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Abstract
There is enormous variability in human immune responses to viral infections. However, the
genetic factors that underlie this variability are not well characterized. We used VirScan, a
high-throughput viral epitope scanning technology, to analyze the antibody binding
specificities of twins and SNP-genotyped individuals. These data were used to estimate the
heritability and identify genomic loci associated with antibody epitope selection, response
breadth, and the control of Epstein-Barr Virus (EBV) viral load. We identified 4 epitopes of
EBV that were heritably targeted, and at least two EBNA-2 binding specificities that were
associated with variants in the MHC class-II locus. We identified an EBV serosignature that
predicted viral load in white blood cells and was associated with genetic variants in the MHC
class-I locus. Our study provides a new framework for identifying genes important for
pathogen immunity, with specific implications for the genetic architecture of EBV humoral

responses and the control of viral load.
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Introduction

Antiviral antibody responses can last decades after an infection or immunization.%2 They
serve as protection from re-infection and can document the exposure history of an individual
or population. It has been known for over 50 years that the composition of circulating
immunoglobulin (Ig) is influenced by host genetics.3-¢ Twin, family, and population-based
studies have provided examples of heritable contributions to antiviral immune responses;
candidate gene and genome-wide association studies (GWAS) have identified genomic loci that
influence specific immune traits. However, few studies have examined the heritability of
adaptive immune responses broadly across different types of viruses.7-1* A recent study
investigating the genetic determinants of anti-viral antibody responses (measured by a
multiplex serological assay) to 16 common viruses identified strong associations in the HLA
locus and in 7 loci outside the HLA.12 However, to our knowledge there have been no genetic
studies of antibody epitope selection. Antibody fine specificity and breadth (polyclonality) can
influence pathogen clearance and protection from re-infection. Genetic variation affecting the
expression or function of viral sensing, innate immune signaling, antigen processing and
presentation, immune cell function or variation in the antibody locus itself, could all impact the
breadth and specificity of an anti-viral antibody response.

Epstein-Barr Virus (EBV) causes a chronic infection with greater than 90%
seroprevalence in most adult populations.3-15 The EBV genome is relatively large (172 kb),
encoding >85 proteins.16:7 Primary EBV infections are usually asymptomatic in healthy
children and result in a brief episode of infectious mononucleosis in adolescents and older
individuals. 8 Once the primary infection resolves, EBV establishes a lifelong latent infection
residing in circulating memory B-cells.14 There is variability in circulating viral load in healthy

individuals?9-2° and the host genes involved in viral load control have not been elucidated.
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Moreover, Epstein-Barr nuclear antigen 1 (EBNA-1) is an important marker of EBV latency and
detection of anti-EBNA-1 antibodies by enzyme-linked immunosorbent assay (ELISA) is often
used as an indication of EBV infection. Titers of anti-EBNA-1 antibody in serum of healthy
individuals have previously been linked to the HLA-DRB1 and HLA-DQB1 genes from the HLA
locus (class II region).8 However, the genetic architecture of antibody reactivity to the
remainder of the EBV proteome has not be elucidated.

EBV infection can cause nasopharyngeal cancer, Burkitt’s lymphoma, Hodgkin’s
lymphoma, and gastric adenocarcinoma, with elevated risk linked to the HLA locus (class I
region).21:22 Infection with EBV is also believed to play a role in the development of lupus,23-27
multiple sclerosis (MS),28:29 and other autoimmune diseases, with variants in the HLA locus
modulating the risk.30 We therefore assessed the genetics of antibody responses against EBV
using Phage ImmunoPrecipitation Sequencing (“PhIP-Seq”) with the complete human virome
(“VirScan”)31-33, in combination with the Anti-Viral Antibody Response Deconvolution
Algorithm (AVARDA)34. In brief, library scale oligonucleotide synthesis was used to express
106,678 overlapping 56-amino acid peptides spanning all known human viral proteins, in a
phage display format, covering ~400 viral species and strains. Phage clones
immunoprecipitated by serum antibodies were quantified via Illumina sequencing. We and
others have used the VirScan library to characterize the antibody repertoires of preterm
neonatess3s, assess viral antibodies after solid organ transplants®, to characterize broadly
neutralizing HIV antibodies37, link enteroviral infection with acute flaccid myelitis38,
characterize SARS-CoV-2 epitopes39, and in large cross-sectional and longitudinal studies of
exposure and response to hundreds of human viruses in health and after HIV4° or measles
infection4t. Recently, we have advanced the analysis of VirScan data by developing

‘AVARDA’34, which calculates likelihoods of viral infections by considering potential cross-


https://doi.org/10.1101/2021.03.25.436790
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.436790; this version posted March 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

reactivities among the peptides and between viruses, and the amount of independent evidence
supporting an antibody response to each virus represented in the library. In this study we find
that antibody epitope selection is largely a heritable trait, and that class IT major
histocompatibility (MHC) molecules shape antibody recognition of EBV. We also identified an
EBV serosignature that predicts EBV viral load in the periphery and associates with the MHC

class I region of HLA.

Results

Anti-viral antibody breadth and epitope reactivities are heritable. We used a twins
study design to characterize the heritability of VirScan antibody binding specificities. We
profiled sera of 494 twins (332 DZ and 162 MZ) from the TwinsUK cohort against the VirScan
library. Peptide reactivity scores (z-scores) were calculated by comparing each sample to a set
of negative control mock immunoprecipitations (IPs), which did not include serum, and were
included on the same plate (Fig. 1a).33:42

For each virus, we used AVARDAS34 to calculate the antibody response breadth (polyclonality),
and identified seropositive concordant twin pairs. To quantify the contribution of genetic and
environmental effects we determined the additive genetic (A), common (C), and unique
environmental effects (E) using SEM analysis applied to 446 immunodominant peptide
reactivities and the overall breadth of the response to 43 viruses from 9 genera. For each
peptide, an individual with a z-score greater than or equal to 7 was classified as a responder
and less than or equal to 3 as a non-responder. All values between 3 and 7 were treated as
missing data. Only dominant peptides (defined here as reactive in >20% of AVARDA-positive
individuals) were included in the analysis; data are presented at the genus level to avoid

ambiguity associated with cross-reactivity among viral species with high levels of sequence


https://doi.org/10.1101/2021.03.25.436790
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.436790; this version posted March 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

homology (Table 1). The mean breadth values ranged from ~10 peptides up to ~44 peptides
with heritability estimates ranging from 5% up to 57%. The virus with the greatest number of
dominant peptides, Epstein-Barr Virus (EBV, lymphocryptovirus genus), exhibited heritability

ranging from 25% to 89% across 107 peptides.
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Figure 1. EBV epitope selection and antibody response breadth are heritable traits. a,
Schematic depicting the heritability analyses. VirScan of the TwinsUK cohort (n = 494; MZ =
81 and DZ = 166 pairs; A upper panel) was used to generate a matrix of peptide reactivity
scores. The enrichment scores were used to calculate the Jaccard index and response
breadth using AVARDA. b, The Jaccard similarity indices of DZ twin pairs (red circles), MZ
twin pairs (green circles) or random pairings (blue circles) are shown above. The size of
each circle is proportional to the total number of EBV peptides that both twins recognize. c-
d, Dot plots showing the correlation of EBV response breadth between MZ and DZ twin
pairs. Square of the Pearson’s correlation (R?) value is provided for each group.
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Virus (Genus) Peptide  Mean Peptide Mean Mean Breadth
Count Heritability Breadth Heritability
(A) (A)
Lymphocryptovirus 107 65.3114.8%  43.4+17.3 39.0%
Enterovirus 56 43.9114.8% X 25.8£19.0%
Cytomegalovirus 21 62.6x17.0% 41.3+14.6 57.0%
Mastadenovirus 19 56.5£14.6% X 16.5£13.4%
Pneumovirus 16 57.4120.2% X 24.7+1.5%
Simplexvirus 10 60.2+13.7%  36.6+15.6 0.0%
Alphacoronavirus 4 45.3127.0% X X
Betacoronavirus 3 35.1£14.0% X X
Roseolovirus 3 59.7£14.6% X 32.0+15.6%
Varicellovirus 2 44.0£19.8% 10.0+£2.9 0.0%

Table 1. Summary of detected viral epitopes and breadth by genus. The table provides
a summary of total peptide count, average additive genetic effect (A) component and
standard deviation in an ACE model, the mean breadth across all individuals for that genus
along with the average A component and standard deviation for breadth. If a genus has
multiple species contributing to the data, the mean breadth is marked “X”.

EBV breadth and epitope selection are heritable traits. We also performed VirScan
analysis of serum from a cohort comprised of 506 community volunteers who were also SNP
genotyped, of which 388 were of European ancestry (EUR). Fig. S1 and S2 compare the
antibody reactivities of the TwinsUK and the VRC cohorts against the 2,180 EBV peptides in
the VirScan library. Immunodominant reactivities were largely restricted to specific regions of
the EBV genome (Fig. S1a-b) and were mostly localized to the EBNA family of proteins, the
transcriptional activator BZLF1 and the envelope glycoprotein BLLF1 (Fig. S1c). About 2,000
sub-dominant responses (present in less than 20% of the cohort) were distributed across the
EBV genome (Fig. S2a-b), with the greatest number of reactivities against the EBNA proteins,
BZLF1, BLLF1, the lytic factor LF3 and latent membrane protein 1 (LMP1) (Fig. S2c). These
results illustrate that while there are shared features of the anti-EBV antibody response

between individuals, there is also great inter-individual variability.
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In EBV seropositive individuals, we observed an average of 129 reactive peptides (~6% of
the 2,180 EBV peptides in the VirScan library), with a range of 12 to 324. Among these reactive
peptides, we examined the similarity of the anti-EBV profiles between twin pairs using the
Jaccard index (Fig. 1b). The similarity of the response among MZ twin pairs was significantly
higher compared to their DZ counterpart (p=4.2x10-¢, much higher than random pairings,
p=3.6x104), illustrating that host genetics sculpts the repertoire of anti-EBV antibodies.

EBV breadth values among twin pairs, estimated by AVARDA, are shown in Fig. 1c-d. MZ
twin pairs exhibit a higher level of breadth correlation (R2 = 0.51) versus DZ twin pairs (R2 =
0.23), indicating that in addition to epitope selection, the total breadth of the anti-EBV
antibody response is also a heritable trait. Using SEM, we estimated an additive genetic
contribution of 39%, shared environmental contribution of 27% and unique environmental
contribution of 34%. (Table 1). The stochastic elements of antibody responses are captured in
the unique environmental component of this model.

We developed a set of selection criteria to identify candidate peptide reactivities that were
heritable in the TwinsUK cohort and were adequately powered in the VRC cohort for GWAS. Of
all EBV peptides in the VirScan library, we first selected 144 peptides that were dominant in
the TwinsUK cohort (Fig. S3, boxes 1-3). The most frequently recognized peptides belong to
the EBV nuclear antigen (EBNA) family of proteins, with EBNA-3 and EBNA-2 representing of
the most immunogenic peptides (Fig. 2a-b). Of the 144 immunodominant peptide reactivities
analyzed, 107 (at least 1 peptide from each protein) had an estimated heritability of > 20%
(Fig. 2¢c; Fig. S3, box 4) and 38 peptide reactivities were also influenced (at least 3%; mean =
42%) by common environmental factors (Fig. 2d). Of the 107 peptides with heritable reactivity
in the TwinsUK cohort, 57 were dominant in the VRC/EUR cohort and thus selected for GWAS

analysis (Fig. S3, box 5).
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Figure 2. Heritability estimates of individual EBV peptide responses in the TwinsUK
cohort. a, The number of peptides for each EBV protein associated with dominant antibody
responses (at least 20% of the cohort were responders). b, Box plot showing the frequency
of responders, c-d, box plots showing heritable (¢) and common (d) environmental
components for peptides from different EBV proteins. Box plots indicate median,
interquartile range, and extent of each distribution.
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Figure 3. Antibody responses against specific EBV peptides associate with the HLA
locus. a, The meta-manhattan plot shows a summary of all associations for 57
serodominant peptides in the individuals of European descent in the VRC cohort showing a
strong peak on chromosome 6 corresponding to the HLA locus. P-values less than 1.04 X
10-° were considered significant (red line) and those below 5 X 10-8 were suggestive (blue
line) associations. b, A schematic representation of EBNA-2 showing major domains. The
four HLA associated peptides fall in the C-TAD spanning aa 393-497. c-f, Locus zoom plots
for the 4 EBNA-2 peptides. The region in pink was identified by credible sets analysis. All
variants with a log10 transformed Bayes factor of >= 6 (dashed red lines) were considered
significant.
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Table 2. Antibody responses against specific EBV peptides are influenced by the MHC class-Il locus on chromosome
6. The table lists a set of loci and the EBV peptides associated with them. Locus discovery was performed in individuals of
European descent (EUR) in the VRC cohort. A meta-analysis of the three cohorts was also performed with p values provided
in the final column.
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Genome-wide association studies of EBV peptide reactivities. Single-variant
association analyses were performed on the 57 selected peptides and the p-value threshold for
significance was adjusted by the Sidak-Nyholt method to account for multiple hypothesis
testing (Methods). The Human Leukocyte Antigen (HLA) locus on chromosome 6 was
associated (p < 1x10-9) with four EBNA2 peptides (Fig. 3a). A meta-analysis including the
VRC/EUR, VRC/AFR and the TwinsUK cohorts also confirmed the associations in this locus
(Table 2). These four peptides are in the C-terminal transactivating domain of EBNA-2 (Fig.
3b). The magnitude of the antibody response also increased linearly with the number of effect
alleles present in the individuals of the VRC/EUR sub-cohort (Fig. S4a) and the overall VRC
cohort (Fig. S4b). The four top associated variants are in linkage disequilibrium (D' > 0.8 for
each variant pair). There is an overlap in the 95% credible intervals for the four EBNA-2
peptides (ranging from 50 bp to 200.6 kb), and it is likely that this narrowed region harbors
the causal variant(s) explaining the differential reactivity of the four peptides (Fig. 3c-f). A
search of the GWAS catalog showed that the same potentially causal variants identified in this
study have also been associated with several different diseases and phenotypes, some with a
known or suspected role for EBV infection, including Hodgkin’s lymphoma43 and ulcerative

colitis44. A summary of these associations is provided in Table S1.

Antibody correlates of EBV viral load. Despite significant inter-individual variability,
cell-associated EBV genomic copy number is considered to be relatively stable over time,
reported at 1-30 genomes per million PBMCs.19:20 In an effort to understand antibody and host
genetic factors that control the EBV copy number set point, we measured PBMC-associated
genome copies by qPCR (Fig. 4a). This assay, established by Tsai et al, is sensitive enough to

detect a single copy of EBV genome in 105 PBMCs.45 Only about one third of the VRC cohort

13
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had a measurable EBV viral load, with a majority of positives having 5 copies or less per 105
PBMCs (Fig. S5a). We found no correlation between EBV viral load and other covariates such
as age, ancestry, and sex (Fig. S5b-c). We performed genome-wide association using viral load
data both as a continuous trait and a dichotomous variable (detected or undetected) to identify
host genetic factors that control viral load, but no significant associations were identified. This
lack of genetic association is likely due to a combination of a lack of statistical power to detect
small genetic effects and an inability to detect cell-associated EBV genomes in all but the
highest titer individuals.

We next examined antibody correlates of viral load. There was no correlation between
viral load and overall EBV antibody breadth (Fig. 4b). We posited that specific antibody
reactivities may be associated with viral load for three reasons: (i) they may directly limit viral
replication, (ii) high viral load may stimulate antibody production, and/or (iii) antibodies may
correlate with innate immune responses or cell-mediated immunity. We therefore tested
individual peptides for their association with EBV viral load (Fig. 4¢). A single peptide derived
from the large tegument protein BPLF1, showed significant association with EBV viral load
(Sidak-Nyholt adjusted p-value<4.8x10-4). While not statistically significant, peptides derived
from the EBNA family of proteins tended to be negatively associated with viral load and
peptides derived from structural proteins from the tegument, capsid and envelope were
positively correlated with viral load. The four EBNA-2 C-TAD peptides that associated with
variants in the HLA locus (shown as green dots in Fig. 4¢) were not associated with viral load

or sex (green dots in Fig. S5 d-f).
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Figure 4. EBV viral load in circulating PBMCs does not correlate with breadth of a
response but correlates with responses against specific peptides. a, A schematic
outlining the approach for EBV copy number measurements. 350ng of DNA (corresponds to
roughly 10° cells) extracted from PBMCs was used to detect the presence of EBV genomes
by gPCR. Copy numbers were calculated using a standard curve. b, EBV copy numbers
showed no correlation with breadth of antibody response as calculated by AVARDA. ¢, A
volcano plot of significant association between 112 immunodominant EBV peptides (>20%
in cohort) and EBV viral load in the VRC cohort. One peptide that showed a significant
association (adjusted p-value of 4.8 x 10-#) is marked in red. d, An LZ plot showing variants
in the MHC class-I region on chromosome 6, associated with predicted EBV viral load.
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In an effort to increase the number of individuals with ‘detectable’ levels of EBV, and to
perform analyses in the TwinsUK cohort for which EBV copy number was not available, we
used gradient boosting to developed a multi-peptide ‘sero-signature’ predictive of EBV viral
load. The 112 peptides reactive in >20% of the VRC cohort were used for model building. ROC
analysis was used to identify an appropriate threshold for predicting whether a sample should
be considered EBV positive (high copy) or negative (low copy). We performed a GWAS for
predicted EBV copy (high versus low) in both the VRC and the TwinsUK cohorts. Meta-analysis
revealed a strong association with variants in the MHC class-I locus of the HLA region (Fig.

4d, Table 3). Our results support a role for CD8+ cytotoxic T cells, possibly in conjunction

with antibody epitope selection, in controlling PBMC-associated EBV copy number set point.
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GENE SNP Chr_Pos A1 A2 FUNC P.Meta Direction
HLA-C,HLA-B rs9265130 6 31287756 a g intergenic 7.81E-10 ++
LINC01149 rs2516469 6 31409142 ¢ g upstream 1.36E-09 -
MICA,LINC01149 rs2516450 6 31387157 t c intergenic 1.58E-09 -
MICA rs2596540 6 31367882 a g UITRS 1.82E-09 ++
HLA-B,MICA rs9266366 6 31333032 t ¢ intergenic 1.89E-09 ++
HCG26,MICB rs9267257 6 31456262 a c intergenic 1.92E-09 ++
PSORS1C3,HCG27  rs3094613 6 31160920 a t intergenic 2.21E-09 S
NA rs111279592 6 31160597 t fttatita NA 2.50E-09 —
HCG27 HLA-C rs3134748 6 31220421 t c intergenic 3.43E-09 -
HLA-C rs9264679 6 31240663 a t upstream 3.83E-09 -
HLA-B rs2596488 6 31325030 t c upstream 4.09E-09 ++
HCG27 rs3094609 6 31165566 t ¢ ncRNA_exonic 5.90E-09 ++
PSORS1C3 rs3134789 6 31144695 t ¢ ncRNA_intronic 6.47E-09 i
HCP5 rs2518030 6 31431082 a g ncRNA _intronic 1.18E-08 ++
LINCO1149,HCPS rs2596471 6 31428911 a g intergenic 1.35E-08 i
HCG22 rs2517521 6 31027336 a g UTR3 1.51E-08 ++
CDSN,PSORS1C1 rs9263671 6 31087305 t ¢ intronic 2.25E-08  ++
HCG22,C6orf15 rs2517559 6 31068525 a ¢ intergenic 2.47E-08 ++
MCCD1 rs3093982 6 31497244 a g intronic 263E-08  ++
MICB,MCCD1 rs3130638 6 31487540 t c intergenic 2.75E-08 ++

ATP6V1G2-DDX39B  rs3093977 6 31500226 a ¢ ncRNA _intronic 3.19E-08 .-
NFKBIL1,LTA rs2857709 6 31532814 a g intergenic 4 53E-08 ++

PSORS1C1 rs3130563 6 31101250 t _ c__intronic 4.72E-08 ++

Table 3. Viral load predictions made from antibody reactivity data are influenced by
the MHC class-l locus on chromosome 6. The Table shows a summary of top variants
associated with predicted EBV viral load from a GWAS meta analysis on the VRC and
TwinsUK cohorts.
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Discussion

The wide variation in human antibody responses to viral infections is influenced by both
heritable and non-heritable factors. Previous studies have addressed the role of host genetics
by measuring traits such as seroconversion rates and antibody titers to specific antigens.9:10.46.47
However, no published studies have yet examined the heritability of antibody responses at the
epitope level. In this study, we employed VirScan, a virome-wide antibody profiling technology,
to characterize the heritability of epitope selection and identify genetic loci of importance. EBV,
a chronic infection with >90% seroprevalence in humans, was used as a model virus in a
detailed analysis, which included assessing antibody correlates of viral load. Our results
describe a strong heritable component of anti-viral antibody epitope selection, which is
associated with specific MHC class II genes, and likely other regions that could not be
identified due to study power and the complex genetic architecture of these traits.

GWAS identified MHC class-II associations for four peptides from the C-terminus of
EBNA-2. This is similar to previously reported EBNA-1 antibody titer associations with HLA-
DRB1 and HLA-DQB1.48:49 In our study, reactivity to several immunodominant EBNA-1
peptides were strongly heritable but we did not detect any significant genome wide
associations, most likely due to insufficient power.

Variation in the immunoglobulin genes is expected to influence the quality of an antibody
response. However, we found no variants in this region associated with EBV epitope selection.
The lack of association at the IGH locus may reflect the complexity of genetic variation in this
region — including structural rearrangements and copy number variation that are not well
captured via SNP based arrays.5°© However, two reactivities were strongly associated with MHC

class-II alleles, which are the major determinants of CD4+ helper T cell epitope selection.
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Increasing the size of the study population and use of sequencing-based genetic analyses will
likely reveal a role for the immunoglobulin loci in epitope selection.

We previously developed a summary statistic to capture the clonality of the antibody
response (“breadth”) to a protein or virus. This metric was calculated individually for each
virus in the library. The breadth of an antiviral response is likely to correlate with greater
protection from re-infection, including potentially heterologous protection from similar
viruses.5! Using TwinsUK VirScan data, we estimated the genetic heritability of the EBV
antibody response breadth to be 39%. However, we detected no significantly associated loci
using GWAS. This may be because the breadth of an antibody response is a complex trait,
which could not be deconvoluted due to the size of the cohorts in this study.

A GWAS of HIV viral load set point identified roles for the MHC class-I locus and a
candidate gene study identified CCR5.52 A similar study on EBV viral load has not been
performed. We find that PBMC-associated EBV viral load significantly associates with antibody
reactivities against a peptide from EBV tegument protein deneddylase, BPLF1, but this should
be replicated in an independent cohort. Antibody reactivity against EBV structural proteins
tended to be positively correlated with viral load, whereas reactivity against EBV nuclear
antigens tended to be negatively correlated with viral load. This could be due to the different
spectrum of proteins presented to the immune system in individuals with high versus low viral
load, and supported the use of a multi-peptide serosignatures as a surrogate for EBV viral load.
We therefore employed machine learning to predict EBV viral load using antibody reactivity of
112 peptides. GWAS linked this EBV serosignature with the MHC class-I locus. Cytotoxic CD8+
T cells play an important role in controlling EBV infection by targeting infected B cells.53:54

Specific MHC class I variants could enhance or suppress this activity. An important caveat to
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this analysis, however, is that hidden variables associated with the serosignature (e.g. a co-
infection) may underlie an indirect association with EBV viral load.

There are notable limitations of this study. First, the VirScan library is composed of 56-aa
peptides displayed on T7 phage. Conformational, discontinuous, and post-translationally
modified epitopes are therefore absent from this study. This limitation is may
disproportionately impact surface exposed epitopes. Second, the relatively small size of our
cohorts limited the power of the GWAS analyses to detect associations with subdominant
epitopes, complex genetic interactions, and antibody responses to less prevalent viruses.

In summary, antibody epitope profiling is a powerful approach for characterizing the
genetic architecture of immune responses to viruses and other environmental antigens. This
study provides evidence that antibody epitope selection is a heritable trait. Host genetics, in
combination with prior immune responses likely explains much of the heterogeneity of an
infectious course. GWAS identified a role for MHC class II genes in the selection of antibody
epitopes, and MHC class I genes in the maintenance of EBV load. Future studies of larger

cohorts will likely identify additional genes important for pathogen immunity.
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Methods

PhIP-Seq/VirScan. PhIP-Seq and VirScan have been previously described in detail.33.55
Briefly, ELISA was performed to measure total IgG in serum samples and input volume was
adjusted to 2 pg of IgG input per IP. VirScan library was mixed with diluted serum at 105-fold
coverage (about 9.6x109 pfu for the 56-mer virome library). The library/serum mixture was
allowed to rotate overnight at 4 °C, followed by a 4-hour IP with protein A and protein G coated
magnetic beads. PCR was performed with primers that flank the displayed peptide inserts. A
second round of PCR was performed to add adapters and indexes for Illumina sequencing.
Fastq files were aligned to obtain read count values for each peptide in the library, followed by
calculation of z-scores as previously described.42

Cohorts. The TwinsUK samples were collected prior to 2017 at King’s College London and
the VRC samples at the National Institutes of Health (NIH) Clinical Center under the
Vaccine Research Center’s (VRC)/National Institutes of Allergy and Infectious Diseases
(NIAID)/NIH protocol “VRC 000: Screening Subjects for HIV Vaccine Research
Studies” (NCT00031304) in compliance with NIAID IRB approved procedures. The TwinsUK
cohort comprised of 494 individuals: 81 MZ twin pairs and 166 DZ twin pairs; all twins were
females of European genetic ancestry an average age of 62 years old. The Vaccine Research
Center (VRC) cohort comprised of 535 healthy community volunteers in the greater
Baltimore/Washington DC area recruited for multiple studies, of which 388 were of European
genetic ancestry (EUR), and 147 of African genetic ancestry (AFR). The VRC cohort included
298 men and 233 women with an average age of 35 years (18-70 years range).

Jaccard index. Jaccard index calculations were performed by transforming individuals with
z-score >= 7 as ‘responders’ and those lesser than that as ‘non-responders’ for each peptide.

The total number of EBV peptides where both twins were responders were counted and the
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Jaccard index for each twin pair was calculated using the formula [J(A,B) = (JAnB|)/(|AUB]|)],
where A is the set of peptides that twin1 responded to and B is a set of peptides for the
corresponding co-twin (twin2).

Binarization of data. The z-score values from PhIP-Seq were transformed to binarized

K »

(response = “1”, non-response = “0” and indeterminate values = “NA”) using a threshold of
>=7asa“1”, <=3 as a “0” and values between 3 and 7 as “NA”.

Estimation of infection probability and breadth of a response by AVARDA. A full
description of AVARDA is provided in Monaco D. et al.34 In brief, AVARDA estimates a
conservative assessment of the probability of viral infection using VirScan data. There are three
modules in AVARDA, the first of which employs a network graph based on peptide-peptide
relationships to define the minimum number of independent antibody specificities (i.e.,
response breadth) required to completely explain a set of observed peptide reactivities. The
breadth values for each individual /virus pair estimated by AVARDA were used in downstream
analysis such as the estimation of heritability.

Real time PCR detection of EBV genomes. Tagman primers for EBV EBNA-1 were
synthesized by Integrated DNA technologies (IDT). Sequences for EBNA-1 were reported in
Tsai DE et al. and are CGT CTC CCC TTT GGA ATG G (ebnai forward), GAA ATA ACA GAC
AAT GGA CTC CCT TAG (EBV ebnaz1 reverse) and 6Fam-CCT GGA CCC GGC CCA CAA CC-
Tamra (EBV ebna1 probe).45 A sensitivity of at least 4 copies per reaction was routinely
achieved (Fig. S6). Measurement of EBV viral load in the VRC cohort was performed using
genomic DNA extracted from PBMCs. 350 ng of DNA (equivalent to ~105 PBMCs) was used per

sample in each qPCR reaction. gPCR was performed using PrimeTime Gene Expression Master

Mix (Integrated DNA Technologies, Cat. No. 1055772) as per manufacturer’s instructions.
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Testing significance of association between peptide responses and EBV copy
number. Fisher’s exact test was used to calculated p-values of association between specific
anti-peptide responses and EBV copy numbers measured by real time PCR.

Peptide selection. We developed a set of criteria to select peptides for GWAS, provided in
the flowchart of Fig. S3. The VirScan library is composed of 106,678 56-aa peptide sequences
representing all known human viruses (~400 viral species and strains, Fig. S3, box 1). EBV is
represented by 2180 peptides in the VirScan library (Fig. S3, box 2). After binarization of the
data, we remove peptides where responder proportions were < 20% and > 80% independently
in the TwinsUK cohort (Fig. S3, box 3 ). A total of 144 peptides in TwinsUK were selected for
heritability analysis by SEM, resulting in 107 peptides with > = 20% heritability (Fig. S3, box
4). Of these peptides, we retained those where the responder proportion in the VRC cohort was
between 20% and 80%, resulting in 57 peptides that were used for GWAS (Fig. S3, box 5).
Heritability of epitopes using Structural Equation Models (SEM). We used the
classical twin models to define the influence of genetic and environmental factors on the
variance of 134 immunodominant peptide reactivity and the overall breadth of the response to
each virus included in this study. Twin studies compare the degree of similarity among
monozygotic (MZ) twins, who share 100% of their genetics, and dizygotic (DZ) twins, who like
other siblings share on average 50% of their genetics. Under the equal environment
assumption (EEA), the variance of the trait/phenotype (P) is explained by latent parameters: P
=A +C+E

Where “A” represents the additive genetic influence, “C” the common or shared environment
between the twin pair and “E” represents the non-shared environment (“E” also includes
measurement error).5¢ To estimate the heritability, we used Structural Equation Models

(SEM), which utilize observed covariances from both MZ and DZ pairs to establish a causal
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relationship among the covariances and the latent parameters. We investigated ACE, AE and
CE models and used the Akaike’s information criterion (AIC) to select the best fitting model.
The model (ACE, AE or CE) with the minimum AIC reflects the best balance between
explanatory power and parsimony and was the preferred model. Heritability analyses were
performed using the package METSs (version 1.2.7.1)57 in R (version 4.0.2).

Genotyping and Imputation. The VRC cohort was genotyped using the Illumina Human
Omni 5, GRCh37 (Illumina Inc., San Diego, CA). Quality control steps were performed in Plink
1.958:59 and included removing genetic variants with departure of Hardy-Weinberg equilibrium
p-value < 106, (n=19,227) and missing genotype rate >5% (n=17,891). Participants with
missing call rate >5% (n=4), sex inconsistences (n=6) and related individuals based on identity
by descent (IBD) estimates (pi_hat >0.2) were also excluded (n=19) from the analysis.
Principal component analysis was performed with smartpca from the EIGENSOFT¢° software
package to identify genetic ancestry. In the VRC cohort, 388 individuals clustered with
European ancestry population-based samples (88 CEU HapMap samples) and 147 individuals
clustered with African ancestry population-based samples (77 YRI HapMap samples). This
resulted in 2,783,635 million genetic variants with a minor allele frequency (MAF) > 1%. We
then imputed genetic variants using the Michigan imputation server¢! using the 1000 Genomes
Phase 3 reference panel. We removed 15,945,186 variants with low imputation quality (R2<0.3)
and variants with a MAF<5%. The final genetic dataset contained 7,637,921 variants in 535
individuals. Gene annotation was performed using Annovar¢2 (version date 2017-07-17).
Genotyping of the TwinsUK cohort has been described previously in detail.®3 Briefly, TwinsUK
samples were genotyped with a combination of two Illumina arrays (HumanHap300,
HumanHap610Q). The normalized intensity data for each array were pooled separately. For

each dataset the Illuminus calling algorithm was utilized to assign genotypes. No calls were
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assigned if an individual's most likely genotyped was called with less than a posterior
probability threshold of 0.95. Validation of pooling was achieved via visual inspection of 100
random SNPs. Finally, intensity cluster plots of significant SNPs were visually inspected for
over dispersion biased no calling, and/or erroneous genotype assignment. Before the
imputation, the following exclusion criteria were applied to each genotype array. Samples: a)
call rate <98%; b) heterozygosity across all SNPs >2 s.d. from the sample; ¢) mean evidence of
non-European ancestry; identity errors (assessed by pairwise identity by descent (IBD)). SNPs:
a) Hardy-Weinberg p-value<10-¢ assessed in a set of unrelated samples; b) MAF<1% ; ¢c) SNP
call rate <97% (SNPs with MAF>5%) or < 99% (for 1% < MAF < 5%).

After the Genotype QC stage, the samples from the two arrays were combined and the
imputations were performed using the Michigan Imputation Server®! using the 1000 Genomes
Phase3 v5 reference panel. After imputation 6,03843 SNPs with MAF > 0.05 and imputation
quality R2 > 0.3 were included in the analysis.

Genetic associations of peptide reactivities. We performed single-variant association
analysis using dichotomized peptide reactivity data, treating seronegative individuals and
borderline reactivities as missing data. Peptides were considered sufficiently powered for
analysis if they were reactive in at least 20% but no greater than 80% of the study population
and were also heritable in the TwinsUK study (n=107 of 144 peptides; Fig. S3, box 4). Based
on this criterion, 57 EBV peptides were evaluated in VRC European ancestry individuals
(VRC/EUR n=388). Meta-analysis was performed using the TwinsUK cohort (EUR n=494)
and VRC study participants of African ancestry (VRC/AFR, n = 147) for 22 peptides with
significant (4 peptides) or suggestive (18 peptides) loci (p-value < 5x10-8) identified in the VRC
European individuals. The significance threshold was estimated with the Sidak-Nyholt

method®4.65, accounting for the number of independent traits (n=48) resulting in a genome-
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wide significance for EBV of p-value < 1.04x1079. The meta-analysis p-value was set to 0.01 in
the replication cohorts, or a joint association p-value less than the VCR European only value.

In the VRC cohort, we interrogated 7,637,921 variants for an association with each of the
viral peptides using the penalized quasi-likelihood (PQL) approximation to the GLMM
(Breslow and Clayton) implemented in the R package Genesis®¢:¢7. The African ancestry GWAS
included the genetic relationship matrix (GRM PC-Relate) as a fixed effect and 10 principal
components as random effects.

The genome-wide association analysis in TwinsUK was performed using a mixed-effects
linear model implemented in genome-wide efficient mixed-model association (GEMMA) v
0.98.1. GEMMA is designed for GWAS analysis of family-based data by incorporating pairwise
kinship matrix calculated using genotyping data in the mixed-effects linear model to correct
relatedness and hidden population stratification.
A total of 22 EBV peptides were included in the meta-analysis using the fixed effect inverse-
variance weighted method implemented in METAL.
Credible sets analysis. We combined ethnic-specific GWAS summary statistics using
MANTRA (Meta-Analysis of Trans-ethnic Association Studies)®® and used the Bayes factor
(BF) to generate credible sets. Briefly, we defined a 1 Mb window (500 kb upstream and 500 kb
downstream) from the index variant (lowest Bayes factor), and variants were ranked based on
their BF. The posterior probability that this variant is driving the region’s association signal
was calculated by dividing the variant’s BF by the sum of the BFs of all variants in the region.
The final credible set includes all variants with a cumulative posterior probability sum of 95%
in the region.
GWAS catalog search. We looked at previously reported disease associations of variants of

interest using the GWAS catalog version 2020-10-20 (http://www.genome.gov/gwastudies/).
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For each GWAS in the discovery group (VRC/EUR) we selected the associated variants
included within a credible set and report the disease associations presented in the catalog in
Table S1.

Multi-peptide serosignature for EBV viral load prediction. To predict the presence or
absence of EBV based on VirScan data, we employed the XGBoost software.
(https://xgboost.readthedocs.io/en/latest/) Specifically, we sought to classify samples based
on presence or absence of EBV (> 0 copies is present and = 0 copies is absent) based on
reactivity to 112 immunodominant EBV peptides. XGBoost leverages ensemble learning and
gradient tree boosting to perform regression and/or classification. Machine learning with
XGBoost relies on multiple hyperparameters, including size of terminal nodes in
regression/classification trees, subset of samples used per round, subset of features used per
round, number of trees, learning rate, regularization term, and others. To create the prediction
model, we first subset the VRC samples into a 90% training set and a 10% validation set. We
performed a grid search with 10-fold cross-validation on the 90% validation set to tune model
hyperparameters; final hyperparameters were those that maximized the cross-validation AUC
and were: max_depth = 2, eta = 0.001, gamma = 2, colsample_bytree = 0.5, min_ child_ weight
= 1, subsample = 0.5. We then applied this gradient boost model to the entire 90% training set,
and the performance of the model was determined with the 10% validation set. To prevent
overfitting, the iteration with the best cross-validation AUC was used (iteration = 45; Fig.
S7a). This final model was then used to make predictions of expected likelihood of EBV
presence in the TwinsUK cohort. Feature importance (Gain) was calculated using XGBoost.
Receiver operating characteristics (ROC) analysis of viral load prediction models.
ROC analysis was performed using the R package ROCR. The predictions generated by the

gradient boost model are a range of values between 0 and 1. The 10 most important features of
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the prediction model are shown in Fig. S7b. We defined an optimal cut off threshold to be the
value where the sensitivity and specificity curves intersect (Fig. S7c-d left panels). The
optimal threshold was determined to be 0.4976 and predicted values above the cutoff are
designated EBV positive and below are EBV negative. The model performed at 70% sensitivity

and 70% specificity (AUC = 0.776) for the training data and at 60% sensitivity and 60%

specificity (AUC = 0.655) for the validation data (Fig. S7c-d right panels).
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Supplemental Figure 1. Features of immunodominant anti-EBV antibody responses.
a, Immunodominant anti-EBV responses (at least 20% of the cohort were responders)
shown by genomic position on an EBV reference genome. Genomic map above the plots
shows the position of the major nuclear antigens, the LMP proteins and the BART non-
coding RNA region. b, Venn-diagram of number of immunodominant peptides in both
cohorts with 108 peptides in the VRC and 181 peptides in the TwinsUK cohorts. ¢, A pie-
chart of immunodominant responses grouped by protein.
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Supplemental Figure 2. Features of sub-dominant anti-EBV antibody responses. a,
Sub-dominant anti-EBV responses (less than 20% of the cohort) were seen in peptides that
map to most positions on the EBV reference genome b, Number of peptides (1997, VRC
and 1918 TwinsUK) and ¢, grouping of sub-dominant antibody responses by protein.
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Supplemental Figure 3. Flow chart of EBV peptide selection for GWAS. Peptide
reactivity scores were binarized (Responders: Z-score>=7, non-responders: Z-score <=3)
and filtered based on responder proportion (>=20% and <= 80%) in TwinsUK. Of 144
peptides, 107 have estimated heritability >= 20%. A total of 57 EBV peptides were
seroprevalent (Responders/non-responders >=20% and <= 80%) in VRC. These 57
peptides were selected for genome-wide association analysis in the VRC/EUR group.
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Supplemental Figure 4. The magnitude of antibody response positively correlates
with the number of effect alleles present. a-b, Distribution of z-scores in the VRC/EUR
sub-cohort (a) and the complete VRC cohort (b) shows a positive correlation between
magnitude of antibody response (higher z-scores equals stronger response) and number of
effect alleles in individuals in the VRC cohort.
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HLA- EBNA-2 Antinuclear antibody

DRBY [rs2395185 |(449-487) |T| 1.162] 3.58E-10|rs2395185-2 levels 0.25| 1.00E-11/25186300
HLA- EBNA-2 |

DRB9 [rs28895235 |(449-487) |A| 1.166] 3.36E-10rs183975233-A Body mass index 0.031 8.00E-16/28892062
HLA- EBNA-2

DRB9 [rs9268905 ((449-487) [C| 1.162] 3.58E-10[rs9268905-C Cystic fibrosis severity NA| 1.00E-07(21602797
HLA- EBNA-2

DRBY [rs9268923 |(449-487) |T| 1.162 3.58E-10[rs9268923-C L . 0.18 1.00E-11/26819262
HLA- EBNA2 cpsteln Barr VvIrus

DRBO |rs9268923 [(449-487) |T| 1.162 3_58E-10|r39268923-C nuclear antigen 119G | 4 5591 1.00E-13126819262
HLA- EBNA-2 | e

DRBY [rs9268923 |(449-487) |T| 1.162] 3.58E-10[rs9268923-C 0.225) 1.00E-11/26819262
HLA- EBNA-2 | Fulminant type 1

DRB9 [rs9268853 [(449-487) [C| 1.162 3.58E-10[rs9268853-2 diabetes 3.18 2.00E-23/30552108
HLA- EBNA-2

DRBY [rs9268905 [(449-487) |C| 1.162 3.58E-10[rs9268905-? Giant cell arteritis 1.79) 2.00E-54/28041642
HLA- EBNA-2 |

DRB9 [r52395185 [(449-487) [T | 1.162 3.58E-10[rs2395185-2 Hodgkin's lymphoma 1.82| 4.00E-31[22286212
HLA- EBNA-2 |

DRB9 [rs2395185 |(449-487) |T| 1.162] 3.58E-10|rs2395185-T Lung cancer 1.17| 1.00E-0823143601
HLA- EBNA-2

DRB9 [rs9268853 ((449-487) |C| 1.162] 3.58E-10[rs9268853-C Lymphoma 1.56| 2.00E-10{23349640
HLA-

DRBY;

HLA- EBNA-2

DRB5 [rs35957722 [(449-487) [C| 1.229 1.66E-10[rs35957722-? Tonsillectomy 0.0687| 4.00E-10{28928442
HLA- EBNA-2

DRBY [rs9268835 ((449-487) [A| 1.284] 1.28E-11[rs115918645-A Type 2 diabetes 1.14] 1.00E-11[29358691
HLA- EBNA-2

DRB9 [rs9268835 ((451-487) |A| 1.168 6.13E-10jrs115918645-A 1.14| 1.00E-11/29358691
HLA- EBNA-2 |

DRBY [r52395185 |(449-487) |T| 1.162] 3.58E-10[rs2395185-G 1.49) 9.00E-23(20228799
HLA- EBNA-2 |

DRB9 [rs2395185 |(449-487) |T| 1.162] 3.58E-10[rs2395185-G 1.92| 5.00E-22/19915573
HLA- EBNA-2

DRBY9 [rs2395185 [(449-487) |T| 1.162| 3.58E-10[rs2395185-? T — 1.52| 1.00E-16|19122664
HLA- EBNA-2

DRB9 [rs9268853 [(449-487) [C| 1.162 3.58E—10|r39268853—T 1.37| 3.00E-06/23511034
HLA- EBNA-2 |

DRB9 [rs9268853 [(449-487) |C| 1.162] 3.58E-10|rs9268853-T 1.4 1.00E-55/21297633
HLA- EBNA-2

DRBY [rs9268923 |(449-487) |T| 1.162] 3.58E-10[rs9268923-C 1.45) 4.00E-15[20228798
HLA- EBNA-2 \Vogt-Koyanagi-Harada 1.00E-
[DRBY_Irs9268838 |(449-487) |A| 1.284] 1.28E-11/rs114800139-A ndrome 3.02 119 25108386

Supplemental Table 1. A list of diseases and phenotypes associated with credible-set
variants identified for the two C-terminal EBNA-2 peptides.
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Supplemental Figure 5. EBV viral load is not correlated with ancestry, age or gender.
a, A histogram showing the distribution of the EBV genomic copies detected in 10° PBMCs
of individuals in the VRC cohort. b, Scatter plot of EBV viral load with age, grouped by EUR
or AFR ancestry and by gender. ¢, Histogram of EBV positive and negative individuals in
the EUR and AFR sub-groups grouped by gender. Tables below the panels provide the
number of individuals in each group shown. d, A comparison of each peptide specific
reactivity between male and female sub-groups in the VRC cohort shows no significant
differences. e-f, Associations between peptide reactivities and EBV viral load show no
differences for men (e) or women (f).
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Supplemental Figure 6. Quantitative PCR detection of EBV EBNA-1 was highly
sensitive. The graph shows qPCR performed on a dilution series of EBNA-1 DNA
fragment. The assay had a linear range spanning 7 decades and was sensitive to 4 copies
per reaction.
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Supplemental Figure 7. Generation of a prediction model by gradient boosting a,
Training of the model. b, ROC analysis of training cohort (n = 512, 90%). ¢, The 10 most
important features of the prediction model. d, ROC analysis of the independent validation

cohort (n=57, 10%).
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