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Abstract 

There is enormous variability in human immune responses to viral infections. However, the 

genetic factors that underlie this variability are not well characterized. We used VirScan, a 

high-throughput viral epitope scanning technology, to analyze the antibody binding 

specificities of twins and SNP-genotyped individuals. These data were used to estimate the 

heritability and identify genomic loci associated with antibody epitope selection, response 

breadth, and the control of Epstein-Barr Virus (EBV) viral load. We identified 4 epitopes of 

EBV that were heritably targeted, and at least two EBNA-2 binding specificities that were 

associated with variants in the MHC class-II locus. We identified an EBV serosignature that 

predicted viral load in white blood cells and was associated with genetic variants in the MHC 

class-I locus. Our study provides a new framework for identifying genes important for 

pathogen immunity, with specific implications for the genetic architecture of EBV humoral 

responses and the control of viral load.   
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Introduction 

Antiviral antibody responses can last decades after an infection or immunization.1,2 They 

serve as protection from re-infection and can document the exposure history of an individual 

or population. It has been known for over 50 years that the composition of circulating 

immunoglobulin (Ig) is influenced by host genetics.3–6 Twin, family, and population-based 

studies have provided examples of heritable contributions to antiviral immune responses; 

candidate gene and genome-wide association studies (GWAS) have identified genomic loci that 

influence specific immune traits. However, few studies have examined the heritability of 

adaptive immune responses broadly across different types of viruses.7–11 A recent study 

investigating the genetic determinants of anti-viral antibody responses (measured by a 

multiplex serological assay) to 16 common viruses identified strong associations in the HLA 

locus and in 7 loci outside the HLA.12 However, to our knowledge there have been no genetic 

studies of antibody epitope selection. Antibody fine specificity and breadth (polyclonality) can 

influence pathogen clearance and protection from re-infection. Genetic variation affecting the 

expression or function of viral sensing, innate immune signaling, antigen processing and 

presentation, immune cell function or variation in the antibody locus itself, could all impact the 

breadth and specificity of an anti-viral antibody response. 

Epstein-Barr Virus (EBV) causes a chronic infection with greater than 90% 

seroprevalence in most adult populations.13–15 The EBV genome is relatively large (172 kb), 

encoding >85 proteins.16,17 Primary EBV infections are usually asymptomatic in healthy 

children and result in a brief episode of infectious mononucleosis in adolescents and older 

individuals. 18 Once the primary infection resolves, EBV establishes a lifelong latent infection 

residing in circulating memory B-cells.14 There is variability in circulating viral load in healthy 

individuals19,20 and the host genes involved in viral load control have not been elucidated. 
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Moreover, Epstein-Barr nuclear antigen 1 (EBNA-1) is an important marker of EBV latency and 

detection of anti-EBNA-1 antibodies by enzyme-linked immunosorbent assay (ELISA) is often 

used as an indication of EBV infection. Titers of anti-EBNA-1 antibody in serum of healthy 

individuals have previously been linked to the HLA-DRB1 and HLA-DQB1 genes from the HLA 

locus (class II region).8 However, the genetic architecture of antibody reactivity to the 

remainder of the EBV proteome has not be elucidated.  

EBV infection can cause nasopharyngeal cancer, Burkitt’s lymphoma, Hodgkin’s 

lymphoma, and gastric adenocarcinoma, with elevated risk linked to the HLA locus (class I 

region).21,22 Infection with EBV is also believed to play a role in the development of lupus,23–27 

multiple sclerosis (MS),28,29 and other autoimmune diseases, with variants in the HLA locus 

modulating the risk.30 We therefore assessed the genetics of antibody responses against EBV 

using Phage ImmunoPrecipitation Sequencing (“PhIP-Seq”) with the complete human virome 

(“VirScan”)31–33, in combination with the Anti-Viral Antibody Response Deconvolution 

Algorithm (AVARDA)34. In brief, library scale oligonucleotide synthesis was used to express 

106,678 overlapping 56-amino acid peptides spanning all known human viral proteins, in a 

phage display format, covering ~400 viral species and strains. Phage clones 

immunoprecipitated by serum antibodies were quantified via Illumina sequencing. We and 

others have used the VirScan library to characterize the antibody repertoires of preterm 

neonates35, assess viral antibodies after solid organ transplant36, to characterize broadly 

neutralizing HIV antibodies37, link enteroviral infection with acute flaccid myelitis38, 

characterize SARS-CoV-2 epitopes39, and in large cross-sectional and longitudinal studies of 

exposure and response to hundreds of human viruses in health and after HIV40 or measles 

infection41. Recently, we have advanced the analysis of VirScan data by developing 

‘AVARDA’34, which calculates likelihoods of viral infections by considering potential cross-
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reactivities among the peptides and between viruses, and the amount of independent evidence 

supporting an antibody response to each virus represented in the library. In this study we find 

that antibody epitope selection is largely a heritable trait, and that class II major 

histocompatibility (MHC) molecules shape antibody recognition of EBV. We also identified an 

EBV serosignature that predicts EBV viral load in the periphery and associates with the MHC 

class I region of HLA. 

 

Results 

 Anti-viral antibody breadth and epitope reactivities are heritable. We used a twins 

study design to characterize the heritability of VirScan antibody binding specificities. We 

profiled sera of 494 twins (332 DZ and 162 MZ) from the TwinsUK cohort against the VirScan 

library. Peptide reactivity scores (z-scores) were calculated by comparing each sample to a set 

of negative control mock immunoprecipitations (IPs), which did not include serum, and were 

included on the same plate (Fig. 1a).33,42 

For each virus, we used AVARDA34 to calculate the antibody response breadth (polyclonality), 

and identified seropositive concordant twin pairs. To quantify the contribution of genetic and 

environmental effects we determined the additive genetic (A), common (C), and unique 

environmental effects (E) using SEM analysis applied to 446 immunodominant peptide 

reactivities and the overall breadth of the response to 43 viruses from 9 genera. For each 

peptide, an individual with a z-score greater than or equal to 7 was classified as a responder 

and less than or equal to 3 as a non-responder. All values between 3 and 7 were treated as 

missing data. Only dominant peptides (defined here as reactive in >20% of AVARDA-positive 

individuals) were included in the analysis; data are presented at the genus level to avoid 

ambiguity associated with cross-reactivity among viral species with high levels of sequence 
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homology (Table 1). The mean breadth values ranged from ~10 peptides up to ~44 peptides 

with heritability estimates ranging from 5% up to 57%. The virus with the greatest number of 

dominant peptides, Epstein-Barr Virus (EBV, lymphocryptovirus genus), exhibited heritability 

ranging from 25% to 89% across 107 peptides. 

 

Figure 1. EBV epitope selection and antibody response breadth are heritable traits. a, 
Schematic depicting the heritability analyses. VirScan of the TwinsUK cohort (n = 494; MZ = 
81 and DZ = 166 pairs; A upper panel) was used to generate a matrix of peptide reactivity 
scores. The enrichment scores were used to calculate the Jaccard index and response 
breadth using AVARDA. b, The Jaccard similarity indices of DZ twin pairs (red circles), MZ 
twin pairs (green circles) or random pairings (blue circles) are shown above. The size of 
each circle is proportional to the total number of EBV peptides that both twins recognize. c-
d, Dot plots showing the correlation of EBV response breadth between MZ and DZ twin 
pairs. Square of the Pearson’s correlation (R2) value is provided for each group. 
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EBV breadth and epitope selection are heritable traits. We also performed VirScan 

analysis of serum from a cohort comprised of 506 community volunteers who were also SNP 

genotyped, of which 388 were of European ancestry (EUR). Fig. S1 and S2 compare the 

antibody reactivities of the TwinsUK and the VRC cohorts against the 2,180 EBV peptides in 

the VirScan library. Immunodominant reactivities were largely restricted to specific regions of 

the EBV genome (Fig. S1a-b) and were mostly localized to the EBNA family of proteins, the 

transcriptional activator BZLF1 and the envelope glycoprotein BLLF1 (Fig. S1c). About 2,000 

sub-dominant responses (present in less than 20% of the cohort) were distributed across the 

EBV genome (Fig. S2a-b), with the greatest number of reactivities against the EBNA proteins, 

BZLF1, BLLF1, the lytic factor LF3 and latent membrane protein 1 (LMP1) (Fig. S2c). These 

results illustrate that while there are shared features of the anti-EBV antibody response 

between individuals, there is also great inter-individual variability. 

 
Table 1. Summary of detected viral epitopes and breadth by genus. The table provides 
a summary of total peptide count, average additive genetic effect (A) component and 
standard deviation in an ACE model, the mean breadth across all individuals for that genus 
along with the average A component and standard deviation for breadth. If a genus has 
multiple species contributing to the data, the mean breadth is marked “X”. 
 

Virus (Genus) Peptide 
Count

Mean Peptide 
Heritability 

(A)

Mean 
Breadth

Mean Breadth 
Heritability 

(A)

Lymphocryptovirus 107 65.3±14.8% 43.4±17.3 39.0%

Enterovirus 56 43.9±14.8% X 25.8±19.0%

Cytomegalovirus 21 62.6±17.0% 41.3±14.6 57.0%

Mastadenovirus 19 56.5±14.6% X 16.5±13.4%

Pneumovirus 16 57.4±20.2% X 24.7±1.5%

Simplexvirus 10 60.2±13.7% 36.6±15.6 0.0%

Alphacoronavirus 4 45.3±27.0% X X

Betacoronavirus 3 35.1±14.0% X X

Roseolovirus 3 59.7±14.6% X 32.0±15.6%

Varicellovirus 2 44.0±19.8% 10.0±2.9 0.0%
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In EBV seropositive individuals, we observed an average of 129 reactive peptides (~6% of 

the 2,180 EBV peptides in the VirScan library), with a range of 12 to 324. Among these reactive 

peptides, we examined the similarity of the anti-EBV profiles between twin pairs using the 

Jaccard index (Fig. 1b). The similarity of the response among MZ twin pairs was significantly 

higher compared to their DZ counterpart (p=4.2x10-6, much higher than random pairings, 

p=3.6x10-14), illustrating that host genetics sculpts the repertoire of anti-EBV antibodies. 

EBV breadth values among twin pairs, estimated by AVARDA, are shown in Fig. 1c-d. MZ 

twin pairs exhibit a higher level of breadth correlation (R2 = 0.51) versus DZ twin pairs (R2 = 

0.23), indicating that in addition to epitope selection, the total breadth of the anti-EBV 

antibody response is also a heritable trait. Using SEM, we estimated an additive genetic 

contribution of 39%, shared environmental contribution of 27% and unique environmental 

contribution of 34%. (Table 1). The stochastic elements of antibody responses are captured in 

the unique environmental component of this model.    

We developed a set of selection criteria to identify candidate peptide reactivities that were 

heritable in the TwinsUK cohort and were adequately powered in the VRC cohort for GWAS. Of 

all EBV peptides in the VirScan library, we first selected 144 peptides that were dominant in 

the TwinsUK cohort (Fig. S3, boxes 1-3). The most frequently recognized peptides belong to 

the EBV nuclear antigen (EBNA) family of proteins, with EBNA-3 and EBNA-2 representing of 

the most immunogenic peptides (Fig. 2a-b). Of the 144 immunodominant peptide reactivities 

analyzed, 107 (at least 1 peptide from each protein) had an estimated heritability of ≥ 20% 

(Fig. 2c; Fig. S3, box 4) and 38 peptide reactivities were also influenced (at least 3%; mean = 

42%) by common environmental factors (Fig. 2d). Of the 107 peptides with heritable reactivity 

in the TwinsUK cohort, 57 were dominant in the VRC/EUR cohort and thus selected for GWAS 

analysis (Fig. S3, box 5). 
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Figure 2. Heritability estimates of individual EBV peptide responses in the TwinsUK 
cohort. a, The number of peptides for each EBV protein associated with dominant antibody 
responses (at least 20% of the cohort were responders). b, Box plot showing the frequency 
of responders, c-d, box plots showing heritable (c) and common (d) environmental 
components for peptides from  different EBV proteins. Box plots indicate median, 
interquartile range, and extent of each distribution. 
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Figure 3. Antibody responses against specific EBV peptides associate with the HLA 
locus. a, The meta-manhattan plot shows a summary of all associations for 57 
serodominant peptides in the individuals of European descent in the VRC cohort showing a 
strong peak on chromosome 6 corresponding to the HLA locus. P-values less than 1.04 X 
10-9 were considered significant (red line) and those below 5 X 10-8 were suggestive (blue 
line) associations. b, A schematic representation of EBNA-2 showing major domains. The 
four HLA associated peptides fall in the C-TAD spanning aa 393-497. c-f, Locus zoom plots 
for the 4 EBNA-2 peptides. The region in pink was identified by credible sets analysis. All 
variants with a log10 transformed Bayes factor of >= 6 (dashed red lines) were considered 
significant. 
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Table 2. Antibody responses against specific EBV peptides are influenced by the MHC class-II locus on chromosome 
6. The table lists a set of loci and the EBV peptides associated with them. Locus discovery was performed in individuals of 
European descent (EUR) in the VRC cohort. A meta-analysis of the three cohorts was also performed with p values provided 
in the final column. 
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Genome-wide association studies of EBV peptide reactivities. Single-variant 

association analyses were performed on the 57 selected peptides and the p-value threshold for 

significance was adjusted by the Sidak-Nyholt method to account for multiple hypothesis 

testing (Methods). The Human Leukocyte Antigen (HLA) locus on chromosome 6 was 

associated (p ≤ 1x10-9) with four EBNA2 peptides (Fig. 3a). A meta-analysis including the 

VRC/EUR, VRC/AFR and the TwinsUK cohorts also confirmed the associations in this locus 

(Table 2). These four peptides are in the C-terminal transactivating domain of EBNA-2 (Fig. 

3b). The magnitude of the antibody response also increased linearly with the number of effect 

alleles present in the individuals of the VRC/EUR sub-cohort (Fig. S4a) and the overall VRC 

cohort (Fig. S4b). The four top associated variants are in linkage disequilibrium (D' > 0.8 for 

each variant pair). There is an overlap in the 95% credible intervals for the four EBNA-2 

peptides (ranging from 50 bp to 200.6 kb), and it is likely that this narrowed region harbors 

the causal variant(s) explaining the differential reactivity of the four peptides (Fig. 3c-f). A 

search of the GWAS catalog showed that the same potentially causal variants identified in this 

study have also been associated with several different diseases and phenotypes, some with a 

known or suspected role for EBV infection, including Hodgkin’s lymphoma43 and ulcerative 

colitis44.  A summary of these associations is provided in Table S1. 

 

Antibody correlates of EBV viral load. Despite significant inter-individual variability, 

cell-associated EBV genomic copy number is considered to be relatively stable over time, 

reported at 1-30 genomes per million PBMCs.19,20 In an effort to understand antibody and host 

genetic factors that control the EBV copy number set point, we measured PBMC-associated 

genome copies by qPCR (Fig. 4a). This assay, established by  Tsai et al, is sensitive enough to 

detect a single copy of EBV genome in 105 PBMCs.45 Only about one third of the VRC cohort 
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had a measurable EBV viral load, with a majority of positives having 5 copies or less per 105 

PBMCs (Fig. S5a). We found no correlation between EBV viral load and other covariates such 

as age, ancestry, and sex (Fig. S5b-c). We performed genome-wide association using viral load 

data both as a continuous trait and a dichotomous variable (detected or undetected) to identify 

host genetic factors that control viral load, but no significant associations were identified. This 

lack of genetic association is likely due to a combination of a lack of statistical power to detect 

small genetic effects and an inability to detect cell-associated EBV genomes in all but the 

highest titer individuals. 

We next examined antibody correlates of viral load. There was no correlation between 

viral load and overall EBV antibody breadth (Fig. 4b). We posited that specific antibody 

reactivities may be associated with viral load for three reasons: (i) they may directly limit viral 

replication, (ii) high viral load may stimulate antibody production, and/or (iii) antibodies may 

correlate with innate immune responses or cell-mediated immunity. We therefore tested 

individual peptides for their association with EBV viral load (Fig. 4c). A single peptide derived 

from the large tegument protein BPLF1, showed significant association with EBV viral load 

(Sidak-Nyholt adjusted p-value≤4.8x10-4). While not statistically significant, peptides derived 

from the EBNA family of proteins tended to be negatively associated with viral load and 

peptides derived from structural proteins from the tegument, capsid and envelope were 

positively correlated with viral load. The four EBNA-2 C-TAD peptides that associated with 

variants in the HLA locus (shown as green dots in Fig. 4c) were not associated with viral load 

or sex (green dots in Fig. S5 d-f).  
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Figure 4. EBV viral load in circulating PBMCs does not correlate with breadth of a 
response but correlates with responses against specific peptides. a, A schematic 
outlining the approach for EBV copy number measurements. 350ng of DNA (corresponds to 
roughly 105 cells) extracted from PBMCs was used to detect the presence of EBV genomes 
by qPCR. Copy numbers were calculated using a standard curve. b, EBV copy numbers 
showed no correlation with breadth of antibody response as calculated by AVARDA. c, A 
volcano plot of significant association between 112 immunodominant EBV peptides (>20% 
in cohort) and EBV viral load in the VRC cohort. One peptide that showed a significant 
association (adjusted p-value of 4.8 x 10-4) is marked in red. d, An LZ plot showing variants 
in the MHC class-I region on chromosome 6, associated with predicted EBV viral load. 
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In an effort to increase the number of individuals with ‘detectable’ levels of EBV, and to 

perform analyses in the TwinsUK cohort for which EBV copy number was not available, we 

used gradient boosting to developed a multi-peptide ‘sero-signature’ predictive of EBV viral 

load. The 112 peptides reactive in >20% of the VRC cohort were used for model building. ROC 

analysis was used to identify an appropriate threshold for predicting whether a sample should 

be considered EBV positive (high copy) or negative (low copy). We performed a GWAS for 

predicted EBV copy (high versus low) in both the VRC and the TwinsUK cohorts. Meta-analysis 

revealed a strong association with variants in the MHC class-I locus of the HLA region (Fig. 

4d, Table 3). Our results support a role for CD8+ cytotoxic T cells, possibly in conjunction 

with antibody epitope selection, in controlling PBMC-associated EBV copy number set point. 
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Table 3. Viral load predictions made from antibody reactivity data are influenced by 
the MHC class-I locus on chromosome 6. The Table shows a summary of top variants 
associated with predicted EBV viral load from a GWAS meta analysis on the VRC and 
TwinsUK cohorts. 
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Discussion 

The wide variation in human antibody responses to viral infections is influenced by both 

heritable and non-heritable factors. Previous studies have addressed the role of host genetics 

by measuring traits such as seroconversion rates and antibody titers to specific antigens.9,10,46,47 

However, no published studies have yet examined the heritability of antibody responses at the 

epitope level. In this study, we employed VirScan, a virome-wide antibody profiling technology, 

to characterize the heritability of epitope selection and identify genetic loci of importance. EBV, 

a chronic infection with >90% seroprevalence in humans, was used as a model virus in a 

detailed analysis, which included assessing antibody correlates of viral load. Our results 

describe a strong heritable component of anti-viral antibody epitope selection, which is 

associated with specific MHC class II genes, and likely other regions that could not be 

identified due to study power and the complex genetic architecture of these traits. 

GWAS identified MHC class-II associations for four peptides from the C-terminus of 

EBNA-2. This is similar to previously reported EBNA-1 antibody titer associations with HLA-

DRB1 and HLA-DQB1.48,49 In our study, reactivity to several immunodominant EBNA-1 

peptides were strongly heritable but we did not detect any significant genome wide 

associations, most likely due to insufficient power. 

Variation in the immunoglobulin genes is expected to influence the quality of an antibody 

response. However, we found no variants in this region associated with EBV epitope selection. 

The lack of association at the IGH locus may reflect the complexity of genetic variation in this 

region – including structural rearrangements and copy number variation that are not well 

captured via SNP based arrays.50 However, two reactivities were strongly associated with MHC 

class-II alleles, which are the major determinants of CD4+ helper T cell epitope selection. 
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Increasing the size of the study population and use of sequencing-based genetic analyses will 

likely reveal a role for the immunoglobulin loci in epitope selection. 

 We previously developed a summary statistic to capture the clonality of the antibody 

response (“breadth”) to a protein or virus. This metric was calculated individually for each 

virus in the library. The breadth of an antiviral response is likely to correlate with greater 

protection from re-infection, including potentially heterologous protection from similar 

viruses.51 Using TwinsUK VirScan data, we estimated the genetic heritability of the EBV 

antibody response breadth to be 39%. However, we detected no significantly associated loci 

using GWAS. This may be because the breadth of an antibody response is a complex trait, 

which could not be deconvoluted due to the size of the cohorts in this study. 

A GWAS of HIV viral load set point identified roles for the MHC class-I locus and a 

candidate gene study identified CCR5.52 A similar study on EBV viral load has not been 

performed. We find that PBMC-associated EBV viral load significantly associates with antibody 

reactivities against a peptide from EBV tegument protein deneddylase, BPLF1, but this should 

be replicated in an independent cohort. Antibody reactivity against EBV structural proteins 

tended to be positively correlated with viral load, whereas reactivity against EBV nuclear 

antigens tended to be negatively correlated with viral load. This could be due to the different 

spectrum of proteins presented to the immune system in individuals with high versus low viral 

load, and supported the use of a multi-peptide serosignatures as a surrogate for EBV viral load. 

We therefore employed machine learning to predict EBV viral load using antibody reactivity of 

112 peptides. GWAS linked this EBV serosignature with the MHC class-I locus. Cytotoxic CD8+ 

T cells play an important role in controlling EBV infection by targeting infected B cells.53,54 

Specific MHC class I variants could enhance or suppress this activity. An important caveat to 
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this analysis, however, is that hidden variables associated with the serosignature (e.g. a co-

infection) may underlie an indirect association with EBV viral load. 

There are notable limitations of this study. First, the VirScan library is composed of 56-aa 

peptides displayed on T7 phage. Conformational, discontinuous, and post-translationally 

modified epitopes are therefore absent from this study. This limitation is may 

disproportionately impact surface exposed epitopes. Second, the relatively small size of our 

cohorts limited the power of the GWAS analyses to detect associations with subdominant 

epitopes, complex genetic interactions, and antibody responses to less prevalent viruses.  

In summary, antibody epitope profiling is a powerful approach for characterizing the 

genetic architecture of immune responses to viruses and other environmental antigens. This 

study provides evidence that antibody epitope selection is a heritable trait. Host genetics, in 

combination with prior immune responses likely explains much of the heterogeneity of an 

infectious course. GWAS identified a role for MHC class II genes in the selection of antibody 

epitopes, and MHC class I genes in the maintenance of EBV load. Future studies of larger 

cohorts will likely identify additional genes important for pathogen immunity. 

 

Author Contributions 

T.V., C.V., M.M., P.D. and H.B.L conceptualized the study; T.V., C.V., M.M., W.M. and 

A.V. performed the formal analysis; T.V. wrote the original draft; T.V., C.V., M.M., P.D., A.V., 

W.M., T.L., M.R. and H.B.L reviewed and edited the manuscript; P.D. and H.B.L. supervised 

the project; H.B.L. acquired funding for the project. 

 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.25.436790doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436790
http://creativecommons.org/licenses/by-nd/4.0/


  
 

  
 21

Acknowledgements  

This work was made possible by National Institute of General Medical Sciences 

(NIGMS) grant R01GM136724 and National Institute of Allergy and Infectious Diseases 

(NIAID) grant U24AI118633 (H.B.L.).  M.R. and T.L. are supported by the intramural research 

program of the Vaccine Research Center, NIAID, NIH. TwinsUK receives funding from the 

Wellcome Trust (212904/Z/18/Z) and European Union (H2020 contract #733100). TwinsUK 

and M.M. are supported by the National Institute for Health Research (NIHR)-funded 

BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy’s and St 

Thomas’ NHS Foundation Trust in partnership with King’s College London. P.C. is founded by 

the European Union (H2020 contract #733100). CV was supported by the Burroughs-

Wellcome funded, Maryland: Genetics, Epidemiology and Medicine training program at Johns 

Hopkins University  

We are grateful to Stephen J. Elledge (Harvard Medical School) for generously 

providing the VirScan library used in this study. We are grateful to the twins who took part in 

TwinsUK and the whole TwinsUK team, which includes laboratory technicians, administrative 

staff, and research managers. 

 

Competing Interests 

H.B.L. is an inventor on a patent describing the VirScan technology, is a founder of 

Portal Bioscience, Alchemab, and ImmuneID, and serves as an advisor for TScan Therapeutics 

and CDI Laboratories.    

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.25.436790doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436790
http://creativecommons.org/licenses/by-nd/4.0/


  
 

  
 22

References: 

1. Antia, A. et al. Heterogeneity and longevity of antibody memory to viruses and vaccines. PLOS Biol. 

16, e2006601 (2018). 

2. Crotty, S. & Ahmed, R. Immunological memory in humans. Semin. Immunol. 16, 197–203 (2004). 

3. Grundbacher, F. J. Heritability estimates and genetic and environmental correlations for the human 

immunoglobulins G, M, and A. Am. J. Hum. Genet. 26, 1–12 (1974). 

4. Rowe, D. S., Boyle, J. A. & Buchanan, W. W. Plasma immunoglobulin concentrations in twins. Clin. 

Exp. Immunol. 3, 233–244 (1968). 

5. Kalff, M. W. & Hijmans, W. Serum immunoglobulin levels in twins. Clin. Exp. Immunol. 5, 469–477 

(1969). 

6. Allansmith, M., McClellan, B. & Butterworth, M. The influence of heredity and environment on 

human immunoglobulin levels. J. Immunol. Baltim. Md 1950 102, 1504–1510 (1969). 

7. Jonsson, S. et al. Identification of sequence variants influencing immunoglobulin levels. Nat. Genet. 

49, 1182–1191 (2017). 

8. Rubicz, R. et al. Genome-wide genetic investigation of serological measures of common infections. 

Eur. J. Hum. Genet. EJHG 23, 1544–1548 (2015). 

9. Scepanovic, P. et al. Human genetic variants and age are the strongest predictors of humoral 

immune responses to common pathogens and vaccines. Genome Med. 10, 59 (2018). 

10. Rubicz, R. et al. Genetic factors influence serological measures of common infections. Hum. Hered. 

72, 133–141 (2011). 

11. Liu, J. et al. A Viral Exposure Signature Defines Early Onset of Hepatocellular Carcinoma. Cell 182, 

317-328.e10 (2020). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.25.436790doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436790
http://creativecommons.org/licenses/by-nd/4.0/


  
 

  
 23

12. Kachuri, L. et al. The landscape of host genetic factors involved in immune response to common 

viral infections. Genome Med. 12, 93 (2020). 

13. Kempkes, B. & Robertson, E. S. Epstein-Barr Virus Latency: Current and Future Perspectives. Curr. 

Opin. Virol. 14, 138–144 (2015). 

14. Kieff, E. & Rickinson, A. B. Fields virology. ed 2511–2574 (2001). 

15. Tzellos, S. & Farrell, P. J. Epstein-barr virus sequence variation-biology and disease. Pathog. Basel 

Switz. 1, 156–174 (2012). 

16. Humans, I. W. G. on the E. of C. R. to. EPSTEIN-BARR VIRUS. Biological Agents (International Agency 

for Research on Cancer, 2012). 

17. EBV gene expression and regulation - Human Herpesviruses - NCBI Bookshelf. https://www-ncbi-

nlm-nih-gov.proxy1.library.jhu.edu/books/NBK47431/#__NBK47431_dtls__. 

18. Price, A. M. & Luftig, M. A. To Be or Not IIb: A Multi-Step Process for Epstein-Barr Virus Latency 

Establishment and Consequences for B Cell Tumorigenesis. PLoS Pathog. 11, (2015). 

19. Babcock, G. J., Decker, L. L., Freeman, R. B. & Thorley-Lawson, D. A. Epstein-barr virus-infected 

resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of 

immunosuppressed patients. J. Exp. Med. 190, 567–576 (1999). 

20. Maurmann, S. et al. Molecular Parameters for Precise Diagnosis of Asymptomatic Epstein-Barr 

Virus Reactivation in Healthy Carriers. J. Clin. Microbiol. 41, 5419–5428 (2003). 

21. McAulay, K. A. & Jarrett, R. F. Human leukocyte antigens and genetic susceptibility to lymphoma. 

Tissue Antigens 86, 98–113 (2015). 

22. Su, W.-H., Hildesheim, A. & Chang, Y.-S. Human Leukocyte Antigens and Epstein–Barr Virus-

Associated Nasopharyngeal Carcinoma: Old Associations Offer New Clues into the Role of Immunity 

in Infection-Associated Cancers. Front. Oncol. 3, (2013). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.25.436790doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436790
http://creativecommons.org/licenses/by-nd/4.0/


  
 

  
 24

23. Harley, J. B. & James, J. A. Epstein-Barr virus infection induces lupus autoimmunity. Bull. NYU Hosp. 

Jt. Dis. 64, 45–50 (2006). 

24. James, J. A. & Robertson, J. M. Lupus and Epstein-Barr. Curr. Opin. Rheumatol. 24, 383–388 (2012). 

25. Moon, U. Y. et al. Patients with systemic lupus erythematosus have abnormally elevated Epstein–

Barr virus load in blood. Arthritis Res Ther 6, R295 (2004). 

26. Draborg, A. H., Duus, K. & Houen, G. Epstein-Barr Virus and Systemic Lupus Erythematosus. Clin. 

Dev. Immunol. 2012, (2012). 

27. Harley, J. B. et al. Transcription factors operate across disease loci, with EBNA2 implicated in 

autoimmunity. Nat. Genet. 50, 699–707 (2018). 

28. Csuka, D. et al. Serum concentration of immunoglobulin G-type antibodies against the whole 

Epstein-Barr nuclear antigen 1 and its aa35-58 or aa398-404 fragments in the sera of patients with 

systemic lupus erythematosus and multiple sclerosis. Clin. Exp. Immunol. 171, 255–262 (2013). 

29. Zhou, Y. et al. Genetic loci for Epstein-Barr virus nuclear antigen-1 are associated with risk of 

multiple sclerosis. Mult. Scler. Houndmills Basingstoke Engl. 22, 1655–1664 (2016). 

30. Duquette, P. et al. The increased susceptibility of women to multiple sclerosis. Can. J. Neurol. Sci. J. 

Can. Sci. Neurol. 19, 466–471 (1992). 

31. Larman, H. B. et al. Autoantigen discovery with a synthetic human peptidome. Nat. Biotechnol. 29, 

535–541 (2011). 

32. Xu, G. J. et al. Systematic autoantigen analysis identifies a distinct subtype of scleroderma with 

coincident cancer. Proc. Natl. Acad. Sci. U. S. A. 113, E7526–E7534 (2016). 

33. Mohan, D. et al. PhIP-Seq characterization of serum antibodies using oligonucleotide-encoded 

peptidomes. Nat. Protoc. 13, 1958–1978 (2018). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.25.436790doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436790
http://creativecommons.org/licenses/by-nd/4.0/


  
 

  
 25

34. Monaco, D. et al. Deconvoluting Virome-Wide Antiviral Antibody Profiling Data. bioRxiv 333625 

(2018) doi:10.1101/333625. 

35. Pou, C. et al. The repertoire of maternal anti-viral antibodies in human newborns. Nat. Med. 25, 

591–596 (2019). 

36. Isnard, P. et al. Temporal virus serological profiling of kidney graft recipients using VirScan. Proc. 

Natl. Acad. Sci. U. S. A. 116, 10899–10904 (2019). 

37. Finton, K. A. K. et al. Ontogeny of recognition specificity and functionality for the broadly 

neutralizing anti-HIV antibody 4E10. PLoS Pathog. 10, e1004403 (2014). 

38. Schubert, R. D. et al. Pan-viral serology implicates enteroviruses in acute flaccid myelitis. Nat. Med. 

25, 1748–1752 (2019). 

39. Shrock, E. et al. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates 

of severity. Science 370, (2020). 

40. Eshleman, S. H. et al. Comprehensive Profiling of HIV Antibody Evolution. Cell Rep. 27, 1422-

1433.e4 (2019). 

41. Mina, M. J. et al. Measles virus infection diminishes preexisting antibodies that offer protection 

from other pathogens. Science 366, 599–606 (2019). 

42. Yuan, T. et al. Improved Analysis of Phage ImmunoPrecipitation Sequencing (PhIP-Seq) Data Using 

a Z-score Algorithm. bioRxiv 285916 (2018) doi:10.1101/285916. 

43. Urayama, K. Y. et al. Genome-wide association study of classical Hodgkin lymphoma and Epstein-

Barr virus status-defined subgroups. J. Natl. Cancer Inst. 104, 240–253 (2012). 

44. Bertalot, G. et al. Evidence of Epstein-Barr virus infection in ulcerative colitis. Dig. Liver Dis. Off. J. 

Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 33, 551–558 (2001). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.25.436790doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436790
http://creativecommons.org/licenses/by-nd/4.0/


  
 

  
 26

45. Tsai, D. E. et al. EBV PCR in the Diagnosis and Monitoring of Posttransplant Lymphoproliferative 

Disorder: Results of a Two-Arm Prospective Trial. Am. J. Transplant. 8, 1016–1024 (2008). 

46. Watson, C. T., Glanville, J. & Marasco, W. A. The Individual and Population Genetics of Antibody 

Immunity. Trends Immunol. 38, 459–470 (2017). 

47. Tsang, J. S. et al. Global analyses of human immune variation reveal baseline predictors of 

postvaccination responses. Cell 157, 499–513 (2014). 

48. Rubicz, R. et al. A Genome-Wide Integrative Genomic Study Localizes Genetic Factors Influencing 

Antibodies against Epstein-Barr Virus Nuclear Antigen 1 (EBNA-1). PLoS Genet. 9, (2013). 

49. Pedergnana, V. et al. Combined linkage and association studies show that HLA class II variants 

control levels of antibodies against Epstein-Barr virus antigens. PloS One 9, e102501 (2014). 

50. Watson, C. T. & Breden, F. The immunoglobulin heavy chain locus: genetic variation, missing data, 

and implications for human disease. Genes Immun. 13, 363–373 (2012). 

51. Morgenlander, W. et al. Antibody responses to endemic coronaviruses modulate COVID-19 

convalescent plasma functionality. medRxiv 2020.12.16.20248294 (2020) 

doi:10.1101/2020.12.16.20248294. 

52. Limou, S. & Zagury, J.-F. Immunogenetics: Genome-Wide Association of Non-Progressive HIV and 

Viral Load Control: HLA Genes and Beyond. Front. Immunol. 4, (2013). 

53. Khanna, R. & Burrows, S. R. Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated 

diseases. Annu. Rev. Microbiol. 54, 19–48 (2000). 

54. Hislop, A. D., Taylor, G. S., Sauce, D. & Rickinson, A. B. Cellular responses to viral infection in 

humans: lessons from Epstein-Barr virus. Annu. Rev. Immunol. 25, 587–617 (2007). 

55. Xu, G. J. et al. Viral immunology. Comprehensive serological profiling of human populations using a 

synthetic human virome. Science 348, aaa0698 (2015). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.25.436790doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436790
http://creativecommons.org/licenses/by-nd/4.0/


  
 

  
 27

56. Rijsdijk, F. V. & Sham, P. C. Analytic approaches to twin data using structural equation models. 

Brief. Bioinform. 3, 119–133 (2002). 

57. Scheike, T. H., Holst, K. K. & Hjelmborg, J. B. Estimating heritability for cause specific mortality 

based on twin studies. Lifetime Data Anal. 20, 210–233 (2014). 

58. Shaun Purcell, C. C. Plink 1.9. 

59. Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. 

GigaScience 4, (2015). 

60. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide 

association studies. Nat. Genet. 38, 904–909 (2006). 

61. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–

1287 (2016). 

62. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-

throughput sequencing data. Nucleic Acids Res. 38, (2010). 

63. Roederer, M. et al. The genetic architecture of the human immune system: a bioresource for 

autoimmunity and disease pathogenesis. Cell 161, 387–403 (2015). 

64. Sidak, Z. Rectangular Confidence Regions for the Means of Multivariate Normal Distributions. J. 

Am. Stat. Assoc. 62, 626 (1967). 

65. Nyholt, D. R. A Simple Correction for Multiple Testing for Single-Nucleotide Polymorphisms in 

Linkage Disequilibrium with Each Other. Am. J. Hum. Genet. 74, 765–769 (2004). 

66. Conomos, M. P., Miller, M. B. & Thornton, T. A. Robust inference of population structure for 

ancestry prediction and correction of stratification in the presence of relatedness. Genet. 

Epidemiol. 39, 276–293 (2015). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.25.436790doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436790
http://creativecommons.org/licenses/by-nd/4.0/


  
 

  
 28

67. Conomos, M. P., Reiner, A. P., Weir, B. S. & Thornton, T. A. Model-free Estimation of Recent 

Genetic Relatedness. Am. J. Hum. Genet. 98, 127–148 (2016). 

68. Morris, A. P. Transethnic meta-analysis of genomewide association studies. Genet. Epidemiol. 35, 

809–822 (2011). 

 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.25.436790doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436790
http://creativecommons.org/licenses/by-nd/4.0/


  
 

  
 29

Methods 

PhIP-Seq/VirScan. PhIP-Seq and VirScan have been previously described in detail.33,55 

Briefly, ELISA was performed to measure total IgG in serum samples and input volume was 

adjusted to 2 g of IgG input per IP.  VirScan library was mixed with diluted serum at 105-fold 

coverage (about 9.6x109 pfu for the 56-mer virome library). The library/serum mixture was 

allowed to rotate overnight at 4 C, followed by a 4-hour IP with protein A and protein G coated 

magnetic beads. PCR was performed with primers that flank the displayed peptide inserts. A 

second round of PCR was performed to add adapters and indexes for Illumina sequencing. 

Fastq files were aligned to obtain read count values for each peptide in the library, followed by 

calculation of z-scores as previously described.42  

Cohorts. The TwinsUK samples were collected prior to  2017  at  King’s College London and 

the VRC samples at the National  Institutes  of  Health  (NIH)  Clinical  Center  under  the  

Vaccine  Research Center’s  (VRC)/National  Institutes  of  Allergy  and  Infectious  Diseases  

(NIAID)/NIH  protocol “VRC   000:   Screening   Subjects   for   HIV   Vaccine   Research 

Studies”  (NCT00031304) in compliance with NIAID IRB approved procedures. The TwinsUK 

cohort comprised of 494 individuals: 81 MZ twin pairs and 166 DZ twin pairs; all twins were 

females of European genetic ancestry an average age of 62 years old. The Vaccine Research 

Center (VRC) cohort comprised of 535 healthy community volunteers in the greater 

Baltimore/Washington DC area recruited for multiple studies, of which 388 were of European 

genetic ancestry (EUR), and 147 of African genetic ancestry (AFR). The VRC cohort included 

298 men and 233 women with an average age of 35 years (18-70 years range). 

Jaccard index. Jaccard index calculations were performed by transforming individuals with 

z-score >= 7 as ‘responders’ and those lesser than that as ‘non-responders’ for each peptide. 

The total number of EBV peptides where both twins were responders were counted and the 
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Jaccard index for each twin pair was calculated using the formula [J(A,B) = (|AB|)/(|AB|)], 

where A is the set of peptides that twin1 responded to and B is a set of peptides for the 

corresponding co-twin (twin2). 

Binarization of data. The z-score values from PhIP-Seq were transformed to binarized 

(response = “1”, non-response = “0” and indeterminate values = “NA”) using a threshold of 

>=7 as a “1”, <= 3 as a “0” and values between 3 and 7 as “NA”.  

Estimation of infection probability and breadth of a response by AVARDA. A full 

description of AVARDA is provided in Monaco D. et al.34 In brief, AVARDA estimates a 

conservative assessment of the probability of viral infection using VirScan data. There are three 

modules in AVARDA, the first of which employs a network graph based on peptide-peptide 

relationships to define the minimum number of independent antibody specificities (i.e., 

response breadth) required to completely explain a set of observed peptide reactivities. The 

breadth values for each individual/virus pair estimated by AVARDA were used in downstream 

analysis such as the estimation of heritability. 

Real time PCR detection of EBV genomes. Taqman primers for EBV EBNA-1 were 

synthesized by Integrated DNA technologies (IDT). Sequences for EBNA-1 were reported in 

Tsai DE et al. and are CGT CTC CCC TTT GGA ATG G (ebna1 forward), GAA ATA ACA GAC 

AAT GGA CTC CCT TAG (EBV ebna1 reverse) and 6Fam‐CCT GGA CCC GGC CCA CAA CC‐

Tamra (EBV ebna1 probe).45 A sensitivity of at least 4 copies per reaction was routinely 

achieved (Fig. S6). Measurement of EBV viral load in the VRC cohort was performed using 

genomic DNA extracted from PBMCs. 350 ng of DNA (equivalent to ~105 PBMCs) was used per 

sample in each qPCR reaction. qPCR was performed using PrimeTime Gene Expression Master 

Mix (Integrated DNA Technologies, Cat. No. 1055772) as per manufacturer’s instructions.  
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Testing significance of association between peptide responses and EBV copy 

number. Fisher’s exact test was used to calculated p-values of association between specific 

anti-peptide responses and EBV copy numbers measured by real time PCR.  

Peptide selection. We developed a set of criteria to select peptides for GWAS, provided in 

the flowchart of Fig. S3. The VirScan library is composed of 106,678 56-aa peptide sequences 

representing all known human viruses (~400 viral species and strains, Fig. S3, box 1). EBV is 

represented by 2180 peptides in the VirScan library (Fig. S3, box 2). After binarization of the 

data, we remove peptides where responder proportions were < 20% and > 80% independently 

in the TwinsUK cohort (Fig. S3, box 3 ). A total of 144 peptides in TwinsUK were selected for 

heritability analysis by SEM, resulting in 107 peptides with > = 20% heritability (Fig. S3, box 

4). Of these peptides, we retained those where the responder proportion in the VRC cohort was 

between 20% and 80%, resulting in 57 peptides that were used for GWAS (Fig. S3, box 5). 

Heritability of epitopes using Structural Equation Models (SEM). We used the 

classical twin models to define the influence of genetic and environmental factors on the 

variance of 134 immunodominant peptide reactivity and the overall breadth of the response to 

each virus included in this study.  Twin studies compare the degree of similarity among 

monozygotic (MZ) twins, who share 100% of their genetics, and dizygotic (DZ) twins, who like 

other siblings share on average 50% of their genetics. Under the equal environment 

assumption (EEA), the variance of the trait/phenotype (P) is explained by latent parameters: P 

=A +C+E 

Where “A” represents the additive genetic influence, “C” the common or shared environment 

between the twin pair and “E” represents the non-shared environment (“E” also includes 

measurement error).56 To estimate the heritability, we used Structural Equation Models 

(SEM), which utilize observed covariances from both MZ and DZ pairs to establish a causal 
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relationship among the covariances and the latent parameters. We investigated ACE, AE and 

CE models and used the Akaike’s information criterion (AIC) to select the best fitting model. 

The model (ACE, AE or CE) with the minimum AIC reflects the best balance between 

explanatory power and parsimony and was the preferred model. Heritability analyses were 

performed using the package METs (version 1.2.7.1)57 in R (version 4.0.2). 

Genotyping and Imputation. The VRC cohort was genotyped using the Illumina Human 

Omni 5, GRCh37 (Illumina Inc., San Diego, CA). Quality control steps were performed in Plink 

1.958,59 and included removing genetic variants with departure of Hardy-Weinberg equilibrium 

p-value < 10-6, (n=19,227) and missing genotype rate >5% (n=17,891). Participants with 

missing call rate >5% (n=4), sex inconsistences (n=6) and related individuals based on identity 

by descent (IBD) estimates (pi_hat >0.2) were also excluded (n=19) from the analysis.  

Principal component analysis was performed with smartpca from the EIGENSOFT60 software 

package to identify genetic ancestry.  In the VRC cohort, 388 individuals clustered with 

European ancestry population-based samples (88 CEU HapMap samples) and 147 individuals 

clustered with African ancestry population-based samples (77 YRI HapMap samples). This 

resulted in 2,783,635 million genetic variants with a minor allele frequency (MAF) ≥ 1%. We 

then imputed genetic variants using the Michigan imputation server61 using the 1000 Genomes 

Phase 3 reference panel. We removed 15,945,186 variants with low imputation quality (R2<0.3) 

and variants with a MAF<5%. The final genetic dataset contained 7,637,921 variants in 535 

individuals. Gene annotation was performed using Annovar62 (version date 2017-07-17).  

Genotyping of the TwinsUK cohort has been described previously in detail.63 Briefly, TwinsUK 

samples were genotyped with a combination of two Illumina arrays (HumanHap300, 

HumanHap610Q). The normalized intensity data for each array were pooled separately. For 

each dataset the Illuminus calling algorithm was utilized to assign genotypes. No calls were 
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assigned if an individual's most likely genotyped was called with less than a posterior 

probability threshold of 0.95. Validation of pooling was achieved via visual inspection of 100 

random SNPs. Finally, intensity cluster plots of significant SNPs were visually inspected for 

over dispersion biased no calling, and/or erroneous genotype assignment. Before the 

imputation, the following exclusion criteria were applied to each genotype array. Samples: a) 

call rate <98%; b) heterozygosity across all SNPs ≥2 s.d. from the sample; c) mean evidence of 

non‐European ancestry; identity errors (assessed by pairwise identity by descent (IBD)). SNPs: 

a) Hardy‐Weinberg p‐value<10-6 assessed in a set of unrelated samples; b) MAF<1% ; c) SNP 

call rate <97% (SNPs with MAF≥5%) or < 99% (for 1% ≤ MAF < 5%).  

After the Genotype QC stage, the samples from the two arrays were combined and the 

imputations were performed using the Michigan Imputation Server61 using the 1000 Genomes 

Phase3 v5 reference panel. After imputation 6,903843 SNPs with MAF > 0.05 and imputation 

quality R2 > 0.3 were included in the analysis. 

Genetic associations of peptide reactivities. We performed single-variant association 

analysis using dichotomized peptide reactivity data, treating seronegative individuals and 

borderline reactivities as missing data. Peptides were considered sufficiently powered for 

analysis if they were reactive in at least 20% but no greater than 80% of the study population 

and were also heritable in the TwinsUK study (n=107 of 144 peptides; Fig. S3, box 4). Based 

on this criterion, 57 EBV peptides were evaluated in VRC European ancestry individuals 

(VRC/EUR n=388). Meta-analysis was performed using the TwinsUK cohort (EUR n=494) 

and VRC study participants of African ancestry (VRC/AFR, n = 147) for 22 peptides with 

significant (4 peptides) or suggestive (18 peptides) loci (p-value ≤ 5x10-8) identified in the VRC 

European individuals. The significance threshold was estimated with the Sidak-Nyholt 

method64,65, accounting for the number of independent traits (n=48)  resulting in a genome-
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wide significance for EBV of p-value ≤ 1.04x10-9. The meta-analysis p-value was set to 0.01 in 

the replication cohorts, or a joint association p-value less than the VCR European only value.  

In the VRC cohort, we interrogated 7,637,921 variants for an association with each of the 

viral peptides using the penalized quasi-likelihood (PQL) approximation to the GLMM 

(Breslow and Clayton) implemented in the R package Genesis66,67. The African ancestry GWAS 

included the genetic relationship matrix (GRM PC-Relate) as a fixed effect and 10 principal 

components as random effects. 

 The genome-wide association analysis in TwinsUK was performed using a mixed-effects 

linear model implemented in genome-wide efficient mixed-model association (GEMMA) v 

0.98.1. GEMMA is designed for GWAS analysis of family-based data by incorporating pairwise 

kinship matrix calculated using genotyping data in the mixed-effects linear model to correct 

relatedness and hidden population stratification. 

A total of 22 EBV peptides were included in the meta-analysis using the fixed effect inverse-

variance weighted method implemented in METAL.   

Credible sets analysis. We combined ethnic-specific GWAS summary statistics using 

MANTRA (Meta-Analysis of Trans-ethnic Association Studies)68 and used the Bayes factor 

(BF) to generate credible sets. Briefly, we defined a 1 Mb window (500 kb upstream and 500 kb 

downstream) from the index variant (lowest Bayes factor), and variants were ranked based on 

their BF. The posterior probability that this variant is driving the region’s association signal 

was calculated by dividing the variant’s BF by the sum of the BFs of all variants in the region. 

The final credible set includes all variants with a cumulative posterior probability sum of 95% 

in the region. 

GWAS catalog search. We looked at previously reported disease associations of variants of 

interest using the GWAS catalog version 2020-10-20 (http://www.genome.gov/gwastudies/). 
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For each GWAS in the discovery group (VRC/EUR) we selected the associated variants 

included within a credible set and report the disease associations presented in the catalog in 

Table S1. 

Multi-peptide serosignature for EBV viral load prediction. To predict the presence or 

absence of EBV based on VirScan data, we employed the XGBoost software. 

(https://xgboost.readthedocs.io/en/latest/) Specifically, we sought to classify samples based 

on presence or absence of EBV (> 0 copies is present and = 0 copies is absent) based on 

reactivity to 112 immunodominant EBV peptides. XGBoost leverages ensemble learning and 

gradient tree boosting to perform regression and/or classification. Machine learning with 

XGBoost relies on multiple hyperparameters, including size of terminal nodes in 

regression/classification trees, subset of samples used per round, subset of features used per 

round, number of trees, learning rate, regularization term, and others. To create the prediction 

model, we first subset the VRC samples into a 90% training set and a 10% validation set. We 

performed a grid search with 10-fold cross-validation on the 90% validation set to tune model 

hyperparameters; final hyperparameters were those that maximized the cross-validation AUC 

and were: max_depth = 2, eta = 0.001, gamma = 2, colsample_bytree = 0.5, min_child_weight 

= 1, subsample = 0.5. We then applied this gradient boost model to the entire 90% training set, 

and the performance of the model was determined with the 10% validation set. To prevent 

overfitting, the iteration with the best cross-validation AUC was used (iteration = 45; Fig. 

S7a). This final model was then used to make predictions of expected likelihood of EBV 

presence in the TwinsUK cohort. Feature importance (Gain) was calculated using XGBoost. 

Receiver operating characteristics (ROC) analysis of viral load prediction models. 

ROC analysis was performed using the R package ROCR. The predictions generated by the 

gradient boost model are a range of values between 0 and 1. The 10 most important features of 
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the prediction model are shown in Fig. S7b. We defined an optimal cut off threshold to be the 

value where the sensitivity and specificity curves intersect (Fig. S7c-d left panels). The 

optimal threshold was determined to be 0.4976 and predicted values above the cutoff are 

designated EBV positive and below are EBV negative. The model performed at 70% sensitivity 

and 70% specificity (AUC = 0.776) for the training data and at 60% sensitivity and 60% 

specificity (AUC = 0.655) for the validation data (Fig. S7c-d right panels). 
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Supplemental Figure 1. Features of immunodominant anti-EBV antibody responses. 
a, Immunodominant anti-EBV responses (at least 20% of the cohort were responders) 
shown by genomic position on an EBV reference genome. Genomic map above the plots 
shows the position of the major nuclear antigens, the LMP proteins and the BART non-
coding RNA region. b, Venn-diagram of number of immunodominant peptides in both 
cohorts with 108 peptides in the VRC and 181 peptides in the TwinsUK cohorts. c, A pie-
chart of immunodominant responses grouped by protein. 
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Supplemental Figure 2. Features of sub-dominant anti-EBV antibody responses. a, 
Sub-dominant anti-EBV responses (less than 20% of the cohort) were seen in peptides that 
map to most positions on the EBV reference genome b, Number of peptides (1997, VRC 
and 1918 TwinsUK) and c, grouping of sub-dominant antibody responses by protein. 
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Supplemental Figure 3. Flow chart of EBV peptide selection for GWAS. Peptide 
reactivity scores were binarized (Responders: Z-score>=7, non-responders: Z-score <=3) 
and filtered based on responder proportion (>=20% and <= 80%) in TwinsUK. Of 144 
peptides, 107 have estimated heritability >= 20%. A total of 57 EBV peptides were 
seroprevalent (Responders/non-responders >=20% and <= 80%) in VRC.  These 57 
peptides were selected for genome-wide association analysis in the VRC/EUR group.  
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Supplemental Figure 4. The magnitude of antibody response positively correlates 
with the number of effect alleles present. a-b, Distribution of z-scores in the VRC/EUR 
sub-cohort (a) and the complete VRC cohort (b) shows a positive correlation between 
magnitude of antibody response (higher z-scores equals stronger response) and number of 
effect alleles in individuals in the VRC cohort. 
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Supplemental Table 1. A list of diseases and phenotypes associated with credible-set 
variants identified for the two C-terminal EBNA-2 peptides. 
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Supplemental Figure 5. EBV viral load is not correlated with ancestry, age or gender. 
a, A histogram showing the distribution of the EBV genomic copies detected in 105 PBMCs 
of individuals in the VRC cohort. b, Scatter plot of EBV viral load with age, grouped by EUR 
or AFR ancestry and by gender. c, Histogram of EBV positive and negative individuals in 
the EUR and AFR sub-groups grouped by gender. Tables below the panels provide the 
number of individuals in each group shown. d, A comparison of each peptide specific 
reactivity between male and female sub-groups in the VRC cohort shows no significant 
differences. e-f, Associations between peptide reactivities and EBV viral load show no 
differences for men (e) or women (f). 
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Supplemental Figure 6. Quantitative PCR detection of EBV EBNA-1 was highly 
sensitive. The graph shows qPCR performed on a dilution series of EBNA-1 DNA 
fragment. The assay had a linear range spanning 7 decades and was sensitive to 4 copies 
per reaction. 
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Supplemental Figure 7. Generation of a prediction model by gradient boosting a, 
Training of the model. b, ROC analysis of training cohort (n = 512, 90%). c, The 10 most 
important features of the prediction model. d, ROC analysis of the independent validation 
cohort (n=57, 10%). 
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