

1 **HIV proviral burden, genetic diversity, and dynamics in viremic controllers who
2 subsequently initiated suppressive antiretroviral therapy**

3

4 F. Harrison Omondi^{a,b}, Hanwei Sudderuddin^b, Aniqa Shahid^{a,b}, Natalie N. Kinloch^{a,b}, Bradley R.
5 Jones^{b,c}, Rachel L. Miller^{b,c}, Olivia Tsai^a, Daniel MacMillan^b, Alicja Trocha^d, Mark A.
6 Brockman^{a,e}, Chanson J. Brumme^{b,f}, Jeffrey B. Joy^{b,c,f}, Richard Liang^b, Bruce D. Walker^d,
7 Zabrina L. Brumme^{a,b#}

8

9 ^a Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada

10 ^b British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada

11 ^c Bioinformatics Program, University of British Columbia, Vancouver, BC, Canada

12 ^d Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA

13 ^e Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC,
14 Canada

15 ^f Department of Medicine, University of British Columbia, Vancouver, BC, Canada

16

17 Running title: Proviral dynamics and longevity in viremic controllers

18

19 #Address correspondence to Zabrina L. Brumme, zbrumme@sfu.ca.

20 F.H.O. and H.S. contributed equally to this work. F.H.O. is listed first as he wrote the first draft
21 of the manuscript.

22 Abstract Word Count: 250

23 Text Word Count: 5381

24 **Abstract**

25 Curing HIV will require eliminating the reservoir of integrated, replication-competent proviruses
26 that persist despite antiretroviral therapy (ART). Understanding the burden, genetic diversity and
27 longevity of persisting proviruses in diverse individuals with HIV is critical to this goal, but
28 these characteristics remain understudied in some groups. Among them are viremic controllers,
29 individuals who naturally suppress HIV to low levels but for whom therapy is nevertheless
30 recommended. We reconstructed within-host HIV evolutionary histories from longitudinal
31 single-genome amplified viral sequences in four viremic controllers who eventually initiated
32 ART, and used this information to characterize the age and diversity of proviruses persisting on
33 therapy. We further leveraged these within-host proviral age distributions to estimate rates of
34 proviral turnover prior to ART. This is an important yet understudied metric, since pre-ART
35 proviral turnover dictates reservoir composition at ART initiation (and thereafter), which is when
36 curative interventions, once developed, would be administered. Despite natural viremic control,
37 all participants displayed significant within-host HIV evolution pre-therapy, where overall on-
38 ART proviral burden and diversity broadly reflected the extent of viral replication and diversity
39 pre-ART. Consistent with recent studies of non-controllers, the proviral pools of two participants
40 were skewed towards sequences that integrated near ART initiation, suggesting dynamic proviral
41 turnover during untreated infection. In contrast, proviruses recovered from the two other
42 participants dated to time-points that were more evenly spread throughout infection, suggesting
43 slow or negligible proviral decay following deposition. HIV cure strategies will need to
44 overcome within-host proviral diversity, even in individuals who naturally controlled HIV
45 replication before therapy.

46 **Importance**

47 HIV therapy is life-long because integrated, replication-competent viral copies persist within
48 long-lived cells. To cure HIV, we need to understand when these viral reservoirs form, how large
49 and genetically diverse they are, and how long they endure. Elite controllers, individuals who
50 naturally suppress HIV to undetectable levels, are being intensely studied as models of HIV
51 remission, but viremic controllers, individuals who naturally suppress HIV to low levels, remain
52 understudied even though they too may hold valuable insights. We combined phylogenetics and
53 mathematical modeling to reconstruct proviral seeding and decay from infection to therapy-
54 mediated suppression in four viremic controllers. We recovered diverse proviruses persisting
55 during therapy that broadly reflected HIV's within-host evolutionary history, where the estimated
56 half-lives of the persistent proviral pool during untreated infection ranged from <1 year to
57 negligible. Cure strategies will need to contend with proviral diversity and between-host
58 heterogeneity, even in individuals who naturally control HIV.

59 **Background**

60 Like all retroviruses, HIV integrates its genome into that of its host cell. Most infected
61 cells die – or are eliminated by the immune system – within a day or two of infection, but a
62 small number persist long-term, even during suppressive antiretroviral therapy (ART) (1–3).
63 While most of these long-lived cells harbor HIV proviruses with large deletions or other genetic
64 defects (4–6), a minority harbor replication-competent proviruses that could reactivate at any
65 time. It is for this reason that ART needs to be maintained for life. Achieving ART-free HIV
66 remission ("functional cure") or a complete cure (eradication) (7) will therefore require
67 permanently inactivating (8, 9) or eliminating (10, 11) these HIV reservoirs, respectively.
68 Characterizing the burden, genetic diversity and longevity of the proviruses that persist within-
69 host can advance us towards these goals.

70 HIV elite controllers, rare individuals who spontaneously control viremia to undetectable
71 levels without ART, are being intensely studied as natural models of HIV remission (12). They
72 may also represent a group in which a complete cure might be more easily achieved (13, 14), in
73 part because their HIV reservoirs are smaller and less genetically diverse (8, 12, 15). Proviral
74 burden and diversity however are less well characterized in viremic controllers, individuals who
75 naturally suppress HIV to low levels (normally defined as <2000 HIV RNA copies/ml in plasma
76 (16, 17)), but who are nevertheless recommended to initiate ART under current guidelines (18).
77 In particular, this group could yield insights into persisting proviral composition in the context of
78 natural yet incomplete HIV control.

79 More broadly, our understanding of within-host proviral *dynamics* (*i.e.* the rates of
80 proviral deposition and subsequent decay) during untreated infection remains incomplete for
81 HIV controllers in general. This is in part because longitudinal studies dating back to infection
82 are rare in this group, and because it is challenging to isolate HIV from samples with low or

83 undetectable viral loads. Understanding these dynamics is nevertheless important because
84 proviral longevity during untreated infection dictates reservoir composition at ART initiation
85 (and thereafter): if the persisting proviral pool turned over slowly pre-ART, then HIV sequences
86 seeded into it during early infection would have a high likelihood of persisting for long periods,
87 but if the pool turned over rapidly, its composition would shift towards recently-circulating HIV
88 sequences. As cure or remission interventions would only be administered during suppressive
89 ART, it is critical to understand the dynamics that shape the proviral pool up to this point.

90 Our understanding of within-host proviral dynamics has recently been enriched by the
91 development of phylogenetic approaches to analyze persisting proviral diversity in context of
92 HIV's within-host evolution prior to ART (19–23). A recent study that recovered replication-
93 competent HIV sequences during therapy revealed that the majority represented viral variants
94 that circulated close to therapy initiation, though more ancestral sequences, some dating back to
95 transmission, were also recovered (21). Studies employing similar approaches to "date" the
96 overall pool of proviruses persisting on ART, which comprise both genetically intact and
97 defective sequences, have confirmed that these often span the individual's whole pre-ART
98 history, where individuals differ in the extent to which their proviral pool is skewed towards
99 sequences that integrated around ART initiation (19, 20, 22, 23). Because viremic controllers
100 naturally limit viral replication to low levels, one could hypothesize that their persisting proviral
101 pools may be smaller and less diverse than those of non-controllers, which could potentially
102 make them more responsive to remission or cure interventions, but on-ART proviral diversity
103 has not been investigated in this group in context of HIV's full within-host evolutionary history.

104 The age distributions of proviruses sampled shortly after ART can also be used to
105 calculate within-host rates of proviral turnover during untreated infection (19, 23): this is
106 because, at the time of sampling, the majority of proviral turnover would have already occurred

107 prior to therapy. Recent data from non-controllers suggests that proviral half-lives during
108 untreated infection average less than a year (19, 24), though another study estimated an average
109 of 25 months (23). Regardless, these estimates are far shorter than the published rates of proviral
110 decay on ART, which are estimated as ~4 years for the replication competent reservoir (25) and
111 >10 years for the proviral pool at large (26). This has led to the hypothesis that ART dramatically
112 slows the rate of proviral turnover *in vivo*, thereby stabilizing the proviral pool for long-term
113 persistence (21, 27, 28). Pre-ART proviral dynamics however have not been investigated in HIV
114 controllers. To address these knowledge gaps, we combined single-genome sequencing, proviral
115 quantification, phylogenetic analysis, and mathematical modeling to characterize proviral
116 burden, diversity and dynamics in four viremic controllers from HIV infection to therapy-
117 mediated suppression.

118 **Results**

119 **Participant characteristics and sampling**

120 We studied four viremic controllers. Three broadly maintained plasma viral loads (pVL)
121 <2000 copies HIV RNA/ml during untreated infection (participants 1, 2, 3), while one
122 maintained pVL <2000 copies HIV RNA/ml for 3 years before losing control (participant 4).
123 Participants initiated ART a mean of 6.1 (range 3.8-8.4) years following their estimated date of
124 infection (EDI). An average of 13 (range 10-17) pre-ART plasma samples per participant, that
125 spanned a mean 4.5 (range 2.5-6.7) year period prior to therapy, were available for HIV RNA
126 sequencing, where the first was sampled a mean of 20.5 (range 15-26) months following the EDI
127 (**Figure 1; Table 1**). In addition, PBMC were available at two timepoints on suppressive ART
128 (10 million cells per timepoint). Due to limited cell numbers, the first PBMC sample, taken an
129 average of 18.7 (range 9-38) months after ART, was used to quantify total and genetically
130 intact proviral burden in CD4+ T cells (29). The second, taken an average of 28.8 (range 16-54)
131 months after ART, was used for proviral sequencing and integration date inference (20).

132 **Quantifying total and genetically intact proviral burden**

133 We quantified total and genetically intact proviral burden in CD4+ T cells using the
134 Intact Proviral DNA Assay (IPDA). This is a duplexed droplet digital PCR (ddPCR) assay that
135 targets two HIV regions, the Packaging Signal (Ψ) near the 5' end of the viral genome and the
136 Rev Responsive Element (RRE) within Envelope (*env*) that, together, have high predictive power
137 to distinguish genetically intact proviruses from those with large deletions and/or extensive
138 hypermutation, which typically dominate *in vivo* (29). Proviruses yielding double (Ψ and *env*)
139 positive signals are inferred to be genetically intact while those yielding only single positive
140 signal are classified as defective.

141 We observed marked inter-individual differences in total proviral burden. Participant 3
142 harbored the fewest proviruses (44 HIV DNA copies/ 10^6 CD4+ T cells) while participant 4, the
143 individual who eventually lost control, harbored the most (778 HIV DNA copies/ 10^6 CD4+ T
144 cells) (**Figure 1; Table 1**). The percent of genomically intact proviruses also differed markedly,
145 with participant 2 harboring the lowest (10% intact proviruses) and participant 4 the highest
146 (94% intact). The latter is remarkable though not without precedent (30). Participant 4's large
147 overall and intact proviral burden allowed us to isolate one near-full-length intact provirus from
148 this timepoint (**Figure 1**) for integration date inference.

149 **Single-genome plasma HIV RNA and proviral sequencing**

150 We characterized HIV RNA *nef* sequences from longitudinal pre-ART plasma, and
151 proviral sequences from the second on-ART PBMC sample, by single-genome amplification.
152 HIV *nef* was sequenced because of its richness in phylogenetic signal despite its relatively short
153 length (a shorter amplicon was critical as viral loads were low for most samples), because *nef* is
154 representative of within-host HIV diversity and evolution relative to the rest of the viral genome
155 (20), and because it is the gene most likely to be intact in proviruses persisting on ART (29, 31).
156 Despite low viral loads we isolated 546 HIV RNA *nef* sequences from pre-ART plasma (range
157 67-245/participant), where an average of 66.2% of these (range 50.0-89.6%) were distinct within
158 each participant (**Table 1**). We further isolated 267 intact proviral *nef* sequences during
159 suppressive ART (range 24-129/participant), where an average of 69.8% (range 50.0-91.5%)
160 were distinct. All participants had HIV subtype B and their sequences were monophyletic with
161 no evidence of co-infection or superinfection (**Figure 2**). There were multiple instances where
162 we recovered a proviral sequence on ART that was identical to a pre-ART plasma sequence,
163 consistent with the long-term persistence of HIV sequences *in vivo*.

164 **Within-host HIV evolutionary reconstruction and proviral dating**

165 We next characterized the diversity of proviruses persisting on ART, and inferred their
166 ages phylogenetically (20). For each participant, we inferred a maximum likelihood phylogeny
167 relating their plasma HIV RNA and proviral sequences, where the root represented the inferred
168 transmitted founder event. We then fit a linear model relating the root-to tip distances of distinct
169 pre-ART plasma HIV RNA sequences to their collection dates, where the slope of this line
170 represents the within-host HIV *nef* evolutionary rate under a strict molecular clock assumption,
171 and the x-intercept represents the phylogenetically-estimated infection date. We observed
172 statistically significant within-host HIV evolution in plasma in all participants pre-ART, as
173 defined by increasing divergence from the root, where the 95% confidence interval (CI) of the
174 phylogenetically-estimated infection date captured the participant's clinically estimated one in all
175 cases (**Table 2**). We next describe each participant's results in detail.

176 Participant 1 (EDI April 2006) maintained viremic control except for two plasma viral
177 load measurements of 8075 and 2685 copies/ml in February and October 2008 respectively, prior
178 to initiating ART in August 2010 (**Figure 3A**). Their proviral load on suppressive ART was 215
179 HIV copies/ 10^6 CD4+ T cells, with 51% genetically intact (**Figure 1; Table 1**). We isolated 104
180 intact HIV RNA *nef* sequences from 8 pre-ART plasma timepoints spanning 2.4 years, of which
181 52 (50%) were distinct, and 48 proviral *nef* sequences sampled approximately two years post-
182 ART, of which 40 (83%) were distinct (**Table 1**). The recovery of identical proviral sequences is
183 consistent with clonal expansion of CD4+ T cells harboring integrated HIV (32–34), though we
184 cannot definitively identify these as clonal since we only performed subgenomic HIV
185 sequencing. Within-host phylogenetic analysis revealed increasing plasma HIV RNA divergence
186 from the inferred root over time, along with non-synonymous substitutions that typify within-
187 host HIV evolution (**Figure 3B**). Proviruses sampled on ART interspersed throughout the

188 phylogeny except within the clade closest to the root, which comprised the earliest sampled
189 plasma HIV RNA sequences. The linear model relating the root-to-tip distances of distinct pre-
190 ART plasma HIV sequences to their collection dates yielded a pre-ART *nef* evolutionary rate of
191 3.22×10^{-5} substitutions per nucleotide site per day (**Figure 3C; Table 2**). Based on this, the
192 oldest sampled provirus was estimated to have integrated in April 2008, 4 years prior to sampling
193 (**Figure 3D**). Though the 95% CIs around the proviral date estimates are wide, these data
194 nevertheless suggest that proviruses seeded throughout infection persisted during ART.

195 Participant 2 (EDI December 2005) maintained pVL <2000 copies/ml except for two
196 measurements of 2160 and 3230 copies/ml in June 2010 and September 2013 respectively, and
197 initiated ART in May 2014 (**Figure 4A**). Their total proviral load on ART was 580 HIV
198 copies/ 10^6 CD4+ T cells, with only 10% intact, the smallest intact proportion of all participants
199 (**Figure 1; Table 1**). We recovered 67 HIV RNA *nef* sequences from 9 pre-ART plasma
200 timepoints spanning more than four years, of which 60 (90%) were distinct, and 66 intact
201 proviral *nef* sequences after 1.2 years on ART, of which 36 (55%) were distinct. The sequences
202 closest to the root of this participant's phylogeny were proviruses sampled on ART, consistent
203 with these having integrated shortly after transmission (**Figure 4B**). Proviruses also interspersed
204 throughout almost all descendant clades. Based on this individual's calculated pre-ART *nef*
205 evolutionary rate of 1.17×10^{-5} substitutions per nucleotide site per day (**Figure 4C and Table**
206 **2**), proviruses persisting on ART were inferred to have integrated on dates that spanned the
207 individual's entire pre-ART history (**Figure 4D**). One particular proviral sequence, recovered 26
208 times, was estimated to have integrated 6 years prior to sampling.

209 Participant 3 (EDI Mar 2008) continuously maintained pVL <1000 copies/ml before
210 initiating ART in January 2012. Thereafter, pVL remained suppressed except during a treatment
211 interruption when a pVL of 1610 copies/ml was recorded (November 2013), but unfortunately no

212 plasma was available from that event from which to isolate HIV sequences. This participant had
213 the smallest proviral burden of all (44 HIV copies/ 10^6 CD4+ T cells), with an estimated 31%
214 genetically intact (**Figure 1; Table 1**). We recovered 130 pre-ART plasma HIV *nef* sequences
215 (55% distinct) from 7 pre-ART timepoints, where early plasma timepoints more frequently
216 yielded identical HIV sequences, consistent with limited viral diversity following infection. We
217 recovered only 24 proviral sequences (50% distinct) on ART, consistent with the small proviral
218 burden. Despite maintenance of pVL<1000 pre-ART, the within-host phylogeny displayed
219 significant molecular clock signal (1.16×10^{-5} substitutions per nucleotide site per day) where,
220 similar to participant 2, proviruses sampled on ART interspersed throughout the tree and
221 represented those closest to the root (**Figures 5B, 5C**). The earliest proviruses dated to around
222 transmission while the latest dated to the viremic episode that occurred during the treatment
223 interruption; the narrower 95% confidence intervals around these point estimates allow us to say
224 with more certainty that this individual's proviral pool spans a wide age range (**Figure 5D**). One
225 sequence, recovered 9 times on ART and representing 38% of recovered proviruses in this
226 individual, dated to around ART initiation.

227 Participant 4 (EDI March 2005) initially controlled pVL to <2000 copies/ml for 3 years,
228 but afterwards lost control, where pVL reached a maximum of 65,500 copies/ml before initiating
229 ART in February 2013 (**Figure 6A**). Two linear models were calibrated, one each for the
230 "control" and "post-control" periods, where the former was used to phylogenetically verify the
231 clinically estimated infection date. We recovered 245 pre-ART plasma HIV *nef* sequences from
232 12 pre-ART timepoints (71% distinct), where, like participant 3, identical sequences were most
233 frequently recovered from early timepoints (**Figure 6B**). We also recovered 129 proviral
234 sequences during ART, a remarkable 92% of which were unique, indicating substantial proviral
235 diversity in this individual. The linear model inferred from the viremic control period yielded

236 strong molecular clock signal despite low viremia during this time, but no proviral sequences
237 were recovered that interspersed with these very early sequences (**Figures 6B, 6C**). All
238 recovered proviruses were therefore "dated" using the linear model representing the post-control
239 period, yielding integration dates spanning this whole period (**Figure 6C**). Of note, the near-full-
240 length genetically-intact provirus isolated during ART dated to 2011.

241 **Correlates of proviral burden and diversity during ART**

242 Early ART limits HIV reservoir size (35–37), and positive correlations have been
243 observed between the duration of uncontrolled viremia, and both HIV reservoir size and diversity
244 in non-controllers (37–41). We therefore investigated the relationship between proviral burden,
245 HIV diversity and cumulative viral load in our cohort. We observed a strong correlation between
246 overall HIV genetic diversity in plasma pre-ART, and proviral diversity on-ART (Spearman's
247 $\rho=1$; $p=0.08$; **Figure 7A**). Furthermore, cumulative viral load, measured as \log_{10} viremia copy-
248 days during untreated infection, correlated strongly with both total proviral burden as measured
249 by the IPDA and proviral diversity on ART (both Spearman's $\rho=1$; $p=0.08$; **Figures 7B, C**).

250 **Inferring proviral turnover pre-ART: mathematical modeling approach**

251 The decay rates (half-lives) of the proviral pool during untreated infection can be inferred
252 from the age distributions of proviruses sampled on ART; this is because at the time of proviral
253 sampling, the bulk of the proviral turnover had already occurred prior to therapy (19, 23, 24). We
254 estimated pre-ART proviral half-lives in two ways: by adapting an existing mathematical model,
255 and by estimating these rates directly from the data.

256 To do the former, we modified a dynamical mathematical model of HIV infection that
257 describes within-host cell and virus concentrations over time within active and latent
258 compartments (see methods and (23)). The model assumes that HIV sequences enter the
259 reservoir at a rate proportional to their abundance in plasma, allowing us to model within-host

260 proviral deposition in a personalized way. As our viral load data did not capture acute-phase
261 dynamics, we merged each participants' available data with acute phase dynamics estimated from
262 the (limited) literature on HIV controllers (42–44) (see methods and **Table S1**) to model their
263 proviral deposition. In a subsequent step, we then allowed these proviruses to decay at various
264 constant, exponential rates up to the participants' sampling date, yielding predictions of what the
265 proviral age distribution would be, at time of sampling, for each decay rate tested.

266 The participants' reconstructed viral load dynamics are shown in **Figures 8A-D**, while the
267 model-predicted proviral compositions under different decay rates, depicted as the proportion of
268 remaining proviruses that date to each year prior to ART (or in the case of participant 3, to the
269 viremic episode that occurred during treatment interruption), are shown in **Figures 8E-H**. For
270 participants 1-3, the model predicts that the bulk of the reservoir would have been deposited in
271 the first year of infection (**Figures 8E-G**, yellow line); this is because the estimated acute-phase
272 peak viral load is nearly 2 \log_{10} higher than the subsequent setpoint. For participant 4, the model
273 predicts that the bulk of the reservoir would have been deposited during the post-control period,
274 because viral load was sustained at high levels during that time (**Figure 8H**, yellow line).

275 If we allow these deposited proviruses to decay at half-lives of 140 months (26) and 44
276 months (25), where these represent published estimates of DNA and replication-competent
277 reservoir decay on ART respectively, the model predicts that, at time of sampling, participant
278 proviral distributions would be skewed towards slightly younger ages (grey and black dotted
279 lines). Notably, for participants 1, 3 and 4, these predicted proviral distributions fit their observed
280 data (shown as the blue bars) quite poorly. As a last step, we identified the pre-ART proviral
281 half-life that best fit each participants' proviral distribution (green line). Participant 1's was the
282 shortest of all, only 0.41 (95% CI 0-1.03) years (**Figure 8F**). Estimated proviral half-lives for

283 participants 3 and 4 were intermediate, while participant 2's was nearly 9 years, with an upper
284 95% CI extending to 77 years.

285 While this model clearly illustrates how faster decay rates shift proviral distributions
286 towards younger ages, it assumes that within-host cell and viral dynamics behave as
287 parameterized by the model. The model-produced best-fit half-lives were also somewhat
288 sensitive to imputed acute-phase viremia dynamics, with higher, longer peaks yielding the
289 shortest half-lives (**Table S1**). The half-life estimates for participant 3, who controlled viremia
290 the most successfully, were the most sensitive to these imputations: using a low, short peak for
291 example yielded a half-life estimate of 3.04 (95% CI 0-18.08) years, nearly three times longer
292 than that estimated in the primary analysis.

293 **Inferring proviral turnover pre-ART: direct approach**

294 Recognizing the limitations of the dynamical model and our lack of capture of the
295 participants' actual acute-phase dynamics, we also estimated pre-ART proviral half-lives directly
296 from observed proviral age distributions using a Poisson generalized linear model, an approach
297 that does not incorporate clinical history information. The 95% CI around the half-life estimates
298 produced by this method overlapped those produced by the dynamical model in all cases
299 (**Figures 8I-L**). The point estimates for participants 1 and 2 were also very consistent, with the
300 former again exhibiting the shortest proviral half-life of 0.63 (95% CI 0.46-0.97) years, and the
301 latter exhibiting the longest of 23.74 (95% CI 4.44- ∞) years. Participant 4's estimated pre-ART
302 proviral half-life was 0.76 (95% CI 0.65-0.96) years, slightly shorter than that estimated with the
303 dynamical model, while participant 3's was 4.79 (95% CI 1.44- ∞) years, which was comparable
304 to the dynamical model-derived estimate when using a low, short inferred acute-phase peak viral
305 load (**Table S1**). Broadly however, the proviral pools that were skewed towards ART initiation

306 produced short (<1 year) half-life estimates (participants 1 and 4) while those that dated more
307 uniformly throughout infection produced substantially longer half-lives (participants 2 and 3).

308 **Sensitivity analyses: Alternate within-host phylogenies**

309 We now present sensitivity analyses that test the robustness of our findings. In our
310 primary analysis, we estimated proviral ages using a phylogeny inferred using the best-fit
311 nucleotide substitution model. Each dataset however yielded models with similar predictive
312 power (**Table S2**), so we re-computed proviral ages and pre-ART half-lives (using the Poisson
313 generalized linear model) from a phylogeny inferred using each participant's "next best fit"
314 model. Results were broadly consistent with the primary findings: participants 1 and 4 again
315 showed proviral distributions that were skewed to dates near ART, yielding pre-ART half-lives
316 <1 year (**Figure S1**). Participant 2's alternative phylogeny dated a slightly larger proportion of
317 proviruses to around ART initiation, yielding a shorter half-life than that estimated from the
318 primary analysis. Nevertheless, both participant 2 and 3's proviral distributions maintained an
319 overall "flat" age distribution, yielding the longest estimated half-lives in the cohort. This
320 suggests that our findings are not unduly influenced by the phylogenetic inference step.

321 **Inferring proviral age distributions and pre-ART half-lives without a molecular clock.**

322 In our primary analysis, we estimated proviral ages from root-to-tip phylogenetic
323 distances by linear regression (20, 22). This assumes a strict molecular clock, which may not
324 hold over long time periods (45), so we re-analyzed our data using two approaches that do not
325 rely on this assumption. The first was "nearest neighbour" dating (21), where each provirus is
326 assigned to the sampling date of the pre-ART plasma sequence closest to it in the tree (for
327 consistency, the original tree was used). A limitation of this approach is that proviruses can only
328 be assigned to dates when plasma HIV sequences were sampled. Nevertheless, the results were
329 broadly comparable to the original ones (**Figure S2**, left side): participants 2 and 3 showed "flat"

330 proviral age distributions and long estimated proviral half-lives, while participants 1 and 4
331 showed skewed proviral age distributions and proviral half-lives under one year.

332 We also used Least Squares Dating (LSD) (46), an approach that aims to minimize the
333 variance between the tree branch lengths and sample dates, that has also recently been used to
334 infer proviral sequence ages (47). We used the original rooted tree; here it may be useful to re-
335 iterate that the root represents the location that maximizes the (Spearman's) *correlation* between
336 plasma HIV root-to-tip distances and sampling times, and thus does not rely on a strict clock.
337 LSD also incorporates tree *topology* information (as opposed to just root-to-tip distances) and
338 allows variable evolutionary rates over the tree's edges. Overall, the LSD-inferred 95% CI were
339 generally narrower and the within-host evolutionary rates slightly slower than those inferred
340 using linear regression, but the estimated proviral ages and half-lives were again comparable to
341 the original observations (**Figure S2**, right side). Taken together, these observations indicate that
342 our findings are robust to a strict clock assumption.

343 **Accounting for identical sequences in proviral half-life estimates**

344 When estimating rates of pre-ART proviral turnover we excluded identical proviral
345 sequences under the assumption that these arose through clonal expansion rather than through
346 independent integration events. Subgenomic HIV sequencing however cannot conclusively
347 classify identical sequences as clonal across the whole HIV genome (48), so we re-analyzed our
348 data using all sequences collected (**Table 1**). Results were again highly consistent with the
349 original data (**Figure S3**). Participant 1's estimated proviral half-life when including 8 identical
350 sequences was 0.61 [95% CI 0.46-0.9] years, which was very similar to the original 0.63 (95%
351 CI 0.46-0.97) year estimate. Similarly, participant 2's estimated half-life after including 30
352 identical sequences, the majority of which dated to a lineage that circulated 6 years prior to ART,

353 was zero (*i.e.* no decay) which is comparable to the original 23.74 (95% CI 4.44- ∞) year
354 estimate. Our findings are therefore robust to the inclusion or exclusion of identical sequences.

355 **Discussion**

356 Though modest in size, our longitudinal cohort of ART-treated viremic controllers
357 allowed us to characterize proviral burden, diversity and dynamics in this understudied group.
358 Our results indicate that the persisting proviral pools in these individuals can share considerable
359 similarities in terms of size, diversity, and turnover with those of non-controllers on ART.

360 Within-host HIV evolutionary studies have revealed that most infections are initiated by a
361 single transmitted founder virus that gives rise to increasingly diverse and divergent descendants
362 (45, 49–54). The dynamics of within-host HIV evolution in controllers however remain
363 somewhat unclear: while some studies performed on shorter timeframes reported increases in
364 plasma HIV diversity and/or immune escape over time in elite (55–57) and viremic (58)
365 controllers, others found limited or no evidence of evolution (12, 15, 59). Our first notable
366 observation was that significant within-host HIV evolution occurred in all participants, as
367 evidenced by ongoing divergence from a phylogenetically-inferred root, whose date was
368 consistent with the clinically-estimated infection date in all cases. Also indicative of within-host
369 evolution, non-synonymous substitutions consistent with escape from Human Leukocyte Antigen
370 (HLA) class I-restricted cellular immune responses occurred even in participant 3, for whom pre-
371 ART plasma viral loads never reached above 1000 HIV RNA copies/ml. In this participant who
372 expresses HLA-A*03:01 and HLA-B*57:01, 25/25 sequences sampled in 2009 harbored the
373 predicted HLA-B*57:01-restricted epitope AGNNAACAW at Nef codons 49-57 (60). By 2011,
374 8/27 sequences harbored AENNAACAW which has a predicted >10-fold reduced binding
375 affinity to B*57:01, a shift in frequency that was statistically significant (Fisher's exact test;
376 p=0.0044). Similarly, 25/25 sequences sampled in 2009 harbored the predicted A*03:01-
377 restricted epitope KLVPVPEK at Nef codons 144-152, but by late 2011, 6/16 sequences
378 harbored KLVPVPEE, which has a predicted >160-fold reduced binding affinity to A*03:01

379 (p=0.0069). Participants' estimated within-host *nef* evolutionary rates, which ranged from 1.16 -
380 5.35×10^{-5} substitutions per nucleotide site per day assuming a strict clock, were also
381 comparable to those reported in non-controllers using similar methods (20). Therefore, despite
382 natural viremia control, significant within-host HIV evolution nevertheless occurs in this group
383 in the absence of therapy.

384 Our results also revealed that total and genomically intact proviral DNA burdens in ART-
385 treated viremic controllers can be substantial. While few studies have estimated reservoir size in
386 controllers using the IPDA, a recent study reported 20-fold lower frequencies of total and intact
387 proviral DNA in elite controllers (median of 30 and 1.6 copies/ 10^6 CD4 $^+$ T cells respectively)
388 compared to non-controllers on ART (median of 603 and 37 copies/ 10^6 CD4 $^+$ T cells
389 respectively) (61). The median total and intact proviral burdens in the present study were 398
390 and 84 copies/ 10^6 CD4 $^+$ T cells respectively (or 215 and 58 copies/ 10^6 CD4 $^+$ T cells respectively
391 if we exclude participant 4 who lost viremic control), values that were more in line with those in
392 non-controllers (30, 61, 62). Proviral loads in our study however were sampled only ~1.5 years
393 after ART on average. Longitudinal studies of treated viremic controllers on ART will therefore
394 be required to confirm whether, similar to non-controllers, intact proviruses gradually decay on
395 ART while total proviral DNA remains stable (30, 62, 63).

396 Our results also yield insights into on-ART proviral diversity and the length of time these
397 sequences had persisted within-host. Consistent with a prior study that included viremic
398 controllers (64), proviruses recovered in the present study were genetically diverse and
399 frequently included archival lineages. Similar to studies of non-controllers (19–23), on-ART
400 proviral age distributions varied: whereas participants 1 and 4's proviral pools were skewed
401 towards sequences that integrated in the years prior to ART, participants 2 and 3's proviral pools
402 spanned the infection course more evenly, and included proviruses that dated to shortly

403 following infection. Despite these differences, the overall diversity of proviruses persisting on
404 ART reflected the overall plasma HIV diversity generated prior to ART (**Figure 7A**). Moreover,
405 the overall level of viral replication pre-ART correlated positively with both proviral burden and
406 diversity on ART (**Figures 7B-C**). Our recovery of varying numbers of identical sequences also
407 suggests that HIV controllers, like non-controllers, exhibit differential levels of clonal expansion
408 (31–34, 65). Half of participant 3's proviruses for example were identical to at least one other
409 sequence, consistent with a report describing high identical proviral burdens in viremic
410 controllers (64), while 83% of participant 1's proviruses were distinct, a phenomenon that has
411 also been reported in viremic controllers (58). Despite this heterogeneity, our observations
412 confirm that diverse proviruses persist in those who control HIV prior to therapy, underscoring
413 the importance of early ART even in this group.

414 Our study also extends our understanding of proviral turnover during untreated infection
415 (19, 21, 23). While the half-life of the replication-competent and overall proviral pools on ART
416 are on the order of ~4 and >10 years respectively (25, 26, 30), recent data suggest that pre-ART
417 proviral half-lives are shorter, with studies returning estimates of 8 (19, 24) and 25 months (23).
418 Dynamic turnover during untreated infection helps explain why proviral pools are often enriched
419 in sequences that integrated in the years immediately prior to ART (19, 21, 23), and has led to
420 the hypothesis that ART dramatically slows this rate of turnover, thereby "stabilizing" the
421 proviral pool in its immediate pretherapy state (21, 27). Indeed, participant 1 and 4's skewed
422 proviral distributions and short estimated pre-ART proviral half-lives resemble those of "typical"
423 non-controllers (19, 23, 24), though participant 2 and 3's flatter proviral age distributions and
424 markedly longer estimated decay rates emphasize that proviral clearance is not rapid in all
425 persons. While longer pre-ART half-lives have been observed in non-controllers (20), a recent
426 study by our group identified an inverse relationship between set-point pVL and rate of pre-ART

427 proviral turnover (24). Taken together with our observation that 2/4 participants exhibited
428 relatively long pre-ART half-lives, this suggests that pre-ART proviral turnover may be slower
429 in HIV controllers *on average*, though the data clearly underscore the heterogeneous nature of
430 each individual's persistent HIV pool.

431 Our study has some limitations. Our cohort is small due to the challenges of recruiting
432 viremic controllers with known infection dates for longitudinal studies, and all participants were
433 male. Though some aspects of the HIV reservoir likely differ between the sexes (66, 67), a recent
434 study of non-controllers by our group revealed no significant differences in estimated pre-ART
435 proviral half-lives between men and women, where intriguingly the participant with the "flattest"
436 proviral distribution and longest pre-ART half-life was a female who nearly met the criteria for
437 viremic control (24). This suggests that female controllers may not differ markedly from males
438 in terms of proviral composition and pre-ART turnover, but additional studies are clearly needed
439 to confirm this. As samples were limited and viral loads were low, near-full-genome HIV
440 amplification was not feasible, nor was proviral integration site characterization, so we were not
441 able to investigate genomic location and associated heterochromatin features recently
442 characterized in elite controllers (8) in our cohort. Though *nef* is appropriate for within-host HIV
443 evolutionary studies (20, 65, 68), sequencing of a subgenomic region does not allow us to
444 classify recovered sequences as intact or defective, nor definitively classify identical sequences
445 as clonally expanded. Our use of the IPDA to quantify intact (vs. defective) proviral burden
446 mitigates this only partially. Our methods also assume that every provirus has equal probability
447 of being sampled regardless of whether it is unique or a member of a clonally-expanded
448 population (where we crudely estimate this probability to be <0.2%, as the blood collected
449 represented ~0.2% of average total body blood volume but subsequent DNA extraction and PCR
450 efficiency is <100%). Sample availability also prevented us from investigating the mechanisms

451 underlying participant 4's loss of viremia control, though our observations that this individual's
452 (largely genetically intact) proviral pool dated exclusively to their post-control period suggests
453 that this event triggered major increases in reservoir size and diversity, further underscoring the
454 importance of timely ART, even in viremic controllers. Finally, the peak viremia kinetics that we
455 drew from the literature (12, 42, 56) to use in the dynamical model may not have reflected actual
456 *in vivo* kinetics, leading to uncertainty in our model-predicted proviral deposition and turnover
457 rate estimates.

458 In conclusion, despite their natural ability to control HIV to low levels, significant
459 within-host HIV evolution occurred in all participants pre-ART, giving rise to within-host
460 proviral pools whose size and genetic diversity reflected this evolution. Pre-ART proviral
461 dynamics were also heterogeneous: though two participants' proviral pools were skewed towards
462 recent integration dates consistent with rapid pre-ART turnover (19, 23, 24). Those of two others
463 spanned a wide age range, consistent with much slower pre-ART proviral turnover. HIV
464 remission and cure strategies will need to overcome within-host proviral diversity, even in
465 individuals who naturally control HIV prior to therapy.

466 **Methods**

467 **Study participants**

468 Four viremic controllers who naturally maintained plasma viral loads (pVL) <2000 HIV
469 RNA copies/ml for at least three years, and for whom an infection date could be reliably
470 estimated, were studied. All participants were male with a median age of 55 years. Participants 1,
471 2 and 3 broadly maintained pVL < 2000 pre-ART whereas participant 4 lost viremic control
472 prior to ART. The estimated dates of infection (EDI) for participants 1, 2, and 4, were calculated
473 as the midpoint between the last seronegative and first seropositive HIV test dates, while for
474 participant 3 the EDI was determined as March 2008, 3 months prior to diagnosis, due to a
475 documented exposure followed by seroconversion-like illness. Participant nadir CD4+ T-cell
476 counts ranged from 320-516 cells/mm³, while CD4+ T cells counts at ART initiation ranged
477 from 401-626 cells/mm³. HLA class I types were: A*30:01-A*32:01/B*13:02-
478 B*40:02/C*06:02-C*15:02 (participant 1); A*24:02-A*32:01/B*08:01-B*14:01/C*07:02-
479 C*08:02 (participant 2); A*03:01-A*03:01/B*14:02-B*57:01/C*06:02-C*08:02 (participant 3);
480 and A*03:01-A*32:01/B*14:02-B*39:01/C*08:02-C*12:03 (participant 4). All participants
481 provided written informed consent. This study was approved by the Massachusetts General
482 Hospital Research Ethics Board, with additional approvals for sample and data analysis approved
483 by the Simon Fraser University and Providence Health Care/University of British Columbia
484 Research Ethics Boards.

485 **Single genome HIV RNA and proviral amplification**

486 Phylogenetic inference of proviral ages requires the longitudinal isolation of HIV RNA
487 sequences pre-ART, alongside proviral DNA sequences sampled on ART, ideally using single-
488 genome approaches. Because plasma viral loads were low and biological material was limited
489 (only 10 million PBMCs per timepoint) full-length HIV amplification was not feasible, so *nef*

490 was amplified for the reasons described in the results. Total nucleic acids were extracted from
491 plasma using the BioMerieux NucliSENS EasyMag system (BioMerieux, Marcy-l'Étoile,
492 France), while genomic DNA was extracted from PBMCs using the Purelink[®] Genomic DNA kit
493 (Invitrogen). For pre-ART plasma samples destined for HIV RNA *nef* amplification, 1 mL of
494 sample was extracted, eluted in 60 µL and subjected to DNase I digestion (New England Biolabs
495 Ltd, cat #: M0303S) to minimize the risk of amplifying HIV DNA in these low pVL samples.
496 For on-ART PBMC samples destined for proviral *nef* amplification, cells were split into aliquots
497 of 5 million cells before extraction and elution into 60µL.

498 HIV *nef* was amplified using limiting-dilution nested RT-PCR (for HIV RNA) or nested
499 PCR (for proviral DNA) using high fidelity enzymes and sequence-specific primers optimized
500 for amplification of multiple HIV group M subtypes (65, 68). For HIV RNA extracts, cDNA was
501 generated using NxtScript Reverse Transcriptase (Roche). Next, cDNA as well as genomic DNA
502 extracts were endpoint diluted such that ~25-30% of the resulting nested PCR reactions,
503 performed using the ExpandTM High Fidelity PCR system (Roche), would yield an amplicon.
504 Primers (5' -> 3') used for cDNA generation/1st round PCR were Nef8683F_pan (Forward;
505 TAGCAGTAGCTGRGKGRACAGATAG) and Nef9536R_pan (Reverse;
506 TACAGGCCAAAAAGCAGCTGCTTATATGYAG). Primers used for 2nd round PCR were
507 Nef8746F_pan (Forward; TCCACATACCTASAAGAATMAGACARG) and Nef9474R_pan
508 (Reverse; CAGGCCACRCCTCCCTGGAAASKCCC). Negative amplification controls were
509 included in every run, and we also confirmed that plasma HIV RNA amplification did not occur
510 in the absence of reverse transcription, indicating that DNase treatment was effective.
511 Amplicons were sequenced on an ABI 3730xl automated DNA analyzer. Chromatograms were
512 basecalled using Sequencher v5.0 (Gene Codes) or the custom software RECall (69). *Nef*
513 sequences that contained nucleotide mixtures, hypermutations (identified using Hypermut 2.0

514 (70)), suspected within-host recombinant sequences (identified using rdp4 Beta 95 (71)) or other
515 defects were excluded from phylogenetic analysis, as were duplicate sequences (instead, the
516 latter were added back at the data visualization stage). Within-host plasma and proviral *nef*
517 sequences were codon-aligned using MAFFT v7 (72) implemented in HIV Align
518 (<https://www.hiv.lanl.gov/content/sequence/VIRALIGN/vralign.html>) and manually edited in
519 AliView v1.18 (73). Maximum likelihood phylogenies were inferred from aligned, gap-striped
520 within-host sequence datasets using W-IQ-TREE (74) following automated model selection with
521 ModelFinder (75) using an Akaike Information Criterion (AIC) selection criterion (76). Best-fit
522 models are reported in **Table S2**. Our primary analysis used a phylogeny inferred using each
523 participant's top best-fit model, but a sensitivity analysis was performed using each participant's
524 next best fit model (**Figure S1**). Patristic (tip-to-tip phylogenetic) distances were extracted using
525 the cophenetic.phylo function from the R package ape (v5.3) (77).

526 **HIV proviral full genome amplification and sequencing**

527 Single-template, near-full-length proviral amplification was performed on DNA extracted
528 from CD4+ T cells by nested PCR using Platinum Taq DNA Polymerase High Fidelity
529 (Invitrogen) such that ~25% of the resulting PCR reactions yielded an amplicon. First round
530 primers were: Forward - AAATCTCTAGCAGTGGCGCCCGAACAG, Reverse -
531 TGAGGGATCTCTAGTTACCAGAGTC. Second round primers were: Forward -
532 GCGCCCGAACAGGGACYTGAAARCGAAAG, Reverse-
533 GCACTCAAGGCAAGCTTATTGAGGCTTA. Reactions were cycled as follows: 92°C for 2
534 minutes; 10 cycles of (92°C for 10 seconds, 60°C for 30 seconds and 68°C for 10 minutes); 20
535 cycles of (92°C for 10 seconds, 55°C for 30 seconds and 68°C for 10 minutes); 68°C for 10
536 minutes (78, 79). Amplicons were sequenced using Illumina MiSeq technology and *de novo*

537 assembled using the custom software MiCall (<https://github.com/cfe-lab/MiCall>) which features
538 an in-house modification of the Iterative Virus Assembler (IVA) (80).

539 **Within-host phylogenetic inference and proviral age reconstruction**

540 We used a published within-host phylogenetic approach to infer proviral sequence ages
541 (20). Briefly, for each participant we inferred a maximum likelihood phylogeny relating within-
542 host longitudinal pre-ART plasma HIV RNA and proviral sequences sampled on ART. We then
543 exhaustively re-root each tree to identify the root location that maximizes the (Spearman's)
544 correlation between the root-to-tip distances and collection dates of the pre-ART plasma HIV
545 RNA sequences. Here, the root represents the inferred most recent common ancestor (MRCA) of
546 the within-host dataset (*i.e.* the inferred transmitted founder virus). We then fit a linear model
547 relating the collection dates of the plasma HIV RNA sequences to their divergence from the root,
548 where the slope represents the average host-specific rate of HIV evolution prior to ART and the
549 x-intercept represents the phylogenetically-estimated MRCA date. For participant 4, two
550 regression lines were fit: one each for their "viremic control" and "post-control" eras.

551 The integration dates of the proviral sequences sampled during ART, along with their
552 95% confidence intervals (CI), are then estimated from their divergence from the root using the
553 linear regression. We assessed molecular clock and model fit using a delta (Δ) Akaike
554 Information Criterion (Δ AIC) (76), computed as the difference between the AIC of the null
555 model (no evidence of within-host evolution, *i.e.* a zero slope) and the AIC of the linear
556 regression. A within-host phylogeny was deemed to have a sufficient molecular clock signal if
557 the linear regression produced a Δ AIC \geq 10, (which corresponds to a p-value of 0.00053 when
558 using a log-likelihood ratio test), and the 95% confidence interval of the estimated root date
559 contained or preceded the first sampling point. The proviral dating framework is available as a
560 web-service, at <https://bblab-hivresearchtools.ca/django/tools/phylodating>, with open source

561 code available at <https://www.github.com/cfe-lab/phylodating>. As described in the results,
562 sensitivity analyses were also performed where proviruses were phylogenetically "dated" using
563 two published methods that do not rely on a strict molecular clock assumption (**Figure S2**).

564 **Intact Proviral DNA Assay (IPDA)**

565 Each participant's first PBMC sample on ART was used to estimate total and intact
566 proviral DNA burdens using the Intact Proviral DNA Assay (IPDA) (29). As this method reports
567 proviral burdens in terms of HIV copies per million CD4+ T cells, we first isolated CD4+ T cells
568 from 10M PBMC by negative selection using the EasySep Human CD4+ T cell Enrichment Kit
569 (STEMCELL Technologies, Cat #: 19052). This yielded a mean of 1.6 (range 1.3-2.0) million
570 CD4+ T cells per participant, which were then extracted using the QIAamp DNA Mini Kit
571 (Qiagen) with precautions to minimize shearing. In the IPDA, HIV and human DNA
572 quantification reactions (where the latter target the human RPP30 gene) are conducted in
573 parallel, where copies are normalized to the quantity of input DNA and subsequently corrected
574 for DNA shearing. In each ddPCR reaction, 7ng (RPP30) or a median 588ng (IQR 488-697ng)
575 (HIV) of genomic DNA was combined with ddPCR Supermix for Probes (no dUTPs, BioRad),
576 primers (final concentration 900nM, Integrated DNA Technologies), probe(s) (final
577 concentration 250nM, ThermoFisher Scientific), XhoI restriction enzyme (New England
578 Biolabs) and nuclease free water. Human RPP30 primer and probe sequences (5' -> 3') are:
579 RPP30 Forward Primer- GATTGGACCTGCGAGCG, RPP30 Probe- VIC-
580 CTGACCTGAAGGCTCT- MGBNFQ, RPP30 Reverse Primer- GCGGCTGTCTCCACAAAGT;
581 RPP30 Shear Forward Primer- CCATTTGCTGCTCCTGGG, RPP30 Shear Probe- FAM-
582 AAGGAGCAAGGTTCTATTGTAG- MGBNFQ, RPP30 Shear Reverse Primer-
583 CATGCAAAGGAGGAAGCCG. The default (29) HIV primers and probes were: Ψ Forward
584 Primer- CAGGACTCGGCTTGCTGAAG, Ψ Probe- FAM- TTTGGCGTACTCACCAGT-

585 MGBNFQ, Ψ Reverse Primer- GCACCCATCTCTCCTTCTAGC; *env* Forward Primer-
586 AGTGGTGCAGAGAGAAAAAGAGC, *env* Probe- VIC-CCTGGGTTCTGGGA-
587 MGBNFQ, anti-Hypermutant *env* Probe- CCTTAGGTTCTTAGGAGC- MGBNFQ, *env*
588 Reverse Primer- GTCTGGCCTGTACCGTCAGC.

589 The published HIV primers/probes however can sometimes fail to detect autologous HIV
590 sequences due to naturally-occurring polymorphism (81, 82), thus requiring autologous
591 primer/probes. For this reason, targeted HIV sequencing of the IPDA Ψ and *env* regions was
592 performed for all participants prior to IPDA measurement, and autologous primers/probes
593 substituted where necessary. The substituted primer and probe sequences (5' \rightarrow 3') were:
594 Participant 2 Ψ Probe- FAM- TTTCAGCGTACTCACCAGT, Participant 3 Ψ Probe- FAM-
595 ATATGGCGTACTCACCAGT, Participant 1 Ψ Probe- FAM- AATTGGCGTACTCACCAGT,
596 Participant 1 Ψ Probe- FAM- AATTGGCGTACTCACCAGC, Participant 1 *env* Forward
597 Primer- GGTGGTGCAGAGAGAAAAAGAGC, Participant 1 *env* Reverse Primer-
598 GCTGACGGCACAGGCCAGGC, Participant 3 *env* Reverse Primer-
599 GCTGACGGTACAGGCCAGAT. Droplets were prepared using the Automated Droplet
600 Generator and cycled as previously described (29). Droplets were analyzed on a QX200 Droplet
601 Reader (BioRad) using QuantaSoft software (BioRad, version 1.7.4), where the results of a
602 minimum of 8 technical replicates, comprising a median of 589,820 (IQR 501,539- 721,871)
603 cells assayed in total, were merged prior to analysis. Intact HIV-1 copies (Ψ and *env* double-
604 positive droplets) were corrected for DNA shearing based on the frequency of RPP30 and
605 RPP30-Shear double positive droplets. The median DNA shearing index, which measures the
606 proportion of sheared DNA in a sample, was 0.40 (IQR 0.39- 0.43), which is in line with
607 acceptable levels in this assay (29, 81).

608 **Inference of pre-ART proviral half-lives: dynamical mathematical model**

609 In order to infer pre-ART proviral half-lives, each participant's sampled proviruses were
610 grouped into "bins" by their estimated year of integration (one "bin" per year preceding ART
611 initiation). For simplicity, proviruses whose integration date point estimate fell after the ART
612 initiation date (or in the case of participant 3 the date of the last viremic episode), were assigned
613 to the ART initiation (or viremic episode) date (all proviruses in this category had 95%
614 confidence intervals that overlapped this date). In the primary analysis, proviral half-life
615 inference was only performed on distinct proviral sequences under the assumption that
616 "replicate" sequences arose through clonal expansion and not through individual integration
617 events, but a sensitivity analysis was performed including all proviral sequences (**Figure S3**).

618 We estimated host-specific pre-ART proviral half-lives two ways: using a dynamical
619 mathematical model (23), and directly from the data. To do the former, we implemented a
620 published mathematical model that describes each individual's untreated HIV infection via a set
621 of ordinary differential equations that model the dynamics of the concentrations of cells and
622 virus in each individual over time (23). The model includes susceptible target cells, actively and
623 latently infected cells that can produce viable virus, actively and latently infected cells that
624 *cannot* produce viable virus, the virus itself, and an immune response. The model assumes that
625 HIV sequences enter the latent proviral pool at a rate proportional to their abundance in plasma
626 at the time. In a subsequent independent step, proviruses are then allowed to "decay" out of this
627 pool at various exponential rates, to produce predictions of what the proviral age distribution
628 would be at ART initiation if decay had occurred at this rate. We reproduce the model here.

629 Let S represent the susceptible compartment. Let A_P and L_P represent actively and
630 latently infected cells that are productively infected and produce viable virus; likewise let A_U and
631 L_U represent actively and latently infected cells that are *unproductively* infected and cannot

632 produce viable virus. Let V represent viremia and let E represent the adaptive immune response.

633 The following dynamical system describes within-host HIV infection kinetics:

$$\dot{S} = \alpha_S - \delta_S S - \beta S V$$

$$\dot{A}_P = (1 - \lambda)\tau\beta S V - \delta_I A_P - \kappa A_P E$$

$$\dot{A}_U = (1 - \lambda)(1 - \tau)\beta S V - \delta_I A_U - \kappa A_U E$$

$$\dot{L}_P = \lambda\tau\beta S V$$

$$\dot{L}_U = \lambda(1 - \tau)\beta S V$$

$$\dot{E} = \alpha_E + \omega E \frac{(A_P + A_U)}{E + E_{50}} - \delta_E E$$

$$\dot{V} = \pi A_P - \gamma V - \beta S V$$

634 The parameters used were: susceptible cell creation rate $\alpha_S = 70 \text{ cells } \mu\text{L}^{-1}\text{day}^{-1}$;

635 susceptible cell death rate $\delta_S = 0.2 \text{ day}^{-1}$; viral infectivity

636 $\beta = 10^{-4} \mu\text{L viral RNA copies}^{-1}\text{day}^{-1}$; probability of productively infectious virions $\tau = 0.05$;

637 probability of latency $\lambda = 10^{-4}$; actively infected cell death rate $\delta_I = 0.8 \text{ day}^{-1}$; viral burst size

638 $\pi = 50000 \text{ viral RNA copies cell}^{-1}\text{day}^{-1}$; viral clearance rate $\gamma = 23 \text{ day}^{-1}$; initial adaptive

639 precursor frequency $\alpha_E = 10^{-4} \text{ cells } \mu\text{L}^{-1}\text{day}^{-1}$; adaptive immune killing rate

640 $\kappa = 0.3 \mu\text{L cells}^{-1}\text{day}^{-1}$; adaptive immune recruitment rate $\omega = 1.6 \text{ day}^{-1}$; adaptive immune

641 clearance rate $\delta_E = 0.002 \text{ day}^{-1}$; adaptive immune 50% saturation constant (*i.e.* the number of

642 infected cells required for a half-maximal cytolytic expansion rate (83)) $E_{50} = 250 \text{ cells } \mu\text{L}^{-1}$.

643 The following initial conditions were used as per the original publications (23, 83). The

644 initial viral load value was $V(0) = 0.03 \text{ viral RNA copies per } \mu\text{L}$, which is the detectable

645 plasma viral load limit of a typical assay when converted from the conventional 30 HIV RNA

646 copies/mL to viral RNA copies per microlitre. Also let $I_0 = V(0)\gamma/\pi = 1.38 \times 10^{-5}$; this
647 represents a quasistatic approximation for the infected cells.

648 • $S(0) = \alpha_S/\delta_S = 70/0.2 = 350$

649 • $A_P(0) = I_0\tau(1 - \lambda) = 6.89931 \times 10^{-7}$

650 • $A_U(0) = I_0(1 - \tau)(1 - \lambda) = 1.310869 \times 10^{-5}$

651 • $L_P(0) = I_0\tau\lambda = 6.9 \times 10^{-11}$

652 • $L_U(0) = I_0(1 - \tau)\lambda = 1.311 \times 10^{-9}$

653 • $E(0) = \alpha_E/\delta_E = 0.0001/0.002 = 0.05$

654 • $V(0) = 30/1000 = 0.03$

655 Note that $S(0)$ and $E(0)$ are the equilibrium values for the system in the absence of virus.

656 As described above, reservoir creation is assumed to be proportional to plasma viral load
657 over time, with the probability of a virus entering the latent pool (defined by λ above) remaining
658 constant over time. Unfortunately, peak viremia was not captured in our participants' measured
659 viral load data. Therefore, to recreate each participant's *in vivo* plasma viral dynamics as
660 realistically as possible, we merged each participant's available pVL data to acute phase
661 dynamics observed in viremic controllers (42), and we also performed sensitivity analyses using
662 peak viremia kinetics observed in elite controllers (43, 44) (**Table S1**). Using each participant's
663 reconstructed viral load history and the above equations, we modeled proviral deposition into
664 their latent pool. We then grouped the resulting proviruses by their year of creation.

665 In a separate step, we then allowed each group of latent proviruses to decay
666 exponentially, up until each participant's proviral sampling date, under half-lives ranging from
667 30 to 6000 days, in increments of 30 days. This produced a series of 200 predicted proviral
668 distributions per participant that represented what proportion of proviruses would still remain

669 from each creation year, assuming decay at the stated rate. For context, we also applied decay
670 rates of 44 and 140 months, which represent the half-life of the replication-competent reservoir
671 (25) and total proviral pool (26) during suppressive ART, respectively. Note that the model
672 assumes that, after ART, the overall size of the proviral pool decreases but the relative
673 proportions of sequences in each group remains the same; as such, model predictions would be
674 the same regardless of when the proviral pool is sampled on ART. Finally, we identified the best-
675 fit proviral decay rate to each participant's *observed* proviral age distribution by maximum
676 likelihood, and used standard theory to identify 95% confidence bounds.

677 **Inference of pre-ART proviral half-lives: Poisson Linear Model**

678 To estimate the reservoir half-life directly from the data, we again grouped each
679 participant's observed proviral sequences by their age, in years, relative to ART initiation (or for
680 participant 3, the date of their last viremic episode). We will refer to the bin containing
681 proviruses from $t - 1$ to t years old as "bin t ", where we make the simplifying assumptions that
682 all proviruses in bin t are exactly t years old. We then applied a Poisson generalized linear
683 model with the canonical natural logarithm link function to the binned counts, using the age of
684 the bin t as the predictor. This choice can be justified as follows: Let $t_{1/2}$ be the proviral half-
685 life. Assuming the participant's proviral reservoir decays at an exponential rate, we would expect
686 that the size of bin t would be approximately

$$[C \exp(-\theta t)]$$

687 where C represents the initial size of the age bin as if there was no decay, and $\theta = \ln(2) / t_{1/2}$.

688 Now, we assume that every provirus has the same small independent probability p of
689 being sampled. If so, we would then expect the number of observed proviruses from bin t to be

690 binomially distributed with $[C \exp(-\theta t)]$ trials and success probability p . Assuming that p is
691 small, we can approximate the distribution with a Poisson distribution with parameter

$$\lambda = Cp \exp(-\theta t) = \exp(D - \theta t)$$

692 where $D = \ln(Cp)$, or in other words,

$$\ln \lambda = D - \theta t.$$

693 which is precisely the setup required for a Poisson generalized linear model with natural
694 logarithm link function.

695 **Statistical Analyses**

696 Spearman's correlation was used to assess the relationship between continuous
697 parameters. Statistical analysis was performed in Prism (version 9) software.

698 **Data Availability**

699 GenBank accession numbers for sequences reported in this study are MW781931 to
700 MW782197 (proviral DNA) and MW782198 to MW782743 (plasma HIV RNA).

701 **Acknowledgements**

702 The authors gratefully thank the study participants without whom this research would not
703 be possible. The authors also thank Dr. Daniel Reeves, the creator of the dynamical
704 mathematical model, for helpful correspondence. We are also grateful to Daniel Worrall for his
705 assistance with clinical data access.

706 **Funding Statement**

707 This work was supported in part by the Canadian Institutes of Health Research (CIHR) through a
708 project grant (PJT-159625 to ZLB and JBJ) and a focused team grant (HB1-164063 to ZLB and
709 MAB). This work was supported in part by the National Institutes of Health (NIH) under award
710 number NIHA127029 (to ZLB) and the Martin Delaney 'BELIEVE' Collaboratory (NIH grant
711 1UM1AI26617 to ZLB and MAB), which is supported by the following NIH Co-Funding and

712 Participating Institutes and Centers: NIAID, NCI, NICHD, NHLBI, NIDA, NIMH, NIA, FIC,
713 and OAR. Research reported in this publication was supported by the National Institute of
714 Allergy and Infectious Diseases of the National Institutes of Health under Award Number
715 UM1AI164565. Research reported in this publication was also supported in part by the National
716 Institute Of Allergy And Infectious Diseases of the National Institutes of Health under Award
717 Number UM1AI164565 (Martin Delaney 'REACH' collaboratory; to ZLB and MAB). The
718 content is solely the responsibility of the authors and does not necessarily represent the official
719 views of the National Institutes of Health. FHO is supported by a Ph.D. fellowship from the Sub-
720 Saharan African Network for TB/HIV Research Excellence (SANTHE), a DELTAS Africa
721 Initiative [grant # DEL-15-006]. The DELTAS Africa Initiative is an independent funding
722 scheme of the African Academy of Sciences (AAS)'s Alliance for Accelerating Excellence in
723 Science in Africa (AESA) and supported by the New Partnership for Africa's Development
724 Planning and Coordinating Agency (NEPAD Agency) with funding from the Wellcome Trust
725 [grant # 107752/Z/15/Z] and the UK government. The views expressed in this publication are
726 those of the authors and not necessarily those of AAS, NEPAD Agency, Wellcome Trust or the
727 UK government. AS and BRJ are supported by CIHR Doctoral Research Awards. NNK is
728 supported by a CIHR Vanier Doctoral Award. RLM is supported by a CIHR MSc award. MAB
729 holds a Canada Research Chair, Tier 2 in Viral Pathogenesis and Immunity. ZLB is supported by
730 a Scholar Award from the Michael Smith Foundation for Health Research.

731 **References**

732 1. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Quinn TC,
733 Chadwick K, Margolick J, Brookmeyer R, Gallant J, Markowitz M, Ho DD, Richman DD,
734 Siliciano RF. 1997. Identification of a reservoir for HIV-1 in patients on highly active
735 antiretroviral therapy. *Science* (80-) 278:1295–1300.

736 2. Wong JK, Hezareh M, Günthard HF, Havlir D V., Ignacio CC, Spina CA, Richman DD.
737 1997. Recovery of replication-competent HIV despite prolonged suppression of plasma
738 viremia. *Science* (80-) 278:1291–1295.

739 3. Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JAM, Baseler M, Lloyd AL, Nowak
740 MA, Fauci AS. 1997. Presence of an inducible HIV-1 latent reservoir during highly active
741 antiretroviral therapy. *Proc Natl Acad Sci U S A* 94:13193–13197.

742 4. Sanchez G, Xu X, Chermann JC, Hirsch I. 1997. Accumulation of defective viral genomes
743 in peripheral blood mononuclear cells of human immunodeficiency virus type 1-infected
744 individuals. *J Virol* 71:2233–2240.

745 5. Bruner KM, Murray AJ, Pollack RA, Soliman MG, Laskey SB, Capoferri AA, Lai J,
746 Strain MC, Lada SM, Hoh R, Ho YC, Richman DD, Deeks SG, Siliciano JD, Siliciano
747 RF. 2016. Defective proviruses rapidly accumulate during acute HIV-1 infection. *Nat Med*
748 22:1043–1049.

749 6. Imamichi H, Dewar RL, Adelsberger JW, Rehm CA, O'Doherty U, Paxinos EE, Fauci
750 AS, Lane HC. 2016. Defective HIV-1 proviruses produce novel protein-coding RNA
751 species in HIV-infected patients on combination antiretroviral therapy. *Proc Natl Acad Sci*
752 *U S A* 113:8783–8.

753 7. Deeks SG, Lewin SR, Ross AL, Ananworanich J, Benkirane M, Cannon P, Chomont N,
754 Douek D, Lifson JD, Lo YR, Kuritzkes D, Margolis D, Mellors J, Persaud D, Tucker JD,

755 Barre-Sinoussi F, Alter G, Auerbach J, Autran B, Barouch DH, Behrens G, Cavazzana M,
756 Chen Z, Cohen ÉA, Corbelli GM, Eholié S, Eyal N, Fidler S, Garcia L, Grossman C,
757 Henderson G, Henrich TJ, Jefferys R, Kiem HP, McCune J, Moodley K, Newman PA,
758 Nijhuis M, Nsubuga MS, Ott M, Palmer S, Richman D, Saez-Cirion A, Sharp M, Siliciano
759 J, Silvestri G, Singh J, Spire B, Taylor J, Tolstrup M, Valente S, Van Lunzen J, Walensky
760 R, Wilson I, Zack J. 2016. International AIDS Society global scientific strategy: Towards
761 an HIV cure 2016. *Nat Med.* Nature Publishing Group.

762 8. Jiang C, Lian X, Gao C, Sun X, Einkauf KB, Chevalier JM, Chen SMY, Hua S, Rhee B,
763 Chang K, Blackmer JE, Osborn M, Peluso MJ, Hoh R, Somsouk M, Milush J, Bertagnolli
764 LN, Sweet SE, Varriale JA, Burbelo PD, Chun TW, Laird GM, Serrao E, Engelman AN,
765 Carrington M, Siliciano RF, Siliciano JM, Deeks SG, Walker BD, Licherfeld M, Yu XG.
766 2020. Distinct viral reservoirs in individuals with spontaneous control of HIV-1. *Nature*
767 585:261–267.

768 9. Li C, Mori L, Valente ST. 2021. The Block-and-Lock Strategy for Human
769 Immunodeficiency Virus Cure: Lessons Learned from Didehydro–Cortistatin A. *J Infect*
770 *Dis* 223:S46–S53.

771 10. Allers K, Hütter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, Schneider T. 2011.
772 Evidence for the cure of HIV infection by CCR5 Δ 32/ Δ 32 stem cell transplantation. *Blood*
773 117:2791–2799.

774 11. Gupta RK, Peppa D, Hill AL, Gálvez C, Salgado M, Pace M, McCoy LE, Griffith SA,
775 Thornhill J, Alrubayyi A, Huyveneers LEP, Nastouli E, Grant P, Edwards SG, Innes AJ,
776 Frater J, Nijhuis M, Wensing AMJ, Martinez-Picado J, Olavarria E. 2020. Evidence for
777 HIV-1 cure after CCR5 Δ 32/ Δ 32 allogeneic haemopoietic stem-cell transplantation 30
778 months post analytical treatment interruption: a case report. *Lancet HIV* 7:e340–e347.

779 12. Casado C, Galvez C, Pernas M, Tarancón-Díez L, Rodríguez C, Sanchez-Merino V, Vera
780 M, Olivares I, De Pablo-Bernal R, Merino-Mansilla A, Del Romero J, Lorenzo-Redondo
781 R, Ruiz-Mateos E, Salgado M, Martínez-Picado J, López-Galindez C. 2020. Permanent
782 control of HIV-1 pathogenesis in exceptional elite controllers: a model of spontaneous
783 cure. *Sci Rep* 10.

784 13. Woldemeskel BA, Kwaak AK, Blankson JN. 2020. Viral reservoirs in elite controllers of
785 HIV-1 infection: Implications for HIV cure strategies. *EBioMedicine* 62:103118.

786 14. Promer K, Karris MY. 2018. Current Treatment Options for HIV Elite Controllers: a
787 Review. *Curr Treat Options Infect Dis* 10:302–309.

788 15. Bello G, Casado C, García S, Rodríguez C, del Romero J, Carvajal-Rodríguez A, Posada
789 D, López-Galindez C. 2007. Lack of temporal structure in the short term HIV-1 evolution
790 within asymptomatic naïve patients. *Virology* 362:294–303.

791 16. Okulicz JF, Marconi VC, Landrum ML, Wegner S, Weintrob A, Ganesan A, Hale B,
792 Crum-Cianflone N, Delmar J, Barthel V, Quinnan G, Agan BK, Dolan MJ. 2009. Clinical
793 outcomes of elite controllers, viremic controllers, and long-term nonprogressors in the US
794 department of defense HIV natural history study. *J Infect Dis* 200:1714–1723.

795 17. Grabar S, Selinger-Leneman H, Abgrall S, Pialoux G, Weiss L, Costagliola D. 2009.
796 Prevalence and comparative characteristics of long-term nonprogressors and HIV
797 controller patients in the French Hospital Database on HIV. *AIDS* 23:1163–1169.

798 18. Initiation of Antiretroviral Therapy | Adult and Adolescent ARV | ClinicalInfo.

799 19. Brodin J, Zanini F, Thebo L, Lanz C, Bratt G, Neher RA, Albert J. 2016. Establishment
800 and stability of the latent HIV-1 DNA reservoir. *Elife* 5:e18889.

801 20. Jones BR, Kinloch NN, Horacek J, Ganase B, Harris M, Harrigan PR, Jones RB,
802 Brockman MA, Joy JB, Poon AFY, Brumme ZL. 2018. Phylogenetic approach to recover

803 integration dates of latent HIV sequences within-host. *Proc Natl Acad Sci U S A*
804 115:E8958–E8967.

805 21. Abrahams MR, Joseph SB, Garrett N, Tyers L, Moeser M, Archin N, Council OD, Matten
806 D, Zhou S, Doolabh D, Anthony C, Goonetilleke N, Karim SA, Margolis DM, Pond SK,
807 Williamson C, Swanstrom R. 2019. The replication-competent HIV-1 latent reservoir is
808 primarily established near the time of therapy initiation. *Sci Transl Med* 11:5589.

809 22. Brooks K, Jones BR, Dilernia DA, Wilkins DJ, Claiborne DT, McInally S, Gilmour J,
810 Kilembe W, Joy JB, Allen SA, Brumme ZL, Hunter E. 2020. HIV-1 variants are archived
811 throughout infection and persist in the reservoir. *PLOS Pathog* 16:e1008378.

812 23. Pankau MD, Reeves DB, Harkins E, Ronen K, Jaoko W, Mandaliya K, Graham SM,
813 McClelland RS, Matsen IV FA, Schiffer JT, Overbaugh J, Lehman DA. 2020. Dynamics
814 of HIV DNA reservoir seeding in a cohort of superinfected Kenyan women. *PLOS Pathog*
815 16:e1008286.

816 24. Brooks K, Omondi FH, Liang RH, Sudderuddin H, Jones BR, Joy JB, Brumme CJ, Hunter
817 E, Brumme ZL. 2021. Proviral turnover during untreated HIV infection is dynamic and
818 variable between hosts, impacting reservoir composition on ART. *Front Microbiol* 12:1–
819 18.

820 25. Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, Kovacs C, Gange
821 SJ, Siliciano RF. 2003. Long-term follow-up studies confirm the stability of the latent
822 reservoir for HIV-1 in resting CD4+ T cells. *Nat Med* 9:727–728.

823 26. Golob JL, Stern J, Holte S, Kitahata MM, Crane HM, Coombs RW, Goecker E, Woolfrey
824 AE, Harrington RD. 2018. HIV DNA levels and decay in a cohort of 111 long-term virally
825 suppressed patients. *AIDS* 32:2113–2118.

826 27. Goonetilleke N, Clutton G, Swanstrom R, Joseph SB. 2019. Blocking formation of the

827 stable HIV reservoir: A new perspective for HIV-1 cure. *Front Immunol* 10.

828 28. Grossman Z, Singh NJ, Simonetti FR, Lederman MM, Douek DC, Deeks SG, Kawabe T,
829 Bocharov G, Meier-Schellersheim M, Alon H, Chomont N, Grossman Z, Sousa AE,
830 Margolis L, Maldarelli F. 2020. 'Rinse and Replace': Boosting T Cell Turnover To
831 Reduce HIV-1 Reservoirs. *Trends Immunol*. Elsevier Ltd.

832 29. Bruner KM, Wang Z, Simonetti FR, Bender AM, Kwon KJ, Sengupta S, Fray EJ, Beg SA,
833 Antar AAR, Jenike KM, Bertagnolli LN, Capoferri AA, Kufera JT, Timmons A, Nobles
834 C, Gregg J, Wada N, Ho YC, Zhang H, Margolick JB, Blankson JN, Deeks SG, Bushman
835 FD, Siliciano JD, Laird GM, Siliciano RF. 2019. A quantitative approach for measuring
836 the reservoir of latent HIV-1 proviruses *Nature Publishing Group*.

837 30. Peluso MJ, Bacchetti P, Ritter KD, Beg S, Lai J, Martin JN, Hunt PW, Henrich TJ,
838 Siliciano JD, Siliciano RF, Laird GM, Deeks SG. 2020. Differential decay of intact and
839 defective proviral DNA in HIV-1–infected individuals on suppressive antiretroviral
840 therapy. *JCI Insight* 5.

841 31. Pinzone MR, VanBelzen DJ, Weissman S, Bertuccio MP, Cannon LM, Venanzi-Rullo E,
842 Migueles S, Jones RB, Mota T, Joseph SB, Groen K, Pasternak AO, Hwang WT, Sherman
843 B, Vourekas A, Nunnari G, O'Doherty U. 2019. Longitudinal HIV sequencing reveals
844 reservoir expression leading to decay which is obscured by clonal expansion. *Nat
845 Commun* 10:1–12.

846 32. Lee GQ, Orlova-Fink N, Einkauf K, Chowdhury FZ, Sun X, Harrington S, Kuo HH, Hua
847 S, Chen HR, Ouyang Z, Reddy K, Dong K, Ndung'U T, Walker BD, Rosenberg ES, Yu
848 XG, Licherfeld M. 2017. Clonal expansion of genome-intact HIV-1 in functionally
849 polarized Th1 CD4+ T cells. *J Clin Invest* 127:2689–2696.

850 33. Maldarelli F, Wu X, Su L, Simonetti FR, Shao W, Hill S, Spindler J, Ferris AL, Mellors

851 JW, Kearney MF, Coffin JM, Hughes SH. 2014. Specific HIV integration sites are linked
852 to clonal expansion and persistence of infected cells. *Science* (80-) 345:179–183.

853 34. Wagner TA, McLaughlin S, Garg K, Cheung CYK, Larsen BB, Styrchak S, Huang HC,
854 Edlefsen PT, Mullins JI, Frenkel LM. 2014. Proliferation of cells with HIV integrated into
855 cancer genes contributes to persistent infection. *Science* (80-) 345:570–573.

856 35. Buzon MJ, Martin-Gayo E, Pereyra F, Ouyang Z, Sun H, Li JZ, Piovoso M, Shaw A,
857 Dalmau J, Zangerer N, Martinez-Picado J, Zurakowski R, Yu XG, Telenti A, Walker BD,
858 Rosenberg ES, Licherfeld M. 2014. Long-term antiretroviral treatment initiated at
859 primary HIV-1 infection affects the size, composition, and decay kinetics of the reservoir
860 of HIV-1-infected CD4 T cells. *J Virol* 88:10056–65.

861 36. Jain V, Hartogensis W, Bacchetti P, Hunt PW, Hatano H, Sinclair E, Epling L, Lee TH,
862 Busch MP, McCune JM, Pilcher CD, Hecht FM, Deeks SG. 2013. Antiretroviral therapy
863 initiated within 6 months of HIV infection is associated with lower T-cell activation and
864 smaller HIV reservoir size. *J Infect Dis* 208:1202–1211.

865 37. Novelli S, Lécouroux C, Avettand-Fenoel V, Seng R, Essat A, Morlat P, Viard J-P,
866 Rouzioux C, Meyer L, Goujard C. 2018. Long-term Therapeutic Impact of the Timing of
867 Antiretroviral Therapy in Patients Diagnosed With Primary Human Immunodeficiency
868 Virus Type 1 Infection. *Clin Infect Dis* 66:1519–1527.

869 38. Brumme ZL, Suderuddin H, Ziemniak C, Luzuriaga K, Jones BR, Joy JB, Cunningham
870 CK, Greenough T, Persaud D. 2019. Genetic complexity in the replication-competent
871 latent HIV reservoir increases with untreated infection duration in infected youth. *AIDS*
872 33:211–218.

873 39. Kearney M, Maldarelli F, Shao W, Margolick JB, Daar ES, Mellors JW, Rao V, Coffin
874 JM, Palmer S. 2009. Human Immunodeficiency Virus Type 1 Population Genetics and

875 Adaptation in Newly Infected Individuals. *J Virol* 83:2715–2727.

876 40. Lukashov V V, Kuiken CL, Goudsmit J. 1995. Intrahost human immunodeficiency virus
877 type 1 evolution is related to length of the immunocompetent period. *J Virol* 69:6911–
878 6916.

879 41. Buzon MJ, Martin-Gayo E, Pereyra F, Ouyang Z, Sun H, Li JZ, Piovoso M, Shaw A,
880 Dalmau J, Zanger N, Martinez-Picado J, Zurakowski R, Yu XG, Telenti A, Walker BD,
881 Rosenberg ES, Lichtenfeld M. 2014. Long-Term Antiretroviral Treatment Initiated at
882 Primary HIV-1 Infection Affects the Size, Composition, and Decay Kinetics of the
883 Reservoir of HIV-1-Infected CD4 T Cells. *J Virol* 88:10056–10065.

884 42. Miura T, Brumme ZL, Brockman MA, Rosato P, Sela J, Brumme CJ, Pereyra F,
885 Kaufmann DE, Trocha A, Block BL, Daar ES, Connick E, Jessen H, Kelleher AD,
886 Rosenberg E, Markowitz M, Schafer K, Vaida F, Iwamoto A, Little S, Walker BD. 2010.
887 Impaired Replication Capacity of Acute/Early Viruses in Persons Who Become HIV
888 Controllers. *J Virol* 84:7581–7591.

889 43. Moosa Y, Tanko RF, Ramsuran V, Singh R, Madzivhandila M, Yende-Zuma N,
890 Abrahams MR, Selhorst P, Gounder K, Moore PL, Williamson C, Abdool Karim SS,
891 Garrett NJ, Burgers WA. 2018. Case report: Mechanisms of HIV elite control in two
892 African women. *BMC Infect Dis* 18:54.

893 44. Morley D, Lambert JS, Hogan LE, De Gascun C, Redmond N, Rutishauser RL, Thanh C,
894 Gibson EA, Hobbs K, Bakkour S, Busch MP, Farrell J, McGetrick P, Henrich TJ. 2019.
895 Rapid development of HIV elite control in a patient with acute infection. *BMC Infect Dis*
896 19:1–6.

897 45. Shankarappa R, Margolick JB, Gange SJ, Rodrigo AG, Upchurch D, Farzadegan H, Gupta
898 P, Rinaldo CR, Learn GH, He X, Huang X-L, Mullins JI. 1999. Consistent Viral

899 Evolutionary Changes Associated with the Progression of Human Immunodeficiency
900 Virus Type 1 Infection. *J Virol* 73:10489–10502.

901 46. To T-H, Jung M, Lycett S, Gascuel O. 2016. Fast Dating Using Least-Squares Criteria and
902 Algorithms. *Syst Biol* 65:82.

903 47. Jones BR, Joy JB. 2020. Simulating within host human immunodeficiency virus 1 genome
904 evolution in the persistent reservoir. *Virus Evol* 6.

905 48. Laskey SB, Pohlmeyer CW, Bruner KM, Siliciano RF. 2016. Evaluating Clonal
906 Expansion of HIV-Infected Cells: Optimization of PCR Strategies to Predict Clonality.
907 *PLOS Pathog* 12:e1005689.

908 49. Henn MR, Boutwell CL, Charlebois P, Lennon NJ, Power KA, Macalalad AR, Berlin
909 AM, Malboeuf CM, Ryan EM, Gnerre S, Zody MC, Erlich RL, Green LM, Berical A,
910 Wang Y, Casali M, Streeck H, Bloom AK, Dudek T, Tully D, Newman R, Axten KL,
911 Gladden AD, Battis L, Kemper M, Zeng Q, Shea TP, Gujja S, Zedlack C, Gasser O,
912 Brander C, Hess C, Günthard HF, Brumme ZL, Brumme CJ, Bazner S, Rychert J, Tinsley
913 JP, Mayer KH, Rosenberg E, Pereyra F, Levin JZ, Young SK, Jessen H, Altfeld M, Birren
914 BW, Walker BD, Allen TM. 2012. Whole genome deep sequencing of HIV-1 reveals the
915 impact of early minor variants upon immune recognition during acute infection. *PLoS*
916 *Pathog* 8:1002529.

917 50. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, Sun C,
918 Grayson T, Wang S, Li H, Wei X, Jiang C, Kirchherr JL, Gao F, Anderson JA, Ping LH,
919 Swanson R, Tomaras GD, Blattner WA, Goepfert PA, Kilby JM, Saag MS, Delwart EL,
920 Busch MP, Cohen MS, Montefiori DC, Haynes BF, Gaschen B, Athreya GS, Lee HY,
921 Wood N, Seoighe C, Perelson AS, Bhattacharya T, Korber BT, Hahn BH, Shaw GM.
922 2008. Identification and characterization of transmitted and early founder virus envelopes

923 in primary HIV-1 infection. *Proc Natl Acad Sci U S A* 105:7552–7557.

924 51. Fischer W, Ganusov V V., Giorgi EE, Hraber PT, Keele BF, Leitner T, Han CS, Gleasner
925 CD, Green L, Lo CC, Nag A, Wallstrom TC, Wang S, McMichael AJ, Haynes BF, Hahn
926 BH, Perelson AS, Borrow P, Shaw GM, Bhattacharya T, Korber BT. 2010. Transmission
927 of single HIV-1 genomes and dynamics of early immune escape revealed by ultra-deep
928 sequencing. *PLoS One* 5.

929 52. Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, Decker JM,
930 Wang S, Baalwa J, Kraus MH, Parrish NF, Shaw KS, Guffey MB, Bar KJ, Davis KL,
931 Ochsenbauer-Jambor C, Kappes JC, Saag MS, Cohen MS, Mulenga J, Derdeyn CA, Allen
932 S, Hunter E, Markowitz M, Hraber P, Perelson AS, Bhattacharya T, Haynes BF, Korber
933 BT, Hahn BH, Shaw GM. 2009. Genetic identity, biological phenotype, and evolutionary
934 pathways of transmitted/founder viruses in acute and early HIV-1 infection. *J Exp Med*
935 206:1273–1289.

936 53. Rambaut A, Posada D, Crandall KA, Holmes EC. 2004. The causes and consequences of
937 HIV evolution. *Nat Rev Genet.* Nature Publishing Group.

938 54. Alizon S, Fraser C. 2013. Within-host and between-host evolutionary rates across the
939 HIV-1 genome. *Retrovirology* 10:49.

940 55. O'Connell KA, Brennan TP, Bailey JR, Ray SC, Siliciano RF, Blankson JN. 2010.
941 Control of HIV-1 in Elite Suppressors despite Ongoing Replication and Evolution in
942 Plasma Virus. *J Virol* 84:7018–7028.

943 56. Mens H, Kearney M, Wiegand A, Shao W, Schønning K, Gerstoft J, Obel N, Maldarelli F,
944 Mellors JW, Benfield T, Coffin JM. 2010. HIV-1 Continues To Replicate and Evolve in
945 Patients with Natural Control of HIV Infection. *J Virol* 84:12971–12981.

946 57. Miura T, Brockman MA, Schneidewind A, Lobritz M, Pereyra F, Rathod A, Block BL,

947 Brumme ZL, Brumme CJ, Baker B, Rothchild AC, Li B, Trocha A, Cutrell E, Frahm N,
948 Brander C, Toth I, Arts EJ, Allen TM, Walker BD. 2009. HLA-B57/B*5801 Human
949 Immunodeficiency Virus Type 1 Elite Controllers Select for Rare Gag Variants
950 Associated with Reduced Viral Replication Capacity and Strong Cytotoxic T-Lymphocyte
951 Recognition. *J Virol* 83:2743–2755.

952 58. de Azevedo SSD, Caetano DG, Côrtes FH, Teixeira SLM, dos Santos Silva K, Hoagland
953 B, Grinsztejn B, Veloso VG, Morgado MG, Bello G. 2017. Highly divergent patterns of
954 genetic diversity and evolution in proviral quasispecies from HIV controllers.
955 *Retrovirology* 14:29.

956 59. Wang B, Mikhail M, Dyer WB, Zaunders JJ, Kelleher AD, Saksena NK. 2003. First
957 demonstration of a lack of viral sequence evolution in a nonprogressor, defining
958 replication-incompetent HIV-1 infection. *Virology* 312:135–150.

959 60. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. 2020. NetMHCpan-4.1 and
960 NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent
961 motif deconvolution and integration of MS MHC eluted ligand data. *Nucleic Acids Res*
962 48:W449–W454.

963 61. Kwaa AK, Garliss CC, Ritter KD, Laird GM, Blankson JN. 2020. Elite suppressors have
964 low frequencies of intact HIV-1 proviral DNA. *AIDS* 34:641–643.

965 62. Falcinelli SD, Kilpatrick KW, Read J, Murtagh R, Allard B, Ghofrani S, Kirchherr J,
966 James KS, Stuelke E, Baker C, Kuruc JD, Eron JJ, Hudgens MG, Gay CL, Margolis DM,
967 Archin NM. 2020. Longitudinal Dynamics of Intact HIV Proviral DNA and Outgrowth
968 Virus Frequencies in a Cohort of Individuals Receiving Antiretroviral Therapy. *J Infect*
969 *Dis.*

970 63. Gandhi RT, Cyktor JC, Bosch RJ, Mar H, Laird GM, Martin A, Collier AC, Riddler SA,

971 Macatangay BJ, Rinaldo CR, Eron JJ, Siliciano JD, McMahon DK, Mellors JW, Hogg E,
972 LeBlanc R, Scello C, Palm D, Gandhi M, Fletcher C, Podany A, Aweeka F, Halvas L,
973 Dragavon J, Joseph J, Lagattuta R, Lin L, Pederson S, Robertson K, Rubin L, Smith D,
974 Spudich S, Tsibris A, Hogg E, LeBlanc R, Scello C, Palm D, Gandhi M, Fletcher C,
975 Podany A, Aweeka F, Halvas L, Dragavon J, Joseph J, Lagattuta R, Lin L, Pederson S,
976 Robertson K, Rubin L, Smith D, Spudich S, Tsibris A. 2020. Selective Decay of Intact
977 HIV-1 Proviral DNA on Antiretroviral Therapy. *J Infect Dis.*

978 64. Boritz EA, Darko S, Swaszek L, Wolf G, Wells D, Wu X, Henry AR, Laboune F, Hu J,
979 Ambrozak D, Hughes MS, Hoh R, Casazza JP, Vostal A, Bunis D, Nganou-Makamnop K,
980 Lee JS, Migueles SA, Koup RA, Connors M, Moir S, Schacker T, Maldarelli F, Hughes
981 SH, Deeks SG, Douek DC. 2016. Multiple Origins of Virus Persistence during Natural
982 Control of HIV Infection. *Cell* 166:1004–1015.

983 65. Miller RL, Ponte R, Jones BR, Kinloch NN, Omondi FH, Jenabian M-A, Dupuy FP,
984 Fromentin R, Brassard P, Mehraj V, Chomont N, Poon AFY, Joy JB, Brumme ZL, Routy
985 J-P. 2019. HIV Diversity and Genetic Compartmentalization in Blood and Testes during
986 Suppressive Antiretroviral Therapy. *J Virol* 93:755–774.

987 66. Prodger JL, Capoferri AA, Yu K, Lai J, Reynolds SJ, Kasule J, Kityamuweesi T, Buule P,
988 Serwadda D, Kwon KJ, Schlusser K, Martens C, Scully E, Choi Y-H, Redd AD, Quinn
989 TC. 2020. Reduced HIV-1 latent reservoir outgrowth and distinct immune correlates
990 among women in Rakai, Uganda. *JCI Insight* 5.

991 67. Scully EP, Gandhi M, Johnston R, Hoh R, Lockhart A, Dobrowolski C, Pagliuzza A,
992 Milush JM, Baker CA, Girling V, Ellefson A, Gorelick R, Lifson J, Altfeld M, Alter G,
993 Cedars M, Solomon A, Lewin SR, Karn J, Chomont N, Bacchetti P, Deeks SG. 2019. Sex-
994 Based Differences in Human Immunodeficiency Virus Type 1 Reservoir Activity and

995 Residual Immune Activation. *J Infect Dis* 219:1084.

996 68. Jones BR, Miller RL, Kinloch NN, Tsai O, Rigsby H, Suderuddin H, Shahid A, Ganase
997 B, Brumme CJ, Harris M, Poon AFY, Brockman MA, Fromentin R, Chomont N, Joy JB,
998 Brumme ZL. 2019. Genetic Diversity, Compartmentalization, and Age of HIV Proviruses
999 Persisting in CD4 + T Cell Subsets during Long-Term Combination Antiretroviral
1000 Therapy . *J Virol* 94:1786–1805.

1001 69. Woods CK, Brumme CJ, Liu TF, Chui CKS, Chu AL, Wynhoven B, Hall TA, Trevino C,
1002 Shafer RW, Harrigan PR. 2012. Automating HIV drug resistance genotyping with RECall,
1003 a freely accessible sequence analysis tool. *J Clin Microbiol* 50:1936–1942.

1004 70. Rose PP, Korber BT. 2000. Detecting hypermutations in viral sequences with an emphasis
1005 on G→A hypermutation. *Bioinformatics* 16:400–401.

1006 71. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. 2015. RDP4: Detection and
1007 analysis of recombination patterns in virus genomes. *Virus Evol* 1.

1008 72. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
1009 Improvements in performance and usability. *Mol Biol Evol* 30:772–780.

1010 73. Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large
1011 datasets. *Bioinformatics* 30:3276–3278.

1012 74. Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a fast online
1013 phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Res* 44:W232–W235.

1014 75. Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 2017.
1015 ModelFinder: Fast model selection for accurate phylogenetic estimates. *Nat Methods*
1016 14:587–589.

1017 76. Akaike H. 1974. A New Look at the Statistical Model Identification. *IEEE Trans Automat
1018 Contr* 19:716–723.

1019 77. Paradis E, Schliep K. 2019. Ape 5.0: An environment for modern phylogenetics and
1020 evolutionary analyses in R. *Bioinformatics* 35:526–528.

1021 78. Lee GQ, Orlova-Fink N, Einkauf K, Chowdhury FZ, Sun X, Harrington S, Kuo HH, Hua
1022 S, Chen HR, Ouyang Z, Reddy K, Dong K, Ndung’U T, Walker BD, Rosenberg ES, Yu
1023 XG, Licherfeld M. 2017. Clonal expansion of genome-intact HIV-1 in functionally
1024 polarized Th1 CD4+ T cells. *J Clin Invest* 127:2689–2696.

1025 79. Li B, Gladden AD, Altfeld M, Kaldor JM, Cooper DA, Kelleher AD, Allen TM. 2007.
1026 Rapid Reversion of Sequence Polymorphisms Dominates Early Human
1027 Immunodeficiency Virus Type 1 Evolution. *J Virol* 81:193–201.

1028 80. Hunt M, Gall A, Ong SH, Brener J, Ferns B, Goulder P, Nastouli E, Keane JA, Kellam P,
1029 Otto TD. 2015. IVA: Accurate de novo assembly of RNA virus genomes. *Bioinformatics*
1030 31:2374–2376.

1031 81. Kinloch NN, Ren Y, Conce Alberto WD, Dong W, Khadka P, Huang SH, Mota TM,
1032 Wilson A, Shahid A, Kirkby D, Harris M, Kovacs C, Benko E, Ostrowski MA, Del Rio
1033 Estrada PM, Wimpelberg A, Cannon C, Hardy WD, MacLaren L, Goldstein H, Brumme
1034 CJ, Lee GQ, Lynch RM, Brumme ZL, Jones RB. 2021. HIV-1 diversity considerations in
1035 the application of the Intact Proviral DNA Assay (IPDA). *Nat Commun* 12:1–10.

1036 82. Simonetti FR, White JA, Tumiotto C, Ritter KD, Cai M, Gandhi RT, Deeks SG, Howell
1037 BJ, Montaner LJ, Blankson JN, Martin A, Laird GM, Siliciano RF, Mellors JW, Siliciano
1038 JD. 2020. Intact proviral DNA assay analysis of large cohorts of people with HIV
1039 provides a benchmark for the frequency and composition of persistent proviral DNA. *Proc
1040 Natl Acad Sci* 202006816.

1041 83. Reeves DB, Peterson CW, Kiem H-P, Schiffer JT. 2017. Autologous Stem Cell
1042 Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human

1043

Immunodeficiency Virus Viremia. *J Virol* 91:95–112.

1044 **Figure legends**

1045 **Fig. 1: Participant sampling timeline and reservoir quantification.** Timeline is depicted as
1046 years since ART initiation. Shading represents ART. Inverted black triangles denote the
1047 clinically-estimated date of infection. Coloured circles denote pre-ART plasma samples from
1048 which HIV RNA sequences were isolated. Red diamonds denote cell samples on ART from
1049 which proviral sequences were isolated. Black diamonds denote proviral quantification dates
1050 using the Intact Proviral DNA Assay (IPDA). IPDA results are shown as pie charts, where the
1051 pie size denotes the total proviral burden and the coloured slices denote intact and defective HIV
1052 genome proportions (actual values shown in **Table 1**).

1053 **Fig. 2: Between-host HIV phylogeny.** Maximum likelihood phylogeny inferred from 546
1054 plasma HIV RNA sequences (circles) and 267 proviral DNA sequences (open diamonds) isolated
1055 from participants. Numbers on internal branches indicate bootstrap values supporting within-host
1056 monophyletic clades. Scale in estimated substitutions per nucleotide site. The phylogeny is
1057 midpoint-rooted. The black dot represents the HIV-1 subtype B reference strain HXB2.

1058 **Fig. 3: Participant 1.** (A) Clinical history and sampling timeline. Throughout all figures, circles
1059 denote plasma HIV RNA sampling and diamonds denote HIV DNA sampling. Shading
1060 represents ART. (B) Maximum-likelihood within-host phylogeny and corresponding amino acid
1061 highlighter plot. In the phylogeny, colored circles denote distinct pre-ART plasma HIV RNA
1062 sequences and red diamonds indicate distinct proviral sequences sampled during suppressive
1063 ART. Sequences that were recovered repeatedly are shown as open grey circles (for plasma HIV
1064 RNA) and diamonds (for proviruses) adjacent to the relevant tip. The root represents the inferred
1065 most recent common ancestor of the dataset, representing the phylogenetically-inferred
1066 transmitted founder virus event. The highlighter plot is ordered according to the phylogeny and
1067 depicts *amino acid* sequences. The top sequence serves as the reference, where colored ticks in

1068 sequences beneath it denote non-synonymous substitutions with respect to the reference. (C)
1069 HIV sequence divergence-versus-time plot. The blue dashed line represents the linear model
1070 relating the root-to-tip distances of distinct pre-ART plasma HIV RNA sequences (colored
1071 circles) to their sampling times. This model is then used to convert the root-to-tip distances of
1072 distinct proviral sequences sampled during ART (red diamonds) to their original integration
1073 dates. The slope of the regression line, which represents the inferred within-host evolutionary
1074 rate (ER) in estimated substitutions per nucleotide site per day, is shown at the bottom right.
1075 Faint grey lines denote the ancestral relationships between HIV sequences. (D) Integration date
1076 point estimates (and 95% confidence intervals) for distinct proviral sequences recovered from
1077 this participant.

1078 **Fig. 4: Participant 2.** The panels are as described in the legend of Figure 3.

1079 **Fig. 5: Participant 3.** The panels are as described in the legend of Figure 3.

1080 **Fig. 6: Participant 4.** The panels are as described in the legend of Figure 3, with the following
1081 additions. Throughout the figure, the red diamond indicated by an asterisk represents the
1082 genetically-intact HIV sequence isolated from the sample remnants following the Intact
1083 Proviral DNA Assay (IPDA). In panel C, two linear models were fit to the data, encompassing
1084 the viremic control (blue dashed line) and the "loss of control" (green dashed line) periods.
1085 Corresponding evolutionary rates are shown in the bottom right corner in matching colours. The
1086 regression for the control period was performed using plasma timepoints 2006-06-14 to 2008-09-
1087 25, while post-control period regression was performed using plasma timepoints 2009-01-29 to
1088 2012-05-14.

1089 **Fig. 7 Correlates of proviral burden and diversity.** (A) Relationship between pre-ART plasma
1090 HIV RNA diversity and proviral diversity on ART. (B) Relationship between total area under the
1091 plasma viral load curve pre-ART, measured in \log_{10} viremia copy-days, and total proviral *burden*

1092 during ART. (C) Relationship between total area under the plasma viral load curve pre-ART and
1093 overall proviral *diversity* during ART, where the latter is measured as average patristic (tip-to-tip
1094 phylogenetic) distance between all distinct proviral sequences recovered from each participant.

1095 **Fig. 8 Model of reservoir composition.** (A-D) Viral load histories, with engrafted "peak
1096 viremia" kinetics from the literature (shown as black diamonds), for participants 1 (panel A), 2
1097 (panel B), 3 (panel C, where the dotted line represents the viremic episode after ART that serves
1098 as the reference point in this analysis) and 4 (panel D). (E-H) Phylogenetically-determined
1099 proviral ages, and predicted proviral age distributions under different rates of proviral decay, for
1100 participants 1-4. Blue histograms denote the proportion of each participant's distinct proviruses
1101 that dated to each year prior to ART initiation, data that are derived from the integration date
1102 point estimates in Figures 3D, 4D, 5D and 6D, respectively. The yellow line indicates each
1103 participant's model-predicted proviral deposition. The grey and dashed black lines predict what
1104 the proviral age distributions would be at the time of sampling, had proviral decay subsequently
1105 occurred under half-lives of 140 or 44 months following deposition (these half-lives represent
1106 published *on ART* estimates of total DNA (26) and replication-competent reservoir (25) decay,
1107 respectively). The green line represents the model-predicted proviral age distributions under the
1108 pre-ART proviral decay rate that best fit each participant's observed data. (I-L) Best-fit half-lives
1109 estimated directly from each participant's observed proviral age distributions using a Poisson
1110 generalized linear model (red line) along with 95% confidence intervals (dotted lines).

1111

1112 **Supplemental Files**

1113 **Table S1: Within-host proviral half-life estimates from primary and sensitivity analyses.**

1114 **Table S2: Best-fit nucleotide substitution models.**

1115 **Fig. S1 Inferring proviral age distributions and pre-ART half-lives from alternate within-
1116 host phylogenies.** (A) Divergence vs. time plot for participant 1, inferred using a TVM+F+I+G4
1117 nucleotide substitution model, which represents this participant's next best fit model as shown in
1118 Table S2. As in the main manuscript figures, the blue dashed line represents the linear model
1119 relating the root-to-tip distances of distinct pre-ART plasma HIV RNA sequences (colored
1120 circles) to their sampling times; this line is used to convert the root-to-tip distances of distinct
1121 proviral sequences sampled during ART (red diamonds) to their integration dates. The slope of
1122 the line, which represents the within-host evolutionary rate (ER) in estimated substitutions per
1123 nucleotide site per day, is shown on the plot. Faint grey lines denote the ancestral relationships
1124 between HIV sequences. (B) Integration date point estimates and 95% confidence intervals for
1125 distinct proviral sequences recovered from participant 1, as inferred using the alternate
1126 phylogeny. (C) Proviral age distribution (blue histogram), and and associated best-fit half-life
1127 estimated using a Poisson generalized linear model (red line, with 95% CI shown as dotted line).
1128 (D-F) results from participant 2's alternate phylogeny, inferred using a TPM2+F+I+G4 model.
1129 (G-I) results from participant 3's alternate phylogeny, inferred using a TVM+F+I+G4 model. (J-
1130 L) results for participant 4's alternate phylogeny, inferred using a GTR+F+I+G4 model. As in
1131 the primary analysis, two regression lines were fit, one each for the "control" (blue line and ER)
1132 and "post-control" eras (green line and ER), where all proviruses were dated using the second
1133 regression.

1134 **Fig. S2 Inferring proviral age distributions and pre-ART half-lives without a molecular
1135 clock.** Left side: The first column shows the proviral integration date estimates inferred from
1136 each participant's original phylogeny using the "nearest neighbor" dating method, which dates
1137 each provirus to the pre-ART plasma sample closest to it in the tree. This approach can only date

1138 proviruses to the specific dates on which plasma HIV RNA sequences were sampled, and
1139 therefore produces no 95% CI. The second column shows the proviral age distributions inferred
1140 using the nearest neighbor approach (blue histograms), and the associated best-fit half-life
1141 estimated using a Poisson generalized linear model (red line, with 95% CI shown as dotted line).
1142 Right side: The first column shows the divergence vs. time plots produced by Least Squares
1143 Dating (LSD). Here, all plasma HIV RNA sequences are shown in black with the evolutionary
1144 relationships between sequences shown as grey solid lines. A dotted horizontal line connects
1145 each distinct provirus (red diamond) to its position in the phylogeny (shown as a red cross),
1146 where its inferred date can be read on the x-axis. The inferred evolutionary rate, in estimated
1147 substitutions per nucleotide site per day, is shown at the bottom right of each plot. The second
1148 column shows the integration date point estimates and associated 95% confidence intervals for
1149 all distinct sampled proviruses. The third column shows the best-fit half-lives estimated directly
1150 from the LSD-inferred proviral age distributions.

1151 **Fig. S3 Accounting for identical sequences in proviral half-life estimates.** Left column: Each
1152 participant's original divergence vs. time plot is shown, with identical proviruses annotated
1153 outside the plot border as red diamonds, >5 duplicate sequences are indicated using numbers.
1154 Middle column: Proviral age distributions computed using distinct sequences only (blue
1155 histograms), and associated best-fit half-life estimated using a Poisson generalized linear model
1156 (red line, with 95% CI shown as dotted line). These are the same results as shown in Figures 8I-
1157 L. Right column: Proviral age distributions and associated best-fit half-lives when considering all
1158 proviral sequences.

Table 1: Participant clinical and HIV sequence sampling details

Participant	Clinically estimated infection date	Diagnosis date	First plasma viral load ^a	N Plasma timepoints with HIV sequence data ^b	N Plasma HIV sequences (distinct: N; %) ^c	ART initiation date	Total proviral burden on ART (% genetically intact) ^d	Proviral sequencing date(s)	N Proviral sequences (distinct: N, %) ^c
1	Apr 2006	Feb 2007	1615	8	104 (52; 50%)	2010-08-01	215 (51)	2012-09-13	48 (40, 83%)
2	Dec 2005	Jan 2006	977	9	67 (60; 90%)	2014-05-01	580 (10)	2015-09-08	66 (36, 55%)
3	Mar 2008	Jun 2008	97	7	130 (71; 55%)	2012-01-01	44 (31)	2016-07-14	24 (12, 50%)
4	Mar 2005	Nov 2005	383	12	245 (173; 71%)	2013-02-01	778 (94)	2013-11-18; 2014-10-20	1 full genome 128 (119, 92%)

^aFirst detectable sampled plasma viral load, expressed as HIV RNA copies/ml plasma

^bTotal number of plasma timepoints from which HIV RNA *nef* sequences were successfully amplified.

^c"Distinct" refers to sequences that were observed only once in that compartment. Reported Ns exclude defective, hypermutated and putative within-host recombinant HIV sequences.

^das measured by the Intact Proviral DNA Assay and expressed as HIV copies/10⁶ CD4+ T cells.

Table 2: Phylogenetically-inferred root date estimates and within-host evolutionary rates

Participant	ΔAIC^a	Clinically estimated infection date	Phylogenetically-estimated Root Date (95% Confidence Interval)	Within-host HIV evolutionary rate ^b
1	21.1	Apr 2006	Feb 2007 (Dec 2004 to Apr 2009)	3.22×10^{-5}
2	37.8	Dec 2005	Jan 2003 (Feb 1999 to Dec 2006)	1.17×10^{-5}
3	39.2	Mar 2008	Oct 2006 (May 2004 to Feb 2009)	1.16×10^{-5}
4	30.3 167.2	Mar 2005	June 2005 (Nov 2003 to Jan 2007)	1.28×10^{-5} (control era) 5.35×10^{-5} (post-control era)

^a ΔAIC = Delta Akaike Information Criterion. A $\Delta\text{AIC} \geq 10$ was considered evidence of a molecular clock signal (see methods).

^b Expressed in estimated substitutions per nucleotide site per day.

Fig 1.

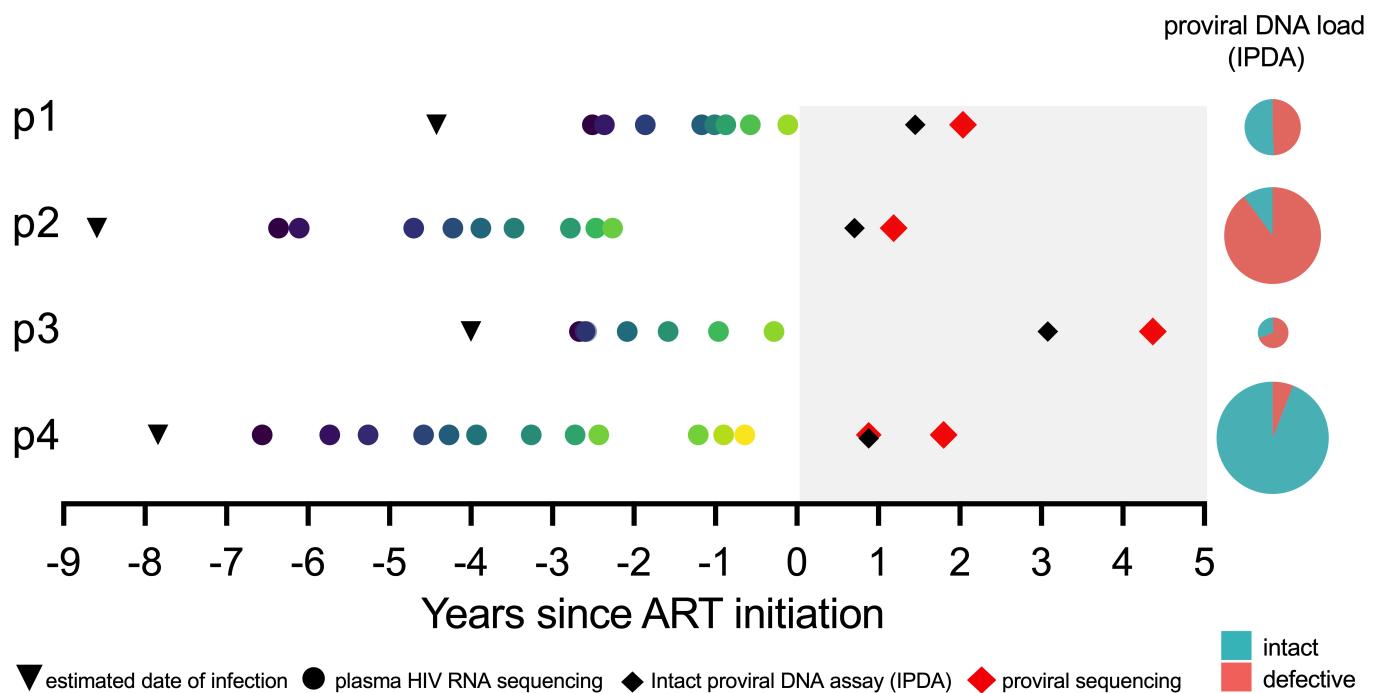


Fig 2.

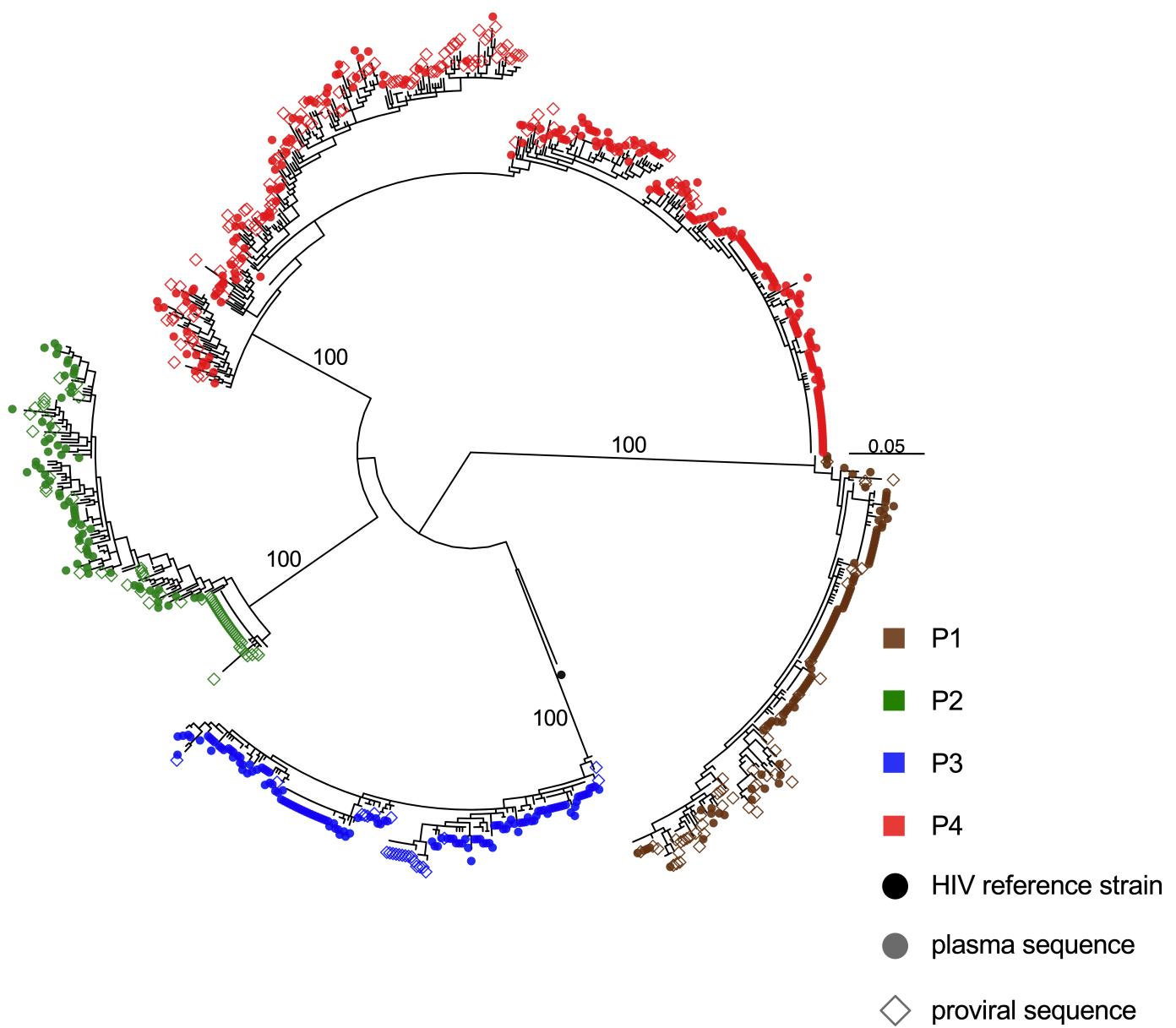


Fig 3.

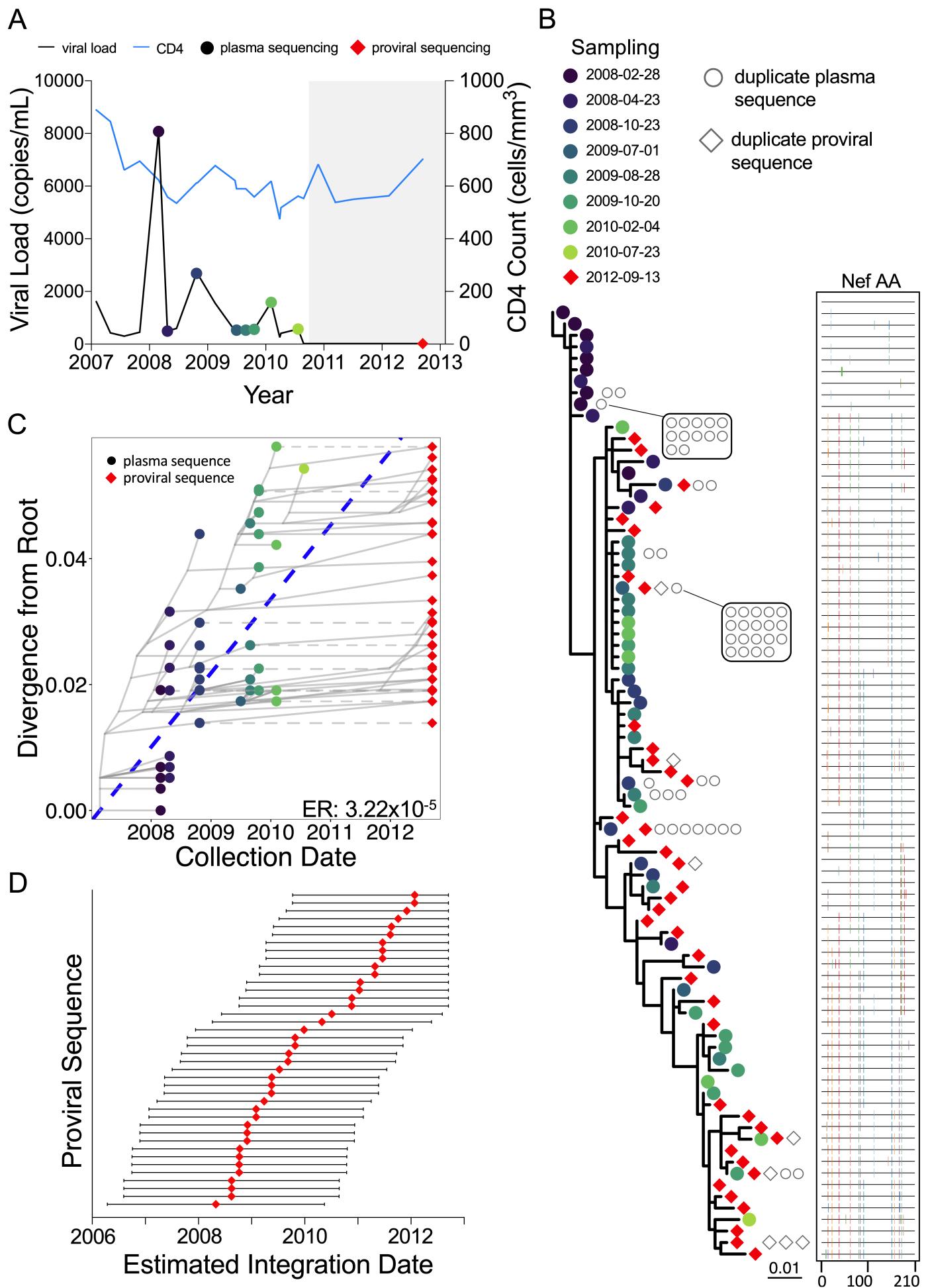


Fig 4.

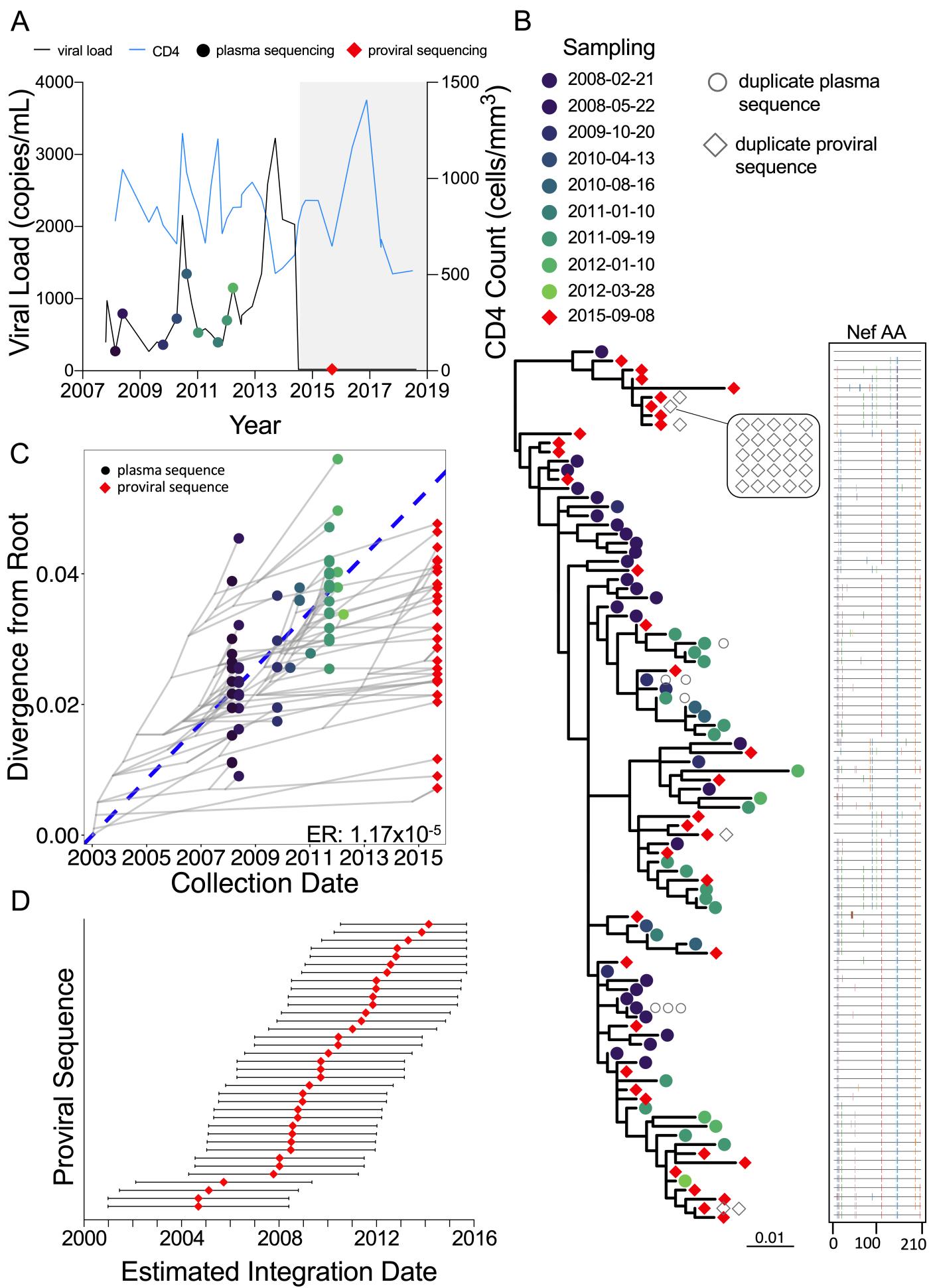
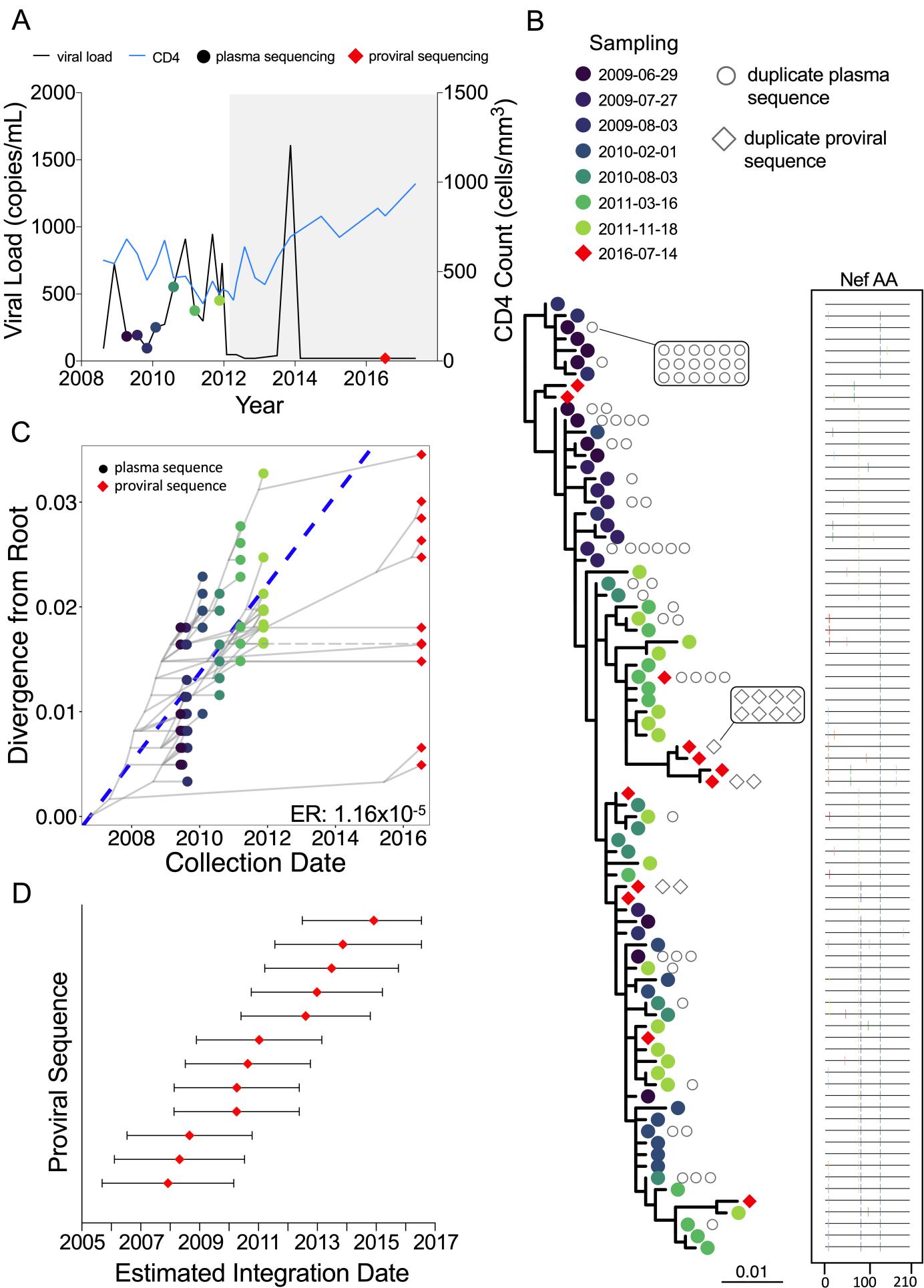



Fig 5.

Fig 6.

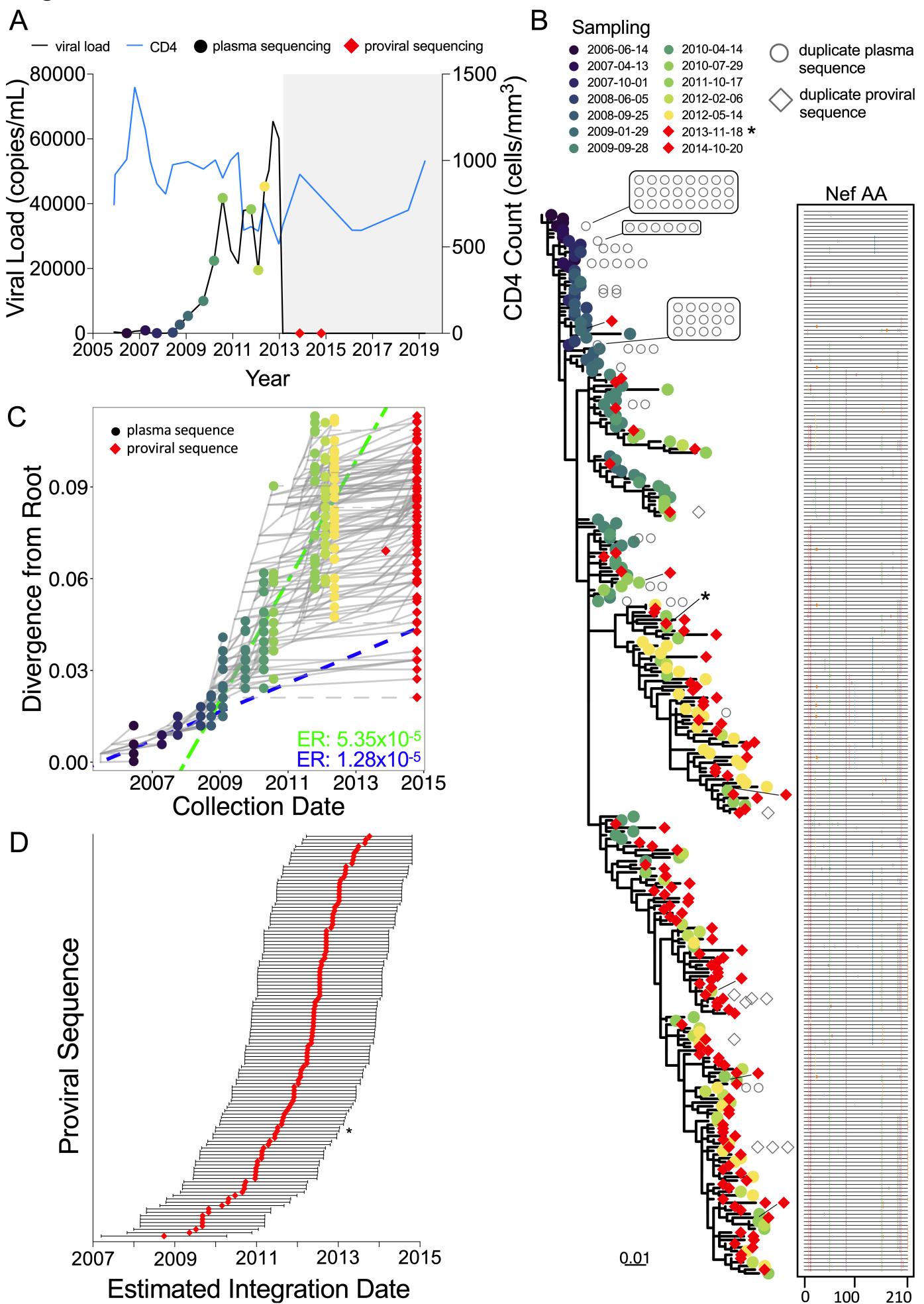
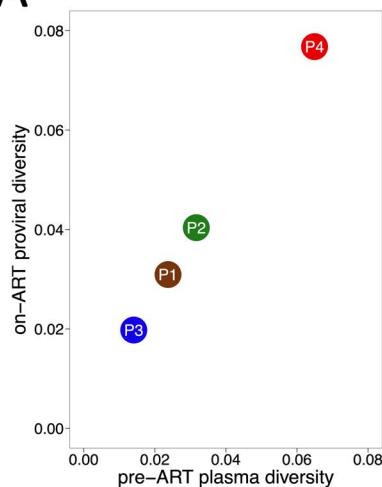
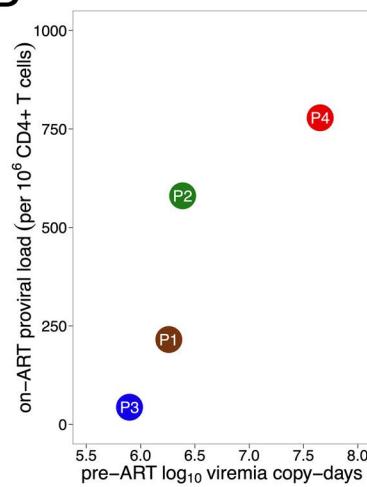




Fig 7.

A

B

C

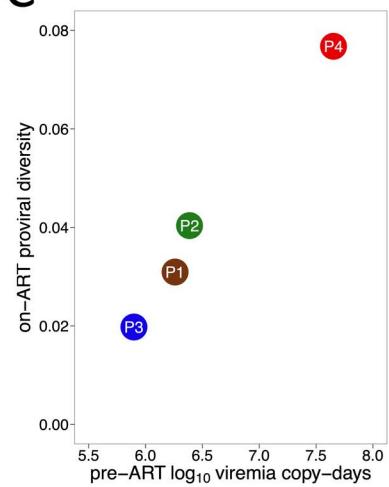
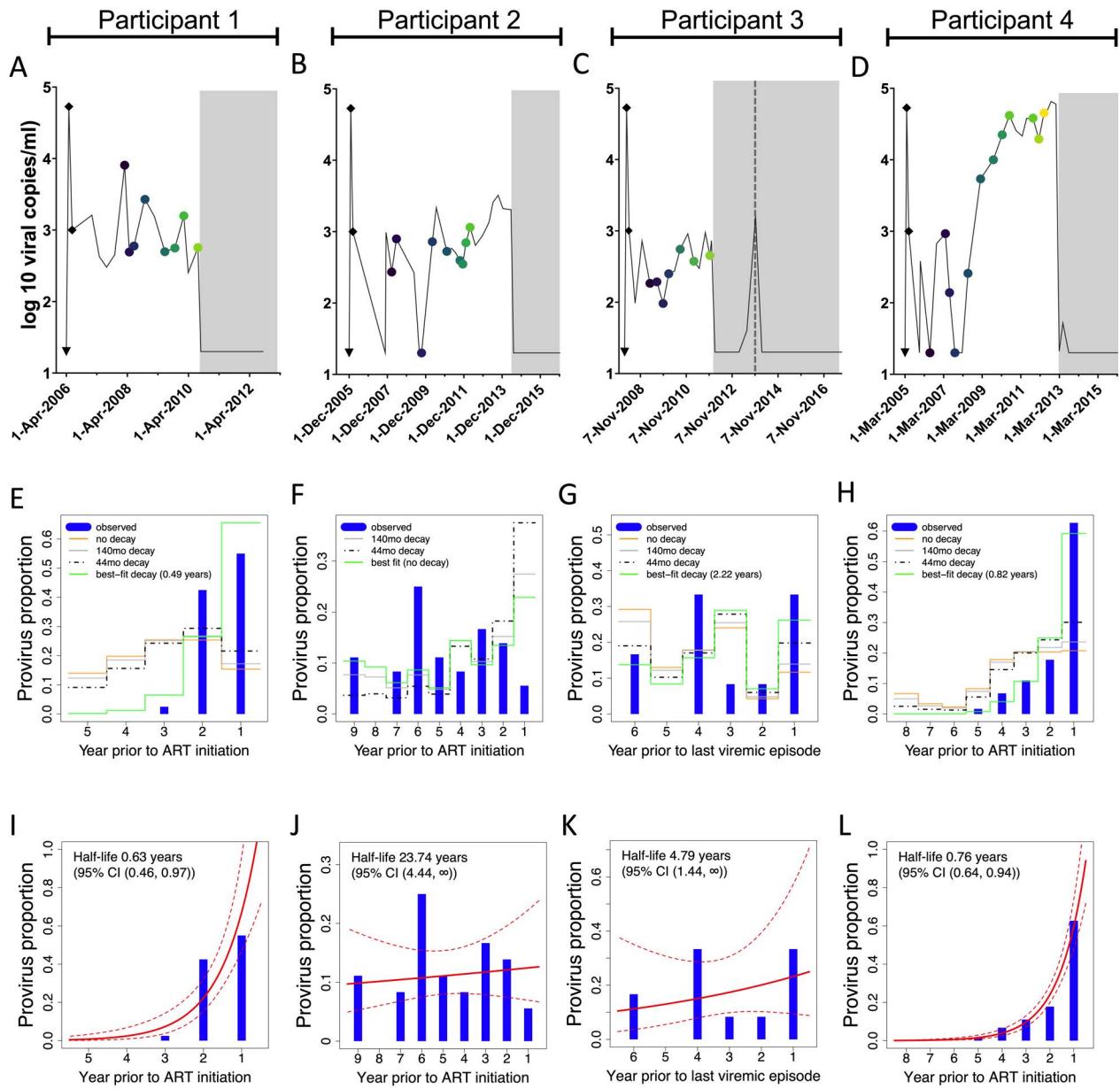



Fig 8.

