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ABSTRACT 24 

Yes-associated protein 1 (YAP1), a key player in the Hippo pathway, has been shown to play a 25 

critical role in tumor progression. However, the role of YAP1 in prostate cancer cell invasion, 26 

migration, and metastasis is not well defined. Through functional, transcriptomic, epigenomic, 27 

and proteomic analyses, we showed that prolyl hydroxylation of YAP1 plays a critical role in the 28 

suppression of cell migration, invasion, and metastasis in prostate cancer. Knockdown (KD) or 29 

knockout (KO) of YAP1 led to an increase in cell migration, invasion, and metastasis in prostate 30 

cancer cells. Microarray analysis showed that the EMT pathway was activated in Yap1-KD cells. 31 

ChIP-seq analysis showed that YAP1 target genes are enriched in pathways regulating cell 32 

migration. Mass spectrometry analysis identified P4H prolyl hydroxylase in the YAP1 complex 33 

and YAP1 was hydroxylated at multiple proline residues. Proline-to-alanine mutations of YAP1 34 

isoform 3 identified proline 174 as a critical residue, and its hydroxylation suppressed cell 35 

migration, invasion, and metastasis. KO of P4ha2 led to an increase in cell migration and 36 

invasion, which was reversed upon Yap1 KD. Our study identified a novel regulatory mechanism 37 

of YAP1 by which P4HA2-dependent prolyl hydroxylation of YAP1 determines its 38 

transcriptional activities and its function in prostate cancer metastasis.  39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 
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INTRODUCTION 47 

Yes-associated protein 1 (YAP1), a key transcriptional coactivator in the Hippo pathway, is an 48 

important driver in cancer development and progression (1). Although YAP1 plays an oncogenic 49 

role in various cancer types, multiple studies also support a tumor-suppressive function for 50 

YAP1 in head and neck (2), breast (3-5), hematological (6), and colorectal (7, 8) cancers. Thus, 51 

the functions of YAP1 are likely context-dependent (9). YAP1 was shown to be overexpressed in 52 

prostate adenocarcinoma (PCa) and associated with cell proliferation and invasiveness in 53 

castration-resistant prostate cancer (CRPC) (10-12). However, YAP1 was found to be 54 

downregulated in the highly aggressive NEPC subset (13). Importantly, YAP1 deletion 55 

(heterozygous and homozygous) and mutation were observed in ~3.6% of prostate cancers and 56 

was strongly associated with metastasis (Suppl. Fig. 1A-B & Suppl. Table 1-3). On the 57 

contrary, deletion/mutation of TAZ, another transcriptional coactivator in the Hippo pathway, 58 

was not significantly different between the primary and metastatic PCa (Suppl. Fig. 1B). On the 59 

cellular level, YAP1 promotes prostate cancer cell proliferation through cell-autonomous and 60 

non-autonomous mechanisms (11, 12, 14, 15), but its role in prostate cancer metastasis is not 61 

clearly defined. 62 

Post-translational modification of YAP1, such as phosphorylation, has also been shown 63 

to regulate YAP1 cellular localization, stability, and activities (16, 17). Interestingly, we found 64 

that YAP1 proteins in prostate cancer cells are modified by proline hydroxylation, an important 65 

post-translational modification that modulates protein folding and stability in mammalian cells 66 

(18, 19). Proline hydroxylation is induced by prolyl hydroxylases, such as prolyl hydroxylase 67 

domain proteins (PHD) and collagen prolyl 4-hydroxylase (P4H). Whether YAP1 is subjected to 68 

proline hydroxylation was previously unknown, as were the effects of such modification on 69 
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YAP1 function. In this study, we identified a surprising role for YAP1 in the suppression of cell 70 

migration, invasion, and metastasis in prostate, pancreatic, and breast cancers. We found that 71 

YAP1 interacts with the P4H complex and is hydroxylated at multiple proline residues. The 72 

status of proline hydroxylation of YAP1 determines its oncogenic activity in regulating cell 73 

migration, invasion, and metastasis in prostate cancer and possibly in other cancer cell types. 74 

 75 

RESULTS 76 

YAP1 suppresses cancer cell migration, invasion, and metastasis  77 

Previously, we showed that YAP1 was highly expressed in primary tumors from the metastatic 78 

Pten/Smad4 prostate conditional knockout (KO) model  (12). We first examined the effect of 79 

Yap1 knockdown (KD) on cell migration, invasion, and metastasis in a highly metastatic 80 

Pten/Smad4-deficient CRPC cell line (referred to as PS cells hereafter) (20). Surprisingly, Yap1 81 

KD and Yap1 KO led to a significant increase in cell migration and invasion (Fig. 1A-C & 82 

Suppl. Fig. 2A). Of note, Yap1 KD or KO did not have a significant effect on cell proliferation 83 

as measured by the total number of cells at the end of the assays (data not shown). Furthermore, 84 

re-expression of human YAP1 in Yap1-KO cells suppressed cell migration and invasion (Fig. 1D 85 

& Suppl. Fig. 2B). YAP1-KD in C4-2b, IGR-CaP1, and PC3 cells similarly increased migration 86 

and invasion (Fig. 1E-G & Suppl. Fig. 2C). However, YAP1 KD in DU145 led to a decrease in 87 

cell migration (Suppl. Fig. 2D). Also, we examined whether YAP1 also suppressed cell 88 

migration in other metastatic cancers in which YAP1 has been implicated to play an important 89 

role in tumor progression (21-25). We found that Yap1 KO or KD led to increased cell migration 90 

in iKPC mouse pancreatic cancer cells (26) and MDA-MB-231 human breast cancer cells (Fig. 91 

1H-I) but not in SYO-1 synovial sarcoma cells (Suppl. Fig. 2E). Moreover, Yap1 KD in PS cells 92 
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promoted lung metastasis (Fig. 1J). Taken together, our data suggest that YAP1 suppresses cell 93 

migration, invasion, and metastasis in multiple cancer types. 94 

 95 

YAP1 interacts with the prolyl 4-hydroxylase complex, and its proline residues are 96 

hydroxylated 97 

To understand the mechanisms by which YAP1 suppresses cell migration, invasion, and 98 

metastasis, we performed microarray analysis of RNA isolated from Yap1-KD and control PS 99 

cells (Suppl. Table 4). As expected, gene set enrichment analysis (GSEA) (27) identified 100 

epithelial to mesenchymal transition (EMT) as the top pathway activated in Yap1-KD cells (Fig. 101 

2A). We also confirmed that the expression of several EMT genes, including Postn, Cdh11, 102 

Acta2, Rgs4, and Mgp, were upregulated upon Yap1 KD (Suppl. Fig. 3A).  103 

Since YAP1 acts as a transcriptional coactivator, we sought to determine whether these 104 

upregulated EMT genes are direct target genes of YAP1 using ChIP-seq in PS cells. We found 105 

that YAP1 binds mostly to the distant intergenic region and other introns (Fig. 2B), which is 106 

consistent with previous reports (28). Pathway analyses of the top 2000 YAP1 binding sites 107 

using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) 108 

identified multiple pathways related to cell migration as top pathways and the expected “Hippo 109 

signaling pathway” (Fig. 2C & Suppl. Fig. 3B). Motif analysis using Homer (29) identified 110 

TEAD1 and AP1 motifs (Suppl. Fig. 3C & data not shown), which is consistent with the 111 

known physical and functional interaction between YAP1, TEAD, and AP1 (28). Importantly, 112 

we found that 194 upregulated genes and 247 downregulated genes in Yap1 KD cells were 113 

among the top 6000 YAP1-target genes predicted by Cistrome-GO (30) (Suppl. Table 5-7). 114 

Among these genes, YAP1 binds to the distant intergenic region upstream or downstream of 115 
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several genes upregulated in Yap1-KD cells (e.g., Postn, Cdh11, Acta2, Rgs4, and Mgp) (Suppl. 116 

Fig. 3D & data not shown), suggesting that YAP1 directly represses their expression. 117 

Additionally, we confirmed the binding of YAP1 to its known target genes, including Cxcl5 and 118 

Ccnd1 (Suppl. Fig. 3E).  119 

Since the functions of YAP1 are regulated through its interacting partners, as well as by 120 

post-translational modifications (16, 17), we performed immunoprecipitation (IP) of YAP1 in PS 121 

cells followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify 122 

YAP1-interacting proteins and novel post-translational modifications (Fig. 2D). As expected, we 123 

identified multiple proteins previously shown to interact with YAP1, such as AMOT and the 124 

SWI/SNF complex (Fig. 2D). Interestingly, proteins of P4H complex (P4HA1, P4HA2, and 125 

P4HB) were identified among the top YAP1-interacting proteins (Fig. 2D). On the contrary, 126 

prolyl 3-hydroxylase was not identified in the IP-MS (data not shown). Collagen P4H, an α2β2 127 

tetrameric complex, specifically catalyzes 4-hydroxylation of proline (18, 19) through its 128 

catalytic α subunit (P4HA). Because P4HA2 was the most abundant protein of the P4H complex 129 

pulled down by YAP1, we focused on its interaction with YAP1. We showed that overexpressed 130 

Flag-YAP1 efficiently pulled down overexpressed P4HA2 in 293T cells (Fig. 2E). Also, 131 

endogenous YAP1 was found to interact with P4HA2 in PS cells (Fig. 2F).  132 

Give the proline hydroxylase activity of the P4H complex (18, 19), we examined whether 133 

proline residues in YAP1 were hydroxylated. We identified nine hydroxylated proline residues 134 

(proline 60, 70, 105, 157, 159, 347, 353, 395, 398) in mouse YAP1, eight of which were 135 

evolutionarily conserved between mouse and human (Fig. 2G & Suppl. Fig. 4A-B), suggesting 136 

that they might play a role in regulating YAP1 functions.  137 
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Hydroxylation at proline 174 of YAP1 plays a critical role in suppressing cell migration, 138 

invasion, and metastasis 139 

Given the critical regulatory roles of proline hydroxylation in proteins (18, 19), we decided to 140 

examine whether proline hydroxylation modulates YAP1 functions. We first generated 141 

hydroxylation-defective human YAP1 mutants by mutating proline to alanine (Mut1-3: 142 

P75/85/120A; Mut4-5: P172/174A; Mut6-9: P348/352/394/397A) (Fig. 3A & Suppl. Fig. 4B). 143 

These YAP1 mutants were overexpressed in Yap1-KO PS cells to avoid the possible interference 144 

of the endogenous wild type (WT) YAP1. The expression of all the YAP1 mutants was similar 145 

but higher than the WT (Fig. 3B). We did not observe any significant difference in cell growth in 146 

vitro and in vivo (Suppl. Fig. 5A-B) between YAP1 WT and mutants. However, we found that 147 

there is an increase in cell migration and invasion in Mut4-5–overexpressing cells compared to 148 

WT-overexpressing cells (Fig. 3C-D), suggesting that mutations of proline 172 and 174 to 149 

alanine abolished the activity of YAP1 in suppressing cell migration and invasion. Consistent 150 

with the in vitro findings, PS cells with YAP1 Mut4-5 overexpression increased the colonization 151 

of cancer cells in the lung compared to WT, Mut1-3, and Mut6-9 (Fig. 3E & Suppl. Fig. 5C).  152 

To determine whether prolyl hydroxylation controls the transcriptional activities of YAP1, 153 

we examined the expression of YAP1 target genes Ccnd1, Mcm6, Cxcl1, and Cxcl5 in Yap1-KO 154 

cells that overexpressed YAP1 WT, Mut4-5, or the constitutively active S127A mutant (31). 155 

Both Mut4-5 and the S127A mutant dramatically increased the expression of these genes 156 

compared to the YAP1 WT (Fig. 3F & Suppl. Fig. 5D), suggesting that the non-hydroxylated 157 

YAP1 is more transcriptionally active than the hydroxylated YAP1.  158 

To further pinpoint which proline residue of YAP1 is critical for its function in 159 

suppressing cell migration and invasion, we generated site-specific proline-to-alanine mutants of 160 
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human YAP1 (P172A and P174A mutants), which corresponded to proline 157 and 159 in 161 

mouse YAP1. We overexpressed GFP control, YAP1 WT, and YAP1 mutants (Mut4-5: 162 

P172/174A; Mut4: P172A; Mut5: P174A) in Yap1-KO cells (Suppl. Fig. 5E) and examined their 163 

effects on cell migration and invasion. We found that both Mut4-5 and Mut5, but not Mut4, 164 

dramatically increased cell migration and invasion compared to the GFP control (Fig. 3G-H), 165 

suggesting proline 174 is the critical hydroxylation site that regulates YAP1 activity in cell 166 

migration and invasion. Importantly, overexpression of Mut4-5 and Mut5 similarly increased the 167 

cell migration of PC3 and TRAMPC2 cells (Suppl. Fig. 5F). We then performed ChIP-qPCR to 168 

determine whether the increased expression of YAP1 target genes in Mut4-5 expressing cells is 169 

due to increased YAP1 binding to chromatin. We found that Mut5 binding to the promoter/distal 170 

enhancers of its target genes was significantly increased compared to WT (Fig. 3I & Suppl. Fig. 171 

5G). To examine the transcriptional activation and repression of YAP1 target genes, we 172 

examined H3K9me3, a mark associated with transcriptional repression (32), and H3K4me3, a 173 

hallmark of active chromatin enriched at active promoters and correlates with transcriptional 174 

activity (33), in the promoters/enhancers of YAP1 target genes. We found that H3K9me3 was 175 

significantly decreased and H3K4me4 was significantly increased in the regulatory region of 176 

several YAP1 target genes (e.g., Col12a1, Mgp, Postn, Cxcl12) (Fig. 3I & Suppl. Fig. 5G). 177 

Taken together, our data suggest that hydroxylation at proline 174 of YAP1 plays a critical role 178 

in regulating cell migration, invasion, and metastasis by repressing the expression of a subset of 179 

its target genes.   180 

 181 

Loss of P4HA2 promotes cell migration and invasion through YAP1 182 
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Given the observed hydroxylation of YAP1 in PS cells (Fig. 2G) and the effect of hydroxylation-183 

defective YAP1 mutants on migration and invasion (Fig. 3C-H & Suppl. Fig. 5F), the ability of 184 

YAP1 to suppress cell migration and invasion appeared to be regulated by the P4H complex. We 185 

examined the effect of P4ha2 KO on cell migration and invasion and found that P4ha2 KO 186 

significantly increased cell migration and invasion compared to WT cells (Fig. 4A-C), which 187 

was not due to an increase in cell proliferation (data not shown). Interestingly, we found that 188 

YAP1 target genes Postn, Col12a1, Mgp, Ccl5, and Cxcl12 were significantly upregulated in 189 

P4ha2-KO cells compared to control cells (Fig. 4D & data not shown), suggesting YAP1 is 190 

transcriptionally more active upon loss of P4HA2. Importantly, KD of Yap1 in P4ha2-KO cells 191 

abolished the effect of P4ha2 KO on cell migration and invasion (Fig. 4E-F & Suppl. Fig. 5H). 192 

Taken together, our data indicate that P4HA2 suppresses cell migration and invasion through 193 

proline hydroxylation of YAP1.  194 

 195 

DISCUSSION 196 

In contrary to previous findings that KD of YAP1 in LNCaP-C4-2 cells impaired cell migration 197 

and invasion, we demonstrated that KD or KO of Yap1 in mouse (PS and TRAMPC2) and 198 

human (C4-2b, IGR-CaP1, and PC3) prostate cancer cells led to enhanced cell migration, 199 

invasion, and metastasis. The discrepancy between our study and the previous one is not clear. 200 

Our data also showed that YAP1 KD in DU145 cells suppressed cell migration whereas YAP1 201 

KD/KO promoted cell migration in iKPC cells and MDA-MB-231 cells. These findings strongly 202 

suggest that YAP1 plays a context-dependent function in cell migration, invasion, and 203 

metastasis. Further studies are necessary to define molecular basis underlying the context-204 

dependent functions of YAP1 in cell migration, invasion, and metastasis. Importantly, the 205 
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clinical significance of YAP1 loss in PCa patients was supported by the strong association of 206 

YAP1 deletion with metastatic PCa and the loss of YAP1 protein in advanced PCa (12, 13). Loss 207 

of YAP1 function via post-translational modification by proline hydroxylation will be also an 208 

important mechanism of clinical significance. Furthermore, our unpublished data showed that 209 

TAZ similarly suppresses cell migration and regulates a common set of genes as YAP1, 210 

suggesting functional redundancy between YAP1 and TAZ. 211 

Mechanistically, our data suggest that prolyl hydroxylation plays an important role in the 212 

regulation of YAP1 activities, which can both activate and repress transcription (Fig. 4G). In 213 

P4HA2 WT cells, YAP1 may suppress gene expression through its interaction with SWI/SNF 214 

complex, which was identified as YAP1-interating proteins in our study and has been shown to 215 

regulate both activation and repression of the same promoters (34, 35), in part through 216 

corepressor NCoR1 (36). Also, YAP1 may recruit YY1 and EZH2 (37) or recruit the NuRD 217 

complex to suppress the expression of its target genes (38). Interestingly, proline 174 is within 218 

the first WW domain of YAP1, which is crucial for the transcriptional activities of YAP1 219 

through its interaction with transcription factors that contain PPxY motifs (39). Thus, our 220 

findings suggest that prolyl hydroxylation at P174 of YAP1 may impair its interaction with key 221 

transcription [e.g., c-JUN (28), TEAD], resulting in a decrease in both binding to its target gene 222 

and reduced transcriptional activation. This notion is supported by our findings that YAP1-Mut5 223 

binds more efficiently to its target genes. YAP1 hydroxylation may also be required for the 224 

efficient recruitment of the transcription corepressor complexes (e.g., NCoR1, NuRD), as our 225 

data showed that YAP1 P174A OE increased H3K4me3 and reduced H3K9me3 for a subset of 226 

YAP1 target genes. Thus, our data suggest that P174A YAP1 mutant not only has increased 227 

binding to its target genes, but also induces a switch from repressive transcription to active 228 
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transcription for a subset of genes. Further studies are needed to delineate the effect of prolyl 229 

hydroxylation of YAP1 on the dynamics of the epigenomic landscape. YAP1 is known to be 230 

regulated by phosphorylation at multiple serine residues (40). Our studies shed light on a new 231 

aspect of YAP1 regulation, which may also be involved in many YAP1-mediated cellular 232 

activities yet to be identified.  233 

The P4H α subunit (P4HA) has three isoforms (P4HA1-3) in mammalian cells (19). 234 

Since P4HA1 and P4HA2 were both identified as YAP1-interacting proteins in our MS analysis, 235 

P4HA1 may also suppress cell migration, invasion, and metastasis through prolyl hydroxylation 236 

of YAP1. However, P4HA1 was previously shown to promote prostate cancer progression (41), 237 

and further studies are needed to clarify the role of P4HA1 in regulating YAP1 functions and cell 238 

migration, invasion, and metastasis. Since LS-MS mass spectrometry analysis cannot distinguish 239 

3-prolyl hydroxylation from 4-prolyl hydroxylation, we cannot rule out the presence of 3-240 

hydroxyl proline in YAP1. Given that P3H1 was not identified as YAP1-interacting proteins, the 241 

high specificity of the P4H and P3H towards prolyl hydroxylation strongly indicates that the 242 

hydroxyproline identified in YAP1 is 4-hydroxyproline. Future experiments combining liquid 243 

chromatography retention time differences with mass spectrometry using ETD-HCD 244 

fragmentation, complemented by ab initio calculations are needed to address this issue (42). 245 

Although collagen deposition is generally associated with tumor progression and invasive 246 

behavior (43), it also plays a tumor-suppressive role (44). P4HA1 is the major isoenzyme in most 247 

cells, and P4ha1−/− leads to embryonic lethality in mice due to abnormal deposition of collagen 248 

IV (45). In contrast, P4ha2−/− mice had no apparent abnormalities (46). Given that we did not 249 

observe any significant difference in the expression of P4HA1 between P4ha2 WT and KO cells 250 

(Suppl. Fig. 5I), collagen deposition in P4ha2 KO/KD cells may not be significantly impacted. 251 
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Given the role of P4HA2 in promoting secretion and deposition of collagen and cell invasion in 252 

breast cancer (47, 48), the seemly contradictory findings on the differential effect of P4ha2 253 

KO/KD and collagen deposition on cell migration may warrant further studies. Furthermore, due 254 

to the lack of an antibody that can specifically recognize the hydroxylated proline 174 of YAP1, 255 

we cannot assess the clinical relevance of prolyl hydroxylation of YAP1 in tumor samples from 256 

prostate cancer patients. The development of such antibodies is warranted and would allow us to 257 

examine the association of prolyl hydroxylation of YAP1 and P4HA2 expression in prostate 258 

cancer specimens.  259 

In summary, our findings support a model in which P4HA2-mediated prolyl 260 

hydroxylation serves as a molecular switch that controls the activities of YAP1 in cell migration, 261 

invasion, and metastasis (Fig. 4G).  262 

 263 

MATERIALS AND METHODS 264 

The reagents and assays as well as bioinformatic/statistical analyses were described in 265 

Supplementary Information.   266 
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 436 

FIGURE LEGENDS 437 

Figure 1. YAP1 suppresses cell migration, invasion, and metastasis. (A-B) Cell migration 438 

and invasion assay using PS cells transduced with control shRNA and Yap1 shRNAs. The Yap1 439 

KD efficiency was confirmed by WB analysis. (C) Cell migration assay using Yap1-WT PS cells 440 

and Yap1-KO cells. WB analysis confirmed the KO of YAP1 expression. (D) Cell migration 441 

assay using Yap1-KO cells with GFP overexpression and YAP1 overexpression. WB analysis 442 

confirmed the overexpression of YAP1 in Yap1-KO PS cells. (E-F) Cell migration and invasion 443 

assay using C4-2b cells transduced with control shRNA and YAP1 shRNAs. The YAP1 KD 444 

efficiency was confirmed by WB analysis. (G-I) Cell migration assay using IGR-CaP1 (G), 445 

iKPC (H), and MDA-MB-231 (I) with YAP1 KD or KO compared to control cells. (J) Luciferase 446 

imaging in mice injected with PS cells transduced with control shRNA and Yap1 shRNAs 447 

through the tail vein.  448 

 449 

Figure 2. Microarray, ChIP-seq, and immunoprecipitation-mass spectrometry analyses. 450 

(A) GSEA analysis of microarray data from PS cells transduced with doxycycline-inducible 451 

Yap1 shRNA identified EMT as the top pathway activated in Yap1-KD cells. (B-C) ChIP-seq 452 
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analysis identified YAP1 binding sites and YAP1-regulated pathways. (D) Immunoprecipitation-453 

mass spectrometry analysis identified known YAP1-interacting proteins and novel YAP1-454 

interacting proteins. (E) Exogenous YAP1 interacts with exogenous P4HA2 when overexpressed 455 

in 293T cells by transfection of the indicated plasmids for co-immunoprecipitation experiments. 456 

(F) Endogenous YAP1 interacts with endogenous P4HA2 in PS cells. (F) Multiple prolyl 457 

hydroxylation sites were identified in peptides of YAP1 isoform 3 from the LC- MS/MS 458 

analysis.  459 

Figure 3. Prolyl hydroxylation of YAP1 suppressed cell migration, invasion, and 460 

metastases. (A) Scheme showing the strategy to generate prolyl hydroxylation–defective YAP1 461 

mutants by mutating proline to alanine (PA): Mut1-3 (P75/85/120A), Mut4-5 (P172/174A), and 462 

Mut6-9 (P348/352/394/397). Human YAP1 isoform 3 was used. (B) Expression of YAP1 WT 463 

and PA mutants in Yap1-KO PS cells. (C-D) Cell migration and invasion assay in Yap1-KO PS 464 

cells with overexpression of YAP1 WT and PA mutants. (E) Tail vein injection of Yap1-KO 465 

cells with overexpression of YAP1 WT and PA mutants. (F) qPCR analysis of YAP1 target 466 

genes in Yap1-KO PS cells with overexpression of YAP1 WT, Mut4-5, and the constitutively 467 

active S127A mutant. (G-H) Cell migration and invasion assay using Yap1-KO PS cells with 468 

overexpression of GFP, YAP1 WT, Mut4-5, Mut4, and Mut5. (I) ChIP-qPCR analysis of YAP1, 469 

H3K4me3, and H3K9me4 binding sites in Col12a1 and Mgp.  470 

 471 

Figure 4. P4HA2 suppresses cell migration and invasion through Yap1. (A) WB analysis of 472 

P4HA2 in P4ha2-WT and P4ha2-KO PS cells. (B-C) Cell migration and invasion using P4ha2-473 

WT and P4ha2-KO PS cells. (D) qPCR analysis of YAP1 target genes (Postn, Col12a1, and 474 

Mgp) in P4ha2 KO and WT cells. (E) WB analysis of YAP1 in P4ha2-WT and P4ha2-KO PS 475 
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cells transduced with Yap1 shRNAs. (F) Cell invasion assay in P4ha2-WT and P4ha2-KO PS 476 

cells transduced with shYap1#434. (G) A model for hydroxylation-dependent YAP1 function in 477 

cell migration, invasion, and metastasis (Created with BioRender.com). Left: P4HA2-mediated 478 

hydroxylation of YAP1 may impair its interactions with transcription factors such as JUN or 479 

enhance the recruitment of corepressor, such as SWI/SNF-NCoR1, NuRD, and EZH2/YY1, 480 

which results in a decrease in the expression of genes involved in cell migration, invasion, and 481 

metastasis. Right: In the absence of P4HA2, non-hydroxylated YAP1 may efficiently interact 482 

with transcription factors such as JUN to activate genes involved in cell migration, invasion, and 483 

metastasis. 484 
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