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The visual cortex produces gamma band echo in response to broadband visual flicker
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Abstract

The aim of this study is to uncover the network dynamics of the human visual cortex by
driving it with a broadband random visual flicker. We here applied a broadband flicker (1—
720 Hz) while measuring the MEG and then estimated the temporal response function (TRF)
between the visual input and the MEG response. This TRF revealed an early response in the
40-60 Hz gamma range as well as in the 8-12 Hz alpha band. While the gamma band
response is novel, the latter has been termed the alpha band perceptual echo. The gamma
echo preceded the alpha perceptual echo. The dominant frequency of the gamma echo was
subject-specific thereby reflecting the individual dynamical properties of the early visual
cortex. To understand the neuronal mechanisms generating the gamma echo, we
implemented a pyramidal-interneuron gamma (PING) model that produces gamma
oscillations in the presence of constant input currents. Applying a broadband input current
mimicking the visual stimulation allowed us to estimate TRF between the input current and
the population response (akin to the local field potentials). The TRF revealed a gamma echo
that was similar to the one we observed in the MEG data. Our results suggest that the visual
gamma echo can be explained by the dynamics of the PING model even in the absence of
sustained gamma oscillations.

Author Summary

The properties of the neuronal dynamics governing the visual system are highly debated.
While some emphasize the neuronal firing rate and evoked activity in response to visual
stimuli, others emphasize the oscillatory neuronal dynamics. To investigate the dynamical
properties of the visual system, we recorded the magnetoencephalography while stimulating
the visual system using a broadband (1-720 Hz) visual flicker. By estimating the temporal
response function (similar to cross-correlation) between the visual input and neuronal
activity, we demonstrated a clear response in the gamma band that we term the gamma
echo. We then constructed a physiologically realistic network model that could generate
gamma-band oscillations by a pyramidal-interneuron gamma (PING) mechanism. This
model allowed us to account for empirically observed response in the gamma band, and to
provide novel insight on the neuronal dynamics governing the early visual system. The stage
is now set for further investigating how the gamma echo is modulated by tasks such as
spatial attention as well as uncovering how the echo might propagate in the visual hierarchy.

Introduction

The properties of the neuronal dynamics governing the visual system are highly debated.
Some emphasize the neuronal firing rate [1-3] and evoked activity [4] in response to visual
stimuli. Others emphasize the oscillatory neuronal dynamics. In particular, neuronal
oscillations in the gamma band have been proposed to bind visual features by means of
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synchronized spiking [5,6] as well as supporting communication between different brain
regions [7,8].

In this paper we are applying a new tool for investigating the dynamical properties of the
visual cortex in humans. We are making use of a new type of LED/DLP projector (Propixx,
VPixx Technologies Inc., Canada) that has a refresh-rate of up to 1440 Hz. The projector
makes it possible to stimulate the visual system with broadband flickering stimuli while
measuring the brain response using magnetoencephalography (MEG). This approach allows
for estimating the temporal response function (TRF). The TRF is the kernel that best
explains the brain response when convolved to the broadband input signal. In other words,
the TRF can be considered a simple model capturing the filter properties of the visual cortex.
In previous studies, such an approach has been used to investigate the dynamical properties
of the visual system at lower frequencies. Using a broadband flicker (1-80 Hz), the TRF was
approximated from the cross-correlation between the EEG and the input signal [9]. This
approach revealed a robust response in the alpha range termed “the perceptual echo”. Yet,
the authors did not report dynamical properties in the gamma range most likely due to the
limited refresh rate of the monitor [9]. The aim of this study was to ask if the TRF also has a
band-limited response at higher frequencies, to uncover the faster dynamical properties of
the visual system. As we will show, the TRF function has a clear response at higher
frequencies which is limited to the gamma band.

The oscillatory dynamical properties of the cortical tissue have also been investigated by
means of computational modelling. This has resulted in the notion that neuronal gamma
oscillations are generated by the so-called pyramidal interneuron gamma (PING) mechanism
[10-12]. According to this mechanism, GABAergic interneurons play an essential role in
determining the frequency and synchronization properties for the generation of gamma
oscillations. Basically, the decay of the GABAergic feedback is a key variable determining
the period of each gamma cycle as the GABAergic hyperpolarization prevents neuronal firing
of both pyramidal and interneurons of about 10-20 ms [13]. Furthermore, the GABAergic
feedback also serves to synchronize the population activity [14,15]. In each cycle, the firing
of the pyramidal cells serve to excite the interneurons thus initiating the next oscillatory
cycle. This mechanism was first uncovered in hippocampal rat slices [16] and supported by
computational modelling [10-12]. Later, the GABAergic based mechanism was also
investigated using optogenetic studies in the somatosensory cortex [17,18] and the visual
system [19] in mice. A human MEG study demonstrated that gamma oscillations are strongly
modulated after the GABAergic feedback was manipulated by the GABAergic agonist
lorazepam in a double-blind study. As predicted by the PING model, the visual gamma
oscillations decreased in frequency while they increased in power as the GABAergic
feedback increased with the administration of lorazepam [20]. Other studies have reported a
link between gamma frequency and the GABA concentration as measured by magnetic
resonance spectroscopy (MRS) in both visual and somatosensory regions [21-23] (but see
[24]). Finally a PET study measuring GABA(A) receptor density found a link to gamma
frequency [25].

The PING mechanism can be implemented using different biophysical models [26—28].
Several of these implementations are based on Hodgkin—Huxley type of models. In this
work, we based our simulations on the Izhikevich model [29] which has reasonable realistic
dynamics and computational efficiency of integrate-and-fire neurons. This model is capable
to produce variety of spiking dynamics such as regular spiking, fast spiking, low threshold
spiking and other by adjusting only four parameters. In contrast to other more complex
models, e.g., [30] that require tuning of multiple parameters, the Izhikevich model is relatively
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92  simple yet capable of explaining a wide range of phenomena pertaining neuronal
93  synchronization and oscillations [31-33].

94 In this study, we asked if the dynamical properties of the PING model can account for the

95 gamma response in the TRF we observed in the MEG data. The basic idea was to simulate
96 a network model for gamma oscillations with a broadband signal. This allowed us to estimate
97 the TRF of the network model and relate it to the TRF from MEG study. If the network model
98 can procure a TRF similar to the one observed in the MEG data, then we have provided

99 novel insight on the neuronal dynamics governing the early visual system.

100 In short, to investigate the dynamical properties of the visual system, we recorded the MEG
101  while stimulating the visual system using a broadband (1-720 Hz) visual flicker. This allowed
102  usto estimate the TRF of the visual system. As we will demonstrate, this resulted in a clear
103  band-limited response in the gamma band. We then constructed a physiologically realistic
104  network model that could generate gamma-band oscillations by a PING-type mechanism.
105 This model allowed us to account for empirically observed TRF in the gamma band.

106
107 Methods
108 Participants

109 Five participants (mean age: 33; age range: 28-38; 1 female) with no history of neurological
110 disorders partook in the study. The study was approved by the local ethics committee

111 (University of Birmingham, UK) and written informed consent was acquired before enrolment
112  in the study. All participants conformed to standard inclusion criteria for MEG experiments.
113  Participants had normal or corrected-to-normal vision.

114  Experimental paradigm

115  Two grating stimuli were presented bilaterally (Fig. 1A). After 0.5 s from the stimuli onset, the
116 left and right gratings started contracting for 3 s either coherently (same direction) or

117  incoherently (different directions). The direction of the motion (up / down) of the left and right
118 grating stimuli was random in consequent trials. The grating stimuli moved at a constant

119 speed of 0.5 degree/s. The participants were instructed to focus on the fixation point and
120 press the button when a cue indicating the direction of motion (i.e. coherent or incoherent)
121  occurred at the fixation point.

122  The key novelty of the experiment is that the luminance of the left and right stimuli was

123  modulated by two uncorrelated broadband (i.e., noise with uniform distribution) flickering

124  signals (Fig. 1B) at 1440 Hz. To this end, the grating stimuli were converted into textures
125 using Psychophysics toolbox [34], and then the luminance of these textures was modulated
126 by the flickering signals. We used the PROPixx DLP LED projector (VPixx Technologies Inc.,
127  Canada) to present the grayscale visual stimuli at a high refresh rate of 1440 Hz with a

128  resolution of 960 x 600 pixels (see, [35]). Such refresh rate was achieved by presenting

129 twelve frames within one refresh cycle of 120 Hz graphics card. The experimental paradigm
130 was implemented in MATLAB 2018a (Mathworks Inc., Natick, USA), and the scripts are

131 available on the OSF website (https://osf.io/fe8x5/).
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133  Fig. 1. Experimental paradigm. (A) Grating stimuli were presented for 0.5 s and then the left
134  and right gratings started contracting for 3 s either coherently (same direction) or

135 incoherently (different directions). Yellows arrows on this figure (were not visible in the

136  experiment) indicate coherent motion downwards. The cue (‘=’) indicates coherent motion.
137  (B) Luminance of the left and right grating stimuli was modulated by two independent

138 broadband signals. The modulation (visual flicker) started at the time -0.5 s, together with the
139 onset of grating stimuli.

140
141  Magnetoencephalography data acquisition and processing

142  The MEG data were acquired using a 306-sensor TRIUX Elekta Neuromag system (Elekta,
143  Finland). The magnetic signals were bandpass filtered from 0.1 and 330 Hz using embedded
144  anti-aliasing filters and then sampled at 1000 Hz. The acquired time series were segmented
145 into 4 s epochs; —1 to 3 s relative to the onset of the stimuli motion. Note that the stimuli were
146  flickering during the -0.5 to 3 s time interval. Simultaneously with the MEG, we also acquired
147  the eye-movements and blinks using an EyelLink eye-tracker (SR Research, Canada). Eye
148  blinks were detected in the X-axis and Y-axis channels of the eye tracker by applying a
149 threshold of 5 SD. The saccades were detected using a scatter diagram of X-axis and Y-axis
150 time series of the eye-tracker for each trial. An event was classified as a saccade if the focus
151  away from the fixation point by 2° and lasted longer than 500 ms. Trials contaminated by blinks
152 and saccades were removed from further analysis. We also rejected trials containing large-
153 amplitude events (above 5 SD) in MEG which are mainly associated with motion and muscle
154  artefacts. As a result, the number of trials that remained after exclusion was 142 + 10 (mean £
155  SD) per participant. For each participant, the number of trials per condition was equalized by
156  randomly selecting the same number of trials. Such equalising serves to avoid a potential bias
157 in TRF estimation related to unbalanced number of trials.

158 Power spectral density

159 The power spectral density was estimated using Welch’s method as implemented in the
160  SciPy toolbox [36]. To this end, 4 s epochs of data were divided in 1 s segments with 50%
161 overlap and weighted by a Hanning taper. The Fourier transform was applied to each

162  segment and squared Fourier coefficients were averaged over the segments.
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163  The same approach was applied to estimate the power spectral density of the modelled
164  data.

165  Temporal response functions

166  Temporal response functions (TRF) were estimated using ridge regression as implemented
167  in mTRF toolbox [37]:

168 TRF = (STS+ AI)"1STx

169 where S is the lagged time series of the stimulus, x denotes neuronal response, | is the
170 identity matrix, and A is the smoothing constant or “ridge parameter”. In this study, the
171 smoothing constant A was set to 1. Note that TRF is similar to a linear cross-correlation
172  function if the stimulus is a random (temporally uncorrelated) signal.

173  The TRFs were computed between the broadband flickering signal and the MEG

174  gradiometer with the strongest visual flicker response. Note that the TRF in Figure 3 was
175 computed for an occipital gradiometer that captures signals in both the alpha and gamma
176  bands. In order to assess the contribution of the 50 Hz line noise to the TRF, we also

177  computed the TRF for MEG magnetometer with strongest response to the visual flicker
178  before and after applying source space separation (SSS) method [38] for noise reduction.
179  For the modelled data we calculated the TRF between the broadband input current and the
180 average membrane potential for the E-cells.

181 Time-frequency analysis

182  The time-frequency representations of power of the TRF were computed using the Hanning
183 taper approach as implemented in the Fieldtrip toolbox [39]. We used time-windows of

184  different length spanning 5 cycles at the specific frequency. The analysed frequency range
185 was 5 — 100 Hz with steps of 1 Hz and the time ranged from -0.1t0 0.2 s (or 0.7 s as in

186  Figure 1) with steps of 5 ms. In case of the induced gamma oscillations (see, Fig. 5), we

187  reported a relative change in MEG power during the -0.5 to 3 s stimulation interval compared
188 to the -1.0 to -0.5 s baseline as fO”OWS, Prel = (Ps‘r - PBL) / (PST + PBL), where Pst and Pg.

189 denote MEG power during stimulation and baseline, respectively.

190 MRI data acquisition

191 A high-resolution T1-weighted anatomical image (TR/TE of 7.4/3.5 ms, a flip angle of 7°, FOV
192  of 256x256x176 mm, 176 sagittal slices, and a voxel size of 1x1x1 mm?3) was acquired using
193  3-Tesla Phillips Achieva scanner.

194 Source reconstruction

195 To build a forward model, we first manually aligned the MRI images to the head shape
196  digitization points acquired with the Polhemus Fastrak. Then, the MRI images were
197 segmented, and a single shell head model was prepared using spherical harmonics fitted to
198 the brain surface [40]. The individual anatomy was warped into standard MNI template using
199 the Fieldtrip toolbox [39].

200 To localise power of the of induced gamma rhythm in source space, we used the Dynamical
201 Imaging of Coherent Sources (DICS; [41]) approach as implemented in thr Fieldtrip toolbox.
202  The time-frequency analysis was applied to the MEG data in the -0.5 to 3 s interval that covers
203  the entire duration of the flickering stimuli.

204  To localise the gamma echo response, we used Linearly Constrained Minimum Variance
205 (LCMV) beamformer [42] as implemented in the Fieldtrip toolbox. To this end, we first
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206  reconstructed time series in source space by applying LCMV beamformer to MEG data, and
207 then estimated TRF (see, above) for each source point. The covariance matrix for the LCMV
208 beamformer was estimated for bandpass filtered MEG data (40 — 100 Hz) in the -0.5t0 3 s
209  time interval.

210 The location differences between sources of induced gamma and gamma echo response were
211  assessed by extracting the coordinates (along the interior-superior z-axis) of these sources
212  for each participant separately, and then applied the t-test over participants.

213 Model

214  We modelled the neuronal populations of cortical areas as a network of interconnected

215  excitatory and inhibitory neurons (Fig. 7A). The network model was composed of 400 regular
216  spiking excitatory pyramidal neurons (E-cells), and 100 fast-spiking inhibitory interneurons
217  neurons (I-cells). The number of neurons as well as ratio between E-cells and I-cells (4 to 1)
218 are consistent with previous studies [29,31].

219 Neuronal model

220  We used the neuronal model proposed by Izhikevich [29] to simulate the membrane
221  potentials of the excitatory and inhibitory neurons.

222 v' = 0.04v2 + 50+ 140 —u + 1 + L5y (1)
223 u' =albv—u) (2
224 sampa = Aampal (W)(1 = Sampa) — BampaSampa 3)
225 Scapa = @gapaF (W) (1 — Sgapa) — BcaBaScapa (4)
226

227  where v represents the membrane potential of the simulated neuron, | determines the input
228  current, u is a slow recovery variable. The model also includes a reset: when v exceeds 30
229 mV, an action potential is assumed, and the variables are reset: v=cand u=u + d. The
230  coefficients a = 0.02 and b = 0.2, ¢ = -65 and d = 8 define the regular spiking E-cells, while a
231 =0.1andb=0.2 c=-65andd = 2 define the fast spiking I-cells. The variable s represents
232  the gating for synaptic input and includes both savea and scasa defined for each sending E-
233  cell and I-cell, respectively.

234  To model the kinetics of the AMPA and GABA neurons, we followed the formalism from
235 Wang and Buszaki [11].

236  The term Iy, reflects the synaptic current in the receiving neurons whereas s reflects the
237  gating variable in the sending neuron,

238 Isyn = ZIiV=1 Ce.i) * Sampa - (Vampa — V) + Z?’lﬂ Ce.j) * ScaBa - (Vgapa — V) (%)

239  where N is the number of excitatory neurons, M is the number of inhibitory neurons, C is the
240  connectivity matrix, vauea and veaga are reversal potentials of AMPA (vamea = 0 mV) and GABA
241  receptors (veasa = -70 mV on E-cells and veapa = -75 mV on I-cells), respectively. The

242  differential equation (3 and 4) includes parameters channel opening rate dups = 12 (Mms™)
243  and the channel closing rate Bawra = 0.5 (Mms™) for AMPA receptors, and dgaga = 12 (ms™)
244 and Beasa = 0.1 (ms™) for GABA receptors; F denotes a sigmoid function: F(v) =

245  1/(1+ exp(—v/2)).
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246  We specified the connectivity strength between different types of cells based on prior

247  experimental results [43]. These connection strengths represented the amount of current
248  that enters the receiving neuron after a spike of the sending neuron [31]. To make sure that
249  the model connectivity was selected adequately, we assessed the model output frequency
250  (firing rate) as a function of connectivity between I-cells for several input currents to E-cells
251 and I-cells (Fig. 2). The plot shows a decrease in frequency with increasing inhibitory

252  connectivity strength as predicted by the PING mechanism [11].
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253 i

254  Fig. 2. Model output frequency as a function of connectivity strength between I-cells.

255

256  We further adjusted the connectivity matrix while preserving the connectivity strength ratio
257  between different type of cells, to obtain robust oscillations at 48 Hz for given input currents.
258  The connectivity between cells was as follows: connectivity between I-cells (ci= 0.004),

259  connectivity from I-cells to E-cells (cie = 0.006), and connectivity from E-cells to I-cells (Cei =
260  0.003). Since the connectivity strength between E-cells is much lower compared to other
261 cells, ~0.25 * cji [31], we set connectivity between E-cells to 0 (Cee = 0.0).

262  Population activity and local field potential produced by the model

263  The population activity of the model reflecting the local field potentials was computed by
264  averaging the membrane potentials of the E-cells. This somehow approximates the fields
265 measured by MEG which are generated by the sum of dendritic currents in pyramidal cells
266  [44].

267  To solve the differential equations (1-4) numerically, we used the Euler method with the
268  time-step At =1 ms.

269 Data and code availability

270 Data and code are available on the OSF website (https://osf.io/fe8x5/).
271

272  Results

273  We used a moving grating paradigm in which the left and right visual stimuli were generated
274  using orthogonal broadband random signals while we recorded the ongoing MEG (Fig. 1).
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275  Broadband visual stimulation reveals alpha and gamma echoes in the visual system

276  The TRF of a system can be estimated by deconvolving its input and output [11]. We used
277  ridge regression (see, Methods) to compute the TRF for the MEG signals from sensors over
278  visual cortex while stimulating with a broadband random visual input. Figure 3 shows the
279  TRF for an occipital sensor for a representative participant. The TFR has a rich temporal
280  structure (Fig. 3A, black line). Applying a bandpass filter in the gamma band (40-100 Hz) to
281 the TRF revealed an early response (Fig. 3A, blue line) at about 40 ms. A bandpass filter in
282  the alpha band (8-13 Hz) revealed a later response comprising several cycles. A time-

283  frequency analysis of power further demonstrated the presence of band-limited responses in
284  the alpha and gamma band in the TRF (Fig. 3B). While the late response — the "alpha

285  perceptual echo” — was reported in the previous studies (e.g. [9], the early response — the
286  “gamma echo” — is so far unobserved property of the visual system.
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287

288  Fig. 3. TRF of the human visual cortex derived from a random broadband visual input train.
289 (A) The TFR filtered in the broad band (1-100 Hz; black line), the gamma band (40-100 Hz;
290 blue line) and the alpha band (8-13 Hz; gray line). (B) Time-frequency representation of
291  power of the TRF. Note that the TRF was computed for an occipital gradiometer that

292  captures both the alpha band and gamma band TRF.

293

294  TRF show individual resonance frequency of gamma echo
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295  To further evaluate the characteristics of the gamma echo, we computed TRF for five

296 individual participants using the MEG gradiometers with strongest response to the

297  broadband input signal. The frequencies of the individual gamma echoes ranged from 46 to
298 56 Hz and were close to 48 Hz on average (Fig. 4). The responses in the gamma band were
299  strongest at 50 — 100 ms and spanned over 2 — 3 cycles. To ensure that the 50 Hz line noise
300 does not contribute to the gamma echo, we assessed the power spectral density and TRF
301 for magnetometers before and after applying the source space separation (SSS) method
302 [38] as implemented in MNE Python toolbox [45]. SSS removes artifacts caused by external
303 disturbances such as line noise, and hence, provides possibility to evaluate contribution of
304 50 Hz noise to the gamma echo. We performed the analysis on the magnetometers as they
305 are particularly sensitive to 50 Hz line noise and hence, they provide a worst-case setting.
306 The results clearly showed that suppression of 50 Hz noise in data did not change the

307 characteristics of gamma echo (Fig. S1) in any of the participants. This demonstrates that
308 the gamma echo is not biased by the line noise.

Participant S1 | 46 Hz Participant S2 | 48 Hz Participant S3 | 50 Hz
=] g g
9 8 3
S At 3 VWM/\M\/\/\/\/\/\/VVV\A S
2 2 2
‘s s S
£ £ IS
© 01 0 0.1 02 ®© -0.1 0 0.1 0.2 T -0.1 0 0.1 0.2
time lag (s) time lag (s) time lag (s)
100 100 100
i 80 i 80 i 80
& 60 & 60 3 60
=} c [ =
8 40 $ 40 $ 40
o o o
£ 20 £ 20 £ 20
-0.1 0 0.1 0.2 -0.1 0 0.1 0.2 -0.1 0 0.1 0.2
timelag (s) | power (a.u.) time lag (s) time lag (s)
0 1
Participant S4 | 56 Hz Participant S5 | 47 Hz Grand average | 48 Hz
5 5 5
8 8 8
© () [
‘s s s
E = IS
© 0.1 0 0.1 02 ®© -01 0 0.1 0.2 T 01 0 0.1 0.2
timelag (s) timelag (s) timelag (s)
100 100 100

o]
o
o]
o
o]
o

»
o
N
o
S
o

frequency (Hz)
D
o

N
o
N
o
N
o

frequency (Hz)
[o)]
o

frequency (Hz)
(2]
o

0 0.1 0.2 -0.1 0 0.1 0.2 -0.1 0 0.1 0.2
timelag (s) timelag (s) time lag (s)

.
°
N

309

310 Fig. 4. TRF and the associated time-frequency representation of power for individual
311  participants. Note the robust response in 40-60 Hz gamma range. Gray lines depict the TFR
312  at 1-100 Hz while the black lines show the response filtered at 40—-100 Hz.

313  Induced gamma oscillations

314  To relate the gamma echo response and visually induced gamma oscillations, we computed
315 atime-frequency representation of power at the occipital sensor with the strongest response

9
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316 to flicker (see, Fig. 5). The grating induced gamma oscillations at around 57 Hz (grand
317 average). Interestingly, the individual frequencies of the induced gamma oscillations were
318 faster than frequencies of the gamma-echo (Fig. 5). These results suggested that the
319 gamma echo and induced gamma oscillations are produced by different generators.
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320

321  Fig. 5. Time-frequency representation of the power (relative change) induced by the

322  gratings. The dashed line indicates frequency of the induced gamma oscillations, and for
323  comparison, the solid line indicates frequency of the gamma echo. Curves next to the time-
324  frequency plots represent power averaged over the -0.5 to 3 s time interval.

325
326  Localization of gamma echoes and induced gamma oscillations in sensor and source spaces

327  To identify the generators of the gamma echo and induced gamma oscillations, we

328 computed their spatial characteristics at the sensor and source levels. Both sensor and

329  source space topographies of the gamma echo clearly showed that the response was mainly
330 localized in the primary visual cortex (Fig. 6A, B). Similarly, induced gamma oscillations were
331 originated in the visual cortex as suggested by sensor and source space topographies (Fig.
332  6C). The sources of the gamma echo response and induced gamma oscillations were

333 largely overlapped (Fig. 6), although, sources of the gamma echo appeared more lateralised
334  and superior. We assessed their spatial overlap by extracting coordinates along z-axis and
335 comparing these coordinates across subjects using t-test (see, Methods). Although, the

336  sources of induced gamma oscillations were slightly superior (~11 mm on average)

337 compared those of the gamma echo, the difference was not significant (p > 0.19, t-test).

338 These results suggest that the gamma echo response and induced gamma oscillations are
339  produced by neighbouring but not necessarily the same sources.
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amplitude (a.u.)

amplitude (a.u.)

power (rel.)

Fig. 6. Topographies and source modelling of the gamma echo and induced gamma
oscillations. (A) The topography and the source modelling (LCMV beamformer) of the peak
amplitude of the gamma echo (0.04 — 0.08 s) for the right flickering stimuli. (B) Same as (A)
but for left flickering stimuli. (C) The topography and source modelling of the power (DICS
beamformer) of the induced gamma oscillations within range 40 — 100 Hz.

PING based model of gamma oscillations

We implemented a pyramidal-interneuron gamma (PING) [10,12,16] network model with
biologically plausible synaptic currents [11] attempting to account for the TRF in the gamma
band. The model consisted of interconnected excitatory (E) and inhibitory (I) cells (Fig. 7A).
The connectivity matrix in Fig. 7B describes the connection strengths between all the cells.
In this model, the connectivity strength between different type of cells was set based on prior
empirical findings [43], see Methods. The connection strength was weighted by random
values drawn from a uniform distribution [0, 1], to ensure heterogeneous connectivity. For
the connectivity matrix in Fig. 7B and constant input currents of 12.25 pA and 5.25 pA to the
E-cells and I-cells, respectively, the model produced synchronous spiking activity (Fig. 7C).
The membrane potentials of the excitatory neurons were averaged to approximate the local
field potentials, i.e., the population activity (Fig. 7D). Spectral analysis revealed robust
oscillations in the local field potentials at 48 Hz (Fig. 7E). The PSD was computed and
subsequently averaged over 20 trials, to reduce random variations in the model output.
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Fig. 7. The PING model with constant input currents produces robust neuronal oscillations at
around 48 Hz. (A) Neuronal architecture; the simulated network consisted of interconnected
E-cells (N=400) and I-cells (N=100). (B) Connectivity matrix between E-cells and I-cells. (C)
Spike rastergram for E-cells (blue) and I-cells (orange) shows temporal synchronization
among the cells in the presence of constant input current. (D) The average membrane
potential of the E-cells exhibited prominent oscillations. (E) Power spectral density of the
average membrane potential for the E-cells shows a clear peak at 48 Hz. Note that PSD was
averaged over 20 trials.

In accordance with the PING mechanism, the model firing rate is determined by the input
currents and the connectivity strength [11], suggesting that the resonance frequency of 48
Hz can be obtained for different combinations of the input currents and connectivity. To
further explore this possibility, we assessed the model output power (at the spectral peak)
and corresponding frequency (Fig. 8A) by varying the input currents to E-cells and I-cells
while preserving the connectivity parameters and the network size. The 2D parameter space
diagram (Fig. 8B, C) indicated that resonance frequency of 48 Hz can be obtained for
several combinations of the input currents. Considering this, in addition to the input currents
used in our simulations above (le = 12.25 pA and |, = 5.25 pA,; black circle in Fig. 8B,C), we
also explored two pairs of the input currents: Ie = 8.75 pA and |, = 5.25 pA (red circle in Fig.
8B,C), le =12.75 pA and I, = 7.25 pA (blue circle in Fig. 8B,C), which produce oscillations at
the resonance frequency. Temporal characteristics of the spiking activity and mean field
potentials for three pairs of the input currents are shown in Fig. 8D. These results suggested
that our initial model parameters (le = 12.25 pA and |, = 5.25 pA) provided more stable
oscillations compared to the other pairs of the input currents.
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387  Fig. 8. (A) The PSD with spectral peak at 48 Hz for input currents I = 12.25 pA and |, = 5.25
388 pA. (B, C) Power at the spectral peak (B) and corresponding frequency (C) of the network
389  oscillations as a function of input current to E-cells and I-cells. Black, red, and blue circles
390 indicate pairs of the currents producing oscillations at 48 Hz. (D) Spiking activity and
391 corresponding average membrane potentials for three selected input currents that produce
392  oscillations at 48 Hz.

393

394  To ensure that the model was operating in a stable regime, we estimated the duration of
395 transient effect after the input current was applied (Fig. 9A). The time diagram of spiking
396 activity and mean field potentials showed that the transient effect lasted less than 0.5 s. In
397 the further analyses, we discarded the first 1 s of the signal to make sure that the remaining
398 signal is stationary.
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Fig. 9. (A) Transients in spiking activity and average membrane potential after applying
constant input currents to E-cells and I-cells. (B) The power (at the spectral peak) and
corresponding frequency of the network as a function of the network size. The labels indicate
the number of neurons in the network. Bars indicate standard deviation estimated in 20
trials.

Finally, we evaluated the impact of the network size on frequency and power of the mean-
field potentials (Fig. 9B). Importantly, while changing the network size, we preserved the
ratio between E-cells and I-cells as 4 to 1 following our original model [29]. The results
suggested that an increase in the network size from 200 to 1000 neurons was associated
with a slight decrease in the frequency from 50 to 46 Hz, and an increase in the power. Such
a relatively small change in the output characteristics suggested robustness of the model.

Broadband input to the model produces a gamma echo at the resonance frequency

In order to estimate the TRF of the network dynamics, we applied broadband input current to
the model. The input current was modelled as a sum of constant current of 12.25 pyA and
random (uniform) noise with amplitude of 4 YA to the E-cells and a constant current of 5.25
MA to I-cells (Fig. 10A). This simulates the LGN input to the area V1 in the visual cortex. For
the broadband input current, the model produced neuronal activity (Fig. 10A-D) similar to
those of the constant input currents (see, Fig. 7). In the presence of broadband input, spiking
activity of E-cells remained highly synchronised (Fig. 10B), so that average membrane
potentials showed oscillations that can be readily observed in population response (Fig.
10C) and as well as in the power-spectral density (Fig. 10D). By computing the TRF
between the input broadband current and output voltage, we observed a gamma echo (Fig.
10E) similar to that in MEG data. Importantly, the frequency of the echo matched the
resonance frequency of the model (Fig. 10F). To obtain more robust results, the PSD and
TRF were averaged over 20 trials.
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428  Fig. 10. Broadband input current to E-cells produces damped oscillations in the TRF — the
429 gamma echo. (A) Broadband input current to E-cells (black line) and constant input current
430 to I-cells (orange line). (B) Spike rastergram for E-cells and I-cells for broadband input

431  current. (C) The average membrane potential of the E-cells in response to fluctuating input
432  currents. (D) Power spectral density of average membrane potentials of the E-cells averaged
433  over 20 trials. (E) TRF assessed for the average membrane potentials of the E-cells with
434  respect to the broadband input current. Note the clear “gamma echo”. Gray and black lines
435  depict respectively raw and the filtered TRF (40 — 100 Hz) averaged over 20 trials. (F) Time-
436  frequency representation of power of the TRF.

437

438  We further assessed the impact of the amplitude of the broadband input current on

439  characteristics of the gamma echo. The input current was modelled as a sum of constant
440  current of 12.25 pA and random (uniform) noise with amplitude ranged from 2 to 9 YA to the
441  E-cells and a constant current of 5.25 pA to I-cells. The gamma echo revealed by MEG was
442  resembling the model gamma echo for broadband input current of 4 pA (Fig. 11). In case of
443  lower currents (2 4A and 3 pA), the response at resonance frequency showed much longer
444  decay. Conversely, the higher currents (5 pA to 9 nA) produced a response with shorter
445  decay time.

446
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447

448  Fig. 11. The amplitude of the broadband input current determines temporal characteristics of
449 the gamma echo. TRF (top panel) and its time-frequency representation (bottom panel). lgs
450 denotes amplitude of the broadband input current.

451
452  Oscillatory inputs produce maximum power at the resonance frequency

453  We further explored the model response by applying an oscillatory input current to E-cells in
454  a similar manner as the broadband input current. The oscillatory input was modelled as a
455  sum of constant current of 12.25 pA and a sine wave with amplitude of 9 pA to E-cells, while
456  keeping the current to I-cells constant at 5.25 pA (Fig. 12A). The oscillatory input increased
457  synchronization among the E-cells in the gamma band (Fig. 12B) compared to the absence
458  of oscillatory input (see, Fig. 7C). The average membrane potential of the E-cells also

459  showed a larger amplitude (Fig. 12C) compared to that of the constant input current (Fig.
460 7D). The oscillatory input current (mimicking visual stimulation) at the resonance frequency
461 (48 Hz) produced stronger response compared to a response at non-resonance (e.g. 78 Hz)
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462  frequency input (Fig. 12D). To assess the spectral profile of the model in response to input
463  currents of different frequencies, we applied a sinusoidal input current ranging from 1 to 100
464  Hz with 1 Hz steps and amplitude of 9 pA. The results showed an amplified peak in the

465  power spectral density near the resonance frequency of 48 Hz (Fig. 12E). Consistently with
466  earlier findings [46], the spectral profile peaked at the resonance frequency and showed a
467  decay towards higher frequencies.
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468

469  Fig. 12. Oscillatory input current reveals an amplification of oscillatory dynamics at the ~48
470  Hz resonance frequency. (A) Oscillatory input current to E-cells (black line) and constant
471  current to I-cells (orange line). (B) Spike rastergram for E-cells and I-cells. (C) The average
472  membrane potential of the E-cells. (D) Example of power spectral density for input current at
473 48 Hz (resonance frequency, black line) and at 78 Hz (non-resonance, orange line). (E)

474  Power spectral density of the average membrane potential for oscillatory input over multiple
475  frequencies, 1-100 Hz, and amplitude of 9 pA.

476

477  To further investigate the model response to an oscillatory input, we computed the model
478  output power (at the spectral peak) and corresponding frequency as a function of the input
479  current, by systematically varying its frequency (1 — 100 Hz) and amplitude (0.5 — 10 pA).
480 The results showed that the peak frequency in the spectral profile increased with the

481  amplitude of input current (Fig. 13A), meaning that the peak at around 48 Hz can be

482  obtained for a specific input current of 9 pA (corresponds to Fig. 12E). This suggests that the
483  amplitude of visual input may differently affect frequency of the neuronal response.

484  Interestingly, there was a minimum input current of 5 pA, above which, the frequency of the
485  network oscillations matched the frequency of the input current (Fig. 13B). This suggests
486 that the frequency of external stimulation may not be directly translated to the firing rate.
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487

488  Fig. 13. Network output power at the spectral peak (A) and corresponding frequency (B) as a
489  function of the oscillatory input. The amplitude and frequency of the input current varied

490  within 0.5 — 10 pA and 5 — 100 Hz, respectively. Note that the spectral profile on A (right

491  panel) for Ie = 9 YA corresponds to the spectral profile shown on Fig. 12E.

492
493 Discussion

494  In this study, we used broadband visual stimulation combined with MEG to assess the

495  dynamical properties of the human visual cortex. We did this by estimating the temporal
496  response function (TRF), i.e. the kernel best explaining the MEG signal from visual cortex
497  when convolved to the broadband visual input. The TRF is similar to the cross-correlation
498  function [37] in case of a random temporally uncorrelated input. In the TRF we observed an
499  early response limited to the gamma band that we term the gamma echo. We also observed
500 the known perceptual echo in the alpha band [9]. To explore the neuronal mechanisms
501 producing the gamma echo, we implemented a biophysically plausible pyramidal-

502 interneuron-gamma (PING) model. When driving the model by a broadband input current
503 and estimating the respective TRF, we observed a gamma echo similar to that in the MEG
504 data. Based on these simulations, we suggest that the gamma echo is produced by a

505 network in which the dynamical properties are largely determined by GABAergic

506 interneurons and their interaction with pyramidal cells; i.e. a PING-type network adjusted to
507 produce damped oscillations in the gamma band can account for the gamma echo.
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508 Relationship between alpha and gamma echoes

509  Our findings reveal that both the alpha and gamma echo reflect the intrinsic properties of the
510 visual system. However, there are several differences between the alpha and gamma band
511 echoes. First, while alpha echo occurs at around 0.2 s, gamma echo has a much earlier

512 onset at 40 ms. Second, the gamma echo is largely localized in the primary visual cortex,
513  whereas the alpha echo propagates over the cortex [47]. Third, the alpha-echo spans for up
514  to 10 cycles, while gamma-echo vanishes after 2—3 cycles. These different characteristics
515 suggest that the echoes are generated by different mechanisms and may not always occur
516 in the brain concurrently.

517 At the same time the alpha and gamma echoes share similar properties. Earlier studies have
518 demonstrated that the alpha echo shows maximum power at the individual alpha frequency
519 [9]. Similarly, we found that the central frequencies of the gamma echo were specific to the
520 participants. Our simulation results showed that the gamma echo of the model was strongly
521 related to the resonance properties of the neuronal network. Thus, we suggest that the

522  gamma echo reflects the intrinsic resonance properties of the early visual system.

523  Our results show that the gamma echo originates in the primary visual cortex and does not
524  appear to propagate outside of this area. Conversely, a recent study showed that alpha

525 echoes have the characteristics of travelling waves [47]. The authors further suggest that
526 the spatio-temporal dynamics of the alpha echo is consistent with the timing of the neuronal
527  activity that one might expect for feedforward and feedback communication associated with
528 predictive coding. Indeed, both alpha and gamma oscillations might play a key role for

529  predictive coding [48,49], and thus, propagation properties associated with the gamma echo
530 may provide crucial insight on the feedforward dynamics associated with predictive coding.

531 In contrast to the alpha echo, the gamma echo has not been observed in previous studies
532 that applied broadband visual stimulation (e.g. [9,50]), most likely since these studies relied
533  on projectors with a relatively low refresh rate of 100 to 160 Hz. The resulting temporal

534  resolution of 6 — 10 ms corresponds to at least 3 samples for a 48 Hz-cycle, and thus, it does
535 not allow to fully capture gamma-band activity. In this study, we used a projector with a

536 refresh rate of 1440 Hz which allows presenting stimuli with a sub-millisecond temporal

537  resolution allowing for optimally estimating the gamma echo.

538
539 Induced gamma oscillations and gamma echo

540 In this study, we presented grating stimuli concurrently with the broadband visual flicker, and
541  hence, both the grating stimuli and the flicker can potentially induce a response in the

542  gamma band. Analysing time-frequency representation of MEG power and the gamma echo,
543  we found that the visual grating induces gamma oscillations at around 57 Hz (grand

544  average) whereas central frequency of the gamma echo was near 48 Hz, indicating that

545  these phenomena do not overlap in the frequency domain. Furthermore, we did source

546 localization of the induced gamma oscillations and the gamma echo. Although, the sources
547  were located in the primary visual cortex closely to each other, there was an indication that
548  sources of the induced gamma are slightly superior (~11 mm) than the sources of gamma
549  echo. Consistently with our findings, previous studies [21,51-54] also demonstrated that
550 static and dynamic gratings induce gamma oscillations in the primary visual cortex. Indeed,
551 the gamma echo and induced gamma oscillations may originate from neighbouring but

552  different areas (for instance, V1 and V2), which might not be easily dissociated due to limited
553  spatial resolution of MEG. Based on the findings, we conclude that the gamma echo and the
554  induced gamma oscillations are produced by different neuronal populations. This is
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555  consistent with the work of Duecker et al, 2020 demonstrating the visual flicker does not
556  entrain endogenous gamma oscillations but they are rather coexisting phenomena.

557
558  Mechanism of the gamma echo

559  We implemented a biophysically realistic computational model based on the PING

560 mechanism to clarify the underlying mechanism of the gamma echo. As we discussed
561 earlier, the gamma echo and induced gamma oscillations are likely to be produced by
562  different generators. This explains the absence of a resonant frequency in our recent study
563  (Duecker et al., 2020) which however was reported by Gulbinaite and colleagues [46]. In
564 their study, the resonance frequency at about 47 Hz was observed when driving the visual
565  system with rhythmic stimuli in a wide range of frequencies (3 to 80 Hz). We were able to
566  reproduce this finding using our model and we therefore suggest that the rhythmic

567  stimulation in study by Gulbinaite et al. did not affect the network producing endogenous
568 gamma oscillations per se, but rather a network in V1 producing damped gamma

569  oscillations. This way, the gamma echo does not reflect the dynamics of the endogenous
570 gamma oscillations, but rather co-exists with endogenous gamma oscillations in different
571  frequency bands.

572
573  Computational model

574  In this study we used a relatively simple model to describe dynamics of the early visual

575  cortex in response to the broadband and rhythmic stimulation. Our model was based on the
576  lzhikevich framework [29] and thus, combined biologically plausibility of Hodgkin—Huxley
577  type dynamics and the computational efficiency of integrate-and-fire neurons. In addition, we
578 improved the model by incorporating the kinetics of the AMPA and GABA neurons based on
579 the formalism from Wang and Buszaki [11]. Since the gamma echo is well localised in the
580 primary visual cortex (V1), and hence, the underlying mechanism does not require a

581 complex interplay between areas in the visual system, our model adequately describe this
582  phenomenon. In future work more complex multicompartment models [26] could also be

583 utilised to describe gamma echo and perhaps provide some insight into the mechanism.

584  Our model was tuned to account for the gamma echo, and in future work it would interesting
585 to extend the model framework such that the network can produce alpha oscillations as well.
586  This would allow addressing more complex relationship between the gamma and alpha

587  echoes from mechanistic perspective. Yet an avenue to explore would be to extend the

588 models with a second network capable of producing endogenous gamma oscillations. This
589  would allow for exploring the conditions when the network producing the gamma echo could
590 also entrain that network producing the endogenous gamma oscillations.

591
592  Implication of the findings

593  Our findings can provide new insight into the mechanism of evoked responses. It seems

594  plausible that the characteristics of the early evoked responses in the visual system might be
595 determined by the properties of the endogenous gamma activity. Indeed evoked gamma
596  oscillations in response to visual stimuli have been identified in a previous study [55].

597 Importantly these oscillations increased with hypocapnia which is known to also increase
598  GABAergic conductivity. In future work it would also be interesting to further uncover which
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599 components of visual evoked fields can be explained by the neuronal dynamics also
600  producing the gamma echo [56].

601
602 The gamma echo is not related to 50 Hz line noise.

603  One might be concerned that the gamma echo is partly a consequence of the 50 Hz line
604  noise given the similar frequencies. However, our analysis on magnetometers (see, Fig. S1)
605 clearly demonstrates that suppression of the 50 Hz line noise does not change the

606 characteristics of the gamma echo in any of the participants. Moreover, the gamma echo did
607 vary from 46 to 56 Hz over participants. We conclude that the gamma echo is not biased by
608 the 50 Hz line noise.

609
610 Conclusion

611  Using broadband visual input stimuli we here provide evidence for a band-limited temporal
612 response function in the gamma that we term the gamma echo. A computational model
613 showed that a PING type of mechanism based on a network producing damped oscillations
614 in the gamma band could account for the gamma echo. Nevertheless, the gamma echo is
615 distinct from the mechanism producing endogenous gamma oscillations. The stage is now
616  set for further investigating how the gamma echo is modulated by tasks such as spatial

617  attention as well as uncovering how the echo might propagate in the visual hierarchy.

618
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Fig. S1. Suppression of line noise in data does not change the characteristics of the gamma
echo in representative magnetometers. Each panel shows the power spectral density (PSD)
and TRF for individual participants before (blue line) and after (orange line) applying the SSS
method to suppress 50 Hz line noise. The echoes remain strong after the 50 Hz line noise is
suppressed.
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