

1 P4HA2-induced prolyl hydroxylation suppresses YAP1-mediated prostate cancer cell migration,
2 invasion, and metastasis

3 Ming Zhu^{1*}, Ruiqing Peng^{1,7*}, Xin Liang¹, Zhengdao Lan², Ming Tang³, Pingping Hou², Jian H.
4 Song¹, Celia Sze Ling Mak¹, Jiwon Park¹, Shui-er Zheng¹, Ailing Huang¹, Xingdi Ma², Ruidong
5 Chen¹, Qing Chang³, Christopher J. Logothetis¹, Abhinav K. Jain⁴, Sue-Hwa Lin^{1,5}, Hiroyuki
6 Katayama⁶, Samir M. Hanash⁶, Guocan Wang^{1,2}.

7 ¹Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied
8 Research of Genitourinary Cancers, ²Department of Cancer Biology, ³Department of Genomic
9 Medicine, ⁴Department of Epigenetics and Molecular Carcinogenesis & Epigenomics Profiling
10 Core Facility, ⁵Department of Translational Molecular Pathology, ⁶Department of Clinical
11 Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas,
12 USA. ⁷Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South
13 China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.

14 *These authors contributed equally to the work.

15 Correspondence: Guocan Wang (gwang6@mdanderson.org)

16

17 Running title: The role of prolyl hydroxylation of YAP1 in prostate cancer

18 Key words: YAP1, prolyl hydroxylation, P4A2, prostate cancer, cell migration, invasion,
19 metastasis

20

21 Conflict of interest: C. J. Logothetis reports receiving commercial research grants from Bayer,
22 Sanofi, Janssen, Astellas Pharma, Pfizer; and honoraria from Bayer, Janssen, Sanofi, Astellas
23 Pharma. No potential conflicts of interest were disclosed by the other authors.

24 **ABSTRACT**

25 Yes-associated protein 1 (YAP1), a key player in the Hippo pathway, has been shown to play a
26 critical role in tumor progression. However, the role of YAP1 in prostate cancer cell invasion,
27 migration, and metastasis is not well defined. Through functional, transcriptomic, epigenomic,
28 and proteomic analyses, we showed that prolyl hydroxylation of YAP1 plays a critical role in the
29 suppression of cell migration, invasion, and metastasis in prostate cancer. Knockdown (KD) or
30 knockout (KO) of *YAP1* led to an increase in cell migration, invasion, and metastasis in prostate
31 cancer cells. Microarray analysis showed that the EMT pathway was activated in *Yap1*-KD cells.
32 ChIP-seq analysis showed that YAP1 target genes are enriched in pathways regulating cell
33 migration. Mass spectrometry analysis identified P4H prolyl hydroxylase in the YAP1 complex
34 and YAP1 was hydroxylated at multiple proline residues. Proline-to-alanine mutations of YAP1
35 isoform 3 identified proline 174 as a critical residue, and its hydroxylation suppressed cell
36 migration, invasion, and metastasis. KO of *P4ha2* led to an increase in cell migration and
37 invasion, which was reversed upon *Yap1* KD. Our study identified a novel regulatory mechanism
38 of YAP1 by which P4HA2-dependent prolyl hydroxylation of YAP1 determines its
39 transcriptional activities and its function in prostate cancer metastasis.

40

41

42

43

44

45

46

47 INTRODUCTION

48 Yes-associated protein 1 (YAP1), a key transcriptional coactivator in the Hippo pathway, is an
49 important driver in cancer development and progression (1). Although YAP1 plays an oncogenic
50 role in various cancer types, multiple studies also support a tumor-suppressive function for
51 YAP1 in head and neck (2), breast (3-5), hematological (6), and colorectal (7, 8) cancers. Thus,
52 the functions of YAP1 are likely context-dependent (9). YAP1 was shown to be overexpressed in
53 prostate adenocarcinoma (PCa) and associated with cell proliferation and invasiveness in
54 castration-resistant prostate cancer (CRPC) (10-12). However, YAP1 was found to be
55 downregulated in the highly aggressive NEPC subset (13). Importantly, *YAP1* deletion
56 (heterozygous and homozygous) and mutation were observed in ~3.6% of prostate cancers and
57 was strongly associated with metastasis (**Suppl. Fig. 1A-B & Suppl. Table 1-3**). On the
58 contrary, deletion/mutation of TAZ, another transcriptional coactivator in the Hippo pathway,
59 was not significantly different between the primary and metastatic PCa (**Suppl. Fig. 1B**). On the
60 cellular level, YAP1 promotes prostate cancer cell proliferation through cell-autonomous and
61 non-autonomous mechanisms (11, 12, 14, 15), but its role in prostate cancer metastasis is not
62 clearly defined.

63 Post-translational modification of YAP1, such as phosphorylation, has also been shown
64 to regulate YAP1 cellular localization, stability, and activities (16, 17). Interestingly, we found
65 that YAP1 proteins in prostate cancer cells are modified by proline hydroxylation, an important
66 post-translational modification that modulates protein folding and stability in mammalian cells
67 (18, 19). Proline hydroxylation is induced by prolyl hydroxylases, such as prolyl hydroxylase
68 domain proteins (PHD) and collagen prolyl 4-hydroxylase (P4H). Whether YAP1 is subjected to
69 proline hydroxylation was previously unknown, as were the effects of such modification on

70 YAP1 function. In this study, we identified a surprising role for YAP1 in the suppression of cell
71 migration, invasion, and metastasis in prostate, pancreatic, and breast cancers. We found that
72 YAP1 interacts with the P4H complex and is hydroxylated at multiple proline residues. The
73 status of proline hydroxylation of YAP1 determines its oncogenic activity in regulating cell
74 migration, invasion, and metastasis in prostate cancer and possibly in other cancer cell types.

75

76 RESULTS

77 YAP1 suppresses cancer cell migration, invasion, and metastasis

78 Previously, we showed that YAP1 was highly expressed in primary tumors from the metastatic
79 Pten/Smad4 prostate conditional knockout (KO) model (12). We first examined the effect of
80 *Yap1* knockdown (KD) on cell migration, invasion, and metastasis in a highly metastatic
81 Pten/Smad4-deficient CRPC cell line (referred to as PS cells hereafter) (20). Surprisingly, *Yap1*
82 KD and *Yap1* KO led to a significant increase in cell migration and invasion (**Fig. 1A-C &**
83 **Suppl. Fig. 2A**). Of note, *Yap1* KD or KO did not have a significant effect on cell proliferation
84 as measured by the total number of cells at the end of the assays (**data not shown**). Furthermore,
85 re-expression of human *YAP1* in *Yap1*-KO cells suppressed cell migration and invasion (**Fig. 1D**
86 & **Suppl. Fig. 2B**). *YAP1*-KD in C4-2b, IGR-CaP1, and PC3 cells similarly increased migration
87 and invasion (**Fig. 1E-G & Suppl. Fig. 2C**). However, *YAP1* KD in DU145 led to a decrease in
88 cell migration (**Suppl. Fig. 2D**). Also, we examined whether YAP1 also suppressed cell
89 migration in other metastatic cancers in which YAP1 has been implicated to play an important
90 role in tumor progression (21-25). We found that *Yap1* KO or KD led to increased cell migration
91 in iKPC mouse pancreatic cancer cells (26) and MDA-MB-231 human breast cancer cells (**Fig.**
92 **1H-I**) but not in SYO-1 synovial sarcoma cells (**Suppl. Fig. 2E**). Moreover, *Yap1* KD in PS cells

93 promoted lung metastasis (**Fig. 1J**). Taken together, our data suggest that YAP1 suppresses cell
94 migration, invasion, and metastasis in multiple cancer types.

95

96 **YAP1 interacts with the prolyl 4-hydroxylase complex, and its proline residues are**
97 **hydroxylated**

98 To understand the mechanisms by which YAP1 suppresses cell migration, invasion, and
99 metastasis, we performed microarray analysis of RNA isolated from *Yap1*-KD and control PS
100 cells (**Suppl. Table 4**). As expected, gene set enrichment analysis (GSEA) (27) identified
101 epithelial to mesenchymal transition (EMT) as the top pathway activated in *Yap1*-KD cells (**Fig.**
102 **2A**). We also confirmed that the expression of several EMT genes, including *Postn*, *Cdh11*,
103 *Acta2*, *Rgs4*, and *Mgp*, were upregulated upon *Yap1* KD (**Suppl. Fig. 3A**).

104 Since YAP1 acts as a transcriptional coactivator, we sought to determine whether these
105 upregulated EMT genes are direct target genes of YAP1 using ChIP-seq in PS cells. We found
106 that YAP1 binds mostly to the distant intergenic region and other introns (**Fig. 2B**), which is
107 consistent with previous reports (28). Pathway analyses of the top 2000 YAP1 binding sites
108 using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
109 identified multiple pathways related to cell migration as top pathways and the expected “Hippo
110 signaling pathway” (**Fig. 2C & Suppl. Fig. 3B**). Motif analysis using Homer (29) identified
111 TEAD1 and AP1 motifs (**Suppl. Fig. 3C & data not shown**), which is consistent with the
112 known physical and functional interaction between YAP1, TEAD, and AP1 (28). Importantly,
113 we found that 194 upregulated genes and 247 downregulated genes in *Yap1* KD cells were
114 among the top 6000 YAP1-target genes predicted by Cistrome-GO (30) (**Suppl. Table 5-7**).
115 Among these genes, YAP1 binds to the distant intergenic region upstream or downstream of

116 several genes upregulated in *Yap1*-KD cells (e.g., *Postn*, *Cdh11*, *Acta2*, *Rgs4*, and *Mgp*) (**Suppl.**
117 **Fig. 3D & data not shown**), suggesting that YAP1 directly represses their expression.
118 Additionally, we confirmed the binding of YAP1 to its known target genes, including *Cxcl5* and
119 *Ccnd1* (**Suppl. Fig. 3E**).

120 Since the functions of YAP1 are regulated through its interacting partners, as well as by
121 post-translational modifications (16, 17), we performed immunoprecipitation (IP) of YAP1 in PS
122 cells followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify
123 YAP1-interacting proteins and novel post-translational modifications (**Fig. 2D**). As expected, we
124 identified multiple proteins previously shown to interact with YAP1, such as AMOT and the
125 SWI/SNF complex (**Fig. 2D**). Interestingly, proteins of P4H complex (P4HA1, P4HA2, and
126 P4HB) were identified among the top YAP1-interacting proteins (**Fig. 2D**). On the contrary,
127 prolyl 3-hydroxylase was not identified in the IP-MS (**data not shown**). Collagen P4H, an $\alpha 2\beta 2$
128 tetrameric complex, specifically catalyzes 4-hydroxylation of proline (18, 19) through its
129 catalytic α subunit (P4HA). Because P4HA2 was the most abundant protein of the P4H complex
130 pulled down by YAP1, we focused on its interaction with YAP1. We showed that overexpressed
131 Flag-YAP1 efficiently pulled down overexpressed P4HA2 in 293T cells (**Fig. 2E**). Also,
132 endogenous YAP1 was found to interact with P4HA2 in PS cells (**Fig. 2F**).

133 Given the proline hydroxylase activity of the P4H complex (18, 19), we examined whether
134 proline residues in YAP1 were hydroxylated. We identified nine hydroxylated proline residues
135 (proline 60, 70, 105, 157, 159, 347, 353, 395, 398) in mouse YAP1, eight of which were
136 evolutionarily conserved between mouse and human (**Fig. 2G & Suppl. Fig. 4A-B**), suggesting
137 that they might play a role in regulating YAP1 functions.

138 **Hydroxylation at proline 174 of YAP1 plays a critical role in suppressing cell migration,
139 invasion, and metastasis**

140 Given the critical regulatory roles of proline hydroxylation in proteins (18, 19), we decided to
141 examine whether proline hydroxylation modulates YAP1 functions. We first generated
142 hydroxylation-defective human YAP1 mutants by mutating proline to alanine (Mut1-3:
143 P75/85/120A; Mut4-5: P172/174A; Mut6-9: P348/352/394/397A) (**Fig. 3A & Suppl. Fig. 4B**).
144 These YAP1 mutants were overexpressed in *Yap1*-KO PS cells to avoid the possible interference
145 of the endogenous wild type (WT) YAP1. The expression of all the YAP1 mutants was similar
146 but higher than the WT (**Fig. 3B**). We did not observe any significant difference in cell growth *in*
147 *vitro* and *in vivo* (**Suppl. Fig. 5A-B**) between YAP1 WT and mutants. However, we found that
148 there is an increase in cell migration and invasion in Mut4-5-overexpressing cells compared to
149 WT-overexpressing cells (**Fig. 3C-D**), suggesting that mutations of proline 172 and 174 to
150 alanine abolished the activity of YAP1 in suppressing cell migration and invasion. Consistent
151 with the *in vitro* findings, PS cells with YAP1 Mut4-5 overexpression increased the colonization
152 of cancer cells in the lung compared to WT, Mut1-3, and Mut6-9 (**Fig. 3E & Suppl. Fig. 5C**).

153 To determine whether prolyl hydroxylation controls the transcriptional activities of YAP1,
154 we examined the expression of YAP1 target genes *Ccnd1*, *Mcm6*, *Cxcl1*, and *Cxcl5* in *Yap1*-KO
155 cells that overexpressed YAP1 WT, Mut4-5, or the constitutively active S127A mutant (31).
156 Both Mut4-5 and the S127A mutant dramatically increased the expression of these genes
157 compared to the YAP1 WT (**Fig. 3F & Suppl. Fig. 5D**), suggesting that the non-hydroxylated
158 YAP1 is more transcriptionally active than the hydroxylated YAP1.

159 To further pinpoint which proline residue of YAP1 is critical for its function in
160 suppressing cell migration and invasion, we generated site-specific proline-to-alanine mutants of

161 human YAP1 (P172A and P174A mutants), which corresponded to proline 157 and 159 in
162 mouse YAP1. We overexpressed GFP control, YAP1 WT, and YAP1 mutants (Mut4-5:
163 P172/174A; Mut4: P172A; Mut5: P174A) in *Yap1*-KO cells (**Suppl. Fig. 5E**) and examined their
164 effects on cell migration and invasion. We found that both Mut4-5 and Mut5, but not Mut4,
165 dramatically increased cell migration and invasion compared to the GFP control (**Fig. 3G-H**),
166 suggesting proline 174 is the critical hydroxylation site that regulates YAP1 activity in cell
167 migration and invasion. Importantly, overexpression of Mut4-5 and Mut5 similarly increased the
168 cell migration of PC3 and TRAMPC2 cells (**Suppl. Fig. 5F**). We then performed ChIP-qPCR to
169 determine whether the increased expression of YAP1 target genes in Mut4-5 expressing cells is
170 due to increased YAP1 binding to chromatin. We found that Mut5 binding to the promoter/distal
171 enhancers of its target genes was significantly increased compared to WT (**Fig. 3I & Suppl. Fig.**
172 **5G**). To examine the transcriptional activation and repression of YAP1 target genes, we
173 examined H3K9me3, a mark associated with transcriptional repression (32), and H3K4me3, a
174 hallmark of active chromatin enriched at active promoters and correlates with transcriptional
175 activity (33), in the promoters/enhancers of YAP1 target genes. We found that H3K9me3 was
176 significantly decreased and H3K4me4 was significantly increased in the regulatory region of
177 several YAP1 target genes (e.g., *Col12a1*, *Mgp*, *Postn*, *Cxcl12*) (**Fig. 3I & Suppl. Fig. 5G**).
178 Taken together, our data suggest that hydroxylation at proline 174 of YAP1 plays a critical role
179 in regulating cell migration, invasion, and metastasis by repressing the expression of a subset of
180 its target genes.

181

182 **Loss of P4HA2 promotes cell migration and invasion through YAP1**

183 Given the observed hydroxylation of YAP1 in PS cells (**Fig. 2G**) and the effect of hydroxylation-
184 defective YAP1 mutants on migration and invasion (**Fig. 3C-H & Suppl. Fig. 5F**), the ability of
185 YAP1 to suppress cell migration and invasion appeared to be regulated by the P4H complex. We
186 examined the effect of *P4ha2* KO on cell migration and invasion and found that *P4ha2* KO
187 significantly increased cell migration and invasion compared to WT cells (**Fig. 4A-C**), which
188 was not due to an increase in cell proliferation (**data not shown**). Interestingly, we found that
189 YAP1 target genes *Postn*, *Col12a1*, *Mgp*, *Ccl5*, and *Cxcl12* were significantly upregulated in
190 *P4ha2*-KO cells compared to control cells (**Fig. 4D & data not shown**), suggesting YAP1 is
191 transcriptionally more active upon loss of P4HA2. Importantly, KD of *Yap1* in *P4ha2*-KO cells
192 abolished the effect of *P4ha2* KO on cell migration and invasion (**Fig. 4E-F & Suppl. Fig. 5H**).
193 Taken together, our data indicate that P4HA2 suppresses cell migration and invasion through
194 proline hydroxylation of YAP1.

195

196 DISCUSSION

197 In contrary to previous findings that KD of *YAP1* in LNCaP-C4-2 cells impaired cell migration
198 and invasion, we demonstrated that KD or KO of *Yap1* in mouse (PS and TRAMPC2) and
199 human (C4-2b, IGR-CaP1, and PC3) prostate cancer cells led to enhanced cell migration,
200 invasion, and metastasis. The discrepancy between our study and the previous one is not clear.
201 Our data also showed that *YAP1* KD in DU145 cells suppressed cell migration whereas YAP1
202 KD/KO promoted cell migration in iKPC cells and MDA-MB-231 cells. These findings strongly
203 suggest that YAP1 plays a context-dependent function in cell migration, invasion, and
204 metastasis. Further studies are necessary to define molecular basis underlying the context-
205 dependent functions of YAP1 in cell migration, invasion, and metastasis. Importantly, the

206 clinical significance of YAP1 loss in PCa patients was supported by the strong association of
207 YAP1 deletion with metastatic PCa and the loss of YAP1 protein in advanced PCa (12, 13). Loss
208 of YAP1 function via post-translational modification by proline hydroxylation will be also an
209 important mechanism of clinical significance. Furthermore, our unpublished data showed that
210 TAZ similarly suppresses cell migration and regulates a common set of genes as YAP1,
211 suggesting functional redundancy between YAP1 and TAZ.

212 Mechanistically, our data suggest that prolyl hydroxylation plays an important role in the
213 regulation of YAP1 activities, which can both activate and repress transcription (**Fig. 4G**). In
214 P4HA2 WT cells, YAP1 may suppress gene expression through its interaction with SWI/SNF
215 complex, which was identified as YAP1-interating proteins in our study and has been shown to
216 regulate both activation and repression of the same promoters (34, 35), in part through
217 corepressor NCoR1 (36). Also, YAP1 may recruit YY1 and EZH2 (37) or recruit the NuRD
218 complex to suppress the expression of its target genes (38). Interestingly, proline 174 is within
219 the first WW domain of YAP1, which is crucial for the transcriptional activities of YAP1
220 through its interaction with transcription factors that contain PPxY motifs (39). Thus, our
221 findings suggest that prolyl hydroxylation at P174 of YAP1 may impair its interaction with key
222 transcription [e.g., c-JUN (28), TEAD], resulting in a decrease in both binding to its target gene
223 and reduced transcriptional activation. This notion is supported by our findings that YAP1-Mut5
224 binds more efficiently to its target genes. YAP1 hydroxylation may also be required for the
225 efficient recruitment of the transcription corepressor complexes (e.g., NCoR1, NuRD), as our
226 data showed that YAP1 P174A OE increased H3K4me3 and reduced H3K9me3 for a subset of
227 YAP1 target genes. Thus, our data suggest that P174A YAP1 mutant not only has increased
228 binding to its target genes, but also induces a switch from repressive transcription to active

229 transcription for a subset of genes. Further studies are needed to delineate the effect of prolyl
230 hydroxylation of YAP1 on the dynamics of the epigenomic landscape. YAP1 is known to be
231 regulated by phosphorylation at multiple serine residues (40). Our studies shed light on a new
232 aspect of YAP1 regulation, which may also be involved in many YAP1-mediated cellular
233 activities yet to be identified.

234 The P4H α subunit (P4HA) has three isoforms (P4HA1-3) in mammalian cells (19).
235 Since P4HA1 and P4HA2 were both identified as YAP1-interacting proteins in our MS analysis,
236 P4HA1 may also suppress cell migration, invasion, and metastasis through prolyl hydroxylation
237 of YAP1. However, P4HA1 was previously shown to promote prostate cancer progression (41),
238 and further studies are needed to clarify the role of P4HA1 in regulating YAP1 functions and cell
239 migration, invasion, and metastasis. Since LS-MS mass spectrometry analysis cannot distinguish
240 3-prolyl hydroxylation from 4-prolyl hydroxylation, we cannot rule out the presence of 3-
241 hydroxyl proline in YAP1. Given that P3H1 was not identified as YAP1-interacting proteins, the
242 high specificity of the P4H and P3H towards prolyl hydroxylation strongly indicates that the
243 hydroxyproline identified in YAP1 is 4-hydroxyproline. Future experiments combining liquid
244 chromatography retention time differences with mass spectrometry using ETD-HCD
245 fragmentation, complemented by ab initio calculations are needed to address this issue (42).

246 Although collagen deposition is generally associated with tumor progression and invasive
247 behavior (43), it also plays a tumor-suppressive role (44). P4HA1 is the major isoenzyme in most
248 cells, and *P4ha1*^{-/-} leads to embryonic lethality in mice due to abnormal deposition of collagen
249 IV (45). In contrast, *P4ha2*^{-/-} mice had no apparent abnormalities (46). Given that we did not
250 observe any significant difference in the expression of P4HA1 between *P4ha2* WT and KO cells
251 (**Suppl. Fig. 5I**), collagen deposition in *P4ha2* KO/KD cells may not be significantly impacted.

252 Given the role of P4HA2 in promoting secretion and deposition of collagen and cell invasion in
253 breast cancer (47, 48), the seemly contradictory findings on the differential effect of *P4ha2*
254 KO/KD and collagen deposition on cell migration may warrant further studies. Furthermore, due
255 to the lack of an antibody that can specifically recognize the hydroxylated proline 174 of YAP1,
256 we cannot assess the clinical relevance of prolyl hydroxylation of YAP1 in tumor samples from
257 prostate cancer patients. The development of such antibodies is warranted and would allow us to
258 examine the association of prolyl hydroxylation of YAP1 and P4HA2 expression in prostate
259 cancer specimens.

260 In summary, our findings support a model in which P4HA2-mediated prolyl
261 hydroxylation serves as a molecular switch that controls the activities of YAP1 in cell migration,
262 invasion, and metastasis (**Fig. 4G**).

263

264 MATERIALS AND METHODS

265 The reagents and assays as well as bioinformatic/statistical analyses were described in
266 Supplementary Information.

267

268 ACKNOWLEDGEMENTS

269 We thank Ronald DePinho and Haoqiang Ying for helpful discussions, Sarah E. Townsend for
270 editing, and Dr. Timothy C. Thompson for providing RM-1 cells. G.W. is supported by the
271 funding from MDACC (Moon Shot, IRG, and PCRP), UT STARs Award, NIH R00 CA194289
272 and P50 CA140388 as well as NIH P30CA016672 for the use of Research Animal Support
273 Facility, Flow Cytometry and Cellular Imaging Core Facility, and Functional Genomics Core.

274

275 **CONTRIBUTIONS**

276 MZ and GW contributed to the study's conception and design of this study. GW, MZ, RP, XL,
277 ZL, MT, PH, JHS, CSM, JP, SZ, AH, XM, RC, QC, AKJ, and HK performed the experiments
278 and acquired, analysed, and interpreted the data (e.g., statistical analysis, biostatistics,
279 computational analysis). CJL, SMH, and GW contributed to the supervision of the project. SHL
280 and GW contributed to the writing and editing the manuscript.

281

282 **REFERENCES**

283 1. Calses PC, Crawford JJ, Lill JR, Dey A. Hippo Pathway in Cancer: Aberrant Regulation
284 and Therapeutic Opportunities. *Trends Cancer*. 2019;5(5):297-307.

285 2. Ehsanian R, Brown M, Lu H, Yang XP, Pattatheyil A, Yan B, et al. YAP dysregulation
286 by phosphorylation or DeltaNp63-mediated gene repression promotes proliferation, survival and
287 migration in head and neck cancer subsets. *Oncogene*. 2010;29(46):6160-71.

288 3. Yuan M, Tomlinson V, Lara R, Holliday D, Chelala C, Harada T, et al. Yes-associated
289 protein (YAP) functions as a tumor suppressor in breast. *Cell Death Differ*. 2008;15(11):1752-9.

290 4. Yu SJ, Hu JY, Kuang XY, Luo JM, Hou YF, Di GH, et al. MicroRNA-200a promotes
291 anoikis resistance and metastasis by targeting YAP1 in human breast cancer. *Clinical cancer*
292 *research : an official journal of the American Association for Cancer Research*. 2013;19(6):1389-
293 99.

294 5. Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, et al. RASSF1A
295 elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor
296 suppressor protein. *Mol Cell*. 2007;27(6):962-75.

297 6. Cottini F, Hideshima T, Xu C, Sattler M, Dori M, Agnelli L, et al. Rescue of Hippo
298 coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. *Nature*
299 *medicine*. 2014;20(6):599-606.

300 7. Levy D, Adamovich Y, Reuven N, Shaul Y. The Yes-associated protein 1 stabilizes p73
301 by preventing Itch-mediated ubiquitination of p73. *Cell Death Differ*. 2007;14(4):743-51.

302 8. Cheung P, Xiol J, Dill MT, Yuan WC, Panero R, Roper J, et al. Regenerative
303 Reprogramming of the Intestinal Stem Cell State via Hippo Signaling Suppresses Metastatic
304 Colorectal Cancer. *Cell Stem Cell*. 2020;27(4):590-604 e9.

305 9. Ou C, Sun Z, Li S, Li G, Li X, Ma J. Dual roles of yes-associated protein (YAP) in
306 colorectal cancer. *Oncotarget*. 2017;8(43):75727-41.

307 10. Cheng S, Prieto-Dominguez N, Yang S, Connelly ZM, StPierre S, Rushing B, et al. The
308 expression of YAP1 is increased in high-grade prostatic adenocarcinoma but is reduced in
309 neuroendocrine prostate cancer. *Prostate Cancer Prostatic Dis*. 2020.

310 11. Nguyen LT, Tretiakova MS, Silvis MR, Lucas J, Klezovitch O, Coleman I, et al. ERG
311 Activates the YAP1 Transcriptional Program and Induces the Development of Age-Related
312 Prostate Tumors. *Cancer cell*. 2015;27(6):797-808.

313 12. Wang G, Lu X, Dey P, Deng P, Wu CC, Jiang S, et al. Targeting YAP-Dependent MDSC
314 Infiltration Impairs Tumor Progression. *Cancer Discov*. 2016;6(1):80-95.

315 13. Cheng S, Prieto-Dominguez N, Yang S, Connelly ZM, StPierre S, Rushing B, et al. The
316 expression of YAP1 is increased in high-grade prostatic adenocarcinoma but is reduced in
317 neuroendocrine prostate cancer. *Prostate Cancer Prostatic Dis*. 2020;23(4):661-9.

318 14. Zhang L, Yang S, Chen X, Stauffer S, Yu F, Lele SM, et al. The hippo pathway effector
319 YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells.
320 Molecular and cellular biology. 2015;35(8):1350-62.

321 15. Kuser-Abali G, Alptekin A, Lewis M, Garraway IP, Cinar B. YAP1 and AR interactions
322 contribute to the switch from androgen-dependent to castration-resistant growth in prostate
323 cancer. Nat Commun. 2015;6:8126.

324 16. Chen YA, Lu CY, Cheng TY, Pan SH, Chen HF, Chang NS. WW Domain-Containing
325 Proteins YAP and TAZ in the Hippo Pathway as Key Regulators in Stemness Maintenance,
326 Tissue Homeostasis, and Tumorigenesis. Front Oncol. 2019;9:60.

327 17. Yan F, Qian M, He Q, Zhu H, Yang B. The posttranslational modifications of Hippo-
328 YAP pathway in cancer. Biochim Biophys Acta Gen Subj. 2020;1864(1):129397.

329 18. Zurlo G, Guo J, Takada M, Wei W, Zhang Q. New Insights into Protein Hydroxylation
330 and Its Important Role in Human Diseases. Biochim Biophys Acta. 2016;1866(2):208-20.

331 19. Gorres KL, Raines RT. Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol.
332 2010;45(2):106-24.

333 20. Su W, Han HH, Wang Y, Zhang B, Zhou B, Cheng Y, et al. The Polycomb Repressor
334 Complex 1 Drives Double-Negative Prostate Cancer Metastasis by Coordinating Stemness and
335 Immune Suppression. Cancer cell. 2019;36(2):139-55 e10.

336 21. Kapoor A, Yao W, Ying H, Hua S, Liewen A, Wang Q, et al. Yap1 activation enables
337 bypass of oncogenic Kras addiction in pancreatic cancer. Cell. 2014;158(1):185-97.

338 22. Shao DD, Xue W, Krall EB, Bhutkar A, Piccioni F, Wang X, et al. KRAS and YAP1
339 converge to regulate EMT and tumor survival. Cell. 2014;158(1):171-84.

340 23. Hiemer SE, Szymaniak AD, Varelas X. The transcriptional regulators TAZ and YAP
341 direct transforming growth factor beta-induced tumorigenic phenotypes in breast cancer cells. *J
342 Biol Chem.* 2014;289(19):13461-74.

343 24. Kim T, Yang SJ, Hwang D, Song J, Kim M, Kyum Kim S, et al. A basal-like breast
344 cancer-specific role for SRF-IL6 in YAP-induced cancer stemness. *Nat Commun.* 2015;6:10186.

345 25. Isfort I, Cyra M, Elges S, Kailayangiri S, Altvater B, Rossig C, et al. SS18-SSX-
346 Dependent YAP/TAZ Signaling in Synovial Sarcoma. *Clinical cancer research : an official
347 journal of the American Association for Cancer Research.* 2019;25(12):3718-31.

348 26. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, et al.
349 Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism.
350 *Cell.* 2012;149(3):656-70.

351 27. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al.
352 Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide
353 expression profiles. *Proceedings of the National Academy of Sciences of the United States of
354 America.* 2005;102(43):15545-50.

355 28. Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, et al. Genome-
356 wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. *Nat
357 Cell Biol.* 2015;17(9):1218-27.

358 29. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of
359 lineage-determining transcription factors prime cis-regulatory elements required for macrophage
360 and B cell identities. *Mol Cell.* 2010;38(4):576-89.

361 30. Li S, Wan C, Zheng R, Fan J, Dong X, Meyer CA, et al. Cistrome-GO: a web server for
362 functional enrichment analysis of transcription factor ChIP-seq peaks. *Nucleic Acids Res.*
363 2019;47(W1):W206-W11.

364 31. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein
365 by the Hippo pathway is involved in cell contact inhibition and tissue growth control. *Genes &*
366 *development.* 2007;21(21):2747-61.

367 32. Becker JS, Nicetto D, Zaret KS. H3K9me3-Dependent Heterochromatin: Barrier to Cell
368 Fate Changes. *Trends Genet.* 2016;32(1):29-41.

369 33. Pekowska A, Benoukraf T, Zacarias-Cabeza J, Belhocine M, Koch F, Holota H, et al.
370 H3K4 tri-methylation provides an epigenetic signature of active enhancers. *EMBO J.*
371 2011;30(20):4198-210.

372 34. Zhang B, Chambers KJ, Faller DV, Wang S. Reprogramming of the SWI/SNF complex
373 for co-activation or co-repression in prohibitin-mediated estrogen receptor regulation. *Oncogene.*
374 2007;26(50):7153-7.

375 35. Nagl NG, Jr., Wang X, Patsialou A, Van Scoy M, Moran E. Distinct mammalian
376 SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. *EMBO J.*
377 2007;26(3):752-63.

378 36. Underhill C, Qutob MS, Yee SP, Torchia J. A novel nuclear receptor corepressor
379 complex, N-CoR, contains components of the mammalian SWI/SNF complex and the
380 corepressor KAP-1. *J Biol Chem.* 2000;275(51):40463-70.

381 37. Hoxha S, Shepard A, Troutman S, Diao H, Doherty JR, Janiszewska M, et al. YAP-
382 Mediated Recruitment of YY1 and EZH2 Represses Transcription of Key Cell-Cycle Regulators.
383 *Cancer research.* 2020;80(12):2512-22.

384 38. Kim M, Kim T, Johnson RL, Lim DS. Transcriptional co-repressor function of the hippo
385 pathway transducers YAP and TAZ. *Cell Rep.* 2015;11(2):270-82.

386 39. Zhao B, Kim J, Ye X, Lai ZC, Guan KL. Both TEAD-binding and WW domains are
387 required for the growth stimulation and oncogenic transformation activity of yes-associated
388 protein. *Cancer research.* 2009;69(3):1089-98.

389 40. Ma S, Meng Z, Chen R, Guan KL. The Hippo Pathway: Biology and Pathophysiology.
390 *Annu Rev Biochem.* 2019;88:577-604.

391 41. Chakravarthi BV, Pathi SS, Goswami MT, Cieslik M, Zheng H, Nallasivam S, et al. The
392 miR-124-prolyl hydroxylase P4HA1-MMP1 axis plays a critical role in prostate cancer
393 progression. *Oncotarget.* 2014;5(16):6654-69.

394 42. van Huizen NA, Burgers PC, Saintmont F, Brocorens P, Gerbaux P, Stingl C, et al.
395 Identification of 4-Hydroxyproline at the Xaa Position in Collagen by Mass Spectrometry. *J*
396 *Proteome Res.* 2019;18(5):2045-51.

397 43. Discher DE, Smith L, Cho S, Colasurdo M, Garcia AJ, Safran S. Matrix
398 Mechanosensing: From Scaling Concepts in 'Omics Data to Mechanisms in the Nucleus,
399 Regeneration, and Cancer. *Annu Rev Biophys.* 2017;46:295-315.

400 44. Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, et al.
401 Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and
402 accelerates pancreas cancer with reduced survival. *Cancer cell.* 2014;25(6):719-34.

403 45. Holster T, Pakkanen O, Soininen R, Sormunen R, Nokelainen M, Kivirikko KI, et al.
404 Loss of assembly of the main basement membrane collagen, type IV, but not fibril-forming
405 collagens and embryonic death in collagen prolyl 4-hydroxylase I null mice. *J Biol Chem.*
406 2007;282(4):2512-9.

407 46. Aro E, Salo AM, Khatri R, Finnila M, Miinalainen I, Sormunen R, et al. Severe
408 Extracellular Matrix Abnormalities and Chondrodysplasia in Mice Lacking Collagen Prolyl 4-
409 Hydroxylase Isoenzyme II in Combination with a Reduced Amount of Isoenzyme I. *J Biol
410 Chem.* 2015;290(27):16964-78.

411 47. Xiong G, Deng L, Zhu J, Rychahou PG, Xu R. Prolyl-4-hydroxylase alpha subunit 2
412 promotes breast cancer progression and metastasis by regulating collagen deposition. *BMC
413 Cancer.* 2014;14:1.

414 48. Gilkes DM, Chaturvedi P, Bajpai S, Wong CC, Wei H, Pitcairn S, et al. Collagen prolyl
415 hydroxylases are essential for breast cancer metastasis. *Cancer research.* 2013;73(11):3285-96.

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

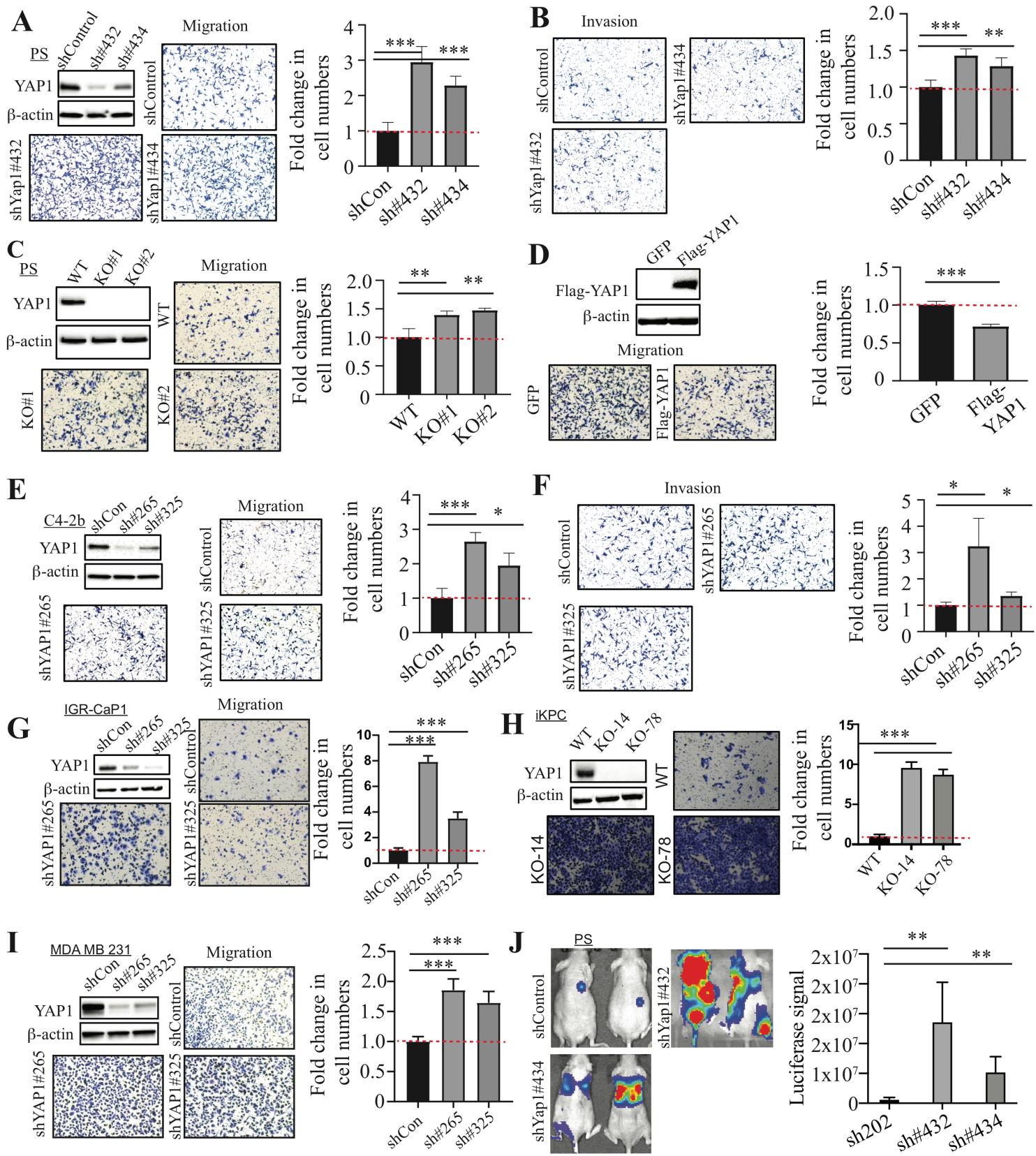
436

437 **FIGURE LEGENDS**

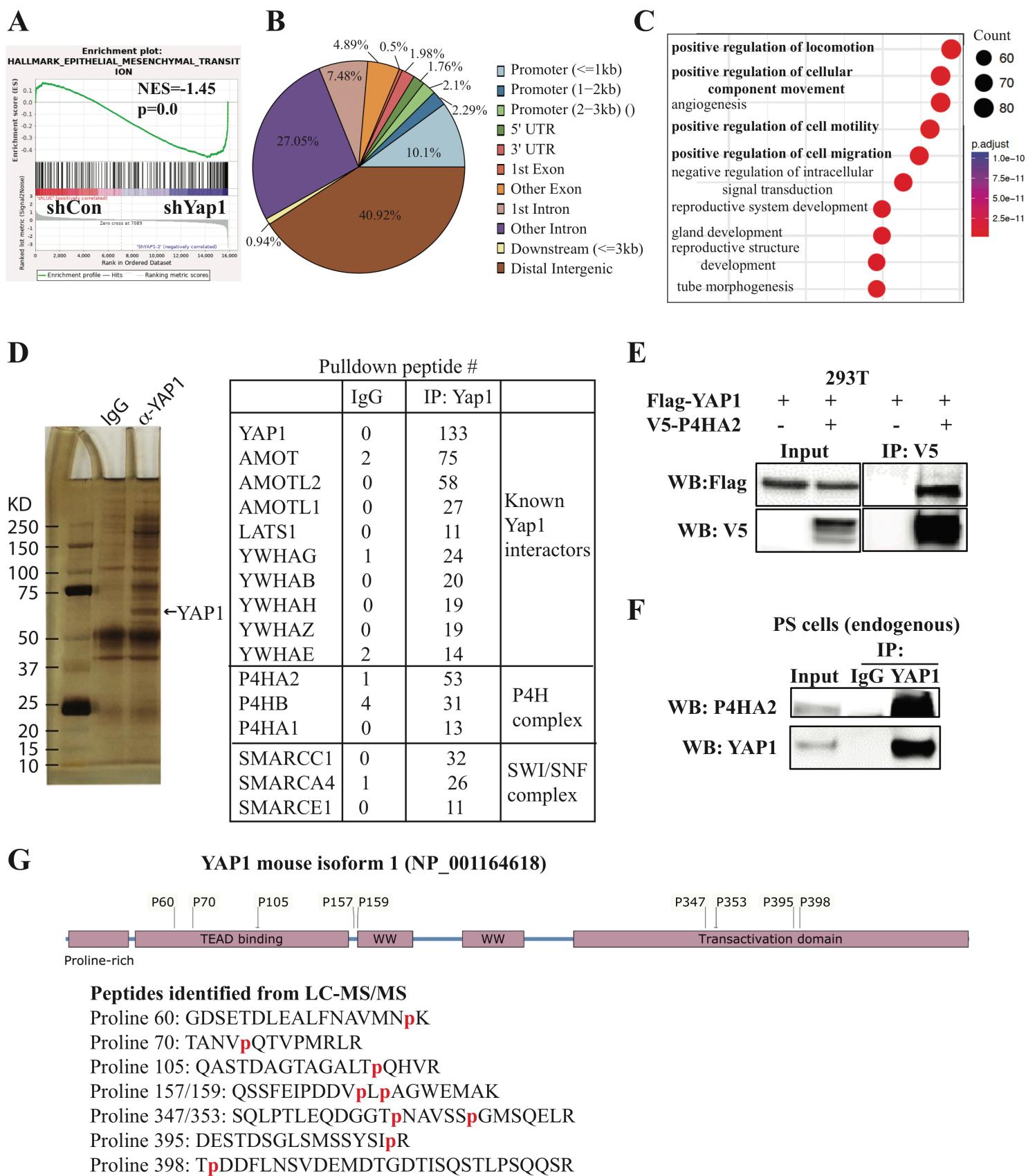
438 **Figure 1. YAP1 suppresses cell migration, invasion, and metastasis.** (A-B) Cell migration
439 and invasion assay using PS cells transduced with control shRNA and *Yap1* shRNAs. The *Yap1*
440 KD efficiency was confirmed by WB analysis. (C) Cell migration assay using *Yap1*-WT PS cells
441 and *Yap1*-KO cells. WB analysis confirmed the KO of YAP1 expression. (D) Cell migration
442 assay using *Yap1*-KO cells with GFP overexpression and YAP1 overexpression. WB analysis
443 confirmed the overexpression of YAP1 in *Yap1*-KO PS cells. (E-F) Cell migration and invasion
444 assay using C4-2b cells transduced with control shRNA and *YAP1* shRNAs. The *YAP1* KD
445 efficiency was confirmed by WB analysis. (G-I) Cell migration assay using IGR-CaP1 (G),
446 iKPC (H), and MDA-MB-231 (I) with *YAP1* KD or KO compared to control cells. (J) Luciferase
447 imaging in mice injected with PS cells transduced with control shRNA and *Yap1* shRNAs
448 through the tail vein.

449

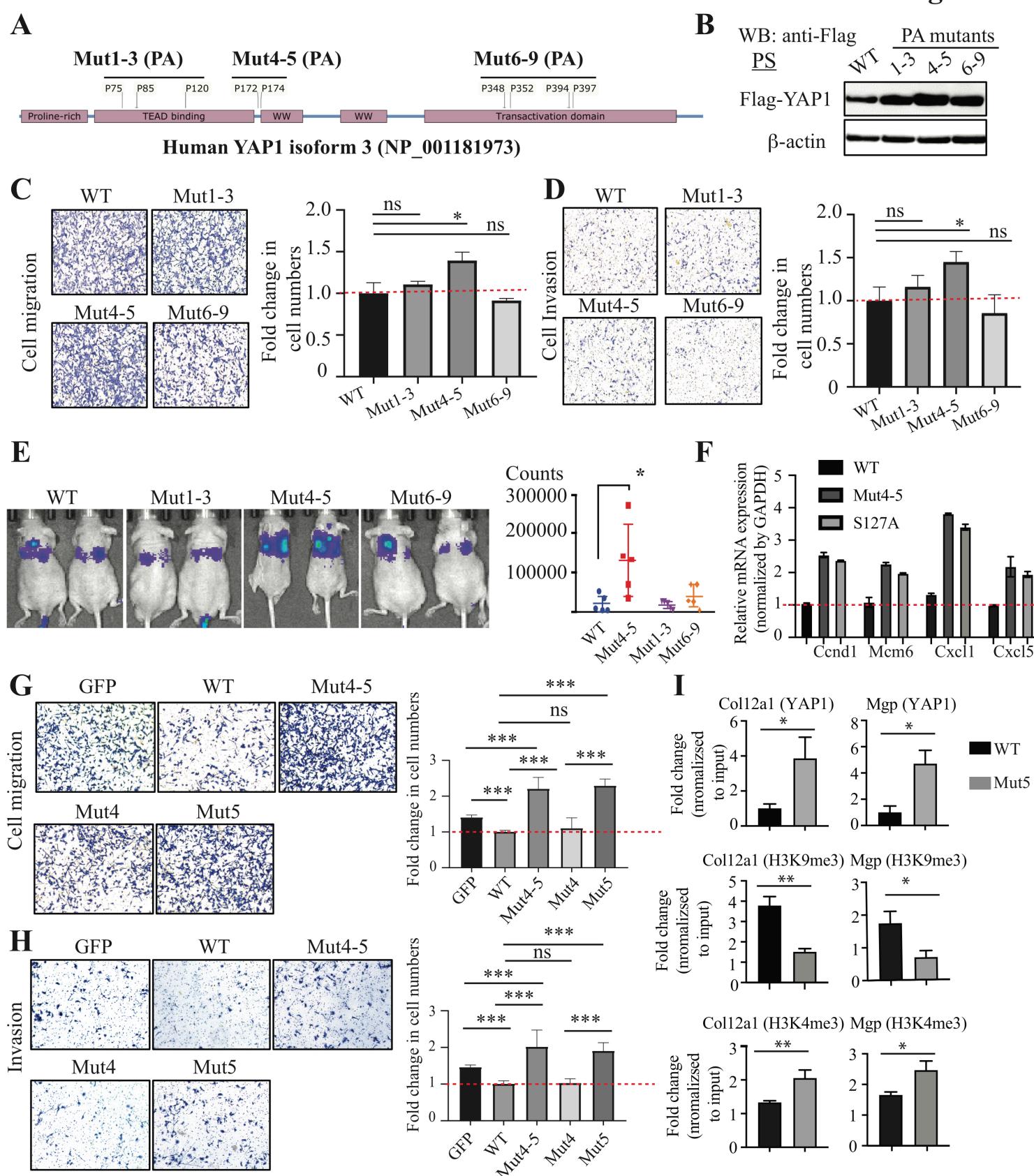
450 **Figure 2. Microarray, ChIP-seq, and immunoprecipitation-mass spectrometry analyses.**
451 (A) GSEA analysis of microarray data from PS cells transduced with doxycycline-inducible
452 *Yap1* shRNA identified EMT as the top pathway activated in *Yap1*-KD cells. (B-C) ChIP-seq


453 analysis identified YAP1 binding sites and YAP1-regulated pathways. **(D)** Immunoprecipitation-
454 mass spectrometry analysis identified known YAP1-interacting proteins and novel YAP1-
455 interacting proteins. **(E)** Exogenous YAP1 interacts with exogenous P4HA2 when overexpressed
456 in 293T cells by transfection of the indicated plasmids for co-immunoprecipitation experiments.
457 **(F)** Endogenous YAP1 interacts with endogenous P4HA2 in PS cells. **(F)** Multiple prolyl
458 hydroxylation sites were identified in peptides of YAP1 isoform 3 from the LC- MS/MS
459 analysis.

460 **Figure 3. Prolyl hydroxylation of YAP1 suppressed cell migration, invasion, and**
461 **metastases.** **(A)** Scheme showing the strategy to generate prolyl hydroxylation-defective YAP1
462 mutants by mutating proline to alanine (PA): Mut1-3 (P75/85/120A), Mut4-5 (P172/174A), and
463 Mut6-9 (P348/352/394/397). Human YAP1 isoform 3 was used. **(B)** Expression of YAP1 WT
464 and PA mutants in *Yap1*-KO PS cells. **(C-D)** Cell migration and invasion assay in *Yap1*-KO PS
465 cells with overexpression of YAP1 WT and PA mutants. **(E)** Tail vein injection of *Yap1*-KO
466 cells with overexpression of YAP1 WT and PA mutants. **(F)** qPCR analysis of YAP1 target
467 genes in *Yap1*-KO PS cells with overexpression of YAP1 WT, Mut4-5, and the constitutively
468 active S127A mutant. **(G-H)** Cell migration and invasion assay using *Yap1*-KO PS cells with
469 overexpression of GFP, YAP1 WT, Mut4-5, Mut4, and Mut5. **(I)** ChIP-qPCR analysis of YAP1,
470 H3K4me3, and H3K9me4 binding sites in *Coll2a1* and *Mgp*.


471
472 **Figure 4. P4HA2 suppresses cell migration and invasion through Yap1.** **(A)** WB analysis of
473 P4HA2 in *P4ha2*-WT and *P4ha2*-KO PS cells. **(B-C)** Cell migration and invasion using *P4ha2*-
474 WT and *P4ha2*-KO PS cells. **(D)** qPCR analysis of YAP1 target genes (*Postn*, *Coll2a1*, and
475 *Mgp*) in *P4ha2* KO and WT cells. **(E)** WB analysis of YAP1 in *P4ha2*-WT and *P4ha2*-KO PS

476 cells transduced with Yap1 shRNAs. **(F)** Cell invasion assay in *P4ha2*-WT and *P4ha2*-KO PS
477 cells transduced with shYap1#434. **(G)** A model for hydroxylation-dependent YAP1 function in
478 cell migration, invasion, and metastasis (Created with BioRender.com). Left: P4HA2-mediated
479 hydroxylation of YAP1 may impair its interactions with transcription factors such as JUN or
480 enhance the recruitment of corepressor, such as SWI/SNF-NCoR1, NuRD, and EZH2/YY1,
481 which results in a decrease in the expression of genes involved in cell migration, invasion, and
482 metastasis. Right: In the absence of P4HA2, non-hydroxylated YAP1 may efficiently interact
483 with transcription factors such as JUN to activate genes involved in cell migration, invasion, and
484 metastasis.


Figure 1

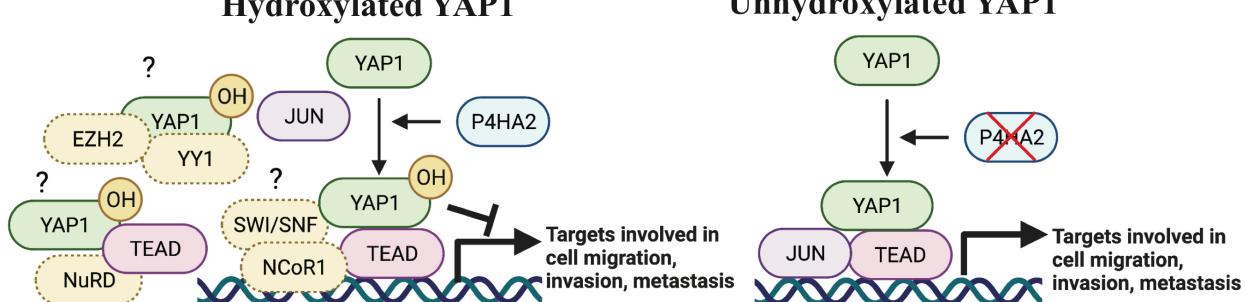
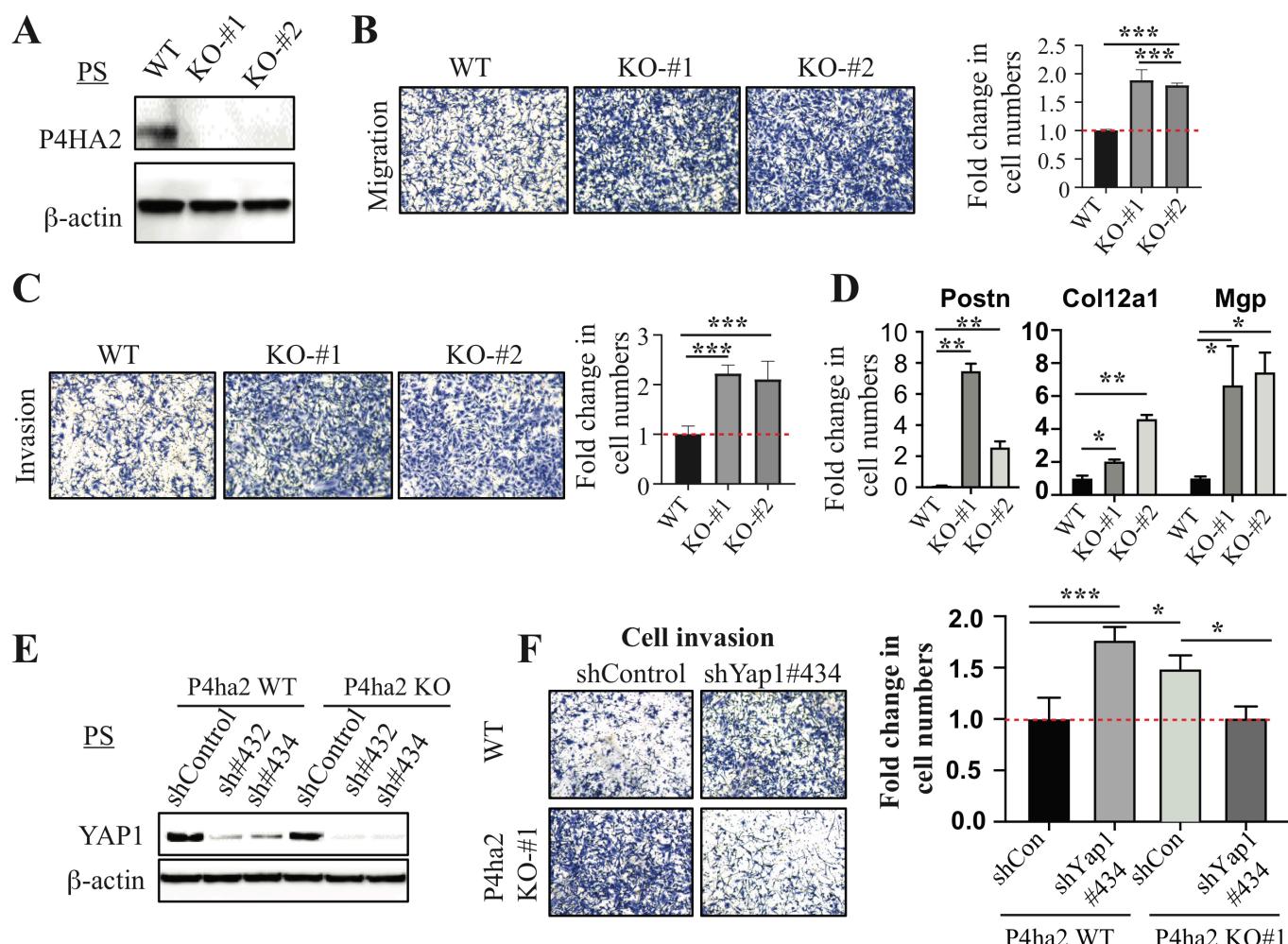


Figure 2

Figure 3

Figure 4

