

1       **Dynamic genome plasticity during unisexual reproduction in the human**  
2       **fungal pathogen *Cryptococcus deneoformans***

4       Ci Fu, Aaliyah Davy, Simeon Holmes, Sheng Sun, Vikas Yadav, Asiya Gusa,  
5       Marco A. Coelho, and Joseph Heitman

7       Department of Molecular Genetics and Microbiology, Duke University Medical  
8       Center, Durham, NC, 27710, USA

29 **Abstract**

30           Genome copy number variation occurs during each mitotic and meiotic  
31           cycle and it is crucial for organisms to maintain their natural ploidy. Defects in  
32           ploidy transitions can lead to chromosome instability, which is a hallmark of  
33           cancer. Ploidy in the haploid human fungal pathogen *Cryptococcus neoformans*  
34           is exquisitely orchestrated and ranges from haploid to polyploid during sexual  
35           development and under various environmental and host conditions. However, the  
36           mechanisms controlling these ploidy transitions are largely unknown. During *C.*  
37           *deneoformans* (formerly *C. neoformans* var. *neoformans*, serotype D) unisexual  
38           reproduction, ploidy increases prior to the onset of meiosis, can be independent  
39           from cell-cell fusion and nuclear fusion, and likely occurs through an  
40           endoreplication pathway. To elucidate the molecular mechanisms underlying this  
41           ploidy transition, we identified twenty cell cycle-regulating genes encoding cyclins,  
42           cyclin-dependent kinases (CDK), and CDK regulators. We characterized four  
43           cyclin genes and two CDK regulator genes that were differentially expressed  
44           during unisexual reproduction and contributed to diploidization. To detect ploidy  
45           transition events, we generated a ploidy reporter, called *NURAT*, which can  
46           detect copy number increases via double selection for nourseothricin-resistant,  
47           uracil-prototrophic cells. Utilizing this ploidy reporter, we showed that ploidy  
48           transition from haploid to diploid can be detected during the early phases of  
49           unisexual reproduction. Interestingly, selection for the *NURAT* reporter revealed  
50           several instances of segmental aneuploidy of multiple chromosomes, which  
51           conferred azole resistance in some isolates. These findings provide further

52 evidence of ploidy plasticity in fungi with significant biological and public health  
53 implications.

## 54 Author Summary

55 Ploidy is an intrinsic fundamental feature of all eukaryotic organisms, and  
56 ploidy variation and maintenance are critical to the organism survival and  
57 evolution. Fungi exhibit exquisite plasticity in ploidy variation in adaptation to  
58 various environmental stresses. For example, the haploid opportunistic human  
59 fungal pathogen *C. deneoformans* can generate diploid blastospores during  
60 unisexual reproduction and also forms polyploid titan cells during host infection,  
61 however, the mechanisms underlying these ploidy transitions are largely  
62 unknown. In this study, we elucidated the genetic regulatory circuitry governing  
63 ploidy duplication during *C. deneoformans* unisexual reproduction through the  
64 identification and characterization of cell cycle regulators that are differentially  
65 expressed during unisexual reproduction. We showed that four cyclin and two  
66 cyclin-dependent kinase regulator genes function in concert to orchestrate ploidy  
67 transition during unisexual reproduction. To trace and track ploidy transition  
68 events, we also generated a ploidy reporter and revealed the formation of  
69 segmental aneuploidy in addition to diploidization, illustrating the diverse  
70 mechanisms of genome plasticity in *C. deneoformans*.

71

## 72 Introduction

73 Ploidy refers to the total number of chromosomal sets in a cell. Variations  
74 in ploidy are prevalent among both prokaryotic and eukaryotic organisms and  
75 have a profound effect on cellular phenotypes. Polyploidization has been  
76 suggested to provide adaptive advantages to environmental stresses through  
77 increases in gene copy number [1, 2]. Cells can achieve polyploidization through  
78 either genome doubling within a single species, called auto-polyploidization, or  
79 via hybridization of genomes from different species, termed allo-polyploidization  
80 [2]. Upon polyploidization, cells experience the immediate impacts of having  
81 twice the genome content, which can include changes in cell size, genome  
82 stability, and gene expression. Despite these often drastic and deleterious  
83 changes, cells regularly tolerate ploidy transitions during mitotic and meiotic cell  
84 cycles, in which the entire genome undergoes duplication and reduction [1].

85 In the fungal kingdom, ploidy variation among natural isolates of a single  
86 species is a common phenomenon [3]. For example, the baker's yeast  
87 *Saccharomyces cerevisiae*, which is an evolutionary product of ancient allo-  
88 polyploidization between two different ancestral species, has natural isolates with  
89 ploidy ranging from haploid to tetraploid [3-6]. *Candida albicans*, which was once  
90 thought to be an obligate diploid human fungal pathogen, has been shown to  
91 form haploid, triploid, and tetraploid cells [7, 8]. Nondiploid *C. albicans* cells have  
92 increased genomic instability and often return to a diploid or near-diploid state  
93 through auto-diploidization of the haploid genome or concerted chromosome loss  
94 of tetraploid cells, as *C. albicans* lacks a complete meiotic chromosomal

95 reduction cycle [8, 9]. In the syncytial hyphae of the filamentous fungus *Ashbya*  
96 *gossypii*, nuclear ploidy ranges from haploid to higher than tetraploid within the  
97 same hyphal compartment, and the degree of ploidy variation increases with  
98 hyphal aging and decreases upon exposure to cellular stress [10]. The  
99 prevalence of polyploidy in fungi illustrates how these genomic changes can  
100 provide efficient strategies for fungal cells to rapidly adapt to their environment  
101 [11].

102 Ploidy in the opportunistic human fungal pathogen *Cryptococcus* exhibits  
103 exquisite plasticity during sexual reproduction and under host infection conditions  
104 [12-14]. Cryptococcal infection can cause fatal cryptococcal meningitis in  
105 immunocompromised patients. The mortality rate of cryptococcal meningitis is as  
106 high as 70% for patients receiving treatment in resource-limited countries due to  
107 a lack of cost-effective therapeutics, and mortality is 100% in those left untreated  
108 [15]. *Cryptococcus* species have a bipolar mating system and undergo bisexual  
109 reproduction, while *C. deneoformans* can also undergo unisexual reproduction in  
110 the absence of a mating partner of the opposite mating type [16, 17]. During  
111 bisexual reproduction, haploid *MATα* and *MATa* cells undergo cell-cell fusion to  
112 achieve genome doubling, while during unisexual reproduction, haploid cells  
113 achieve genome doubling either via whole-genome duplication or through cell-  
114 cell fusion events between cells of the same mating type [18]. In the natural  
115 environment, *Cryptococcus* is largely present as haploid yeast cells, but diploid  
116 cells of a single mating type (mainly  $\alpha$ AA $\alpha$ ) have also been documented,  
117 demonstrating that the presence of unisexual reproduction in nature can

118 generate ploidy variation [19]. Besides ploidy transitions during sexual  
119 reproduction, *Cryptococcus* can also form polyploid giant cells, termed titan cells,  
120 during host infection [12, 20]. The ploidy of titan cells can reach up to 64 or more  
121 copies of the genome, which is accompanied with morphological changes,  
122 including increased cell size up to 100  $\mu\text{m}$  in diameter (compared to standard  
123 haploid cells that are 5 to 9  $\mu\text{m}$  in diameter) and a thickened cell wall with a  
124 dense cross-linked capsule [21, 22]. The formation of titan cells in host lung  
125 tissue has been shown to enable fungal evasion of phagocytosis by host immune  
126 cells and enhance fungal virulence [23, 24]. Polyploid titan cells can further  
127 produce haploid and aneuploid progeny with enhanced tolerance to stressors  
128 within the host environment, and meiotic genes have also been shown to be  
129 activated in this niche [25, 26]. To utilize this ploidy plasticity, *Cryptococcus* has  
130 evolved an elegant ploidy transition machinery that can be activated in response  
131 to mating cues, environmental stresses, and host conditions.

132 The environmental stimuli that trigger diploid and polyploid cell formation  
133 in *C. deneoformans* during unisexual reproduction and host infection have been  
134 characterized and include cell density and quorum sensing molecules, nutrient  
135 starvation, and serum [26-30]. However, the molecular mechanisms underlying  
136 these ploidy transitions are less clear. In other eukaryotic organisms, increases in  
137 ploidy are achieved primarily through endoreplication, during which, cells  
138 undergo multiple rounds of S phase without entering mitosis and cytokinesis [31,  
139 32]. This abnormal cell cycle is regulated by the same group of cyclins and  
140 cyclin-dependent kinases that govern the progression of the mitotic cell cycle [31,

141 32]. For example, in flies and mammals, oscillation of cyclin E and cyclin-  
142 dependent kinase 2 activity is required for endocycles of S phase [31]. In  
143 *Schizosaccharomyces pombe*, mutants lacking the P34<sup>cdc2</sup>P56<sup>cdc13</sup> mitotic B  
144 cyclin complex undergo multiple rounds of S phase and generate polyploid  
145 progeny [33]. In *S. cerevisiae*, cell cycle progression is regulated by activation of  
146 the cyclin-dependent kinase Cdc28 through binding of G1/S/G2/M-phase specific  
147 cyclins [34]. Periodical oscillation of B-type cyclin *CLB6* in *cbl1-5Δ* cells can drive  
148 *S. cerevisiae* cells to re-enter S phase without undergoing mitosis and results in  
149 polyploid cell formation [35]. In *C. neoformans*, it was recently shown that  
150 reduced cyclin *CLN1* expression in cells arrested in G2 phase can lead to titan  
151 cell formation [36]. Thus, it is likely that concerted regulation of these cell cycle  
152 regulators in *C. deneoformans* contributes to diploidization during unisexual  
153 reproduction.

154 In this study, we sought to identify cell cycle regulators that govern ploidy  
155 transitions during unisexual reproduction in *C. deneoformans*. Because cell cycle  
156 progression in *S. cerevisiae* is governed by transcript levels of cyclins, we initially  
157 identified 20 putative cell cycle-regulating genes and examined their transcription  
158 levels during unisexual reproduction [34]. Among them, six genes were  
159 differentially expressed during unisexual reproduction compared to mitotic yeast  
160 growth. Further examination of the ploidy of blastospores, the diploid products of  
161 wild-type unisexual reproduction, confirmed that these genes are required for  
162 ploidy transitions during unisexual reproduction. We also developed a *NURAT*  
163 ploidy reporter to detect ploidy transition events and were able to detect both

164 diploidization as well as aneuploid and segmental aneuploid formation events  
165 during both mitotic growth and unisexual reproduction, all of which underlie ploidy  
166 plasticity in *Cryptococcus* species.

167

168 **Results**

169 **Identification of cell cycle regulators involved in unisexual reproduction**

170 In fungi, ploidy duplication is a prerequisite for meiosis during sexual  
171 reproduction and is largely achieved through gamete fusion. However, cell fusion  
172 and nuclear fusion are dispensable during unisexual reproduction in *C.*  
173 *deneoformans* and it has been proposed that an endoreplication pathway drives  
174 the haploid to diploid transition [18, 37]. To elucidate the endoreplication pathway  
175 for unisexual reproduction, we sought to identify cell cycle regulators that are  
176 critical for this ploidy transition. Because cyclin abundance and turnover regulate  
177 cyclin-dependent kinase (CDK) activities and drive cell cycle progression [34], we  
178 searched for cyclins in the *C. deneoformans* JEC21 genome on FungiDB  
179 ([www.fungidb.org](http://www.fungidb.org)) [38] and identified 51 candidate genes (Table S1). Based on  
180 the annotated protein function for each gene, 20 genes were selected with  
181 predicted functions in the following three categories: cyclin (9), cyclin-dependent  
182 kinase (6), and CDK regulator (5) (Table S1).

183 Transcriptional profiling during unisexual reproduction revealed that genes  
184 involved in the pheromone response pathway, meiosis, and spore production  
185 were activated between 24 and 48 hours upon mating induction [27, 39]. We  
186 hypothesized that cell cycle genes important for ploidy duplication might be  
187 differentially expressed during unisexual reproduction. To determine this, we  
188 compared the expression levels of these putative cell cycle genes in wild-type *C.*  
189 *deneoformans* XL280 $\alpha$  cells after incubation for 36 hours on mating-inducing

190 conditions (V8 agar medium) to yeast cell growth conditions (nutrient-rich YPD  
191 medium) by qRT-PCR with *KAR5* serving as a negative control that has been  
192 previously shown to be expressed at a comparable level under these two  
193 conditions [18]. We found four cyclin genes and two CDK regulator genes were  
194 significantly differentially expressed: *PCL2*, *CLB3*, and *CKS2* were  
195 downregulated, while *PCL6*, *PCL9*, and *CKS1* were upregulated (Figure 1A).  
196 Interestingly, none of the predicted cyclin-dependent kinase genes were  
197 differentially expressed (Figure S1A).

198 In agreement with our findings, all six genes were previously shown to be  
199 differentially expressed after growth on V8 medium for 12, 24, and 48 hours  
200 compared to growth on YPD for 12 hours (Figure S1B). *PCL6*, *PCL9*, and *CKS1*  
201 expression levels peaked at either the 24- or the 48-hour time point on V8  
202 medium (Figure S1B). *CLB3* and *CKS2* were down-regulated on V8 medium,  
203 while *PCL2* had an initial upregulation on V8 at the 12-hour time point and then  
204 was down-regulated at later time points (Figure S1B) [39]. Three of the four  
205 cyclin genes, *PCL2*, *PCL6*, and *PCL9*, are Pho85 cyclins with predicted functions  
206 in regulating the cyclin-dependent kinase Pho85 in *S. cerevisiae* [40]. *CKS1* and  
207 *CKS2* are predicted to encode regulatory subunits for Cdc28, the master CDK for  
208 cell cycle progression in *S. cerevisiae* (Table S1) [41].

209 To determine whether the differentially expressed cyclin and CDK  
210 regulator genes are required for unisexual reproduction, we generated two  
211 independent deletion mutants for each gene except for *CLB3*, for which we  
212 generated a galactose-inducible allele under the control of the *GAL7* promoter

213 due to technical difficulty in deleting *CLB3* in our studies (Figure S2A). Deletion  
214 of *PCL2*, *PCL6*, *CKS1*, or suppressed expression of *CLB3* caused a mild  
215 reduction in hyphae production during unisexual reproduction, whereas deletion  
216 of *PCL9* or *CKS2* did not cause any defect in hyphae formation (Figure 1B).  
217 Deletion of *CKS1* or suppressed expression of *CLB3* also caused a defect in  
218 sporulation leading to the production of bald basidia (basidia lacking spores),  
219 strikingly different from the typical wild-type basidia with four chains of spores  
220 produced (Figure 1B). These results suggest *CKS1* and *CLB3* are required for  
221 the mitotic cycles during spore genesis, and they may also directly contribute to  
222 cell cycle progression during the meiotic cycle. The differential expression  
223 patterns and the observed morphological defects for the *pcl2Δ*, *pcl6Δ*, *cks1Δ*, and  
224 *P<sub>GAL7</sub>-CLB3* strains suggest that these cell cycle regulatory genes play critical  
225 roles during *C. deneoformans* unisexual reproduction. Interestingly, deletion of  
226 these cell cycle regulating genes had a smaller impact on bisexual reproduction,  
227 especially that deletion of *CKS1* did not block basidium spore chain production  
228 (Figure S2B), further corroborating the hypothesis that the expression of these  
229 cell cycle regulating genes is coordinated during unisexual reproduction.

230

### 231 ***CKS1* and *CLB3* promote G2/M phase progression**

232 To examine if these cell cycle regulating genes also function during yeast  
233 growth, we stained yeast cells with DAPI, which stains nuclei, and calcofluor  
234 white (CFW), which stains chitin in the cell wall, to observe yeast cell morphology  
235 for these mutant strains. Deletion of *CKS1* and suppressed expression of *CLB3*

236 induced pseudohyphal growth whereas other deletion mutants or the expression  
237 of  $P_{GAL7}$ -*CLB3* in the presence of galactose all produced yeast cells with normal  
238 morphologies (Figure S3), suggesting disruption in cell cycle progression can  
239 trigger pseudohyphal formation in *C. deneoformans*, similar to previous findings  
240 in *C. albicans* [42, 43].

241 To determine if these genes are involved in cell cycle progression during  
242 yeast growth, we arrested cells from overnight cultures in liquid YPD medium at  
243 the G1/S phase with hydroxyurea (arrest was subsequently released by  
244 removing the reagent), and at G2/M phase with nocodazole [44-47]. Deletion of  
245 *CKS1* and suppressed expression of *CLB3* failed to respond to cell cycle arrest  
246 reagents and cells were arrested at G2/M phase in the overnight culture even  
247 before the treatment (Figure S4 and Table S4), providing strong evidence that  
248 *CKS1* and *CLB3* promote G2/M phase progression during yeast growth. This cell  
249 cycle arrest may also contribute to the observed pseudohyphal growth in *cks1Δ*  
250 mutants and the  $P_{GAL7}$ -*CLB3* strain in the presence of glucose (Figure S3).

251

252 **Cell cycle regulators contribute to ploidy duplication during unisexual  
253 reproduction**

254 Cell cycle arrest at the G2 phase in large cell populations triggered by high  
255 temperature or nocodazole has been shown to promote hyphal growth in *C.*  
256 *deneoformans* [48], which is a hallmark of unisexual reproduction, illustrating a  
257 potential intrinsic association between ploidy transition and unisexual

258 reproduction. To further characterize this association, we examined the ploidy  
259 distribution in populations of wild-type and mutant cells grown overnight on YPD  
260 and V8 agar media. Interestingly, although some mutants showed hyphal growth  
261 defects during unisexual reproduction (Figure 1B), all samples exhibited similar  
262 population distributions on mating-inducing medium compared to nutrient-rich  
263 YPD medium (Figure S5). These results suggest that cell cycle arrest at G2  
264 phase alone is not sufficient to promote unisexual reproduction, and that the  
265 ploidy transition required for unisexual meiosis likely occurs in a small portion of  
266 the cell population. Suppression of *CLB3* expression on V8 medium led to cell  
267 cycle arrest at the G2 phase and caused defects in both hyphal growth and  
268 sporulation (Figures 1B and 1C), further suggesting that cell cycle arrest at G2  
269 phase is not sufficient to drive unisexual reproduction.

270 To understand how these cell cycle-regulating genes govern ploidy  
271 duplication, we examined the ploidy of blastospores, which are cells produced by  
272 mitotic budding directly from and along hyphae during unisexual reproduction. In  
273 the wild type, all blastospores tested from ten different budding sites of different  
274 hyphae were diploid except for two isolates that were aneuploid and originated  
275 from the same budding site (Figure 2 and Table S2). These findings are in  
276 agreement with previous studies and provide evidence that diploidization occurs  
277 during or prior to blastospore formation [16, 18]. Compared to the wild type,  
278 *pcl2Δ*, *pcl6Δ*, *cks1Δ*, and *cks2Δ* mutant strains produced blastospores with lower  
279 germination rates and suppressed expression of *CLB3* caused a severe defect in  
280 blastospore germination (Table S2). Ploidy determination for these germinated

281 blastospores showed that all of the gene deletions (except *PCL2*) as well as  
282 suppressed expression of *CLB3* caused a defect in diploid blastospore formation  
283 (Figure 2 and Table S2). More than 50% of the *pcl/6Δ* blastospores produced  
284 mixed populations of haploid and diploid cells, while about 80% of the *pcl/9Δ* and  
285 50% of the *cks2Δ* blastospores were haploid (Figure 2 and Table S2). Deletion of  
286 *CKS1* and suppressed expression of *CLB3* led to the production of only haploid  
287 blastospores (Figure 2 and Table S2). However, due to a defect in blastospore  
288 germination present in these mutants (Table S2), we could not determine the  
289 ploidy status for these ungerminated blastospores. Collectively, our data suggest  
290 that these cell cycle regulating genes contribute to ploidy duplication during  
291 unisexual reproduction.

292 To further decipher the mixed haploid and diploid cell populations  
293 observed among the *pcl/6Δ* blastospores and determine if *PCL6* is required for  
294 diploid maintenance, we streaked cells derived from diploid wild-type, diploid  
295 *pcl/6Δ*, and mixed haploid and diploid *pcl/6Δ* blastospores for single colonies and  
296 subsequently determined their ploidy (Table S3). Interestingly, all single colonies  
297 derived from diploid wild type and *pcl/6Δ* blastospores were diploid, while all  
298 single colonies except one derived from mixed haploid-diploid *pcl/6Δ* blastospores  
299 were either haploid or diploid (Table S3). The observation of stable mitotically  
300 passaged diploid cells suggests that *PCL6* is not required for diploid  
301 maintenance during mitotic growth.

302

303 **Detecting ploidy transitions during unisexual reproduction with a ploidy  
304 sensor**

305 Because the 1N and 2N population distributions largely remained the  
306 same during unisexual reproduction and vegetative growth conditions in bulk  
307 culture (Figure S5), we hypothesized that the ploidy duplication required for  
308 meiosis during unisexual reproduction might only be occurring in the sub-  
309 population of cells that are committed to unisexual hyphal growth. To track this  
310 hypothesized diploidization/endoreplication event, we engineered a genetic  
311 construct called *NURAT*, similar to the *UAU1* cassette developed in *Candida*  
312 *albicans* [49], which allows for the detection of copy number increases in the  
313 genomic regions harboring this construct, which could be due to either  
314 aneuploidy formation or whole-genome duplication (Figure 3A) . The *NURAT*  
315 construct encodes a functional *URA5* gene flanked by truncated 5' and 3' *NAT*  
316 cassette sequences that share 530 bp of the *NAT* coding sequence (CDS), which  
317 allows homologous recombination to yield a functional allele of the *NAT* cassette  
318 and thus conferring nourseothricin resistance (Figure 3A). We integrated the  
319 *NURAT* ploidy reporter into a previously identified safe haven locus on  
320 Chromosome (Chr) 1 in *MATa* and *MATα* strains in which the native *URA5* gene  
321 had been replaced by the hygromycin resistance *HYG* cassette (Figure S6) [50].  
322 This ploidy reporter allows selection of nourseothricin resistant (*NAT*<sup>R</sup>) and uracil-  
323 prototrophic (*Ura*<sup>+</sup>) progeny; however, it depends on a copy number increase  
324 prior to homologous recombination in one of the two *NURAT* cassettes. If  
325 homologous recombination occurred between the truncated *NAT* CDSs in

326 haploid cells prior to diploidization, the nourseothricin-sensitive ( $\text{NAT}^S$ ) and  
327 uracil-prototrophic ( $\text{Ura}^+$ ) haploid cell would become nourseothricin resistant  
328 ( $\text{NAT}^R$ ) and prevent selection of the second copy of *NURAT* cassette due to the  
329 loss of the  $\text{Ura}^+$  marker. Similarly, if homologous recombination occurred in both  
330 copies of the *NURAT* construct in diploidized cells, both *NURAT* cassettes  
331 become active *NAT* markers, which prevents the selection of  $\text{NAT}^R$   $\text{Ura}^+$  diploid  
332 cells (Figure 3A). Normal homologous recombination functioning during either  
333 mitotic or meiotic growth is a prerequisite for the ploidy sensor to detect copy  
334 number variance.

335 To test the robustness of the *NURAT* reporter in detecting diploid cells  
336 versus haploid cells, we generated two diploid *NURAT/NURAT* strains through  
337 blastospore dissection of the haploid *NURAT* strain (Figure S6) and performed  
338 fluctuation assays (Figure S7). The haploid and diploid *NURAT* strains share the  
339 same genomic sequences and only differ in ploidy. In overnight liquid cultures,  
340 haploid and diploid *NURAT* strains exhibited similar *NURAT* recombination  
341 frequencies despite diploid *NURAT* strains having two copies of the *NURAT*  
342 construct (Figure S8A). Among the  $\text{NAT}^R$  colonies, about 1% of the haploid  
343 *MATa* cells and 0.04% of the *MATa* cells were  $\text{Ura}^+$ , whereas 73% and 79% of  
344 the diploid cells were  $\text{Ura}^+$ , suggesting homologous recombination occurred in  
345 only one copy of the *NURAT* construct in most diploid cells (Figure S8A).  
346 Interestingly, haploid and diploid  $\text{NAT}^R$ ,  $\text{Ura}^+$  colonies maintained their ploidy  
347 (Figure S8A). Our findings suggest that in the overnight cultures of haploid  
348 strains, very few cells undergo diploidization. Nevertheless, using the *NURAT*

349 construct, we were still able to detect possible aneuploidy of chromosome 1 (on  
350 which the *NURAT* construct is located) that occurred at a low frequency.

351 To examine whether the *NURAT* reporter could be used to detect ploidy  
352 transition events during unisexual reproduction, we incubated haploid and diploid  
353 *MATa* *NURAT* strains on both YPD and V8 agar media for 36 and 60 hours  
354 (Figure S7). After 36 hours of incubation on the mating-inducing V8 medium, only  
355 haploid *NURAT* cells displayed a significant increase in *NURAT* recombination  
356 compared to cells incubated on YPD (Figure S8B). Interestingly, both haploid  
357 and diploid cells showed a significant increase in *NURAT* recombination after  
358 incubation for 60 hours on V8 medium (Figure 3B), illustrating a possible  
359 elevated rate in homologous recombination under mating-inducing conditions.

360 Among the recombined  $\text{NAT}^R$  colonies, haploid cells had a much lower  
361 percentage of  $\text{Ura}^+$  colonies compared to diploid cells (about 1% in haploid and  
362 50-70% in diploid) (Figure 3B). Additionally, activation of unisexual reproduction  
363 after longer incubation on V8 medium did not lead to increased numbers of  $\text{NAT}^R$ ,  
364  $\text{Ura}^+$  cells in the diploid populations, but a significant increase of  $\text{NAT}^R$ ,  $\text{Ura}^+$  cells  
365 was observed in the haploid populations (Figures 3B and S8). FACS analyses of  
366 individual colonies showed that there were more diploid colonies than haploid  
367 cells after longer incubation on V8 (Figures 3B and S8), suggesting that  
368 diploidization occurs during unisexual reproduction, and the *NURAT* construct  
369 can indeed detect ploidy transition events. However, the low frequency of  
370 detected diploidization events in this assay also suggests that ploidy duplication  
371 during early time points of unisexual reproduction is occurring in a sub-population

372 of cells whereas other cells within the mating patch undergo mitotic growth as  
373 haploid isolates. It is important to note that the sensitivity of this ploidy sensor to  
374 detect ploidy changes is limited by the frequency of mitotic recombination of the  
375 *NURAT* reporter.

376

377 **Segmental aneuploidy occurs during both mitosis and meiosis**

378 To understand the nature of the  $NAT^R$ ,  $Ura^+$  colonies, which harbor both  
379 *NAT* and *NURAT* alleles (referred to subsequently as *NURAT/NAT* strains), we  
380 performed whole-genome Illumina sequencing of five *NURAT/NAT* colonies  
381 derived from mitotic passages of both the *MAT $\alpha$*  and *MAT $\alpha$  NURAT* strains  
382 (Figure S6). Chromosome alterations were inferred from changes in coverage of  
383 reads aligned to a newly obtained, chromosome-level, reference genome  
384 assembly of *C. deneoformans* XL280 $\alpha$ , generated *de novo* by Oxford Nanopore  
385 sequencing (see methods for details). Instead of observing the expected  
386 aneuploidy of Chr 1 where the *NURAT* construct has been inserted (the safe  
387 haven locus is located near the end of the chromosome arm), segmental  
388 aneuploidy and about one extra copy of the region harboring the *NURAT*  
389 construct was present in all of the *NURAT/NAT* colonies (Figures 4A, 4B, and  
390 S9). Besides the segmentally duplicated region on Chr 1 that was selected for,  
391 other chromosomal abnormalities were also detected, including segmental  
392 duplications of Chr 2 in the diploid *MAT $\alpha$  ura5 $\Delta$  NURAT/NAT-4* isolate, Chr 6 in  
393 the *MAT $\alpha$  ura5 $\Delta$  NURAT/NAT-1* isolate, Chr 10 in *MAT $\alpha$  ura5 $\Delta$  NURAT/NAT-2*  
394 isolate, and Chr 13 in the *MAT $\alpha$  ura5 $\Delta$  NURAT/NAT-1* and -2 isolates (Figure 4A).

395 Interestingly the segmentally duplicated region on Chr 13 in ***MATa NURAT/NAT***  
396 colonies 1 and 2 spanned the centromere, which could potentially give rise to a  
397 dicentric chromosome. Loss of chromosomal segments (inferred as regions with  
398 lower read coverage) were only detected in the context of the diploid ***MATa***  
399 *ura5Δ NURAT/NAT-4* isolate (on Chrs 2 and 4).

400 Segmentally duplicated regions on Chr 1 in all progeny also harbored a  
401 drug efflux pump gene, *AFR1*, which has been shown to confer fluconazole  
402 resistance in *Cryptococcus* (Figure 4B) [51]. Interestingly, three out of five strains  
403 tested were found to be resistant to fluconazole, suggesting additional epistatic  
404 interactions with the *AFR1* gene or unidentified mutations mitigated the  
405 fluconazole resistance phenotype conferred by *AFR1* gene copy number  
406 increase (Figure 4C). We also found that two of the strains were hypersensitive  
407 to 37°C, a phenotype that has been associated with aneuploidy in *C. neoformans*  
408 (Figure 4C) [14].

409

410 **Segmental aneuploidies are formed via multiple mechanisms**

411 To elucidate the mechanism(s) giving rise to segmental aneuploidy, we  
412 analyzed the genomic regions flanking the segmental duplications detected in  
413 different *NURAT/NAT* progeny. Specifically, we assessed if read-pairs aligned to  
414 those regions in the XL280α reference genome had unexpected separation  
415 distances, anomalous orientations, or if the forward and reverse reads of a pair  
416 aligned to different chromosomes, all indicative of structural changes. This

417 analysis revealed distinct modes of segmental aneuploid formation among  
418 different *NURAT/NAT* progeny (Figure S9). Sequencing reads bridging  
419 segmentally duplicated regions on different chromosomes were detected in three  
420 isolates suggesting potential fusion events may have occurred between  
421 segmentally duplicated regions: Chrs 1 and 13 (a1-a2) and Chrs 1 and 6 (b1-b2)  
422 in the *MATa ura5Δ NURAT/NAT-1* strain, Chrs 1 and 13 (a1-a2 and c1-c2) and  
423 Chrs 1 and 10 (b1-b2) in the *MATa ura5Δ NURAT/NAT-2* strain, and Chrs 1 and  
424 2 (a1-a2) and Chrs 2 and 4 (c1-c2) in the *MATa ura5Δ NURAT/NAT-4* strain  
425 (Figure S9). In all three isolates, one segmentally duplicated region  
426 encompasses the centromere (Chr 13 in the *MATa ura5Δ NURAT/NAT-1* and -2,  
427 and Chr 1 in *MATa ura5Δ NURAT/NAT-4*) allowing the opportunity for  
428 neochromosome formation through fusion of segmentally duplicated regions  
429 originating from different chromosomes. Segmental aneuploidy formation via  
430 tandem duplications were detected for Chr 1 in the *MATa ura5Δ NURAT/NAT-3*  
431 strain and for Chrs 1 and 6 in the *MATa ura5Δ NURAT/NAT-1* strain, in which  
432 large and small inversion events were detected, suggesting that complex  
433 chromosomal rearrangements are also associated with segmental aneuploidy  
434 formation. Transposable element movements have been shown to be highly  
435 mutagenic, especially under host infection or temperature stress [52].  
436 Interestingly, T1 and T3/CNIRT4 transposon movements were detected in  
437 sequences flanking some of the *NURAT/NAT* progeny, suggesting that  
438 transposable elements may also contribute to formation of some of the  
439 segmental aneuploidies (Figure S9).

440 The segmentally duplicated regions were further analyzed through  
441 separation of chromosomes via CHEF gel electrophoresis followed by chromo-  
442 blotting with probes specific to these regions. These methods revealed that  
443 various forms of karyotypic changes were present in the *NURAT/NAT* progeny  
444 (Figure S10). The *NAT* probe for the *NURAT* construct in the *MATa ura5Δ*  
445 *NURAT/NAT-1* strain and both the *NAT* and *URA5* probes in the *MATa ura5Δ*  
446 *NURAT/NAT-2* strain hybridized to a smaller chromosome than expected (Figure  
447 S10A, green arrows). Additionally, the probe specific to the duplicated region on  
448 Chr 13 in the *MATa ura5Δ NURAT/NAT-1* strain hybridized to two smaller  
449 chromosomes, supporting the hypothesis that segmentally duplicated regions  
450 can form neochromosomes (Figure S10C, green arrows). Hybridization of the  
451 *NAT* and *URA5* probes to a smaller chromosome in the *MATa ura5Δ*  
452 *NURAT/NAT-3* and the *MATa ura5Δ NURAT/NAT-1* strains suggested the  
453 segmentally duplicated events did not likely occur directly on Chr 1 (Figure S10A,  
454 red arrows). Conversely, hybridization of a probe specific to the segmentally  
455 duplicated region on Chr 6 in the *MATa ura5Δ NURAT/NAT-1* strain supported  
456 the tandem duplication of the region within Chr 6, as detected by whole-genome  
457 sequencing (Figure S9 and S10B, green arrow). Overall, the different types of  
458 segmental aneuploidy formation illustrate a significant level of genomic and  
459 ploidy plasticity in *C. deneoformans*.

460

461 **Cell cycle regulators contribute to segmental aneuploidy formation**

462 To investigate how the identified cell cycle-regulating genes impact ploidy  
463 transitions during unisexual reproduction, we generated mutant strains containing  
464 both the *NURAT* construct and the *ura5* gene deletion through meiotic crosses  
465 and performed fluctuation assays (Figure S7). Compared to the wild type, genetic  
466 deletion of *PCL2*, *PCL6*, *PCL9*, *CKS1*, and *CKS2* all significantly reduced  
467 *NURAT* recombination frequencies. *pcl6Δ* and *cks1Δ* mutants exhibited the most  
468 severe defects, suggesting modulation of ploidy transitions by these cell cycle-  
469 regulating genes could influence the regulation of homologous recombination  
470 during unisexual reproduction (Figure 5A). Interestingly, suppressed expression  
471 of *CLB3* significantly increased *NURAT* recombination whereas upregulated  
472 expression of *CLB3* (by supplementing galactose in V8 medium) significantly  
473 reduced *NURAT* recombination, indicating that *CLB3* plays an opposite role in  
474 contributing to homologous recombination frequencies during unisexual  
475 reproduction. Addition of glucose or galactose in V8 medium also increased  
476 homologous recombination frequencies in the wild type, which is likely due to  
477 robust vegetative growth in the presence of excess nutrients.

478 Despite the significantly reduced *NURAT* recombination frequencies  
479 observed in the deletion mutants, they produced significantly different  
480 frequencies of NAT<sup>R</sup>, Ura<sup>+</sup> colonies than the wild type except for *pcl9Δ* mutants.  
481 *pcl2Δ*, *pcl6Δ*, and *cks2Δ* mutants produced zero or only one NAT<sup>R</sup>, Ura<sup>+</sup> colony  
482 (Figure 5A), suggesting that these three genes all function in driving  
483 diploidization and segmental aneuploidy formation during unisexual reproduction.  
484 In contrast, *cks1Δ* mutants, which had a severe defect in *NURAT* recombination,

485 produced significantly more NAT<sup>R</sup>, Ura<sup>+</sup> colonies than the wild type (56% in  
486 *cks1Δ-1* and 32% in *cks1Δ-2* compared to 0.9% in wild type) (Figure 5A),  
487 indicating that *CKS1* plays an inhibitory role in diploidization and segmental  
488 aneuploidy formation. Interestingly, both suppressed and upregulated expression  
489 of *CLB3* increased the frequency of NAT<sup>R</sup>, Ura<sup>+</sup> colonies relative to the wild type  
490 (Figure 5B), suggesting that *CLB3* expression levels modulate diploidization and  
491 segmental aneuploid formation.

492 To evaluate the impact of these cell cycle genes on ploidy transitions, the  
493 average ploidy was calculated for all *NURAT/NAT* colonies of wild type and  
494 mutants (Figure 5). For *pcl9Δ* mutants that produced a comparable number of  
495 NAT<sup>R</sup>, Ura<sup>+</sup> colonies to wild type, deletion of *PCL9* significantly increased the  
496 average ploidy level when outliers with ploidies above 1.6 were removed from the  
497 dataset (Figure S11A). Both suppression and upregulation of *CLB3* expression  
498 significantly decreased the average ploidy of the *NAT/NURAT* colonies when the  
499 same outliers were removed (Figure S11B). Taken together, our findings suggest  
500 that cell cycle-regulating genes act in concert to control ploidy transitions during  
501 unisexual reproduction.

502 **Discussion**

503       Genome size changes occur during both mitotic and meiotic cycles and  
504   disruption of these processes leads to dire consequences on cellular viability and  
505   fertility. During mitosis, the whole genome duplicates during S phase and is  
506   governed by cell cycle regulators, while in fungi, during meiosis, ploidy  
507   duplication is accomplished via cell-cell fusion and nuclear fusion between  
508   mating partners [1, 32]. Besides these two fundamental cellular processes, ploidy  
509   transitions also occur during unisexual reproduction and titan cell formation in the  
510   human fungal pathogen *C. deneoformans*, in which ploidy increases through  
511   putative endoreplication pathways [13, 18, 21, 36]. To examine the mechanism(s)  
512   underlying the ploidy transition from haploid to diploid during unisexual  
513   reproduction, we identified and characterized six cell cycle-regulating genes that  
514   contribute to diploidization.

515       Among the identified twenty putative cell cycle-regulating genes, four  
516   cyclin genes and two CDK regulator genes were differentially expressed in *C.*  
517   *deneoformans* during unisexual reproduction compared to mitotic growth,  
518   whereas none of the cyclin-dependent kinase genes exhibited expression  
519   differences. This finding is in agreement with previous studies in *S. cerevisiae*  
520   that found fluctuations in transcript levels of cyclin genes, but not CDK genes,  
521   drive cell cycle progression [34]. Three of the four cyclin genes, *PCL2*, *PCL6*,  
522   and *PCL9*, are Pho85 cyclins (Pcls), which in *S. cerevisiae* interact with the  
523   cyclin-dependent kinase Pho85 [53]. Pcl2 and Pcl9 belong to the Pcl1,2-like  
524   subfamily and are expressed during G1 phase activating Pho85, which promotes

525 the G1/S phase transition [40, 53]. Pcl6 belongs to the Pho80 subfamily and  
526 functions with Pho85 in activating the serine/threonine protein phosphatase Glc7,  
527 which modulates kinetochore-microtubule interactions during M phase [53]. In *C.*  
528 *deneoformans*, expression of *PCL6* and *PCL9* was highly induced during  
529 unisexual reproduction, and their deletion caused a defect in diploid blastospore  
530 formation, while in contrast, *PCL2* was down-regulated during unisexual  
531 reproduction and its deletion did not cause a defect in diploid blastospore  
532 formation, suggesting concerted regulation of these cyclins are critical in driving  
533 diploidization during unisexual reproduction, likely via modulation of Pho85  
534 activity. The fourth identified gene, *CLB3*, belongs to B-type cyclins and its  
535 expression was reduced during unisexual reproduction. However, repression of  
536 *CLB3* during unisexual reproduction blocked diploid blastospore formation. In *S.*  
537 *cerevisiae*, *CLB3* is a nonessential cyclin gene expressed during G2/M phase,  
538 activating Cdc28 and promoting G2/M phase transition [34]. In *C. deneoformans*,  
539 *CLB3* was also not essential, and Pengjie Hu and colleagues have successfully  
540 deleted *CLB3* utilizing a CRISPR-mediated transformation technique [54, 55].  
541 Our failure in deleting this gene was likely due to the combinatory effect of low  
542 biolistic transformation efficiency and a severe defect in cytokinesis of the mutant.  
543 Deletion of *CLB3* caused defects in stress resistance, melanin production, and  
544 capsule formation, and the deletion strain was avirulent in a mouse infection  
545 model [54, 56]. Interestingly, different from the deletion mutants of the other five  
546 cell cycle regulating genes, deletion of *CLB3* blocked basidium spore chain  
547 production during bisexual reproduction [54], suggesting that Clb3 plays a pivot

548 role in sporogenesis during both modes of sexual reproduction in *C.*  
549 *deneoformans*. In this study, suppression of *CLB3* expression led to cell cycle  
550 arrest at G2/M phase, which is consistent with the phenotype observed for the  
551 deletion mutant, suggesting that Clb3 contributes to G2/M phase progression, a  
552 conserved role for Clb3 in *S. cerevisiae* [34, 54].

553 The two differentially expressed CDK regulator genes *CKS1* and *CKS2*  
554 are both homologs of *S. cerevisiae* *CKS1*, which is required for G1/S and G2/M  
555 phase transitions [41]. In *S. cerevisiae*, Cks1 functions as a phosphor-adaptor  
556 protein for the CDK inhibitor Sic1 and the G1/S phase Cln-Cdc28 complex, which  
557 facilitates phosphorylation and destruction of Sic1 at the onset of S phase [57].  
558 Similar to *C. deneoformans*, humans have two homologs of the *S. cerevisiae*  
559 *CKS1* gene, and both can complement a null mutation of *CKS1* in *S. cerevisiae*  
560 [58]. Interestingly, the *C. deneoformans* *CKS1* and *CKS2* genes were oppositely  
561 regulated during unisexual reproduction. Deletion of *CKS1*, which is upregulated  
562 during unisexual reproduction, caused a more severe phenotype during  
563 unisexual spore production and diploid blastospore formation compared to  
564 deletion of *CKS2*, which is downregulated during unisexual reproduction. These  
565 results suggest a functional divergence between *CKS1* and *CKS2* in *C.*  
566 *deneoformans*.

567 Among the six characterized cyclin and CDK regulator genes, *PCL9*,  
568 *CLB3*, and *CKS2* were previously shown to be periodically expressed during the  
569 cell cycle in *C. neoformans* with a peak at G2/M phase for *PCL9* and a peak at  
570 G1/S phase for *CLB3* and *CKS2* [59]. Although *PCL2* and *CKS1* were not

571 periodically expressed during the cell cycle, expression of both genes peaked at  
572 G1/M phase during the first cell cycle in synchronized cells in *C. neoformans*,  
573 supporting a role for these cell cycle regulating genes in cell cycle progression  
574 [59]. Four of these cell cycle-regulating genes (*CLB3*, *PCL2*, *CKS1*, and *CKS2*)  
575 were highly expressed in the G1/S phase under rich growth conditions in *C.*  
576 *neoformans*; however, deletion of *CKS1* and repression of *CLB3* in *C.*  
577 *deneoformans* caused a prominent phenotype in G2/M phase arrest. More  
578 interestingly, *CKS1* and *CLB3* expression were differentially regulated during  
579 unisexual reproduction, suggesting a rewired transcriptional coordination of  
580 different cell cycle-regulating genes may be required for genome duplication  
581 and diploid genome maintenance before the onset of meiosis during unisexual  
582 reproduction. However, mechanisms underlying this process remain to be  
583 elucidated.

584 Different from unisexual reproduction, ploidy increases during titan cell  
585 formation was recently shown to be modulated by *CLN1* expression in *C.*  
586 *neoformans* [36]. Interestingly, the orthologous *CLN1* gene (CNM00990) in *C.*  
587 *deneoformans* was not differentially expressed during unisexual (Figure 1A).  
588 Under host environment, unbudded *C. neoformans* cells were arrested in G2 with  
589 a 2C genome and reduced *CLN1* expression allowed 2C cells to re-enter the  
590 G1/S phase without mitosis to form polyploid titan cells [36] These distinct cyclin  
591 expression regulations during different cellular and developmental processes  
592 highlight the exquisite genome and ploidy adaptability of *Cryptococcus* species in  
593 response to various host and environmental stress cues.

594 To further detect ploidy transition events during unisexual reproduction,  
595 we generated the *NURAT* ploidy reporter, using which, we were able to detect  
596 diploid cells under both mating-suppressive (YPD) and mating-inducing (V8)  
597 culture conditions by selecting  $\text{NAT}^R$ ,  $\text{Ura}^+$  colonies. Although more diploid cells  
598 were detected on V8 compared to YPD, the overall frequency of diploid cells was  
599 low, suggesting that diploidization may occur in only a small number of cells that  
600 are primed for unisexual reproduction, diploidization events could be transient, or  
601 the relative sensitivity of detection with the *NURAT* reporter is limited by the  
602 frequency of recombination.

603 Among the selected  $\text{NAT}^R$ ,  $\text{Ura}^+$  colonies from both YPD and V8 culture  
604 condition, many remained haploid. Whole-genome sequencing of these haploid  
605 colonies showed that these colonies had segmental aneuploidies of the region on  
606 Chr 1 where the *NURAT* cassette was inserted. Besides the selected region on  
607 Chr 1, other chromosomes which were not under selection also exhibited  
608 segmental aneuploidy formation. Segmental aneuploidy represents a form of  
609 chromosome instability, a hallmark of tumorigenesis, which occurs via breakage-  
610 fusion-bridge cycles of duplication and multiple amplifications of certain  
611 chromosome regions [60]. In the human fungal pathogen *C. albicans*, segmental  
612 aneuploidy has been observed in azole-resistant isolates derived clinically and  
613 experimentally, with multiple amplified regions containing genes, such as *TAC1*  
614 and *ERG11* that contribute to azole tolerance [61-63]. In *C. albicans*, segmental  
615 aneuploidy is observed exclusively in regions flanked by long inverted repeat  
616 sequences, which function in repairing the breakage-fusion-bridge cycles during

617 the formation of segmental aneuploidy [63, 64]. Long-repeat sequences are  
618 distributed throughout the *C. albicans* genome, suggesting a strong potential for  
619 segmental aneuploidy formation [63]. Interestingly, in the absence of the drug,  
620 the azole-resistant, segmentally aneuploid isolates can quickly lose the multiple  
621 amplified copies and return to euploid chromosomal karyotypes and azole  
622 susceptibility, suggesting a selective pressure may be required for the  
623 maintenance of segmental aneuploidy [64].

624 Different from the segmental aneuploidy formation in *C. albicans*, none of  
625 the characterized segmental aneuploid regions observed in this study are flanked  
626 by inverted long-repeat sequences. Instead, many segmental aneuploid regions  
627 are flanked by T1 or T3/CNIRT4 DNA transposons. In *C. neoformans*,  
628 movements of both DNA transposons have been observed at elevated rates *in*  
629 *vivo* and at host temperature and contribute to development of resistance against  
630 multiple antifungal drugs [52]. It is likely that transposons play a role in segmental  
631 aneuploidy formation and contribute to chromosome instability. Based on  
632 detection of discordant read-pairs at the borders of the segmental aneuploid  
633 regions, there appears to be two likely modes of segmental aneuploidy formation.  
634 In the *MATa ura5Δ NURAT/NAT-1* and -2 strains, forward and reverse reads of a  
635 subset of the aligned read-pairs were found on different chromosomes, and one  
636 of the regions always contained a centromere, suggesting segmental aneuploidy  
637 formation may occur in conjunction with chromosomal fusion and neo-  
638 chromosome formation. This hypothesis was confirmed by binding of a  
639 chromoblot probe for the *NAT* cassette to two distinct chromosomes. On the

640 other hand, in the *MAT $\alpha$  ura5 $\Delta$  NURAT/NAT-3* and *MAT $\alpha$  ura5 $\Delta$  NURAT/NAT-1*  
641 strains, segmental aneuploidy formed on the same chromosome and involved  
642 tandem duplications and inversions, likely through breakage-fusion-bridge cycles  
643 similar to what has been observed in *C. albicans*. However, chromoblot analysis  
644 for the segmental aneuploid regions only confirmed the size increase in Chr 6 for  
645 the *MAT $\alpha$  ura5 $\Delta$  NURAT/NAT-1* strain. Surprisingly, chromoblot analysis for both  
646 the *URA5* gene and *NAT* cassette detected the presence of a smaller  
647 chromosome in the *MAT $\alpha$  ura5 $\Delta$  NURAT/NAT-3* and the *MAT $\alpha$  ura5 $\Delta$*

648 *NURAT/NAT-1* strains, suggesting additional segmental aneuploidy formation  
649 mechanisms occur and remain to be elucidated.

650 Recent experimental selection experiments have shown that breakage or  
651 deletion of centromeres in *Cryptococcus* species can induce chromosomal  
652 translocation and chromosomal fusion events, which may lead to reproductive  
653 isolation, underlying the involvement of karyotypic variation in speciation during  
654 evolution [65, 66]. However, detection of chromosomal instability events is  
655 extremely difficult as naturally occurring karyotypic changes are rare events  
656 derived from defective mitosis and that abnormal karyotypes often result in  
657 cellular fitness costs [67, 68]. Here we showed that the *NURAT* cassette has  
658 tremendous potential for isolating cells with altered karyotypes, which may prove  
659 to be a valuable tool for elucidating mechanisms underlying chromosome  
660 instability.

661 Utilizing the *NURAT* cassette, we characterized the involvement of cell  
662 cycle-regulating genes in diploidization during unisexual reproduction. However,

663 because diploidization could be detected at a low frequency during the early  
664 stages of unisexual reproduction, double selection of the *NURAT* reporter yielded  
665 mostly aneuploid isolates. Deletion of cyclin and CDK regulator genes and  
666 altered expression of *CLB3* all impacted *NURAT* recombination, suggesting  
667 perturbation of cell cycle progression suppresses homologous recombination.  
668 Because the *NURAT* reporter requires homologous recombination to detect  
669 ploidy transition events, defects in this function will likely limit the use of *NURAT*  
670 in probing ploidy transition. Despite this limitation, deletion of *PCL9* or *CKS1* did  
671 not block double selection for the *NURAT* and the recombined *NAT* cassettes.  
672 Interestingly, deletion of *PCL2*, *PCL6*, and *CKS2* almost completely prohibited  
673 double selection for the ploidy reporter, while these three genes had a minimal  
674 impact on diploid blastospore formation, suggesting diploidization and aneuploidy  
675 formation may require distinct cell cycle regulatory circuitries.

676 Detection of the segmental aneuploidy events in this study illuminate yet  
677 another example of the diverse mechanisms of genome plasticity in *C.*  
678 *neoformans*. Unlike diploidization during unisexual reproduction and  
679 polyploidization during titan cell formation in the host environment, segmental  
680 aneuploidy is more likely to be the result of a rare mitotic error than to be  
681 regulated by defined genetic pathways. Despite the rarity, three out of the five  
682 characterized segmental aneuploid isolates exhibited resistance to the antifungal  
683 azole drug fluconazole compared to their progenitor strain, which was likely due  
684 to an increase in the copy number of the azole efflux pump gene *AFR1*,  
685 suggesting that, under selection, these rare events could provide fitness benefits

686 for these cells to adapt to environmental stresses [51]. However, the prevalence  
687 and biological significance of segmental aneuploidy in different environmental  
688 and clinical isolates or strains with different ploidy status requires further  
689 experimental exploration.

690

691 **Materials and methods**

692

693 **Strains, media, and growth conditions**

694 Strains and plasmids used in this study are listed in Table S5. All strains  
695 were generated in the congeneric *MATa* and *MATa* XL280 strain backgrounds [69].  
696 Strains were frozen at -80°C in glycerol and maintained on Yeast Extract  
697 Peptone Dextrose or Glucose (YPD or YPG) agar medium for routine use.  
698 Strains harboring dominant selectable markers were grow on YPD or YPG  
699 medium supplemented with 100 µg/mL nourseothricin (NAT), 200 µg/mL G418  
700 (NEO), or 200 µg/mL hygromycin (HYG). Synthetic dextrose or galactose  
701 medium without uracil (SD-URA or SG-URA) was used to select uracil  
702 prototrophic progeny. Unisexual and bisexual mating assays were induced on  
703 either 5% V8 juice agar medium (pH = 7) or Murashige and Skoog (MS) medium  
704 minus sucrose (Sigma-Aldrich) in the dark at room temperature for the  
705 designated time period.

706

707 **Identification of putative cell cycle genes**

708 To identify genes involved in cell cycle control, the key word cyclin was  
709 used to search against the *C. deneoformans* JEC21 genome on FungiDB  
710 ([www.fungidb.org](http://www.fungidb.org)) [38]. BLASTP searches were performed for candidate cell  
711 cycle regulating genes against the *S. cerevisiae* genome database  
712 ([www.yeastgenome.org](http://www.yeastgenome.org)), and then reciprocal BLASTP searches of top candidate

713 genes in *S. cerevisiae* were conducted against the *C. deneoformans* JEC21  
714 genome database to provide putative gene names and predicted protein  
715 functions (Table S1).

716

717 **Expression levels of the putative cell cycle genes during unisexual  
718 reproduction**

719 The wild-type XL280 $\alpha$  strain was grown overnight in YPD liquid medium  
720 and adjusted to OD<sub>600</sub>=2 in sterile H<sub>2</sub>O. Then 10  $\mu$ l of cells were spot inoculated  
721 on V8 (mating-inducing condition) and YPD (non-mating condition) agar media  
722 and incubated for 36 hours. RNA extraction and qRT-PCR were performed as  
723 previously described [18]. Gene expression levels were normalized using the  
724 endogenous reference gene *GPD1* and determined by using the comparative  
725  $\Delta\Delta Ct$  method. Expression fold change on V8 versus YPD agar media for each  
726 putative cell cycle-regulating gene was compared to *KAR5*, which has been  
727 previously shown to be expressed in the XL280 $\alpha$  strain at a comparable level on  
728 V8 and YPD agar [18]. Primers used for qRT-PCR are listed in Table S6.

729

730 **Deletion of putative cell cycle genes and conditional expression of *CLB3***

731 The primers used in this section are listed in Table S6. Coding sequences  
732 (CDS) for six differentially expressed putative cell cycle genes *PCL2*, *PCL6*,  
733 *PCL9*, *CLB3*, *CKS1*, and *CKS2* were replaced by the dominant selectable marker  
734 *NEO* cassette through homologous recombination as previously described [70].

735 In brief, for each gene, a deletion construct consisting of 1 kb upstream and 1 kb  
736 downstream sequences flanking the CDS and the *NEO* cassette was generated  
737 by overlap PCR, and then the deletion construct was introduced into the wild type  
738 XL280α strain via biolistic transformation. Stable transformants were selected on  
739 YPD medium supplemented with G418 (200 mg/l) and gene replacements were  
740 confirmed by PCR. Two independent deletion mutants were generated for *PCL2*,  
741 *PCL6*, *PCL9*, *CKS1*, and *CKS2* deletion mutants.

742 Biolistic transformation using the deletion construct for *CLB3* failed to  
743 generate a deletion mutant. To study *CLB3*, a conditional expression allele of  
744 *CLB3* under a galactose inducible promoter was generated by replacing a 300-bp  
745 region upstream of the *CLB3* start codon with a *NEO* cassette followed by a  
746 1034-bp promoter sequence for the *GAL7* (CNM00600) ( $P_{GAL7}$ ) gene using the  
747 TRACE method [55, 71]. To generate the regulated expression construct, the  
748 *NEO* cassette, the 1034-bp  $P_{GAL7}$  sequence, the 1117-bp upstream and 1019 bp  
749 downstream sequences of the 300-bp region were cloned into the pXL1 plasmid  
750 using the Gibson cloning method resulting in plasmid pSH5 [72]. Then the  
751 regulated expression construct was PCR amplified from the plasmid pSH5 using  
752 primer pair JOHE45301/JOHE46452. For the sgRNA expression construct, the  
753 U6 promoter and the sgRNA scaffold that share 20 bp of overlapping sequence  
754 targeting the 300 bp region were amplified from XL280α genomic DNA and the  
755 plasmid pYF515 respectively, and then the intact sgRNA expression construct  
756 was generated by overlap PCR [55, 73]. The CAS9 expression construct was  
757 amplified from the plasmid pXL1-CAS9-HYG [55]. The regulated expression

758 construct, the sgRNA expression construct, and the CAS9 expression construct  
759 were transformed into wild-type XL280α cells through electroporation using a  
760 BIO-RAD Gene Pulser. Stable transformants were selected on YPG medium  
761 supplemented with G418 and the correct integration of the *GAL7* promoter was  
762 confirmed in the transformant CF1715 by PCR.

763 To validate that the *GAL7* promoter could regulate *CLB3* expression, wild-  
764 type XL280α and CF1715 (*NEO-P<sub>GAL7</sub>-CLB3*) strains were grown overnight in  
765 liquid YPD medium and adjusted to OD<sub>600</sub>=2 in sterile H<sub>2</sub>O. Then 10 µl of cells  
766 were spot-inoculated on YPD, YPG, V8, V8 + 2% glucose, and V8+ 2%  
767 galactose agar media and incubated for 36 hours. RNA extraction and qRT-PCR  
768 were performed as previously described to determine the expression level of  
769 *CLB3* [18].

770

## 771 **Microscopy**

772 To test whether the putative cell cycle regulating genes contribute to  
773 sexual reproduction, wild type XL280α, two independent deletion mutants for  
774 *PCL2*, *PCL6*, *PCL9*, *CKS1*, and *CKS2*, and the conditional expression strain for  
775 *CLB3* were spot-inoculated on MS agar medium and incubated for up to three  
776 weeks for unisexual reproduction; and *MATa* and *MATa* cells of the wild type  
777 XL280 and deletion mutants for *PCL2*, *PCL6*, *PCL9*, *CKS1*, and *CKS2* were  
778 equally mixed and spot-inoculated on MS agar medium and incubated up to two  
779 weeks for bisexual reproduction. Hyphal growth on the edge of mating patches,

780 basidia, and spore chains were captured at specified time points using a Nikon  
781 Eclipse E400 microscope equipped with a Nikon DXM1200F camera.

782 To observe yeast cell morphology, wild-type *XL280α*, two independent  
783 deletion mutants for *PCL2*, *PCL6*, *PCL9*, *CKS1*, and *CKS2*, and the conditional  
784 expression strain for *CLB3* were grown overnight in liquid YPD or YPG medium.  
785 Yeast cells were then fixed in 3.7% formaldehyde, membrane permeabilized in 1%  
786 Triton X100, and strained with 3 µg/ml Hoechst 33342 (Thermo Fisher) and 1  
787 µg/ml calcofluor white (CFW) (Sigma). Stained yeast cells were imaged using a  
788 ZEISS Imager widefield fluorescence microscope and images were processed  
789 using the software FIJI.

790

### 791 **Basidiospore and blastospore dissection**

792 Dissections of basidiospore and blastospores were performed using a  
793 fiber optic needle spore dissecting system as previously described [18, 74]. To  
794 obtain meiotic progeny, mating patches were inoculated on MS medium and  
795 incubated in the dark at room temperature for 1-2 weeks to allow basidiospore  
796 chain formation. Basidiospores were transferred onto YPD agar medium (YPG  
797 was used when strains expressing *CLB3* under a galactose-inducible promoter  
798 were involved), and individual basidiospores were separated. To dissect  
799 blastospores, mating patches were prepared similarly but incubated for 3-4  
800 weeks or longer until hyphae grew further away from yeast cells on the agar  
801 surface, then the agar block containing the entire mating patch was excised and

802 transferred to a YPD or YPG agar medium plate with an equivalent size of agar  
803 removed from the mating patch agar block, and nascent blastospores produced  
804 along the growing hyphae were separated onto fresh YPD or YPG medium.

805

## 806 **Flow cytometry**

807 To determine ploidy, actively growing cells on solid agar medium were  
808 collected, fixed in ethanol, stained with propidium iodide, and analyzed by  
809 Fluorescence Activated Cell Sorting (FACS) using a BD FACSCanto II analyzer  
810 as previously described [18, 75]. XL280 $\alpha$  and MN142.6 (XL280 $\alpha$ / $\alpha$   
811 *ura5 $\Delta$ ::NAT/ura5 $\Delta$ ::NEO*) were used as haploid and diploid controls, respectively.  
812 All FACS data were analyzed in FlowJo.

813 To determine whether the putative cell cycle regulating genes contributed  
814 to cell cycle progression, wild-type and deletion mutant cells were treated with  
815 hydroxyurea or nocodazole to arrest cells at G1/S and G2/M, respectively [44,  
816 45]. For G1/S arrest, cells were grown in YPD liquid medium overnight, washed  
817 in H<sub>2</sub>O, readjusted to OD<sub>600</sub> = 0.2 in 2 ml fresh YPD liquid medium, regrown at  
818 30°C for 3 hours to reach exponential growth, and then hydroxyurea was added  
819 to the growing culture at a final concentration of 90 mM. Cells were then grown  
820 for an additional 3 hours to arrest cells at G1/S phase. Half of the volume of  
821 arrested cells was collected and fixed in 70% ethanol, and the other half was  
822 fixed after cell cycle release from G1/S arrest by growing in fresh YPD liquid  
823 medium for 90 minutes. For G2/M arrest, cells were prepared in the same

824 manner and grown in the presence of nocodazole at a final concentration of 100  
825 nM for 5 hours, and arrested cells were fixed in 70% ethanol. Fixed cells were  
826 then stained with propidium iodide and analyzed by FACS following the method  
827 described above. For the conditional expression strain of *CLB3*, the experiment  
828 was repeated in both YPD and YPG liquid media.

829 To analyze population ploidy dynamics during mating, the wild-type and  
830 deletion mutants were grown on YPD and V8 agar media for 24 hours and cell  
831 ploidy was determined by FACS. The *CLB3* conditional expression strain and  
832 wild type were grown on YPD, YPG, V8, V8 + 2% glucose, and V8 + 2%  
833 galactose agar media for 24 hours.

834

835 **Generation of the ploidy sensor *NURAT***

836 The ploidy sensor plasmid pNURAT was generated using the Gibson  
837 cloning method [72]. First, the truncated 5' and 3' *NAT* cassette sequences  
838 sharing 530 bp of the *NAT* CDS were PCR amplified from the plasmid pAI3 using  
839 primer pairs JOHE40975/JOHE41548 and JOHE41547/JOHE40976, the *URA5*  
840 expression cassette was amplified from XL280α genomic DNA using the primer  
841 pair JOHE41549/JOHE41550, and the plasmid backbone was amplified from  
842 plasmid pAI3 using the primer pair JOHE41352/JOHE41353. These PCR  
843 products share 20 bp overlapping sequences and were assembled together to  
844 generate pNURAT where the *URA5* expression cassette was inserted between  
845 the truncated 5' and 3' *NAT* cassette sequences. To insert the ploidy sensor into

846 the genome, the safe haven locus was identified on Chr 1 in *C. deneoformans*  
847 using the identified safe haven locus in *C. neoformans*, and the plasmid pCF3  
848 (*SH-NEO*) targeting the *C. deneoformans* safe haven locus was generated by  
849 swapping the *C. neoformans* sequence and the *NAT* cassette in pSDMA25 with  
850 the *C. deneoformans* sequences and the *NEO* cassette [50]. The *NURAT*  
851 construct was then PCR amplified from pNURAT and inserted into pCF3 to yield  
852 pCF7 (*SH-NURAT-NEO*) using the Gibson method. pCF7 was linearized with  
853 *PacI* and introduced into XL280 $\alpha$  via biolistic transformation. Insertion of *NURAT-*  
854 *NEO* at the safe haven locus was verified in the resulting transformant CF1300  
855 by junction PCRs and southern blot.

856 To generate the deletion construct for the endogenous *URA5* gene, the  
857 *HYG* cassette was PCR amplified from the plasmid pAG32 and inserted between  
858 5' and 3' sequences flanking the *URA5* CDS using overlap PCR. The deletion  
859 construct was then introduced into XL280 $\alpha$  via biolistic transformation, and  
860 replacement of the *URA5* CDS by the *HYG* cassette in the resulting transformant  
861 CF1321 was verified by junction and spanning PCRs.

862 To generate strains carrying both *SH-NURAT-NEO* and *ura5 $\Delta$ ::HYG*,  
863 CF1300 (XL280 $\alpha$  *SH-NURAT-NEO*) was crossed with CF1321 (XL280 $\alpha$   
864 *ura5 $\Delta$ ::HYG*), and basidiospores were dissected following methods described  
865 above. Progeny were streaked on YPD+NAT, YPD+NEO, YPD+HYG, and SD-  
866 URA media to check viability phenotypes on each medium. NAT-sensitive and  
867 NEO- and HYG-resistant progeny that could grow on SD-URA medium were  
868 PCR genotyped for the mating-type locus, deletion of the *URA5* gene, and the

869 presence of the *NURAT-NEO* construct at the safe haven locus. Two progeny  
870 CF1348 (XL280 $\alpha$  *ura5Δ::HYG SH-NURAT-NEO*) and CF1349 (XL280 $\alpha$   
871 *ura5Δ::HYG SH-NURAT-NEO*) were verified and selected for further analyses.  
872 To generate diploid strains carrying the ploidy sensor, blastospores were  
873 dissected from CF1349 and two diploid progeny (CF1610 and CF1611 XL280  
874  $\alpha/\alpha$  *ura5Δ::HYG/ura5Δ::HYG SH-NURAT-NEO/SH-NURAT-NEO*) were obtained.

875 To introduce the ploidy sensor into the deletion mutant strains lacking the  
876 putative cell cycle-regulating genes, *MATa pcl2Δ::NEO*, *MATa pcl6Δ::NEO*,  
877 *MATa pcl9Δ::NEO*, *MATa cks1Δ::NEO*, and *MATa cks2Δ::NEO* were first  
878 crossed with XL280 $\alpha$  to obtain deletion mutants of each gene in the *MATa*  
879 background, and then *MATa pcl2Δ::NEO* (CF1510), *MATa pcl6Δ::NEO* (CF1534),  
880 *MATa pcl9Δ::NEO* (CF1798), *MATa cks1Δ::NEO* (CF1526), and *MATa*  
881 *cks2Δ::NEO* (CF1516) were crossed with XL280 $\alpha$  *ura5Δ::HYG SH-NURAT-NEO*  
882 (CF1349). Basidiospores were dissected from each cross, and NAT-sensitive  
883 and NEO- and HYG-resistant progeny that could grow on SD-URA medium were  
884 PCR genotyped for the mating-type locus, deletion of the putative cell cycle gene,  
885 deletion of the *URA5* gene, and the presence of the *NURAT-NEO* construct at  
886 the safe haven locus. For each cell cycle gene, two *MATa* progeny with the  
887 desired genotype were obtained except for *PCL6*, where one *MATa* and one  
888 *MATa* progeny were obtained. For *CLB3*, the conditional expression strain  
889 XL280 $\alpha$  *P<sub>GAL7</sub>-CLB3-NEO* (CF1715) was crossed with XL280 $\alpha$  *ura5Δ::HYG SH-*  
890 *NURAT-NEO* (CF1348), and basidiospores were dissected on YPG agar medium.  
891 NAT-sensitive, NEO- and HYG-resistant progeny that could grow on SG-URA

892 medium were genotyped for the mating-type locus, the presence of the  
893 conditional expression construct for *CLB3*, deletion of the *URA5* gene, and the  
894 presence of the *NURAT-NEO* construct at the safe haven locus. One progeny  
895 with the desired genotype was obtained (CF1835).

896

897 **Detection of ploidy transition events using the ploidy sensor *NURAT***

898 To test whether the ploidy sensor *NURAT* could detect ploidy transition  
899 events, fluctuation assays were performed using haploid and diploid wild-type  
900 strains carrying the ploidy sensor. Overnight cultures for CF1348, CF1349,  
901 CF1610, and CF1611 were washed once and adjusted to  $OD_{600} = 5$  in sterile  
902  $H_2O$ , and 100  $\mu l$  of cells were spot inoculated on YPD or V8 pH = 7.0 agar  
903 medium and incubated in the dark at room temperature for 36 or 60 hours. After  
904 incubation, cells were collected, suspended in 300  $\mu l$  sterile  $H_2O$ , and serially  
905 diluted by 10-fold seven times. 200  $\mu l$  of cells from each of the last two serial  
906 dilutions were plated on YPD agar medium to estimate the number of colony  
907 forming units (CFUs), and 200  $\mu l$  of the undiluted and the 10-fold diluted cell  
908 suspensions were plated on YPD agar medium supplemented with NAT to select  
909 for progeny with the recombined *NURAT* construct. *NURAT* recombination  
910 events per million CFU was used to determine the recombination frequency.  
911 Nourseothricin-resistant ( $NAT^R$ ) colonies were then replica plated onto SD-URA  
912 medium to select  $NAT^R$  colonies that were uracil prototrophic ( $Ura^+$ ). The  
913 percentages of  $Ura^+$  colonies among  $NAT^R$  colonies were calculated to determine  
914 the double selection efficiency of the *NURAT* and *NAT* genetic constructs. For

915 each experiment, up to eight colonies were tested for ploidy by FACS analyses.

916 For each strain, five biological replicates were performed for each condition.

917 To study whether the identified putative cell cycle genes impact ploidy  
918 transitions during early mating, fluctuation assays were performed for *PCL2*  
919 (*CF1779* and *CF1780*), *PCL6* (*CF1773* and *CF1774*), *PCL9* (*CF1806* and  
920 *CF1807*), *CKS1* (*CF1784* and *CF1787*), and *CKS2* (*CF1770* and *1772*) genetic  
921 deletion mutants following the method above by incubating cells on V8 pH = 7.0  
922 agar medium for 60 hours. For *CLB3* expression, cells of the wild type (*CF1349*)  
923 and the conditional expression strain for *CLB3* (*CF1835*) were incubated on V8,  
924 V8 2% glucose, and V8 2% galactose agar media for 60 hours.

925

926 **DNA preparation, Nanopore sequencing and assembly of *C. deneoformans***

927 **XL280**

928 The DNA for Nanopore sequencing of the XL280α genome was isolated  
929 as described previously [66]. The DNA was enriched for high molecular weight,  
930 and purified DNA was tested for its quality using NanoDrop. The samples were  
931 sequenced on the MinION system using an R9.4.1 Flow-Cell and the SQK-  
932 LSK109 library preparation kit. Nanopore sequencing was performed at the  
933 default voltage for 48 hours as per the MinION sequencing protocol provided by  
934 the manufacturer. MinION sequencing protocol and setup was controlled using  
935 the MinKNOW software. Base-calling was performed with Guppy v4.2.2 using the

936 parameters: config dna\_r9.4.1\_450bps\_fast.cf --gscore\_filtering, and the sequence  
937 reads obtained were used for genome assembly.

938 Canu v2.0 [76] was used to assemble the genome of XL280α using reads  
939 that were longer than 10 kb (-minReadLength=10000), which yielded an  
940 estimated genome size of 19.4 Mb. The genome assembly was checked for  
941 integrity by mapping the Canu-corrected reads back to the genome assembly  
942 using minimap2 v2.14 and duplicated small contigs were discarded. These steps  
943 resulted in the generation of a chromosome-level genome assembly consisting of  
944 14 nuclear contigs plus the mitochondrial genome. The genome assembly was  
945 then error-corrected via one round of Nanopolish v0.13.2 (using nanopore reads;  
946 <https://github.com/jts/nanopolish>) and five rounds of Pilon v1.23 polishing (using  
947 Illumina reads; <https://github.com/broadinstitute/pilon>) [77]. After the polishing,  
948 telomere sequences were identified in each chromosome, and any additional  
949 sequences flanking the telomere ends were trimmed after validation by Nanopore  
950 read-mapping. The chromosomes were numbered based on their synteny with  
951 the JEC21 genome [78]. Repetitive DNA content, including transposable  
952 elements, was analyzed with RepeatMaster version open-4.0.7 (using RepBase-  
953 20170127 and Dfam Consensus-20170127). Centromeres were predicted by  
954 detection of centromere-associated LTR elements previously reported in *C.*  
955 *neoformans* (Tcn1 to Tcn6) [79], and further refined by mapping onto the XL280  
956 assembly using the position of each of the centromere flanking genes previously  
957 identified in *C. deneoformans* [80], using BLAST analyses. Both nanopore and

958 Illumina data for the XL280 genome have been deposited at the NCBI under the  
959 accession number PRJNA720102.

960

961 **Illumina genome sequencing and read coverage assessment**

962 To understand the nature of double selection of the *NURAT* construct and  
963 *NAT* marker in non-diploidization events, whole-genome Illumina sequencing  
964 was performed for parental strains CF1300, CF1321, CF1348 and CF1349, and  
965 five *NAT*<sup>R</sup>, *Ura*<sup>+</sup> progeny (CF1354, CF1355, CF1356, CF1357, and CF1358)  
966 obtained through mitotic passaging on YPD agar medium. Genomic DNA was  
967 extracted following method as previously described [81]. Short-read library  
968 preparation and genome sequencing were conducted at the University of North  
969 Carolina at Chapel Hill's Next Generation Sequencing Facility. Paired 151-base  
970 reads were generated in an Illumina Hiseq2500 system.

971 To detect aneuploidy events (including segmental or whole-  
972 chromosome aneuploidy), Illumina paired-end reads were filtered with the default  
973 parameters of Trimmomatic v0.36 [82], and subsequently mapped to the *C.*  
974 *deneoformans* XL280 reference genome using the BWA-MEM short-read aligner  
975 (v0.7.17-r1188) with default settings [83]. Picard tools, integrated in the Genome  
976 Analysis Toolkit (GATK) v4.0.1.2 [84], was used to sort the resulting files by  
977 coordinate, to fix read groups (modules: SORT\_ORDER=coordinate;  
978 'AddOrReplaceReadGroups') and to mark duplicates. Aneuploidy events were  
979 inferred from read counts calculated in 1-kb non-overlapping windows across the

980 genome using the module “count\_dna” from the Alfred package (v0.1.7)  
981 (<https://github.com/tobiasrausch/alfred>). These counts were subjected to median  
982 normalization and log2 transformation and the data was converted into a tiled  
983 data file (.tdf) using “igvtools toTDF” and plotted as a heatmap in IGV viewer  
984 v2.8.0 [85]. Structural events including inversions, duplications, and  
985 translocations/fusions were inferred based on the manual inspection of  
986 discordant read pairs, with LL/RR reads implying inversions and RL reads  
987 implying duplications with respect to the reference. These sets of reads are  
988 represented in IGV with different color codes after grouping and color alignments  
989 by insert size and pair orientation.

990

991 **Stress response phenotype**

992 To test whether segmental aneuploidy conferred phenotypic variance to  
993 heat stress and the antifungal drug fluconazole, haploid and diploid wild-type  
994 strains and the five mitotically passaged double selection progeny (CF1354,  
995 CF1355, CF1356, CF1357, and Cf1358) were cultured overnight at 30°C in liquid  
996 YPD medium. The cells were subsequently washed once with water, adjusted to  
997 OD600 = 0.8, 10-fold serially diluted, and spot inoculated on YPD and YPD agar  
998 medium supplemented with 8 µg/ml fluconazole. YPD plates were incubated at  
999 30°C and 37°C, and the fluconazole plates were incubated at 30°C for 48 to 72  
1000 hours [86].

1001

1002 **Pulsed-field gel electrophoresis (PFGE) and chromoblot analysis**

1003 PFGE and chromoblot analyses were performed as previously described  
1004 [87]. CHEF gels were run using 1% agarose gel in 0.5X TBE at 14°C for 96 hours  
1005 with a ramped switching time from 260 seconds to 560 seconds at a voltage of  
1006 3V/cm. To separate smaller chromosomes, CHEF gels were run for 40 hours  
1007 with a ramped switching time from 50 to 76 seconds at a voltage of 5 V/cm. For  
1008 chromoblot analyses, probes were designed to hybridize to *URA5*, the *NAT*  
1009 cassette, and the segmental aneuploid regions on Chrs 2, 6, and 13. Primers  
1010 used to PCR amplify the probes were listed in Table S6.

1011

1012 **Statistical analyses**

1013 Graph preparation and statistical analyses were performed using the  
1014 Graphpad Prism 8 program. Student's t-test was performed for each pairwise  
1015 comparison. *p* values lower than 0.05 were considered statistically significant (\*  
1016 indicates  $0.01 < p \leq 0.05$ , \*\* indicates  $0.001 < p \leq 0.01$ , \*\*\* indicates  $0.0001 < p \leq$   
1017 0.001, and \*\*\*\* indicates  $p \leq 0.0001$ ).

1018

1019 **Acknowledgements**

1020 We thank Shelby Priest for critical reading of the manuscript and thank the

1021 helpful suggestions and discussions from members of the Heitman lab.

1022

1023 **Reference**

1024

1025 1. Otto SP. The evolutionary consequences of polyploidy. *Cell*. 2007;131(3):452-62. Epub 2007/11/06. doi: 10.1016/j.cell.2007.10.022. PubMed PMID: 17981114.

1026 2. Van de Peer Y, Mizrahi E, Marchal K. The evolutionary significance of polyploidy. *Nat Rev Genet*. 2017;18(7):411-24. Epub 2017/05/16. doi: 10.1038/nrg.2017.26. PubMed PMID: 28502977.

1027 3. Todd RT, Forche A, Selmecki A. Ploidy variation in fungi: Polyploidy, aneuploidy, and 1031 genome evolution. *Microbiol Spectr*. 2017;5(4):doi: 10.1128/microbiolspec.FUNK-0051-2016. 1032 Epub 2017/07/29. doi: 10.1128/microbiolspec.FUNK-0051-2016. PubMed PMID: 28752816; 1033 PubMed Central PMCID: PMCPMC5656283.

1034 4. Marcet-Houben M, Gabaldon T. Beyond the whole-genome duplication: Phylogenetic 1035 evidence for an ancient interspecies hybridization in the baker's yeast lineage. *PLoS Biol*. 1036 2015;13(8):e1002220. Epub 2015/08/08. doi: 10.1371/journal.pbio.1002220. PubMed PMID: 1037 26252497; PubMed Central PMCID: PMCPMC4529251.

1038 5. Zhu YO, Sherlock G, Petrov DA. Whole genome analysis of 132 clinical *Saccharomyces* 1039 *cerevisiae* strains reveals extensive ploidy variation. *G3 (Bethesda)*. 2016;6(8):2421-34. Epub 1040 2016/06/19. doi: 10.1534/g3.116.029397. PubMed PMID: 27317778; PubMed Central PMCID: 1041 PMCPMC4978896.

1042 6. Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, et al. The 100- 1043 genomes strains, an *S. cerevisiae* resource that illuminates its natural phenotypic and genotypic 1044 variation and emergence as an opportunistic pathogen. *Genome Res*. 2015;25(5):762-74. Epub 1045 2015/04/05. doi: 10.1101/gr.185538.114. PubMed PMID: 25840857; PubMed Central PMCID: 1046 PMCPMC4417123.

1047 7. Selmecki A, Forche A, Berman J. Genomic plasticity of the human fungal pathogen 1048 *Candida albicans*. *Eukaryot Cell*. 2010;9(7):991-1008. Epub 2010/05/25. doi: 10.1128/EC.00060- 1049 10. PubMed PMID: 20495058; PubMed Central PMCID: PMCPMC2901674.

1050 8. Hickman MA, Zeng G, Forche A, Hirakawa MP, Abbey D, Harrison BD, et al. The 'obligate 1051 diploid' *Candida albicans* forms mating-competent haploids. *Nature*. 2013;494(7435):55-9. Epub 1052 2013/02/01. doi: 10.1038/nature11865. PubMed PMID: 23364695; PubMed Central PMCID: 1053 PMCPMC3583542.

1054 9. Bennett RJ, Johnson AD. Completion of a parasexual cycle in *Candida albicans* by 1055 induced chromosome loss in tetraploid strains. *EMBO J*. 2003;22(10):2505-15. Epub 2003/05/14. 1056 doi: 10.1093/emboj/cdg235. PubMed PMID: 12743044; PubMed Central PMCID: 1057 PMCPMC155993.

1058 10. Anderson CA, Roberts S, Zhang H, Kelly CM, Kendall A, Lee C, et al. Ploidy variation in 1059 multinucleate cells changes under stress. *Mol Biol Cell*. 2015;26(6):1129-40. Epub 2015/01/30. 1060 doi: 10.1091/mbc.E14-09-1375. PubMed PMID: 25631818; PubMed Central PMCID: 1061 PMCPMC4357512.

1062 11. Berman J. Ploidy plasticity: a rapid and reversible strategy for adaptation to stress. *FEMS 1063 Yeast Res*. 2016;16(3). Epub 2016/03/08. doi: 10.1093/femsyr/fow020. PubMed PMID: 1064 26945893.

1065 12. Zaragoza O, Garcia-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodriguez-Tudela JL, 1066 Casadevall A. Fungal cell gigantism during mammalian infection. *PLoS Pathog*.

1067 2010;6(6):e1000945. Epub 2010/06/30. doi: 10.1371/journal.ppat.1000945. PubMed PMID:  
1068 20585557; PubMed Central PMCID: PMCPMC2887474.

1069 13. Okagaki LH, Wang Y, Ballou ER, O'Meara TR, Bahn YS, Alspaugh JA, et al. Cryptococcal  
1070 titan cell formation is regulated by G-protein signaling in response to multiple stimuli. *Eukaryot  
1071 Cell.* 2011;10(10):1306-16. Epub 2011/08/09. doi: 10.1128/EC.05179-11. PubMed PMID:  
1072 21821718; PubMed Central PMCID: PMCPMC3187071.

1073 14. Ni M, Feretzaki M, Li W, Floyd-Averette A, Mieczkowski P, Dietrich FS, et al. Unisexual  
1074 and heterosexual meiotic reproduction generate aneuploidy and phenotypic diversity *de novo* in  
1075 the yeast *Cryptococcus neoformans*. *PLoS Biol.* 2013;11(9):e1001653. doi:  
1076 10.1371/journal.pbio.1001653. PubMed PMID: 24058295; PubMed Central PMCID:  
1077 PMC3769227.

1078 15. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global  
1079 burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. *Lancet Infect  
1080 Dis.* 2017;17(8):873-81. Epub 2017/05/10. doi: 10.1016/S1473-3099(17)30243-8. PubMed PMID:  
1081 28483415.

1082 16. Lin X, Hull CM, Heitman J. Sexual reproduction between partners of the same mating  
1083 type in *Cryptococcus neoformans*. *Nature.* 2005;434(7036):1017-21. Epub 2005/04/23. doi:  
1084 10.1038/nature03448. PubMed PMID: 15846346.

1085 17. Ene IV, Bennett RJ. The cryptic sexual strategies of human fungal pathogens. *Nat Rev  
1086 Microbiol.* 2014;12(4):239-51. doi: 10.1038/nrmicro3236. PubMed PMID: 24625892.

1087 18. Fu C, Heitman J. *PRM1* and *KAR5* function in cell-cell fusion and karyogamy to drive  
1088 distinct bisexual and unisexual cycles in the *Cryptococcus* pathogenic species complex. *PLoS  
1089 Genet.* 2017;13(11):e1007113. Epub 2017/11/28. doi: 10.1371/journal.pgen.1007113. PubMed  
1090 PMID: 29176784; PubMed Central PMCID: PMCPMC5720818.

1091 19. Lin X, Patel S, Litvintseva AP, Floyd A, Mitchell TG, Heitman J. Dipoles in the  
1092 *Cryptococcus neoformans* serotype A population homozygous for the  $\alpha$  mating type originate via  
1093 unisexual mating. *PLoS Pathog.* 2009;5(1):e1000283. doi: 10.1371/journal.ppat.1000283.  
1094 PubMed PMID: 19180236; PubMed Central PMCID: PMC2629120.

1095 20. Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chretien F, et al. Cryptococcal  
1096 cell morphology affects host cell interactions and pathogenicity. *PLoS Pathog.*  
1097 2010;6(6):e1000953. doi: 10.1371/journal.ppat.1000953. PubMed PMID: 20585559; PubMed  
1098 Central PMCID: PMCPMC2887476.

1099 21. Zaragoza O, Nielsen K. Titan cells in *Cryptococcus neoformans*: cells with a giant impact.  
1100 *Curr Opin Microbiol.* 2013;16(4):409-13. doi: 10.1016/j.mib.2013.03.006. PubMed PMID:  
1101 23588027; PubMed Central PMCID: PMC3723695.

1102 22. Mukaremera L, Lee KK, Wagener J, Wiesner DL, Gow NAR, Nielsen K. Titan cell  
1103 production in *Cryptococcus neoformans* reshapes the cell wall and capsule composition during  
1104 infection. *Cell Surf.* 2018;1:15-24. Epub 2018/08/21. doi: 10.1016/j.tcs.2017.12.001. PubMed  
1105 PMID: 30123851; PubMed Central PMCID: PMCPMC6095662.

1106 23. Crabtree JN, Okagaki LH, Wiesner DL, Strain AK, Nielsen JN, Nielsen K. Titan cell  
1107 production enhances the virulence of *Cryptococcus neoformans*. *Infect Immun.*  
1108 2012;80(11):3776-85. Epub 2012/08/15. doi: 10.1128/IAI.00507-12. PubMed PMID: 22890995;  
1109 PubMed Central PMCID: PMCPMC3486048.

1110 24. Okagaki LH, Nielsen K. Titan cells confer protection from phagocytosis in *Cryptococcus  
1111 neoformans* infections. *Eukaryot Cell.* 2012;11(6):820-6. Epub 2012/05/01. doi:  
1112 10.1128/EC.00121-12. PubMed PMID: 22544904; PubMed Central PMCID: PMCPMC3370461.

1113 25. Gerstein AC, Fu MS, Mukaremera L, Li Z, Ormerod KL, Fraser JA, et al. Polyploid titan  
1114 cells produce haploid and aneuploid progeny to promote stress adaptation. *mBio.*

1115 2015;6(5):e01340-15. Epub 2015/10/16. doi: 10.1128/mBio.01340-15. PubMed PMID: 26463162;  
1116 PubMed Central PMCID: PMCPMC4620463.

1117 26. Zhao Y, Wang Y, Upadhyay S, Xue C, Lin X. Activation of meiotic genes mediates ploidy  
1118 reduction during cryptococcal infection. *Curr Biol*. 2020;30(8):1387-96 e5. Epub 2020/02/29. doi:  
1119 10.1016/j.cub.2020.01.081. PubMed PMID: 32109388.

1120 27. Tian X, He G-J, Hu P, Chen L, Tao C, Cui Y-L, et al. *Cryptococcus neoformans* sexual  
1121 reproduction is controlled by a quorum sensing peptide. *Nat Microbiol*. 2018;3(6):698-707. doi:  
1122 10.1038/s41564-018-0160-4.

1123 28. Hommel B, Mukaremra L, Cordero RJB, Coelho C, Desjardins CA, Sturny-Leclere A, et al.  
1124 Titan cells formation in *Cryptococcus neoformans* is finely tuned by environmental conditions  
1125 and modulated by positive and negative genetic regulators. *PLoS Pathog*. 2018;14(5):e1006982.  
1126 Epub 2018/05/19. doi: 10.1371/journal.ppat.1006982. PubMed PMID: 29775480.

1127 29. Trevijano-Contador N, de Oliveira HC, Garcia-Rodas R, Rossi SA, Llorente I, Zaballos A, et  
1128 al. *Cryptococcus neoformans* can form titan-like cells *in vitro* in response to multiple signals.  
1129 *PLoS Pathog*. 2018;14(5):e1007007. Epub 2018/05/19. doi: 10.1371/journal.ppat.1007007.  
1130 PubMed PMID: 29775477.

1131 30. Dambuza IM, Drake T, Chapuis A, Zhou X, Correia J, Taylor-Smith L, et al. The  
1132 *Cryptococcus neoformans* Titan cell is an inducible and regulated morphotype underlying  
1133 pathogenesis. *PLoS Pathog*. 2018;14(5):e1006978. Epub 2018/05/19. doi:  
1134 10.1371/journal.ppat.1006978. PubMed PMID: 29775474.

1135 31. Zielke N, Edgar BA, DePamphilis ML. Endoreplication. *Cold Spring Harb Perspect Biol*.  
1136 2013;5(1):a012948. Epub 2013/01/04. doi: 10.1101/cshperspect.a012948. PubMed PMID:  
1137 23284048; PubMed Central PMCID: PMCPMC3579398.

1138 32. Fox DT, Duronio RJ. Endoreplication and polyploidy: insights into development and  
1139 disease. *Development*. 2013;140(1):3-12. doi: 10.1242/dev.080531.

1140 33. Hayles J, Fisher D, Woppard A, Nurse P. Temporal order of S phase and mitosis in fission  
1141 yeast is determined by the state of the p34cdc2-mitotic B cyclin complex. *Cell*. 1994;78(5):813-  
1142 22. Epub 1994/09/09. doi: 10.1016/s0092-8674(94)90542-8. PubMed PMID: 8087848.

1143 34. Lew DJ, Weinert T, Pringle JR. Cell cycle control in *Saccharomyces cerevisiae*. In: Pringle  
1144 JR, Broach JR, Jones EW, editors. *The Molecular and Cellular Biology of the Yeast Saccharomyces*:  
1145 Cell Cycle and Cell biology. Cold Spring Harbor, NY: Cold Spring Harbor Press; 1997. p. 607-95.

1146 35. Simmons Kovacs LA, Mayhew MB, Orlando DA, Jin Y, Li Q, Huang C, et al. Cyclin-  
1147 dependent kinases are regulators and effectors of oscillations driven by a transcription factor  
1148 network. *Mol Cell*. 2012;45(5):669-79. Epub 2012/02/07. doi: 10.1016/j.molcel.2011.12.033.  
1149 PubMed PMID: 22306294; PubMed Central PMCID: PMCPMC3578314.

1150 36. Altamirano S, Li Z, Fu MS, Ding M, Fulton SR, Yoder JM, et al. The cyclin Cln1 controls  
1151 polyploid titan cell formation following a stress-induced G2 arrest in *Cryptococcus*. *mBio*.  
1152 2021;12(5):e02509-21. doi: doi.org/10.1128/mBio.02509-21.

1153 37. Fu C, Coelho MA, David-Palma M, Priest SJ, Heitman J. Genetic and genomic evolution of  
1154 sexual reproduction: echoes from LECA to the fungal kingdom. *Curr Opin Genet Dev*. 2019;58-  
1155 59:70-5. Epub 2019/09/02. doi: 10.1016/j.gde.2019.07.008. PubMed PMID: 31473482; PubMed  
1156 Central PMCID: PMCPMC6889014.

1157 38. Stajich JE, Harris T, Brunk BP, Brestelli J, Fischer S, Harb OS, et al. FungiDB: an integrated  
1158 functional genomics database for fungi. *Nucleic Acids Res*. 2012;40(Database issue):D675-81. doi:  
1159 10.1093/nar/gkr918. PubMed PMID: 22064857; PubMed Central PMCID: PMCPMC3245123.

1160 39. Liu L, He GJ, Chen L, Zheng J, Chen Y, Shen L, et al. Genetic basis for coordination of  
1161 meiosis and sexual structure maturation in *Cryptococcus neoformans*. *eLife*. 2018;7:e38683.

1162 Epub 2018/10/04. doi: 10.7554/eLife.38683. PubMed PMID: 30281018; PubMed Central PMCID: PMCPMC6235564.

1163 40. Measday V, Moore L, Retnakaran R, Lee J, Donoviel M, Neiman AM, et al. A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase. *Mol Cell Biol*. 1997;17(3):1212-23. Epub 1997/03/01. doi: 10.1128/mcb.17.3.1212. PubMed PMID: 9032248; PubMed Central PMCID: PMCPMC231846.

1164 41. Tang Y, Reed SI. The Cdk-associated protein Cks1 functions both in G1 and G2 in *Saccharomyces cerevisiae*. *Genes Dev*. 1993;7(5):822-32. Epub 1993/05/01. doi: 10.1101/gad.7.5.822. PubMed PMID: 8491379.

1165 42. Berman J. Morphogenesis and cell cycle progression in *Candida albicans*. *Curr Opin Microbiol*. 2006;9(6):595-601. Epub 2006/10/24. doi: 10.1016/j.mib.2006.10.007. PubMed PMID: 17055773; PubMed Central PMCID: PMCPMC3552184.

1166 43. Senn H, Shapiro RS, Cowen LE. Cdc28 provides a molecular link between Hsp90, morphogenesis, and cell cycle progression in *Candida albicans*. *Mol Biol Cell*. 2012;23(2):268-83. Epub 2011/11/18. doi: 10.1091/mbc.E11-08-0729. PubMed PMID: 22090345; PubMed Central PMCID: PMCPMC3258172.

1167 44. Kozubowski L, Yadav V, Chatterjee G, Sridhar S, Yamaguchi M, Kawamoto S, et al. Ordered kinetochore assembly in the human-pathogenic basidiomycetous yeast *Cryptococcus neoformans*. *mBio*. 2013;4(5):e00614-13. Epub 2013/10/03. doi: 10.1128/mBio.00614-13. PubMed PMID: 24085781; PubMed Central PMCID: PMCPMC3791896.

1168 45. Janbon G, Maeng S, Yang DH, Ko YJ, Jung KW, Moyrand F, et al. Characterizing the role of RNA silencing components in *Cryptococcus neoformans*. *Fungal Genet Biol*. 2010;47(12):1070-80. Epub 2010/11/12. doi: 10.1016/j.fgb.2010.10.005. PubMed PMID: 21067947; PubMed Central PMCID: PMCPMC3021383.

1169 46. Slater ML. Effect of reversible inhibition of deoxyribonucleic acid synthesis on the yeast cell cycle. *J Bacteriol*. 1973;113(1):263-70. Epub 1973/01/01. doi: 10.1128/jb.113.1.263-270.1973. PubMed PMID: 4120066; PubMed Central PMCID: PMCPMC251626.

1170 47. Jacobs CW, Adams AE, Szaniszlo PJ, Pringle JR. Functions of microtubules in the *Saccharomyces cerevisiae* cell cycle. *J Cell Biol*. 1988;107(4):1409-26. Epub 1988/10/01. doi: 10.1083/jcb.107.4.1409. PubMed PMID: 3049620; PubMed Central PMCID: PMCPMC2115239.

1171 48. Fu J, Morris IR, Wickes BL. The production of monokaryotic hyphae by *Cryptococcus neoformans* can be induced by high temperature arrest of the cell cycle and is independent of same-sex mating. *PLoS Pathog*. 2013;9(5):e1003335. doi: 10.1371/journal.ppat.1003335. PubMed PMID: 23658522; PubMed Central PMCID: PMC3642078.

1172 49. Enloe B, Diamond A, Mitchell AP. A single-transformation gene function test in diploid *Candida albicans*. *J Bacteriol*. 2000;182(20):5730-6. Epub 2000/09/27. doi: 10.1128/jb.182.20.5730-5736.2000. PubMed PMID: 11004171; PubMed Central PMCID: PMCPMC94694.

1173 50. Arras SD, Chitty JL, Blake KL, Schulz BL, Fraser JA. A genomic safe haven for mutant complementation in *Cryptococcus neoformans*. *PLoS ONE*. 2015;10(4):e0122916. Epub 2015/04/10. doi: 10.1371/journal.pone.0122916. PubMed PMID: 25856300; PubMed Central PMCID: PMCPMC4391909.

1174 51. Sionov E, Lee H, Chang YC, Kwon-Chung KJ. *Cryptococcus neoformans* overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. *PLoS Pathog*. 2010;6(4):e1000848. doi: 10.1371/journal.ppat.1000848.

1175 52. Gusa A, Williams JD, Cho JE, Averette AF, Sun S, Shouse EM, et al. Transposon mobilization in the human fungal pathogen *Cryptococcus* is mutagenic during infection and promotes drug resistance *in vitro*. *Proc Natl Acad Sci U S A*. 2020;117(18):9973-80. Epub

1210 2020/04/19. doi: 10.1073/pnas.2001451117. PubMed PMID: 32303657; PubMed Central PMCID: 1211 PMCPMC7211991.

1212 53. Huang D, Friesen H, Andrews B. Pho85, a multifunctional cyclin-dependent protein 1213 kinase in budding yeast. *Mol Microbiol*. 2007;66(2):303-14. Epub 2007/09/14. doi: 1214 10.1111/j.1365-2958.2007.05914.x. PubMed PMID: 17850263.

1215 54. Hu P, Liu L, Ke W, Tian X, Wang L. A cyclin protein governs the infectious and sexual life 1216 cycles of *Cryptococcus neoformans*. *Sci China Life Sci*. 2020;doi: 10.1007/s11427-020-1697-3. 1217 Epub 2020/11/10. doi: 10.1007/s11427-020-1697-3. PubMed PMID: 33165808.

1218 55. Fan Y, Lin X. Multiple applications of a transient CRISPR-Cas9 coupled with 1219 electroporation (TRACE) system in the *Cryptococcus neoformans* species complex. *Genetics*. 1220 2018;208(4):1357-72. Epub 2018/02/16. doi: 10.1534/genetics.117.300656. PubMed PMID: 1221 29444806; PubMed Central PMCID: PMCPMC5887135.

1222 56. Fitch I, Dahmann C, Surana U, Amon A, Nasmyth K, Goetsch L, et al. Characterization of 1223 four B-type cyclin genes of the budding yeast *Saccharomyces cerevisiae*. *Mol Biol Cell*. 1224 1992;3(7):805-18. Epub 1992/07/01. doi: 10.1091/mbc.3.7.805. PubMed PMID: 1387566; 1225 PubMed Central PMCID: PMCPMC275636.

1226 57. Köivämägi M, Valk E, Venta R, Iofik A, Lepiku M, Balog ER, et al. Cascades of multisite 1227 phosphorylation control Sic1 destruction at the onset of S phase. *Nature*. 2011;480(7375):128- 1228 31. Epub 2011/10/14. doi: 10.1038/nature10560. PubMed PMID: 21993622; PubMed Central 1229 PMCID: PMCPMC3228899.

1230 58. Richardson HE, Stueland CS, Thomas J, Russell P, Reed SI. Human cDNAs encoding 1231 homologs of the small p34Cdc28/Cdc2-associated protein of *Saccharomyces cerevisiae* and 1232 *Schizosaccharomyces pombe*. *Genes Dev*. 1990;4(8):1332-44. Epub 1990/08/01. doi: 1233 10.1101/gad.4.8.1332. PubMed PMID: 2227411.

1234 59. Kelliher CM, Leman AR, Sierra CS, Haase SB. Investigating conservation of the cell-cycle- 1235 regulated transcriptional program in the fungal pathogen, *Cryptococcus neoformans*. *PLoS Genet*. 1236 2016;12(12):e1006453. Epub 2016/12/06. doi: 10.1371/journal.pgen.1006453. PubMed PMID: 1237 27918582; PubMed Central PMCID: PMCPMC5137879.

1238 60. Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, et al. Chromosome 1239 instability is common in human cleavage-stage embryos. *Nat Med*. 2009;15(5):577-83. Epub 1240 2009/04/28. doi: 10.1038/nm.1924. PubMed PMID: 19396175.

1241 61. Selmecki A, Forche A, Berman J. Aneuploidy and isochromosome formation in drug- 1242 resistant *Candida albicans*. *Science*. 2006;313(5785):367-70. Epub 2006/07/22. doi: 1243 10.1126/science.1128242. PubMed PMID: 16857942; PubMed Central PMCID: 1244 PMCPMC1717021.

1245 62. Selmecki A, Gerami-Nejad M, Paulson C, Forche A, Berman J. An isochromosome confers 1246 drug resistance *in vivo* by amplification of two genes, *ERG11* and *TAC1*. *Mol Microbiol*. 1247 2008;68(3):624-41. Epub 2008/03/28. doi: 10.1111/j.1365-2958.2008.06176.x. PubMed PMID: 1248 18363649.

1249 63. Todd RT, Wikoff TD, Forche A, Selmecki A. Genome plasticity in *Candida albicans* is 1250 driven by long repeat sequences. *eLife*. 2019;8:e45954. Epub 2019/06/08. doi: 1251 10.7554/eLife.45954. PubMed PMID: 31172944; PubMed Central PMCID: PMCPMC6591007.

1252 64. Todd RT, Selmecki A. Expandable and reversible copy number amplification drives rapid 1253 adaptation to antifungal drugs. *eLife*. 2020;9:e58349. Epub 2020/07/21. doi: 1254 10.7554/eLife.58349. PubMed PMID: 32687060; PubMed Central PMCID: PMCPMC7371428.

1255 65. Schotanus K, Heitman J. Centromere deletion in *Cryptococcus deuterogattii* leads to 1256 neocentromere formation and chromosome fusions. *eLife*. 2020;9:e56026. Epub 2020/04/21. 1257 doi: 10.7554/eLife.56026. PubMed PMID: 32310085; PubMed Central PMCID: PMCPMC7188483.

1258 66. Yadav V, Sun S, Coelho MA, Heitman J. Centromere scission drives chromosome  
1259 shuffling and reproductive isolation. *Proc Natl Acad Sci U S A*. 2020;117(14):7917-28. Epub  
1260 2020/03/21. doi: 10.1073/pnas.1918659117. PubMed PMID: 32193338; PubMed Central PMCID:  
1261 PMCPMC7149388.

1262 67. Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, et al. Effects of  
1263 aneuploidy on cellular physiology and cell division in haploid yeast. *Science*.  
1264 2007;317(5840):916-24. doi: 10.1126/science.1142210.

1265 68. Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE, et al.  
1266 Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. *Science*.  
1267 2008;322(5902):703-9. Epub 2008/11/01. doi: 10.1126/science.1160058. PubMed PMID:  
1268 18974345; PubMed Central PMCID: PMCPMC2701511.

1269 69. Zhai B, Zhu P, Foyle D, Upadhyay S, Idnurm A, Lin X. Congenic strains of the filamentous  
1270 form of *Cryptococcus neoformans* for studies of fungal morphogenesis and virulence. *Infect*  
1271 *Immun*. 2013;81(7):2626-37. doi: 10.1128/IAI.00259-13. PubMed PMID: 23670559; PubMed  
1272 Central PMCID: PMCPMC3697605.

1273 70. Davidson RC, Cruz MC, Sia RA, Allen B, Alspaugh JA, Heitman J. Gene disruption by  
1274 biolistic transformation in serotype D strains of *Cryptococcus neoformans*. *Fungal Genet Biol*.  
1275 2000;29(1):38-48. doi: 10.1006/fgb.1999.1180. PubMed PMID: 10779398.

1276 71. Ruff JA, Lodge JK, Baker LG. Three galactose inducible promoters for use in *C.*  
1277 *neoformans* var. *grubii*. *Fungal Genet Biol*. 2009;46(1):9-16. Epub 2008/10/28. doi:  
1278 10.1016/j.fgb.2008.10.003. PubMed PMID: 18952189; PubMed Central PMCID:  
1279 PMCPMC2654232.

1280 72. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO. Enzymatic  
1281 assembly of DNA molecules up to several hundred kilobases. *Nat Methods*. 2009;6(5):343-5. doi:  
1282 10.1038/nmeth.1318. PubMed PMID: 19363495.

1283 73. Fang Y, Cui L, Gu B, Arredondo F, Tyler BM. Efficient genome editing in the oomycete  
1284 *Phytophthora sojae* using CRISPR/Cas9. *Curr Protoc Microbiol*. 2017;44:21A 1 1-A 1 6. Epub  
1285 2017/02/07. doi: 10.1002/cpmc.25. PubMed PMID: 28166383.

1286 74. Idnurm A. A tetrad analysis of the basidiomycete fungus *Cryptococcus neoformans*.  
1287 *Genetics*. 2010;185:153-63. Epub 2010/02/17. doi: genetics.109.113027 [pii]  
1288 10.1534/genetics.109.113027. PubMed PMID: 20157004.

1289 75. Tanaka R, Taguchi H, Takeo K, Miyaji M, Nishimura K. Determination of ploidy in  
1290 *Cryptococcus neoformans* by flow cytometry. *J Med Vet Mycol*. 1996;34(5):299-301. PubMed  
1291 PMID: 8912162.

1292 76. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and  
1293 accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Res*.  
1294 2017;27(5):722-36. Epub 2017/03/17. doi: 10.1101/gr.215087.116. PubMed PMID: 28298431;  
1295 PubMed Central PMCID: PMCPMC5411767.

1296 77. Walker BJ, Abeel T, Shea T, Priest M, Aboueliel A, Sakthikumar S, et al. Pilon: an  
1297 integrated tool for comprehensive microbial variant detection and genome assembly  
1298 improvement. *PLoS ONE*. 2014;9(11):e112963. Epub 2014/11/20. doi:  
1299 10.1371/journal.pone.0112963. PubMed PMID: 25409509; PubMed Central PMCID:  
1300 PMCPMC4237348.

1301 78. Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P, Bruno D, et al. The genome of the  
1302 basidiomycetous yeast and human pathogen *Cryptococcus neoformans*. *Science*.  
1303 2005;307(5713):1321-4. Epub 2005/01/18. doi: 10.1126/science.1103773. PubMed PMID:  
1304 15653466; PubMed Central PMCID: PMCPMC3520129.

1305 79. Janbon G, Ormerod KL, Paulet D, Byrnes EJ, 3rd, Yadav V, Chatterjee G, et al. Analysis of  
1306 the genome and transcriptome of *Cryptococcus neoformans* var. *grubii* reveals complex RNA  
1307 expression and microevolution leading to virulence attenuation. PLoS Genet.  
1308 2014;10(4):e1004261. doi: 10.1371/journal.pgen.1004261. PubMed PMID: 24743168; PubMed  
1309 Central PMCID: PMCPMC3990503.

1310 80. Yadav V, Sun S, Billmyre RB, Thimmappa BC, Shea T, Lintner R, et al. RNAi is a critical  
1311 determinant of centromere evolution in closely related fungi. Proc Natl Acad Sci U S A.  
1312 2018;115(12):3108-13. Epub 2018/03/07. doi: 10.1073/pnas.1713725115. PubMed PMID:  
1313 29507212; PubMed Central PMCID: PMCPMC5866544.

1314 81. Pitkin JW, Panaccione DG, Walton JD. A putative cyclic peptide efflux pump encoded by  
1315 the *TOXA* gene of the plant-pathogenic fungus *Cochliobolus carbonum*. Microbiology.  
1316 1996;142:1557-65. doi: Doi 10.1099/13500872-142-6-1557. PubMed PMID:  
1317 WOS:A1996UR35800028.

1318 82. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence  
1319 data. Bioinformatics. 2014;30(15):2114-20. Epub 2014/04/04. doi:  
1320 10.1093/bioinformatics/btu170. PubMed PMID: 24695404; PubMed Central PMCID:  
1321 PMCPMC4103590.

1322 83. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.  
1323 Bioinformatics. 2009;25(14):1754-60. Epub 2009/05/20. doi: 10.1093/bioinformatics/btp324.  
1324 PubMed PMID: 19451168; PubMed Central PMCID: PMCPMC2705234.

1325 84. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for  
1326 variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet.  
1327 2011;43(5):491-8. Epub 2011/04/12. doi: 10.1038/ng.806. PubMed PMID: 21478889; PubMed  
1328 Central PMCID: PMCPMC3083463.

1329 85. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al.  
1330 Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24-6. Epub 2011/01/12. doi:  
1331 10.1038/nbt.1754. PubMed PMID: 21221095; PubMed Central PMCID: PMCPMC3346182.

1332 86. Fu C, Donadio N, Cardenas ME, Heitman J. Dissecting the roles of the calcineurin  
1333 pathway in unisexual reproduction, stress responses, and virulence in *Cryptococcus*  
1334 *deneoformans*. Genetics. 2018;208(2):639-53. Epub 2017/12/14. doi:  
1335 10.1534/genetics.117.300422. PubMed PMID: 29233811; PubMed Central PMCID:  
1336 PMCPMC5788528.

1337 87. Findley K, Sun S, Fraser JA, Hsueh YP, Averette AF, Li WJ, et al. Discovery of a modified  
1338 tetrapolar sexual cycle in *Cryptococcus amylorentus* and the evolution of *MAT* in the  
1339 *Cryptococcus* species complex. PLoS Genet. 2012;8(2):e1002528. doi: ARTN e1002528  
1340 10.1371/journal.pgen.1002528. PubMed PMID: WOS:000300725500044.

1341

1342

1343 **Figure legends**

1344

1345 **Figure 1. Identification of cell cycle regulating genes involved in unisexual**

1346 **reproduction.** (A) Differential expression patterns of cell cycle regulating genes

1347 in wild type XL280 $\alpha$  cells upon incubation for 36 hours on mating-inducing V8

1348 agar medium versus nutrient rich YPD agar medium were examined by qRT-

1349 PCR. The error bars represent the standard deviation of the mean for three

1350 biological replicates. Red and green colors indicate genes that are significantly

1351 down- and up- regulated during unisexual reproduction compared to the control

1352 gene *KAR5*, respectively. \* indicates  $0.01 < p \leq 0.05$  and \*\* indicates  $0.001 < p \leq$

1353 0.01. (B) Wild type XL280 $\alpha$ , conditional expression mutant of *CLB3*, and deletion

1354 mutants of individual cell cycle regulating genes were grown on MS medium to

1355 assess unisexual hyphal growth and spore formation. Hyphal growth on the edge

1356 of each colony was imaged after 7 days and the scale bar represents 500  $\mu$ m.

1357 Spore formation was imaged after three weeks and the scale bar represents 10

1358  $\mu$ m. (C) Wild type and the conditional expression strain for *CLB3* were grown on

1359 YPD, YPG, V8, V8 glucose, and V8 galactose for 24 hours. Ploidy for the cell

1360 populations were determined by FACS.

1361

1362 **Figure 2. Cell cycle regulating genes contribute to blastospore**

1363 **diploidization during unisexual reproduction.** Ploidy of single colonies derived

1364 from microscopically dissected blastospores were determined by FACS.

1365 Schematic diagram showing basidiospores and blastospores and representative  
1366 gating strategy for single cells were provided at top left. Representative FACS  
1367 results for haploid (red), diploid (blue), aneuploid (purple), or mixed  
1368 haploid/diploid (yellow) were overlay-plotted with half offset.

1369

1370 **Figure 3. Ploidy sensor reports ploidy transition events during both mitotic**  
1371 **and meiotic growth.** (A) Schematic diagram shows the mechanism that the  
1372 ploidy sensor construct *NURAT* detects ploidy transition depends on homologous  
1373 recombination in one *NURAT* allele after the ploidy transition events. (B) A  
1374 haploid and two diploid *ura5Δ* strains harboring *NURAT* constructs were  
1375 incubated on YPD and V8 agar medium for 60 hours. The number of *NURAT*  
1376 recombination events per million CFU was plotted to compare the recombination  
1377 frequencies. *NAT<sup>R</sup>* colonies were replica-plated onto SD-URA agar medium to  
1378 obtain cells that contain both *NURAT* and *NAT* constructs. The percentile of  
1379 *NURAT* presence among *NAT<sup>R</sup>* colonies were plotted in the bar graph. Mean  
1380 values of five independent experiments were plotted for the *NURAT*  
1381 recombination frequencies and the *Ura<sup>+</sup>* percentiles among *NAT<sup>R</sup>* colonies; error  
1382 bars represent standard deviations. \* indicates  $0.01 < p \leq 0.05$  and \*\* indicates  
1383  $0.001 < p \leq 0.01$ . Individual *NAT/NURAT* colonies were tested for ploidy by  
1384 FACS and plotted in the violin plot.

1385

1386 **Figure 4. Ploidy sensor detects auto-diploidization and segmental**  
1387 **aneuploid formation.** (A) A *MAT $\alpha$  NURAT*, *MAT $\alpha$  ura5 $\Delta$* , *MAT $\alpha$  ura5 $\Delta$  NURAT*,  
1388 *MAT $\alpha$  ura5 $\Delta$  NURAT*, and four *MAT $\alpha$  ura5 $\Delta$  NAT/NURAT* and one *MAT $\alpha$  ura5 $\Delta$*   
1389 *NAT/NURAT* colonies derived through mitotic passaging were subjected to  
1390 Illumina whole-genome sequencing. Read depth across all 14 chromosomes was  
1391 plotted for each strain. Ploidy was determined by FACS and is listed at the end of  
1392 each sequencing result. Centromeres and mating-type loci are indicated by grey  
1393 and green bars, respectively. (B) Read depth for Chr 1 and regions containing  
1394 the *AFR1* gene, which encodes a drug efflux pump, and the safe haven locus,  
1395 where NURAT is inserted. Both loci are present in duplicated chromosomal  
1396 segments among all *NAT/NURAT* progeny. Transposable elements were  
1397 highlighted and labeled in green below the Chr 1 read depth plot. (C) Human  
1398 host temperature tolerance and fluconazole resistance phenotypes were  
1399 examined for these five *NAT/NURAT* strains with haploid and diploid wild-type  
1400 controls. Cells were 10-fold serial-diluted and spotted on YPD and YPD  
1401 supplemented with 8  $\mu$ g/ml fluconazole, and then incubated at either 30°C or  
1402 37°C for two days.

1403

1404 **Figure 5. Cell cycle regulating genes contribute to segmental aneuploid**  
1405 **formation.** (A) Deletion of *PCL2*, *PCL6*, *PCL9*, *CKS1*, and *CKS2* reduced  
1406 *NURAT* recombination frequency; deletion of *CKS1* increased the percentile of  
1407 *NURAT* presence among *NAT $R$*  colonies; deletion of *PCL2*, *PCL6*, and *CKS2*  
1408 blocked segmental aneuploidy formation. Student's t-test with Bonferroni

1409 correction for 10 repeated tests was performed to compare each mutant with the  
1410 wild type. *p* value lower than 0.005 (\*) was considered statistically significant. (B)  
1411 Suppressed expression of *CLB3* increased *NURAT* recombination frequency and  
1412 the percentile of *NURAT* presence among *NAT<sup>R</sup>* colonies, while increased  
1413 expression of *CLB3* reduced *NURAT* recombination frequencies but increased  
1414 the percentile of *NURAT* presence among *NAT<sup>R</sup>* colonies. Neither down  
1415 regulation or up regulation of *CLB3* blocked segmental aneuploid formation.  
1416 Mean values of five independent experiments were plotted for the *NURAT*  
1417 recombination frequencies and the *Ura<sup>+</sup>* percentiles among *NAT<sup>R</sup>* colonies; error  
1418 bars represent standard deviations. Student's t-test with Bonferroni correction for  
1419 9 repeated tests was performed for each pairwise comparison. *p* value lower  
1420 than 0.0056 (\*) was considered statistically significant.

1421

## Supporting information

**S1 Fig. Expression of putative cyclin dependent kinases and expression profiles of the putative cell cycle regulators.** (A) Differential expression patterns of genes encoding putative cyclin dependent kinases in wild-type XL280α cells incubated for 36 hours on mating-inducing V8 agar medium versus nutrient-rich YPD agar medium were examined by qRT-PCR. (B) Relative expression levels for the six differentially expressed cell cycle regulators were extrapolated from a time-course transcriptional profiling study of the wild-type strain XL280α during unisexual reproduction [39]. Expression levels on YPD medium after incubation for 12h and V8 agar medium after incubation for 12h, 24h, and 48h were plotted for these putative cell cycle genes. A black dashed line was drawn to indicate the time point assayed for these genes in this study.

**S2 Fig. Expression of *CLB3* under the galactose-inducible promoter  $P_{GAL7}$  and bisexual mating phenotypes of the cell cycle regulating gene deletion mutants.** (A) *CLB3* was expressed under the control of galactose-inducible promoter  $P_{GAL7}$ . Compared to the expression level of the wild type on YPD agar medium,  $P_{GAL7}$ -*CLB3* was upregulated 5.2- and 5.8-fold on YPG and V8 galactose agar media and downregulated 38.8-, 15.4-, 10.9-, and 9.9-fold on YPD, MS, V8, and V8 glucose agar media, respectively. The error bars represent the standard deviation of the mean for three biological replicates. (B) *MATa* and *MATa* cells of wild type XL280 and deletion mutants for *PCL2*, *PCL6*, *PCL9*,

*CKS1*, and *CKS2* were equally mixed and inoculated on MS medium to assess bisexual hyphal growth and spore formation. Hyphal growth on the edge of each colony was imaged after three days and the scale bar represents 200  $\mu$ m. Spore formation was imaged after eleven days and the scale bar represents 50  $\mu$ m.

**S3 Fig. Deletion of *CKS1* and repressed expression of *CLB3* result in pseudo-hyphal growth.** Wild type, deletion mutants of *PCL2*, *PCL6*, *PCL9*, *CKS1*, and *CKS2* were grown in liquid YPD overnight, and the conditional expression strain for *CLB3* was grown in liquid YPD and YPG medium overnight. Cells were stained with Calcofluor white and DAPI. The scale bar represents 10  $\mu$ m

**S4 Fig. Deletion of *CKS1* and reduced expression of *CLB3* arrest cells at G2 phase.** Overnight culture in YPD for the wild type and deletion mutant strains of *PCL2*, *PCL6*, *PCL9*, *CKS1*, and *CKS2*, and overnight culture in YPD for the conditional expression strain for *CLB3* were arrested by hydroxyurea and nocodazole to assess whether these genes regulate cell cycle progression. Cells were arrested in G1 by hydroxyurea and released to S/G2 after removal of hydroxyurea. Nocodazole arrested cells at S/G2 phase. Ploidy for the cell populations were determined by FACS.

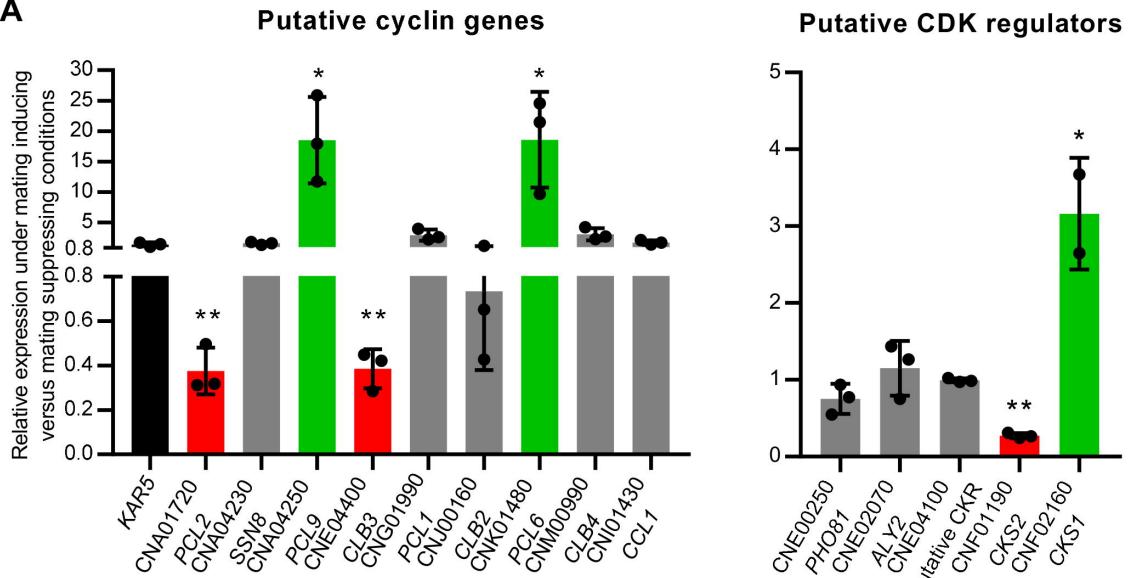
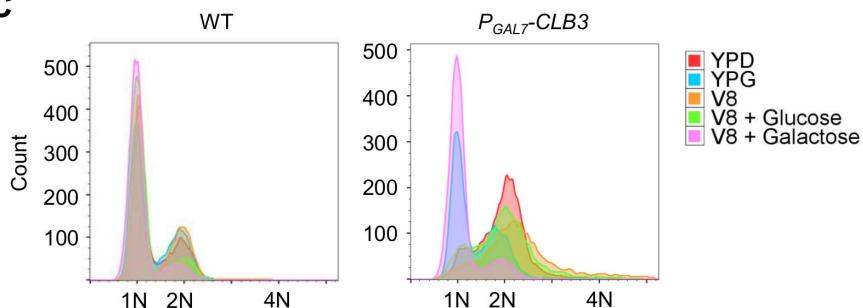
**S5 Fig. Population ploidy distribution is similar between mating-inducing and -suppressing conditions.** Wild type and deletion mutants of *PCL2*, *PCL6*, *PCL9*, *CKS1*, and *CKS2* were grown on YPD and V8 agar media for 24 hours.

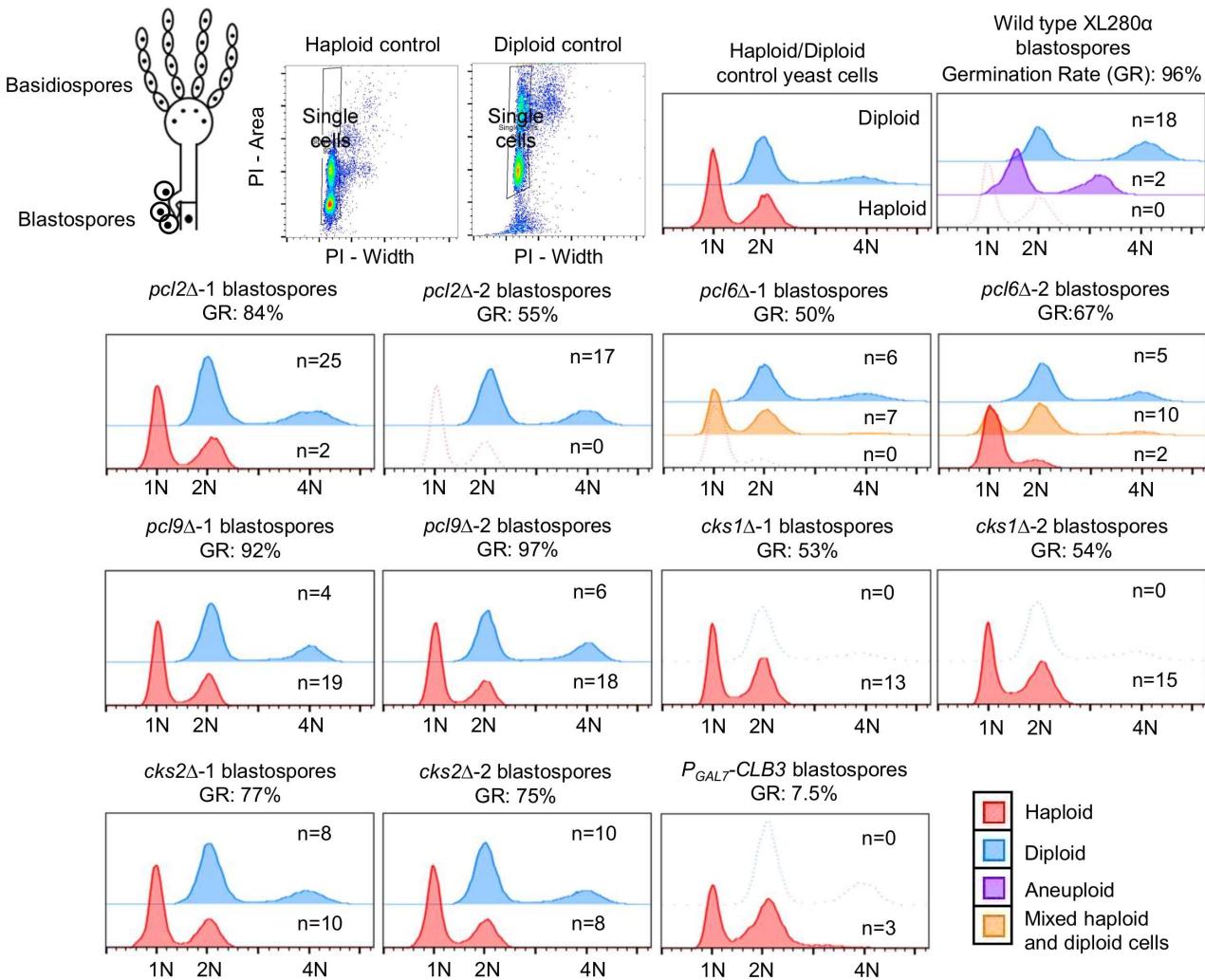
**S6 Fig. Schematic diagram for the generation of strains carrying the *NURAT* ploidy sensor.** A *MATa* *NURAT* strain (CF1300 XL280 $\alpha$  *SH-NURAT-NEO*) was crossed with a *MATa* *ura5 $\Delta$*  strain (CF1321 XL280 $\alpha$  *ura5 $\Delta$ ::HYG*) to generate *MATa* and *MATa* *ura5 $\Delta$*  *NURAT* strains (CF1348 and CF1349). The *MATa* *ura5 $\Delta$*  *NURAT/NAT-1*, -2, -3, and -4 strains (CF1354, CF1355, CF1356, and CF1347) and the *MATa* *ura5 $\Delta$*  *NURAT/NAT-1* strain (CF1358) were generated through mitotic passages of CF1348 and CF1349, respectively. All above nine strains were subjected to Illumina whole-genome sequencing. Diploid *MATa* *ura5 $\Delta$*  *NURAT/NURAT* strains (CF1610 and CF1611  $\alpha/\alpha$  *ura5 $\Delta$ /ura5 $\Delta$*  *NURAT/NURAT*) were generated by dissecting blastospores from CF1349. Ploidy of all strains were confirmed by FACS.

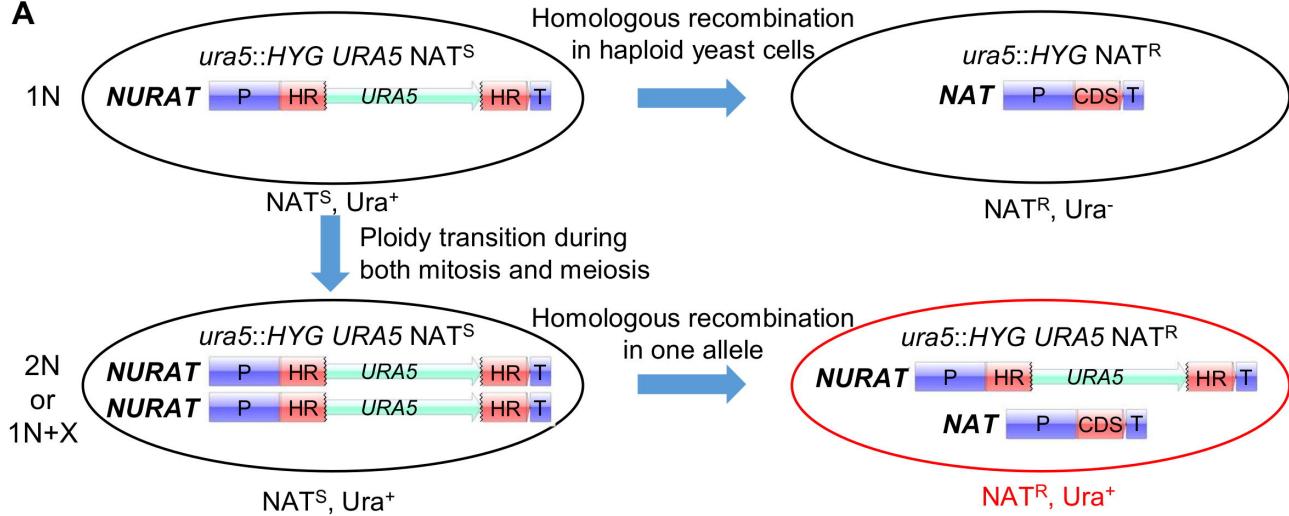
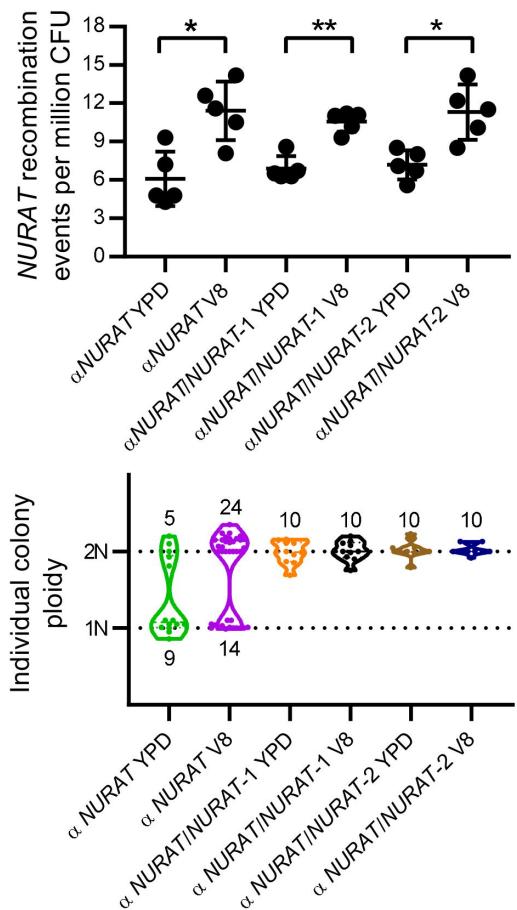
**S7 Fig. Schematic diagram for the ploidy transition detection assays using the *NURAT* ploidy sensor.** Overnight cultures of strains carrying the *NURAT* construct were washed and inoculated on V8 or YPD medium for the designated time period. Cells were then plated on YPD medium supplemented with nourseothricin to select for cells with a recombined, functional *NAT* construct. Colonies derived from these cells were replica plated onto SD-URA medium to

screen for NAT<sup>R</sup> cells that retained an intact *NURAT* construct. NAT<sup>R</sup>, Ura<sup>+</sup> colonies were then tested for ploidy by FACS.

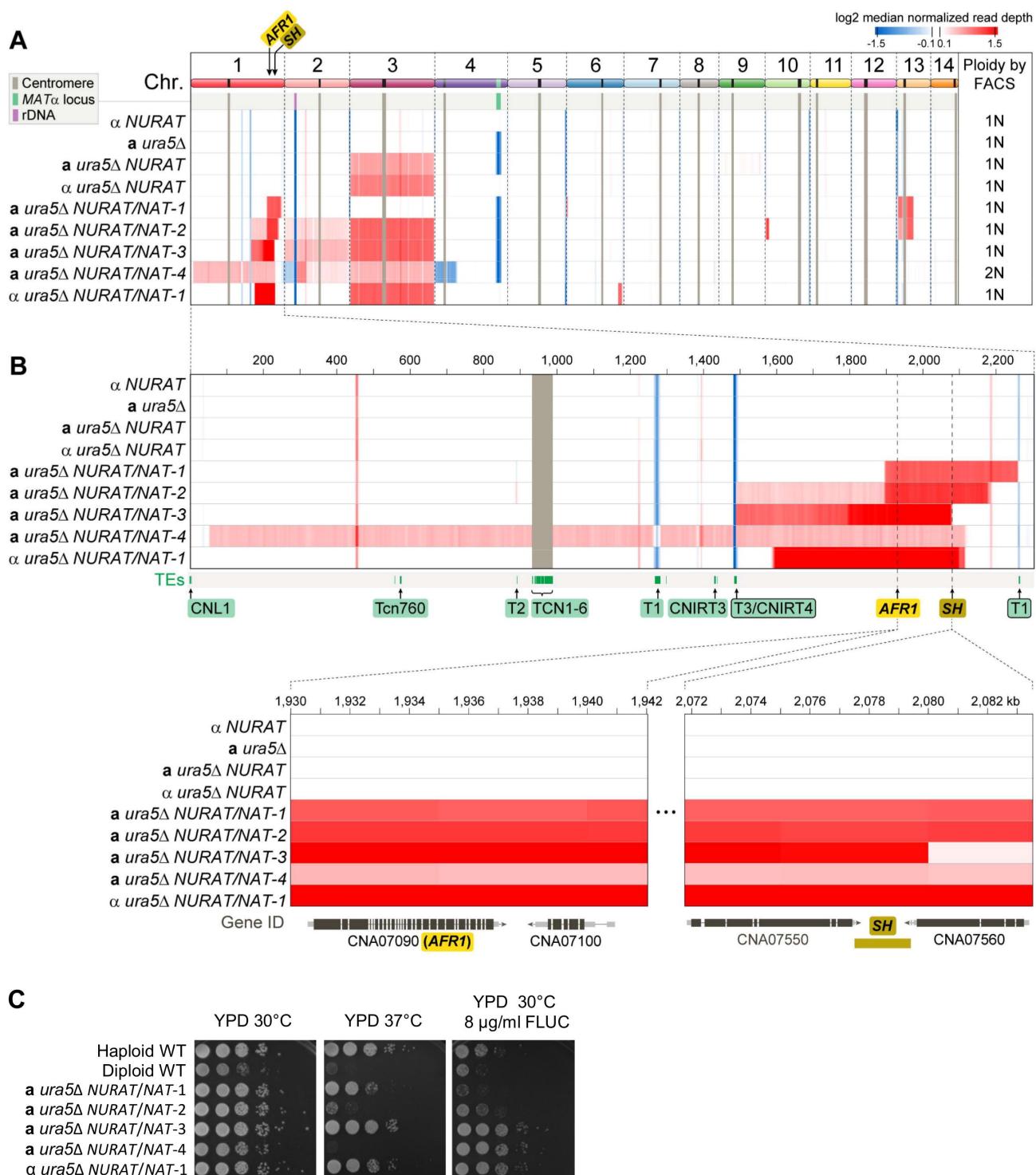
**S8 Fig. Ploidy sensor reports ploidy transition events during both mitotic and meiotic growth.** Frequencies of *NURAT* recombination in haploid strains *MATa NURAT* (CF1348, only overnight culture was tested) and *MATa NURAT* (CF1349), and diploid strains *MATa NURAT/NURAT-1* and *MATa NURAT/NURAT-2* (CF1610 and CF1611) grown (A) as overnight cultures in liquid YPD medium and (B) on V8 or YPD agar medium for 36 hours (scatter dot plots). NAT<sup>R</sup> colonies were replica-plated onto SD-URA medium to obtain NAT<sup>R</sup>, Ura<sup>+</sup> colonies (bar graphs), and ploidy for these colonies was assessed by FACS (violin plots). Mean values of five independent experiments were plotted for the *NURAT* recombination frequencies and the Ura<sup>+</sup> percentiles among NAT<sup>R</sup> colonies; error bars represent standard deviations. Student's T-test was performed for each pairwise comparison. \*\* indicates  $0.001 < p \leq 0.01$ .

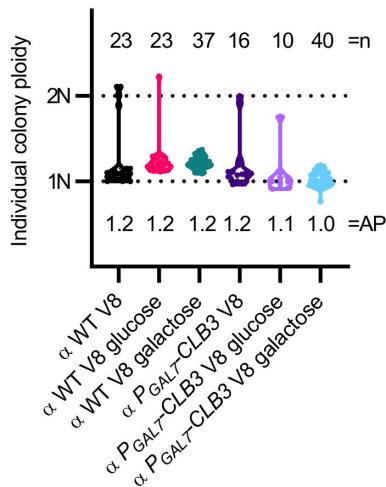
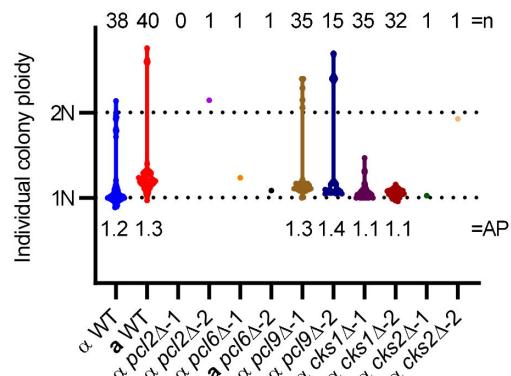
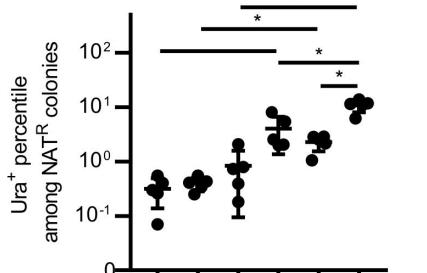
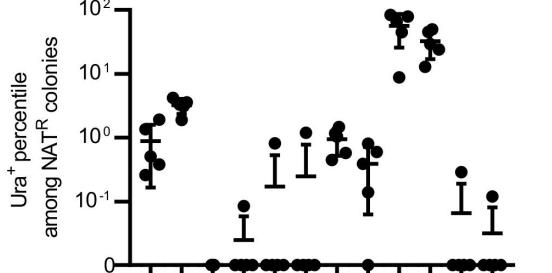
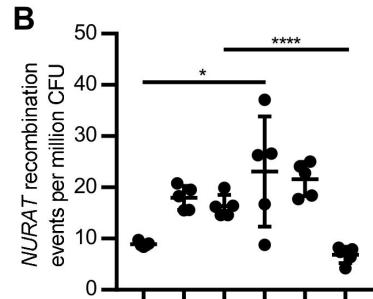
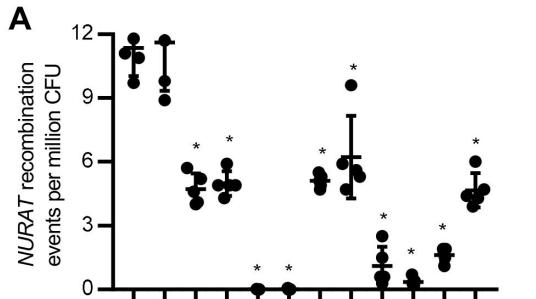


**S9 Fig. Flanking sequences of segmented regions show distinct modes of segmental aneuploid formation.** For each *NURAT/NAT* progeny, sequencing reads at the borders of segmentally duplicated regions were analyzed. Blue, red, and green bubbles indicate forward and reverse reads that were aligned to two different chromosomal positions. Sequence alignments of these reads were shown in the panels on the right of the chromosome diagrams. Chimeric reads


aligning to two different chromosomal positions were highlighted in connected boxes. Sequencing reads aligned to segmentally duplicated regions from three chromosomes were identified in the *MAT $\alpha$  ura5 $\Delta$  NURAT/NAT-1, -2, and -4* strains, suggesting fusion of these regions. T1 and T3/CNIRT4 transposable element movements were detected flanking some of the regions in the *MAT $\alpha$  ura5 $\Delta$  NURAT/NAT-1, -2, and -3* strains and the *MAT $\alpha$  ura5 $\Delta$  NURAT/NAT-1* strain. In the *MAT $\alpha$  ura5 $\Delta$  NURAT/NAT-1* strain, tandem duplication and inversion events were detected in the segmentally duplicated regions.



**S10 Fig. Karyotypic changes are associated with segmental aneuploid formation.** CHEF gel electrophoresis separation of chromosomes was performed under different conditions to separate larger or smaller chromosomes. Karyotypic changes (highlighted in green and red arrows) were observed for strains with segmental aneuploidy (*MAT $\alpha$  ura5 $\Delta$  NAT/NURAT-1, -2, -3, -4* and *MAT $\alpha$  ura5 $\Delta$  NAT/NURAT-1*) compared with wild type and parental strains. Chromoblot analyses with probes recognizing (A) *URA5* and *NAT*, and segmental aneuploid portions of (B) Chrs 2 and 6 and (C) Chr 13 confirmed the karyotypic changes. Strains are highlighted in red when the probed sequences are within segmental aneuploid regions.

**S11 Fig. *PCL9* and *CLB3* contribute to aneuploidy formation.** Individual colonies with ploidies above 1.6 were identified as outliers and removed from


Figure 5 and data were replotted for (A) *pcl9Δ* and *cks1Δ* mutants and (B) *P<sub>UGE2</sub>-CLB3*. Student's t-tests with Bonferroni correction for 4 and 9 repeated tests were performed for each pairwise comparison for panel A and panel B, respectively. *p* value lower than 0.0125 (A) or 0.0056 (B) was considered statistically significant (\*).







**A****B****C**



**A****B**

**Figure 4**



