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Abstract

Neural oscillations, or brain rhythms, fluctuate in a manner reflecting ongoing behavior.
Whether these fluctuations are instrumental or epiphenomenal to the behavior remains
elusive. Attempts to experimentally manipulate neural oscillations exogenously using non-
invasive brain stimulation have shown some promise, but difficulty with tailoring stimulation
parameters to individuals has hindered progress in this field. We demonstrate here using
electroencephalography (EEG) neurofeedback in a brain-computer interface that human
participants (n=44) learned over multiple sessions across a 6-day period to self-regulate their
Beta rhythm (13-20 Hz) over the right inferior frontal cortex (rIFC). The modulation was evident
only during neurofeedback task performance but did not lead to offline alteration of Beta
rhythm characteristics at rest, nor to changes in subsequent cognitive behavior. Likewise, a
control group (n=38) who underwent training of the Alpha rhythm (8-12 Hz) did not exhibit
behavioral changes. Although the right frontal Beta rhythm has been repeatedly implicated as
a key component of the brain’s inhibitory control system, the present data suggest that its
manipulation offline prior to cognitive task performance does not result in behavioral change.
Thus, this form of neurofeedback training of the tonic Beta rhythm would not serve as a useful

therapeutic target for disorders with dysfunctional inhibitory control as their basis.
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o 1 Introduction

21 The synchronous firing of large populations of neurons across distributed brain networks
42 produces rhythmic electric field fluctuations large enough to be detected at the scalp. The role
43— either causal or epiphenomenal — of the observed neural oscillations (‘brain rhythms’) for
44 human behavior has been a topic of intense debate for decades. Traditionally, researchers
45 have recorded neural oscillations from the scalp while participants perform cognitive tasks,
46 thus investigating the correlation between brain signals and behavior. However, experimental
47 manipulation is necessary in order to specify a causal role for neural oscillations (Herrmann
48 et al., 2016; Vosskuhl et al., 2018).

49 Exogenous modulation of neural oscillations has previously been achieved using non-
s0 invasive brain stimulation techniques like transcranial alternating current stimulation (tACS,
51 see Vosskuhl et al.,, 2018 for a review), oscillatory transcranial direct current stimulation
52 (0-tDCS; e.g., Marshall et al., 2006), and repetitive transcranial magnetic stimulation (rTMS,
53  e.g., Chung et al., 2015; Thut & Miniussi, 2009) (for reviews, see Dayan et al., 2013; Thut et
s4 al.,, 2011). These methods have generated mixed results with regards to effectiveness of
s5  nheural modulation (for reviews, see Demirtas-Tatlidede et al., 2013; Enriquez-Geppert et al.,
s6  2013; Polania et al., 2018; Thut et al., 2011) and impact upon cognitive behavior (Bestmann
57 etal., 2015) with a key issue being heterogenous responses to the same stimulation across
ss individuals (Adeyemo et al., 2012; Bergmann & Hartwigsen, 2020; Kasten et al., 2019).
s9  Individuals exhibit subtle idiosyncratic features of brain rhythms even within the commonly
60  described bandwidths (Benwell et al., 2019; Haegens et al., 2014), however, methods like
61  ITMS, tACS or 0-tDCS typically target specific frequencies.

62 In addition to neuromodulation methods, brain-computer interface (BCl)-based
63  nheurofeedback can be used to endogenously train volitional modulation of brain signals. This
64  approach enables participants to self-regulate brain rhythms which are intrinsic to the
65 individual brain (Ros et al., 2010). Neurofeedback has been frequently tested and used as a

66  therapeutic tool and studies have shown behavioral improvements in disorders such as
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attention-deficit/hyperactivity disorder (ADHD; Jean Arthur Micoulaud-Franchi et al., 2014;
Sonuga-Barke et al., 2013). However, to date there has been wide heterogeneity in research
designs for neurofeedback protocols and it is difficult to draw conclusions regarding the
effectiveness of neurofeedback to modify behavior (Omejc et al., 2019; Simon et al., 2021;
Sitaram et al., 2017). As well as targeting individually tailored neural oscillation frequencies, it
is important to target brain regions that are directly instrumental to the behavior under
investigation. For example, electroencephalography (EEG)-neurofeedback from brain signals
recorded over sensorimotor areas has shown some evidence of motor-skill improvement in
healthy participants as well as clinical motor symptoms in ADHD or stroke patients (Jeunet et
al., 2019). In addition, Hsueh et al. (2016) showed that neurofeedback of the frontoparietal
Alpha rhythm improved working memory. Neurofeedback training of the Beta (13-20 Hz)
rhythm in the past has predominantly targeted sensorimotor areas (e.g., Boulay et al., 2011;
Vernon et al., 2003; Witte et al., 2013).

Inhibitory control is a core component of healthy executive function, and deficiencies
with this aspect of cognition manifest in disorders such as ADHD (e.qg., Lijffijt et al., 2005) or
addiction (e.g., Luijten et al., 2011). Inhibitory control is believed to rely on fast and flexible
command of the brain’s Beta rhythm (Enz et al., 2021; Jana et al., 2020; Schaum et al., 2021,
Swann et al., 2009; Wagner et al., 2017; Wessel, 2020), primarily in a pathway connecting
right inferior frontal cortex (rIFC) and basal ganglia (Aron et al., 2014; Wessel & Aron, 2017).
The Stop Signal Task (SST) measures this cognitive process (Logan & Cowan, 1984) by
requiring the participant to cancel an already initiated motor response following an infrequent
Stop cue. The Stop Signal Reaction Time (SSRT) is an estimation of the covert latency of the
action cancellation process (Verbruggen et al., 2019).

In order to test whether selective self-regulation of specific brain rhythms could
modulate specific cognitive processes, we designed a protocol whereby 82 participants
learned over a 6-day period to either upregulate or downregulate the amplitude of their Beta
or Alpha rhythm using direct neurofeedback in a BCl. We measured two distinct aspects of

cognitive function; speed of proactive response inhibition (conditional SST [cSST]) and
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95 working memory (2-Back Task). In a double-blinded mixed design with between-subject
96 (neurofeedback types) and repeated measures (pre-post neurofeedback cognitive measures)
97  factors, we tested the theory that causal manipulation of brain rhythms following
98 neurofeedback training would have an observable impact upon behavior. Specifically, we
99 hypothesized that learning to modulate the Beta rhythm over rIFC would impact positively
100  upon speed of response inhibition, but not upon working memory. By contrast, we predicted
101 that the control group undertaking Alpha neurofeedback would demonstrate no improvement

102 in response inhibition.
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103 2 Method

104 2.1 Participants

105 82 healthy adult human volunteers (age: 24.27 + 7.74 years [mean + SD]; 44 female; 69 right
106 handed) participated in the study. Participants were reimbursed with either €5/hour and a
107 completion bonus of €60 or with ECTS points. Inclusion criteria were: aged over 18, no history
108 of traumatic brain injury and not currently experiencing any psychiatric disorder (self-reported).
100 All participants provided written informed consent prior to participation. The experimental
110  procedures were approved by the School of Psychology ethics committee of Trinity College

111 Dublin and conducted in accordance with the Declaration of Helsinki.

12 2.2 Study design

113 Participants were allocated at random into four groups: ‘Beta UP’ (n=26), ‘Beta DOWN’ (n=18),
114 ‘Alpha UP’ (n=23) and ‘Alpha DOWN’ (n=15). ‘Beta’ groups were trained to either increase
115 (‘UP’) or decrease (‘DOWN’) their Beta (13-20 Hz) rhythm over the rIFC whereas ‘Alpha’
116  groups were trained to either increase (‘UP’) or decrease (‘DOWN?’) their Alpha (8-12 Hz)
117 rhythm over the same region. Each participant was trained over six sessions (‘S7-6°). Where
118 possible, sessions were scheduled for a similar time of the day.

119 The study design is illustrated in Figure 1. Each session consisted of one calibration
120 (‘Cal S1-6’) and four neurofeedback training blocks (‘B7-6.1-4") and each block lasted three
121 minutes. Resting EEG was recorded in each session before (‘Rest S1-6 Pre’) and after (‘Rest
122 S1-6 Post) the four neurofeedback blocks. During S1 and S6, participants additionally
123 performed two behavioral tasks, the cSST (experimental task) and the 2-Back Task (control
124 task). The cSST was performed twice in S1, once before (‘¢SST S71 Pre’) and once after
125 (‘¢SST S1 Post’) neurofeedback training whereas the 2-Back Task was only performed once
126  (2-Back S1 Pre’). In S6, both tasks were performed once after neurofeedback training (‘¢SST
127 S6 Post’, 2-Back S6 Post’). For all sessions and tasks, the participants were seated

128 comfortably in a chair in front of a computer screen in a soundproof, darkened room.
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129 Figure 1: Study design. Behavioral tasks, baseline EEG measurements and neurofeedback training
130 blocks are shown in sequential order for each of the six sessions. Each session was performed on a
131 separate day. Abbreviations: cSST: conditional stop signal task.

132 2.2.1 EEGrecording

133 During S1 and S6, 128-channel EEG data in the 10-5 system format were recorded using a
134 128-channel BioSemi headcap connected to an ActiveTwo Biosemi system. During S2-S5,
135 EEG was recorded from four active Ag/AgCI electrodes over the individual rIFC locus (see
136 ‘Functional rIFC localization’) with the same hardware. A reference electrode recorded data
137 from Cz. For all sessions, three additional electrodes recorded the electrooculogram (right
138 outer canthi for horizontal eye movements and ~2 cm below the left eye for vertical eye

139 movements) as well as the right masseter muscle to detect facial movements.

140 2.2.2 Resting EEG
141 To record resting EEG, participants were instructed to fixate upon a black cross for 3 minutes

142 with their eyes open and in a relaxed and stable body position.
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143 2.2.3 Conditional Stop Signal Task (cSST)

144 The cSST was performed using Presentation® (Version 18.0, Neurobehavioral Systems, Inc.,
145 Berkeley, CA, www.neurobs.com) and EEG was recorded during the task. Each trial lasted
146 1000 ms and was preceded by a fixation cross (1000 ms duration). During Go trials,
147 participants were presented with black arrows pointing either to the right or left (Go signal; 750
148 ms duration) and they were instructed to respond with their right or left index finger,
149 respectively, as fast as possible via an Xbox 360 game controller. In one of four Go trials, the
150  Go signal was followed by a black arrow pointing upwards (Stop signal; 250 ms duration) after
151 avarying stop-signal delay (SSD). The participants were instructed to inhibit their button press
152 on these Stop trials, but only if the Go signal was pointing in the critical direction. If a Stop
153 signal appeared after a Go signal pointing in the non-critical direction, the participants were
154 instructed to ignore the Stop signal and respond with a button press. The task was divided
155 into four blocks; for the first two blocks the critical direction was right and for the last two blocks
156 the critical direction was left. Each block consisted of 24 trials (18 Go trials and 6 Stop trials).
157 The number of right and left pointing Go signals was equal in each block and presented in a
158 randomized manner. The SSD was adjusted by a tracking algorithm, aiming to achieve a task
159 difficulty resulting in 50% successful and 50% failed Stop trials. After a successful critical Stop
160 trial (ignoring non-critical Stop trials), the SSD was increased, making the task harder and
161 after a failed critical Stop trial (ignoring non-critical Stop trials), the SSD was decreased,
162 making the task easier. The initial SSD was 250 ms and was subsequently adjusted using a
163 double-limit algorithm (see Richards et al., 1999). The SSD could vary between 50 ms and
164 450 ms. Following a Stop trial, the subsequent SSD value was chosen randomly between the
165 current SSD and a pair of limits (higher or lower, as appropriate). These limits were designed
166  to converge on the SSD that produced a 50% success rate and to be robust to fluctuations on
167 individual trials. If a participant responded to the Go signal before Stop signal presentation,
168 then the SSD was decreased for subsequent trials. All participants completed one block of

169 fifteen practice trials where they received feedback before the real task.
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170 2.2.4 2-Back Task

171 The 2-Back Task was programmed in Presentation® and no EEG was recorded. Participants
172 were serially presented with randomized letters (500 ms duration each) with an interstimulus
173 interval of 1000 ms. Participants were instructed to press the keyboard button number 1 if the
174 current letter matched the letter presented 2 letters ago. Each block contained 10 targets (i.e.,
175 matches) with the target frequency balanced across the block. The task consisted of two

176 blocks and each block contained 50 letters.

177 2.2.5 Functional rIFC localization

178 After completion of the ¢SST S1 Pre, the raw EEG data recorded during the task was
179 subjected to an immediate analysis in order to localize the rIFC region on the participant’s
180  topography. While scalp EEG cannot identify the source generator, studies using
181 electrocorticography (Swann et al., 2009; Swann et al., 2012),
182 magnetoencephalography/functional magnetic resonance imaging (fMRI; Schaum et al.,
183 2020) and fMRI-guided repetitive transcranial magnetic stimulation (Sundby et al., 2021) have
184 empirically demonstrated the link between right frontal scalp activity and rIFC. EEG data from
185 the cSST were epoched into 2500 ms epochs with respect to the Go/Stop signal for Go trials
186 and Stop trials, respectively. A short version of the Fully Automated Statistical Thresholding
157 for EEG  artefact Rejection plug-in  (FASTER; Nolan et al, 2010;
188 https://sourceforge.net/projects/faster/) was used to identify the most significant artefacts
189 (e.g., eyeblinks and idiosyncratic muscle movements). EEG data were filtered at 13-20 Hz
190  (Beta rhythm) and the amplitude was squared to obtain power estimates. Preprocessed EEG
191 data were epoched into 100 ms to 300 ms after the Stop signal for successful and failed Stop
192 trials. Additionally, a baseline (resting EEG data) was extracted from 1800 ms to 2000 ms
193 after the Stop signal. These data were averaged over all trials for each channel and illustrated
194 using topoplots. Four topoplots were shown; successful Stop trials, failed Stop trials,
195 successful minus failed Stop trials and successful Stop trials minus baseline. The topoplots

196  were then visually inspected and four right frontal electrodes showing the largest right frontal
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197  power increase in the Beta range were identified as the individual participant’s rIFC region.

198 This four-electrode cluster was used subsequently to provide signals for the neurofeedback.

199 2.2.6 Calibration and neurofeedback blocks (B1-4)

200 The OpenViBE Acquisition Server (OpenViBE, Renard et al., 2010, www.openvibe.inria.fr)
201 received the EEG stream, and data were processed in real time using a custom OpenViBE
202 Designer script. Data were processed using a 100-ms sliding window. First, the four individual
203 rIFC channels as well as the reference channel (Cz) were selected. The selected data was
204 then spatially (averaged over four rIFC channels) and temporally (13-20 Hz for ‘Beta’ groups,
205  8-12 Hz for ‘Alpha‘ groups) filtered. The data were then epoched into 100 ms windows and a
206 power estimate of each 100 ms epoch was calculated by squaring the amplitude. Using
207 LabStreamingLayer (https://github.com/sccn/labstreaminglayer), the resulting power
208  estimates were then exported to MATLAB (R2017b, Mathworks, USA). Using a custom
200 MATLAB script, the power estimates were visualized using the Psychophysics Toolbox

210  (PsychToolbox; Brainard, 1997; http://psychtoolbox.org).

211 Calibration

212 During the calibration block, the participants were instructed to first rest and fixate upon a red
213 cross for 2 minutes and when the fixation cross turned green after 2 minutes, they were
214 instructed to open and close their left hand for another 2 minutes. EEG was measured during
215 the whole duration of the calibration block. This calibration procedure was performed in order
216  to measure the participant’s full power range of the respective frequency band (Beta or Alpha).

217 The median power of the entire block was calculated.

218 Neurofeedback training (B1-4)

219 During the four neurofeedback blocks, an avatar (bird for UP groups, fish for DOWN groups)
220 was visualized on the screen and represented the participant’s real-time power estimate
221 output from OpenViBE. The avatar moved horizontally from left to right of the screen and either

222 upwards or downwards depending on whether the power estimates increased or decreased,

10


https://doi.org/10.1101/2021.10.07.463487
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.07.463487; this version posted November 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

223 respectively. The screen was separated horizontally by the median power from the calibration
224 block into sky (above median) and sea (below median) (Figure S2). The top of the screen
225 was equal to the maximum power of the calibration block and the bottom of the screen was
226  equal to the minimum power of the calibration block. The UP groups were instructed to keep
227 the bird in the sky (i.e., increase the power estimates) whereas the DOWN groups were
228 instructed to keep the fish in the sea (i.e., decrease the power estimates). If the avatar deviated
229 into the wrong environment (i.e., sky or sea), the environment turned red to give negative
230  feedback and immediately turned back to normal when they returned into the desired zone.
231 When patrticipants were frequently reaching the top (UP groups) or bottom (DOWN groups) of
232 the screen, the minimum and maximum limits were expanded by the X*standard deviation of
233 the power estimates of the calibration block. The game thus had 4 difficulty levels (X=0-4) and
232 the level was increased if the participant was able to stay in the correct area (sky or sea) for
235 more than 95% in a block. The participants were instructed to develop a mental strategy that
236 does not involve movements, clenching teeth or tensing muscles. Participants were instructed

237 to not close their eyes and to fixate upon the screen at all times.

238 2.3 Data offline processing

239 2.3.1 EEG offline preprocessing

220 EEG data were digitized with a sampling rate of 512 Hz. EEG data preprocessing was carried
241 out using the EEGLAB toolbox (Delorme and Makeig, 2004; http://sccn.ucsd.edu/eeglab) in
242 conjunction with FASTER. The data were initially bandpass filtered between 1 Hz and 95 Hz,
243 notch filtered at 50 Hz and average referenced across all scalp electrodes. Resting data and
244 data from the calibration and neurofeedback blocks were subsequently epoched into windows
245 0f 1000 ms. Data from the cSST were epoched from 500 ms prior to Go/Stop signal onset to
246 2000 ms after Go/Stop signal onset for Go trials and Stop trials, respectively. FASTER
247 identified and removed artefactual (i.e., non-neural) independent components, removed
248 epochs containing large artefacts (e.g., muscle twitches) and interpolated channels with poor

249 signal quality. The remaining EEG data were then visually inspected by trained raters to

11
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250  ensure good quality and that any remaining noisy data were removed. Specifically, trained
251 raters identified any remaining artefacts in independent components (e.g., eyeblinks) and
252 epochs containing idiosyncratic muscle/movement or transient electrode artifacts, and
253 interpolated any channels that were noisy throughout all epochs of a participant. After
254 preprocessing, EEG data were transformed using the current source density method (CSD;
255 https://psychophysiology.cpmc.columbia.edu/software/CSDtoolbox/index.html; Kayser and
256  Tenke, 2006) which is a reference-free montage to attenuate the effect of volume conduction

257 in scalp EEG.

258  2.3.2 Time-frequency transformation

259 For all epochs, 2-dimensional representations of each electrode’s time-frequency were
260  estimated using a complex Morlet wavelet (range of logarithmically spaced 4-10 cycles for 39
261 linearly spaced frequencies across 1-40 Hz). The squared magnitude of the convolved data
262 was calculated to obtain power estimates. The power estimates were subsequently
263 transformed to relative power. Power values of each given band from 1-28 Hz (Delta = 1-4 Hz,
264 Theta = 5-7 Hz, Alpha = 8-12 Hz, Beta = 13-28 Hz) were expressed as a percentage of the
265 total power within the spectrum (per channel and per given epoch). Beta bursts were extracted

266  from non-relative time-frequency power estimates.

267 2.3.3 Beta burst detection

268 Beta burst detection was performed according to the method described in Enz et al. (2021).
269  For each time-frequency power matrix, local maxima were detected using the MATLAB
270 function imregionalmax. Beta bursts were then defined as local maxima that exceeded a
2711 defined threshold of 2x median power of the entire time-frequency matrix (across all trials per
272 participant). Time-frequency matrices were then divided into ~25.39 ms time bins (also for
273 analysis of relative power). The first and last time bins were removed from all trials due to an
274 edge artefact that can occur when applying the MATLAB function imregionalmax (it detects

275 artefactual local maxima on the edges of the time-frequency matrix). Beta burst rate (the sum

12
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276 Of the number of supra-threshold bursts) and Beta burst volume (the area under the curve of
277 supra-threshold datapoints; see Enz et al., 2021) were then extracted per time bin. We also

278 extracted the timing of the first Beta burst after the Stop/Go signal in the cSST EEG data.

279 2.3.4 Selection of brain regions

280  For the statistical analysis, EEG data were averaged over clusters of four electrodes from
281 different regions of the brain. To interrogate EEG data from the rIFC, data were averaged over
282 the four individually selected electrodes over the right frontal scalp area that were used during
283 the neurofeedback training. Further, we also averaged clusters of four electrodes over the left
284 motor cortex (D19/C3, D20, D12, D11), the right motor cortex (B22/C4, B23, B31, B30) and
285 the occipital cortex (A23/0z, A24, A28, A27) to test the specificity or generalization of effects

286  beyond the trained region.

287 2.4 Statistical analysis

288 2.4.1 Behavioral analysis

289  Means and standard deviations were extracted for each participant for the following behavioral
290  CSST measures: SSRT, intraindividual coefficient of variation (ICV), Go trial reaction time
291 (RT), failed Stop trial RT, SSD, number of successful Stop trials, number of failed Stop trials,
292 probability of successful stopping, probability of Go omissions, probability of choice errors.
293  The SSRT was calculated using the integration method with replacement of Go omissions by
294 the maximum RT (Verbruggen et al., 2019). All Go trials were included in the Go RT
205 distribution, including Go trials with choice errors. Premature responses on failed Stop trials
296  were included when calculating the probability of responding on a Stop trial and mean SSD.
297 Participants with SSRT < 75 ms were excluded from all analyses. The ICV was calculated by
208  dividing Go RT standard deviation by the mean Go RT.

299 For the 2-Back Task, the absolute number of target hits were calculated across both

so0  blocks (i.e., the maximum absolute number of target hits was 20).
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301 2.4.2 Neurofeedback training statistical analysis

302 For resting EEG and for the calibration and neurofeedback blocks, data were averaged over
303 37 x 25.39 ms time bins. For the cSST, 3 x 25.39 ms time bins were averaged to create ~75
304 mMs time bins (6 time bins from -75 ms to 375 ms with respect to the Stop/Go signal). R (R
305  Core Team, 2020) was used for all statistical analyses.

306 We first tested whether the neurofeedback training was effective. For this, we fit a
so07  linear mixed-effects model (LMM) using restricted maximum likelihood with relative Beta
s08  power over the rIFC as the outcome variable, with fixed effects of Direction (UP or DOWN)
309 and Timepoint (Pre to Post neurofeedback training) and their two-way interaction, and with a
310  random effect of Participant. We also calculated Cohen’s D for each effect. The models were
s11 fit for the Beta and Alpha groups separately. We then also conducted the same analysis with
312 relative Alpha power as outcome variable. We also looked at the same outcome variables
s13  from the other three brain regions (left motor cortex, right motor cortex, occipital cortex). This
314 analysis was repeated with Beta burst rate and Beta burst volume as outcome variables. We
315 ran a post-hoc test for significant interactions using the emmeans function in R. All post-hoc
316 tests are Bonferroni corrected at 0.05/2=0.025, correcting for the two directions (UP and
31z DOWN).

318 Next, we looked at the effects of neurofeedback training on inhibitory control behavior.
319 We again fit a LMM using restricted maximum likelihood with SSRT as the outcome variable,
s20  with fixed effects of Direction (UP or DOWN), Timepoint (Pre to Post neurofeedback training),
21 Rhythm (Beta or Alpha) and their two- and three-way interactions, and with a random effect
322 of Participants. We also calculated Cohen’s D for each effect.

323 We then interrogated the relationship between the magnitude of the Pre-Post change
324 in SSRT and the extent to which relative Beta power was modulated during neurofeedback
325 training. For this we fit a linear model by robust regression using an M-estimator, with change
326 in SSRT being the dependent variable and change in relative Beta power being the
327 independent variable. We repeated this analysis with N-Back score, Go RT and ICV as

328 outcome variables.
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Next, we looked at the effects of neurofeedback training on resting EEG data collected
before and after. We fit the same three-way LMM with relative Beta power, Beta burst rate
and Beta burst volume over the rIFC as outcome variables.

Last, we looked at the effect of neurofeedback training on the brain activity while
engaging inhibitory control behavior. Again, the same three-way LMM was fit for the time bins
around the average SSRT with relative Beta power, Beta burst rate, Beta burst volume and

timing of first Beta burst over the rIFC as outcome variables.

2.5 Code and data accessibility
Custom written scripts and data summary files can be downloaded on the Open Science

Framework at [URL to be inserted after acceptance].
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3 3 Results

sa0 3.1 Spectral power in the Beta band over rIFC was modulated by Beta neurofeedback
341 training

342 We first tested whether Beta and Alpha band spectral power was successfully modulated over
aa3  rIFC by 6 days of neurofeedback in the trained directions (UP or DOWN), when quantified
344 offline using optimal artefact rejection procedures. Linear mixed effects models were
345 performed on EEG data recorded during BCI performance comparing spectral power at resting
a6 baseline on the first Day (Rest S1 Pre) to that at the end of the final (6") Day (Block 6.4),
347 within the two Beta subgroups. Beta power was significantly modulated from resting baseline
sas on Day 1 to the final block of neurofeedback on Day 6, in a manner that differed depending
349 on trained direction (Figure 2A). This was revealed by a Direction*Timepoint interaction
ss0  (F[1,40.04]=5.98, p=0.019, d=0.77, n=44). N.B.: All following post-hoc tests are Bonferroni
351 corrected at 0.05/2=0.025 and all means are shown as estimated marginal means (EMM) +
352 standard error. Beta power modestly increased for the UP group (Pre 62.0+3.03 %, Post
353 64.21+3.03 %; post-hoc test: 1{39.1]=0.80, p=0.43) and significantly decreased for the DOWN
354 group (Pre 59.5+3.65 %, Post 50.5+3.89 %; post-hoc test: t{41.5]=—2.47, p=0.018). The same
355 pattern was evident when comparing data averaged within the calibration block performed
356 immediately before training on Day 1 (Cal S1) to performance in the final block on Day 6
357 (F[1,38.18]=13.99, p=0.001, d=1.21, n=41; Figure 2B). Beta power modestly increased for
38 the UP group (Pre 62.0+£2.70 %, Post 64.2+2.67 %; post-hoc test: t[38.5]=0.99, p=0.33) and
359 significantly decreased for the DOWN group (Pre 64.1+3.51 %, Post 52.3£3.51 %, post-hoc
se0  test: t[38.0]=—3.96, p=0.0003). The calibration block data was used to establish the midline of
361  the on-screen display in the neurofeedback game, which participants were required to keep
362  an avatar above (UP) or below (DOWN). In this block, participants rested for two minutes,
363 then conducted a left-hand finger tapping movement for two minutes in order to establish the
s64  full range of raw values associated with synchronization and desynchronization of the

365 individual participant’s Beta rhythm. Figure 2A-B show the time course of Beta power for S1

16


https://doi.org/10.1101/2021.10.07.463487
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.07.463487; this version posted November 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

366 and S6 compared to resting baseline (Figure 2A) and calibration baseline (Figure 2B). See

367  Supplementary Results 1 for acute within session modulation for Day 1 and Day 6.
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ses  Figure 2: Neurofeedback training performance of Beta groups. Performance of first and last session
369 blocks is shown for Beta UP and Beta DOWN groups separately. Time course of relative power is
a0 corrected to the respective baseline. The boxplots show the medians and quartiles of the data, the
ar1 whiskers extend to the rest of the distribution, except for points that are determined to be outliers. The
a7z swarm plots show individual datapoints and the line plots connect the means of each block. A) Relative
a7 Beta power is shown relative to the resting baseline before the first training block on Day 1. B) Relative
s74  Beta power is shown relative to the calibration baseline before the first training block on Day 1. C)
375 Relative Alpha power is shown relative to the resting baseline before the first training block on Day 1.
376 D) Relative Alpha power is shown relative to the calibration baseline before the first training block on
377 Day1.

378 Spectral power in the Beta band over rIFC was not significantly modulated from resting
sr9  baseline during Alpha BCI training (Direction*Timepoint interaction: F[1,31.94]=1.42, p=0.24,

ss0  0d=0.42, n=37; Figure 3C). When comparing end of training (B6.4) to the calibration block on
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ss1  Day 1, the Direction*Timepoint interaction was significant (F[1,33.10]=4.38, p=0.044, d=0.73,
382 n=36) but post-hoc tests revealed that neither the UP nor DOWN groups showed significant
383 modulation of the Beta rhythm from the calibration baseline (all p>0.13; Figure 3D). Power in
ss4 the Alpha band was similarly not modulated during Alpha neurofeedback (all
sss  Direction*Timepoint interactions p>0.42; Figure 3A-B), suggesting that training Alpha over

ss6  rIFC was not achieved using this protocol.

Alpha UP

Alpha DOWN
g 10
9]
=
o
o
[+] 0 1
r
o
<
g
= —-10
o
[
o
-20
ey N h Lk L T T P T T T e P I N o
c,\Q Ny . 3 rag X Lo © 6b %‘o G}Q e 3 @ Q (')bq <2)‘ca q’% ng %‘o
o & s >
?® ® © ©
Timepoints Timepoints
C & D
2
5 20 !
=
[=]
a
2 \
@ 0 1
o
o
=
®
o —20
-4
-40 s A : s A
@ N v & & @ v > L @y Vv > B @ v v » L
Cé\,Q . Q;\, 3 & AP © Q,'b ‘bb @Q "5 e %'\, & (o‘oQ ] o ng Q)b
o & 2 >
& ¥ [ <
Timepoints Timepoints

ss7  Figure 3: Neurofeedback training performance of Alpha groups. Performance of first and last
sss8  session blocks is shown for Alpha UP and Alpha DOWN groups separately. Time course of relative
389 power is corrected to the respective baseline. The boxplots show the medians and quartiles of the data,
se0  the whiskers extend to the rest of the distribution, except for points that are determined to be outliers.
31 The swarm plots show individual datapoints and the line plots connect the means of each block. A)
392 Relative Alpha power is shown relative to the resting baseline before the first training block on Day 1.
393 B) Relative Alpha power is shown relative to the calibration baseline before the first training block on
s394  Day 1. C) Relative Beta power is shown relative to the resting baseline before the first training block
35 on Day 1. D) Relative Beta power is shown relative to the calibration baseline before the first training
396  block on Day 1.
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se7 3.2 Cross frequency effects and modulation of neural oscillations beyond rIFC

398 We first investigated whether power in the Alpha band was modulated during neurofeedback
399 targeting the Beta rhythm (Figure 2C-D). When comparing calibration baseline Alpha power
a0 on Day 1 to Alpha power during neurofeedback attempting to regulate Beta, significant
401 modulation was detected at the end of Day 6 (F[1,38.33]=4.78, p=0.035, d=-0.71, n=41).
402  Alpha power modestly decreased for the UP group (Pre 16.1+1.26 %, Post 15.8+1.24 %; post-
403  hoc test: t[38.5]=—-0.21, p=0.83) and significantly increased for the DOWN group (Pre
404 17.0£1.64 %, Post 20.5+1.64 %; post-hoc test: {[38.0]=2.60, p=0.013). It is notable however
405  that although this demonstrates that Alpha was modulated during training based upon
406  neurofeedback of the Beta rhythm, the direction of change was opposite (Alpha decreased in
407 the Beta UP training and vice versa). Also, the absolute effect sizes for Alpha modulation
408 during Beta training range from 0.23-0.71, whereas Beta modulation absolute effect sizes
409  were substantially larger (0.61-1.21). On the final Day of training, Alpha power was not
410  modulated acutely (i.e., within session) during Beta training when comparing power during the
411 final neurofeedback block to the resting baseline on the same day (F[1,38.75]=3.16, p=0.08,
412 d=-0.57, n=41), nor to the calibration block (F[1,37.06]=1.35, p=0.25, d=—0.38, n=41). Thus,
a3 the effects of Beta training were largely selective to the Beta rhythm.

414 To investigate effects spanning beyond the trained cluster of electrodes over rIFC, we
415 tested whether Beta Power at three other scalp sites was modulated during neurofeedback of
416 Beta signals recorded from rIFC. We chose clusters of four electrodes over right and left motor
417 cortex and occipital cortex for comparison and performed mixed effects models testing for
418 Direction*Timepoint interactions, as before. No significant interactions in any of the three
419 regions were detected when comparing resting baseline Beta power to Beta power during the
420  final neurofeedback block on Day 6 (all p>0.12). However, when comparing Beta power from
421 the initial calibration block on Day 1 to power during the final block on Day 6, significant
422 Direction*Timepoint interactions were revealed for both right (F[1,38.45]=8.46, p=0.006,
423 d=0.94, n=41) and left (F[1,38.36]=6.58, p=0.014, d=0.83, n=41) motor regions, but no

424 modulation was evident in the occipital region (F[1,35.03]=0.29, p=0.59, d=-0.18, n=41). For
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425 the right motor region, Beta power modestly increased for the UP group (Pre 56.9+2.34 %,
426  Post 58.912.31 %; post-hoc test: t[38.5]=0.92, p=0.36) and significantly decreased for the
427 DOWN group (Pre 59.4+3.04 %, Post 51.3+3.04 %; post-hoc test: t[38.0]=—2.96, p=0.005).
428 For the left motor region, Beta power modestly increased for the UP group (Pre 57.6+2.29 %,
429  Post 59.5+2.27 %; post-hoc test: t[38.4]=1.13, p=0.26) and significantly decreased for the
430  DOWN group (Pre 57.4+2.99%, Post 52.3+2.99 %; post-hoc test: {[38.0]=—2.37, p=0.023).
431 Topoplots for post-training minus pre-training are shown for each training group for both Beta

432 power (Figure 4) and Alpha power (Figure S1).
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433 Figure 4: Change in Beta power pre- to post-neurofeedback training. Topoplots show relative Beta
43s  power for the last block of neurofeedback training (Post B6.4) minus resting EEG before first block of
435 neurofeedback training (Pre Rest) as well as for the last block of neurofeedback training (Post B6.4)
436 minus calibration block (Pre Calibration). Topoplots are shown separately for each group (Beta UP,
437 Beta DOWN, Alpha UP, Alpha DOWN).
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3.3 Change in inhibitory control behavior modulated by neurofeedback training

Behavioral data of the cSST are displayed in Table S1. To assess whether neurofeedback
training had any effect upon inhibitory control behavior in the cSST (i.e., upon SSRT, the
speed of inhibitory control), we performed a mixed effects model with three fixed effects;
Rhythm (Alpha or Beta), Direction (UP or DOWN) and Timepoint (pre or post training). There
was no 3-way Rhythm*Direction*Timepoint interaction (F[1,54.88]=2.32, p=0.13, d=0.41,
n=71). There was a fixed effect of Timepoint (F[1,54.88]=4.35, p=0.042, d=0.28, n=71),
revealing that SSRTs generally improved over time regardless of BCI training type (EMMs
averaged over levels of Rhythm and Direction: Pre 166+7.86 ms, Post 147+8.54 ms). Figure

5 shows the mean pre and post SSRTSs for each group.

Beta UP
400 Beta DOWN
Alpha UP
350 o Alpha DOWN
300 ‘
? l “X il
E LT
- 250 |
= | :
(")) |
n ‘ (S
200 { 1 ==
| S~ |
150 [Tell | - — — '
| .
1 |
| \ | ’ e
100 | ‘ 4 ‘ ) (-
ala |
CcSST S1 Pre cSST S6 Post

Timepoints

Figure 5: SSRTs of each training group. The SSRTs are shown for each training group for pre (Day
1) and post (Day 6) neurofeedback training. The boxplots show the median and quartiles of the data,
the whiskers extend to the rest of the distribution, except for points that are determined to be outliers.
The swarm plots show individual datapoints and the line plots connect the means of each block.
Abbreviations: SSRT: Stop signal reaction time; cSST: conditional stop signal task.
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453 To investigate whether each individual's pre-post change in SSRT could be predicted
454 by the extent to which their Beta rhythm was modulated, we performed Robust Regression
455 analyses with change in SSRT as outcome variable and change in Beta rhythm (resting
456 baseline from Day 1 to final block on Day 6) as predictor. The extent of change in the Beta
457 rhythm as a result of training did not significantly predict improvement in SSRT from Pre-Post
458 (slope=0.81, df=25, F=2.06, p=0.16, n=22; Figure 6A). The same was evident when tested at
459 the right motor electrode cluster (slope=1.15, df=25, F=2.76, p=0.11, n=22; Figure 6B), left
460  motor cluster (slope=1.22, df=25, F=2.38, p=0.14, n=22; Figure 6C), and occipital cluster
461  (slope=0.46, df=25, F=0.41, p=0.53, n=22; Figure 6D). Training related change in Alpha
462 power for those training Alpha rhythms was not predictive of behavioral change in SSRT (all
463 p>0.26; Figure 6E-H).

464 We additionally tested whether neurofeedback training impacted other aspects of
465  cognitive function, including working memory (2-Back Task), processing speed (Go RT; Go
466 reaction times in the cSST) and performance variability (ICV; intra-coefficient of variation in
467 the cSST). No 3-way interactions emerged between Rhythm*Direction*Timepoint (all p>0.41),
468 but for Go RT there was a significant 2-way Rhythm*Timepoint interaction (F[1,75.34]=4.82,
469  p=0.031, d=0.47, n=82). Post-hoc tests are indicating a general improvement in speed
470 predominantly in the Beta group, revealing that Go RT significantly decreased for the Beta
411 group (Pre 484+7.07 ms, Post 463+7.31 ms; post-hoc test: {[5.40]=3.44, p=0.001) but did not
472 significantly decrease for the Alpha group (Pre 480+7.65 ms, Post 478+7.79 ms; post-hoc test:

a3 1[74.4]=0.24, p=0.82).
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Beta power in Beta training groups

Alpha power in Alpha training groups
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Figure 6: Association between change in SSRT and change in relative power. Each plot shows the
linear regression fit line of the data in dark grey as well as the confidence interval in light grey. Please
note the difference in scale across all plots. The associations are shown for an average of four electrodes
in four different brain regions (rIFC, right motor, left motor, occipital). A-D) show the association
between change in SSRT and change in relative Beta power in the Beta groups (UP and DOWN). E-
H) show the association between change in SSRT and change in relative Alpha power in the Alpha
groups (UP and DOWN). Abbreviations: SSRT: stop signal reaction time; rIFC: right inferior frontal
cortex.

23


https://doi.org/10.1101/2021.10.07.463487
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.07.463487; this version posted November 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

482 3.4 Resting spectral Beta power was not altered by neurofeedback training

483 Comparing resting EEG data from before training (Rest S1 Pre), after Day 1 of training (Rest
484 S1 Post) and Post training on Day 6 (Rest S6 Post), mixed effects models revealed no
485 significant Direction*Timepoint interactions for the Beta group (F[2,79.42]=0.34, p=0.71,
486 n=44), suggesting that training related modulations of Beta power were only evident when
487 engaged in the task but did not lead to a lasting change in the background (resting) tonic Beta

488 level.

489 3.5 Modulation of Beta burst characteristics by training the tonic Beta Rhythm

490  We investigated whether training to modulate tonic Beta Power over rIFC has consequences
491  for Beta burst characteristics. Beta burst rate was not altered during or after training at any of
492 the timepoints tested (all p>0.277). Burst volume was significantly modulated at the end of the
493 first Day of training when comparing burst volume in the last block of Day 1 to that detected in
494  the calibration block on the same Day (Direction*Timepoint interaction: F[1,37.48]=6.14,
495 p=0.02,d=0.81, n=40). Burst volume significantly increased for the UP group (Pre 5962+1744
496 a.u., Post 9769+1771 a.u.; post-hoc test: 1[36.6]=2.20, p=0.03) and modestly decreased for
497 the DOWN group (Pre 8560+2311 a.u., Post 5336+2251 a.u.; post-hoc test: t[37.0]=—1.43,

498 p=0.16).

499 3.6 Brain activity while performing the cSST was not modified following training
s00  There were no significant differences in neural activity (Beta power, burst rate, burst volume,
s01  timing of first burst) recorded during cSST performance at the start of the first day of training

502 compared to the end of Day 6 of training (all p>0.40).
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sos 4 Discussion

so4  We have demonstrated here that using neurofeedback in a BCI it is possible to train human
s05  participants to self-regulate their Beta rhythm over the rIFC, but that this has no observable
506  consequences upon subsequent inhibitory control behavior. Participants trained over a 6-day
so7  period to upregulate or downregulate the amplitude of their Beta rhythm over rIFC, resulting
s08  in the predicted directional changes to Beta power. Concomitant changes at other (untrained)
s09  scalp regions and other frequency bands were of lower magnitude, indicating good specificity
s10  of the neurofeedback protocol for modulating the trained rhythm, direction and region. The
511 extent to which each individual's SSRT changed pre-post training was however, not predicted
512 by the magnitude of their training-related change in Beta over rIFC. This was also not the case
s13  for the control group undergoing Alpha training. Although the right frontal Beta rhythm has
514  been repeatedly implicated as a key component of the brain’s inhibitory control system, the
515 present data suggest that improving the ability to self-regulate the rhythm does not result in
s16  behavioral change in an inhibitory control task.

517 Training related modulation of the Beta rhythm was only manifest during the
518 nheurofeedback task and did not alter EEG signals measured subsequently at rest or during
s19  CSST task performance. The current experimental design did not permit us to investigate
s20  whether online (i.e., during cSST task performance) self-regulation of the Beta rhythm would
521 impact upon behavior, although this may be an interesting future extension of the work.
522 Additionally, in the BCI task, neurofeedback was provided on the amplitude of the tonic
s23  (background) Beta rhythm. Further analyses revealed that this style of regulation of tonic Beta
s24  power had no impact on the rate or volume of transient burst-like high amplitude events in the
s25  Beta frequency range. This adds weight to the emerging view that so called ‘Beta bursts’ are
s26  a phenomena distinct from the ongoing background or ‘tonic’ oscillation at the same frequency
s27  (Bonaiuto et al., 2021; Little et al., 2019). Timing and magnitude of Beta bursts critically impact
528  upon subsequent motor performance (Little et al., 2019) and whether attempts to inhibit a

529  response are successful or not (Enz etal., 2021; Wessel, 2020). Although participants learned
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s30  to modulate the amplitude of their Beta rhythm over rIFC, this gradual, tonic background
531 change in Beta during the distinct 3-minute neurofeedback blocks had no impact upon
532 subsequent inhibitory control behavior. In order to modify Beta bursts using the BCI, it may be
533  hecessary to provide feedback specifically tailored to detect and influence bursting in real-
s34 time (online), rather than simply of generalized (and offline) regulation of tonic Beta (e.g., He,
535  2020).

536 In the protocol used in the current study, neurofeedback targeting downregulation of
537  Beta oscillations was more impactful than upregulation. Itis likely that downregulation is simply
s38  easier for participants to perform, as it is known that engaging a brain region in a mental
539 process (such as motor imagery), tends to lead Beta (and Alpha) to desynchronize in the
540  region (Jensen & Mazaheri, 2010). Over the 6-day training period, participants learned to tailor
541 their mental imagery strategies to optimally engage rIFC in order to achieve tangible real-time
542 control over the movement of the avatar on screen. Our results leave open the possibility that
543 it may be the ability to flexibly engage (and remove) Beta oscillations in the form of precisely
544 timed bursts that predicts behavioral performance, rather than the tonic level per se.

545 While the neurofeedback training we employed was effective for regulating the Beta
sa6  rhythm over rIFC, Alpha modulation at this scalp location was not achieved. The lack of Alpha
sa7  modulation over rIFC may be due to the fact that Beta is the predominant resonating frequency
sa8 in this location, and has been repeatedly implicated in the functioning of this region (Schaum
s49  etal., 2021; Sundby et al., 2021; Swann et al., 2009; Swann et al., 2012; Wagner et al., 2017).
ss0  Further, for all participants (even those in the Alpha group) we performed the same functional
s51  localizer to detect the precise cluster of electrodes corresponding to the right frontal scalp
s52  location showing most substantial Beta synchronization during the c¢SST. This cluster of
s53  electrodes, selected for exhibiting strong Beta activity during inhibitory control, was used to
s54  tailor the BCI neurofeedback for both Alpha and Beta groups. Optimizing the BCI for Beta
555 Using this method may further explain why Alpha modulation was not achieved at the rIFC

556 site.
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557 Previous studies using implanted electrodes have reported that positive effects upon
s58  motor behavior could be achieved in macaques (Khanna & Carmena, 2017) and humans with
s59  Parkinson’s disease (Bichsel et al., 2021) using BCI to train self-regulation of the brain’s Beta
s60  rhythm. Here we build upon and extend these initial findings by making the advance to non-
561 Invasive scalp recorded EEG signals in humans, demonstrating that volitional modulation of
s62  Beta oscillations was achieved within 6 days of training. The BCI neurofeedback protocol
563  demonstrated good spatial and temporal specificity, modulating primarily the targeted region,
s64  rhythm and direction. The lack of behavioral consequences further adds weight to the
565  emerging picture in recent research showing that the right frontal Beta signature associated
s66  With stopping may not exert a direct functional influence upon the behavior. Indeed, Errington
s67 et al. (2020) demonstrated using depth electrodes in macaques that while Beta bursts were
s68  associated with inhibitory control, successful stopping could occur even on trials where no
569 bursts were detected. They also highlighted that the occurrence of Beta bursts during Stop
s70  trials was generally very low (~15% of trials), and as such may only represent one component
s71 of a more complex neural mechanism underlying inhibitory control.

572 Using non-invasive BCI technology, volitional and causal self-regulation was
s73  achieved without the need for exogenous stimulation, paving the way for easier real-world
574 application of neuromodulation to alter brain rhythms experimentally. The present data
575 suggest, however, that offline neurofeedback training of the tonic Beta rhythm may not serve

s76  as a useful therapeutic target for disorders with dysfunctional inhibitory control as their basis.
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