and the line plots connect the means of each block. 451 

Abbreviations: SSRT: Stop signal reaction time; cSST: conditional stop signal task.  452 
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To investigate whether each individual’s pre-post change in SSRT could be predicted 453 

by the extent to which their Beta rhythm was modulated, we performed Robust Regression 454 

analyses with change in SSRT as outcome variable and change in Beta rhythm (resting 455 

baseline from Day 1 to final block on Day 6) as predictor. The extent of change in the Beta 456 

rhythm as a result of training did not significantly predict improvement in SSRT from Pre-Post 457 

(slope=0.81, df=25, F=2.06, p=0.16, n=22; Figure 6A). The same was evident when tested at 458 

the right motor electrode cluster (slope=1.15, df=25, F=2.76, p=0.11, n=22; Figure 6B), left 459 

motor cluster (slope=1.22, df=25, F=2.38, p=0.14, n=22; Figure 6C), and occipital cluster 460 

(slope=0.46, df=25, F=0.41, p=0.53, n=22; Figure 6D). Training related change in Alpha 461 

power for those training Alpha rhythms was not predictive of behavioral change in SSRT (all 462 

p>0.26; Figure 6E-H). 463 

We additionally tested whether neurofeedback training impacted other aspects of 464 

cognitive function, including working memory (2-Back Task), processing speed (Go RT; Go 465 

reaction times in the cSST) and performance variability (ICV; intra-coefficient of variation in 466 

the cSST). No 3-way interactions emerged between Rhythm*Direction*Timepoint (all p>0.41), 467 

but for Go RT there was a significant 2-way Rhythm*Timepoint interaction (F[1,75.34]=4.82, 468 

p=0.031, d=0.47, n=82). Post-hoc tests are indicating a general improvement in speed 469 

predominantly in the Beta group, revealing that Go RT significantly decreased for the Beta 470 

group (Pre 484±7.07 ms, Post 463±7.31 ms; post-hoc test: t[5.40]=3.44, p=0.001) but did not 471 

significantly decrease for the Alpha group (Pre 480±7.65 ms, Post 478±7.79 ms; post-hoc test: 472 

t[74.4]=0.24, p=0.82). 473 
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Figure 6: Association between change in SSRT and change in relative power. Each plot shows the 474 

linear regression fit line of the data in dark grey as well as the confidence interval in light grey. Please 475 

note the difference in scale across all plots. The associations are shown for an average of four electrodes 476 

in four different brain regions (rIFC, right motor, left motor, occipital). A-D) show the association 477 

between change in SSRT and change in relative Beta power in the Beta groups (UP and DOWN). E-478 

H) show the association between change in SSRT and change in relative Alpha power in the Alpha 479 

groups (UP and DOWN). Abbreviations: SSRT: stop signal reaction time; rIFC: right inferior frontal 480 

cortex. 481 
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3.4 Resting spectral Beta power was not altered by neurofeedback training 482 

Comparing resting EEG data from before training (Rest S1 Pre), after Day 1 of training (Rest 483 

S1 Post) and Post training on Day 6 (Rest S6 Post), mixed effects models revealed no 484 

significant Direction*Timepoint interactions for the Beta group (F[2,79.42]=0.34, p=0.71, 485 

n=44), suggesting that training related modulations of Beta power were only evident when 486 

engaged in the task but did not lead to a lasting change in the background (resting) tonic Beta 487 

level. 488 

3.5 Modulation of Beta burst characteristics by training the tonic Beta Rhythm 489 

We investigated whether training to modulate tonic Beta Power over rIFC has consequences 490 

for Beta burst characteristics. Beta burst rate was not altered during or after training at any of 491 

the timepoints tested (all p>0.277). Burst volume was significantly modulated at the end of the 492 

first Day of training when comparing burst volume in the last block of Day 1 to that detected in 493 

the calibration block on the same Day (Direction*Timepoint interaction: F[1,37.48]=6.14, 494 

p=0.02, d=0.81, n=40). Burst volume significantly increased for the UP group (Pre 5962±1744 495 

a.u., Post 9769±1771 a.u.; post-hoc test: t[36.6]=2.20, p=0.03) and modestly decreased for 496 

the DOWN group (Pre 8560±2311 a.u., Post 5336±2251 a.u.; post-hoc test: t[37.0]=–1.43, 497 

p=0.16). 498 

3.6 Brain activity while performing the cSST was not modified following training 499 

There were no significant differences in neural activity (Beta power, burst rate, burst volume, 500 

timing of first burst) recorded during cSST performance at the start of the first day of training 501 

compared to the end of Day 6 of training (all p>0.40).  502 
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4 Discussion 503 

We have demonstrated here that using neurofeedback in a BCI it is possible to train human 504 

participants to self-regulate their Beta rhythm over the rIFC, but that this has no observable 505 

consequences upon subsequent inhibitory control behavior. Participants trained over a 6-day 506 

period to upregulate or downregulate the amplitude of their Beta rhythm over rIFC, resulting 507 

in the predicted directional changes to Beta power. Concomitant changes at other (untrained) 508 

scalp regions and other frequency bands were of lower magnitude, indicating good specificity 509 

of the neurofeedback protocol for modulating the trained rhythm, direction and region. The 510 

extent to which each individual’s SSRT changed pre-post training was however, not predicted 511 

by the magnitude of their training-related change in Beta over rIFC. This was also not the case 512 

for the control group undergoing Alpha training. Although the right frontal Beta rhythm has 513 

been repeatedly implicated as a key component of the brain’s inhibitory control system, the 514 

present data suggest that improving the ability to self-regulate the rhythm does not result in 515 

behavioral change in an inhibitory control task. 516 

Training related modulation of the Beta rhythm was only manifest during the 517 

neurofeedback task and did not alter EEG signals measured subsequently at rest or during 518 

cSST task performance. The current experimental design did not permit us to investigate 519 

whether online (i.e., during cSST task performance) self-regulation of the Beta rhythm would 520 

impact upon behavior, although this may be an interesting future extension of the work. 521 

Additionally, in the BCI task, neurofeedback was provided on the amplitude of the tonic 522 

(background) Beta rhythm. Further analyses revealed that this style of regulation of tonic Beta 523 

power had no impact on the rate or volume of transient burst-like high amplitude events in the 524 

Beta frequency range. This adds weight to the emerging view that so called ‘Beta bursts’ are 525 

a phenomena distinct from the ongoing background or ‘tonic’ oscillation at the same frequency 526 

(Bonaiuto et al., 2021; Little et al., 2019). Timing and magnitude of Beta bursts critically impact 527 

upon subsequent motor performance (Little et al., 2019) and whether attempts to inhibit a 528 

response are successful or not (Enz et al., 2021; Wessel, 2020). Although participants learned 529 
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to modulate the amplitude of their Beta rhythm over rIFC, this gradual, tonic background 530 

change in Beta during the distinct 3-minute neurofeedback blocks had no impact upon 531 

subsequent inhibitory control behavior. In order to modify Beta bursts using the BCI, it may be 532 

necessary to provide feedback specifically tailored to detect and influence bursting in real-533 

time (online), rather than simply of generalized (and offline) regulation of tonic Beta (e.g., He, 534 

2020).  535 

In the protocol used in the current study, neurofeedback targeting downregulation of 536 

Beta oscillations was more impactful than upregulation. It is likely that downregulation is simply 537 

easier for participants to perform, as it is known that engaging a brain region in a mental 538 

process (such as motor imagery), tends to lead Beta (and Alpha) to desynchronize in the 539 

region (Jensen & Mazaheri, 2010). Over the 6-day training period, participants learned to tailor 540 

their mental imagery strategies to optimally engage rIFC in order to achieve tangible real-time 541 

control over the movement of the avatar on screen. Our results leave open the possibility that 542 

it may be the ability to flexibly engage (and remove) Beta oscillations in the form of precisely 543 

timed bursts that predicts behavioral performance, rather than the tonic level per se.  544 

While the neurofeedback training we employed was effective for regulating the Beta 545 

rhythm over rIFC, Alpha modulation at this scalp location was not achieved. The lack of Alpha 546 

modulation over rIFC may be due to the fact that Beta is the predominant resonating frequency 547 

in this location, and has been repeatedly implicated in the functioning of this region (Schaum 548 

et al., 2021; Sundby et al., 2021; Swann et al., 2009; Swann et al., 2012; Wagner et al., 2017). 549 

Further, for all participants (even those in the Alpha group) we performed the same functional 550 

localizer to detect the precise cluster of electrodes corresponding to the right frontal scalp 551 

location showing most substantial Beta synchronization during the cSST. This cluster of 552 

electrodes, selected for exhibiting strong Beta activity during inhibitory control, was used to 553 

tailor the BCI neurofeedback for both Alpha and Beta groups. Optimizing the BCI for Beta 554 

using this method may further explain why Alpha modulation was not achieved at the rIFC 555 

site. 556 
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Previous studies using implanted electrodes have reported that positive effects upon 557 

motor behavior could be achieved in macaques (Khanna & Carmena, 2017) and humans with 558 

Parkinson’s disease (Bichsel et al., 2021) using BCI to train self-regulation of the brain’s Beta 559 

rhythm. Here we build upon and extend these initial findings by making the advance to non-560 

invasive scalp recorded EEG signals in humans, demonstrating that volitional modulation of 561 

Beta oscillations was achieved within 6 days of training. The BCI neurofeedback protocol 562 

demonstrated good spatial and temporal specificity, modulating primarily the targeted region, 563 

rhythm and direction. The lack of behavioral consequences further adds weight to the 564 

emerging picture in recent research showing that the right frontal Beta signature associated 565 

with stopping may not exert a direct functional influence upon the behavior. Indeed, Errington 566 

et al. (2020) demonstrated using depth electrodes in macaques that while Beta bursts were 567 

associated with inhibitory control, successful stopping could occur even on trials where no 568 

bursts were detected. They also highlighted that the occurrence of Beta bursts during Stop 569 

trials was generally very low (~15% of trials), and as such may only represent one component 570 

of a more complex neural mechanism underlying inhibitory control. 571 

Using non-invasive BCI technology, volitional and causal self-regulation was 572 

achieved without the need for exogenous stimulation, paving the way for easier real-world 573 

application of neuromodulation to alter brain rhythms experimentally. The present data 574 

suggest, however, that offline neurofeedback training of the tonic Beta rhythm may not serve 575 

as a useful therapeutic target for disorders with dysfunctional inhibitory control as their basis.   576 
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