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Abstract

Semantic information is important in eye-movement control. An important semantic influence 

on  gaze  guidance  relates  to  object-scene  relationships:  objects  that  are  semantically 

inconsistent with the scene attract more fixations than consistent objects. One interpretation 

of  this  effect  is  that  fixations  are  driven  towards  inconsistent  objects  because  they  are 

semantically more informative. We tested this explanation using contextualized meaning maps, 

a method that is based on crowd-sourced ratings to quantify the spatial distribution of context-

sensitive ‘meaning’  in images. In Experiment 1,  we compared gaze data and contextualized 

meaning maps for  images,  in  which  objects-scene consistency was manipulated.  Observers 

fixated more on inconsistent vs. consistent objects. However, contextualized meaning maps 

did not assigned higher meaning to image regions that contained semantic inconsistencies. In 

Experiment 2,  a  large number  of  raters  evaluated the meaningfulness  of  a  set  of  carefully 

selected image-regions. The results suggest that the same scene locations were experienced as 

slightly  less meaningful when they contained inconsistent compared to consistent objects. In 

summary, we demonstrated that – in the context of our rating task – semantically inconsistent 

objects  are  experienced  as  less  meaningful  than  their  consistent  counterparts,  and  that 

contextualized meaning maps do not capture prototypical  influences of  image meaning on 

gaze guidance.
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Introduction

Visual processing varies as a function of the retinal location at which a stimulus is presented: 

with increasing eccentricity, processing is affected by crowding and a decrease in resolution 

(see Rosenholtz, 2016 and Stewart et al.,  2020 for reviews). Being able to rapidly move the 

central parts of the eyes is therefore necessary to extract fine detail across large parts of the 

visual field. Consequently, eye movements are critical for visual processing and it is important 

to understand what processes underpin gaze guidance. Currently, the most popular framework 

for answering this question assumes that the factors influencing human gaze allocation belong 

to two broad categories: (i) image-computable features of the input processed in a bottom-up 

fashion, and (ii) the internal states of the individual, such as knowledge or intentions, exerting 

their  influence  in  a  top-down  manner  (Berga  &  Otazu,  2020;  Henderson  &  Hayes,  2017; 

Kollmorgen et al., 2010; Rothkopf et al., 2016).

Support  for  the  notion  that  image-computable  aspects  of  the  input  are  important  for  the 

guidance of eye movements comes from studies demonstrating that where humans look in 

images can often be predicted by  analyzing the visual features of these images  (Borji et al., 

2013). Algorithms generating such predictions are called saliency models. Early saliency models, 

such  as  GBVS  (Harel  et  al.,  2007), AWS  (Garcia-Diaz,  Fdez-Vidal,  et  al.,  2012;  Garcia-Diaz, 

Leboran, et al., 2012) or the model by Itti and Koch (Itti & Koch, 2000; see also Krasovskaya & 

MacInnes, 2019), attempted to  maximize the accuracy of their predictions relying on simple 

features such as intensity, color, and orientation contrasts. While the predictive power of these 

models  was  moderate  (Kümmerer  et  al.,  2015),  state-of-the-art  saliency  models,  based  on 

powerful machine-learning algorithms called deep neural networks (see Storrs & Kriegeskorte, 

2019 for review), can predict fixation locations much better than their predecessors while still 

relying exclusively on image features  (Kümmerer et al., 2017). One fundamental difference is 

that while earlier models were based on parameter values determined by hand, current models 

such as DeepGaze II (Kümmerer et al., 2016, 2017) or MSI-Net (Kroner et al., 2020) are based on 

supervised learning, which does not require explicitly defined parameter values.

One  limitation  of  all  saliency-based  approaches  is  their  difficulty  to  account  for  factors  in 

oculomotor  control  that  are  not  image-computable  (Bayat  et  al.,  2018;  Bruce  et  al.,  2015; 
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Henderson & Hayes, 2017; Pedziwiatr et al., 2021a; Tatler et al., 2011). For example, the fixation-

patterns of individuals viewing the same stimulus can vary as a function of their task and goals 

(Hoppe & Rothkopf, 2019; Koehler et al., 2014; Rothkopf et al., 2016; Yarbus, 1967). Importantly, 

however, oculomotor behavior is not constantly subjugated to a task; humans (and many other 

animals) are intrinsically motivated to obtain information, and often move their eyes with no 

purpose other than to explore the environment (Gottlieb & Oudeyer, 2018). Both early  (Itti & 

Koch,  2001) and more  recent  work  (Adeli  et  al.,  2017;  Veale  et  al.,  2017;  Zelinsky  & Bisley, 

2015) argues that the oculomotor behavior exhibited in such ‘free-viewing’ conditions can be 

largely explained by image-computable features.

This contention has not remained unchallenged. A number of studies demonstrated that even 

when observers view images without a task, the spatial allocation of fixations can be guided by 

factors which are not captured by current saliency models, namely, the semantic content of the 

visual scene  (Henderson et al.,  2019; Peacock et al.,  2019; Wu et al.,  2014). One well-studied 

semantic  effect  in  eye  movement  research  relates  to  object-scene  consistency,  where  eye 

movement  behavior  changes  depending  on  the  extent  to  which  objects  are  semantically 

consistent  with  the  scene.  In  a  seminal  study  (Loftus  &  Mackworth,  1978),  one  example 

stimulus  showed  a  farmyard  scene  either  with  a  (semantically  consistent)  tractor,  or  a 

(semantically inconsistent) octopus. Inconsistent objects such as the octopus were looked at 

earlier, attracted more fixations, and were inspected for longer in comparison to consistent 

objects. While some mixed results have since been found with respect to the timing of eye  

movements  (Wu  et  al.,  2014),  there  is  robust  evidence  demonstrating  that  object-scene 

inconsistencies lead to more and longer fixations (Coco et al., 2020; Friedman, 1979; Henderson 

et al., 1999; Öhlschläger & Võ, 2017; Pedziwiatr et al., 2021a).

Two primary mechanisms have been proposed to explain these effects. First, objects that are  

viewed in  inconsistent  contexts  are  processed less  effectively,  as  indicated by  the drop  in 

recognition  (Munneke et al.,  2013) and detection  (Biederman et al.,  1982) performance  (see 

also Kaiser et al., 2019). Consequently, more fixations towards, and longer inspection times of 

inconsistent objects are thought to reflect the increased resources needed to process these 

stimuli  (Bonitz  &  Gordon,  2008;  Friedman,  1979).  A  second,  and  not  mutually-exclusive, 

explanation for the effects of object-scene inconsistencies on eye movements is based on the 
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notion  that  inconsistent  objects  are  “more  informative” (Loftus  &  Mackworth,  1978), 

“semantically  informative” (Henderson,  2011;  Henderson  et  al.,  1999),  or  “contain  greater 

meaning” (Peacock et al., 2019). According to this idea, people look at inconsistent objects in an 

effort to maximize extraction of meaning from a scene.

This  second  interpretation  has  recently  gained  increased  attention,  in  particular  with  the 

development of  meaning maps,  a  method to quantify  the spatial  distribution  of  ‘meaning’ 

across  an  image  (Henderson  &  Hayes,  2017,  2018).  Meaning  maps  are  created  by  first 

partitioning  an  image  into  many  circular,  partially-overlapping  patches.  These  patches  are 

presented to individuals, who view them without knowing the scene from which they were 

extracted (hence these maps are called context-free). Participants are asked to use a Likert 

scale to “assess how "meaningful" an image is based on how informative or recognizable” they 

think it  is. Finally,  these ratings are combined into a smooth distribution over the image to 

create  a  map.  Meaning  indexed  by  this  method  has  been  demonstrated  to  be  a  better 

predictor  of  fixations  than  a  simple  saliency  model.  This  finding  has  been  interpreted  as 

evidence  that  semantic  information  rather  than  image-computable  features  control  eye 

movements (Henderson & Hayes, 2017, 2018). The meaning map approach is rapidly gaining 

popularity, and has been used to study eye movements in various contexts (listed in Henderson 

et al., 2021).

A recent study evaluating the meaning map approach and comparing them to a wider range of 

saliency  models  highlights  some  limitations  of  the  method  (Pedziwiatr  et  al.,  2021a;  see 

Henderson et  al.,  2021  and Pedziwiatr  et  al.,  2021b for  ongoing debate). First,  the  findings 

demonstrate  that  meaning  maps  are  outperformed  in  predicting  fixations  by  DeepGaze  II 

(Kümmerer et al., 2016, 2017), a saliency model based on a deep neural network, that indexes 

high-level  features  rather  than meaning.  Second,  it  was found that  meaning maps  in  their  

original  form do not  ascribe more meaning to scene regions occupied by  objects  that  are 

semantically  inconsistent  with  the  global  scene  context  compared  to  consistent  objects 

presented in the same region and matched in terms of low-level features. Together, the results 

of this study led to the conclusion that there is so far no evidence that meaning maps measure 

semantic information per se (for further discussion see Pedziwiatr et al., 2021b). Rather, they 
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might index visual features that can be correlated with semantics. In this respect, the original  

form of meaning maps are similar to modern saliency models.

As detailed above, the original meaning maps ignore the global context of the scene – they are 

created from ratings of isolated, ‘context-free’ image patches. To resolve this issue, Peacock et 

al.  (2019) recently proposed contextualized meaning maps to allow meaningfulness ratings to 

capture  global  scene  context  effects,  such  as  object-scene  inconsistencies.  Contextualized 

meaning maps differ from the original meaning maps in one important detail:  during rating, 

each patch is presented alongside the full scene from which it  originated. Therefore, raters 

have access  to the global  scene context  when assessing the meaningfulness  of  the patch. 

Given the critical importance of context in scene semantics  (Biederman et al., 1982; Võ et al., 

2019), contextualized meaning maps might be better suited to quantify semantic information 

within  visual  scenes.  Surprisingly,  Peacock et  al.  (2019) found that  contextualized meaning 

maps predicted gaze density in a free-viewing task equally well as context-free meaning maps 

(and  both  predicted  gaze  density  better  than  the  GBVS  saliency  model).  They  suggested, 

however,  that  dissociations  in  prediction  performance  between  context-free  and 

contextualized  meaning  maps  might  only  occur  for  scenes  containing  object-scene 

inconsistencies. 

In the current study, we therefore assessed the extent to which contextualized meaning maps 

are sensitive to semantic object-scene inconsistencies. Specifically, if inconsistent objects are 

more meaningful (Henderson, 2011; Henderson et al., 1999; Loftus & Mackworth, 1978; Peacock 

et  al.,  2019),  then  contextualized  meaning  maps  should  assign  higher  meaning  to  regions 

occupied by them, and this  should predict  increased fixations on these objects  (relative to 

consistent  objects).  Using  exactly  the  same  procedure  and  instructions  as  Peacock  and 

colleagues  (2019), we created contextualized meaning maps for two types of indoor scenes, 

which were identical except for one object  (Öhlschläger & Võ, 2017).  This object was either 

semantically consistent with the context, such as a hair brush on a bathroom sink, or the object 

was replaced with an inconsistent object, such as a shoe on the sink. We conducted a detailed 

analysis of these maps across scene types, and compared them to fixation patterns of human 

observers. 
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To anticipate our findings, we demonstrate that contextualized meaning maps are not able to 

predict the gaze changes elicited by the manipulation of semantic object-context consistency.  

Moreover, our first experiment provided initial evidence that contextualized meaning maps 

might attribute less meaning to scene regions that contain inconsistent compared to consistent 

objects. Given this surprising result, in a second experiment, we asked a large number of raters  

to provide meaningfulness ratings for a carefully controlled set of image patches. The results of 

this second experiment replicated the surprising result from the first experiment, showing that 

semantically inconsistent objects are judged as slightly less meaningful than consistent objects.  

Overall,  these  results  call  for  the  assumptions  of  the  meaning  map  approach  to  be 

reconsidered.

Methods and Results

Experiment 1

The main goal of Experiment 1 was to assess the extent to which contextualized meaning maps 

and human fixations are sensitive to local  changes in semantic  information within  a scene, 

resulting from the presence of objects that are semantically consistent vs. inconsistent with the 

overall  scene-context.  This experiment compares contextualized meaning maps to the data 

collected in (Pedziwiatr et al., 2021a); therefore, more methodological details on the stimuli and 

eye movement data can be found in that report.

Stimuli

The stimulus set consisted of  photographs of  36 indoor scenes,  taken from the SCEGRAM 

dataset (Öhlschläger & Võ, 2017). Each scene was photographed in two conditions: Consistent 

and Inconsistent,  resulting in  two images per  scene (72 images  in  total).  Images from the 

Consistent condition contained only objects that are typical for a given scene context. In the 

Inconsistent condition, one of these objects was replaced with an object unusual in the context 

provided by the whole scene, thus introducing a semantic inconsistency. For example, in one of 

the scenes, a hair brush on a bathroom sink (Consistent condition) was replaced with a flip-flop 

(Inconsistent condition) – see Fig. 1A. The SCEGRAM dataset is constructed in such a way that, 

across  scenes,  consistent  and  inconsistent  objects  are  matched  for  low-level  properties 

(Öhlschläger & Võ, 2017). In each scene, consistent and inconsistent objects occupy the same 
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image locations, and the superposition of the bounding boxes of both conditions constituted 

what we call a Critical Region. These Critical Regions are important for the data analyses we 

report  further  below  because  they  contain  the  only  image  regions  that  differ  between 

conditions. 

Eye-movement data

For all 72 images, we collected eye-tracking data from a group of 20 observers. Each observer 

free-viewed the full set of images displayed in a random order while their eyes were tracked 

with an EyeLink 1000+ eye-tracker. The images had a width of 688 pixels and a height of 524,  

corresponding to, respectively, 19.7 and 15 degrees of a visual angle. Each image was presented 

for  7  seconds,  which  is  similar  to  the  presentation  duration  of  8  s  used  in  the  original  

contextualized meaning maps study (Peacock et al., 2019). 

To  analyze the eye-movement data,  fixation locations were extracted from raw eye-tracker 

recordings  using  a  standard EyeLink  algorithm.  The discrete  fixations  on  each  image were 

transformed  into  continuous  distributions  by  means  of  Gaussian  smoothing  (filter  cut-off 

frequency:  -6  dB;  implemented  in  Matlab  –  see  Kümmerer  et  al.,  2020)  followed  by  a 

normalization to the [0-1] range.

Creating contextualized meaning maps – overview

The procedure of creating contextualized meaning maps is identical to that used to generate 

the original meaning maps except that raters see the entire original image alongside the patch  

that they are asked to rate. We closely followed the procedure described in detail in previous 

publications (Henderson & Hayes, 2017, 2018; Peacock et al., 2019; Pedziwiatr et al., 2021). In 

summary, a pre-defined grid is used to segment the image into circular, partially overlapping 

patches (Fig. 1B). Next, in a crowd-sourced online experiment, each patch is presented next to 

the image from which it was derived, and human raters are asked to rate the meaningfulness  

of the patch. Presenting the full image next to the patch ensures that the rater has access to 

the scene context when providing their responses (Fig. 1A; see this figure for details of the  

rating procedure itself). Each individual patch is rated by three individuals. In our study, we 

used  the  same  instructions  for  raters  as  the  original  contextualized  meaning  maps  study 

(retrieved  from https://osf.io/654uh).  Specifically,  human  raters  were  asked  to  rate  how 
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‘meaningful’ a patch is on a six-point Likert scale given how “informative or recognizable” they 

find it (see caption for panel A on Fig. 1 for details). To provide raters with anchoring points for 

their ratings, they viewed examples of patches during the instructions that should be rated as 

low or high (again, the same as in the study by Peacock et al., 2019). After data collection, the 

ratings from individual patches are combined into a smooth distribution over the image by 

means of averaging and interpolation. For each image, these three steps are conducted twice: 

once for bigger ‘coarse’ patches and once for smaller ‘fine’ patches. The maps resulting from 

coarse and fine patches are averaged. Finally,  the regions of the average map close to the 

edges of the image are down-weighted (Fig. 1C). This manipulation accounts for the center-bias 

of human eye-movements, i.e., the tendency to look more at the central region of an image 

(Tatler, 2007).

Fig.  1.  Generating contextualized meaning maps.  A) Sample stimuli  from the patch-rating task 

used for creating contextualized meaning maps. The patch, which raters were asked to rate for its 

meaningfulness, was always presented next to the image from which it originated to provide the  

relevant context. A green circle on the context image indicated the location of the patch.  Both 

panels show the same scene, photographed in the Consistent (left part of the panel) and in the  

Inconsistent  (right  part)  condition.  The images on both panels  differ  only with respect to the 
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object shown in the patch. The hair brush on the left part is a semantically consistent object for a 

bathroom scene, the shoe on the right part is semantically inconsistent. In the task, raters were  

asked  to  assess  the  meaningfulness  of  the  patches  based  on  their  informativeness  and 

recognizability by means of selecting a value on a six-point rating scale. B) Grid used to segment 

images into coarse patches. Grey rectangle represents image area. C)  Center bias model used in 

contextualized meaning  maps.  To  account  for  the  human  tendency  to  allocate  fixations 

predominantly to central image-regions (a so-called  center bias), contextualized meaning maps 

assign  different  weights  to  different  pixels  of  the  maps  depending  on their  location.  This  re-

weighting is done by computing a pixel-wise product between the maps and a model of  center 

bias  shown on this  panel,  in  which brighter  pixels  indicate higher  pixel-weights.  See  Creating 

contextualized meaning maps – modeling center-bias section for details. 

Creating contextualized meaning maps – parameter value selection

When creating contextualized meaning maps for our stimuli, the aim was to match as closely as 

possible  the  procedure  used  in  the  original  study  by  Peacock  and  colleagues  (2019).  Our 

images, however, differed in size from the stimuli used in that study and were viewed from a  

different  distance  during  the  eye-movement  data  collection.  In  order  to  account  for  these 

differences, we matched the two studies with respect to the size of coarse and fine patches in 

degrees of visual angle (deg), and with respect to patch density of coarse and fine patches 

expressed in the number of patches per square degree of  visual  angle (p/deg 2).  Under the 

constraint that the  centers of each two adjacent patches have to be equidistant horizontally 

and vertically, these four values fully specify the grids necessary for creating contextualized 

meaning maps. In terms of absolute values, matching the two studies with respect to these 

parameters was perfect for patch diameter and resulted in 5.26 deg (coarse patches) and 2.26 

deg (fine patches), which corresponded to 187 pixels and 79 pixels, respectively (205 and 87 

pixels  in  the  original  study).  The  patch  densities  closest  to  the  original  we  could  possibly 

achieve were 0.56 p/deg2 and 0.21 p/deg2 (compared to 0.57 p/deg2 and 0.2 p/deg2 in the original 

study). Given the size of our stimuli, these values correspond to 63 coarse and 165 fine patches  

per image. The resulting grid for creating coarse patches if shown on Fig. 1B.

Creating contextualized meaning maps – data collection
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The procedure described in the previous sections resulted in a total of 16 416 patches (4 536 

coarse and 11 880 fine patches). As described in more detail above and in the caption for Fig. 1, 

each patch was rated for its meaningfulness by three human raters on a six-point Likert scale. 

Patches were divided into 54 sets of 304 patches each, and each set was assigned to three  

different raters (see details below).

Recall that each scene was photographed in a Consistent and an Inconsistent version, differing 

only with respect to the identity of a single object. If the raters were to view the same scene in 

both versions, there would be a high chance that they might guess the main focus of the study 

and, in turn, adjust their rating strategy (by, for example, conditioning all rating values on the 

presence – or absence – of the semantic inconsistency in the context image). To ensure that 

meaning maps in scene pairs were independent, we assigned patches to sets in such a way that  

each  rater  never  saw  the  same  scene  in  both  the  Consistent  and Inconsistent  conditions. 

Specifically, we divided all the patches into two subsets. The first contained half of the patches 

from the Consistent condition and half from the Inconsistent, with the patches in both these 

halves  derived  from  different  scenes.  The  other  subset  contained  the  remaining  patches.  

Patches in each set presented for rating were always drawn only from one of these subsets. 

Within  each  subset,  patches  were  allocated  to  the  Consistent  and  Inconsistent  condition 

randomly.  Because  of  this  division,  raters  were  never  exposed to  the  same  scene  in  both 

conditions  but  each  rater  was  still  exposed  to  scenes  with  and  without  semantic 

inconsistencies.  

Each set was rated by three unique raters, and 162 raters were recruited in total. The order of 

patch presentation was randomized for each rater separately. Data collection was conducted 

online. The raters were recruited using the crowdsourcing platform Prolific (www.prolific.co) 

and the patch-rating task was implemented as a Qualtrics survey (Qualtrics, Provo, UT). All our 

raters had to meet the following eligibility criteria: they had to be of U.S. nationality (as in the 

original contextualized meaning maps study), they had to have submitted at least 100 tasks to 

Prolific before, had to have an approval rate of 95% or more, and had to use a laptop or a 

personal computer to complete the task. They were financially reimbursed for their time and 

were allowed to participate in our study only once. Median completion time was 17.08 minutes 

(interquartile range: 9.19).
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Creating contextualized meaning maps – modeling center-bias

Recall that the final step of creating contextualized meaning maps involves reweighting the 

map with a model of center bias. Such models have the form of smooths distributions over the 

image, with higher values closer to the image  center (Clarke & Tatler, 2014). When creating 

contextualized meaning maps, we followed the original authors and relied on a model provided 

with the saliency model GBVS  (Harel et al.,  2007; to be precise, we used the inverse of the 

center-bias model included in the invCenterBias.mat file; inversion was achieved by subtracting 

all values from one). This model is shown on Fig. 1C, its effects are illustrated on Fig. 2D and E. 

Creating contextualized meaning maps – histogram matching

For  each  image,  we  matched  the  histogram  of  its  contextualized  meaning  map  to  the 

histogram of the distribution obtained by smoothing human fixations registered on this image. 

This was done using the imhistmatch Matlab function. Histogram matching – also used in the 

original  meaning  maps  studies  –  ensures  that  values  from  both  distributions  are  directly 

comparable because they have been aligned to the same scale (see Fig. 2B, C, D). Similarly, as in 

the original study by Peacock et al.  (2019), this operation was conducted after including the 

center-bias model in the maps.

Fig. 2 Gaze data and outcomes of selected steps of creating a contextualized meaning map for an 

example scene. A) Singles scene from the Consistent condition of our study, with fixations marked 

with red dots. B) Smoothed fixations from panel A). The histogram of this distribution served as a  

reference  to  which  the  histogram  of  the  contextualized  meaning  map  was  matched.  This  
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procedure ensures the comparability of values from both distributions by aligning these values to 

the same scale. C) ‘Raw’ contextualized meaning map for the scene from panel A). Since this map 

has not been subjects to histogram matching, color values are not comparable to values on the  

remaining panels.  D) The map from panel  C),  after histogram matching but  without including 

center bias. Interestingly, contextualized meaning maps were better predictors of fixations when 

they  did  not  include the  center bias  (see  Soundness  check  1:  general  predictive  power  of 

contextualized meaning maps section). E) The map from panel C), after application of the center-

bias model and  subsequent subjection to histogram matching.  Such maps were used in all  our 

analyses (unless otherwise stated) because we aimed to follow the original procedure.

Data analysis software

Data from this study was handled using Matlab R2020a (Mathworks Inc., Natick, MA) and R (R 

Core  Team,  2020).  In  particular,  we  relied  on  the  R  packages  belonging  to  the  tidyverse 

collection  (Wickham et al.,  2019), as well as on packages jmv  (The jamovi project, 2020; for 

running ANOVAs) and ggExtra (Attali & Baker, 2019; for generating density plots presented on 

Figures 5 and 6). Other R packages we used are cited in the relevant places in the text. 

Data and code availability

The  eye  movement  data  used  in  this  study  are  openly  accessible  via  the  following  link: 

https://zenodo.org/record/3490434). SCEGRAM stimuli are available under the following link: 

https://www.scenegrammarlab.com/research/scegram-database. We also share all patch-rating 

data  and scripts  for  reproducing  the  results  reported in  this  paper,  as  well  as  scripts  and  

instructions for creating contextualized meaning maps (links to be provided upon publication).

 Experiment 1 – Results

Soundness check 1: general predictive power of contextualized meaning maps

As a soundness check,  we tested how well contextualized meaning maps predicted human 

fixations for our stimuli: we expected them to perform at least as well as in the original study 

(Peacock et al.,  2019).  To quantify their  predictive power,  we applied a standard technique 

(Bylinskii  et al.,  2019), used also by Peacock and colleagues  (Peacock et al.,  2019): for each 

image, we calculated the correlation between its contextualized meaning map and smoothed 
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fixations registered on this image. For images from the Consistent condition, the average per-

image correlation was 0.60 (SD = 0.17). The average percent of the explained variance in the 

eye-movement data amounted to 39%. In the Inconsistent condition, contextualized meaning 

maps  performed  slightly  worse  (M  =  0.57,  SD  =  0.20,  37%  of  the  variance  explained). 

Additionally, we investigated the effects of removing center bias from contextualized meaning 

maps and, interestingly, found that they performed better without it (Consistent: M = 0.71, SD = 

0.13,  52%  of  the variance explained;  Inconsistent:  M = 0.66,  SD = 0.17,  47% of  the variance 

explained).

Overall, these results are similar to what is reported in the original study (Peacock et al., 2019), 

where the maps explained 40% of the variance in human data when center bias was included. 

This  finding thus provides an important soundness check for  our study.  A lower quality  of 

predictions in our study than in the original contextualized meaning maps study (Peacock et al., 

2019) could have indicated that either the procedure of creating contextualized meaning maps 

is sensitive to aspects of the design which were different between our study and the original  

study (such as absolute image size),  or  that  there were some technical  problems with our 

implementation. 

Soundness check 2: comparing contextualized meaning maps to context-free meaning maps

In our previous study  (Pedziwiatr et al., 2021a), we generated original, context-free meaning 

maps (Henderson & Hayes, 2017) for the scenes use in the Consistent condition in the current 

study. As a second soundness check, we compared these original maps to the contextualized 

meaning maps (note that this  comparison was  conducted on the  maps without the center 

bias).  The average per-scene correlation between the two types of maps for the Consistent 

condition was M = 0.76 (SD = 0.12). Regarding the ability to predict gaze patterns, the average 

correlation with smoothed human-fixations was slightly higher for the context-free maps (M = 

0.74, SD = 0.14 vs. M = 0.71, SD = 0.13; mean difference M = 0.03, SD = 0.01). The study that  

introduced contextualized meaning maps (Peacock et al., 2019) also found that contextualized 

and context-free meaning maps performed similarly  in  predicting fixations.  Replicating this 

finding provides another soundness check for our study.
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Note that  the exact  parameter  values determining the grids  used to  segment  images into 

patches differed slightly between the two types of meaning maps from our two studies. The 

reason for this difference is that the reports introducing the original (Henderson & Hayes, 2017) 

and contextualized  (Peacock et al.,  2019) meaning maps – on which we based our previous 

(Pedziwiatr et al., 2021a) and present studies, respectively – differ with respect to the reported 

sizes of images viewed by observers in the eye-tracking experiments (33 × 25 vs. 26.5 × 20 

degrees of visual angle), yet use identical numbers of coarse and fine patches per image. 

Sensitivity of contextualized meaning maps and eye movements to semantic manipulations

In our first main analysis, we compared contextualized meaning maps and smoothed human-

fixations with respect to their  sensitivity to semantic manipulations.  We focused on Critical 

Regions  –  image  regions  which,  depending  on  the  condition,  contained  a  semantically 

consistent or  inconsistent objects  (see  Stimuli section for  details).  For  each scene,  we first 

performed histogram matching (see previous section) and then calculated the mass of each 

distribution (contextualized meaning maps and smoothed fixations) falling within the Critical 

Region and divided that value by the Region’s area for normalization. These values were then 

analyzed using a mixed 2×2 ANOVA with the condition (Consistent vs. Inconsistent) as a within-

subjects  factor  and  the  distribution  source  (contextualized  meaning  maps  vs.  smoothed 

fixations) as a between-subjects factor (see Fig. 3). Please note that here a ‘subject’ indicates a 

single scene. Such an approach is typical for studies comparing fixation-prediction methods and 

is grounded in the observation that different observers agree to a large extent in their selection 

of fixation targets in images (Kümmerer et al., 2015; Wilming et al., 2011).

This  analysis  revealed that both the distribution sources and conditions differed from each 

other statistically (distribution source:  F(1, 70) = 23.05, p < 0.001, ω2 = 0.22; condition: F(1, 70) = 

5.34, p = 0.024, ω2 = 0.003). Importantly,  however, these main effects were qualified by an 

interaction  (F(1,  70)  =  23.83,  p  <  0.001,  ω2 =  0.02).  For  post-hoc  tests,  we  relied  on  non-

parametric  paired  Wilcoxon  tests  (as  it  is  robust  to  the  violations  of  the  assumptions  of 

parametric tests we observed in the data), Bonferroni-corrected for two comparisons. These 

tests  showed  that  human  eye-movements  were  sensitive  to  the  change  in  semantic 

relationship  between  object  and  scene,  as  indicated  by  the  fact  that  more  mass  of  the 

smoothed-fixations  distribution  fell  within  the  Critical  regions in  the Inconsistent  condition 
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compared to the Consistent condition (Inconsistent - Consistent: M = 0.09, SD = 0.12, p < 0.001).  

The  same  comparison,  however,  did  not  yield  statistically  significant  differences  for  the 

contextualized  meaning  maps  (M  =  -0.03,  SD  =  0.10,  p  =  0.064). The  hypothesis  that 

semantically-inconsistent regions carry more meaning was thus not supported by our data. 

Indeed, the mean rating difference, though not significant due to the correction, was in the 

opposite direction (consistent with the subsequent analyses and results we report below). 

Fig. 3 Comparison of eye-movement data and contextualized meaning maps. In each condition and 

for each scene, we calculated the amount of distribution-mass falling within the Critical Region 

(the region, in which the manipulated objects were located) divided by the Region’s area. This  

calculation was performed separately for smoothed fixations and contextualized meaning maps. 

Comparing these values between conditions revealed that observers tend to fixate the Critical  

Regions  more  when  they  contained  semantic  inconsistencies  (Inconsistent  condition),  as 

compared to the situation when they did not (Consistent  condition; left  plot).  Contextualized 
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meaning maps (right plot, labeled cMMs) did not show this effect, as they did not attribute more 

meaning to semantic inconsistencies. In fact, they attributed numerically less meaning on average 

but  this  effect was not significant in  a statistical  sense (but  see Experiment 2).  Each  gray line 

indicates a single scene, black oblique lines connect the means, black vertical lines  indicate  95% 

confidence  intervals. p-values  shown  on  the  plot  were  obtained  using paired  Wilcoxon  tests, 

Bonferroni corrected for two comparisons.

Further  analyses  yielded  unexpected  findings.  Recall  that  creating  contextualized  meaning 

maps involved averaging the maps derived from coarse and fine patches. We repeated our  

mixed ANOVA analysis separately for each of these maps. In both cases, the pattern of results 

was similar to that reported in the previous section (fine maps: distribution source: F(1, 70) =  

32.64, p < 0.001, ω2 = 0.26, condition: F(1, 70) = 0.08, p = 0.777,  interaction: F(1, 70) = 31.56, p < 

0.001,  ω2 =  0.04;  coarse  maps:  distribution  source:  F(1,  70)  =  41.85,  p  <  0.001,  ω 2 =  0.30; 

condition: F(1, 70) = 3.71, p = 0.058; interaction: F(1, 70) = 5.87, p = 0.018, ω2 = 0.01). In the post-

hoc tests,  we did not find a difference between conditions for coarse maps (Inconsistent -  

Consistent: M = -0.01, SD = 0.23, p = 0.625 uncorrected). Importantly, however, we obtained an 

unexpected  outcome  in  the  post-hoc  tests  for  the  fine  maps:  these  maps  attributed  less 

meaning  to  Critical  Regions  in  the  Inconsistent  condition  than  the  Consistent  condition 

(Inconsistent - Consistent: M = -0.08, SD = 0.15, p < 0.001). Therefore, the numerical (but not  

statistically significant) pattern observed at the level of full maps was most likely driven by the 

fine maps component.

Note  that  these  results  were  obtained  using  our  custom-written,  openly  available 

implementation of meaning maps (see  Data and code availability section). To ensure that the 

patterns  we  report  above  are  not  contingent  on  the  specifics  of  our  implementation,  we 

generated contextualized meaning maps using the code shared by the authors of the original 

meaning  maps  and  repeated  our  analyses  with  these  maps.  This  code  is  available  here: 

https://osf.io/654uh  (build_meaning_map function,  version  uploaded  to  the  repository  on 

2020/01/18). The results showed a similar pattern: both the contextualized meaning maps and 

their fine/coarse components attributed less meaning to the inconsistent objects (mean of the 

differences for full maps: M = -0.10, SD = 0.40; coarse maps: M = -0.07, SD = 0.56; fine maps: M = 

-0.14, SD = 0.46;  note that these values are not comparable to values reported in previous  

16

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.03.442533doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442533
http://creativecommons.org/licenses/by/4.0/


analyses because here we used raw values from the  build_meaning_map function). None of 

these comparisons were statistically significant (full maps: p = 0.304; coarse maps: p = 0.959; 

fine maps: p = 0.082), but for the fine maps this was because of Bonferroni correction for two 

comparisons  we  applied  (to  remain  consistent  with  the  previous  analyses).  Together,  this 

analysis demonstrates that for both implementations, contextualized meaning maps do not 

assign more meaning to semantically-inconsistent than consistent objects.

To summarize, human eye movements changed in response to local alterations in semantic 

information:  inconsistent  objects  attracted  more  fixations  than  consistent  ones,  and  were 

fixated earlier. Contextualized meaning maps and their coarse component did not show this 

dependence on semantic information. Finally, fine maps ascribed less meaning to scene regions 

when they contained inconsistent objects,  which contradicts  predictions from the meaning 

map approach.

Sensitivity of patch ratings to semantic manipulations

Transforming patch ratings into contextualized meaning maps  involves a number  of  steps, 

including  non-linear  transformations.  These  steps  could  potentially  mask  real,  or  introduce 

spurious between-condition differences, and for this reason, we conducted two analyses on 

the raw rating data. In the first analysis, we selected all patches that had an overlap of at least  

one  pixel  with  the  Critical  Regions,  and  discarded  the  remaining  patches.  The  ratings  for 

patches from each condition were averaged for  each scene, separately for coarse and fine 

patches.  Averaging allowed us to account  for  between-scene differences in  the number  of 

patches overlapping with Critical Regions and guaranteed that the data from each scene had 

an  equal  contribution  to  the  subsequent  analyses.  A  comparison  of  these  average  ratings 

between conditions provided no evidence to suggest that between-condition differences were 

present  in  the  raw  data  but  were  masked  in  the  processes  of  assembling  contextualized 

meaning maps (see Table 1 rows 1 and 4).

Because the above analysis included patches with at least one pixel overlap with the bounding 

boxes of objects, many of these patches showed only small parts of the manipulated objects, 

or  none  at  all.  We  therefore  repeated  this  analysis  with  more  stringent  criteria  for  patch 

inclusion. In order for a given patch to be included in this second analysis, the percentage of its 
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area overlapping with a Critical Region (dubbed Overlap Size henceforth) had to be above a 

certain threshold (see Table 1). For patches of each size, we tested two threshold values. These 

values were selected as 34th and 67th percentiles of all above-zero Overlap Size values. For the 

first threshold, these values corresponded to 7% or more pixels of a patch overlapping with a  

Critical  Region  for  the  coarse  patches,  and 18%  for  the  fine  patches.  Similarly,  the  second 

threshold corresponded to 21% and 56% or more overlapping pixels for coarse and fine patches, 

respectively.  The motivation for using percentiles to determine the thresholds was to make 

sure  that  the  consecutive  analyses  differ  from  each  other  by  approximately  the  same 

percentage of retained patches: while in the first analysis we included 100% of patches which 

had  above-zero  Overlap  Percentage,  the  thresholds  resulted  in  including  66%  (for  34th 

percentile)  and  33%  (for  67th percentile)  of  them.  For  each  threshold  and  each  scene,  we 

averaged ratings of  the retained patches,  separately  for  each combination of  experimental 

condition and patch size, and compared these per-scene values between conditions (see Table 

1 for full results). Only one of the resulting tests reached statistical significance: for the most  

conservative  threshold (i.e.,  with highest  Overlap Size),  fine patches from the Inconsistent 

condition were rated as  less meaningful than their equivalents from the Consistent one. The 

magnitude of this difference was small: it amounted to 0.28 points on a scale from 1 to 6. The 

remaining five comparisons exhibited the same directionality.

Table 1:  Comparison of patch ratings between conditions – statistical results

Patch 

size

Percent of patches 

having above-zero 

Overlap Percentage 

included

Number of 

included 

scenes1

Mean difference in ratings 

(Inconsistent – Consistent) 

with 95% confidence 

intervals

Paired t-test results2

Coarse

100% 36 -0.04 [-0.18; 0.09] t(35) = -0.63, p = 0.530

66% 35 -0.07 [-0.25; 0.11] t(34) = -0.78, p = 0.440

33% 27 -0.06 [-0.36; 0.25] t(26) = -0.38, p = 0.705

Fine

100% 36 -0.02 [-0.13; 0.10] t(35) = -0.33, p = 0.747

66% 36 -0.05 [-0.21; 0.11] t(35) = -0.63, p = 0.533

33% 30 -0.28 [-0.54; -0.01] t(29) = -2.13, p = 0.042
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1 Because some scenes had small Critical Regions, for more conservative thresholds none of the 

patches derived from them had an Overlap Percentage high enough to be included in the 

analysis.
2 We did not apply any correction for multiple comparisons here.

Secondary analysis: prioritization of semantically inconsistent objects for fixation 

As a secondary point of interest,  we examined the temporal evolution of the influences of  

semantic  inconsistencies  on  eye-movements.  Other  studies  on  the  role  of  object-scene 

consistency  in  eye  movement  control  yielded  conflicting  findings  regarding  whether 

inconsistent objects are fixated earlier or not (see Wu et al., 2014 for summary). In order to help 

clarifying this  issue,  we compared, across experimental  conditions,  the number of  fixations 

required before the first fixations landed within the Critical Regions. On average, observers 

took 5.03 fixations (SD = 4.7) to look at the inconsistent objects for the first time, and 5.97 (SD 

=  5.55)  for  consistent  (data  pooled  over  scenes  and  observers).  A  paired  Wilcoxon  test 

indicated  that  this  difference  was  statistically  significant  (p  <  0.001).  The  finding  that  the 

inconsistent  objects  are  not  fixated  immediately  after  image  onset  but  still  earlier  than 

consistent replicates the results of a recent study by Coco, Nuthmann and Dimigen  (2020). 

These  authors  supplemented  gaze  recordings  with  electroencephalography  (EEG)  and 

concluded that object semantics can be at least partially accessed via peripheral vision. 

Summary of Experiment 1

In our first experiment, we evaluated the extent to which contextualized meaning maps and 

human eye-movements are sensitive to manipulations of the semantic relationship between 

objects and scenes. Consistent with past literature, human observers looked more at objects 

that  are  semantically  inconsistent  with  the scene context  compared to consistent  objects. 

Contrary  to  predictions  of  the  meaning  map  approach,  however,  our  results  provided  no 

evidence  that  contextualized  meaning  maps  assign  more  meaning  to  inconsistent  than 

consistent objects. This insensitivity to manipulations of semantic object-scene relationships 

was already present at the level of the raw rating data, indicating it is not an artifact of the map 

generation procedure. 

19

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.03.442533doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442533
http://creativecommons.org/licenses/by/4.0/


When  we  analyzed  only  the  contextualized  meaning  maps  resulting  from  ratings  on  fine 

patches,  the  maps  assigned  less  ‘meaning’  to  the  Critical  Region  for  inconsistent  than 

consistent objects; a similar effect was observed in the raw patch data. If robust, this result  

would contrast with the explanation of the semantic inconsistency effect on eye movements 

proposed by the meaning map approach. Given that the evidence from our first experiment 

was based on a post-hoc subset analysis, we conducted a second experiment. 

We considered two hypotheses for why we found statistically lower meaningfulness ratings for 

inconsistent regions in only a subset of fine patches. Firstly, it could simply be a false positive. 

Secondly, there might be a general but subtle tendency to rate semantic inconsistencies as less 

meaningful, but the subtlety of this effect might have meant that it could not be detected in 

ratings of coarse patches because of their low number (there were approximately 2.5 times 

more fine as coarse patches). The goal of Experiment 2 was to adjudicate between these two 

hypotheses. We created a single, well-controlled set of coarse patches derived from scenes 

with  consistent  and  inconsistent  objects,  and  collected  ratings  from  a  substantially  larger 

sample  of  raters.  If  the reason we were unable to uncover  the tendency to rate  semantic 

inconsistencies as less meaningful in the coarse patches was due to the low number of ratings  

for these patches in Experiment 1, increasing the number of ratings in Experiment 2 should 

allow us to find this effect even in coarse patches.

Experiment 2

Stimuli and design

In this experiment, we used the same 72 photographs (of 36 scenes) as in Experiment 1. For 

each scene, we manually selected two coarse patches that fully contained the consistent and 

inconsistent  objects  (see  Fig.  4).  The  locations  of  these  patches  were  the  same  in  both 

conditions but their content changed. These patches were dubbed Con and Incon. Con-patches 

were derived from scenes in the Consistent condition, Incon in the Inconsistent condition. We 

were primarily interested in the ratings associated with these two types of patches. 

To mimic the variety of patches in the rating task used for creating contextualized meaning 

maps and ensure that raters could use all values from the meaningfulness scale, we used the  

ratings from Experiment 1 to select six additional patches from each scene (see Fig. 4): two 
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patches, which on average received the lowest meaningfulness ratings (dubbed L), one which 

received  the  highest  (dubbed  H),  and  three  patches  for  which  the  ratings  were  midway 

between these extremes (dubbed M). This selection was carried out as follows. For each scene, 

we considered all the coarse patches that had no overlap with the Critical Region. For each 

location  occupied  by  these  patches,  we  averaged  ratings  across  the  Consistent  and 

Inconsistent  conditions.  We  sorted  the  patches  according  to  these  average  ratings  in  an 

increasing order and selected two from the bottom (L), one from the top (H), and the three 

closest to the median (M). Therefore, we selected eight patches for each scene in total: six 

patches which were identical between conditions with respect to content (L, M, and H), and 

two patches which differed (Con and Incon). Since we expected Con- and Incon-patches to be 

rated as highly meaningful because they contain objects, we included only one H-patch but two 

L-patches in order to encourage raters to use the different scale levels with approximately  

equal frequency. 

For stimulus presentation, each L-, M-, and H-patch was paired with the full images from both  

conditions. In contrast, Con- and Incon-patches were paired only with either the consistent or 

the inconsistent scenes,  respectively.  This resulted in a set of  504 patch-contexts pairs  (36 

scenes × 2 conditions × 6 L/M/H-patches + 36 Con-patches + 36 Incon-patches). We split this set  

into  two  equally  large  subsets,  each  containing  half  of  the  patch-context  pairs  from  one 

condition and half from the other in order to avoid the situation that raters would be exposed 

to the same scene in both conditions. Each rater would see one of the two subsets, and thus 

provide ratings for 252 patches.
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Fig. 4. Stimulus generation for Experiment 2. A, B) In the second experiment, we tested whether  

patches depicting semantically inconsistent objects tend to be rated as less meaningful than their 

counterparts depicting consistent objects. For each scene, we selected two patches containing the  

consistent (Con) or the inconsistent  (Incon) object.  To mimic the context of  the task used to 

generate contextualized meaning maps, we additionally included six patches that did not differ  

between photographs with consistent and inconsistent objects. These patches were chosen based 

on ratings they received in Experiment 1: on average, they had been rated as either low in meaning 

(labeled L on the figure, two patches), high (H, one patch) or midway between these extremes (M, 

three patches).  Some of the patches that were selected were close to image edges and were 

therefore clipped. Similar to Experiment 1, each patch was presented next to either a consistent or 

inconsistent context scene (see panel B). 

Sample-size justification

For Experiment 2, we recruited 140 raters. This sample size was largely based on the amount of  

resources we deemed reasonable for running this experiment. We planned to compare ratings 

for Con- and Incon-patches for each rater as a paired comparison (after averaging over patches; 

see below). After excluding 18 raters (see the Rater inclusion criteria and inter-rater agreement 

section), the resulting sample-size of 122 raters allowed detecting effects having the magnitude 

of Cohen’s Dz = 0.33 with 95% power, when using paired, two-tailed t-test and when adopting a 

significance level of 0.05 (as indicated by the G-Power 3.1 software; Erdfelder et al., 2009).

Collecting meaningfulness ratings
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Data collection was conducted identically to Experiment 1. We used the same patch-rating task 

(with the order of stimulus presentation randomized individually for each rater) and the same 

method of recruiting raters (Prolific platform). The task completion times had a median of 16.12  

minutes (interquartile range: 9.6).

Rater inclusion criteria and inter-rater agreement

We assumed that raters who followed the task instructions would agree in their ratings to a  

large degree. For example, we assumed that they would consistently rate M-patches higher 

than L-patches. Following that logic, we excluded raters whose ratings vastly disagreed with 

the  ratings  provided  by  the  majority  of  participants.  We  operationalized  this  idea  by  first 

measuring the agreement of ratings within each possible pair of raters who had viewed the  

same subset of patches using Krippendorff’s α (A. F. Hayes & Krippendorff, 2007; Krippendorff, 

1970).  Values of  α span from negative values to 1,  where 1  indicates perfect  agreement,  0  

indicates  the  degree  of  agreement  achievable  by  chance,  and  negative  values  indicate 

systematic disagreement. We calculated pairwise α for our raters using the function kripp.alpha 

from the R package irr (Gamer et al., 2019), with the option scaleType set to ‘interval’ (setting it 

to ‘ordinal’ did not influence the pattern of  results). Next, for each rater, we averaged the α 

values from all pairs to which this rater belonged. These per-rater average α values (dubbed Rα 

henceforth) indicated the degree to which a given rater agreed with other raters who rated the 

same subset of patches. We visually inspected the histogram of Rα values calculated for all 

raters and decided that in our final sample, we would include only raters having Rα larger than 

0.40. This resulted in excluding 18 raters and retaining 122 (importantly, our main results do not 

depend on this step – see Influence of data exclusions section). The average Rα for the retained 

raters was 0.70 (SD = 0.06). Additionally, we calculated Rα values for the excluded raters only. 

These values indicated the agreement being close to the chance level (mean = -0.06, SD = 0.20) 

which means that these raters were most likely responding at random, rather than using a 

common rating strategy, consistently differentiating them from the majority of our sample.

Experiment 2 – Results

Patches that were manipulated between conditions (Con and Incon)
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The  main  focus  of  Experiment  2  was  to  assess  whether  objects  that  are  semantically 

inconsistent  with  the  scene  context  are  rated  differently  with  respect  to  the  amount  of 

meaning they convey compared to consistent objects. Recall that each rater saw both Con- and 

Incon- patches, but not the same scene in both conditions. We averaged ratings over patches in 

each condition to yield a Con- and Incon-average rating for each rater, then compared them 

with a paired-samples t-test. In line with the preliminary findings of Experiment 1, the results 

demonstrate that semantically inconsistent objects were rated as less meaningful compared to 

consistent objects. The absolute magnitude of this effect was small (mean of the differences: M 

= -0.21, 95% CI [-0.14, -0.28]; median: -0.17) but statistically significant (t(121) = 5.80, p < 0.001).

To assess the contribution of the consistent vs. the inconsistent condition to this effect in a 

subject-by-subject approach, we ordered the raters by the difference between their average 

rating for Con- and Incon-patches. As shown in Fig. 5, this difference seems to be largely due to 

changes  in  ratings  of  inconsistent  patches:  while  there  was  no  clear  subject-by-subject 

difference  in  the ratings  for  Con-patches,  raters  who contributed to the group-level  effect 

showed  decreased  ratings  for  D-Incon  patches.  This  impression  was  corroborated  by  a 

statistical analyses that showed a significant correlation between Con/Incon differences and 

the Incon ratings (r(111) = 0.52, 95% CI [0.37; 0.64], p < 0.001), but no such relationship for Con 

ratings (r(111) = -0.01, 95% CI [-0.19; 0.18], p = 0.928). Note that – for each analysis separately – 

we excluded points which had a Cook’s distance higher than 3 times the mean Cook distance  

for all points. For Con ratings, this exclusion threshold amounted to 0.02 (0.03 for Incon) and 

resulted in 9 exclusions (also 9 for Incon).  We applied these exclusion criteria because the 

initial inspection of the data suggested that, in each case, the effects might be driven by a small 

number  of  points,  which  would  have  a  disproportionately  large  influence  on  regression. 

However, repeating the analyses with all  the data included resulted in the same pattern of 

outcomes (Incon: r(120) = 0.50, 95% CI [0.36; 0.62], p < .001; Con: r(120) = -0.08, 95% CI [-0.25;  

0.10], p = 0.398).

These findings suggest that there is high consistency across raters regarding their evaluation of 

the  meaningfulness  of  objects  that  are  semantically  consistent  with  their  scene  context. 

Ratings for inconsistent objects, in contrast, revealed considerable variability in rater behavior. 

Different individuals tended to rate these objects as either lower, similar, or higher in meaning 
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than the consistent objects. Ultimately, this difference not only offers interesting insights into 

individual differences but also suggests that the group-level effect is mainly driven by changes 

in the ratings of inconsistent objects.

Fig. 5  Meaningfulness ratings obtained for Con- and Incon-patches. For each rater, we averaged 

ratings provided for Con-patches (light-green points) and for Incon-patches (dark-green points).  

Next,  we subtracted the average ratings for Incon-patches from Con-patches and ordered the 

raters according to these difference scores. The ratings for Incon-patches, but not for Con-patches, 

increase  along  this  axis.  Correlation  analyses  conducted  for  both  types  patches  separately 

confirmed  this  impression:  the  relationship  between  Con/Incon  differences  and  ratings  was 

significant for the Incon-patches, but not for Con. Please note that this figure was generated using 

data not containing points identified as outliers based on their Cook’s distance (for details see 

main text).  

Our final analysis focused on individual scenes, rather than individual raters, comparing ratings 

for Con- and Incon-patches derived from the same scenes. For each scene, we conducted a 

separate between-subjects Welsh test comparing ratings received by Con- and Incon- patches,  

similar  to  the  analysis  conducted  for  L/M/H-patches.  Without  correction  for  multiple 
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comparisons, 13 out of 36 of these tests yielded statistically significant results (this number was 

reduced to 3 after applying the correction). Out of these 13 cases, in 12 (33% of all scenes) the 

Incon-patch was rated as less meaningful than the Con-patch. These findings suggest that the 

tendency of Incon-patches to be rated as less meaningful than Con-patches was observable at 

the level of scenes too, which corroborates the finding from the rater-level analysis.

In summary, our main analyses demonstrate two key findings: first, we show that semantically  

inconsistent objects are rated as less meaningful compared to consistent objects. Second, the 

size of this effect shows marked individual differences between raters.

Influence of data exclusions 

Recall that at the initial stage of our analyses we excluded 18 raters (see Rater inclusion criteria 

and inter-rater agreement section). In order to make sure that our conclusions do not critically 

depend on this step, we repeated all the analyses from the previous  section with the data from 

all raters recruited for Experiment 2. This operation did not change the pattern of our results  

(comparison  of  ratings  for  Con-  and  Incon-patches:  t(139)  =  5.99,  p  <  0.001,  mean  of  the  

differences M = -0.20, 95% CI [-0.13; -0.27]; correlation for Con-patches: r(138) = -0.10, 95% CI [-

0.26; 0.07], p = 0.242;  correlation for Incon-patches: r(138) = 0.37, 95% CI [0.21; 0.50], p < 0.001).

Soundness check: patches that were identical between condition (L, M, and H)

As a soundness check, we tested whether L, M, and H-patches were rated as low, medium and 

high in meaning, respectively. We used Page's test, a non-parametric, rank-based statistical test 

assessing  the  ordering  of  values  obtained  in  repeated  measurements  (Page,  1963),  and 

compared the null  hypothesis that there were no differences between ratings for  all  three 

types of patches against the alternative stating that L-patches (mean rating M = 1.36, SD = 

0.28) were rated lower than M-patches (M = 2.44, SD = 0.55) which, in turn, were rated lower 

than H-patches (M = 4.69, SD = 0.65).  We implemented the test with the R package crank 

(Lemon,  2019) and  conducted  it  separately  for  patches  from  the  Consistent  and  the 

Inconsistent conditions. In both cases the results were statistically  significant (and identical 

numerically: L = 1708, p < 0.001) which indicated that the pattern of obtained results matched  

our expectations.
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To evaluate whether the presence of consistent or inconsistent objects in a scene affect the 

ratings for all patches in that scene, we  analyzed whether ratings for L-, M-, and H-patches 

differed between consistent and inconsistent conditions. For each rater, we averaged ratings 

provided for each of these patch types per condition (see Fig. 6), and analyzed the averages 

with a 2×3 repeated-measures ANOVA (with a Greenhouse-Geisser correction) with the two 

within-subjects factors Condition (Consistent and Inconsistent) and Patch-Type (L-, M-, and H-

patches). As expected based on the preceding findings, this analysis also showed that ratings 

differed according to patch type, as indicated by a main effect for this factor (F(1.57, 190.25) = 

2530.65, p < 0.001). The other main effect and the interaction showed no significant differences 

(Condition: F(1, 121) = 0.02, p = 0.883; interaction: F(1.35, 163.16) = 0.77, p = 0.418), showing that 

average ratings for L-, M- and H- patches did not differ depending on whether the full scene  

contained a consistent or inconsistent object.

Fig. 6. Meaningfulness ratings obtained for L-, M-, and H-patches, averaged per rater over scenes 

and segregated by condition. Brighter colors indicate mean ratings from the Consistent condition, 

darker  from  the  Inconsistent.  On  the  right-hand  side,  density  plots  are  shown.  Our  analyses 

revealed a statistically significant main effect of patch type (L, M, and H), but no effect of condition 

or an interaction between condition and patch type.
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In a final analysis of the L-, M-, and H-patches, we  focused on potential differences between 

individual scenes. The previous analyses reported in this section averaged patch ratings per 

rater over scenes. In our final analysis,  we took a different approach and compared ratings 

provided for individual L-, M-, and H-patches across conditions. Individual patches were rated 

by a separate set of raters in the Consistent and Inconsistent conditions (see section  Stimuli 

and design section). We therefore used a between-subjects Welch test to compare the ratings 

for each patch individually across conditions and found statistically significant differences only 

for 2 patches (out of 216), derived from 2 different scenes. Therefore, in the vast majority of 

cases, the condition from which the context image was derived did not influence the ratings 

for individual patches. 

Overall,  these  control  analyses  have  two  implications.  First,  they  indicate  that  the  raters  

adopted the expected rating strategy, as suggested by the expected ordering of values for L-,  

M-, and H-patches. Second, exchanging a single object that is semantically consistent with the 

scene for an inconsistent object did not have a general effect on the rating of patches that did 

not contain the manipulated object, neither on average nor on a scene-by-scene level.

Discussion 

Human fixations  are  attracted to objects  that  are  semantically  inconsistent  with the scene 

within which they appear. One possible explanation of these effects is that these objects carry 

increased meaning, which causes people to look at them more.  This hypothesis has gained 

increasing  attention  with  the  development  of  meaning  maps,  a  novel  tool  to  index  the 

distribution of meaning across an image (Henderson & Hayes, 2017, 2018; Peacock et al., 2019). 

In two experiments, we tested if semantically inconsistent objects indeed carry more meaning 

as measured by contextualized meaning maps (Peacock et al., 2019), which have been designed 

to capture such contextual effects. First, we created contextualized meaning maps for images 

of  scenes  containing  objects  that  were  either  semantically  consistent  or  inconsistent,  and 

compared these maps to eye-movement data. While observers looked more at inconsistent 

compared  to  consistent  objects,  contextualized  meaning  maps  did  not  attribute  higher 

amounts of meaning to the former than to the latter. In fact, we found preliminary evidence to 
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suggest that the same scene location might be indexed as less rich in meaning when it contains 

semantic  inconsistency.  In  a  second  experiment,  we  therefore  asked a  substantially  larger 

number of  raters to provide  meaningfulness ratings for  a carefully  controlled set of  image 

patches, including patches that showed semantically consistent or inconsistent objects. The 

results of this second experiment provide evidence suggesting that human observers have a 

tendency to judge objects that are semantically  inconsistent with the scene as slightly  less 

meaningful than their consistent counterparts. 

The  tendency  of  human  observers  to  look  more  at  semantically  inconsistent  objects  is 

considered to be a prototypical example of semantic influences on eye movements. Several 

previous explanations of this effect implicitly or explicitly assume that semantic inconsistency 

increases the amount of (semantic) information, or meaning that is conveyed (Henderson, 2011; 

Henderson  et  al.,  1999;  Loftus  &  Mackworth,  1978).  This  interpretation  has  been  strongly 

expressed within the recently developed meaning map approach  (Henderson & Hayes, 2017, 

2018; Peacock et al., 2019 see also Henderson et al., 2019 for review). In contrast to this notion, 

our direct evaluation of contextualized meaning maps suggests that, while they show a good 

overall ability to predict human gaze patterns, they are unable to predict influences of semantic 

inconsistencies, showing no difference between our Consistent and Inconsistent conditions. 

Therefore, contextualized meaning maps fail to capture at least one context-based semantic 

influence on eye-movement control.

It  is important to highlight the fact that a  conceptualization of meaning in terms of object-

context relationships is by no means exhaustive. Other conceptualizations have been proposed 

(T. R. Hayes & Henderson, 2021; Hwang et al., 2011; Rose & Bex, 2020)  and the idea that there 

might  be  several  subtypes  of  meaning  that  are  important  for  eye  movements  has  been 

suggested by other authors  (Henderson et al., 2018; Henderson & Hayes, 2018). Our findings 

indicate  that  contextualized meaning maps and patch ratings do not  capture  the effect  of 

semantic object-scene relationships on eye movements, but they might measure other types of 

meaning (see also Henderson et al., 2021). The critical question therefore is what type of gaze-

relevant meaning they might measure. 
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Answering this question is impeded by the fact that it is far from clear what raters are doing 

when asked to provide meaningfulness judgments for image patches. In both experiments, we 

used the instructions from the original contextualized meaning maps study by Peacock et. al 

(2019).  These  instructions  define  meaningfulness  in  rather  vague  terms  by  linking  it  to 

informativeness and recognizability. Raters are instructed as follows: “We want you to assess 

how "meaningful" an image is based on how informative or recognizable you think it is”. Our 

study shows that, at the group-level, such instructions lead to lower meaningfulness ratings for  

objects that are semantically inconsistent with the scene context. One possible explanation for 

this result is that raters find it more difficult to recognize inconsistent objects (“What is that on 

the sink there? A shoe?”), and might therefore rate the meaningfulness of the patch lower 

(emphasizing the “recognizable” component of  the definition of meaningfulness used by the 

meaning maps approach).  Also note that  the ambiguity of the instruction may cause higher 

inter-subject variability in the inconsistent condition because raters might be unsure about how 

to interpret the image manipulations in the context of the instructions.

Other instructions would likely lead to qualitatively different findings.  For instance, imagine 

observers were given identical instructions to those used in our study except that they were 

also told that the images in the study show crime scenes. It seems plausible that raters would 

pick out the semantically inconsistent objects as being particularly meaningful in this context 

(emphasizing the “informative” aspect  of  the instruction).  Adjusting task  instructions (and, 

potentially, the parameters of grids used for segmenting scenes into patches) systematically in 

a wide range of cases in order to maximize the predictive power of the resulting maps might be 

an interesting research direction. However, such an approach would entail treating meaning 

maps  not  as  a  tool  to  measure  the  distribution  of  semantic  information  in  scenes,  but  as 

another  method of  predicting  human fixations:  a  crowd-sourced saliency  model.  That  is,  a 

method  which  prioritizes  the  quality  of  predictions  over  both  the  interpretability  of 

mechanisms generating these predictions (i.e. the ability to identify factors determining the 

accuracy of predictions) and the explanatory power (i.e.  the amount of gained insight into 

human oculomotor control). 

Alternatively, the variability in responses in the patch-ratings task in its current form makes this 

task a potentially interesting tool for indexing individual differences (Hedge et al., 2018). While 
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we currently lack clarity regarding the processes underpinning the selection of rating values,  

further research, combining the patch-rating task with other measures, might shed more light 

on this issue, and thereby on individual differences in how the content of natural scenes is 

processed.  This  topic  is  still  understudied  in  the  context  of  eye  movements,  despite  the 

evidence showing that such individual differences exist (De Haas et al., 2019; see also Kröger et 

al., 2020).

Given the limitations of human rating data, current developments in computational approaches 

might provide alternative methods that could contribute to a better understanding of the role 

of high-level factors in eye-movement control, including semantic information and meaning. A 

number of  authors have attempted to develop indices of these high-level  aspects of visual  

input by applying techniques to images that have originally been developed in natural-language 

processing  (T. R. Hayes & Henderson, 2021; Hwang et al., 2011; Lüddecke et al., 2019; Rose &  

Bex, 2020; Treder et al., 2020), in particular in the field of distributional semantics (Harris, 1954). 

While these computational methods come with their own limitations, they have a number of 

advantages over human rating data: they are comparably inexpensive, fast, and easy to use, 

and can comfortably be applied to large image data sets due to their automation. Moreover, 

computational tools have the potential to be less opaque compared to human rating data, and 

might be more amenable to detailed analyses of which aspects of high-level scene content 

contributes to eye-movement control. For instance, the finding that humans look more and 

longer at semantically inconsistent objects might be based purely on a statistical analysis of 

object co-occurrences in visual scenes (see Wang et al., 2010). Not surprisingly, recent analyses 

of  image  datasets  with  more  than  20  000  images  indicate  that  different  scene  categories 

indeed  show  a  highly  consistent  clustering  of  object  types  (Treder  et  al.,  2020),  and  the 

oculomotor system might exploit these regularities for outlier detection. This interpretation of 

the influence of object-scene inconsistencies on eye movements is similar in spirit to earlier 

notions of saliency  (Bruce & Tsotsos, 2009), but transfers this idea from a low-level (feature-

based) to a high-level (object- and scene-based) analysis of the visual input. While – most likely  

–  being  an  important  contributor,  co-occurrence  per  se does  not  necessarily  amount  to  a 

semantic  relationship  between  objects,  or  meaning.  And  some  computational  approaches, 

such as  the one developed by Treder and colleagues  (Treder  et  al.,  2020),  might have the 

potential  to determine whether oculomotor control  relies purely on basic co-occurrence or 
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transforms these raw data further into a type of information that is closer to what we might 

label ‘meaning’.

To  summarize,  introducing  semantic  inconsistencies  to  a  scene  region  by  replacing  a 

semantically consistent object with one that is semantically inconsistent did not increase the 

amount  of  meaning  attributed  to  this  region  by  contextualized  meaning  maps,  despite 

increasing the number of human fixations landing on this region. Therefore, even though the 

maps predicted human fixations well for scenes containing only consistent objects, they are 

not  able  to  account  for  semantic  influences  on  human  gaze-allocation  linked  to  semantic 

object-context inconsistencies. In fact, data from both of our experiments provide evidence 

suggesting that human observers might have the tendency to rate semantically inconsistent 

objects  as  slightly  less  meaningful  than  their  consistent  counterparts.  Our  results  further 

highlight  the need for  improved  conceptualization and methods to  investigate  the  role  of 

semantic information in human oculomotor control.
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