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 5 

Abstract 6 

The aim of this study is to uncover the network dynamics of the human visual cortex by 7 

driving it with a broadband random visual flicker. We here applied a broadband flicker (1–8 

720 Hz) while measuring the MEG and then estimated the temporal response function (TRF) 9 

between the visual input and the MEG response. This TRF revealed an early response in the 10 

40–60 Hz gamma range as well as in the 8–12 Hz alpha band. While the gamma band 11 

response is novel, the latter has been termed the alpha band perceptual echo. The gamma 12 

echo preceded the alpha perceptual echo. The dominant frequency of the gamma echo was 13 

subject-specific thereby reflecting the individual dynamical properties of the early visual 14 

cortex. To understand the neuronal mechanisms generating the gamma echo, we 15 

implemented a pyramidal-interneuron gamma (PING) model that produces gamma 16 

oscillations in the presence of constant input currents. Applying a broadband input current 17 

mimicking the visual stimulation allowed us to estimate TRF between the input current and 18 

the population response (akin to the local field potentials). The TRF revealed a gamma echo 19 

that was similar to the one we observed in the MEG data. Our results suggest that the visual 20 

gamma echo can be explained by the dynamics of the PING model even in the absence of 21 

sustained gamma oscillations.  22 

 23 

Author Summary 24 

The properties of the neuronal dynamics governing the visual system are highly debated. 25 

While some emphasize the neuronal firing rate and evoked activity in response to visual 26 

stimuli, others emphasize the oscillatory neuronal dynamics. To investigate the dynamical 27 

properties of the visual system, we recorded the magnetoencephalography while stimulating 28 

the visual system using a broadband (1–720 Hz) visual flicker. By estimating the temporal 29 

response function (similar to cross-correlation) between the visual input and neuronal 30 

activity, we demonstrated a clear response in the gamma band that we term the gamma 31 

echo. We then constructed a physiologically realistic network model that could generate 32 

gamma-band oscillations by a pyramidal-interneuron gamma (PING) mechanism. This 33 

model allowed us to account for empirically observed response in the gamma band, and to 34 

provide novel insight on the neuronal dynamics governing the early visual system. The stage 35 

is now set for further investigating how the gamma echo is modulated by tasks such as 36 

spatial attention as well as uncovering how the echo might propagate in the visual hierarchy. 37 

 38 

Introduction 39 

The properties of the neuronal dynamics governing the visual system are highly debated. 40 

Some emphasize the neuronal firing rate [1–3] and evoked activity [4] in response to visual 41 

stimuli. Others emphasize the oscillatory neuronal dynamics. In particular, neuronal 42 

oscillations in the gamma band have been proposed to bind visual features by means of 43 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 1, 2021. ; https://doi.org/10.1101/2021.01.11.426257doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426257
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

synchronized spiking [5,6] as well as supporting communication between different brain 44 

regions [7,8]. 45 

In this paper we are applying a new tool for investigating the dynamical properties of the 46 

visual cortex in humans. We are making use of a new type of LED/DLP projector (Propixx, 47 

VPixx Technologies Inc., Canada) that has a refresh-rate of up to 1440 Hz. The projector 48 

makes it possible to stimulate the visual system with broadband flickering stimuli while 49 

measuring the brain response using magnetoencephalography (MEG). This approach allows 50 

for estimating the temporal response function (TRF). The TRF is the kernel that best 51 

explains the brain response when convolved to the broadband input signal. In other words, 52 

the TRF can be considered a simple model capturing the filter properties of the visual cortex. 53 

In previous studies, such an approach has been used to investigate the dynamical properties 54 

of the visual system at lower frequencies. Using a broadband flicker (1–80 Hz), the TRF was 55 

approximated from the cross-correlation between the EEG and the input signal [9]. This 56 

approach revealed a robust response in the alpha range termed “the perceptual echo”. Yet, 57 

the authors did not report dynamical properties in the gamma range most likely due to the 58 

limited refresh rate of the monitor [9]. The aim of this study was to ask if the TRF also has a 59 

band-limited response at higher frequencies, to uncover the faster dynamical properties of 60 

the visual system. As we will show, the TRF function has a clear response at higher 61 

frequencies which is limited to the gamma band.   62 

The oscillatory dynamical properties of the cortical tissue have also been investigated by 63 

means of computational modelling. This has resulted in the notion that neuronal gamma 64 

oscillations are generated by the so-called pyramidal interneuron gamma (PING) mechanism 65 

[10–12]. According to this mechanism, GABAergic interneurons play an essential role in 66 

determining the frequency and synchronization properties for the generation of gamma 67 

oscillations. Basically, the decay of the GABAergic feedback is a key variable determining 68 

the period of each gamma cycle as the GABAergic hyperpolarization prevents neuronal firing 69 

of both pyramidal and interneurons of about 10-20 ms [13]. Furthermore, the GABAergic 70 

feedback also serves to synchronize the population activity [14,15]. In each cycle, the firing 71 

of the pyramidal cells serve to excite the interneurons thus initiating the next oscillatory 72 

cycle. This mechanism was first uncovered in hippocampal rat slices [16] and supported by 73 

computational modelling [10–12]. Later, the GABAergic based mechanism was also 74 

investigated using optogenetic studies in the somatosensory cortex [17,18] and the visual 75 

system [19] in mice. A human MEG study demonstrated that gamma oscillations are strongly 76 

modulated after the GABAergic feedback was manipulated by the GABAergic agonist 77 

lorazepam in a double-blind study. As predicted by the PING model, the visual gamma 78 

oscillations decreased in frequency while they increased in power as the GABAergic 79 

feedback increased with the administration of lorazepam [20]. Other studies have reported a 80 

link between gamma frequency and the GABA concentration as measured by magnetic 81 

resonance spectroscopy (MRS) in both visual and somatosensory regions [21–23] (but see 82 

[24]). Finally a PET study measuring GABA(A) receptor density found a link to gamma 83 

frequency [25].  84 

The PING mechanism can be implemented using different biophysical models [26–28]. 85 

Several of these implementations are based on Hodgkin–Huxley type of models. In this 86 

work, we based our simulations on the Izhikevich model [29] which has reasonable realistic 87 

dynamics and computational efficiency of integrate-and-fire neurons. This model is capable 88 

to produce variety of spiking dynamics such as regular spiking, fast spiking, low threshold 89 

spiking and other by adjusting only four parameters. In contrast to other more complex 90 

models, e.g., [30] that require tuning of multiple parameters, the Izhikevich model is relatively 91 
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simple yet capable of explaining a wide range of phenomena pertaining neuronal 92 

synchronization and oscillations [31–33].  93 

In this study, we asked if the dynamical properties of the PING model can account for the 94 

gamma response in the TRF we observed in the MEG data. The basic idea was to simulate 95 

a network model for gamma oscillations with a broadband signal. This allowed us to estimate 96 

the TRF of the network model and relate it to the TRF from MEG study. If the network model 97 

can procure a TRF similar to the one observed in the MEG data, then we have provided 98 

novel insight on the neuronal dynamics governing the early visual system.  99 

In short, to investigate the dynamical properties of the visual system, we recorded the MEG 100 

while stimulating the visual system using a broadband (1–720 Hz) visual flicker. This allowed 101 

us to estimate the TRF of the visual system. As we will demonstrate, this resulted in a clear 102 

band-limited response in the gamma band. We then constructed a physiologically realistic 103 

network model that could generate gamma-band oscillations by a PING-type mechanism. 104 

This model allowed us to account for empirically observed TRF in the gamma band. 105 

 106 

Methods 107 

Participants 108 

Five participants (mean age: 33; age range: 28-38; 1 female) with no history of neurological 109 

disorders partook in the study. The study was approved by the local ethics committee 110 

(University of Birmingham, UK) and written informed consent was acquired before enrolment 111 

in the study. All participants conformed to standard inclusion criteria for MEG experiments. 112 

Participants had normal or corrected-to-normal vision. 113 

Experimental paradigm  114 

Two grating stimuli were presented bilaterally (Fig. 1A). After 0.5 s from the stimuli onset, the 115 

left and right gratings started contracting for 3 s either coherently (same direction) or 116 

incoherently (different directions). The direction of the motion (up / down) of the left and right 117 

grating stimuli was random in consequent trials. The grating stimuli moved at a constant 118 

speed of 0.5 degree/s. The participants were instructed to focus on the fixation point and 119 

press the button when a cue indicating the direction of motion (i.e. coherent or incoherent) 120 

occurred at the fixation point. 121 

The key novelty of the experiment is that the luminance of the left and right stimuli was 122 

modulated by two uncorrelated broadband (i.e., noise with uniform distribution) flickering 123 

signals (Fig. 1B) at 1440 Hz. To this end, the grating stimuli were converted into textures 124 

using Psychophysics toolbox [34], and then the luminance of these textures was modulated 125 

by the flickering signals. We used the PROPixx DLP LED projector (VPixx Technologies Inc., 126 

Canada) to present the grayscale visual stimuli at a high refresh rate of 1440 Hz with a 127 

resolution of 960 x 600 pixels (see, [35]). Such refresh rate was achieved by presenting 128 

twelve frames within one refresh cycle of 120 Hz graphics card. The experimental paradigm 129 

was implemented in MATLAB 2018a (Mathworks Inc., Natick, USA), and the scripts are 130 

available on the OSF website (https://osf.io/fe8x5/). 131 
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 132 

Fig. 1. Experimental paradigm. (A) Grating stimuli were presented for 0.5 s and then the left 133 

and right gratings started contracting for 3 s either coherently (same direction) or 134 

incoherently (different directions). Yellows arrows on this figure (were not visible in the 135 

experiment) indicate coherent motion downwards. The cue (‘=’) indicates coherent motion.  136 

(B) Luminance of the left and right grating stimuli was modulated by two independent 137 

broadband signals. The modulation (visual flicker) started at the time -0.5 s, together with the 138 

onset of grating stimuli.   139 

 140 

Magnetoencephalography data acquisition and processing 141 

The MEG data were acquired using a 306-sensor TRIUX Elekta Neuromag system (Elekta, 142 

Finland). The magnetic signals were bandpass filtered from 0.1 and 330 Hz using embedded 143 

anti-aliasing filters and then sampled at 1000 Hz. The acquired time series were segmented 144 

into 4 s epochs; −1 to 3 s relative to the onset of the stimuli motion. Note that the stimuli were 145 

flickering during the -0.5 to 3 s time interval. Simultaneously with the MEG, we also acquired 146 

the eye-movements and blinks using an EyeLink eye-tracker (SR Research, Canada). Eye 147 

blinks were detected in the X‐axis and Y‐axis channels of the eye tracker by applying a 148 

threshold of 5 SD. The saccades were detected using a scatter diagram of X‐axis and Y‐axis 149 

time series of the eye-tracker for each trial. An event was classified as a saccade if the focus 150 

away from the fixation point by 2° and lasted longer than 500 ms. Trials contaminated by blinks 151 

and saccades were removed from further analysis. We also rejected trials containing large-152 

amplitude events (above 5 SD) in MEG which are mainly associated with motion and muscle 153 

artefacts. As a result, the number of trials that remained after exclusion was 142 ± 10 (mean ± 154 

SD) per participant. For each participant, the number of trials per condition was equalized by 155 

randomly selecting the same number of trials. Such equalising serves to avoid a potential bias 156 

in TRF estimation related to unbalanced number of trials.  157 

Power spectral density  158 

The power spectral density was estimated using Welch’s method as implemented in the 159 

SciPy toolbox [36]. To this end, 4 s epochs of data were divided in 1 s segments with 50% 160 

overlap and weighted by a Hanning taper. The Fourier transform was applied to each 161 

segment and squared Fourier coefficients were averaged over the segments. 162 
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The same approach was applied to estimate the power spectral density of the modelled 163 

data. 164 

Temporal response functions 165 

Temporal response functions (TRF) were estimated using ridge regression as implemented 166 

in mTRF toolbox [37]: 167 

𝑇𝑅𝐹 = (𝑆𝑇𝑆 + 𝜆𝐼)−1𝑆𝑇𝑥 168 

where S is the lagged time series of the stimulus, x denotes neuronal response, I is the 169 

identity matrix, and λ is the smoothing constant or “ridge parameter”. In this study, the 170 

smoothing constant λ was set to 1. Note that TRF is similar to a linear cross-correlation 171 

function if the stimulus is a random (temporally uncorrelated) signal.  172 

The TRFs were computed between the broadband flickering signal and the MEG 173 

gradiometer with the strongest visual flicker response. Note that the TRF in Figure 3 was 174 

computed for an occipital gradiometer that captures signals in both the alpha and gamma 175 

bands. In order to assess the contribution of the 50 Hz line noise to the TRF, we also 176 

computed the TRF for MEG magnetometer with strongest response to the visual flicker 177 

before and after applying source space separation (SSS) method [38] for noise reduction. 178 

For the modelled data we calculated the TRF between the broadband input current and the 179 

average membrane potential for the E-cells.  180 

Time-frequency analysis 181 

The time-frequency representations of power of the TRF were computed using the Hanning 182 

taper approach as implemented in the Fieldtrip toolbox [39]. We used time-windows of 183 

different length spanning 5 cycles at the specific frequency. The analysed frequency range 184 

was 5 – 100 Hz with steps of 1 Hz and the time ranged from -0.1 to 0.2 s (or 0.7 s as in 185 

Figure 1) with steps of 5 ms. In case of the induced gamma oscillations (see, Fig. 5), we 186 

reported a relative change in MEG power during the -0.5 to 3 s stimulation interval compared 187 

to the -1.0 to -0.5 s baseline as follows, Prel = (PST - PBL) / (PST + PBL), where PST and PBL 188 

denote MEG power during stimulation and baseline, respectively.   189 

MRI data acquisition 190 

A high-resolution T1-weighted anatomical image (TR/TE of 7.4/3.5 ms, a flip angle of 7°, FOV 191 

of 256×256×176 mm, 176 sagittal slices, and a voxel size of 1×1×1 mm3) was acquired using 192 

3-Tesla Phillips Achieva scanner. 193 

Source reconstruction  194 

To build a forward model, we first manually aligned the MRI images to the head shape 195 

digitization points acquired with the Polhemus Fastrak. Then, the MRI images were 196 

segmented, and a single shell head model was prepared using spherical harmonics fitted to 197 

the brain surface [40]. The individual anatomy was warped into standard MNI template using 198 

the Fieldtrip toolbox [39].  199 

To localise power of the of induced gamma rhythm in source space, we used the Dynamical 200 

Imaging of Coherent Sources (DICS; [41]) approach as implemented in thr Fieldtrip toolbox. 201 

The time-frequency analysis was applied to the MEG data in the -0.5 to 3 s interval that covers 202 

the entire duration of the flickering stimuli. 203 

To localise the gamma echo response, we used Linearly Constrained Minimum Variance 204 

(LCMV) beamformer [42] as implemented in the Fieldtrip toolbox. To this end, we first 205 
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reconstructed time series in source space by applying LCMV beamformer to MEG data, and 206 

then estimated TRF (see, above) for each source point. The covariance matrix for the LCMV 207 

beamformer was estimated for bandpass filtered MEG data (40 – 100 Hz) in the -0.5 to 3 s 208 

time interval.  209 

The location differences between sources of induced gamma and gamma echo response were 210 

assessed by extracting the coordinates (along the interior-superior z-axis) of these sources 211 

for each participant separately, and then applied the t-test over participants.  212 

Model  213 

We modelled the neuronal populations of cortical areas as a network of interconnected 214 

excitatory and inhibitory neurons (Fig. 7A). The network model was composed of 400 regular 215 

spiking excitatory pyramidal neurons (E-cells), and 100 fast-spiking inhibitory interneurons 216 

neurons (I-cells). The number of neurons as well as ratio between E-cells and I-cells (4 to 1) 217 

are consistent with previous studies [29,31].  218 

 Neuronal model 219 

We used the neuronal model proposed by Izhikevich [29] to simulate the membrane 220 

potentials of the excitatory and inhibitory neurons.   221 

𝑣′ = 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼 + 𝐼𝑠𝑦𝑛                                          (1) 222 

𝑢′ = 𝑎(𝑏𝑣 − 𝑢)                                                            (2) 223 

𝑠𝐴𝑀𝑃𝐴
′ = 𝛼𝐴𝑀𝑃𝐴𝐹(𝑣)(1 − 𝑠𝐴𝑀𝑃𝐴) − 𝛽𝐴𝑀𝑃𝐴𝑠𝐴𝑀𝑃𝐴                                     (3) 224 

𝑠𝐺𝐴𝐵𝐴
′ = 𝛼𝐺𝐴𝐵𝐴𝐹(𝑣)(1 − 𝑠𝐺𝐴𝐵𝐴) − 𝛽𝐺𝐴𝐵𝐴𝑠𝐺𝐴𝐵𝐴                                      (4) 225 

 226 

where v represents the membrane potential of the simulated neuron, I determines the input 227 

current, u is a slow recovery variable. The model also includes a reset: when v exceeds 30 228 

mV, an action potential is assumed, and the variables are reset: v = c and u = u + d. The 229 

coefficients a = 0.02 and b = 0.2, c = -65 and d = 8 define the regular spiking E-cells, while a 230 

= 0.1 and b = 0.2 c = -65 and d = 2 define the fast spiking I-cells. The variable s represents 231 

the gating for synaptic input and includes both sAMPA and sGABA defined for each sending E-232 

cell and I-cell, respectively. 233 

To model the kinetics of the AMPA and GABA neurons, we followed the formalism from 234 

Wang and Buszaki [11]. 235 

The term 𝐼𝑠𝑦𝑛 reflects the synaptic current in the receiving neurons whereas s reflects the 236 

gating variable in the sending neuron,  237 

𝐼𝑠𝑦𝑛 = ∑ 𝐶(:,𝑖) ⋅ 𝑠𝐴𝑀𝑃𝐴 ⋅ (𝑣𝐴𝑀𝑃𝐴 − 𝑣)𝑁
𝑖=1 + ∑ 𝐶(:,𝑗) ⋅ 𝑠𝐺𝐴𝐵𝐴 ⋅ (𝑣𝐺𝐴𝐵𝐴 − 𝑣)𝑀

𝑗=1                         (5) 238 

where N is the number of excitatory neurons, M is the number of inhibitory neurons, C is the 239 

connectivity matrix, vAMPA and vGABA are reversal potentials of AMPA (vAMPA = 0 mV) and GABA 240 

receptors (vGABA = -70 mV on E-cells and vGABA = -75 mV on I-cells), respectively. The 241 

differential equation (3 and 4) includes parameters channel opening rate αAMPA = 12 (ms–1) 242 

and the channel closing rate βAMPA = 0.5 (ms–1) for AMPA receptors, and αGABA = 12 (ms–1) 243 

and βGABA = 0.1 (ms–1) for GABA receptors; F denotes a sigmoid function: 𝐹(𝑣) =244 

1 (1 + 𝑒𝑥𝑝(−𝑣/2))⁄ . 245 
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We specified the connectivity strength between different types of cells based on prior 246 

experimental results [43]. These connection strengths represented the amount of current 247 

that enters the receiving neuron after a spike of the sending neuron [31]. To make sure that 248 

the model connectivity was selected adequately, we assessed the model output frequency 249 

(firing rate) as a function of connectivity between I-cells for several input currents to E-cells 250 

and I-cells (Fig. 2). The plot shows a decrease in frequency with increasing inhibitory 251 

connectivity strength as predicted by the PING mechanism [11]. 252 

 253 

Fig. 2. Model output frequency as a function of connectivity strength between I-cells. 254 

 255 

We further adjusted the connectivity matrix while preserving the connectivity strength ratio 256 

between different type of cells, to obtain robust oscillations at 48 Hz for given input currents. 257 

The connectivity between cells was as follows: connectivity between I-cells (cii = 0.004), 258 

connectivity from I-cells to E-cells (cie = 0.006), and connectivity from E-cells to I-cells (cei  = 259 

0.003). Since the connectivity strength between E-cells is much lower compared to other 260 

cells, ~0.25 * cii  [31], we set connectivity between E-cells to 0 (cee  = 0.0).  261 

Population activity and local field potential produced by the model 262 

The population activity of the model reflecting the local field potentials was computed by 263 

averaging the membrane potentials of the E-cells. This somehow approximates the fields 264 

measured by MEG which are generated by the sum of dendritic currents in pyramidal cells 265 

[44].  266 

To solve the differential equations (1-4) numerically, we used the Euler method with the 267 

time-step t = 1 ms. 268 

Data and code availability 269 

Data and code are available on the OSF website (https://osf.io/fe8x5/). 270 

 271 

Results  272 

We used a moving grating paradigm in which the left and right visual stimuli were generated 273 

using orthogonal broadband random signals while we recorded the ongoing MEG (Fig. 1). 274 
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Broadband visual stimulation reveals alpha and gamma echoes in the visual system 275 

The TRF of a system can be estimated by deconvolving its input and output [11]. We used 276 

ridge regression (see, Methods) to compute the TRF for the MEG signals from sensors over 277 

visual cortex while stimulating with a broadband random visual input. Figure 3 shows the 278 

TRF for an occipital sensor for a representative participant. The TFR has a rich temporal 279 

structure (Fig. 3A, black line). Applying a bandpass filter in the gamma band (40–100 Hz) to 280 

the TRF revealed an early response (Fig. 3A, blue line) at about 40 ms. A bandpass filter in 281 

the alpha band (8–13 Hz) revealed a later response comprising several cycles. A time-282 

frequency analysis of power further demonstrated the presence of band-limited responses in 283 

the alpha and gamma band in the TRF (Fig. 3B). While the late response – the ”alpha 284 

perceptual echo” – was reported in the previous studies (e.g. [9], the early response – the 285 

”gamma echo” – is so far unobserved property of the visual system.   286 

 287 

Fig. 3. TRF of the human visual cortex derived from a random broadband visual input train. 288 

(A) The TFR filtered in the broad band (1–100 Hz; black line), the gamma band (40–100 Hz; 289 

blue line) and the alpha band (8–13 Hz; gray line). (B) Time-frequency representation of 290 

power of the TRF. Note that the TRF was computed for an occipital gradiometer that 291 

captures both the alpha band and gamma band TRF.  292 

 293 

TRF show individual resonance frequency of gamma echo 294 
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To further evaluate the characteristics of the gamma echo, we computed TRF for five 295 

individual participants using the MEG gradiometers with strongest response to the 296 

broadband input signal. The frequencies of the individual gamma echoes ranged from 46 to 297 

56 Hz and were close to 48 Hz on average (Fig. 4). The responses in the gamma band were 298 

strongest at 50 – 100 ms and spanned over 2 – 3 cycles. To ensure that the 50 Hz line noise 299 

does not contribute to the gamma echo, we assessed the power spectral density and TRF 300 

for magnetometers before and after applying the source space separation (SSS) method 301 

[38] as implemented in MNE Python toolbox [45]. SSS removes artifacts caused by external 302 

disturbances such as line noise, and hence, provides possibility to evaluate contribution of 303 

50 Hz noise to the gamma echo. We performed the analysis on the magnetometers as they 304 

are particularly sensitive to 50 Hz line noise and hence, they provide a worst-case setting. 305 

The results clearly showed that suppression of 50 Hz noise in data did not change the 306 

characteristics of gamma echo (Fig. S1) in any of the participants. This demonstrates that 307 

the gamma echo is not biased by the line noise. 308 

 309 

Fig. 4. TRF and the associated time-frequency representation of power for individual 310 

participants. Note the robust response in 40–60 Hz gamma range. Gray lines depict the TFR 311 

at 1–100 Hz while the black lines show the response filtered at 40–100 Hz.  312 

Induced gamma oscillations 313 

To relate the gamma echo response and visually induced gamma oscillations, we computed 314 

a time-frequency representation of power at the occipital sensor with the strongest response 315 
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to flicker (see, Fig. 5). The grating induced gamma oscillations at around 57 Hz (grand 316 

average). Interestingly, the individual frequencies of the induced gamma oscillations were 317 

faster than frequencies of the gamma-echo (Fig. 5). These results suggested that the 318 

gamma echo and induced gamma oscillations are produced by different generators.  319 

 320 

Fig. 5. Time-frequency representation of the power (relative change) induced by the 321 

gratings. The dashed line indicates frequency of the induced gamma oscillations, and for 322 

comparison, the solid line indicates frequency of the gamma echo. Curves next to the time-323 

frequency plots represent power averaged over the -0.5 to 3 s time interval.  324 

 325 

Localization of gamma echoes and induced gamma oscillations in sensor and source spaces 326 

To identify the generators of the gamma echo and induced gamma oscillations, we 327 

computed their spatial characteristics at the sensor and source levels. Both sensor and 328 

source space topographies of the gamma echo clearly showed that the response was mainly 329 

localized in the primary visual cortex (Fig. 6A, B). Similarly, induced gamma oscillations were 330 

originated in the visual cortex as suggested by sensor and source space topographies (Fig. 331 

6C). The sources of the gamma echo response and induced gamma oscillations were 332 

largely overlapped (Fig. 6), although, sources of the gamma echo appeared more lateralised 333 

and superior. We assessed their spatial overlap by extracting coordinates along z-axis and 334 

comparing these coordinates across subjects using t-test (see, Methods). Although, the 335 

sources of induced gamma oscillations were slightly superior (~11 mm on average) 336 

compared those of the gamma echo, the difference was not significant (p > 0.19, t-test). 337 

These results suggest that the gamma echo response and induced gamma oscillations are 338 

produced by neighbouring but not necessarily the same sources.  339 
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 340 

Fig. 6. Topographies and source modelling of the gamma echo and induced gamma 341 

oscillations. (A) The topography and the source modelling (LCMV beamformer) of the peak 342 

amplitude of the gamma echo (0.04 – 0.08 s) for the right flickering stimuli. (B) Same as (A) 343 

but for left flickering stimuli. (C) The topography and source modelling of the power (DICS 344 

beamformer) of the induced gamma oscillations within range 40 – 100 Hz. 345 

 346 

PING based model of gamma oscillations  347 

We implemented a pyramidal-interneuron gamma (PING) [10,12,16] network model with 348 

biologically plausible synaptic currents [11] attempting to account for the TRF in the gamma 349 

band. The model consisted of interconnected excitatory (E) and inhibitory (I) cells (Fig. 7A). 350 

The connectivity matrix in Fig. 7B describes the connection strengths between all the cells. 351 

In this model, the connectivity strength between different type of cells was set based on prior 352 

empirical findings [43], see Methods. The connection strength was weighted by random 353 

values drawn from a uniform distribution [0, 1], to ensure heterogeneous connectivity. For 354 

the connectivity matrix in Fig. 7B and constant input currents of 12.25 µA and 5.25 µA to the 355 

E-cells and I-cells, respectively, the model produced synchronous spiking activity (Fig. 7C). 356 

The membrane potentials of the excitatory neurons were averaged to approximate the local 357 

field potentials, i.e., the population activity (Fig. 7D). Spectral analysis revealed robust 358 

oscillations in the local field potentials at 48 Hz (Fig. 7E). The PSD was computed and 359 

subsequently averaged over 20 trials, to reduce random variations in the model output.  360 
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 361 

Fig. 7. The PING model with constant input currents produces robust neuronal oscillations at 362 

around 48 Hz. (A) Neuronal architecture; the simulated network consisted of interconnected 363 

E-cells (N=400) and I-cells (N=100). (B) Connectivity matrix between E-cells and I-cells. (C) 364 

Spike rastergram for E-cells (blue) and I-cells (orange) shows temporal synchronization 365 

among the cells in the presence of constant input current. (D) The average membrane 366 

potential of the E-cells exhibited prominent oscillations. (E) Power spectral density of the 367 

average membrane potential for the E-cells shows a clear peak at 48 Hz. Note that PSD was 368 

averaged over 20 trials.  369 

 370 

In accordance with the PING mechanism, the model firing rate is determined by the input 371 

currents and the connectivity strength [11], suggesting that the resonance frequency of 48 372 

Hz can be obtained for different combinations of the input currents and connectivity. To 373 

further explore this possibility, we assessed the model output power (at the spectral peak) 374 

and corresponding frequency (Fig. 8A) by varying the input currents to E-cells and I-cells 375 

while preserving the connectivity parameters and the network size. The 2D parameter space 376 

diagram (Fig. 8B, C) indicated that resonance frequency of 48 Hz can be obtained for 377 

several combinations of the input currents. Considering this, in addition to the input currents 378 

used in our simulations above (IE = 12.25 µA and II = 5.25 µA; black circle in Fig. 8B,C), we 379 

also explored two pairs of the input currents: IE = 8.75 µA and II = 5.25 µA (red circle in Fig. 380 

8B,C), IE = 12.75 µA and II = 7.25 µA (blue circle in Fig. 8B,C), which produce oscillations at 381 

the resonance frequency. Temporal characteristics of the spiking activity and mean field 382 

potentials for three pairs of the input currents are shown in Fig. 8D. These results suggested 383 

that our initial model parameters (IE = 12.25 µA and II = 5.25 µA) provided more stable 384 

oscillations compared to the other pairs of the input currents. 385 
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 386 

Fig. 8. (A) The PSD with spectral peak at 48 Hz for input currents IE = 12.25 µA and II = 5.25 387 
µA. (B, C) Power at the spectral peak (B) and corresponding frequency (C) of the network 388 
oscillations as a function of input current to E-cells and I-cells. Black, red, and blue circles 389 
indicate pairs of the currents producing oscillations at 48 Hz. (D) Spiking activity and 390 
corresponding average membrane potentials for three selected input currents that produce 391 
oscillations at 48 Hz. 392 

 393 

To ensure that the model was operating in a stable regime, we estimated the duration of 394 

transient effect after the input current was applied (Fig. 9A). The time diagram of spiking 395 

activity and mean field potentials showed that the transient effect lasted less than 0.5 s. In 396 

the further analyses, we discarded the first 1 s of the signal to make sure that the remaining 397 

signal is stationary.  398 

 399 
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Fig. 9. (A) Transients in spiking activity and average membrane potential after applying  400 
constant input currents to E-cells and I-cells. (B) The power (at the spectral peak) and 401 
corresponding frequency of the network as a function of the network size. The labels indicate 402 
the number of neurons in the network. Bars indicate standard deviation estimated in 20 403 
trials. 404 

 405 

Finally, we evaluated the impact of the network size on frequency and power of the mean-406 

field potentials (Fig. 9B). Importantly, while changing the network size, we preserved the 407 

ratio between E-cells and I-cells as 4 to 1 following our original model [29]. The results 408 

suggested that an increase in the network size from 200 to 1000 neurons was associated 409 

with a slight decrease in the frequency from 50 to 46 Hz, and an increase in the power. Such 410 

a relatively small change in the output characteristics suggested robustness of the model.  411 

 412 

Broadband input to the model produces a gamma echo at the resonance frequency  413 

In order to estimate the TRF of the network dynamics, we applied broadband input current to 414 

the model. The input current was modelled as a sum of constant current of 12.25 µA and 415 

random (uniform) noise with amplitude of 4 µA to the E-cells and a constant current of 5.25 416 

µA to I-cells (Fig. 10A). This simulates the LGN input to the area V1 in the visual cortex. For 417 

the broadband input current, the model produced neuronal activity (Fig. 10A-D) similar to 418 

those of the constant input currents (see, Fig. 7). In the presence of broadband input, spiking 419 

activity of E-cells remained highly synchronised (Fig. 10B), so that average membrane 420 

potentials showed oscillations that can be readily observed in population response (Fig. 421 

10C) and as well as in the power-spectral density (Fig. 10D). By computing the TRF 422 

between the input broadband current and output voltage, we observed a gamma echo (Fig. 423 

10E) similar to that in MEG data. Importantly, the frequency of the echo matched the 424 

resonance frequency of the model (Fig. 10F). To obtain more robust results, the PSD and 425 

TRF were averaged over 20 trials.   426 

 427 
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Fig. 10. Broadband input current to E-cells produces damped oscillations in the TRF – the 428 

gamma echo. (A) Broadband input current to E-cells (black line) and constant input current 429 

to I-cells (orange line). (B) Spike rastergram for E-cells and I-cells for broadband input 430 

current. (C) The average membrane potential of the E-cells in response to fluctuating input 431 

currents. (D) Power spectral density of average membrane potentials of the E-cells averaged 432 

over 20 trials. (E) TRF assessed for the average membrane potentials of the E-cells with 433 

respect to the broadband input current. Note the clear “gamma echo”. Gray and black lines 434 

depict respectively raw and the filtered TRF (40 – 100 Hz) averaged over 20 trials. (F) Time-435 

frequency representation of power of the TRF.  436 

 437 

We further assessed the impact of the amplitude of the broadband input current on 438 

characteristics of the gamma echo. The input current was modelled as a sum of constant 439 

current of 12.25 µA and random (uniform) noise with amplitude ranged from 2 to 9 µA to the 440 

E-cells and a constant current of 5.25 µA to I-cells. The gamma echo revealed by MEG was 441 

resembling the model gamma echo for broadband input current of 4 µA (Fig. 11). In case of 442 

lower currents (2 µA and 3 µA), the response at resonance frequency showed much longer 443 

decay. Conversely, the higher currents (5 µA to 9 µA) produced a response with shorter 444 

decay time. 445 

 446 
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 447 

Fig. 11. The amplitude of the broadband input current determines temporal characteristics of 448 

the gamma echo. TRF (top panel) and its time-frequency representation (bottom panel). IBB 449 

denotes amplitude of the broadband input current.  450 

 451 

Oscillatory inputs produce maximum power at the resonance frequency  452 

We further explored the model response by applying an oscillatory input current to E-cells in 453 

a similar manner as the broadband input current. The oscillatory input was modelled as a 454 

sum of constant current of 12.25 µA and a sine wave with amplitude of 9 µA to E-cells, while 455 

keeping the current to I-cells constant at 5.25 µA (Fig. 12A). The oscillatory input increased 456 

synchronization among the E-cells in the gamma band (Fig. 12B) compared to the absence 457 

of oscillatory input (see, Fig. 7C). The average membrane potential of the E-cells also 458 

showed a larger amplitude (Fig. 12C) compared to that of the constant input current (Fig. 459 

7D). The oscillatory input current (mimicking visual stimulation) at the resonance frequency 460 

(48 Hz) produced stronger response compared to a response at non-resonance (e.g. 78 Hz) 461 
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frequency input (Fig. 12D). To assess the spectral profile of the model in response to input 462 

currents of different frequencies, we applied a sinusoidal input current ranging from 1 to 100 463 

Hz with 1 Hz steps and amplitude of 9 µA. The results showed an amplified peak in the 464 

power spectral density near the resonance frequency of 48 Hz (Fig. 12E). Consistently with 465 

earlier findings [46], the spectral profile peaked at the resonance frequency and showed a 466 

decay towards higher frequencies.  467 

 468 

Fig. 12. Oscillatory input current reveals an amplification of oscillatory dynamics at the ~48 469 

Hz resonance frequency. (A) Oscillatory input current to E-cells (black line) and constant 470 

current to I-cells (orange line). (B) Spike rastergram for E-cells and I-cells. (C) The average 471 

membrane potential of the E-cells. (D) Example of power spectral density for input current at 472 

48 Hz (resonance frequency, black line) and at 78 Hz (non-resonance, orange line). (E) 473 

Power spectral density of the average membrane potential for oscillatory input over multiple 474 

frequencies, 1–100 Hz, and amplitude of 9 µA.  475 

 476 

To further investigate the model response to an oscillatory input, we computed the model 477 

output power (at the spectral peak) and corresponding frequency as a function of the input 478 

current, by systematically varying its frequency (1 – 100 Hz) and amplitude (0.5 – 10 µA). 479 

The results showed that the peak frequency in the spectral profile increased with the 480 

amplitude of input current (Fig. 13A), meaning that the peak at around 48 Hz can be 481 

obtained for a specific input current of 9 µA (corresponds to Fig. 12E). This suggests that the 482 

amplitude of visual input may differently affect frequency of the neuronal response. 483 

Interestingly, there was a minimum input current of 5 µA, above which, the frequency of the 484 

network oscillations matched the frequency of the input current (Fig. 13B). This suggests 485 

that the frequency of external stimulation may not be directly translated to the firing rate.  486 
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 487 

Fig. 13. Network output power at the spectral peak (A) and corresponding frequency (B) as a 488 
function of the oscillatory input. The amplitude and frequency of the input current varied 489 
within 0.5 – 10 µA and 5 – 100 Hz, respectively. Note that the spectral profile on A (right 490 
panel) for IE = 9 µA corresponds to the spectral profile shown on Fig. 12E. 491 

 492 

Discussion 493 

In this study, we used broadband visual stimulation combined with MEG to assess the 494 

dynamical properties of the human visual cortex. We did this by estimating the temporal 495 

response function (TRF), i.e. the kernel best explaining the MEG signal from visual cortex 496 

when convolved to the broadband visual input. The TRF is similar to the cross-correlation 497 

function [37] in case of a random temporally uncorrelated input. In the TRF we observed an 498 

early response limited to the gamma band that we term the gamma echo. We also observed 499 

the known perceptual echo in the alpha band [9]. To explore the neuronal mechanisms 500 

producing the gamma echo, we implemented a biophysically plausible pyramidal-501 

interneuron-gamma (PING) model. When driving the model by a broadband input current 502 

and estimating the respective TRF, we observed a gamma echo similar to that in the MEG 503 

data. Based on these simulations, we suggest that the gamma echo is produced by a 504 

network in which the dynamical properties are largely determined by GABAergic 505 

interneurons and their interaction with pyramidal cells; i.e. a PING-type network adjusted to 506 

produce damped oscillations in the gamma band can account for the gamma echo.  507 
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Relationship between alpha and gamma echoes 508 

Our findings reveal that both the alpha and gamma echo reflect the intrinsic properties of the 509 
visual system. However, there are several differences between the alpha and gamma band 510 
echoes. First, while alpha echo occurs at around 0.2 s, gamma echo has a much earlier 511 
onset at 40 ms. Second, the gamma echo is largely localized in the primary visual cortex, 512 
whereas the alpha echo propagates over the cortex [47]. Third, the alpha-echo spans for up 513 
to 10 cycles, while gamma-echo vanishes after 2–3 cycles. These different characteristics 514 
suggest that the echoes are generated by different mechanisms and may not always occur 515 
in the brain concurrently.  516 

At the same time the alpha and gamma echoes share similar properties. Earlier studies have 517 

demonstrated that the alpha echo shows maximum power at the individual alpha frequency 518 

[9]. Similarly, we found that the central frequencies of the gamma echo were specific to the 519 

participants. Our simulation results showed that the gamma echo of the model was strongly 520 

related to the resonance properties of the neuronal network. Thus, we suggest that the 521 

gamma echo reflects the intrinsic resonance properties of the early visual system.  522 

Our results show that the gamma echo originates in the primary visual cortex and does not 523 

appear to propagate outside of this area. Conversely, a recent study showed that alpha 524 

echoes have the characteristics of travelling waves [47]. The authors  further suggest that 525 

the spatio-temporal dynamics of the alpha echo is consistent with the timing of the neuronal 526 

activity that one might expect for feedforward and feedback communication associated with 527 

predictive coding. Indeed, both alpha and gamma oscillations might play a key role for 528 

predictive coding [48,49], and thus, propagation properties associated with the gamma echo 529 

may provide crucial insight on the feedforward dynamics associated with predictive coding. 530 

In contrast to the alpha echo, the gamma echo has not been observed in previous studies 531 

that applied  broadband visual stimulation (e.g. [9,50]), most likely since these studies relied 532 

on projectors with a relatively low refresh rate of 100 to 160 Hz. The resulting temporal 533 

resolution of 6 – 10 ms corresponds to at least 3 samples for a 48 Hz-cycle, and thus, it does 534 

not allow to fully capture gamma-band activity. In this study, we used a projector with a 535 

refresh rate of 1440 Hz which allows presenting stimuli with a sub-millisecond temporal 536 

resolution allowing for optimally estimating the gamma echo.    537 

 538 

Induced gamma oscillations and gamma echo  539 

In this study, we presented grating stimuli concurrently with the broadband visual flicker, and 540 

hence, both the grating stimuli and the flicker can potentially induce a response in the 541 

gamma band. Analysing time-frequency representation of MEG power and the gamma echo, 542 

we found that the visual grating induces gamma oscillations at around 57 Hz (grand 543 

average) whereas central frequency of the gamma echo was near 48 Hz, indicating that 544 

these phenomena do not overlap in the frequency domain. Furthermore, we did source 545 

localization of the induced gamma oscillations and the gamma echo. Although, the sources 546 

were located in the primary visual cortex closely to each other, there was an indication that 547 

sources of the induced gamma are slightly superior (~11 mm) than the sources of gamma 548 

echo. Consistently with our findings, previous studies [21,51–54] also demonstrated that 549 

static and dynamic gratings induce gamma oscillations in the primary visual cortex. Indeed, 550 

the gamma echo and induced gamma oscillations may originate from neighbouring but 551 

different areas (for instance, V1 and V2), which might not be easily dissociated due to limited 552 

spatial resolution of MEG. Based on the findings, we conclude that the gamma echo and the 553 

induced gamma oscillations are produced by different neuronal populations. This is 554 
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consistent with the work of Duecker et al, 2020 demonstrating the visual flicker does not 555 

entrain endogenous gamma oscillations but they are rather coexisting phenomena. 556 

 557 

Mechanism of the gamma echo 558 

We implemented a biophysically realistic computational model based on the PING 559 

mechanism to clarify the underlying mechanism of the gamma echo. As we discussed 560 

earlier, the gamma echo and induced gamma oscillations are likely to be produced by 561 

different generators. This explains the absence of a resonant frequency in our recent study 562 

(Duecker et al., 2020) which however was reported by Gulbinaite and colleagues [46]. In 563 

their study, the resonance frequency at about 47 Hz was observed when driving the visual 564 

system with rhythmic stimuli in a wide range of frequencies (3 to 80 Hz). We were able to 565 

reproduce this finding using our model and we therefore suggest that the rhythmic 566 

stimulation in study by Gulbinaite et al. did not affect the network producing endogenous 567 

gamma oscillations per se, but rather a network in V1 producing damped gamma 568 

oscillations. This way, the gamma echo does not reflect the dynamics of the endogenous 569 

gamma oscillations, but rather co-exists with endogenous gamma oscillations in different 570 

frequency bands. 571 

   572 

Computational model 573 

In this study we used a relatively simple model to describe dynamics of the early visual 574 

cortex in response to the broadband and rhythmic stimulation. Our model was based on the 575 

Izhikevich framework [29] and thus, combined biologically plausibility of Hodgkin–Huxley 576 

type dynamics and the computational efficiency of integrate-and-fire neurons. In addition, we 577 

improved the model by incorporating the kinetics of the AMPA and GABA neurons based on 578 

the formalism from Wang and Buszaki [11]. Since the gamma echo is well localised in the 579 

primary visual cortex (V1), and hence, the underlying mechanism does not require a 580 

complex interplay between areas in the visual system, our model adequately describe this 581 

phenomenon. In future work more complex multicompartment models [26] could also be 582 

utilised to describe gamma echo and perhaps provide some insight into the mechanism.  583 

Our model was tuned to account for the gamma echo, and in future work it would interesting 584 

to extend the model framework such that the network can produce alpha oscillations as well. 585 

This would allow addressing more complex relationship between the gamma and alpha 586 

echoes from mechanistic perspective. Yet an avenue to explore would be to extend the 587 

models with a second network capable of producing endogenous gamma oscillations. This 588 

would allow for exploring the conditions when the network producing the gamma echo could 589 

also entrain that network producing the endogenous gamma oscillations. 590 

 591 

Implication of the findings   592 

Our findings can provide new insight into the mechanism of evoked responses. It seems 593 

plausible that the characteristics of the early evoked responses in the visual system might be 594 

determined by the properties of the endogenous gamma activity. Indeed evoked gamma 595 

oscillations in response to visual stimuli have been identified in a previous study [55]. 596 

Importantly these oscillations increased with hypocapnia which is known to also increase 597 

GABAergic conductivity. In future work it would also be interesting to further uncover which 598 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 1, 2021. ; https://doi.org/10.1101/2021.01.11.426257doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426257
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

components of visual evoked fields can be explained by the neuronal dynamics also 599 

producing the gamma echo [56]. 600 

 601 

The gamma echo is not related to 50 Hz line noise.  602 

One might be concerned that the gamma echo is partly a consequence of the 50 Hz line 603 

noise given the similar frequencies. However, our analysis on magnetometers (see, Fig. S1) 604 

clearly demonstrates that suppression of the 50 Hz line noise does not change the 605 

characteristics of the gamma echo in any of the participants. Moreover, the gamma echo did 606 

vary from 46 to 56 Hz over participants. We conclude that the gamma echo is not biased by 607 

the 50 Hz line noise.  608 

 609 

Conclusion 610 

Using broadband visual input stimuli we here provide evidence for a band-limited temporal 611 

response function in the gamma that we term the gamma echo. A computational model 612 

showed that a PING type of mechanism based on a network producing damped oscillations 613 

in the gamma band could account for the gamma echo. Nevertheless, the gamma echo is 614 

distinct from the mechanism producing endogenous gamma oscillations. The stage is now 615 

set for further investigating how the gamma echo is modulated by tasks such as spatial 616 

attention as well as uncovering how the echo might propagate in the visual hierarchy.  617 

 618 
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 801 

Fig. S1. Suppression of line noise in data does not change the characteristics of the gamma 802 

echo in representative magnetometers. Each panel shows the power spectral density (PSD) 803 

and TRF for individual participants before (blue line) and after (orange line) applying the SSS 804 

method to suppress 50 Hz line noise. The echoes remain strong after the 50 Hz line noise is 805 

suppressed.    806 
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